
Yamine Ait Ameur
Klaus-Dieter Schewe (Eds.)

 123

LN
CS

 8
47

7

4th International Conference, ABZ 2014
Toulouse, France, June 2–6, 2014
Proceedings

Abstract State Machines 
Alloy, B, TLA, VDM, and Z



Lecture Notes in Computer Science 8477
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Yamine Ait Ameur
Klaus-Dieter Schewe (Eds.)

Abstract State Machines,
Alloy, B, TLA, VDM, and Z

4th International Conference, ABZ 2014
Toulouse, France, June 2-6, 2014
Proceedings

13



Volume Editors

Yamine Ait Ameur
INP-ENSEEIHT/IRIT
2 Rue Charles Camichel, BP 7122
31071 Toulouse Cedex 7, France
E-mail: yamine@enseeiht.fr

Klaus-Dieter Schewe
Software Competence Center Hagenberg
Softwarepark 21
4232 Hagenberg, Austria
E-mail: kd.schewe@scch.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-43651-6 e-ISBN 978-3-662-43652-3
DOI 10.1007/978-3-662-43652-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939229

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 4th international conference ABZ took place in Toulouse during June 2nd
to June 6th. This conference records the latest development in refinement and
proof state based formal methods. It follows the success of the London (2008),
Orford (2010) and Pisa (2012) conferences.

This year’s ABZ was marked by two major events. In addition to ASM,
B, Z, Alloy and VDM, ABZ 2014 saw the introduction of TLA (Temporal
Logic of Actions) as the 6th formal method covered by the scope of the confer-
ence. In order to emphasise the integration of TLA, Leslie Lamport was invited
to be one of the keynote speakers. He agreed to give an invited talk entitled
“TLA+ for Non-Dummies” the year he was distinguished by the Turing Award.
Congratulations !

After the “Steam Boiler” case study raised 20 years ago, the second event
highlighting the 4th ABZ conference was the introduction of a case study track.
The aeronautic context offered by the Toulouse area pushed us to look for a case
study issued from this domain. Frédéric Boniol and Virginie Wiels kindly and
immediately accepted to propose a “landing gear system” to be modelled within
proof and refinement state based methods in the scope of ABZ. A separate
proceedings volume, also published by Springer Verlag, is dedicated to this case
study.

ABZ 2014 received 81 submissions covering the whole formal methods in
the scope of the conference: Alloy, ASM, B, TLA, VDM and Z. These papers
ranged on a wide spectrum covering fundamental contributions, applications in
industrial contexts, and tool developments and improvements. Each paper was
reviewed by at least three reviewers and the Program Committee accepted 13
long papers and 19 short papers. Furthermore, 8 long and 3 short papers were
accepted for the case study track published in another proceedings volume. This
selection process led to an attractive scientific programme.

In addition to the invited talk of Leslie Lamport, ABZ 2014 invited two other
speakers. Gerhard Schellhorn from the University of Augsburg, Germany gave
a talk entitled “Development of a Verified Flash File System” centered towards
the ASM formal method and Laurent Voisin from the Systerel company, France
with a talk entitled “The Rodin Platform has turned ten” reporting the progress
achieved within the Rodin platform supporting Event-B. We would like to thank
the three invited speakers for their contributions to the success of ABZ 2014.

ABZ 2014 would not have succeeded without the deep investment and in-
volvement of the Program Committee members and the external reviewers who
contributed to review (more than 250 reviews) and select the best contributions.
This event would not exist if authors and contributors did not submit their
proposals. We address our thanks to every person, reviewer, author, Program
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Committee member and Organization Committee member involved in the suc-
cess of ABZ 2014.

The EasyChair system was set up for the management of ABZ 2014 sup-
porting submission, review and volume preparation processes. It proved to be a
powerful framework.

We wish to express our special thanks to Jean-Raymond Abrial, Frédéric
Boniol, Egon Börger and Virginie Wiels for their valuable support.

Finally, ABZ 2014 received the support of several sponsors, among them
Airbus, CNES, CNRS, CRITT Informatique, CS, ENSEEIHT Toulouse, FME,
INP Toulouse, IRIT, Midi Pyrénées Region, ONERA, SCCH, University Paul
Sabatier Toulouse. Many thanks for their support.

June 2014 Yamine Ait Ameur
Klaus-Dieter Schewe
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TLA+ for Non-Dummies

Leslie Lamport

Microsoft Research
Silicon Valley

USA

Abstract. I will discuss the motivation underlying TLA+ and some
of the language’s subtleties. Since Springer-Verlag requires a longer ab-
stract, here is a simple sample TLA+ specification:

---------------------- MODULE Euclid ----------------------

(**********************************************************)

(* This module specifies a version of Euclid’s algorithm *)

(* for computing the greatest common divisor of two *)

(* positive integers. *)

(**********************************************************)

EXTENDS Integers

CONSTANTS M, N

ASSUME /\ M \in Nat \ {0}

/\ N \in Nat \ {0}

VARIABLES x, y

Init == (x = M) /\ (y = N)

Next == ( x > y

/\ x’ = x - y

/\ y’ = y )

\/ ( y > x

/\ y’ = y - x

/\ x’ = x )

Spec == Init /\ [][Next]_<<x, y>>

=============================================================
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The Rodin Platform Has Turned Ten

Laurent Voisin1 and Jean-Raymond Abrial2

1 Systerel, Aix-en-Provence, France
laurent.voisin@systerel.fr

http://www.systerel.fr
2 Marseille, France
jrabrial@neuf.fr

Abstract. In this talk, we give an historical account of the development
of the Rodin Platform during the last 10 years.

Keywords: Event-B, formal methods, tooling.

1 Introduction

Some time ago, when discussing about this paper, we “discovered” and “remem-
bered” that the Rodin Platform Project started ten years ago. It seemed very
strange to us as we had the impression that 2004 was just yesterday. However,
if we think of the state of this platform now to be compared to that of it, say,
eight years ago, it is clear that the difference is quite significant.

As a matter of fact, the Event-B notation and its theoretical background have
not been modified during this period and will certainly not in the future. But,
on the other hand, the integration of Event-B within an efficient tool is another
story. Doing some Event-B modeling and proofs with pen and paper is easy,
provided the model and its mathematical structure correspond to toy examples.
But it is obviously impossible to do the same (pen and paper) on a serious
(industrial) model: here the usage of a tool is absolutely indispensable.

This being said, it does not mean that any tool will do the job: we all know
of some tools being so poor that the unfortunate user will soon forget it and
return to a simplified (but unadapted) technique, thus quickly leading to the
cancellation of the overall approach. In other words, right from the beginning
we were very convinced that such a tool building is a very serious and difficult
task that has to be performed by very skilled professional engineers.

The main functions of the Rodin platform [1] are twofold: (1) an Event-B
modeling database, and (2) a proving machine.

The internal structure of the Event-B modeling database was facilitated by
our early choice of Eclipse as a technical support for Rodin. The corresponding
interactive editing of the models was quite difficult to master as we wanted the
users to have a very friendly interface at his disposal.

For the proving machine, we borrowed some provers made by the French com-
pany Clearsy for the Atelier-B tool. Over the years, more provers were added
to these initial facilities. More recently, some extremely powerful extension were

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 1–8, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.systerel.fr


2 L. Voisin and J.-R. Abrial

made by incorporating some SMT solvers within Rodin. Another aspect of the
proving machinery is the building of an interface allowing users to perform inter-
active proofs using a modern “clicking” approach, departing from more verbose
techniques used in academic provers (Coq, HOL, Isabelle, PVS).

In the following almost independent sections, we develop more technically
what has been briefly alluded so far. In section 2, we make clear the original
funding structure of Rodin. In section 3, we cite the main people involved in the
initial development of Rodin. Section 4 explains how some parts of the Rodin
platform itself was formally developed and proved. Section 5 gives some informa-
tion about the openness philosophy used in Rodin. Sections 6 and 7 show how
Eclipse provided the basic ingredients needed to implement openness. In sec-
tion 8, the main provers used within the Rodin platform are quickly described.
Section 9 countains brief description of the main plug-ins that were developed
by various partners. Section 10 shows how Rodin has spread in many places
over the years. Finally, section 11 indicates how a large community of Rodin
developers and users has gradually emerged. We conclude in section 12.

2 Funding

The initial development of the Rodin platform was co-funded by ETH Zurich
and the eponymous European project (FP6-IST-511599, 2004-2007). Then the
main development has been taken on by Systerel, still with a partial funding from
the European Commission through two follow-up research projects: DEPLOY
(FP7-IST-214158, 2008-2012) and ADVANCE (FP7-ICT-287563, 2011-2014).

The integration of SMT Solvers into the Rodin platform was partially funded
by the French National Research Agency in the DECERT project (ANR-08-
EMER-005, 2009-2012).

3 The Initial Team

Rodin started at ETH Zurich (Switzerland) from 2004 to 2008. Since then the
development of the core platform is performed at Systerel (France). The original
team was made of Laurent Voisin, Stefan Hallerstede, Farhad Mehta, and Thai
Son Hoang. Later, François Terrier and Mathias Schmalz joined the initial ETH
group. At Systerel, the main people involved in the development are Laurent
Voisin, Nicolas Beauger and Thomas Muller.

It is interesting to note that the original team at ETH was partially funded by
ETH itself (Laurent Voisin and Stefan Hallerstede were hired as ETH employees).
The other people in the original ETH team were funded by the RODIN European
Project.

The Rodin Platform software is open source. It is implemented on top of the
Eclipse system. Laurent Voisin is the main architect: its duty was to deeply
understand how Eclipse works and also to organize the team so that each mem-
ber could work in parallel with others. Stefan Hallerstede implemented the static
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checker and the proof obligation generator. Farhad Mehta was in charge of devel-
oping some internal provers. Thai Son Hoang had the very difficult task of con-
structing a user friendly interface. Later, François Terrier and Mathias Schmalz
also worked on the provers.

At Systerel, the team works partially on the Rodin Platform, implementing
many demands made by the increasing number of users and external developers
working on plug-ins for the platform.

A critical aspect of the development organisation was that the initial team in
charge of designing and implementing the platform was not a random bunch of
software developers. They were also direct end users of the tool, writing models,
proving them correct and teaching students how to use Event-B and the tools at
the same time. This proved essential for reaching an excellent level of usability.
There was no dichotomy between users on the one hand and developers on the
other hand.

4 Dog Fooding

As the Event-B notation was unstable during the platform design phase (the
notation was finalised at the same time as the platform was developed), it was
important to ensure that some theoretical parts were sound before coding them.
This was the case notably for proof obligation generation. We have therefore
developed formal models of the static checker and proof obligation generator to
ensure their soundness before implementing them.

Having such formal models proved invaluable as it allowed to have on the
table all the needed parts and to see how they arranged themselves. Thanks to
this model, we could implement generic tools providing a framework for static
checking and proof obligation generation, and then just fill the frameworks with
small pieces of code corresponding to the events of the formal model.

5 The Openness Approach to Event-B and Rodin

One important technical philosophy of the Rodin Platform (and more generally
of Event-B) is openness. To begin with, there is no such thing as an Event-B lan-
guage dealing with a number of fixed keywords and closed syntactic structures.
For entering and editing models into the tool, one uses directly the provided
interface together with some wizards helping to simplify the job of the working
user. This approach was very positive as extensions of the modelling and proving
features could be done in a simple fashion, that is just by extending the interface.
In fact, the only more formal notation is that of set theory: most of the time,
the classical way used by mathematicians has been favored.

The choice of Eclipse also facilitates openness: further extensions of Event-
B itself and corresponding extensions of the Rodin platform are performed by
means of plug-ins. Among those plug-ins, an important one, called the “Theory”
plug-in allows one to extend the mathematical notation by providing new generic
operators together with some corresponding inference or rewriting rules able to
enhance the provers.



4 L. Voisin and J.-R. Abrial

6 The Choice of Eclipse: Core Architecture

When the Rodin project started, we add previous experience with Atelier B from
ClearSy. Atelier B is a monolithic tool that has been fully developed from scratch.
We knew then that developing a similar tool for Event-B from the ground up
would be a tremendous task and would not fit the three-year project time-frame.
We therefore looked for a firm basis on which to build Rodin, sparing us from
redeveloping core services such as a project builder.

We therefore searched for a framework on which to build the Rodin tooling.
We had the good fortune that a few months ago IBM had released Eclipse in the
open by creating the Eclipse foundation. This looked very promising at the time.
Eclipse was providing most of the needed basic blocks and was open enough to
allow us to plug Rodin on top of it. Plus, the creation of the Eclipse foundation
promised that the Eclipse platform would be vendor-neutral for the coming years.

7 The Choice of Eclipse: Influence on Openness

Similarly to the Event-B notation, which is very flexible, we wanted to have
an open tool. By open, we mean here that the tool should allow anybody to
customize it in several aspects, even in directions not initially foreseen. To achieve
this goal, we first needed a plug-in mechanism for external developers to easily
add new behavior to the platform. This is provided by the Eclipse platform.

But having this plug-in mechanism is not enough. We also had to take great
care to design for openness [8]: as soon as a function seems amenable to cus-
tomisation, publish an extension point so that plug-ins can extend or replace it
with their own code.

Finally, we decided that the platform code should be open source. This brings
several advantages: (1) Anybody can read the code and audit it if need be. (2)
If one needs to customize the platform in a direction which was not foreseen
(there is no corresponding extension point) then one can just copy the code and
modify it. This is of course to be used only in last resort. But it has proved
helpful sometimes, while waiting for the creation of a new extension point by
the core platform maintainers. (3) Finally, open source ensures resiliency. If,
for some reason, the core maintenance team disappears, anybody can take the
development over.

8 The Internal and External Provers of Rodin

Like the rest of the Rodin platform, the prover has been designed for openness.
The main code of the prover just maintains a proof tree in Sequent Calculus and
does not contain any reasoning capability. It is extensible through reasoners and
tactics. A reasoner is a piece of code that, given an input sequent, either fails or
succeeds. In case of success, the reasoner produces a proof rule which is applied
to the current proof tree node.
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Reasoners could be applied interactively. However this would be very tedious.
Reasoner application can thus be automated by using tactics that take a more
global view of the proof tree and organise the running of reasoners. Tactics can
also backtrack the proof tree, that is undo some reasoner application in case the
prover entered a dead-end.

The core platform contains a small set of reasoners written in Java that either
implement the basic proving rules (HYP, CUT, FALSE L, etc.), or perform some
simple clean-up on sequents such as normalisation or unit propagation (gener-
alised modus-ponens). These reasoners allow to discharge the most simple proof
obligations. They are complemented by reasoners that link the Rodin platform
to external provers, such as those of Atelier B (ML and PP) and SMT solvers
(Alt-Ergo, CVC3, VeriT, Z3, etc.) [5].

There is even a plug-in for translating Event-B sequents to an embedding in
HOL which allows to perform proofs with the Isabelle proof assistant [14].

9 Some Important Plug-ins

There are more than forty plug-ins available for the Rodin platform. We have
arbitrarily chosen to present some of them that we have found very useful in
our modelling activities. We refer the reader to the Event-B Wiki1 for a more
complete list of available plug-ins.

AnimB. This plug-in [12] was developed by Christophe Métayer. It allows to
perform animations of Event-B model. This is done by providing some values
to the generic sets and constants defined in the various contexts of the model
to animate. The plug-in computes the guards of the events and makes available
those events with true guards. The user can then activate an enabled event and
provide some values to the corresponding parameters, if any. One can see the
state of the system as modified by event execution.

Decomposition. This plug-in [16] is used to decompose an Event-B model into
two communicating models able to be later refined independently. Two distinct
approaches are provided: one is organized around some shared variables while the
other is organized around shared events. This plug-in was joint work of Renato
Silva in the University of Southampton and Carine Pascal in Systerel.

Generic Instantiation. Two plug-ins are provided for generic instantiation. One
has been developed in the University of Southampton [15] and the other [7] by
ETH Zurich together with Hitachi. Both of them give the possibility to instan-
tiate the generic elements (sets and constants) of the various contexts of an
Event-B development. The corresponding instantiated axioms are transformed
into theorems to be proved.

1 http://wiki.event-b.org/index.php/Rodin_Plug-ins

http://wiki.event-b.org/index.php/Rodin_Plug-ins
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Theory. This plug-in [3] allows to extend the basic mathematical operators of
Event-B. These operators can be defined explicitly in terms of existing ones. But
is is also possible to give some axiomatic definitions only. An interesting outcome
of this last feature allows one to define the set of Real numbers axiomatically.
Moreover, the user of this plug-in can add some corresponding theorems, and
inference or rewriting rules able to extend the provers. It is also possible to
define new (possibly recursive) datatypes. This very important plugin has been
developed by Issam Maamria and Asieh Salehi in Southampton.

Graphical modelling. The UML-B [13] and iUML-B plug-ins provide a graphical
modelling interface la UML on top of the Rodin platform. The graphical models
are translated to plain Event-B machines and can be worked with like any Event-
B model (proof, animation, etc.). These plug-ins make it particularily easy to
model state-machines. Both plug-ins have been developed by Colin Snook in
Southampton.

ProB. This plug-in [11] provides an animator and model checker. It comes as
a complement to the Rodin prover for detecting modeling inconsistencies. Its
animation facility allows to validate [10] Event-B models, i.e., to verify that the
model behavior is indeed the intended one. ProB integrates BMotionStudio to
easily generate domain specific graphical visualizations. ProB was developed by
Michael Leuschel first in Southampton and then in Dusseldorf.

ProR. This Eclipse plug-in [9] supports requirements engineering. It integrates
specific machinery that allow to link parts of Event-B models (guards, invariants,
actions) to the requirements they model, thus allowing full traceability between
a requirements document and an Event-B model. ProR has been developed by
Michael Jastram in Dusseldorf.

B2LaTeX. This little plug-in [4] allows to translate an Event-B model to a LaTeX
document. It has been developed by Kriangsak Damchoom in Southampton.

Camille. The Rodin platform comes with structured editors that expose directly
the organisation of the Rodin database. As this was not appropriate to all users,
the University of Dusseldorf has developed the Camille plug-in [2] that provides
a plain-text editor on top of the Rodin database.

Code Generation. There are several code generation plug-ins that allow to trans-
late some Event-B models to executable code. The most active one has been
developed by Andy Edmunds [6] from the University of Southampton.

10 Spreading of the Rodin Platform

At the beginning, from 2004 to 2006, where the development of the Rodin plat-
form was very much in progress, there was not so many users of this platform,
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except for some people working inside the Rodin European project itself. How-
ever, as time goes there are now more and more people using it. This increasing
number is due to the organisation of many formal methods and Event-B courses
taught around the world in Academia. Incorporating a tool like the Rodin Plat-
form within a formal method course makes considerable changes in the students
interest to this difficult topic: students can participate more actively in the prac-
tical aspect of the course and the mathematical notation used in Event-B be-
comes more familiar.

Courses using the platform are presently given in the following countries
(sometimes in several sites): France, Switzerland, United Kingdom, Finland,
Germany, Canada, Australia, Japan, China, India, Malaysia, Tunisia, Algeria,
and probably some others.

Event-B and the Rodin platform are also used in Industry, especially in France
by Systerel and in Japan by Hitachi.

11 The Rodin Community

The general availability of the Rodin platform on SourceForge has given rise to
a vibrant community of researchers, teachers, users and developers. The main
discussions take place in two mailing lists, one for users and the other for de-
velopers. All bug reports and feature requests are publicly available and can be
entered by anyone. Almost all documentation is available in the Event-B wiki 2

which is also open to everyone.
Finally, the Rodin community meets physically every year at the Rodin User

and Developer Workshop. This is the place to present recent advances and work-
in-progress both as a platform user and as a plug-in developer.

12 Conclusion

In this short paper we have shown what has been developed over the years under
the name of “Rodin Platform”.What is quite remarkable about this project is the
very large number of people involved. It is remarkable because all these people
were all animated by a very strong common spirit, that of freely constructing
a tool without any financial reward idea behind it, instead just the scientific
and technical goal of producing the best instrument for future users, and we are
absolutely certain that this spirit will continue to flourish in the years to come.

Let us take the opportunity of this paper to call for additional contributions
from anyone interested in formal method practical outcome: we are all very open
to enlarge our present very dynamic community of users and developers.

Acknowledgements. Laurent Voisin was partly funded by the FP7 ADVANCE
Project (287563)3 and the IMPEX Project (ANR-13-INSE-0001)4.

2 http://wiki.eventb.org
3 http://www.advance-ict.eu
4 http://impex.gforge.inria.fr

http://wiki.eventb.org
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Abstract. This paper gives an overview over the development of a for-
mally verified file system for flash memory. We describe our approach
that is based on Abstract State Machines and incremental modular re-
finement. Some of the important intermediate levels and the features they
introduce are given. We report on the verification challenges addressed
so far, and point to open problems and future work. We furthermore
draw preliminary conclusions on the methodology and the required tool
support.

1 Introduction

Flaws in the design and implementation of file systems already lead to serious
problems in mission-critical systems. A prominent example is the Mars Explo-
ration Rover Spirit [34] that got stuck in a reset cycle. In 2013, the Mars Rover
Curiosity also had a bug in its file system implementation, that triggered an au-
tomatic switch to safe mode. The first incident prompted a proposal to formally
verify a file system for flash memory [24,18] as a pilot project for Hoare’s Grand
Challenge [22].

We are developing a verified flash file system (FFS). This paper reports on our
progress and discusses some of the aspects of the project. We describe parts of
the design, the formal models, and proofs, pointing out challenges and solutions.

The main characteristic of flash memory that guides the design is that data
cannot be overwritten in place, instead space can only be reused by erasing
whole blocks. Therefore, data is always written to new locations, and sophisti-
cated strategies are employed in order to make the file system efficient, including
indexing and garbage collection. For the algorithmic problems, we base our de-
sign on UBIFS [23,20], which is a state-of-the-art FFS in the Linux kernel.

In order to tackle the complexity of the verification of an entire FFS, we
refine an abstract specification of the POSIX file system interface [41] in several
steps down to an implementation. Since our goal is an implementation that runs
on actual hardware, besides functional correctness additional, nontrivial issues
must be addressed, such as power cuts and errors of the hardware. A further
requirement is that the models must admit generation of executable code. The
derived code should correspond very closely to the models, thus simplifying an
automated last refinement proof between the models and the actual code.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 9–24, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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The paper is structured as follows: Section 2 gives an overview over our ap-
proach and models. Section 3 provides more detail on the design of each of the
models and their concepts. The section also highlights some of the problems
that need to be tackled and describes our solutions. The formal models are also
available at our web-presentation [11]. Section 4 explains how we generate Scala
and C code from our model hierarchy and integrate it into Linux. In Sec. 5 we
report on some of the lessons learned during the project. Section 6 concludes
and points out some of the open challenges.

2 Overview

Filesystem Implementation 

Eraseblock Management 

Flash Hardware (Driver) 

System Interface (POSIX) 

Fig. 1. High-level structure

Figure 1 shows the high-level structure of the
project. There are four primary conceptual layers.
A top-level specification of the POSIX file system
interface [41] defines functional correctness require-
ments. At the bottom is a driver interface model
that encodes our assumptions about the hardware.
Two layers in between constitute the main func-
tional parts of the system: The file system (FS)
implementation is responsible for mapping the high-
level concepts found in POSIX (e.g., directories, files
and paths) down to an on-disk representation. A separate layer, the erase block
management (EBM), provides advanced features on top of the hardware inter-
face (e.g., logical blocks and wear-leveling).

Figures 2 and 3 show how the file system implementation is broken down to
a refinement hierarchy. Boxes represent formal models. Refinements—denoted
by dashed lines—ensure functional correctness of the final model that is the
result of combining all models shaded in grey. From this combined model we
generate executable Scala and C code.

The POSIXmodel for example is refined by a combination of a Virtual Filesys-
tem Switch (VFS) and an abstract file system specification (AFS). The former
realizes concepts common to all FS implementations such as path traversal. Such
a VFS exists in Linux and other operating systems (“Installable File System”
in Windows). The benefit of this approach is that concrete file systems such as
UBIFS, Ext or FAT do not have to reimplement the generic functionality. In-
stead they satisfy a well-defined internal interface, denoted by the symbol in
Fig. 2. We capture the expected functional behaviour of a concrete FS by the
AFS model. The modularization into VFS and AFS significantly reduces the
complexity of the verification, since the refinement proof of POSIX to VFS is
independent of the actual implementation, whereas the implementation needs to
be verified against AFS only. The top-level layers are described in more detail in
Sections 3.1 and 3.2.Although we provide our own verified VFS implementation,
it will be possible to use the file system core with the Linux VFS instead.

Flash memory is not entirely reliable, for example, read operations may fail
nondeterministically. Hence, error handling is taken into account from the
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AFS 

POSIX requirements 

VFS 

LogFS 

Flash file system 

index journal 

Fig. 2. Upper Layers of the File System

EBM 

logical blocks 

Flash 

write buffer 

transact. journal 

persistence 

node encoding buffered blocks 

B tree + 

Fig. 3. Lower Layers of the File System

beginning. Concretely, the formal POSIX specification admits such errors as long
as an unsuccessful operation has no observable effect. However, on intermediate
layers failures may be visible.

A major concern that is orthogonal to functional correctness is reset safety:
the file system guarantees recovery to a well-defined state after an unexpected
power-cut. Reset-safety must be considered at different levels of abstraction. It
is also critical that power-cuts are considered during an operation.

For example, the LogFS model introduces a distinction between persistent
data stored on flash and volatile data in RAM. Only the latter is lost during
power-cuts. New entries are first stored in a log and only later committed to
flash. We prove abstractly that after a crash the previous RAM state can be
reconstructed from the entries in the log and the flash state, as described in
detail in Sec. 3.3. Atomicity of writes of several nodes is provided by another
layer (transactional journal).

The core of the flash file system (represented by the correspondingly named
box) implements strategies similar to UBIFS. This layer was also the first we
have looked at [39]. The idea of UBIFS is to store a collection of data items,
called “nodes”, that represent files, directories, directory entries, and pages that
store the content of files. This collection is unstructured and new data items
are always written to a fresh location on flash, since overwriting in-place is
not possible. Current versions of a node are referenced by an efficient index,
implemented as a B+ tree. The index exists both on flash and in memory. The
purpose of the flash index is to speed up initialization of the file system, i.e., it is
loaded on-demand. It is not necessary to scan the whole device during boot-up.
Over time unreferenced nodes accrue and garbage collection is performed in
the background to free up space by erasing the corresponding blocks.

Updates to the flash index are expensive due to the limitations of the hard-
ware. Hence, these are collected up to a certain threshold and flushed periodi-
cally by a commit operation; one accepts that the flash index is usually outdated.
Therefore, it is of great importance, that all information kept in RAM is actually
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redundant and can be recovered from flash. For this purpose, new data is kept
in a special area, the log. The recovery process after a crash then reads the log
to restore the previous state. In Sec. 3.3 we show an abstract version of this
property. The log is part of the journal module in Fig. 2.

The nodes of the FFS have to be stored on the flash device. This is accom-
plished by the persistence layer. For space and time efficiency, the writes are
buffered until an entire flash page can be written. Sec. 3.4 describes the prob-
lems that arise when writes are cached.

Besides correctness and reset safety, it is important that the physical medium
is used evenly, i.e., erase cycles are distributed approximately equally between
the blocks of the flash device, because erasing physically degrades the mem-
ory. To prolong the lifetime of the device, a technique called wear-leveling is
implemented by the erase block management. Section 3.5 describes this layer.

3 Models

In this section we outline several formal models. There is a general schema.
Abstract models, such as POSIX and AFS are as simple as possible. Concrete
models, namely all grey components, are rather complex, in contrast.

Our tool is the interactive theorem prover KIV [35,12]. For a detailed descrip-
tion of the specification language see for example [13] (this volume) and [38]. It
is based on Abstract State Machines [5] (ASMs) and ASM refinement [4]. We
use algebraic specifications to axiomatize data types, and a weakest-precondition
calculus to verify properties. This permits us to use a variety of data types, de-
pending on the requirements. In the case study, lists, sets, multisets and maps
(partial functions τ �→ σ, application uses square brackets f [a]) are typically
used in more abstract layers, whereas arrays are prevalent in the lower layers.

3.1 POSIX Specification and Model

Our formal POSIX model [15] defines the overall requirements of the system.
It has been derived from the official specification [41] and is furthermore an
evolution of a lot of existing related work to which we compare at the end of
this section. Our model has been developed with two goals in mind:

1. It should be as abstract as possible, in particular, we chose an algebraic tree
data structure to represent the directory hierarchy of the file system. The
contents of files are stored as sequences of bytes.

2. It should be reasonably complete and avoid conceptual simplifications in
the interface. Specifically, we support hard-links to files, handles to open
files, and orphaned files (which are a consequence of open file handles as
explained below); and the model admits nondeterministic failures in a well-
specified way. These concepts are hard (or even impossible) to integrate in
retrospect.
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path lookup 

t 

fs 

Fig. 4. FS as a tree

posix create(path ,md ; err)
choose err ′

with pre-create(path ,md , t, fs, err ′)
in err � err ′

if err = ESUCCESS then

choose fid with fid �∈ fs
in t[path ] � fnode(fid)

fs[fid ] � fdata(md , 〈 〉)

Fig. 5. POSIX create operation

The model is easy to understand but also ensures that we will end up with a
realistic and usable file system. Formally, the state of the POSIX model is given
by the directory tree t : Tree and a file store fs : Fid �→ FData mapping file
identifiers to the content.

We consider the following structural POSIX system-level operations: create,
mkdir, rmdir, link, unlink, and rename. File content can be accessed by the
operations open, close, read, write, and truncate. Finally, directory listings
and (abstract) metadata can be accessed by readdir, readmeta (= stat), and
writemeta (subsuming chmod/chown etc).

Structural system-level operations are defined at the level of paths. As an
example, Fig. 4 shows the effect of create, where the grey part denotes the
parent directory, and the parts with a dotted outline are newly created. The
corresponding ASM rule is listed in Fig. 5.

The operation takes an absolute path path and some metadata md as input.
After some error handling (which we explain below), a fresh file identifier fid is
selected and stored in a file node (fnode) at path path in the tree. The file store fs
is extended by a mapping from fid to the metadata and an empty content, where
〈 〉 denotes an empty sequence of bytes. File identifiers serve as an indirection to
enable hard-links, i.e., multiple references to the same file from different parent
directories under possibly different names. An error code err is returned.

The converse operation is unlink(path ; err), which removes the entry specified
by path from the parent directory. In principle, it also deletes the file’s content
as soon as the last link is gone. File content can be read and written sequentially
through file handles fh, which are obtained by open(path; fh, err) and released by
close(fh; err). As a consequence, files are not only referenced from the tree, but
also from open file handles, which store the identifier of the respective file. The
POSIX standard permits to unlink files even if there is still an open file handle
pointing to that file. The file’s content is kept around until the last reference,
either from the directory tree or a handle, is dropped.

Files that are no longer accessible from the tree are called orphans. The pos-
sibility to have orphans complicates the model and the implementation (see
Sec. 3.3 on recovery after power-failure). However, virtually all Linux file sys-
tems provide this feature, since it is used by the operating system during package
updates (application binaries are overwritten in place, while running applications
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still reference the previous binary image through a file handle) and by applica-
tions (e.g., Apache lock-files, MySQL temporary files).

Each POSIX operation returns an error code that indicates whether the op-
eration was successful or not. Error codes fall into two categories. Preconditions
are rigidly checked by the POSIX model in order to protect against unintended
or malicious calls. For each possible violation it is specified which error codes
may be indicated, but the order in which such checks occur is not predetermined.
The other type of errors may occur anytime and corresponds to out-of-memory
conditions or hardware failures. The model exhibits such errors nondetermin-
istically, since on the given level of abstraction it is not possible to express a
definite cause for such errors. The ASM rule in Fig. 5 simply chooses an error
code err ′ that complies with the predicate create-pre and only continues in
case of success, i.e., the precondition is satisfied and no hardware failure occurs.

We enforce the strong guarantee that an unsuccessful operation must not
modify the state in any observable manner. It takes quite some effort to ensure
this behavior in the implementation.

Our POSIX model takes a lot of inspiration from previous efforts to formal-
ize file systems. An initial pen-and-paper specification that is quite complete is
[28]. Mechanized models include [1,17,25,19,9,21]. These have varying degrees of
abstraction and typically focus on specific aspects. Both [17] and [21] are path-
based. The latter proves a refinement to a pointer representation, file content is
treated as atomic data. Model [9] is based on a representation with parent point-
ers (compare Sec. 3.2). They prove multiple refinements and consider power-loss
events abstractly. The efforts [1] and [25] focus on an analysis of reads and writes
with pages, in the first, data is accessed a byte at a time, whereas [25] provides a
POSIX-style interface for read/write while integrating some effect of power-loss.
An in-depth technical comparison to our model can be found in [15].

3.2 VFS + AFS as a Refinement of POSIX

We have already motivated the purpose of the VFS and briefly described the
integration with the AFS specification in Sec. 2 and [14]. We have proven our
VFS correct wrt. the POSIX model relative to AFS [15]. As a consequence, any
AFS-compliant file system can be plugged in to yield a correct system.

Conceptually, the VFS breaks down high-level operations to calls of operations
of AFS. There are two major conceptual differences to the POSIX model:

1. The file system is represented as a pointer structure in AFS (as shown in
Fig. 6) instead of an algebraic tree (compare Fig. 4), and

2. the content of files is represented as a sparse array of pages instead of a linear
sequence of bytes.

These two aspects make the refinement proof challenging.
In VFS, directories and files are identified by “inode numbers” ino : Ino. The

state of the AFS model is given by two (partial) functions dirs : Ino �→ Dir and
files : Ino �→ File . Directories Dir store a mapping from names of entries to inode
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“tmp” 

“test” 

path lookup 

dirs 

files 

Fig. 6. FS as pointer structure

* = p 

Fig. 7. Unfolding the tree abstraction, formally
tree(t, ino) = tree|p(t, ino, ino′) ∗ tree(t[p], ino′)

numbers. Files File store a partial mapping from page numbers to pages, which
are byte-arrays. The refinement proof establishes a correspondence between the
tree t and dirs and between fs and files and maintains it across operations.

The first issue can be solved elegantly using Separation Logic [36]. The main
idea of Separation Logic is that disjointness of several parts of a pointer structure
is captured in the syntax of formulas. The main connective is the separating
conjunction (ϕ ∗ ψ)(h), which asserts that the two assertions ϕ and ψ on the
structure of the heap h are satisfied in disjoint parts of h.

In our case, the heap is given by the directories of the file system dirs , and
the abstraction to the algebraic tree is an assertion tree(t, ino). It specifies
that ino is the root of the pointer structure represented by t. The abstraction
directly excludes cycles and sharing (“aliasing”) in dirs , and establishes that a
modification at path p is local : directories located at other paths q are unaffected.

To perform an operation at path p the abstraction tree is unfolded as shown
in Fig. 7. The directory tree dirs is split into two disjoint parts, the subtree
tree(t[p], ino′) located at path p and the remainder tree|p(t, ino, ino′), which
results from cutting out the subtree at path p, with root ino′. A modification in
the grey subtree is then guaranteed to leave the white subtree unaffected.

The second issue manifests itself in the implementation of the POSIX opera-
tions read and write, which access multiple pages sequentially. There are several
issues that complicate the proofs but need to be considered: There may be gaps
in the file, which implicitly represent zero-bytes, and the last page may exceed
the file size. The first and the last page affected by a write are modified only
partially, hence they have to be loaded first. Furthermore, writes may extend
the file size or may even start beyond the end of a file.

Since reading and writing is done in a loop, the main challenge for the re-
finement proof is to come up with a good loop invariant. The trouble is that
the high number of cases we have just outlined tends to square in the proof, if
one considers the intermediate hypothetical size of the file. We have solved this
problem by an abstraction that neglects the size of the file, namely, the content
is mapped to an infinite stream of bytes by extension with zeroes at the end.
The loop invariant for writing states that this stream can be decomposed into
parts of the initial file at the beginning and at the end, with data from the input
buffer in between.
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3.3 From AFS to LogFS to Study Power Cuts

The UBIFS file system is log-structured, which means that there is an area on
flash—the log—where all file system updates are written to in sequential order.
Data in the log has not been integrated into the index that is stored on flash.

In the AFS model, there is no distinction between volatile state stored in
RAM and persistent state stored on flash. Purpose of the LogFS model is to
introduce this distinction on a very abstract level in order to study the effects
of unexpected power cuts without getting lost in technical detail. The LogFS
model thus bridges the gap between AFS and our FFS implementation.

The model simply assumes that there are two copies of the state, a current
in-memory version ramstate and a possibly outdated flash version flashstate.
The log captures the difference between the two states as a list of log entries.

Operations update the state in RAM and append entries to the log e.g.,
“delete file referenced by ino” or “write a page of data”. The flashstate is not
changed by operations. Instead, from time to time (when the log is big enough)
an internal commit operation is executed by the file system, which overwrites
the flashstate with ramstate, and resets the log to empty.

The effect of a power failure and subsequent recovery can now be studied: the
crash resets the ramstate, recovery has to rebuild it starting from flashstate by
recovering the entries of log . For crash safety we therefore have to preserve the
recovery invariant

ramstate = recover(flashstate, log) (1)

Note that although recover is shown here as a function, it is really a (rather
complex) ASM rule in the model, implying that the invariant is not a predicate
logic formula (but one of wp-calculus).

To propagate the invariant through operations it is necessary to prove that
running the recovery algorithm on entries produced by one operation has the
same effect on ramstate than the operation itself. This is non-trivial, since typical
operations produce several entries and the intermediate ramstate after recovering
a single entry is typically not a consistent state.

The possibility of orphans (Sec. 3.1) complicates recovery. Assume 1) a file is
opened and 2) subsequently unlinked becoming an orphan, i.e., it is not accessible
from the directory tree any more. The content of the file then can still be read
and written through the file handle. Therefore, the file contents may only be
erased from flash memory after the file is closed. However, if a crash occurs
the process accessing the file is terminated and the file handle disappears. The
file system should consequently ensure that the file content is actually deleted
during recovery. There are two possibilities: the corresponding “delete file” is in
the log before the crash, then no special means have to be taken. However, if a
commit operation has happened before the crash but after 2), then the log has
been cleared and consequently this entry will not be found.

To prevent that such a file occupies space forever, our file system records
such files in an explicit set of flash-orphans forphans stored on the flash medium
during commit.
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Recovery thus starts with a modified flash state, namely flashstate \ forphans ,
and produces a state that contains no orphans wrt. the previous RAM state
(denoted by rorphans). Invariant (1) becomes

ramstate \ rorphans = recover(flashstate \ forphans , log) (2)

It is not correct to require that only the recorded orphans forphans have been
deleted as a result of recover. Again referring to the example above, in the
case that no commit has occurred since event 2), we have ino ∈ rorphans but
ino �∈ forphans , but the file ino will be removed anyway, since the deletion entry
is still in the log.

Technically, in order to prove (2), additional commutativity properties be-
tween deleting orphans and applying log entries must be shown. This is non-
trivial, since several additional invariants are necessary: for example, that inode
numbers ino ∈ forphans are not referenced from the directory tree of the RAM
state, and that there is no “create” entry for ino in the log. Furthermore, since
removal of directories and files is handled in a uniform way, directories can ac-
tually be orphans, too.

In our initial work [39] we have proved the recovery invariant on a lower level
of abstraction, namely the file system core, but without orphans. Adding them to
the model has lead to a huge increase in complexity, hence we switched to a more
abstract analysis of the problem. It is then possible (although there are some
technical difficulties) to prove that the recovery invariant of LogFS propagates
to the concrete implementation by matching individual recovery steps.

The verification of recovery of a log in the given sense has been addressed in
related work only by [31], which is in fact based on our model [39]. Their goal is
to explore points-free relational modeling and proofs. They consider a simplified
version of recovery that does not consider orphans, and restricts the log to the
deletion of files only (but not creation).

Finally, we like to point out that the recovery invariant (2) needs to hold in
every intermediate step of an operation—a power cut could happen anytime, not
just in between operations. A fine-grained analysis is therefore necessary, e.g.,
based on a small-step semantics of ASMs, which we define in [33].

3.4 Node Persistence and Write Buffering

The persistence layer provides access to (abstract) erase blocks containing a list
of nodes for the FFS core and its subcomponents. Clients can append nodes to
a block and allocate or deallocate a block. This already maps well to the flash
specific operations, i.e., appending is implemented by writing sequentially and
deallocation leads to a deferred erase.

The node encoding layer stores these nodes as byte arrays on the flash device
with the help of a write buffer. The implementation also ensures that nodes
either appear to be written entirely or not at all. The write buffer provides a
page-sized buffer in RAM that caches writes to flash until an entire page can
be written. This improves the space-efficiency of the file system, since multiple
nodes can potentially fit in one page. However, as a consequence of the caching
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of writes, it is possible that some nodes disappear during a crash. The challenge
is to find a suitable refinement theory that includes crashes and provides strong
guarantees in their presence. Clients should also be able to enforce that the write
buffer is written. This is accomplished by adding padding nodes, i.e., nodes that
span the remainder of the page. These nodes are invisible to a client of the per-
sistence layer. The refinement between the persistence and the node encoding
layer switches from indices in a list to offsets in a byte array as their respec-
tive input and output. The padding nodes complicate this refinement, since the
abstraction relation from a list of nodes to the byte array is no longer functional.

For the sequential writes it is necessary that the layer stores how far an erase
block is already written. However, it is difficult to update such a data structure
efficiently, since only out-of-place updates are possible. Therefore, updates are
performed in RAM and written to flash only during a commit operation similarly
to the index. The recovery after a power failure has to reconstruct a consistent
data structure and consider that some updates were not written to flash.

We formalize the byte encoding very abstractly, i.e., by just stating that de-
coding after encoded yields the original data. In future work we will consider
whether we can use specificiation languages such as [2,27] to concretize the flash
layout. Other models [25,9] neither consider the encoding nor buffer writes.

3.5 Erase Block Management

A raw flash device supports reading, sequential writing [10,16] and erasure of a
block. Only after erasure it is possible to reuse a block. However, blocks degrade
physically with each erase, i.e., typically after 104-106 erases a block becomes
unreliable. There are two complementary techniques that deal with this problem
and thereby increase the reliability of the device: wear-leveling and bad block
management. The former means that necessary erasures are spread among the
entire device evenly by moving stale data. Thus, bad blocks occur later in the
lifetime of a device. Bad block management tries to detect which blocks are
unusable and excludes them from future operations.

Both techniques are implemented transparently in the erase block manage-
ment (EBM) by a mapping from logical to physical blocks. Fig. 8 shows this
in-RAM mapping as arrows from logical to physical blocks. The client can only
access logical blocks and the EBM keeps the mapping and allocates, accesses
or deallocates physical blocks as needed. Wear-leveling copies the contents of a
physical block to a new block and updates the mapping. Bad blocks are simply
excluded from future allocations.

Another feature facilitated by the mapping is that clients may request an asyn-
chronous erasure of a block. This increases the performance of the file system,
because erasing a physical block is a slow operation. If the erasure is deferred,
the client can already reuse the logical block. The EBM just allocates a different
physical block.

The difficulty for the implementation and verification stems from interactions
of the following factors (explained in more detail in [32]):
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1. The mapping is stored inversely within each physical block (shown as the
backwards arrows in Fig. 8) and must be written before the actual contents.1

2. The flash device may exhibit nondeterministic errors. Only writing of a single
page is assumed to be atomic.

3. Asynchronous erasure defers an update of the on-disk mapping.
4. Wear-leveling must appear to be atomic, otherwise a power-cut in between

would lead to a state, where half-copied data is visible to the client.

Due to 1) and 3), the recovery from a power-cut will restore some older version
of the mapping. This is visible to the client and has to be handled by the client.
This necessitates a refinement theory that allows us to specify the behavior that
a model exhibits in response to a power-cut and shows that an implementation
meets this specified reset behavior, i.e., is reset-safe.

Items 1) and 2) complicate 4), because they lead to an updated on-disk map-
ping referring to half-copied data. Additional measures (such as checksums) are
necessary to ensure that a mapping produced during wear-leveling becomes only
valid once the entire contents are written.

Other formal models of EBM [25,26,9] usually do not take the limitation to
sequential writes within a block into account, do not store the mapping on disk,
assume additional reliable bits per block to validate the mapping only after
the pages have been programmed or store an inefficient page-based mapping
(assumed to be updatable atomically). Our model of the flash hardware is ONFI-
compliant [16] and based on the Linux flash driver interface MTD [29]. The flash
hardware model [6] is below our model of a flash driver.

4 Code Generation

We currently generate Scala [30] code, which runs on the Java virtual machine.
We chose Scala, because it is object-oriented, supports immutable data types
and pattern matching and features a comprehensive library. As explained below,
we can generate code that is very similar to the KIV models. Therefore, Scala
is well-suited for early debugging and testing of the models. Furthermore, it is

1 The reasons for this are rather technical, but follow from the limitations of the flash
hardware to sequential writes within a block and performance considerations.
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easier to integrate a visualization for the data structures and operations. The
final code is derived from the models shaded in gray in Fig. 2 and 3, but Scala
code generation is also supported for the other models.

The code generation for Scala currently supports free and non-free data types
(potentially mutually recursive). Most of the KIV library data types (natural
numbers, strings, arrays, lists, stores and sets) and algebraic operations on them
are translated to corresponding classes and functions of the Scala library. Fur-
thermore, an algebraic operation with a non-recursive or structurally-recursive
definition is transformed into a function that uses pattern matching to discern
the cases of a data type.

We mimic the refinement hierarchy shown in Fig. 2 and 3 by inheritance,
i.e., for each of the abstract (white) layers an interface is generated with one
method for each of the ASM rules. For the concrete (gray) layers we generate
an implementing class that has the ASM state as a member. The usage of an
interface ( in the figure) is implemented by aggregation. Thus, the VFS
layer for example has an additional reference to an AFS interface. In the final
file system this reference points to an instance of the FFS.

This setup also allows us to test the VFS model based on a different imple-
mentation of the AFS interface. We optionally also generate an implementation
of the AFS interface based on the AFS ASM. This allows us to test a layer early
on without having a refined model of all the used layers yet. These abstract lay-
ers however are rather nondeterministic, e.g., they heavily employ the following
construct to choose an error code that may either indicate success or a low-level
error (such as an I/O error).

choose err with err ∈ {ESUCCESS, EIO, . . .} in { . . . }
We currently simulate this by randomly choosing an element of the type and
checking whether the element satisfies the given property.2 This is sufficient
when testing whether, e.g., VFS can handle the full range of behavior admitted
by AFS.

However, in order to test whether a concrete model exhibits only behavior
permitted by the abstract model this is insufficient. In that case it is necessary
that the abstract model simulates the choices made by the concrete model. In
future work, we will attempt to automatically derive an abstract model which
is suitable for such tests. Each of the operations of this model may also take as
input the output of the concrete layer and their goal is to construct a matching
abstract execution. For the above example of error codes it is sufficient to just
rewrite the abstract program by reusing the error code returned by the concrete
model and checking that it satisfies the condition err ∈{ESUCCESS, EIO, . . .}. For
more elaborate nondeterminism an SMT solver could be employed to make the
proper choice.

We are currently also working on the generation of C code and expect ap-
proximately 10.000 lines of code. The C code generation will be limited to the
models shaded in gray. In future work, we will investigate whether tools for the

2 Note that for some forms of nondeterminism we can and do provide a better, deter-
ministic implementation.
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automated verification of C, such as VCC [7], could be employed to show the
refinement between our last models and the generated C code automatically.

We are unaware of other file systems where code was generated automati-
cally or the final code was verified against the models. [9] provides systematic
translation rules that need to be applied manually to derive Java code.

The code generated from the models can be plugged into Linux via the Filesys-
tem in Userspace (= FUSE) library [40], which allows mounting of a file system
implemented in an application in user space. All calls to the mountpoint are
then routed to the application by FUSE. This allows us to test and debug the
file system more easily. The access to either a real flash device (we currently use
a Cupid-Core Single-Board Computer with 256 MB Flash [8]) or to the simulator
(NandSim) is realized via the Linux device /dev/mtd. Fig. 9 shows the entire
setup.

5 Lessons Learned

In this section we report on the lessons we learned during the design and verifi-
cation of the flash file system.

In our opinion, the file system challenge is interesting for the reason that a
wide conceptual gap must be bridged. Abstractly, the file system is described as
a tree indexed by paths, whereas the hardware interface is based on erase blocks
and bytes. The strategies we have taken from the Linux VFS and UBIFS to map
between these interfaces deal with many different concepts.

Capturing these concepts at the right degree of abstraction proved to be a
major design challenge. Not all concepts that we have encountered have direct
counterparts in the implementation. Here, we benefit from the refinement-based
approach that supports well isolating difficult aspects of the verification in ded-
icated models. For example, the abstract log as specified in LogFS is actually
encoded in the headers of nodes in UBIFS.

It proved beneficial that we have initially started with the core concepts of the
UBIFS file system and derived an abstract model [39]. This model has served as
an anchor-point to incrementally develop the rest of the model hierarchy.

Our experience is that models tend to change frequently. One reason for that
is that requirements are clarified or assumptions are rectified. It also happens
that some model is refactored, in order to e.g. maintain a new invariant. Such
changes are typically non-local and propagate through the refinement hierarchy.

The prime reason for changes stems from the fact that there is a fragile bal-
ance between simple abstract specifications and the question which functional
guarantees can be provided by the implementation. The technical cause lies
in power cuts and hardware failures, which affect almost all layers and can leak
through abstractions (nondeterministic errors in POSIX are one example). More
specifically, one needs to determine to which extent failures can be hidden by
the implementation, how this can be achieved, and which layer incorporates the
concepts necessary to address a particular effect of a failure. For example, the
flash file system core can not express partially written nodes, so a lower layer
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(namely, node encoding in Fig. 3) must be able to recognize and hide such partial
nodes (e.g., by checksums). In general, dealing with power cuts and hardware
failures has increased the complexity of the models and their verification by a
signification amount.

In order to reduce the effort inherent in frequent changes, KIV provides an
elaborate correctness management for proofs. The system tracks the dependen-
cies of every proof, i.e., the axioms and theorems used in the proof. A proof
becomes invalid only if a dependency has changed. Furthermore, KIV supports
replaying of an old, invalid proof. User interactions are therefore mostly limited
to parts of a proof affected by a change.

Similar to [3], we observed that strong abstraction capabilities of the used
tools are essential. KIV supports arbitrary user-defined data types (given suitable
axioms), which was for example exploited to abstract the pointer structure to an
algebraic tree and to abstract the sparse pages of files to streams (see Sec. 3.2).

We found that for smaller invariants it would be useful to have stronger typing
support in our tool, such as for example predicative subtypes [37]. This could be
used for example to express the invariant that every erase block has a certain
size in the type. Making such invariants implicit reduces the number of trivial
preconditions for lemmas.

6 Conclusion and Open Challenges

We have given an overview over our approach to the development of a formally
verified flash file system. We outlined our decomposition into a hierarchy of
models, described some of the challenges posed in each of them and sketched the
solutions we developed. We are currently finalizing the models and their correct-
ness proofs for the various refinements, one rather challenging remains: verifying
the implementation of indices by “wandering” B+-trees, that are maintained in
RAM, and are incrementally stored on flash.

Two major aspects remain future work:
We have not yet addressed concurrency. A realistic and efficient implementa-

tion, however, should perform garbage collection (in the flash file system model),
erasure of physical blocks and wear-leveling (in the EBM model) concurrently
in the background. In those instances, where the action is invisible to the client
of the respective layer, the abstract behavior is trivial to specify. However, on
top-level it is not clear which outcomes of two concurrent writes to overlapping
regions are acceptable, and how to specify them (the POSIX standard does not
give any constraint).

Another feature that is non-trivial to specify is the effect of caching when
using the real VFS implementation. The difference between our non-caching
VFS implementation and the one in Linux would be visible to the user if a
power-cut occurs, as not all previous writes would have been persisted on flash.
For two simpler caching related problems (the write buffer of Sec. 3.4 and the
mapping of Sec. 3.5) we already successfully applied a refinement theory that
incorporates power-cuts [33].
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Why Amazon Chose TLA+

Chris Newcombe

Amazon, Inc.

Abstract. Since 2011, engineers at Amazon have been using TLA+ to help solve
difficult design problems in critical systems. This paper describes the reasons why
we chose TLA+ instead of other methods, and areas in which we would welcome
further progress.

1 Introduction

Why Amazon is using formal methods. Amazon builds many sophisticated distributed
systems that store and process data on behalf of our customers. In order to safeguard
that data we rely on the correctness of an ever-growing set of algorithms for replica-
tion, consistency, concurrency-control, fault tolerance, auto-scaling, and other coordi-
nation activities. Achieving correctness in these areas is a major engineering challenge
as these algorithms interact in complex ways in order to achieve high-availability on
cost-efficient infrastructure whilst also coping with relentless rapid business-growth1.
We adopted formal methods to help solve this problem.

Usage so far. As of February 2014, we have used TLA+ on 10 large complex real-world
systems. In every case TLA+ has added significant value, either preventing subtle seri-
ous bugs from reaching production, or giving us enough understanding and confidence
to make aggressive performance optimizations without sacrificing correctness. Execu-
tive management are now proactively encouraging teams to write TLA+ specs for new
features and other significant design changes. In annual planning, managers are now
allocating engineering time to use TLA+.

We lack space here to explain the TLA+ language or show examples of our spec-
ifications. We refer readers to [18] for a tutorial, and [26] for an example of a TLA+

specification from industry that is similar in size and complexity to some of the larger
specifications at Amazon.

What we wanted in a formal method. Our requirements may be roughly grouped as fol-
lows. These are not orthogonal dimensions, as business requirements and engineering
tradeoffs are rarely crisp. However, these do represent the most important characteris-
tics required for a method to be successful in our industry segment.

1. Handle very large, complex or subtle problems. Our main challenge is complexity
in concurrent and distributed systems. As shown in Fig. 1, we often need to ver-
ify the interactions between algorithms, not just individual algorithms in isolation.

1 As an example of such growth; in 2006 we launched S3, our Simple Storage Service. In the
six years after launch, S3 grew to store 1 trillion objects [6]. Less than one year later it had
grown to 2 trillion objects, and was regularly handling 1.1 million requests per second [7].

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 25–39, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



26 C. Newcombe

System Components Line count Benefit
S3 Fault-tolerant low-level

network algorithm
804 PlusCal Found 2 design bugs. Found further

design bugs in proposed optimiza-
tions.

Background redistribution of
data

645 PlusCal Found 1 design bug, and found a
bug in the first proposed fix.

DynamoDB Replication and
group-membership systems
(which tightly interact)

939 TLA+ Found 3 design bugs, some requir-
ing traces of 35 steps.

EBS Volume management 102 PlusCal Found 3 design bugs.
EC2 Change to fault-tolerant

replication, including
incremental deployment to
existing system, with zero
downtime

250 TLA+

460 TLA+

200 TLA+

Found 1 design bug.

Internal
distributed
lock
manager

Lock-free data structure 223 PlusCal Improved confidence. Failed to find
a liveness bug as we did not check
liveness.

Fault tolerant replication and
reconfiguration algorithm

318 TLA+ Found 1 design bug. Verified an ag-
gressive optimization.

Fig. 1. Examples of applying TLA+ to some of our more complex systems

Also, many published algorithms make simplifying assumptions about the operat-
ing environment (e.g. fail-stop processes, sequentially consistent memory model)
that are not true for real systems, so we often need to modify algorithms to cope
with the weaker properties of a more challenging environment. For these reasons
we need expressive languages and powerful tools that are equipped to handle high
complexity in these problem domains.

2. Minimize cognitive burden. Engineers already have their hands full with the com-
plexity of the problem they are trying to solve. To help them rather than hinder,
a new engineering method must be relatively easy to learn and easy to apply. We
need a method that avoids esoteric concepts, and that has clean simple syntax and
semantics. We also need tools that are easy to use. In addition, a method intended
for specification and verification of designs must be easy to remember. Engineers
might use a design-level method for a few weeks at the start of a project, and then
not use it for many months while they implement, test and launch the system. Dur-
ing the long implementation phase, engineers will likely forget any subtle details of
a design-level method, which would then cause frustration during the next design
phase. (We suspect that verification researchers experience a very different usage
pattern of tools, in which this problem might not be apparent.)

3. High return on investment. We would like a single method that is effective for the
wide-range of problems that we face. We need a method that quickly gives useful
results, with minimal training and reasonable effort. Ideally we want a method that
also improves time-to-market in addition to ensuring correctness.
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Comparison of methods. We preferred candidate methods that had already been shown
to work on problems in industry, that seemed relatively easy to learn, and that we could
apply to real problems while we were learning. We were less concerned about “verifi-
cation philosophy” such as process algebra vs. state machines; we would have used any
method that worked well for our problems.

We evaluated Alloy and TLA+ by trying them on real-world problems [29]. We did
a smaller evaluation of Microsoft VCC. We read about Promela/Spin [13], Event-B, B,
Z, Coq, and PVS, but did not try them, as we halted the investigation when we realized
that TLA+ solved our problem.

2 Handle Very Large, Complex or Subtle Problems

2.1 Works on Real Problems in Industry

TLA+ has been used successfully on many projects in industry: complex cache-
coherency protocols at Compaq [25] and Intel [8], the Paxos consensus algorithm [21],
the Farsite distributed file system [9], the Pastry distributed key-value store [28], and
others. Alloy has been used successfully to find design flaws in the Chord ring mem-
bership protocol [32] and to verify an improved version [33]. Microsoft VCC has been
used successfully to verify the Microsoft Hypervisor [27].

Event-B [5] and B [1] have been used in industry, although most of the applications
appear to be control systems, which is an interesting area but not our focus. We found
some evidence [12] that Z has been used to specify systems in industry, but we did
not find evidence that Z has been used to verify large systems. PVS has been used in
industry but most of the applications appear to be low-level hardware systems [30]. We
did not find any relevant examples of Coq being used in industry.

2.2 Express Rich Dynamic Structures

To effectively handle complex systems, a specification language must be able to capture
rich concepts without tedious workarounds. For example, when modelling replication
algorithms we need to be able to specify dynamic sequences of many types of nested
records. We found that TLA+ can do this simply and directly. In contrast, all structures
in Alloy are represented as relations over uninterpreted atoms, so modelling nested
structures requires adding intermediate layers of identifiers. This limitation deters us
from specifying some distributed algorithms in Alloy. In addition, Alloy does not have a
built-in notion of time, so mutation must be modelled explicitly, by adding a timestamp
column to each relation and implementing any necessary dynamic structures such as
sequences. This has occasionally been a distraction.

Alloy’s limited expressiveness is an intentional trade-off, chosen to allow analysis
of very abstract implicit specifications2. In contrast, TLA+ was designed for clarity

2 The book on Alloy [15, p. 302] says, “. . . the language was stripped down to the bare essentials
of structural modelling, and developed hand-in-hand with its analysis. Any feature that would
thwart analysis was excluded”, and [15, p. 41], “The restriction to flat relations makes the logic
more tractable for analysis.”
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of expression and reasoning, initially without regard to the consequences for analysis
tools3. In practice, we have found that the model checker for TLA+ is usually capable of
model-checking instances of real-world concurrent and distributed algorithms at least
as large as those checkable by the Alloy Analyzer. However, the Alloy Analyzer can
perform important types of inductive analysis (e.g. [33, p. 9]) that the currently available
tools for TLA+ cannot handle. We have not yet tried inductive analysis of real-world
algorithms, but are interested in doing so for reasons discussed later in this paper.

2.3 Easily Adjust the Level of Abstraction

To verify complex designs we need to be able to add or remove detail quickly, with
reasonably small localized edits to the specification. TLA+ allows this by supporting
arbitrarily complicated data structures in conjunction with the ability to define powerful
custom operators4 that can abstract away the details of those structures. We found that
Alloy is significantly less flexible in this area as it does not support recursive operators
or functions [15, pp. 74,280], or higher-order functions. Alloy does compensate to some
extent by having several built-in operators that TLA+ lacks, such as transitive closure
and relational join, but we found it easy to define these operators in TLA+. VCC allows
the user to write “ghost code” in a superset of the C programming language. This is
an extremely powerful feature, but the result is usually significantly more verbose than
when using TLA+ or Alloy. We have not investigated the extensibility or abstraction
features of other methods.

2.4 Verification Tools That Can Handle Complex Concurrent and Distributed
Systems

The TLA+ model-checker works by explicitly enumerating reachable states. It can han-
dle large state-spaces at reasonable throughput. We have checked spaces of up to 31
billion states5, and have seen sustained throughput of more than 3 million states per
minute when checking complex specifications. The model checker can efficiently use
multiple cores, can spool state to disk to check state-spaces larger than physical mem-
ory, and supports a distributed mode to take good advantage of additional processors,
memory and disk. Distributed mode has been very important to us, but we have also
obtained good results on individual 32-core machines with local SSD storage.

At the time of our evaluation, Alloy used off the shelf SAT solvers that were limited
to using a single core and some fraction of the physical RAM of a single machine. For
moderate finite scopes the Alloy Analyzer is extremely fast; much faster than the TLA+

3 The introductory paper on TLA+ [19] says, “We are motivated not by an abstract ideal of
elegance, but by the practical problem of reasoning about real algorithms . . . we want to make
reasoning as simple as possible by making the underlying formalism simple.” The designer of
TLA+ has expressed surprise that the language could be model-checked at all [16]. The first
model-checker for TLA+ did not appear until approximately 5 years after the language was
introduced.

4 TLA+ supports defining second-order operators [20, p. 318] and recursive functions and oper-
ators with a few restrictions.

5 Taking approximately 5 weeks on a single EC2 instance with 16 virtual CPUs, 60 GB RAM
and 2 TB of local SSD storage.
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model checker. However, we found that the SAT solvers often crash or hang when asked
to solve the size of finite model that is necessary for achieving reasonable confidence in
a more complex concurrent or distributed system. When we were preparing this paper,
Daniel Jackson told us [14] that Alloy was not intended or designed for model check-
ing such algorithms. Jackson says, “Alloy is a good choice for direct analysis if there is
some implicitness in the specification, e.g. an arbitrary topology, or steps that can make
very unconstrained changes. If not, you may get Alloy to be competitive with model
checkers, but only on short traces.” However we feel that Jackson is being overly mod-
est; we found Alloy to be very useful for understanding and debugging the significant
subset of concurrent algorithms that have relatively few variables, shallow nesting of
values, and for which most interesting traces are shorter than perhaps 12 to 14 steps. In
such cases, Alloy can check sophisticated safety properties sufficiently well to find sub-
tle bugs and give high confidence—as Pamela Zave found when using Alloy to analyze
the Chord ring membership protocol [32,33].

VCC uses the Z3 SMT solver, which is also limited to a single machine and physical
memory (we are not sure if it uses multiple cores). We have not yet tried the ProB model
checker for B or Event B, but we believe that it is also limited to using a single core and
physical RAM on a single machine.

Another limitation of Alloy is that the SAT-based analysis can only handle a small
finite set of contiguous integer values. We suspect that this might prevent Alloy from
effectively analyzing industrial systems that rely on properties of modulo arithmetic,
e.g. Pastry. TLA+ was able to specify, model-check, and prove Pastry [28].

2.5 Good Tools to Help Users Diagnose Bugs

We use formal methods to help us find and fix very subtle errors in complex designs.
When such an error is found, the cause can be difficult for the designer to diagnose. To
help with diagnosis we need tools that allow us to comprehend lengthy sequences of
complex state changes. This is one of the most significant differences between the for-
mal methods that we tried. The primary output of the Alloy Analyzer tool is diagrams;
it displays an execution trace as a graph of labelled nodes. The tool uses relatively so-
phisticated algorithms to arrange the graph for display, but we still found this output to
be incomprehensible for systems with more than a few variables or time-steps. To work
around this problem we often found ourselves exporting the execution trace to an XML
file and then using a text editor and other tools to explore it. The Alloy Analyzer also
has a feature that allows the user to evaluate arbitrary Alloy expressions in the context
of the execution trace. We found the evaluator feature to be very useful (although the
versions we used contain a bug that prevents copy/paste of the displayed output). The
TLA+ Toolbox contains a similar feature called Trace Explorer that can evaluate sev-
eral arbitrary TLA+ expressions in every state of an execution trace and then display
the results alongside each state. We found that this feature often helped us to diagnose
subtle design errors. At the time of writing, Trace Explorer still has some quirks: it is
somewhat slow and clunky due to having to launch a separate short-lived instance of the
model checker on every change, and the IDE sometimes does a poor job of managing
screen space, which can cause a tedious amount of clicking, resizing, and scrolling of
windows.
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2.6 Express and Verify Complex Liveness Properties

While safety properties are more important than liveness properties, we have found that
liveness properties are still important. For example, we once had a deadlock bug in a
lock-free algorithm that we caught in stress testing after we had failed to find it dur-
ing model-checking because we did not check liveness. TLA+ has good support for
liveness. The language can express fairness assumptions and rich liveness properties
using operators from linear time temporal logic. The model checker can check a useful
subset of liveness properties, albeit only for very small instances of the system, as the
algorithm for checking liveness is restricted to using a single core and physical RAM.
However, the current version of the model checker has a significant flaw: if a liveness
property is violated then the model checker may report an error trace that is much more
complicated than necessary, which makes it harder for the user to diagnose the problem.
For deeper verification of liveness, the TLA+ proof system will soon support machine-
checked proofs using temporal logic. The Alloy book says that it supports checking
liveness6, but only on short traces7. When evaluating Alloy, Zave found [33], “There
are no temporal operators in Alloy. Strictly speaking the progress property could be
expressed in Alloy using quantification over timestamps, but there is no point in doing
so because the Alloy Analyzer could not check it meaningfully . . . For all practical pur-
poses, progress properties cannot be asserted in Alloy.” VCC can verify local progress
properties, e.g. termination of loops and functions, but we don’t know if VCC can ex-
press fairness or verify global liveness properties.

2.7 Enable Machine-Checked Proof

So far, the benefits that Amazon have gained from formal methods have arisen from
writing precise specifications to eliminate ambiguity, and model-checking finite models
of those specifications to try to find errors. However, we have already run into the prac-
tical limits of model-checking, caused by combinatorial state-explosion. In one case,
we found a serious defect that was only revealed in an execution trace comprising 35
steps of a high-level abstraction of a complex system. Finding that defect took several
weeks of continuous model-checking time on a cluster of 10 high-end machines, using
carefully crafted constraints to bound the state-space. Even when using such constraints
the model-checker still has to explore billions of states; we had to request several en-
hancements to the model checker to get even this far. We doubt that model-checking
can go much further than this. Therefore, for our most critical algorithms we wish to
also use proofs.

In industry, engineers are extremely skeptical of proofs. Engineers strongly doubt
that proofs can scale to the complexity of real-world systems, so any viable proof
method would need an effective mechanism to manage that complexity. Also, most

6 The Alloy book [15, p. 302] says, “[Alloy] assertions can express temporal properties over
traces”, and [15, p. 179] “we’ll take an approach that . . . allows [the property ‘some leader is
eventually elected’] to be checked directly.” See also [15, p. 186], “How does the expressive-
ness of Alloy’s trace assertions compare to temporal logics?”

7 [15, p. 187] “In an Alloy trace analysis, only traces of bounded length are considered, and the
bound is generally small.”
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proofs are so intricate that there is more chance of an error in the proof than an error
in the algorithm, so for engineers to have confidence that a proof is correct, we would
need machine verification of the proof. However, most systems that we know of for
machine-checked proof are designed for proving conventional theorems in mathemat-
ics, not correctness of large computing systems.

TLA+ has a proof system that addresses these problems. The TLA+ proof system
(TLAPS) uses structured hierarchical proof, which we have found to be an effective
method for managing very complex proofs. TLAPS works directly with the original
TLA+ specification, which allows users to first eliminate errors using the model checker
and then switch to proof if even more confidence is required. TLAPS uses a declarative
proof language that emphasizes the basic mathematics of the proof and intentionally
abstracts away from the particular languages and tactics of the various back-end proof
checkers. This approach allows new proof checkers to be added over time, and existing
checkers to evolve, without risk of requiring significant change to the structure or con-
tent of the proof. If a checker does happen to change in a way that prevents an existing
step from being proved, the author can simply expand that local step by one or more
levels.

There are several published examples of TLAPS proofs of significant algorithms
[28,22,11]. We have tried TLAPS on small problems and found that it works well.
However, we have not yet proved anything useful about a real system. The main barrier
is finding inductive invariants of complex or subtle algorithms. We would welcome
tools and training in this area. The TLA+ Hyperbook [18] contains some examples but
they are relatively simple. We intend to investigate using Alloy to help debug more
complex inductive invariants, as Alloy was expressly designed for inductive analysis.

While preparing this paper we learned that several proof systems exist for Alloy. We
have not yet looked at any of these, but may do so in future.

VCC works entirely via proof but also provides many of the benefits of a model
checker; if a proof fails then VCC reports a concrete counter-example (a value for each
variable) that helps the engineer understand how to change the code or invariants to al-
low the proof to succeed. This is an immensely valuable feature that we would strongly
welcome in any proof system. However, VCC is based on a low level programming
language, so we do not know if it is a practical tool for proofs of high-level distributed
systems.

3 Minimize Cognitive Burden

3.1 Avoid Esoteric Concepts

Methods such as Coq and PVS involve very complicated type-systems and proof lan-
guages. We found these concepts to be difficult to learn. TLA+ is untyped, and through
using it we have become convinced that a type system is not necessary for a specifica-
tion method, and might actually be a burden as it could constrain expressiveness. In a
TLA+ specification, “type safety” is just another (comparatively shallow) property that
the system must satisfy, which we verify along with other desired properties. Alloy has
a very simple type system that can only prevent a few trivial kinds of error in a specifi-
cation. In fact, the Alloy book says [15, p. 119], “Alloy can be regarded as an untyped
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language”. VCC has a simple type system, but adds some unfamiliar concepts such
as “ghost claims” for proving safe access to objects in memory. We did not use these
features in our evaluation of VCC, so we don’t know if they complicate or simplify
verification.

3.2 Use Conventional Terminology

TLA+ largely consists of standard discrete math plus a subset of linear temporal logic.
Alloy is also based on discrete math but departs from the standard terminology in ways
that we initially found confusing. In Alloy, a set is represented as a relation of arity
one, and a scalar is represented as a singleton set. This encoding is unfamiliar, and has
occasionally been a distraction. When reasoning informally about a formula in Alloy,
we find ourselves looking for context about the arity and cardinality of the various
values involved in order to deduce the semantics.

3.3 Use Just a Few Simple Language Constructs

TLA+ uses a small set of constructs from set theory and predicate logic, plus a new but
straightforward notation for defining functions [17]. TLA+ also includes several opera-
tors from linear temporal logic that have semantics that are unfamiliar to most engineers
in industry. However, TLA+ was intentionally designed to minimize use of temporal op-
erators, and in practice we’ve found that we rarely use them. Alloy has a single under-
lying logic based on the first order relational calculus of Tarski [14], so the foundations
of Alloy are at least as simple as those of TLA+. However, the documentation for Alloy
describes the logic in terms of three different styles: conventional first-order predicate
calculus, “navigation expressions” (including operators for relational join, transpose,
and transitive closure), and relational calculus (including operators for intersection and
union of relations). All three styles of logic can be combined in the same formula. We
found that learning and using this combined logic took a bit more effort than using the
non-temporal subset of TLA+, perhaps due to the “paradox of choice” [31].

3.4 Avoid Ambiguous Syntax

TLA+ has a couple of confusing syntactic constructs [20, p. 289], but they rarely arise in
practice. The one example that the author has encountered, perhaps twice in four years
of use, is an expression of the form {x ∈ S : y ∈ T}. This expression is syntactically
ambiguous in the grammar for TLA+ set constructors. The expression is given a useful
meaning via an ad hoc rule, but the visual ambiguity still causes the reader a moment
of hesitation.

Alloy has a significant amount of syntactic overloading: the “ [ ]” operator is used
for both applying predicates and functions to arguments [15, p. 123] and for a variation
of relational join [15, p. 61]; the “ . ” operator is used for both relational join [15, p. 57]
and the “syntactic pun” of receiver syntax [15, pp. 124,126]; some formulas (‘signature
facts’) look like normal assertions but contain implicit quantification and implicit rela-
tional joins [15, pp. 99,122]; some keywords are reused for different concepts, e.g. for



Why Amazon Chose TLA+ 33

quantifiers and multiplicities [15, p. 72]. Each of these language features is reasonable
in isolation, but collectively we found that these details can be a burden for the user to
remember. TLA+ has relatively few instances of syntax overloading. For instance, the
CASE value-expression uses the symbol � as a delimiter but elsewhere that symbol is
used for the temporal logic operator that means “henceforth”. However, we rarely use
CASE value-expressions in our specifications, so this is a minor issue compared to the
overloading of the primary operators in Alloy. In the TLA+ proof system, the CASE

keyword is overloaded with a meaning entirely different to its use in specifications.
However, the context of proof vs. specification is always clear so we have not found
this overloading to be a problem.

In Alloy, variable names (fields) can be overloaded by being defined in multiple
signatures [15, pp. 119,267], and function and predicate names can be overloaded by
the types of their arguments. Disambiguation is done via the static type system. We
try to avoid using these features as they can make specifications harder to understand.
TLA+ forbids redefinition of symbols that are in scope, even if the resulting expression
would be unambiguous [20, p. 32].

3.5 Simple Semantics

TLA+ has the clean semantics of ordinary mathematics. There are a few subtle corner
cases: e.g. the ENABLED operator may interact in surprising ways with module instan-
tiation, because module instantiation is based on mathematical substitution and substi-
tution does not distribute over ENABLED. However, such cases have not been a problem
for us (we suspect that the main impact might be on formal proof by refinement, which
we have not yet attempted).

The Alloy language has some surprising semantics in the core language, e.g. for
integers. The Alloy book states [15, p. 82,290] that the standard theorem of integer
arithmetic,

S =< T and T =< S implies S = T

is not valid in Alloy. The book admits that this is “somewhat disturbing”. In Alloy, when
S and T each represent a set of integers, the integer comparison operator performs an
implicit summation but the equality operator does not. (The equality operator considers
two sets of integers to be equal if and only if they contain the same elements.) Alloy has
a feature called ‘signature facts’ that we have found to be a source of confusion. The
Alloy book [15, p. 122] says, “The implicit quantification in signature facts can have
unexpected consequences”, and then gives an example that is described as “perhaps the
most egregiously baffling”. Fortunately ‘signature facts’ are an optional feature that can
easily be avoided, once the user has learned to do so.

VCC has semantics that are an extension of the C programming language, which is
not exactly simple, but is at least familiar to engineers. At the time of our evaluation,
VCC had several constructs with unclear semantics (e.g. the difference between ‘pure
ghost’ functions and ‘logic’ functions), as the language was still evolving, and up-to-
date documentation and examples were scarce.
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3.6 Avoid Distorting the Language in Order to Be More Accessible

Most engineers find formal methods unfamiliar and odd at first. It helps tremendously
if a language has some facilities to help bridge the gap from how engineers think (in
terms of programming language concepts and idioms) to declarative mathematical spec-
ifications. To that end, Alloy adopts several syntactic conventions from object-oriented
programming languages. However, the adoption is superficial, and we have found that
the net effect is to obscure what is really going on, which actually makes it slightly
harder to think in Alloy. For example, the on-line tutorial for Alloy describes three
distinct ways to think about an Alloy specification [4]:

– “The highest level of abstraction is the OO paradigm. This level is helpful for get-
ting started and for understanding a model at a glance; the syntax is probably fa-
miliar to you and usually does what you’d expect it to do.

– “The middle level of abstraction is set theory. You will probably find yourself using
this level of understanding the most (although the OO level will still be useful).

– “The lowest level of abstraction is atoms and relations, and corresponds to the true
semantics of the language. However, even advanced users rarely think about things
this way.”

But the page goes on to say, “. . . the OO approach occasionally [leads to errors].”
While we doubt there is a single ‘right’ way to think, we have found that it helps to
think about Alloy specifications in terms of atoms and relations (including the leftmost
signature column), as this offers the most direct and accurate mental model of all of the
various language constructs.

TLA+ takes a different approach to being accessible to engineers. TLA+ is accompa-
nied by a second, optional language called PlusCal that is similar to a C-style program-
ming language, but much more expressive as it uses TLA+ for expressions and values.
PlusCal is automatically translated to TLA+ by a tool, and the translation is direct and
easy to understand. PlusCal users do still need to be familiar with TLA+ in order to write
rich expressions, and because the model-checker works at the TLA+ level. PlusCal is
intended to be a direct replacement for conventional pseudo-code, and we have found it
to be effective in that role. Several engineers at Amazon have found that they are more
productive in PlusCal than TLA+, particularly when first exposed to the method.

3.7 Flexible and Undogmatic

So far we have investigated three techniques for verifying safety properties using state-
based formal methods:

– Direct: Write safety properties as invariants, using history variables if necessary.
Then check that every behavior of the algorithm satisfies the properties.

– Refinement: Write properties in the form of very abstract system designs, with their
own variables and actions. These abstract systems are very far from implementable
but are designed to be easy to understand and “obviously correct”. Then check that
the real algorithm implements the abstract design, i.e. that every legal behavior of
the real algorithm is a legal behavior of the abstract design.
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– Inductive Invariance: Find an invariant that implies the desired safety properties.
Then check that the invariant is always preserved by every possible atomic step of
the algorithm, and that the invariant is also true in all possible initial states.

The first technique (direct) is by far the easiest, and is the only method we have used
so far on real systems. We are interested in the second technique (refinement) because
we anticipate that such “ladders of abstraction” may be a good way to think about
and verify systems that are very complex. We have performed one small experiment
with refinement and we intend to pursue this further. We have tried the third technique
(inductive invariance), but have found it difficult to apply to real-world systems because
we don’t yet have good tools to help discover complex inductive invariants.

TLA+ supports the direct method very well. TLA+ also explicitly supports verifica-
tion of refinement between two levels of abstraction, via a mechanism based on sub-
stitution of variables in the high-level spec with expressions using variables from the
lower-level spec. We find this mechanism to be both elegant and illuminating, and in-
tend to use it more in the future. (For good examples, see the three levels of abstraction
in [24], and the four levels of abstraction in [22].) The TLA+ proof system is designed
to use inductive invariants, but the TLA+ model-checker has very limited support for
debugging inductive invariants, which is currently a significant handicap.

Alloy supports the direct method fairly well. The Alloy book contains an example
of checking refinement [15, p. 227] but the method used in that example appears to
require each type of event in the lower-level specification to be analyzed separately,
in addition to finding an overall state abstraction function. We have not yet tried to
use Alloy to check refinement. Daniel Jackson says [14] that Alloy was designed for
inductive analysis, and Pamela Zave used Alloy to perform inductive analysis on the
Chord ring membership protocol [32,33]. However, so far we have found inductive
analysis of concurrent and distributed algorithms to be very difficult; it currently seems
to require too much effort for most algorithms in industry.

Event-B seems to focus on refinement, in the form of derivation. The book [2] and
papers [3] on Event-B place strong emphasis on “correctness by construction” via many
steps of top-down derivation from specification to algorithm, with each step being ver-
ified by incremental proof. While we are interested in exploring verification by refine-
ment (upwards, from algorithm to specification in very few steps), we are skeptical of
derivation as a design method. We have never applied this method ourselves, or seen a
convincing example of it being applied elsewhere to a system in our problem domain.
In general, our correctness properties are both high-level and non-trivial, e.g. sequential
consistency, linearizability, serializability. We doubt that engineers can design a com-
petitive industrial system by gradually deriving down from such high-level correctness
properties in search of efficient concurrent or fault-tolerant distributed algorithm. Even
if it were feasible to derive competitive algorithms from specifications, formal proof
takes so much time and effort that we doubt that incremental formal proof can be a
viable part of a design method in any industry in which time-to-market is a concern.
Our established method of design is to first specify the desired correctness properties
and operating environment, and then invent an algorithm using a combination of ex-
perience, creativity, intuition, inspiration from engineering literature, and informal rea-
soning. Once we have a design, we then verify it. For almost all verification tasks we
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have found that model checking dramatically beats proof, as model checking gives high
confidence with reasonable effort. In addition to model checking we occasionally use
informal proof, and are keen to try informal hierarchical proof [23]. We do have one
or two algorithms that are so critical that they justify verification by formal proof (for
which we are investigating the TLA+ proof system). But we doubt that we would use
incremental formal proof as a design technique even for those algorithms.

VCC takes a slightly different approach to verification. VCC enables engineers to
verify complex global “two-state invariants” (predicates on atomic state transitions) by
performing local verification of individual C functions. To achieve this, VCC imposes
certain admissibility conditions on the kinds of invariants that may be declared [10]. We
don’t know if these admissibility conditions may become an inconvenience in practice
as our evaluation of VCC was limited to small sequential algorithms and did not verify
a global invariant. VCC is based on proof rather than model-checking, but a significant
innovation is that the proof tool is guided solely by assertions and “ghost code” added
alongside the executable program code. The assertions and ghost code are written in a
rich superset of C, so guiding the prover feels like normal programming. VCC seems
to support just this one style of verification. We found this style to be engaging and
fun when applied to the set of simple problems that we attempted in our evaluation.
However, we don’t know how well this style works for more complex problems.

4 High Return on Investment

4.1 Handle All Types of Problems

We don’t have time to learn multiple methods, so we want a single method that works
for many types of problem: lock-free and wait-free concurrent algorithms, conventional
concurrent algorithms (using locks, condition variables, semaphores), fault-tolerant dis-
tributed systems, and data-modelling. We have used TLA+ successfully for all of these.
Alloy is good for data modelling but while preparing this paper we learned that Alloy
was not designed for checking concurrent or distributed algorithms [14]. VCC excels
at verifying the design and code of low-level concurrent algorithms, but we don’t know
how to use VCC to verify high-level distributed systems.

4.2 Quick to Learn and Obtain Useful Results on Real Problems

We found that Alloy can give very rapid results for problems of modest complexity.
TLA+ is likewise easy to adopt; at Amazon, many engineers at all levels of experience
have been able to learn TLA+ from scratch and get useful results in 2 to 3 weeks, in
some cases just in their personal time on weekends and evenings, and without help or
training. We found that VCC is significantly harder to learn because of relatively sparse
documentation, small standard library, and very few examples.

4.3 Improve Time to Market

After using TLA+ to verify a complex fault-tolerant replication algorithm for Dynamo
DB, an engineer in Amazon Web Services remarked that, had he known about TLA+
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before starting work on Dynamo DB, he would have used it from the start, and this
would have avoided a significant amount of time spent manually checking his informal
proofs. For this reason we believe that using TLA+ may improve time-to-market for
some systems in addition to improving quality. Similarly, Alloy may improve time-
to-market in appropriate cases. However, Alloy was not designed to check complex
distributed algorithms such as those in Dynamo DB, so in those cases we believe that
using Alloy would take much longer than using TLA+, or might be infeasible. VCC is
based on proof, and even with VCC’s innovations proof still requires more effort than
model-checking. We did find that, when developing small sequential algorithms, proof
by VCC can take less effort than thorough manual testing of the algorithm. However,
we don’t know if those results translate to complex concurrent systems.

5 Conclusion

We were impressed with all of the methods that we considered; they demonstrably work
very well in various domains.

We found that Alloy is a terrific tool for concurrent or distributed algorithms of
modest complexity, despite not being designed for such problems. The analyzer tool has
an engaging user interface, the book and tutorials are helpful, and Alloy offers the fastest
path to useful results for engineers who are new to formal methods. However, Alloy’s
limited expressiveness, slightly complicated language, and limited analysis tool, result
in a method that is not well suited to large complex systems in our problem domain.

We found Microsoft VCC to be a compelling tool for verifying low-level C programs.
VCC does have some features for abstraction but we could not see how to use these
features to verify high-level designs for distributed systems. It may be possible, but it
seemed difficult and we could not find any relevant examples.

We found that Coq, PVS, and other tools based solely on interactive proof assistants,
are too complicated to be practical for our combination of problem domain and time
constraints.

Event-B seems a promising method, but we were deterred from actually trying it due
to the documentation’s strong emphasis on deriving algorithms from specifications by
top-down refinement and incremental proof, which we believe to be impractical in our
problem domain. However, we later learned that Event-B has a model checker, so may
support a more practical development process.

TLA+ is a good fit for our needs, and continues to serve us well. TLA+ is simple
to learn, simple to apply, and very flexible. The IDE is quite useable and the model-
checker works well. The TLA+ Proof System is a welcome addition that we are still
evaluating.

We would welcome further progress in the following areas:

– Model checking: Ability to check significantly larger system-instances.
– Verify the code: Improved tools for checking that executable code meets its high-

level specification. We already use conventional tools for static code analysis, but
are disappointed that most such tools are shallow or generate a high rate of false-
positive errors.
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– Proof: Improved support for standard types and operators, e.g. sequences and
TLA+’s CHOOSE operator (Hilbert’s epsilon). More libraries of lemmas for com-
mon idioms, plus examples of how to use them in proofs. Education and tools to
help find complex inductive invariants.

– Methods for modelling and analyzing performance: For instance, predicting the dis-
tribution of response latency for a given system throughput. We realize that this is
an entirely different problem from logical correctness, but in industry performance
is almost as important as correctness. We speculate that model-checking might help
us to analyze statistical performance properties if we were able to specify the cost
distribution of each atomic step.

We would like to thank Leslie Lamport, Daniel Jackson, Stephan Merz, and the
anonymous reviewers from the ABZ2014 program committee, for comments that sig-
nificantly improved this paper.
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Abstract. The state-based formal methods B and TLA
+ share the

common base of predicate logic, arithmetic and set theory. However,
there are still considerable differences, such as the way to specify state
transitions, the different approaches to typing, and the available tool sup-
port. In this paper, we present a translation from B to TLA

+ to validate
B specifications using the model checker TLC. We provide translation
rules for almost all constructs of B, in particular for those which are not
built-in in TLA

+. The translation also includes many adaptations and
optimizations to allow efficient checking by TLC. Moreover, we present a
way to validate liveness properties for B specifications under fairness con-
ditions. Our implemented translator, Tlc4B, automatically translates a
B specification to TLA

+, invokes the model checker TLC, and translates
the results back to B. We use ProB to double check the counter exam-
ples produced by TLC and replay them in the ProB animator. We also
present a series of case studies and benchmark tests comparing Tlc4B

and ProB.

Keywords: B-Method, TLA
+, Tool Support, Model Checking, Anima-

tion.

1 Introduction and Motivation

B [1] and TLA
+ [8] are both state-based formal methods rooted in predicate

logic, combined with arithmetic, set theory and support for mathematical func-
tions. However, as already pointed out in [5], there are considerable differences:

– B is strongly typed, while TLA
+ is untyped. For the translation, it is ob-

viously easier to translate from a typed to an untyped language than vice
versa.

– The concepts of modularization are quite different.
– Functions in TLA

+ are total, while B supports relations, partial functions,
injections, bijections, etc.

– B is limited to invariance properties, while TLA
+ also allows the specifica-

tion of liveness properties.
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– The structure of a B machine or development is prescribed by the B-method,
while in a TLA

+ specification any formula can be considered as a system
specification.

As far as tool support is concerned, TLA
+ is supported by the explicit state

model checker TLC [13] and more recently by the TLAPS prover [3]. TLC has
been used to validate a variety of distributed algorithms (e.g. [4]) and proto-
cols. B has extensive proof support, e.g., in the form of the commercial prod-
uct AtelierB [2] and the animator, constraint solver and model checker ProB

[9,10]. Both AtelierB and ProB are being used by companies, mainly in the
railway sector for safety critical control software. In an earlier work [5] we have
presented a translation from TLA

+ to B, which enabled applying the ProB

tool to TLA
+ specifications. In this paper we present a translation from B to

TLA
+, this time with the main goal of applying the model checker TLC to B

specifications. Indeed, TLC is a very efficient model checker for TLA
+ with an

efficient disk-based algorithm and support for fairness. ProB has an LTL model
checker, but it does not support fairness (yet) and is entirely RAM-based. The
model checking core of ProB is less tuned than TLA

+. On the other hand,
ProB incorporates a constraint solver and offers several features which are ab-
sent from TLC, in particular an interactive animator with various visualization
options. One feature of our approach is to replay the counter-examples produced
by TLC within ProB, to get access to those features but also to validate the
correctness of our translation. In this paper, we also present a thorough empir-
ical evaluation between TLC and ProB. The results show that for lower-level,
more explicit formal models, TLC fares better, while for certain more high-level
formal models ProB is superior to TLC because of its constraint solving ca-
pabilities. The addition of a lower-level model checker thus opens up many new
application possibilities.

2 Translation

The complete translation process from B to TLA
+ and back to B is illustrated

in Fig. 1.
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TLC4B
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Fig. 1. The TLC4B Translation and Validation Process
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Before explaining the individual phases, we will illustrate the translation with
an example and explain the various phases based on that example. Translation
rules of all data types and operators can be found in the extended version of our
paper [6]. More specific implementation details will be covered in Section 4.

2.1 Example

Below we use a specification (adapted from [10]) of a process scheduler (Fig. 2).
The specified system allows at most one process to be active. Each process can
qualify for being selected by the scheduler by entering a FIFO queue. The spec-
ification contains two variables: a partial function state mapping each process
to its state (a process must be created before it has a state) and a FIFO queue
modeled as an injective sequence of processes. In the initial state no process is
created and the queue is empty. The specification contains various operations to
create (new), delete (del ), or add a process to queue (addToQueue). Addition-
ally, there are two operations to load a process into the processor (enter) and
to remove a process from the processor (leave). The specification contains two
safety conditions beside the typing predicates of the variables:

– At most one process should be active.
– Each process in the FIFO queue should have the state ready.

The translatedTLA
+- specification is shown in Fig. 3. At the beginning of the

module some standard modules are loaded via the EXTENDS statement. These
modules contain several operators used in this specification. The enumerated set
STATE is translated as a constant definition. The definition itself is renamed (into
STATE 1 ) by the translator because STATE is keyword in TLA

+. The invari-
ant of the B specification is divided into several definitions in the TLA

+ module.
This enables TLC to provide better feedback about which part of the invariant
is violated. We translate each B operation as a TLA

+ action. Substitutions are
translated as before-after predicates where a primed variable represents the vari-
able in the next state. Unchanged variables must be explicitly specified. Note that
a parameterized operation is translated as existential quantification. The quantifi-
cation itself is located in the next-state relation Next , which is a disjunction of all
actions. Some of the operations’ guards appear in the Next definition rather than
in the corresponding action. This is an instance of our translator optimizing the
translation for the interpretation withTLC. The wholeTLA

+ specification is de-
scribed by the Spec definition. A valid behavior for the system has to satisfy the
Init predicate for the initial state and then each step of the system must satisfy
the next-state relation Next .

To validate the translated TLA
+ specification with TLC we have to provide

an additional configuration file (Fig 4) telling TLC the main (specification) def-
inition and the invariant definitions. Moreover, we have to assign values to all
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MODEL Scheduler
SETS
PROCESSES;
STATE = {idle, ready, active}
VARIABLES
state,
queue
INVARIANT
state ∈ PROCESSES �→ STATE
& queue ∈ iseq(PROCESSES)
& card(state−1[{active}]) ≤ 1
& !x.(x ∈ ran(queue) ⇒ state(x) = ready)
INITIALISATION
state := {} || queue := [ ]
OPERATIONS
new(p) = SELECT p /∈ dom(state)

THEN state := state ∪ {(p �→ idle)} END;

del(p) = SELECT p ∈ dom(state) ∧ state(p) = idle
THEN state := {p} �− state END;

addToQueue(p) = SELECT p ∈ dom(state) ∧ state(p) = idle
THEN state(p) := ready || queue := queue ← p END;

enter = SELECT queue �= [ ] ∧ state−1[{active}] = {}
THEN state(first(queue)) := active || queue := tail(queue) END;

leave(p) = SELECT p ∈ dom(state) ∧ state(p) = active
THEN state(p) := idle END

END

Fig. 2. MODEL Scheduler

constants of the module.1 In this case we assign a set2 of model values to the
constant PROCESSES and single model values to the other constants. In terms
of functionality, model values correspond to elements of a enumerated set in B.
Model values are equal to themselves and unequal to all other model values.

2.2 Translating Data Values and Functionality Inference

Due to the common base of B and TLA
+, most data types exist in both lan-

guages, such as sets, functions and numbers. As a consequence, the translation
of these data types is almost straightforward.

1 We translate a constant as variable if the axioms allow several solutions for this
constant. All possible solution values will be enumerated in the initialization and
the variable will be kept unchanged by all actions.

2 The size of the set is a default number or can be specified by the user.
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module Scheduler
extends Naturals, FiniteSets, Sequences, Relations, Functions,

FunctionsAsRelations, SequencesExtended , SequencesAsRelations

constants PROCESSES , idle, ready , active

variables state, queue

STATE 1
Δ
= {idle, ready , active}

Invariant1
Δ
= state ∈ RelParFuncEleOf (PROCESSES , STATE 1)

Invariant2
Δ
= queue ∈ ISeqEleOf (PROCESSES)

Invariant3
Δ
= Cardinality(RelImage(RelInverse(state), {active})) ≤ 1

Invariant4
Δ
= ∀ x ∈ Range(queue) : RelCall(state, x) = ready

Init
Δ
= ∧ state = {}

∧ queue = 〈〉
new(p)

Δ
= ∧ state ′ = state ∪ {〈p, idle〉}

∧ unchanged 〈queue〉
del(p)

Δ
= ∧ RelCall(state, p) = idle

∧ state ′ = RelDomSub({p}, state)
∧ unchanged 〈queue〉

addToQueue(p)
Δ
= ∧ RelCall(state, p) = idle

∧ state ′ = RelOverride(state, {〈p, ready〉})
∧ queue ′ = Append(queue, p)

enter
Δ
= ∧ queue �= 〈〉

∧ RelImage(RelInverse(state), {active}) = {}
∧ state ′ = RelOverride(state, {〈Head(queue), active〉})
∧ queue ′ = Tail(queue)

leave(p)
Δ
= ∧ RelCall(state, p) = active

∧ state ′ = RelOverride(state, {〈p, idle〉})
∧ unchanged 〈queue〉

Next
Δ
= ∨ ∃ p ∈ PROCESSES \RelDomain(state) : new(p)

∨ ∃ p ∈ RelDomain(state) : del(p)
∨ ∃ p ∈ RelDomain(state) : addToQueue(p)
∨ enter
∨ ∃ p ∈ RelDomain(state) : leave(p)

vars
Δ
= 〈state, queue〉

Spec
Δ
= Init ∧�[Next ]vars

Fig. 3. Module Scheduler
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SPECIFICATION Spec
INVARIANT Invariant1, Invariant2, Invariant3, Invariant4
CONSTANTS
PROCESSES = {PROCESSES1, PROCESSES2, PROCESSES3}
idle = idle
ready = ready
active = active

Fig. 4. Configuration file for the module Scheduler

TLA
+ has no built-in concept of Relations3, but TLA

+ provides all necessary
data types to define relations based on the model of the B-Method. We represent
a relation in TLA

+ as a set of tuples (e.g. {〈1,TRUE 〉, 〈1,FALSE 〉 〈2,TRUE 〉}).
The drawback of this approach is that in contrast to B, TLA

+’s own functions
and sequences are not based on the relations defined is this way. As an example,
we cannot specify a TLA

+ built-in function as a set of pairs; in B it is usual to do
this as well as to apply set operators (e.g. the union operator as in f ∪{2 �→ 3}) to
functions or sequences. To support such a functionality in TLA

+, functions and
sequences should be translated as relations if they are used in a “relational way”.
It would be possible to always translate functions and sequences as relations.
But in contrast to relations, functions and sequences are built-in data types in
TLA

+ and their evaluation is optimized by TLC (e.g. lazy evaluation). Hence
we extended the B type-system to distinguish between functions and relations.
Thus we are able to translate all kinds of relations and to deliver an optimized
translation.

We use a type inference algorithm adapted to the extended B type-system
to get the required type information for the translation. Unifying a function
type with a relation type will result in a relation type (e.g. P(Z × Z) for both
sides of the equation λx .(x ∈ 1..3|x + 1) = {(1, 1)}). However, there are several
relational operators preserving a function type if they are applied to operands
with a function type (e.g. ran, front or tail). For these operators we have to
deliver two translation rules (functional vs relational). Moreover the algorithm
verifies the type correctness of the B specification (i.e. only values of the same
type can be compared with each other).

2.3 Translating Operators

In TLA
+ some common operators such as arithmetic operators are not built-in

operators. They are defined in separate modules called standard modules that
can be extended by a specification.4 We reuse the concept of standard modules
to include the relevant B operators. Due to the lack of relations in TLA

+ we
have to provide a module containing all relational operators (Fig. 5).

3 Relations are not mentioned in the language description of [8]. In [7] Lamport
introduces relations in TLA

+ only to define the transitive closure.
4
TLC supports operators of the common standard modules Integers and Sequences
in a efficient way by overwriting them with Java methods.
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module Relations
extends FiniteSets, Naturals, TLC
Relation(X , Y )

Δ
= subset (X × Y )

RelDomain(R)
Δ
= {x [1] : x ∈ R}

RelRange(R)
Δ
= {x [2] : x ∈ R}

RelInverse(R)
Δ
= {〈x [2], x [1]〉 : x ∈ R}

RelDomRes(S , R)
Δ
= {x ∈ R : x [1] ∈ S} Domain restriction

RelDomSub(S , R)
Δ
= {x ∈ R : x [1] /∈ S} Domain subtraction

RelRanRes(R, S)
Δ
= {x ∈ R : x [2] ∈ S} Range restriction

RelRanSub(R, S)
Δ
= {x ∈ R : x [2] /∈ S} Range subtraction

RelImage(R, S)
Δ
= {y [2] : y ∈ {x ∈ R : x [1] ∈ S}}

RelOverride(R1, R2)
Δ
= {x ∈ R : x [1] /∈ RelDomain(R2)} ∪ R2

RelComposition(R1, R2)
Δ
= {〈u[1][1], u[2][2]〉 : u ∈

{x ∈ RelRanRes(R1, RelDomain(R2))× RelDomRes(RelRange(R1), R2) :
x [1][2] = x [2][1]}}

...

Fig. 5. An extract of the Module Relations

Moreover B provides a rich set of operators on functions such as all combina-
tions of partial/total and injective/surjective/bijective. In TLA

+ we only have
total functions. We group all operators on functions together in an additional
module (Fig. 6). Sometimes there are several ways to define an operator. We
choose the definition which can be best handled by TLC.5

module Functions
extends FiniteSets
Range(f )

Δ
= {f [x ] : x ∈ domain f }

Image(f , S)
Δ
= {f [x ] : x ∈ S}

TotalInjFunc(S , T )
Δ
= {f ∈ [S → T ] :

Cardinality(domain f ) = Cardinality(Range(f ))}
ParFunc(S , T )

Δ
= union {[x → T ] : x ∈ subset S}

ParInjFunc(S , T )
Δ
= {f ∈ ParFunc(S , T ) :

Cardinality(domain f ) = Cardinality(Range(f ))}
...

Fig. 6. An extract of the Module Functions

Some operators exists in both languages but their definitions differ slightly. For
example, the B-Method requires that the first operand for the modulo operator
must be a natural number. In TLA

+ it can be also a negative number.

5 Note that some of the definitions are based on the Cardinality operator that is
restricted to finite sets.
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Operator B-Method TLA
+

a modulo b a ∈ N ∧ b ∈ N1 a ∈ Z ∧ b ∈ N1

To verify B’s well-definedness condition for modulo we use TLC’s ability to check
assertions. The special operator Assert(P , out) throws a runtime exception with
the error message out if the predicate P is false. Otherwise, Assert will be
evaluated to true. The B modulo operator can thus be expressed in TLA

+ as
follows:

Modulo(a, b)
Δ
= if a ≥ 0 then a% b else Assert(false, “WD ERROR”)

We also have to consider well-definedness conditions if we apply a function call
to a relation:

RelCall(r , x)
Δ
= if Cardinality(r) = Cardinality(RelDom(r)) ∧ x ∈ RelDom(r)

then (choose y ∈ r : y [1] = x)[2]
else Assert(false, “WD ERROR”)

In summary, we provide the following standard modules for our translation:

– Relations
– Functions
– SequencesExtended (Some operators on sequences which are not included

the standard module Sequences)
– FunctionsAsRelations (Defines all function operators on sets of pairs ensur-

ing their well-definedness conditions)
– SequencesAsRelations (Defines all operators on sequences which are repre-

sented as sets of pairs.)
– BBuiltins (Miscellaneous operators e.g. modulo, min and max)

2.4 Optimizations

Subtype Inference. Firstly, we will describe how TLC evaluates expressions:
In general TLC evaluates an expression from left to right. Evaluating an expres-
sion containing a bound variable such as an existential quantification (∃x ∈ S :
P), TLC enumerates all values of the associated set and then substitutes them
for the bound variable in the corresponding predicate. Due to missing constraint
solving techniques, TLC is not able to evaluate another variant of the existential
quantification without an associated set (∃x : P). This version is also a valid
TLA

+ expression and directly corresponds to the way of writing an existential
quantification in B (∃x .(P)). However, we confine our translations to the subset
of TLA

+ which is supported by TLC. Thus the translation is responsible for
making all required adaptations to deliver an executable TLA

+ specification.
For the existential quantification (or all other expressions containing bound vari-
ables), we use the inferred type τ of the bound variable as the associated set
(∃x ∈ τx : P .) However, in most cases, it is not performant to let TLC enumer-
ate over a type of a variable, in particular TLC aborts if it has to enumerate a
infinite set. Alternatively, it is often possible to restrict the type of the bound
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variable based on a static analysis of the corresponding (typing) predicate. We
use a pattern matching algorithm to find the following kind of expressions6 where
x is a bound variable, e is an expression, and S is ideally a subset of the type:
x = e , x ∈ S , x ⊆ S , x ⊂ S or x /∈ S . In case of the last pattern we build the
set difference of the type of the variable x and the set S :

B-Method TLA
+

∃x .(x /∈ S ∧ P) ∃x ∈ (τx \ S ) : P
If more than one of the patterns can be found for one variable, we build the
intersection to keep the associated set as small as possible:

B-Method TLA
+

∃x .(x = e ∧ x ∈ S1 ∧ x ⊆ S2 ∧ P) ∃x ∈ ({e} ∩ S1 ∩ SUBSET S2) : P

This reduces the number of times TLC has to evaluate the predicate P .

Lazy Evaluation. Sometimes TLC can use heuristics to evaluate an expression.
For example TLC can evaluate 〈1, 2, 1〉 ∈ Seq({1, 2}) to true without evaluating
the infinite set of sequences. We will show how we can use these heuristics to
generate an optimized translation. As mentioned before functions have to be
translated as relations if they are used in a relational way in the B specification.
How then should we translate the set of all total functions (S → T )? The easiest
way is to convert each function to a relation in TLA

+:

MakeRel(f )
Δ
= {〈x , f [x ]〉 : x ∈ DOMAIN f }

The resulting operator for the set of all total functions is:

RelTotalFunctions(S ,T )
Δ
= {MakeRel(f ) : f ∈ [S → T ]}

However this definition has a disadvantage, if we just want to check if a single
function is in this set the whole set will be evaluated by TLC. Using the following
definition TLC avoids the evaluation of the whole set:

RelTotalFunctionsEleOf (S ,T )
Δ
= {f ∈ SUBSET (S × T ) :

∧ Cardinality(RelDomain(f )) = Cardinality(f )
∧ RelDomain(f ) = S}

In this case, TLC only checks if a function is a subset of the cartesian product
(the whole Cartesian product will not be evaluated) and the conditions are
checked only once. Moreover this definition fares well even if S or T are sets of
functions (e.g. S → V → W in B). The advantage of the first definition is that
it is faster when the whole set must be evaluated. As a consequence, we use both
definitions for our translation and choose the first if TLC has to enumerate the
set (e.g. ∃x ∈ RelTotalFunctions(S ,T ) : P) and the second testing if a function
belongs to the set (e.g. f ∈ RelTotalFunctionsEleOf (S ,T ) as an invariant).

6 The B language description in [2] requires that each (bound) variable must be typed
by one of these patterns before use.
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3 Checking Temporal Formulas

One of the main advantages ofTLA
+ is that temporal properties can be specified

directly in the language itself. Moreover the model checker TLC can be used to
verify such formulas. But before we show how to write temporal formulas for a B
specification we first have to describe a main distinction between the two formal
methods. In contrast to B, the standard template of a TLA

+ specification (Init∧
�[Next ]vars) allows stuttering steps at any time.7 This means that a regular
step of a TLA

+ specification is either a step satisfying one of the actions or a
stuttering step leaving all variables unchanged. When checking a specification for
errors such as invariant violations it is not necessary to consider stuttering steps,
because such an error will be detected in a state and stuttering steps only allow
self transitions and do not add additional states. For deadlock checking stuttering
steps are also not regarded by TLC, but verifying a temporal formula with
TLC often ends in a counter-example caused by stuttering steps. For example,
assuming we have a very simple specification of a counter in TLA

+ with a single
variable c:

Spec
Δ
= c = 1 ∧ �[c′ = c + 1]c

We would expect that the counter will eventually reach 10 (�(c = 10)). However
TLC will report a counter-example, saying that at a certain state (before reach-
ing 10), an infinite number of stuttering steps occurs and 10 will never reached.
From the B side we do not want to deal with these stuttering steps. TLA

+

allows to add fairness conditions to the specification to avoid infinite stuttering
steps. Adding weak fairness for the next-state relation (WFvars(Next)) would
prohibit an infinite number of stuttering steps if a step of the next-state relation
is possible (i.e. Next is always enabled):

WFvars(A)
Δ
= ∨ ��(〈A〉vars)

∨ ��(¬ enabled 〈A〉vars)
However this fairness condition is too strong: It asserts that either the action A
will be executed infinitely often changing the state of the system (A must not
be a stuttering step)

〈A〉vars Δ
= A ∧ vars ′ �= vars

or A will be disabled infinitely often. Assuming weak fairness for the next state
relation will also eliminate user defined stuttering steps. User defined stutter-
ing steps result from B operations which do not change the state of the system
(e.g. skip or call operations). These stuttering steps may cause valid counter-
examples and should not be eliminated. Hence, the translation should retain
user defined stuttering steps in the translated TLA

+ specfication and should
disable stuttering steps which are implicitly included. In [12], Richards describes
a way to distinguish between these two kinds of stuttering steps in TLA

+.
We use his definition of “Very Weak Fairness” applied to the next state rela-
tion (VWFvars(Next)) to disable implicit stuttering steps and allow user defined
stuttering steps in the TLA

+ specification:

7 [Next ]vars
Δ
= Next ∨ UNCHANGED vars.
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VWFvars(A)
Δ
= ∨ ��(〈A〉vars)

∨ ��(¬ enabled 〈A〉vars)
∨ ��(enabled (A ∧ unchanged vars))

The definition of VWFvars(A) is identical to WFvars(A) except for an addi-
tional third case allowing infinite stuttering steps if A is a stuttering action
(A ∧ unchanged vars). We define the resulting template of the translated
TLA

+ specification as follows:

Init ∧ �[Next ]vars ∧ VWFvars(Next)

We allow the B user to use following temporal operators to define liveness con-
ditions for a B specification:8

– �f (Globally)
– �f (Finally)
– ENABLED(op) (Check if the operation op is enabled)
– ∃x .(P ∧ f ) (Existential quantification)
– ∀x .(P ⇒ f ) (Universal quantification)
– WF (op) (Weak Fairness will be translated to VWF)
– SF (op) (Strong Fairness will be translated to “Almost Strong Fairness”9)

4 Implementation and Experiments

Our translator, called Tlc4B, is implemented in Java and it took about six
months to develop the initial version. Figure 1 in Section 2 shows the transla-
tion and validation process of Tlc4B. After parsing the specification Tlc4B

performs some static analyses (e.g. type checking or checking the scope of the
variables) verifying the semantic correctness of the B specification. Moreover,
as explained in Section 2, Tlc4B extracts required information from the B
specification (e.g. subtype inference) to generate an optimized translation. Sub-
sequently, Tlc4B creates a TLA

+ module with an associated configuration
file and invokes the model checker TLC. The results produced by TLC are
translated back to B. For example, a goal predicate is translated as a negated
invariant. If this invariant is violated, a “Goal found” message is reported. We
expect TLC to find the following kinds of errors in the B specification:

– Deadlocks
– Invariant violations
– Assertion errors
– Violations of constants properties (i.e., axioms over the B constants are false)
– Well-definedness violations
– Violations of temporal formulas

8 We demonstrate the translation of a liveness condition with a concrete example in
the extended version of this paper [6].

9 Analogically Richards defines “Almost Strong Fairness” (ASF) as a weaker version
of strong fairness (SF) reflecting the different kinds of stuttering steps.
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Fig. 7. ProB animator

For certain kinds of errors such as a deadlock or an invariant violation, TLC

reports a trace leading to the state where the error occurs. A trace is a sequence
of states where each state is a mapping from variables to values. Tlc4B trans-
lates the trace back to B (as a list of B state predicates). Tlc4B has been
integrated into ProB as of version 1.3.7-beta10: The user needs no knowledge
of TLA

+ because the translation is completely hidden. As shown in figure 7
counter-examples found by TLC are automatically replayed in the ProB an-
imator (displayed in the history pane) to give the user an optimal feedback.

We have successfully validated several existing models from the lit-
erature (Table 1). The following examples show some fields of applica-
tion of Tlc4B. The experiments were all run on a Macbook Air with
Intel Core i5 1,8 GHz processor, running TLC Version 2.05 and Prob
version 1.3.7-beta9. The source code of the examples can be found at
http://www.stups.uni-duesseldorf.de/w/Pub:TLC4B_Benchmarks.

Can-Bus. One example is a 314 line B specification of the Controller Area Net-
work (CAN) Bus, containing 18 variables and 21 operations. The specification is
rather low level, i.e., the operations consist of simple assignments of concrete val-
ues to variables (no constraint solving is required). Tlc4B needs 1.5 seconds10 to

10 Most of this time is required to start the JVM and to parse the B specification.

http://www.stups.uni-duesseldorf.de/w/Pub:TLC4B_Benchmarks
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translate the specification toTLA
+ and less than 6 seconds for the validation of the

complete state space composed of 132,598 states.ProB needs 192 seconds to visit
the same number of states. Both model checkers report no errors. For this specifi-
cationTLC benefits from its efficient algorithm for storing big state spaces.

Invariant violations. We use a defective specification of a travel agency
system (CarlaTravelAgencyErr) to test the abilities of Tlc4B detecting invari-
ant violations. The specification consists of 295 line of B code, 11 variables and
10 operations. Most of the variables are functions (total, partial and injective)
which are also manipulated by relational operators. Tlc4B needs about 3 sec-
onds to translate the model and to find the invariant violation. 377 states are
explored with the aid of the breadth first search and the resulting trace has a
length of 5 states. ProB needs roughly the same time.

Benchmarks. Besides the evaluation of real case studies, we use some spe-
cific benchmark tests comparing Tlc4B and ProB. We use a specification of
a simple counter testing Tlc4B’s abilities to explore a big (linear) state space.
Tlc4B needs 3 seconds to explore the state space with 1 million states. Com-
paratively, ProB takes 204 seconds. In another specification, the states of doors
are controlled. The specification allows the doors to be opened and closed. We
use two versions: In the first version the state of the doors are represented as a
function (Doors Functions) and in the second as a relation (Doors Relations).
The first version allows Tlc4B to use TLA

+ functions for the translation and
TLC needs 2 seconds to explore 32,768 states. For the second version Tlc4B

uses the newly introduced relations and takes 10 seconds. As expected, TLC

can evaluate built-in operators faster than user defined operators. Hence the
distinction Tlc4B has between functions and relations can make a significant
difference in running times. ProB needs about 100 seconds to explore the state
space of both specifications. However, ProB needs less than a second using
symmetry reduction.11

In summary, ProB is substantially better than Tlc4B when constraint solv-
ing is required (NQueens, SumAndProduct, GraphIsomorphism12) or when naive
enumeration of operation arguments is inefficient (GardnerSwitchingPuzzle). For
some specifications (not listed in the table) TLC was not able to validate the
translated TLA

+ specification because TLC had to enumerate an infinite set.
On the other hand, Tlc4B is substantially better than ProB for lower-level
specifications with a large state space.

5 Correctness of the Translation

There are several possible cases where our validation of B models using TLC

could be unsound: there could be a bug in TLC, there could be a bug in our
TLA

+ library for the B operators, there could be a bug in our implementation

11 TLC’s symmetry reduction does not scale for large symmetric sets.
12 See http://www.data-validation.fr/data-validation-reverse-engineering/

for larger industrial application of this type of task.
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Table 1. Empirical Results: Running times of Model Checking (times in seconds)

Model Lines Result States Transitions ProB Tlc4B
ProB
Tlc4B

Counter 13 No Error 1000000 1000001 186.5 3.7 50.653

Doors Functions 22 No Error 32768 983041 103.2 3.3 31.194

Can-Bus 314 No Error 132598 340265 191.8 7.2 26.624

KnightsTour(1) 28 Goal 508450 678084 817.5 34.1 23.998

USB 4Endpoints 197 NoError 16905 550418 72.5 5.7 12.632

Countdown 67 Inv. Viol. 18734 84617 31.4 2.8 11.073

Doors Relations 22 No Error 32768 983041 103.3 11.6 8.926

Simpson Four Slot 78 No Error 46657 11275 33.7 4.3 7.874

EnumSetLockups 34 No Error 4375 52495 6.5 2.1 3.105

TicTacToe(1) 16 No Error 6046 19108 7.5 3.1 2.435

Cruise finite1 604 No Error 1360 25696 6.2 3.2 1.954

CarlaTravelAgencyErr 295 Inv. Viol. 377 3163 3.3 3.1 1.069

FinalTravelAgency 331 No Error 1078 4530 4.7 4.4 1.068

CSM 64 No Error 77 210 1.4 1.6 0.859

SiemensMiniPilot Abrial(1) 51 Goal 22 122 1.5 1.7 0.849

JavaBC-Interpreter 197 Goal 52 355 1.7 2.4 0.708

Scheduler 51 No Error 68 205 1.4 2.1 0.682

RussianPostalPuzzle 72 Goal 414 1159 1.7 2.8 0.588

Teletext bench 431 No Error 13 122 1.8 3.7 0.496

WhoKilledAgatha 42 No Error 6 13 1.5 5.2 0.295

GardnerSwitchingPuzzle 59 Goal 206 502 2.5 11.7 0.213

NQueens 8 18 No Error 92 828 1.4 23.2 0.062

JobsPuzzle 66 Deadlock 2 2 1.6 29.3 0.053

SumAndProduct(1) 51 No Error 1 1 9.7 420.8 0.023

GraphIsomorphism 21 Deadlock 512 203 1.8 991.5 0.002
(1)Without Deadlock Check

of the translation from B to TLA
+, there could be a fundamental flaw in our

translation.
We have devised several approaches to mitigate those hazards. Firstly, when

TLC finds a counter example it is replayed using ProB. In other words, every
step of the counter example is double checked by ProB and the invariant or
goal predicate is also re-checked by ProB. This makes it very unlikely that we
produce incorrect counter examples. Indeed, ProB, TLC, and our translator
have been developed completely independently of each other and rely on differ-
ent technology. Such independently developed double chains are often used in
industry for safety critical tools.

The more tricky case is when TLC finds no counter example and claims to
have checked the full state space. Here we cannot replay any counter example
and we have the added difficulty that, contrary to ProB, TLC stores just fin-
gerprints of states and that there is a small probability that not all states have
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been checked. We have no simple solution in this case, apart from re-checking
the model using either ProB or formal proof. In addition, we have conducted
extensive tests to validate our approach. For example, we use a range of models
encoding mathematical laws to stress test our translation. These have proven to
be very useful for detecting bugs in our translation and libraries (mainly bugs
involving operator precedences). In addition, we have uncovered a bug in TLC

relating to the cartesian product.13 Moreover, we use a wide variety of bench-
marks, checking that ProB and TLC produce the same result and generate the
same number of states.

6 More Related Work, Discussion and Conclusion

Mosbahi et al. [11] were the first to provide a translation from B to TLA
+. Their

goal was to verify liveness conditions on B specifications using TLC. Some of
their translation rules are similar to the rules presented in this paper. For exam-
ple, they also translate B operations into TLA

+ actions and provide straight-
forward rules for operators which exist in both languages. However, there are
also significant differences:

– Our main contribution is that we deliver translation rules for almost all B
operators and in particular for those which are not build-in operators in
TLA

+. E.g., we specified the concept of relations including all operators on
relations.

– Moreover, we also consider subtle differences between B and TLA
+ such as

different well-definedness conditions and provide an appropriate translation.
– Regarding temporal formulas, we provide a way that a B user does not have

to care about stuttering steps in TLA
+.

– We restrict our translation to the subset of TLA
+ which is supported by

the model checker TLC. Furthermore, we made many adaptations and op-
timizations allowing TLC to validate B specification efficiently.

– The implemented translator is fully automatic and does not require the user
to know TLA

+.

In the future, we would like to improve our automatic translator:

– Supporting modularization and the refinement techniques of B.
– Improving the performance of TLC by implementing Java modules for the

new standard modules.
– Integrating Tlc4B into Rodin and supporting Event-B specifications.

In conclusion, by making TLC available to B models, we have closed a gap in the
tool support and now have a range of complementary tools to validate B models:
Atelier-B (or Rodin) providing automatic and interactive proof support, ProB
being able to animate and model check high-level B specifications and providing
constraint-based validation, and now TLC providing very efficient model check-
ing of lower-level B specifications. The latter opens up many new possibilities,

13
TLC erroneously evaluates the expression {1} × {} = {} × {1} to FALSE .
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such as exhaustive checking of hardware models or sophisticated protocols. A
strong point of our approach is the replaying of counter examples using ProB.
Together with the work in [5] we have now constructed a two-way bridge be-
tween TLA

+ and B, and also hope that this will bring both communities closer
together.

Acknowledgements. We are grateful to Ivaylo Dobrikov for various discus-
sions and support in developing the Tcl/Tk interface of Tlc4B. Finally, we are
thankful to the anonymous referees for their useful feedback.
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Abstract. We present αRby—an embedding of the Alloy language in Ruby—
and demonstrate the benefits of having a declarative modeling language (backed
by an automated solver) embedded in a traditional object-oriented imperative pro-
gramming language. This approach aims to bring these two distinct paradigms
(imperative and declarative) together in a novel way. We argue that having the
other paradigm available within the same language is beneficial to both the mod-
eling community of Alloy users and the object-oriented community of Ruby pro-
grammers. In this paper, we primarily focus on the benefits for the Alloy com-
munity, namely, how αRby provides elegant solutions to several well-known,
outstanding problems: (1) mixed execution, (2) specifying partial instances, (3)
staged model finding.

1 Introduction

A common approach in formal modeling and analysis is to use (1) a declarative lan-
guage (based on formal logic) for writing specifications, and (2) an automated con-
straint solver for finding valid models of such specifications1. Such models are most
often either examples (of states or execution traces), or counterexamples (of correct-
ness claims).

In many practical applications, however, the desired analysis involves more than a
single model finding step. At the very least, a tool must convert the generated model into
a form suitable for showing to the user; in the case of Alloy [8], this includes projecting
higher-arity relations so that the model can be visualized as a set of snapshots. In some
cases, the analysis may involve repeating the model finding step, e.g., to find a minimal
model by requesting a solution with fewer tuples [13].

To date, these additional analyses have been hard-coded in the analysis tool. The key
advantage of this approach is that it gives complete freedom to the tool developer. The
disadvantage is that almost no freedom is given to the modeler, who must make do with
whatever additional processing the tool developer chose to provide.

This paper explores a different approach, in which, rather than embellishing the anal-
ysis in an ad hoc fashion in the implementation of the tool, the modeling language itself
is extended so that the additional processing can be expressed directly by the end user.
An imperative language seems most suitable for this purpose, and the challenge there-
fore is to find a coherent merging of two languages, one declarative and one imperative.
We show how this has been achieved in the merging of Alloy and Ruby.

1 Throughout this paper, we use the term ‘model’ in its mathematical sense, and never to mean
the artifact being analyzed, for which we use the term ‘specification’ instead.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 56–71, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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This challenge poses two questions, one theoretical and one practical. Theoretically,
a semantics is needed for the combination: what combinations are permitted, and what
is their meaning? Practically, a straightforward way to implement the scheme is needed.
In particular, can a tool be built without requiring a new parser and engine that must
handle both languages simultaneously?

This project focuses on the combination of Alloy and Ruby. In some respects, these
choices are significant. Alloy’s essential structuring mechanism, the signature [7], al-
lows a relational logic to be viewed in an object-oriented way (in just the same way that
instance variables in an object-oriented language can be viewed as functions or rela-
tions from members of the class to members of the instance variable type). So Alloy is
well suited to an interpretation scheme that maps it to object-oriented constructs. Ruby
is a good choice because, in addition to being object-oriented and providing (like most
recent scripting languages) a powerful reflection interface, it offers a syntax that is flex-
ible enough to support an almost complete embedding of Alloy with very few syntactic
modifications.

At the same time, the key ideas in this paper could be applied to other languages;
there is no reason, in principle, that similar functionality might not be obtained by
combining the declarative language B [1] with the programming language Racket, for
example.

The contributions of this paper include: (1) an argument for a new kind of combina-
tion of a declarative and an imperative language, justified by a collection of examples of
functionality implemented in a variety of tools, all of which are subsumed by this com-
bination, becoming expressible by the end-user; (2) an embodiment of this combination
in αRby, a deep embedding of Alloy in Ruby, along with a semantics, a discussion of
design challenges, and an open-source implementation [3] for readers to experiment
with; and (3) an illustration of the use of the new language in a collection of small but
non-trivial examples (out of 23 examples available on GitHub [4], over 1400 lines of
specification in total).

2 Motivations

Analysis of a declarative specification typically involves more than just model finding.
In this section, we outline the often needed additional steps.

Preprocessing The specification or the analysis command may be updated based
on user input. For example, in an analysis of Sudoku, the size of the board must be
specified. In Alloy, this size would be given as part of the ‘scope’, which assigns an
integer bound to each basic type. For Sudoku, we would like to ensure that the length
of a side is a perfect square; this cannot be specified directly in Alloy.

Postprocessing Once a model has been obtained by model finding, some process-
ing may be needed before it is presented to the user. A common application of model
finding in automatic configuration is to cast the desired configuration constraints as the
specification, then perform the configuration steps based on the returned solution.

Partial instances A partial instance is a partial solution that is known (given)
upfront. In solving a Sudoku problem, for example, the model finder must be given not
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only the rules of Sudoku but also the partially filled board. It is easy to encode a partial
solution as a formula that is then just conjoined to the specification. But although this
approach is conceptually simple, it is not efficient in practice, since the model finder
must work to reconstruct from this formula information (namely the partial solution)
that is already known, thus needlessly damaging performance.

Kodkod (the back-end solver for Alloy) explicitly supports partial instances: it allows
the user to specify relation bounds in terms of tuples that must (lower bound) and may
(upper bound) be included in the final value. Kodkod then uses the bounds to shrink the
search space, often leading to significant speedups [18]. At the Alloy level, however,
this feature is not directly available2.

Staged model finding Some analyses involve repeated calls to the model finder. In
the simplest case, the bounds on the analysis are iteratively increased (when no coun-
terexample has been found, to see if one exists within a larger scope), or decreased
(when a counterexample has already been found, to see if a smaller one exists). Some-
times this is used as a workaround when a desired property cannot be expressed directly
because it would require higher order logic.

Mixed execution Model finding can be used as a step in a traditional program
execution. In this case, declarative specifications are executed ‘by magic’, as if, in a
conventional setting, the interpreter could execute a program assertion by making it
true despite the lack of any explicit code to establish it [10,9]. Alternatively, flipping
the precedence of the two paradigms, the interpreter can be viewed as a declarative
model finder that uses imperative code to setup a declarative specification to be solved.
In this paper, we are primarily concerned with the latter direction, which has not been
studied in the literature as much.

The Alloy Analyzer—the official and the most commonly used IDE for Alloy—does
not currently provide any scripting mechanisms around its core model finding engine.
Instead, its Java API must be used to automate even the most trivial scripting tasks.
Using the Java API, however, is inconvenient; the verbosity and inflexibility of the
Java language leads to poor transparency between the API and the underlying Alloy
specification, making even the simplest scripts tedious and cumbersome to write. As
a result, the official API is rarely used in practice, and mostly by expert users and
researchers building automated tools on top of Alloy. This is a shame, since a simple
transparent scripting shell would be, in many respects, beneficial to the typical Alloy
user—the user who prefers to stay in an environment conceptually similar to that of
Alloy and not have to learn a second, foreign API.

This is exactly what αRby provides—an embedding of the Alloy language in Ruby.
Thanks to Ruby’s flexibility and a very liberal parser, the αRby language manages to
offer a syntax remarkably similar to that of Alloy, while still being syntactically correct
Ruby. To reduce the gap between the two paradigms further, instead of using a separate
AST, αRby maps the core Alloy concepts are onto the corresponding core concepts in
Ruby (e.g., sigs are classes, fields are instance variables, atoms are objects, functions
and predicates are methods, most operators are the same in both languages). αRby

2 The Alloy Analyzer recognizes certain idioms as partial instances; some extensions (discussed
in Section 6) support explicit partial instance specification.
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automatically interoperates with the Alloy back end, so all the solving and visualization
features of the Alloy Analyzer can be easily invoked from within an αRby program.
Finally, the full power of the Ruby language is at the user’s disposal for other tasks
unrelated to Alloy.

3 αRby for Alloy Users

A critical requirement for embedding a modeling language in a programming language
is that the embedding should preserve enough of the syntax of the language for users
to feel comfortable in the new setting. We first introduce a simple example to illustrate
how αRby achieves this for Alloy. Next, we address the new features brought by αRby,
highlighted in Section 2, which are the primary motivation for the embedding.

Consider using Alloy to specify directed graphs and the Hamiltonian Path algorithm.
Signatures are used to represent unary sets: Node, Edge, and Graph. Fields are used to rep-
resent relations between the signatures: val mapping each Node to an integer value; src
and dst mapping each Edge to the two nodes (source and destination) that it connects;
and nodes and edges mapping each Graph to its sets of nodes and edges.

A standard Alloy model for this is shown in Fig. 1(b), lines 2–4; the same declara-
tions are equivalently written in αRby as shown in Fig. 1(a), lines 2–4.

To specify a Hamiltonian path (that is, a path visiting every node in the graph exactly
once), a predicate is defined; lines 6–12 in Figs. 1(b) and 1(a) show the Alloy and
αRby syntax, with equivalent semantics. This predicate asserts that the result (path) is
a sequence of nodes, with the property that it contains all the nodes in the graph, and
that, for all but the last index i in that sequence, there is an edge in the graph connecting
the nodes at positions i and i+1. A run command is defined for this predicate (line 18),
which, when executed, returns a satisfying instance.

Just as a predicate can be run for examples, an assertion can be checked for coun-
terexamples. Here we assert that starting from the first node in a Hamiltonian path and
transitively following the edges in the graph reaches all other nodes in the graph (lines
13–17). We expect this check (line 19) to return no counterexample.

From the model specification in Fig. 1(a), αRby dynamically generates the class
hierarchy in Fig. 1(c). The generated classes can be used to freely create and manipulate
graph instances, independent of the Alloy model.

In Alloy, a command is executed by selecting it in the user interface. In αRby, ex-
ecution is achieved by calling the exe_cmd method. Fig. 1(d) shows a sample program
that calls these methods, which includes finding an arbitrary satisfying instance for the
hampath predicate and checking that the reach assertion indeed cannot be refuted.

This short example is meant to include as many different language features as pos-
sible and illustrate how similar αRby is to Alloy, despite being embedded in Ruby. We
discuss syntax in Section 5.1; a summary of main differences is given in Table 1.

4 Beyond Standard Analysis

Sudoku has become a popular benchmark for demonstrating constraint solvers. The
solver is given a partially filled n × n grid (where n must be a square number, so that
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(a) Graph specification in αRby

1 alloy :GraphModel do
2 sig Node [val: (lone Int)]
3 sig Edge [src, dst: (one Node)] {src != dst}
4 sig Graph[nodes:(set Node), edges:(set Edge)]
5

6 pred hampath[g: Graph, path: (seq Node)] {
7 path[Int] == g.nodes and
8 path.size == g.nodes.size and
9 all(i: 0...path.size-1) |

10 some(e: g.edges) {
11 e.src == path[i] && e.dst == path[i+1] }
12 }
13 assertion reach {
14 all(g: Graph, path: (seq Node)) |
15 if hampath(g, path)
16 g.nodes.in? path[0].*((~src).dst)
17 end }
18 run :hampath, 5, Graph=>exactly(1), Node=>3
19 check :reach, 5, Graph=>exactly(1), Node=>3
20 end

↝ ↝

⇔

(b) Equivalent Alloy specification

1 module GraphModel
2 sig Node {val: lone Int}
3 sig Edge {src, dst: one Node}{src != dst}
4 sig Graph{nodes: set Node, edges: set Edge}
5

6 pred hampath[g: Graph, path: seq Node] {
7 path[Int] = g.nodes
8 #path = #g.nodes
9 all i: Int | i >= 0 && i < minus[#path,1] => {

10 some e: g.edges |
11 e.src = path[i] && e.dst = path[plus[i,1]] }
12 }
13 assert reach {
14 all g: Graph, path: seq Node |
15 hampath[g, path] =>
16 g.nodes in path[0].*(~src.dst)
17 }
18 run hampath for 5 but exactly 1 Graph, 3 Node
19 check reach for 5 but exactly 1 Graph, 3 Node
20

module GraphModel
class Node; attr_accessor :val end
class Edge; attr_accessor :src, :dst end
class Graph; attr_accessor :nodes, :edges end

def self.hampath(g, path) #same as above end
def self.reach() #same as above end
def self.run_hampath() exe_cmd :hampath end
def self.check_reach() exe_cmd :reach end

end

(c) Automatically generated Ruby classes

1 # find an instance satisfying the :hampath pred
2 sol = GraphModel.run_hampath
3 assert sol.satisfiable?
4 g, path = sol["$hampath_g"], sol["$hampath_path"]
5 puts g.nodes # => e.g., {<Node$0>, <Node$1>}
6 puts g.edges # => e.g., {<Node$1, Node$0>}
7 puts path # => {<0, Node$1>, <1, Node$0>}
8 # check that the "reach" assertion holds
9 sol = GraphModel.check_reach

10 assert !sol.satisfiable?

(d) Running hampath, checking reach

Fig. 1. Hamiltonian Path example

the grid is perfectly divided into n times
√

n×
√

n sub-grids), and is required to fill the
empty cells with integers from {1, . . . , n} so that all cells within a given row, column,
and sub-grid have distinct values.

Implementing a Sudoku solver directly in Alloy poses a few problems. A practical
one is that such an implementation cannot easily be used as a stand-alone application,
e.g., to read a puzzle from some standard format and display the solution in a user-
friendly grid. A more fundamental problem is the inability to express the information
about the pre-filled cell values as a partial instance; instead, the given cell values have
to be enforced with logical constraints, resulting in significant performance degrada-
tion [18]. The αRby solution in Fig. 2 addresses both of these issues: on the left is the
formal αRby specification, and on the right is the Ruby code constructing bounds and
invoking the solver for a concrete puzzle.

Mixed Execution The imperative statements (lines 2, 7, 8) used to dynamically
produce a Sudoku specification for a given size would not be directly expressible in
Alloy. A concrete Ruby variable N is declared to hold the size, and can be set by the
user before the specification is symbolically evaluated. Another imperative statement
calculates the square root of N (line 6); that value is later embedded in the symbolic
expression specifying uniqueness within sub-grids (line 13). For illustration purposes,
a lambda function is defined (line 7) and used to compute sub-grid ranges (line 14).
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(a) Sudoku specification in αRby

1 alloy :SudokuModel do
2 SudokuModel::N = 9
3

4 sig Sudoku[grid: Int ** Int ** (lone Int)]
5

6 pred solved[s: Sudoku] {
7 m = Integer(Math.sqrt(N))
8 rng = lambda{|i| m*i...m*(i+1)}
9

10 all(r: 0...N) {
11 s.grid[r][Int] == (1..N) and
12 s.grid[Int][r] == (1..N)
13 } and
14 all(c, r: 0...m) {
15 s.grid[rng[c]][rng[r]] == (1..N)
16 }
17 }
18 end

(b) Solving the specification for a partial instance

1 class SudokuModel::Sudoku
2 def pi
3 bnds = Arby::Ast::Bounds.new
4 inds = (0...N)**(0...N) - self.grid.project(0..1)
5 bnds[Sudoku] = self
6 bnds.lo[Sudoku.grid] = self ** self.grid
7 bnds.hi[Sudoku.grid] = self ** inds ** (1..N)
8 bnds.bound_int(0..N)
9 end

10 def solve() SudokuModel.solve :solved, self.pi end
11 def display() puts grid end
12 def self.parse(s) Sudoku.new grid:
13 s.split(/;\s*/).map{|x| x.split(/,/).map(&:to_i)}
14 end
15 end
16 SudokuModel.N = 4
17 s = Sudoku.parse "0,0,1; 0,3,4; 3,1,1; 2,2,3"
18 s.solve(); s.display(); # => {<0,0,1>, <0,1,3>, ...}

Fig. 2. A declarative Sudoku solver using αRby with partial instances

Partial Instances Fig. 2(b) shows how the bounds are computed for a given Su-
doku puzzle, using a Ruby function pi (for "partial instance"). Remember that bounds
are just tuples (sequences of atoms) that a relation must or may include; since signature
definitions in αRby are turned into regular Ruby classes, instances of those classes will
be used as atoms. The Sudoku signature is bounded by a singleton set containing only
the self Sudoku object (line 5). Tuples that must be included in the grid relation are the
values currently present in the puzzle (line 6); additional tuples that may be included
are values from 1 to N for the empty cells (line 7; empty cell indexes computed in line
4). We also bound the set of integers to be used by the solver; Alloy, in contrast, only
allows a cruder bound, and would include all integers within a given bitwidth. Finally,
a Sudoku instance can be parsed from a string, and the solver invoked to find a solu-
tion satisfying the solved predicate (lines 17–18). When a satisfying solution is found,
if a partial instance was given, fields of all atoms included in that partial instance are
automatically populated to reflect the solution (confirmed by the output of line 18).
This particular feature makes for seamless integration of executable specifications into
otherwise imperative programs, since there is no need for any manual back and forth
conversion of data between the program and the solver.

Staged Model Finding Consider implementing a Sudoku puzzle generator. The
goal is now to find a partial assignment of values to cells such that the generated puzzle
has a unique solution. Furthermore, the generator must be able to produce various dif-
ficulty levels of the same puzzle by iteratively decrementing the number of filled cells
(while maintaining the uniqueness property). This is a higher-order problem that cannot
be solved in one step in Alloy. With αRby, however, it takes only the following 8 lines
to achieve this with a simple search algorithm on top of the already implemented solver:
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1 def dec(sudoku, order=Array(0...sudoku.grid.size).shuffle)
2 return nil if order.empty? # all possibilities exhausted
3 s_dec = Sudoku.new grid: sudoku.grid.delete_at(order.first) # delete a tuple at random position
4 sol = s_dec.clone.solve() # clone so that "s_dec" doesn’t get updated if a solution is found
5 (sol.satisfiable? && !sol.next.satisfiable?) ? s_dec : dec(sudoku, order[1..-1])
6 end
7 def min(sudoku) (s1 = dec(sudoku)) ? min(s1) : sudoku end
8 s = Sudoku.new; s.solve(); s = min(s); puts "local minimum found: #{s.grid.size}"

The strategy here is to generate a solved puzzle (line 8), and keep removing one
tuple from its grid at a time until a local minimum is reached (line 7); the question is
which one can be removed without violating the uniqueness property. The algorithm
first generates a random permutation of all existing grid tuples (line 1) to determine the
order of trials. It then creates a new Sudoku instance with the chosen tuple removed
(line 3) and runs the solver to find a solution for it. It finally calls next on the obtained
solution (line 5) to check if a different solution exists; if it does not, a decremented
Sudoku is found, otherwise moves on to trying the rest of the tuples. On a commodity
machine, on average it takes about 8 seconds to minimize a Sudoku of size 4 (generating
13 puzzles in total, number of filled cells ranging from 16 down to 4), and about 6
minutes to minimize a puzzle of size 9 (55 intermediate puzzles), number of filled cells
ranging from 81 down to 27).

5 The αRby Language

αRby is implemented as a domain-specific language in Ruby, and is (in standard par-
lance) “deeply embedded”. Embedded means that all syntactically correct αRby pro-
grams are syntactically correct Ruby programs; deeply means that αRby programs exist
as an AST that can be analyzed, interpreted, and so on. Ruby’s flexibility makes it pos-
sible to create embedded languages that look quite different from standard Ruby. αRby
exploits this, imitating the syntax of Alloy as closely as possible. Certain differences are
unavoidable, mostly because of Alloy’s infix operators that cannot be defined in Ruby.

The key ideas behind our approach are: (1) mapping the core Alloy concepts di-
rectly to those of object-oriented programming (OOP), (2) implementing keywords as
methods, and (3) allowing mixed (concrete and symbolic) execution in αRby programs.

Mapping Alloy to OOP is aligned with the general intuition, encouraged by Alloy’s
syntax, that signatures can be understood as classes, atoms as objects, fields as instance
variables, and all function-like concepts (functions, predicates, facts, assertions, com-
mands) as methods [2].

Implementing keywords as methods works because Ruby allows different formats
for specifying method arguments. αRby defines many such methods (e.g., sig, fun,
fact, etc.) that (1) mimic the Alloy syntax and (2) dynamically create the underlying
Ruby class structure using the standard Ruby metaprogramming facilities. For an ex-
ample of the syntax mimicry, compare Figs. 1(a) and 1(b); for an example of metapro-
gramming, see Fig. 1(c).

Note that the meta information that appears to be lost in Fig. 1(c) (for example,
the types of fields) is actually preserved in separate meta objects and made available
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via the meta methods added to each of the generated modules and classes (e.g.,
Graph.meta.field("nodes").type).

Mixed execution, implemented on top of the standard Ruby interpreter, translates
αRby programs into symbolic Alloy models. Using the standard interpreter means
adopting the Ruby semantics of name resolution and operator precedence (which is
inconvenient when it conflicts with Alloy’s); a compensation, however, is the benefit of
being able to mix symbolic and concrete code. We override all the Ruby operators in
our symbolic expression classes to match the semantics of Alloy, and using a couple
of other tricks (Section 5.3), are able to keep both syntactic (Section 5.1) and semantic
(Section 5.2) differences to a minimum.

5.1 Syntax

A grammar of αRby is given in Fig. 3 and examples of principal differences in Table 1.
In a few cases (e.g., function return type, field declaration, etc.) Alloy syntax has to
be slightly adjusted to respect the syntax of Ruby (e.g., by requiring different kind of
brackets). More noticeable differences stem from the Alloy operators that are illegal
or cannot be overridden in Ruby; as a replacement, either a method call (e.g., size for
cardinality) or a different operator (e.g., ** for cross product) is used.

The difference easiest to overlook is the equality sign: == versus =. Alloy has no
assignment operator, so the single equals sign always denotes boolean equality; αRby,
in contrast, supports both concrete and symbolic code, so we must differentiate between
assignments and equality checks, just as Ruby does.

The tokens for the join and the two closure operators (., ^ and *) exist in Ruby,
but have fundamentally different meanings than in Alloy (object dereferencing and an
infix binary operator in Ruby, as opposed to an infix binary and a prefix unary operator
in Alloy). Despite this, αRby preserves Alloy syntax for many idiomatic expressions.
Joins in Alloy are often applied between an expression and a field whose left-hand type
matches the type of the expression (ie, in the form e.f, where f is a field from the
type of e). This corresponds closely to object dereferencing, and is supported by αRby
(e.g., g.nodes in Fig. 1(a)). In other kinds of joins, the right-hand side must be enclosed
in parentheses. Closures are often preceded by a join in Alloy specifications. Those
constructs yield join closure expressions of the form x.*f. In Ruby, this translates to
calling the * method on object x passing f as an argument, so we simply override the *
method to achieve the same semantics (e.g., line 15, Fig. 1(a)).

This grammar is, for several reasons, an under-approximation of programs accepted
by αRby: (1) Ruby allows certain syntactic variations (e.g., omitting parenthesis in
method calls, etc.), (2) αRby implements special cases to enable the exact Alloy syntax
for certain idioms (which do not always generalize), and (3) αRby provides additional
methods for writing expression that have more of a Ruby-style feel.

5.2 Semantics

This section formalizes the translation of αRby programs into Alloy. We provide se-
mantic functions (summarized in Fig. 5) that translate the syntactic constructs of Fig. 3
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spec ::= "alloy" cname "do" [open*] paragraph* "end"
open ::= "open" cnameID
paragraph ::= factDecl | funDecl | cmdDecl | sigDecl
sigQual ::= "abstract" | "lone" | "one" | "some" | "ordered"
sigDecl ::= sigQual* "sig" cname,+ ["extends" cnameID] ["[" rubyHash "]"] [block]
factDecl ::= "fact" [fname] block
funDecl ::= "fun" fname "[" rubyHash "]" "[" expr "]" block

| "pred" fname ["[" rubyHash "]"] block
cmdDecl ::= ("run"|"check") fname "," scope

| ("run"|"check") "(" scope ")" block
expr ::= ID | rubyInt | rubyBool | "(" expr ")"

| unOp expr | unMeth "(" expr ")"
| expr binOp expr | expr "[" expr "]" | expr "if" expr
| expr "." "(" expr ")" // relational join
| expr "." (binMeth | ID) "(" expr,* ")" // function/predicate call
| "if" expr "then" expr ["else" expr] "end"
| quant "(" rubyHash ")" block

quant ::= "all" | "no" | "some" | "lone" | "one" | "sum" | "let" | "select"
binOp ::= "||" | "or" | "&&" | "and" | "**" | "&" | "+" | "-" | "*" | "/" | "%"

| "<<" | ">>" | "==" | "<=>" | "!=" | "<" | ">" | "<=" | ">="
binMeth ::= "closure" | "rclosure" | "size" | "in?" | "shr" | "<" | ">" | "*" | "^"
unOp ::= "!" | "~" | "not"
unMeth ::= "no" | "some" | "lone" | "one" | "set" | "seq"
block ::= "{" stmt* "}" | "do" stmt* "end"
stmt ::= expr | rubyStmt
scope ::= rubyInt "," rubyHash // global scope, individual sig scopes
ID ::= cnameID | fnameID
cname ::= cnameID | ’"’cnameID’"’ | "’"cnameID"’" | ":"cnameID
fname ::= fnameID | ’"’fnameID’"’ | "’"fnameID"’" | ":"fnameID
cnameID ::= constant identifier in Ruby (starts with upper case)
fnameID ::= function identifier in Ruby (starts with lower case)

Fig. 3. Core αRby syntax in BNF. Productions starting with: ruby are defined by Ruby.

Table 1. Examples of differences in syntax between αRby and Alloy

description Alloy αRby
equality x = y x == y

sigs and fields
sig S {

f: lone S -> Int
}

sig S [
f: lone(S) ** Int

]

fun return type declaration fun f[s: S]: set S {} fun f[s: S][set S] {}

set comprehension {s: S | p1[s]} S.select{|s| p1(s)}

quantifiers

all s: S {
p1[s]
p2[s]

}

all(s: S) {
p1(s) and
p2(s)

}

illegal Ruby operators

x in y, x !in y
x !> y
x -> y
x . y
#x
x => y
x => y else z
S <: f, f >: Int

x.in?(y), x.not_in?(y)
not x > y
x ** y
x.(y)
x.size
y if x
if x then y else z
S.< f, f.> Int

operator arity mismatch ^x, *x x.closure, x.rclosure

fun/pred calls f1[x] f1(x)
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Expr = VarExpr(name: String, domain: Expr | Type)

| IntExpr(value: Int) | BoolExpr(value: Bool)

| UnExpr(sub: Expr) | BinExpr(lhs: Expr, rhs: Expr)

| CallExpr(target: Expr, fun: FunDecl, args: Expr*)

| QuantExpr(kind: String, vars: VarExpr*, body: Expr)

Decl = Spec(name: String, opens: Spec*, sigs: SigDecl*, funs: FunDecl*)

| SigDecl(name: String, parent: SigDecl, fields: VarExpr*, inv: FunDecl)

| FunDecl(name: String, params: VarExpr*, ret: Expr, body: Expr)

Type = Univ | None | Int | SigDecl | ProductType(lhs: Type, rhs: Type)

Store = {name: String; binding: Expr | Decl}

Fig. 4. Overview of the semantic domains. (Expr and Decl correspond directly to the Alloy AST)

A: specification → Store → Spec E : expr → Store → Expr

ξ : sigDecl → Store → SigDecl β: block → Store → Expr

φ : funDecl → Store → FunDecl δ : decl* → Store → (VarExpr*, Store)

Fig. 5. Overview of the semantic functions which translate grammar rules to semantic domains

to Alloy AST elements defined in Fig. 4. A store, binding names to expressions or
declarations, is maintained throughout, representing the current evaluation context.

Expressions The evaluation of the αRby expression production rules (expr) into
Alloy expressions (Expr) is straightforward for the most part (Fig. 6). Most of the unary
and binary operators have the same semantics as in Alloy; exceptions are ** and if,
which translate to -> and => (lines 5–11). For the operators that do not exist in Ruby, an
equivalent substitute method is used (lines 12–20). A slight variation of this approach
is taken for the ^ and * operators (lines 21–22), to implement the “join closure” idiom
(explained in Section 5.1).

The most interesting part is the translation of previously undefined method calls
(lines 23–27). We first apply the τ function to obtain the type of the left-hand side
expression, and then the ⊕ function to extend the current store with that type (line 23).
In a nutshell, this will create a new store with added bindings for all fields and functions
defined for the range signature of that type (the ⊕ function is formally defined in Fig. 8
and discussed in more detail shortly). Afterward, we look up meth as an identifier in the
new store (line 24) and, if an expression is found (line 25), the expression is interpreted
as a join; if a function declaration is found (line 26), it is interpreted a function call;
otherwise, it is an error.

For quantifiers (lines 29-30), quantification domains are evaluated in the context of
the current store (using the δ helper function, defined in Fig. 8) and the body is evaluated
(using the β function, defined in Fig. 7) in the context of the new store with added
bindings for all the quantified variables (returned previously by δ).

Blocks The semantics of αRby blocks differs from Alloy’s. An Alloy block (e.g.,
a quantifier body) containing a sequence of expressions is interpreted as a conjunction
of all the constituent constraints (a feature based on Z [17]). In αRby, in contrast, such
as sequence evaluates to the meaning of the last expression in the sequence. This was
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E : expr → Store → Expr

1. E�ID�σ ≡ σ[ID]
2. E�rubyInt�σ ≡ IntExpr(rubyInt)
3. E�rubyBool�σ ≡ BoolExpr(rubyBool)
4. E�(e)�σ ≡ E�e�σ
5. E�unOp e�σ ≡ UnExpr(unOp, E�e�σ)
6. E�unMeth(e)�σ ≡ UnExpr(unMeth, E�e�σ)
7. E�e1 ** e2�σ ≡ BinExpr("->", E�e1�σ, E�e2�σ)
8. E�e1 binOp e2�σ ≡ BinExpr(binOp, E�e1�σ, E�e2�σ)
9. E�e1[e2]�σ ≡ BinExpr("[]", E�e1�σ, E�e2�σ)
10. E�e1 if e2�σ ≡ BinExpr("=>", E�e2�σ, E�e1�σ)
11. E�e1.(e2)�σ ≡ BinExpr(".", E�e1�σ, E�e2�σ)
12. E�e.binMeth�σ ≡ match binMeth with

13. | closure → UnExpr("^", E�e�σ)
14. | rclosure → UnExpr("*", E�e�σ)
15. | size → UnExpr("#", E�e�σ)
16. E�e.binMeth(a1)�σ ≡ match binMeth with

17. | in? → BinExpr("in", E�e�σ, E�a1�σ)
18. | shr → BinExpr(">>>", E�e�σ, E�a1�σ)
19. | < → BinExpr("<:", E�e�σ, E�a1�σ)
20. | > → BinExpr(":>", E�e�σ, E�a1�σ)
21. | ^ → E�e.(a1.closure)�σ
22. | * → E�e.(a1.rclosure)�σ
23. E�e.ID(a1, . . . )�σ ≡ let σsub = σ ⊕τ (e) in

24. match σsub[ID] as x with

25. | Expr → BinExpr(".", E�e�σ, x)
26. | FunDecl → CallExpr(E�e�σ, x, E�a1�σ, . . . )
27. | → fail
28. E�if e1 then e2 else e3 end�σ ≡ E�(e2 if e1) and (e3 if !e1)�σ
29. E�quant(d∗) block�σ ≡ let v∗, σb = δ(d∗)σ in

30. QuantExpr(quant, v∗, β�block�σb)

Fig. 6. Evaluation of αRby expressions (expr production rules) into Alloy expressions (Expr)

a design decision, necessary to support mixed execution (as in Fig. 2(a), lines 7–16).
Since Ruby is not a pure functional language, previous statements can affect the result
of the last statement by mutating the store, which effectively gives us the opportunity to
easily mix concrete and symbolic execution.

This behavior is formally captured in the β function (Fig. 7). Statements (s1, ..., sn)
are evaluated in order (line 32). If a statement corresponds to one of the expression
rules from the αRby grammar (line 34), it is evaluated using the previously defined E
function; otherwise (line 35), it is interpreted by Ruby (abstracted as a call to the R
functions). Statements interpreted by Ruby may change the store, which is then passed
on to the subsequent statements.

Function Declarations The evaluation function (φ, Fig. 7, lines 37–38) is similar
to quantifier evaluation, except that the return type is different. The semantics of other
function-like constructs (predicates, facts, etc.) is analogous, and is omitted for brevity.
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β : block → Store → Expr

31. β�do s1; . . . ; sn end�σ ≡ β�{ s1; . . . ; sn }�σ ≡ σcurr = σ, res = nil

32. for si: {s1, . . . , sn} do

33. match si with

34. | expr → res←E�si�σcurr

35. | → res,σcurr ←R(si)σcurr

36. return res

φ : funDecl → Store → FunDecl

37. φ�fun fname[d∗][eret] block�σ ≡ let v∗, σb = δ(d∗)σ in

38. FunDecl(fname, v∗, E�eret�σ, β�block�σb)

ξ : sigDecl → Store → SigDecl

39. ξ�sig cname extends sup [d∗] block�σ ≡
40. let sp = τ (σ[sup]) in

41. let fld∗, _ = δ(d∗)σ in

42. let this = VarExpr("this", cname) in

43. let tfld∗ = map(λfi ⋅ BinExpr(".", this, fi), fld∗) in

44. let σs = σ⊕SigDecl(cname, sp, tfld∗, BoolExpr(true)) in

45. SigDecl(cname, sp, fld∗, β�block�σs["this" ↦ this])

A : spec → Store → Spec

46. A�alloy cname do open* paragraph* end�σ ≡
47. let opn∗ = map(λcnameID ⋅ σ[cnameID],open*) in

48. let sig∗ = map(ξ, filter(sigDecl, paragraph*)) in

49. let fun∗ = map(φ, filter(funDecl, paragraph*)) in

50. let a = Spec(cname, opn∗, sig∗, fun∗) in

51. if resolved(a) then a
52. elsif σ⊕a ≠ σ then A�alloy cname do open* paragraph* end�σ⊕a else fail

Fig. 7. Evaluation of blocks and all declarations

Signature Declarations The evaluation function (function ξ, Fig. 7, lines 39–45)
is conceptually straightforward: as before, functions δ and β can be reused to evalu-
ate the field name-domain declarations and the appended facts block, respectively. The
caveat is that appended facts in Alloy must be evaluated in the context of Alloy’s im-
plicit this, meaning that the fields from the parent signature should be implicitly joined
on the left with an implicit this keyword. To achieve this, we create a variable corre-
sponding to this and a new list of fields with altered domains (lines 42–43). A tempo-
rary SigDecl containing those fields is then used to extend the current store (line 44). A
binding for this is also added and the final store is used to evaluate the body (line 45).
The temporary signature is created just for the convenience of reusing the semantics of
the ⊕ operator (explained shortly).

Top-Level Specifications Evaluation of anαRby specification (functionA, Fig. 7,
lines 46–52) uses the previously defined semantic functions to evaluate the nested sig-
natures and functions. Since declaration order does not matter in Alloy, multiple passes
may be needed until everything is resolved or a fixed point is reached (lines 51–52).

Name-Domain Declaration Lists Name-domain lists are used in several places
(for fields, method parameters, and quantification variables); common functionality is
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δ : decl* → Store → (VarExpr*, Store)

53. δ(v1: e1, . . . , vn: en)σ ≡ let vars = ⋃1<=i<=n VarExpr(vi, E�ei�σ) in

54. [vars, σ ⊕vars]

⊕ : Store → Any→ Store

55. σ⊕x ≡ match x with

56. | VarExpr(n,_) | FunDecl(n,_) → σ[n↦ x])
57. | VarExpr* | FunDecl* → fold(⊕, σ, x)
58. | ProductType(_, rhs) → σ⊕rhs
59. | SigDecl(n, sp , fld∗,_) → let σp = σ⊕sp in

60. let σs = σp[n↦ VarExpr(n,x)] in

61. fold(⊕, σs,funs(x) + fld∗)
62. | Spec(n, opn∗ , sig∗, fun∗) → fold(⊕, σ, opn∗ + fun∗ + sig∗)
63. | → σ

R : rubyStmt → Store → (Object → Store) Executes arbitrary Ruby code
τ : Expr → Type Type of the given expression
funs : SigDecl → FunDecl* Functions where given sig is first param
resolved : Spec → Bool Whether all references are resolved

Fig. 8. Helper functions

extracted and defined in the δ function (Fig. 8). It simply maps the input list into a
list of VarExpr expressions, each having name the same as in the declaration list and
domain equal to the evaluation of the declared domain against the current store (line
53). It returns that list and the current store extended with those variables (line 54).

Store Extension The⊕ operator (Fig. 8) is used to extend a store with one or more
VarExpr or FunDecl, a Type, and a Spec. If a VarExpr or a FunDecl is given, its name is
bound to itself. If a list is given, the operation is folded over the entire list. Extending
with a Type reduces to extending with the range of that type. Extending with a SigDecl

means recursively adding bindings for its parent signature, adding a binding for the
name of that signature, bindings for all the functions that take that signature as the first
argument (an auxiliary function funs(x) discovers such functions), and bindings for all
its fields. Extending with a Spec adds bindings for all the sigs and functions defined in
it, including those from all opened specifications.

5.3 Implementation Considerations

Symbolic Execution Using the standard Ruby interpreter to symbolically execute
αRby programs relieves us from having to keep an explicit representation of the store;
instead, the store is implicit in the states of the object in which the execution takes
place. Having signatures, fields, and functions represented directly as classes, instance
variables, and methods, means having most of the bindings (as defined in Section 5.2)
already in place for all sigs and atoms; for all other expressions, missing methods are
dynamically forwarded to the signature class corresponding to the expression’s type.

One technical challenge is that the semantics of quantifiers requires a new scope
to be created, which, for our syntax, Ruby does not already ensure. Consider the fol-
lowing αRby code: all(s: S){some s}. This is just a hash and a block passed to our
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domain-specific-language method. When the block is eventually executed (to obtain the
symbolic body for this universal quantifier), s must be available as a symbolic variable
inside of that block. We do that by first dynamically defining a method with the same
name in the context of that block, then calling the block, and, finally, redefining the
same method to call super:

ctx = block.binding.eval("self")
ctx.define_singleton_method :s, lambda{VarExpr.new(:s, S)}
begin block.call ensure ctx.define_singleton_method(:s) do super() end end

Responding to Missing Methods and Constants To avoid requiring strings in-
stead of identifiers for every new definition (e.g., sig :Graph instead of sig Graph, where
Graph is previously undefined), αRby overrides const_missing and method_missing and
instead of failing returns a MissingBuilder instance. Furthermore, MissingBuilder in-
stances also accept a block at creation time, and respond to several operator methods,
making constructs like fun f[s: S][set S] {} possible. To guard against unintended con-
versions (e.g., typos), αRby raises a syntax error every time a MissingBuilder is not
“consumed” (by certain DSL methods, like sig and fun) by the end of its scope block.

Online Source Instrumentation For the purpose of symbolic evaluation, the
source code of every αRby function/predicate is instrumented before it is turned into a
Ruby method. The need for instrumentation arises because certain operators and control
structures, which we would like to treat symbolically, cannot be overridden; examples
include all the if-then-else variants, as well as the logic operators. Our instrumenta-
tion uses an off-the-self parser and implements a visitor over the generated AST to re-
place these constructs with appropriate αRby expressions (e.g., x if y gets translated
to BinExpr.new(IMPLIES, proc{y}, proc{x})). This “traverse and replace” algorithm is
far simpler than implementing a full parser for the entire Alloy grammar.

Distinguishing Equivalent Ruby Constructs Ruby allows different syntactic
constructs for the same underlying operation. For example, some built-in infix oper-
ators can be written with or without a dot between the left-hand side and the operator
(e.g., a*b is equivalent to a.*b). Since αRby already performs online source instru-
mentation, it additionally detects the following syntactic nuances for the purpose of
assigning different semantics: (1) in Ruby, “<b2> if <b1>” is equivalent to “b1 and b2”,
but our instrumenter always rewrites and and or to boolean conjunction and disjunction;
(2) when prefixed with a dot, operators *, < and > are translated to join closure, domain
restriction, and range restriction, respectively (.*, <:, and :> in Alloy).

αRby to Alloy Bridge All model-finding tasks are delegated to a slightly modi-
fied version of the official Alloy Analyzer Java implementation. The main modification
we made was adding an extra API method, which additionally accepts a partial instance
(represented in a simple textual format independent of the Alloy language). The Alloy
Analyzer already has a complex heuristic for computing bounds from the scope specifi-
cation and certain (automatically detected) idioms; we retain all those features, and on
top of them use the αRby-provided partial instance to shrink the bounds further (for-
malization of which is beyond the scope of this paper). To interoperate between Ruby
and Java, we use RJB [14], which conveniently automates most of the process.
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6 Related Work

Montaghami and Rayside [11] extended the Alloy language with special syntax for
specifying partial instances. They argue convincingly for the importance of having par-
tial instances for Alloy, giving use cases such as test-driven model development, re-
gression testing of models, modeling by example etc. They also provide experimental
evidence that staged model finding can lead to better scalability. Their approach is lim-
ited to partial instances only, and it does not provide any scripting mechanisms for
automating such tasks. Thus to carry out their staged model finding experiments, after
obtaining an instance in the first stage, they manually inspected it (e.g., in the visual-
izer), rewrote it using the new syntax, and then solved in the second stage. Using αRby
would automate the whole process, since an αRby instance can provide a set of exact
bounds for all included relations, and can handle all the use cases discussed.

A number of tools built on top of Alloy have implemented (often in an ad hoc fash-
ion) one or more features that can now be provided by αRby. Aluminum [13] imple-
ments an interesting heuristic for minimizing Alloy instances and by default showing
the minimal one first. It also allows the user to augment the current instance by selecting
one or more tuples to be included in the next instance. αRby provides a more generic
mechanism that lets the user provide an arbitrary formula (possibly involving atoms
from the current instance) to be satisfied in the next solution. TACO [5] is a bounded
verifier for Java that achieves scalability by relying heavily on the Alloy Analyzer to
recognize certain idioms as partial instances; we believe αRby would have made their
implementation much simpler.

Our mixed execution was inspired by Rubicon’s [12] symbolic evaluator, which also
uses the standard Ruby interpreter. Unlike αRby, Rubicon stubs the library code with
custom expressions in order to symbolically execute and verify existing web apps.

Many research projects explore the idea of extending a programming language with
symbolic constraint-solving features (e.g., [15,10,9,20,19,16]). αRby can be understood
as a kind of dual, with the opposite goal. While these efforts aim to bring declarative
features in imperative programming, αRby aims to bring imperative features to declar-
ative modeling. Although the basic idea of combining declarative model finding and
imperative model finding is shared, the research challenges are very different. As this
paper has explained, αRby addresses the challenge of embedding an entire modeling
language in a programming language, whereas these related projects instead tend to use
a constraint language that is only a modest extension of the programming language’s
existing expression sublanguage. αRby also addresses the challenge of reconciling two
different views of a data structure: one as objects on a heap, and the other as relations
(and in this respect is related to work on relational data representation, such as [6]).

7 Conclusion

On the one hand, αRby addresses a collection of very practical problems in the use
of a model finding tool. This paper’s contribution can thus be regarded as primarily
architectural, in demonstrating a different way to build an analysis tool that uses a DSL
embedding to allow end-user scripting, rather than a closed compiler-like tool that can
be extended only by one of the tool’s developers.
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On the other hand, αRby suggests a new way to think about a modeling language.
The constructs of the language are not treated as functions that generate abstract syntax
trees only in a mathematical sense, but are implemented as these functions in a manner
that the end user can exploit. This leads us to wonder whether it might be possible to use
this style of embedding in the very design of the modeling language. Perhaps, had this
approach been available when Alloy was designed, an essential core might have been
more cleanly separated from a larger collection of structuring idioms, implemented as
functions on top of the core’s functions.

Practically speaking, we hope that the developers of tools that use Alloy as a backend
will be able to use αRby in their implementations, at the very least making it easier to
prototype new functionality. And perhaps the implementors of tools for other declara-
tive languages will find ideas here that they can exploit in similar embeddings.
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Abstract. The formal development of multi-agent systems (MAS) may
involve consideration of system functionality at three distinct levels of
abstraction. The macro level focusses on the system’s overall, global be-
haviour, independently of how the agents of the system operate and in-
teract. The meso level focusses on agent interactions, and the micro level
on the operation of individual agents. While Object-Z with its high-level
support for component-based specifications is well suited to modelling
MAS at the macro and meso levels, it can become cumbersome at the mi-
cro level where the low-level mechanisms required for dealing with asyn-
chronous communication between agents and timing constraints need to
be explicitly defined. In this paper we introduce MAZE, an extension of
Object-Z supporting (i) action refinement to facilitate the development
process from the macro to micro level, and (ii) a number of syntactic
conventions to facilitate micro-level specification. The syntactic conven-
tions are shorthands for existing Object-Z notation and so require no
redefinition of Object-Z’s semantics.

1 Introduction

A multi-agent system (MAS ) is a system comprising a number of interacting, au-
tonomous agents. By “autonomous” we mean that the agents can initiate actions
without external control. Our notion of an agent includes not only “intelligent”
agents, such as those that might be described in terms of their “beliefs” and
“desires” [16], but any components that exhibit autonomous behaviour. Compo-
nents which follow simple protocols such as the sensors in a self-organising sensor
network [6], for example, would be regarded as agents, as would the nodes of
an ad-hoc mobile network which continually adapt their routing patterns to the
current network topology [8].

Zambonelli and Omicini [17] argue that the disciplined engineering of MAS
should proceed at three distinct levels of abstraction.

1. At the macro level the engineer is concerned with the overall system func-
tionality, ignoring the operation and interaction of its agents.

2. At the meso level the engineer considers potential agent interactions and
interaction paradigms that will lead to the desired system functionality.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 72–85, 2014.
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3. At the micro level the engineer is concerned with the operation of individual
agents, choosing an implementation that results in the required meso-level
interactions.

Although Zambonelli and Omicini stop short of proposing a completely formal
approach to development, their implied reductionist strategy is, in fact, well
suited to an approach based on formal specification and refinement.

In this paper, we introduce an extension of Object-Z [11] called MAZE. Fol-
lowing earlier work on the formal development of MAS [12,13], the extension
supports action refinement as a means of developing a specification from the
macro level, where operations are coarse-grained, through to the micro level,
where the granularity of operations is usually much finer. It also involves a num-
ber of syntactic conventions, aimed at facilitating the specification of MAS at
the micro level.

We begin in Section 2 by illustrating the use of Object-Z in the macro-level
specification of MAS. In Section 3 we motivate the use of action refinement
in the formal development of MAS and provide action refinement simulation
rules for Object-Z. In Sections 4, 5 and 6 we introduce a number of syntactic
conventions for modelling MAS at the micro-level. These conventions allow the
specifier to abstract from inter-agent communication mechanisms and associated
timing constraints, and instead focus on the functionality of individual agents
within a MAS. Together with the action refinement rules they form the extension
of Object-Z we call MAZE. We conclude in Section 7.

2 Macro-level Specification

Object-Z [11] is an object-oriented extension of Z [14], in which the notion of
a class is introduced to encapsulate a state schema, and associated initial state
schema, with all the operation schemas which may change its variables. Classes
have been shown useful for modelling the behaviour of agents in MAS [9,13]. As
an example, consider the following specification of a simple agent which has an
identifier and may become leader of a group of similar agents.

Agent

id : Identifier
leader : B

INIT

¬ leader

BecomeLeader
Δ(leader)

¬ leader ∧ leader ′



74 G. Smith and Q. Li

The class has two state variables: id of a given type Identifier and leader of
type Boolean. Initially, the agent is not a leader and the operation BecomeLeader
allows it to become a leader. Operations in Object-Z are guarded. When the pred-
icate of BecomeLeader cannot be satisfied, i.e., because leader is already true,
then the operation cannot occur. This is in contrast to Z operations which can
occur at any time but may have undefined behaviour [14]. TheΔ-list in the decla-
ration part of the operation indicates which variables the operation may change;
all other variables are implicitly unchanged, i.e., id ′ = id in BecomeLeader .

In this example, we might want our agents to belong to disjoint neighbour-
hoods and become a leader only when no other agent in their neighbourhood is a
leader. Hence, we need to constrain when the BecomeLeader action can occur. In
the interest of keeping the specification abstract (and hence easy to understand
and reason about), we specify such inter-agent constraints (and environmental
constraints on the agent in general) in another class describing the entire MAS
as shown below. (Neighbourhood is a given type and nh maps each agent to its
neighbourhood.)

System

agents : F1 Agent
nh : Agent �→ Neighbourhood

domnh = agents

INIT

∀ a : agents • a.INIT

BecomeLeader =̂
� a : agents | ¬ (∃ b : agents • nh(b) = nh(a) ∧ b.leader) •

a.BecomeLeader

The dot notation familiar from object orientation is used to reference variables
and the initial condition of class instances, and to apply operations to them. The
initial state of System states that all agents are in their initial states, i.e., are
not leaders. The operation BecomeLeader states that a single agent a becomes
leader provided that none of its neighbours are already leaders. It uses Object-Z’s
nondeterminstic choice operator � to choose an appropriate agent a.

3 Action Refinement

Macro-level specifications such as that of Section 2 abstract from interactions
between agents, focussing instead on the outcomes of these interactions. Adding
the interactions as we develop the specification to the meso level, and ultimately
the micro level, requires the addition of further actions modelling the sending and
receiving of messages. Adding actions, however, is not supported by standard
data refinement in Object-Z [4]. It is, however, supported by action refinement
as defined for action systems [2].
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For this reason, Smith and Winter [13] propose adding action refinement to
Object-Z. Although Derrick and Boiten [4] define a notion of action refinement
for Object-Z, called non-atomic refinement , unlike that of action systems it
does not allow guards of operations to be strengthened. As shown by Smith and
Winter [13], the strengthening of guards is required during refinement to add
agent decision-making procedures that determine which of a number of enabled
actions occurs (the operations which are not to be performed have their guards
strengthened so that they cannot occur). We therefore base our approach on
the simulation rules for action refinement in action systems by Back and von
Wright [2]. Here we consider the forward simulation rules only, and adapt them
for Object-Z. The backwards simulation rules could be similarly adapted.

An action system has a state comprising global, i.e., observable, and local var-
iables, an initialisation condition, and a set of actions. The actions have guards
which determine when they are enabled but, unlike Object-Z, the guard being
enabled does not guarantee the action’s definition can be satisfied. This is instead
guaranteed by the action’s precondition. If an action is enabled in a given state
but its precondition is not satisfied, it is said to abort. A state in which an
action can abort is called an aborting state. Action systems behave by repeatedly
executing enabled actions until none are enabled, or an enabled action aborts. A
state in which no actions are enabled is called a terminating state.

In order to prove refinement using the simulation rules, the specifier needs to
select some of the actions to be stuttering actions. A stuttering action must leave
the global variables unchanged. All other actions, whether or not they change
the global variables, are called change actions. For an abstract action system A
and a concrete action system C whose states are related by a retrieve relation
R, the forward simulation rules are then:

Initialisation: Any initialisation followed by stuttering actions in C simulates
(via R) initialisation followed by stuttering actions in A.

Forward simulation: Any change action in C followed by stuttering actions
simulates some change action in A followed by stuttering actions, or begins from
a state related (by R) to an aborting state of A.

Abort: Any aborting state in C is related only to aborting states in A.

Termination: Any terminating state in C is related only to terminating or
aborting states in A.

Infinite stuttering: Any state in C from which infinite stuttering is possible,
i.e., an infinite sequence of stuttering actions can occur, is related only to states
in A which are either aborting or from which infinite stuttering is possible.

For Object-Z, there are no aborting states (since the guard of an operation
guarantees that the operation’s definition can be satisfied). Although it has been
suggested that Object-Z be extended to include both guards and preconditions
[7], in this paper we use standard Object-Z. Hence, the above rules can be defined
(in the absence of aborting states) as follows.

For a given Object-Z specification, the change and stuttering actions are
particular occurrences of the specification’s operations, i.e., particular pre-state/
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post-state pairs that satisfy an operation’s predicate. A single operation can have
occurrences which are sometimes change actions, and sometimes stuttering ac-
tions, depending on whether or not a certain predicate holds in the post-state
of the operation. An example of this will be given when we return to our case
study below.

The choice of change and stuttering actions is made by the specifier based on
which states they regard as being observable. Note that while we do not require
explicit global and local state variables, states can always be re-expressed in
terms of such variables to represent any choice of observable states.

Let A be an Object-Z class with state schema AState, initial state schema
AInit , and operation occurrences partitioned into change actions AChange0, . . . ,
AChangen and stuttering actions AStutt0, . . . ,AStuttm for some n,m : N. Simi-
larly, let C be an Object-Z class with state schema CState, initial state schema
CInit , and operation occurrences partitioned into change actions CChange0, . . . ,
CChangel and stuttering actions CStutt0, . . . ,CStuttk for some l , k : N.

Definition 1. (Action refinement) Let AStutt = (AStutt0 ∨ . . . ∨ AStuttm)
and CStutt = (CStutt0 ∨ . . . ∨ CStuttk). A is refined by C when there exists a
retrieve relation R (modelled by a Z schema as in [4]) which relates the states of
C to those of A such that the following hold. (A o

9B is the sequential composition
of operations A and B, and An is the iteration of operation A n times, e.g.,
A3 = A o

9 A
o
9 A. The Z notation preA returns the guard of operation A.)

Initialisation: Any initialisation followed by stuttering actions in C simulates
initialisation followed by stuttering actions in A. (Schemas are used below as
declarations and predicates as in Z [14].)

∀CState; CState ′; i : N • CInit ∧ CStutt i ⇒
(∃AState; AState′; j : N • AInit ∧ AStutt j ∧ R′)

Forward Simulation: Any change action in C followed by stuttering actions
simulates some change action in A followed by stuttering actions.

∀AState; CState; CState ′; c : 0 . . l ; i : N •
R ∧ CChangec o

9 CStutt
i ⇒

(∃AState′; a : 0 . . n; j : N • (AChangea o
9 AStutt

j ) ∧ R′)

Termination: Any terminating state in C is related only to terminating states
in A.

∀AState; CState •
R ∧ ¬ pre(CChange0 ∨ . . . ∨ CChangel ∨ CStutt) ⇒

¬ pre(AChange0 ∨ . . . ∨ AChangen ∨ AStutt)

Infinite Stuttering: Any state in C from which infinite stuttering is possible
is related only to states in A from which infinite stuttering is possible.

∀AState; CState •
R ∧ (∀ i : N • ∃CState ′ • CStutt i ∧ (preCStutt)′) ⇒

(∀ j : N • ∃AState′ • AStutt j ∧ (preAStutt)′) �
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As an example of the application of these rules, consider refining the MAS
of Section 2 to include an inter-agent strategy for determining the leader. One
approach is to assign the node with the minimum identifier amongst all its
neighbours as the leader. As pointed out by Gerla et al. [8], this approach can
be inefficient, and also requires a quasi-stationary assumption that agents are
not mobile during leader election and maintenance. They suggest an alternative
approach called the “first declaration wins” rule: essentially, the first agent in
a neighbourhood to declare itself the leader becomes the leader. Then some
means of dealing with contention, i.e., when two agents simultaneously declare
themselves leader, is required. That is solved by standard techniques such as
the node with the minimum (or maximum) identifier backing off, or both nodes
backing off for random times. Such techniques become relevant at the micro-level
and can be safely ignored at the meso level.

In the meso-level specification of our case study, an agent has an identifier
and a status which indicates whether it is a leader, a follower, or is undecided.
Initially, all agents are undecided. An operation DeclareLeader models an agent
declaring itself leader. It abstractly models an agent sending a message to all
its neighbours stating that it is now leader. A second operation BecomeFollower
abstractly models an agent receiving such a message and hence becoming a
follower. This can occur even if the agent is a leader, modelling the agent backing
down in the case of contention between prospective leaders.

Agent1

Status ::= undecided | follower | leader
id : Identifier
status : Status

INIT

status = undecided

DeclareLeader
Δ(status)

status = undecided
status ′ = leader

BecomeFollower
Δ(status)

status �= follower
status ′ = follower

The interaction between agents is again modelled in a class defining the entire
MAS. In this case, we specify an operation where a single agent declares itself
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leader. A second operation models a single agent becoming a follower when one
of its neighbours is a leader.

System1

agents : F1 Agent1
nh : Agent1 �→ Neighbourhood

domnh = agents

INIT

∀ a : agents • a.INIT

DeclareLeader =̂ � a : agents • a.DeclareLeader

BecomeFollower =̂
� a : agents | (∃ b : agents\{a} • nh(b) = nh(a) ∧ b.status = leader) •

a.BecomeFollower

To show that System1 refines System of Section 2, we first need to parti-
tion the operation occurrences into change and stuttering actions. In the ab-
stract specification System, all occurrences of the operation BecomeLeader are
change actions; there are no stuttering actions. In the concrete specification
System1, occurrences of BecomeFollower corresponding to the last neighbour-
ing agent of a leader becoming a follower are change actions. These are those
occurrences where the predicate ∃ b : agents • nh(b) = nh(a) ∧ b.status =
leader ∧ (∀ c : agents \ {b} | nh(c) = nh(a) • c.status = follower) is true in the
post-state. All other operation occurrences are stuttering actions. In other words,
the effect of a leader declaration in the concrete specification becomes observ-
able, from the perspective of the abstract specification, only after all neighbours
of the leader have become followers.

Given a retrieve relation R which maps each agent a from System to an
agent b of System1 such that a.id = b.id and a.leader ⇔ (b.status = leader ∧
(∀ c : agents \ {b} | nh(c) = nh(b) • c.status = follower)) we can prove the re-
finement as follows.

Initialisation. This holds since before any change actions in System1 there are
no agents which are leaders such that all their neighbours are followers, and each
agent in System is not a leader initially.

Forward Simulation. Whenever a change action of System1 occurs all neighbours
of a leader will have become followers which, via R, corresponds to a change
action of System, i.e., an abstract agent becoming a leader. Furthermore, any
stuttering actions following the change action of System1 do not affect the rela-
tionship, via R, between System1 and System.

Termination. System1 terminates only when all agents are either leaders whose
neighbours are not leaders, or followers. In the latter case, the agent will have
a neighbour who is a leader (something which can be proved as an invariant).
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This corresponds, via R, to all agents in System being either a leader or having
a neighbour which is a leader. In which case, System also terminates.

Infinite stuttering. Each agent can perform DeclareLeader and BecomeFollower
at most once: after DeclareLeader the agent never has status = undecided again,
and after BecomeFollower it never has status �= follower again. Therefore, with
a finite number of agents infinite stuttering is not possible in System1.

4 Micro-level Agent Specification

At the micro level of development we specify the behaviour of agents locally
without the explicit use of global constraints. The goal is to capture the full
behaviour required of the agent in its implementation. While this is possible in
standard Object-Z, it can lead to specifications which are awkward to read due to
the details of the particular system under development being intermingled with
those of the underlying communication mechanisms. In MAZE, we separate these
details by capturing the latter implicitly via a number of syntactic conventions.

These conventions are analogous to those used in Z for modelling sequential
systems [14]. That is, they are merely a shorthand for what could otherwise
be expressed using more basic syntax. For this reason, they do not require an
extension to the existing semantics of Object-Z.

The conventions are based on the assumption that all agents interact via
asynchronous message-passing. The justification for this is as follows. As there
is usually no centralised control in MAS, messages may be sent to an agent at any
time, including when it is busy with another message. Hence, messages need to be
buffered (since allowing messages to be lost would greatly complicate the simple
micro-level protocols we would like to develop). In the implementation of a MAS,
the buffering may be part of the communication medium, e.g., when agents are
distributed over the Internet, or part of the agent, e.g., when communication is
wireless and effectively synchronous between agents.

For specifying agents, a type message and two message-related predicates for
use in agent specifications are introduced: send for modelling messages being
sent to the buffer (send(m, a) models a message m being sent to agent a, and
send(m) models a message being broadcast to all connected agents) and receive
for modelling messages being received from the buffer (receive(m, a) models the
receipt of a message m from agent a). Each operation in an agent specification
may have a single receive predicate (as part of its guard) and a single send
predicate (as part of its postcondition). The type message is application-specific
and is defined within the agent class.

A predicate progress(s , r) is also introduced for use in agent specifications.
It is true when the system has progressed to a point where all messages in set s
that have been sent by the agent and all messages in set r that have been sent
to the agent have been received. This mechanism provides a way of abstracting
from the use of timers and timing constraints required in an implementation of
the MAS [3,10]. An example is given below.

The formal definitions of send, receive and progress are given in terms of
an implicit variable buffer in the specification of the MAS. These definitions
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are provided in Section 5. To see how the predicates are used, we return to our
case study.

Assume the mechanism we adopt for handling contention between leader dec-
larations is that the agent with the smallest identifier backs down. Given an infix
relation < : Identifier ↔ Identifier such that id < rid means id is smaller
than rid , the required agent class could be specified as follows.

Agent2

Status ::= undecided | follower | declared | leader
message ::= declare〈〈Identifier〉〉

id : Identifier
status : Status

INIT

status = undecided

SendDeclaration
Δ(status)

send(declare(id))
status = undecided
status ′ = declared

BecomeLeader
Δ(status)

progress({declare(id)}, {rid : Identifier \ {id} • declare(rid)})
status = declared
status ′ = leader

ReceiveDeclaration
Δ(status)
a : Agent2
rid : Identifier

receive(declare(rid), a)
if status = undecided ∨ status = declared ∧ id < rid
then status ′ = follower
else status ′ = status

The type message is defined as a Z free type. It comprises one kind of mes-
sage, declare, which carries with it the identifier of the agent making the decla-
ration. The operation SendDeclaration broadcasts this message to all neighbour-
ing agents, and sets status to declared . This status indicates that the agent has
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declared itself leader, but is waiting for any similar declarations from its neigh-
bours before becoming leader.

The time it needs to wait depends on factors such as any delay caused by
the communication medium, and the variance of local clock speeds, and hence
response times, between agents [3,10]. These will differ for different implementa-
tions. Rather than specify such low-level details, we use a progress predicate in
operation BecomeLeader which ensures that, before the status becomes leader ,
the sent declare message has been received by all neighbours, and that any
declare messages sent from neighbours have been received. At that point there
can be no further contention.

The final operation ReceiveDeclaration models an agent receiving a declara-
tion and either becoming a follower, or ignoring the message. The former happens
whenever the agent has status undecided , or has status declared but has a smaller
id than that of the agent sending the declaration (whose id is included in the
received message).

5 Micro-level System Specification

A further syntactic convention is introduced to specify a collection of interacting
agents. TA defines a topology of agents of type A in terms of a finite function
whose domain is the set of all agents in the topology and which maps each such
agent to the agents to which it can send messages, i.e., TA = (A � �→ FA). Note
that there are no constraints on the function, allowing unidirectional sending of
messages, and agents which are isolated and unable to send or receive messages.
Typically, constraints will be added in the specification (e.g., in the predicate of
the state schema) to restrict the function as required.

In our case study, for example, we model a topology where agents belong
to a unique neighbourhood, and there is bidirectional communication between
neighbouring agents. We also require that agents have unique identifiers (to
support our chosen contention mechanism).

System2

agents : TAgent2

∀ a : dom agents • ∀ b : agents(a) • agents(b) = {a} ∪ agents(a) \ {b}
∀ a, b : dom agents • a �= b ⇒ a.id �= b.id

Note that the specification System2 does not include explicit initialisation of
the agents, nor any operations. This is because as well as introducing a topology
of agents of type A, the notation TA implicitly introduces their initialisation
(according to the initial state schema of A), and system operations allowing any
agent in the topology to perform any of its enabled operations. These operations
send messages to and receive messages from an implicit global buffer (similar to
that in the Actor specification paradigm of Agha [1]). The buffer is unordered
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allowing messages to be received by the agent in a different order to which they
are sent. This may model the use of different routes through a communication
medium such as the Internet, or the ability of an agent to prioritise messages in
its internal buffer.

Definition 2. (Topology) The following two specifications are semantically
equivalent where Op1, . . . ,Opn are the operations of agent specifiction A.

S

t : TA

S

t : A � �→ FA
buffer : bag (A.message×A×A)

INIT
∀ a : dom t • a.INIT
buffer = [[ ]]

Op1 =̂ � a : dom t • a.Op1

. . .

Opn =̂ � a : dom t • a.Opn

where the implicit variable buffer models the unordered, global buffer as a bag.
Each element of the buffer is a tuple (m, a, b) where m is a message, a is the
agent which sent m, and b is the agent to which the message has been sent. �

The semantics of the send and receive predicates used in agent specification
is given in terms of the implicit variable buffer.

Definition 3. (Message passing) When we apply the agent operation Op (us-
ing the notation a.Op) in a MAS specification with a topology of agents t, the
receive and send predicates introduce an additional guard G and additional
postcondition buffer′ = (buffer ∪- R) � S to the system operation where

– G is (m, b, a) �− buffer when Op includes receive(m, b), and true otherwise.
– R is [[(m, b, a)]] when Op includes receive(m, b), and ∅ otherwise.
– S is [[(m, a, b)]] when Op includes send(m, b) and b ∈ t(a), and, given

t(a) = {b1, . . . , bn}, [[(m, a, b1), . . . , (m, a, bn )]] when Op includes send(m),
and ∅ otherwise. �

The semantics of progress predicates is similarly given in terms of the implicit
variable buffer.

Definition 4. (Progress) When we apply the agent operation Op (using a.Op),
each predicate of the form progress(s , r) where s and r are of type Pmessage
introduces an additional guard:

∀ b : A • (∀m : s • ¬ (m, a, b) �− buffer) ∧ (∀m : r • ¬ (m, b, a) �− buffer) �
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Given these definitions we can show that System2 is an action refinement of
System1. We let all occurrences of BecomeLeader in System2 be change actions.
All other actions are stuttering actions.

Let the retrieve relation R map each agent a from System1 to an agent
b of System2 such that a.id = b.id , and b.status ∈ {undecided , leader} ⇒
a.status = b.status , and b.status = declared ⇒ a.status = leader , and b.status =
follower ⇒ a.status ∈ {leader , follower}, and b.status = follower ⇒ a.status =
follower whenever ∃ c : agents(b) • c.status = leader . Also, if nh(a1) = nh(b1)
for any agents a1 and b1 in System1, then b2 ∈ agents(a2) for the corresponding
agents a2 and b2 in System2.

Initialisation. Before a change action in System2, SendDeclaration simulates
DeclareLeader and ReceiveDeclaration simulates BecomeFollower or skip (e.g.,
when the receiver is a prospective leader with a larger id). Hence, the state of
System2 is related, via R, to a state of System1 before a change action.

Forward Simulation. An agent a becomes a leader in System2 only when all
its neighbours have received its declaration, and all declarations sent by these
neighbours have been received by a. Together with the fact that agents have
unique identifiers, this ensures that there is never more than one leader in any
neighbourhood. Hence, whenever a change action of System2 occurs all neigh-
bours of a leader will have become followers which, via R, corresponds to a
change action of System1. As above, subsequent stuttering actions do not affect
the relationship, via R, between System2 and System1.

Termination. System2 terminates only when all agents are either leaders whose
neighbours will not be leaders (as explained above), or followers. This corre-
sponds, via R, to the states where System1 terminates.

Infinite stuttering. Each agent can perform operations SendDeclaration and
BecomeLeader at most once: since they require the agent to have a particu-
lar status to which the agent never returns. Also, since ReceiveDeclaration only
occurs when a message has been sent, via SendDeclaration, with a finite number
of agents infinite stuttering in not possible in System2.

6 System Operations at the Micro Level

As well as the agent operations implicitly included in a MAS specification by
the notation TA, a system class may include explicitly defined operations that
change the agents’ environment and topology. Such operations may occur either
independently (when the environment itself can change) or in response to an
agent operation. The latter case requires additional syntax in the form of a
tag < a : dom t • a.Op > which appears after the system operation’s name
indicating that the operation only occurs in conjunction with a.Op. (Note that
the scope of the variable a in such cases is the entire system operation.)

For example, to include mobility into our case study, we could define a Move
operation in Agent2 which causes the topology in System2 to change so that an
agent a performing a Move joins a new neighbourhood.
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System2

agents : TAgent2

∀ a : dom agents • ∀ b : agents(a) • agents(b) = {a} ∪ agents(a) \ {b}
∀ a, b : dom agents • a �= b ⇒ a.id �= b.id

Move < a : dom agents • a.Move >
Δ(agents)

∀ b : agents(a) • agents ′(b) = agents(b) \ {a}
∃ s : F(dom agents \ {a}) • agents ′(a) = s ∧

(∀ b : s • agents(b) = s \ {b} ∧ agents ′(b) = agents(b) ∪ {a}) ∧
(∀ b : dom agents \ (s ∪ agents(a) ∪ {a}) • agents ′(b) = agents(b)

As with the other syntactic extensions in MAZE, the semantics of system
operations is given in terms of equivalent Object-Z syntax.

Definition 5. (System operations) The following two specifications are seman-
tically equivalent where Op1, . . . ,Opn are the operations of agent specification A.

S

t : TA

SysOp1
details of SysOp1

SysOp2 < a : dom t • a.Op1 >
details of SysOp2

S

t : A � �→ FA
buffer : bag (A.message×A×A)

INIT
∀ a : dom t • a.INIT
buffer = [[ ]]

SysOp1
details of SysOp1

SysOp2 =̂ � a : dom t • a.Op1
∧ [details of SysOp2]

Op2 =̂ � a : dom t • a.Op2

. . .

Opn =̂ � a : dom t • a.Opn

�

7 Conclusion

This paper has presented MAZE: an extension of Object-Z for the specification
and development of multi-agent systems. MAZE supports the development of a
multi-agent system from a macro-level specification capturing global functional-
ity to a micro-level specification capturing the local functionality of individual
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agents. It includes a notion of action refinement as well as a number of syntactic
constructs to facilitate micro-level specification.

For presentation purposes, the case study in this paper was necessarily simple.
However, MAZE has also been successfully applied by the authors to a complex
modular-robotic self-assembly algorithm based on the work of Støy [15].

Future work will look at providing a proof strategy for refinement in MAZE
aimed at making formal proof more manageable. One promising direction is the
work of Derrick et al. [5] which provides a set of rules for Z action refinement
that allow proofs which consider one operation at a time, and that are fully
encoded, and proved sound, within the theorem prover KIV.
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Abstract. Anticipation proof obligations for stated variants need to be
proved in Event-B even if the variant has no variables in common with
anticipated event. This often leads to models that are complicated by
additional auxiliary variables and variants that need to take into account
these variables. Because of such “encodings” of control flow information
in the variants the corresponding proof obligations can usually not be
discharged automatically.

We present a new proof obligation for anticipated events that does
not have this defect and prove it correct. The proof is fairly intricate
due to the nondeterminism of the simulations that link refinements. An
informal soundness argument suggests using a lexicographic product in
the soundness proof. However, it turns out that a weaker order is required
which we call quasi-lexicographic product.

1 Introduction

Event-B provides some flexibility in termination proofs by means of the concept
of anticipated events [3]. Anticipated events make it easier to formulate variants
for complex models. Ample examples of their use can be found in [1].

The motivation for the work presented in this paper is best illustrated by
way of an example. Consider the two fragments of some Event-B machine shown
in Fig. 1. To simplify the presentation we have already included an abstract
program counter P in the model. Assume

P = 3 ⇒ w ∈ 0 .. 4

is an invariant of the machine. Concerning the right-hand side only we can prove
convergence of event three using the variant 4 − w. The Rodin tool [2] will do
this automatically. However, if we also take the left-hand side into account we
have to prove anticipation of event one

(P = 3 ⇒ w ∈ 0 .. 4) ∧ P = 1 ∧ y < 2 ⇒ 4− w ∈ N ∧ 4− w ≤ 4− w . (1)

Now, we would fail to prove the first part 4−w ∈ N of the conclusion. A possible
work-around would be to make the variant “global” using the set

({P} ∩ {3})× (0 .. 4− w) .

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 86–100, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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anticipated event one
when

P = 1 ∧ y < 2
then

y := y + 1
end

event two
when

P = 1 ∧ y = 2
then

x := y
end

convergent event three
when

P = 3 ∧ w < 4
then

w := w + 1
end

event four
when

P = 3 ∧ w = 4
then

v := w
end

Fig. 1. Two non-interfering components

This solution is not satisfactory because it complicates the variant and the proof
obligations. The proof involves set theory, finite sets and arithmetic and is not
done automatically by Rodin tool. We consider tweaking the prover to deal with
such instances a bad choice because it would not solve the problem in general and
fail occasionally. As our first contribution we show instead that we can drop proof
obligations such as (1) for anticipated events entirely. The second contribution
concerns the nature of the invariant arising from the use of anticipated events.
The soundness proof for the proof obligations requires a generalised form of
lexicographic order. This is due to the nondeterminism inherent in the gluing
invariant that relates abstract variables to concrete variables. Only special cases
such as functional gluing invariants yield lexicographic products. The general
case, however, does not.

The informal soundness argument in [3] depends on the abstract variables
mentioned in a variant being kept in refinements. Hence, for those variables the
refinements are functional; and the claim that termination can be demonstrated
by means of a lexicographic product is correct under the given constraint. The
only other (semi-) formal soundness proof we are aware of is presented in [8].
However, the proof glosses over a vital fact assuming an equality of abstract sets
when only set inclusion is known (see Rem. 7). This way it also achieves to prove
that anticipation yields a lexicographic variant.

Overview. We remind the reader of the important properties of well-founded
relations in Section 2 and give a short introduction to the used concepts of
Event-B in Section 3. The presentation of Event-B is purely set-theoretical and
does not discuss Event-B syntax that is used in some examples. Syntax and
set-theoretical semantics should be easy to relate though. Details can be found
in [1,7]. Section 4 discusses a generalised form of anticipation and convergence
based on the concept of quasi-stability. The idea behind quasi-stable relations is
to replace the identity relation used in lexicographic products by a more general
relation that must not “increase” the first component of the product. Section 5
presents the concept of quasi-lexicographic product that uses such a relation
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instead of the identity used in the soundness proof of Section 6 In Section 7 we
suggest an improvement for the Rodin tool. Section 8 contains the conclusion.

2 Well-Founded Relations

We repeat the main facts about well-founded relations. Most interesting for us
is their relationship to transitive closures.

Definition 1. A predecessor relation m is called well-founded if all non-empty
subsets z have minima with respect to m,

∀z · z �= ∅⇒∃x · x ∈ z ∧ ∀y · y ∈ z ⇒ x �→ y �∈ m . (2)

Well-foundedness of m is denoted by wf〈m〉.

This is expressed more succinctly using set-theoretic notation (e.g. [1]),

∀z · z ⊆ m−1[z]⇒ z = ∅ . (3)

Whereas property (2) is easier to understand, the equivalent set-theoretic state-
ment (3) is easier to apply in proofs.

Later we need well-founded relations that are also transitive. The easiest way
to ensure transitivity is to use the transitive closure m+ of a relation m.

Definition 2. The transitive closure m+ of a relation m is the smallest relation
x satisfying the property m ∪ (m ; x) ⊆ x.

Clearly, the transitive closure of a relation is a transitive relation.

Lemma 1. m+ ;m+ ⊆ m+

The proof obligations for anticipation and convergence only require the em-
ployed order m to be well-founded. Fortunately, transitive closures of well-
founded relations are well-founded. This fact is well-known, e.g. [6].

Lemma 2. wf〈m〉 ⇔ wf〈m+〉.
Well-foundedness of relations of the shape c�m only concerns subsets of c. This
property is sometimes useful in proofs.

Lemma 3. wf〈c � m〉 ⇔ ∀z · z ⊆ c ∧ z ⊆ m−1[z]⇒ z = ∅.

Remark 1. Well-foundedness of c�m implies c�m is irreflexive. If c�m is well-
founded and transitive, then c�m is a strict partial order. It is common to require
stronger properties of c�m or m like strict partial orders for the loop proof rule
in [4]. We aim to keep the number of proof obligations for candidates for m low,
hence, we only require well-foundedness of c � m, following the approach of [5].
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3 Models, Consistency and Refinement

Event-B models are composed of machines that are related by refinement. A
machine consists of a collection of events that describe the behaviour of the
machine. An event is a relation of the shape e = g� s where g is a set called the
guard of the event and s a relation called the action of the event. A dedicated
event with the guard g = ∼∅ is used for the initialisation of a machine.1

A machine has an invariant i. The invariant is a set that describes properties of
the machine that are preserved by its events. This property is called consistency
of the event, formally, cns〈i, e〉.
Definition 3. cns〈i, e〉 ⇔ e[i] ⊆ i.

For event e = g � s we usually also require feasibility, that is, i∩ g ⊆ dom(s), or
equivalently, i ∩ g ⊆ dom(e). But we do not make use of it in this article.

A machine N refines another machine M if M can simulate the behaviour
of N . In this relationship we call N the concrete machine and M the abstract
machine. Machine N is related to machine M by means of a gluing invariant. The
gluing invariant is a relation j that describes the simulation. Machine N refines
M if each event e of M is refined by an event f of N , formally, ref〈i, j, e, f〉.
Definition 4. ref〈i, j, e, f〉 ⇔ (i � j) ; f ⊆ e ; j.

The concrete machine N may also introduce new events that are required to
refine skip, the event that describes stuttering of M . The event skip is the
identity relation id. Formally, the introduction of a new event corresponds to
ref〈i, j, id, f〉. Note that the invariant of the concrete machine N is j[i].

Lemma 4. cns〈i, e〉 ∧ ref〈i, j, e, f〉 ⇒ cns〈j[i], f〉.
The relation i � j may also serve as the gluing invariant as implied by the
following lemma.

Lemma 5. cns〈i, e〉 ∧ ref〈i, j, e, f〉 ⇒ (i � j) ; f ⊆ e ; (i � j).

Remark 2. Our presentation of the set-theoretical model of Event-B follows [1]
by and large. In [1, Chapter 14] Abrial uses the relation ρ = (i � j)−1 in place
of i and j as we do in Def. 4. Nonetheless, the formalisations are equivalent as
indicated by Lemma 5 and inverting the relation ρ.

A tuple 〈v, c,m〉 where v is a partial function and c�m is a well-founded rela-
tion is called a variant and v is called the variant function. If we say informally
“the variant has changed” refer to differing values of v in consecutive states. Let
〈v, c,m〉 be a variant. We say that event e is anticipated if ant〈i, e, v, c,m〉.
Definition 5. ant〈i, e, v, c,m〉 ⇔ i � e ⊆ v ; (id ∪ c � m) ; v−1.

We say that e is convergent if cvg〈i, e, v, c,m〉.
Definition 6. cvg〈i, e, v, c,m〉 ⇔ i � e ⊆ v ; c � m ; v−1.

1 The set complement ∼ s is defined by x ∈ ∼ s ⇔ x �∈ s.
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Remark 3. The original Event-B proof obligation for anticipated events is

i � e ⊆ v ; c � (id ∪m) ; v−1 .

The new formulation of the proof obligation does not require the proof of mem-
bership in c if the e leaves the variant unchanged. In principle one could further
generalise the proof obligation to

i � e ⊆ v ; id ∪m ; v−1

but this would be traded against stronger constraints on m. Our intention is to
make finding candidates for m as easy as possible, for instance, allowing a cyclic
graph restricted to an acyclic tree. Constraining m would often necessitate the
introduction of an auxiliary variable (e.g., for recording the acyclic tree directly).
Using the new proof obligation of Def. 5 we have two ways to influence how m is
used in case the anticipated event is interfering with the convergent event. One
is the choice of the set c for determining a subset of m. The other is the function
v. If we map all states that do not need to be considered for the convergence
proof to the same element z outside c, then to prove v(x) �→ v(y) ∈ id we can
use v(x) = z and v(y) = z in such cases. However, we would still need to verify
v(x) = z and v(y) = z.

The challenge of proving soundness of the anticipation and convergence proof
obligations is clearly related to dealing with the gluing invariant. Fig. 2 shows

invariant v ∈ Z

variant v

anticipated event absa
begin

skip
end
convergent event absc
any x when

v ∈ N1 ∧ x ∈ N1

then
v := v − x

end

invariant w ⊆ {x | x < v} ∧ (v ∈ N1 ⇒ 0 ∈ w)

anticipated event conca
any x when

w �= ∅ ∧ x < max(w)
then

w := w ∪ {x}
end
convergent event concc
when

w ∩ N �= ∅
then

w := w \ {max(w)}
end

Fig. 2. A nondeterministic refinement with a simple variant

an abstract and a concrete machine of a refinement. The variant for proving
convergence of the abstract event absc is v, the only variable of the machine. In
terms of our set-theoretical model the variant function is id. The set-theoretic
gluing invariant is {v �→ w | w ⊆ {x | x < v} ∧ (v ∈ N1 ⇒ 0 ∈ w)} establishing
a many-to-many relationship between the abstract variable v and the concrete
variable w. How to use variable w to express the variant in the concrete machine
is not at all obvious. But it is necessary, in order to “forget” about the abstract
machine and continue working solely with the concrete machine.
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4 Convergence and Anticipation

The proof obligations ant and cvg stated in Section 3 are not suitable for the
induction-based soundness proof of Section 6. We need a more general formula-
tion based on the concept of quasi-stability.

Definition 7. A relation r is called m-quasi-stable, qs〈r,m〉, if it is reflexive,
transitive and for all predecessors y of x in r, all predecessors of y in m are also
predecessors of x in m, that is, the following three conditions are satisfied

id ⊆ r , (4)
r ; r ⊆ r , (5)
∀x, y · x �→ y ∈ r ⇒m[{y}] ⊆ m[{x}] . (6)

Property (6) can be expressed more concisely using set-theoretic notation

(6) ⇔ ∀p · (r ;m)[p] ⊆ m[p] .

Whereas the set-theoretic formulation of well-foundedness is favourable for use in
proof, this does not hold for (6). Instantiating x and y is usually straightforward.
Dealing with the set p above easily leads astray when instantiated during a proof.
Set-theoretic formulations are not invariably “better”.

An m-quasi-stable relation r is also c�m-quasi-stable if the set c is invariant
under the inverse of r.

Lemma 6. qs〈r,m〉 ∧ r−1[c] ⊆ c ⇒ qs〈r, c � m〉.
Finally, for an m-quasi-stable relation r where m is a transitive relation, the
transitive closure of r ∪m is also m-quasi-stable.

Lemma 7. qs〈r,m〉 ∧ m ;m ⊆ m ⇒ qs〈(r ∪m)+,m〉.
This is all we need to know about quasi-stable relations for now. We are ready
to introduce quasi-variants.

Definition 8. Let i be a set. A tuple 〈v, r,m〉 is called an i-quasi-variant iff v
is a partial function with i ⊆ dom(v), m well-founded and r is m-quasi-stable.
The i-quasi-variant 〈v, r,m〉 is called transitive if m ;m ⊆ m.

Using Def. 8 we define generalisations ANT and CVG of ant and cvg. Let
V = 〈v, r,m〉 be an i-quasi-variant in the following two definitions.

Definition 9. ANT〈i, e, V 〉 ⇔ i � e ⊆ v ; (r ∪m) ; v−1.

The generalisation only concerns the replacement of id in ant by an m-quasi-
stable relation r in ANT. The corresponding convergence proof obligation CVG
has the same shape like cvg but uses a quasi-variant.

Definition 10. CVG〈i, e, V 〉 ⇔ i � e ⊆ v ;m ; v−1.
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Remark 4. We have the obvious equivalences

ANT〈i, e, 〈v, id, c � m〉〉 ⇔ ant〈i, e, v, c,m〉 and
CVG〈i, e, 〈v, id, c � m〉〉 ⇔ cvg〈i, e, v, c,m〉 .

A consequence of this is that the proof obligations ant and cvg can serve as
base cases in an inductive soundness proof using ANT and CVG.

The transitive closure of a relation preserves quasi-stability. Combined with
Lemma 7 this property permits to turn an m-quasi-stable relation r into an m+-
quasi-stable relation (r ∪m)+ that matches the shape of the relation r ∪m in
Def. 9 and is transitive.

Lemma 8. qs〈r,m〉 ⇒ qs〈r,m+〉.
Remark 5. Any i-quasi-variant V = 〈v, r,m〉 has an associated transitive i-quasi-
variant W = 〈v, r,m+〉 by Lemmas 2 and 8. Furthermore, ANT〈i, e, V 〉 implies
ANT〈i, e,W 〉, and CVG〈i, e, V 〉 implies CVG〈i, e,W 〉. Thus, using the equiv-
alences of Rem. 4 we can use arbitrary quasi-variants on well-founded sets in
specifications but assume that we have transitive quasi-variants available when-
ever needed.

5 Quasi-Lexicographic Products and Power Orders

The combination of refinement and anticipation produces quasi-lexicographic
products on power orders. This complication is caused by the nondeterministic
relationship between abstract and concrete states induced by the gluing invariant.

Definition 11. The r-quasi-lexicographic product of two relations m and n, de-
noted m�r n, is defined as (m � ∼∅) ∪ (r � n).2

The relation m�idn is the lexicographic product of m and n. The identity keeps
the first component “stable” while the second component changes. It breaks the
symmetry of a plain union of m and n and as a result preserves well-foundedness.
If we replace the identity by an m-quasi-stable relation we achieve the same.

If we unfold the set-theoretical definition of the r-quasi-lexicographic product,
we obtain the more familiar formulation

m�r n = {(p �→ x) �→ (q �→ y) | p �→ q �∈ m⇒ p �→ q ∈ r ∧ x �→ y ∈ n} . (7)

The following lemma provides the main insight of this section. The r-quasi-
lexicographic product with an m-quasi-stable relation r of well-founded relations
m and n is well-founded.

2 In the Event-B notation the parallel product r � s of two relations r and s is defined
by (p �→ x) �→ (q �→ y) ∈ r � s ⇔ p �→ q ∈ r ∧ x �→ y ∈ s.
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Lemma 9. wf〈m〉 ∧ qs〈r,m〉 ∧ wf〈n〉 ⇒ wf〈m�r n〉.

The power order of a relation m is a relation over the subsets of its domain
and range.

Definition 12. The power order of a relation m, denoted by Om, is defined as
{p �→ q | p ⊆ m−1[q] ∧ (p = ∅⇒ q = ∅)}.
Using the power order we could state well-foundedness (3) of a relation m in
the form ∀z · z �→ z ∈ Om⇒ z = ∅. Unfolding the set-theoretical notation the
power order Om of a relation m has the following shape

{p �→ q | (∀x · x ∈ p⇒∃y · y ∈ q ∧ x �→ y ∈ m) ∧ (p = ∅⇒ q = ∅)} . (8)

Power orders preserve many important properties of a relation such as transitiv-
ity, quasi-stability and well-foundedness on non-empty sets. This permits us to
lift known well-founded orders to well-founded power orders.

Lemma 10. r ; r ⊆ r ⇒ (O r) ; (O r) ⊆ O r.

If a relation r is m-quasi-stable, then O r is Om-quasi-stable.

Lemma 11. qs〈r,m〉 ⇒ qs〈O r,Om〉.
The empty set occurs in a power order only as the pair ∅ �→ ∅. Hence,

removing the empty set from the range of a power order also removes it from
its domain. The following lemma is to be used with Lemma 6 and Lemma 13
below. It permits to remove the empty set from a power order while preserving
quasi-stability.

Lemma 12. (Om)−1[∼{∅}] ⊆ ∼{∅}.
Well-foundedness is only preserved when the empty set is excluded from the

power order. In fact, the empty set is introduced for purely technical reasons in
the definition of the power order. Removing it would complicate the definition
of quasi-stability, in particular. In the soundness proof below the empty set is
easily excluded to occur in all cases where well-foundedness of power orders is
required.

Lemma 13. wf〈m〉 ⇒ wf〈{∅} �−Om〉.
The following lemma permits to construct a quasi-stable quasi-lexicographic

product from quasi-stable components. This construction facilitates the intro-
duction of quasi-lexicographic products in refinements where the pair 〈r,m〉 is
part of a quasi-variant of the abstract model and 〈s, n〉 is part of a quasi-variant
of the concrete model.

Lemma 14. qs〈r,m〉 ∧ qs〈s, n〉 ⇒ qs〈r � s,m�r n〉.
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6 Soundness

Theorem 1 states the main condition for the termination proof in Event-B to be
sound. It says that anticipation and convergence are preserved by refinement,
and anticipation may be strengthened to convergence; and the variant function
can be expressed in terms of concrete variables only.

Theorem 1. For sets i, relation j, transitive i-quasi-variant V and j[i]-quasi-
variant W there is a transitive j[i]-quasi-variant U such that
(N) for all relations f : if ref〈i, j, id, f〉, then

(1) ANT〈j[i], f,W 〉 implies ANT〈j[i], f, U〉,
(2) CVG〈j[i], f,W 〉 implies CVG〈j[i], f, U〉,

(R) for all relations e, f : if cns〈i, e〉 and ref〈i, j, e, f〉, then
(1) CVG〈i, e, V 〉 implies CVG〈j[i], f, U〉,
(2) ANT〈i, e, V 〉 and ANT〈j[i], f,W 〉 imply ANT〈j[i], f, U〉,
(3) ANT〈i, e, V 〉 and CVG〈j[i], f,W 〉 imply CVG〈j[i], f, U〉.

Proof. Let V = 〈v, r,m〉 and W = 〈w, s, n〉. In a refinement the abstract quasi-
variant function v is only accessible by means of the gluing invariant i � j; we
define φ = v−1 ; (i � j). Let U = 〈u, t, o〉 be given by

u = (λx · � | φ−1[{x}] �→ w[{x}])
t = O (r ∪m)+ � O s

o = (({∅} �−Om)�
O (r∪m)+ ({∅} �−On))+ .

It is easy to verify that j[i] ⊆ dom(u). Furthermore, relation o is well-founded
because

�
⇒ 〈 V is an i-quasi-variant 〉

qs〈r,m〉
⇒ 〈 V is transitive and Lemma 7 〉

qs〈(r ∪m)+,m〉
⇒ 〈 Lemma 11 〉

qs〈O (r ∪m)+,Om〉
⇒ 〈 Lemma 12 and Lemma 6 〉

qs〈O (r ∪m)+, {∅} �−Om〉 (9)
⇒ 〈 wf〈m〉 because V is an i-quasi-variant, and Lemma 13 〉

qs〈O (r ∪m)+, {∅} �−Om〉 ∧wf〈{∅} �−Om〉
⇒ 〈 wf〈n〉 because W is a j[i]-quasi-variant, and Lemma 13 〉

qs〈O (r ∪m)+, {∅} �−Om〉 ∧wf〈{∅} �−Om〉 ∧wf〈{∅} �−On〉
⇒ 〈 Lemma 9 〉
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wf〈({∅} �−Om)�
O (r∪m)+ ({∅} �−On)〉

⇒ 〈 Lemma 2 〉
wf〈o〉 . (10)

And, U is a transitive j[i]-quasi-variant because

�
⇒ 〈 qs〈s, n〉 because W is a j[i]-quasi-variant, and Lemma 11 〉

qs〈O s,On〉
⇒ 〈 Lemma 12 and Lemma 6 〉

qs〈O s, {∅} �−On〉
⇒ 〈 (9), Lemma 14, Lemma 8, def. of t and o 〉

qs〈t, o〉
⇒ 〈 (10) and Lemma 1, and j[i] ⊆ dom(u) 〉

U is a transitive j[i]-quasi-variant .

Moreover, the j[i]-quasi-variant U satisfies the two conditions (N) and (R).
Now, claims (N1) and (N2) are consequences of claims (R2) and (R3) with e = id
because cns〈i, id〉 and ANT〈i, id, V 〉, the latter being a consequence of id ⊆ r.
Thus, it only remains to be shown that U satisfies (R).

We begin with the proof of (R1). We have

(i � j) ; f 〈 cns〈i, e〉, ref〈i, j, e, f〉 and Lemma 5 〉
⊆ (i � e) ; (i � j) 〈 CVG〈i, e, V 〉 〉
⊆ v ;m ; v−1 ; (i � j) 〈 def. of φ 〉
⊆ v ;m ; φ ,

hence,

(i � j) ; f ⊆ v ;m ; φ . (11)

Using this,

x �→ y ∈ j[i] � f

⇒ 〈 Lemma 15 below with “k := m” 〉
φ−1[{x}] �→ φ−1[{y}] ∈ Om

⇒ 〈 dom((i � j) ; f) ⊆ dom(v) by (11) 〉
φ−1[{x}] �→ φ−1[{y}] ∈ Om ∧ φ−1[{x}] �= ∅

⇒ 〈 def. of �− 〉
φ−1[{x}] �→ φ−1[{y}] ∈ {∅} �−Om

⇒ 〈 def. of o 〉
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(φ−1[{x}] �→ w[{x}]) �→ (φ−1[{y}] �→ w[{y}]) ∈ o

⇔ 〈 def. of u 〉
x �→ y ∈ u ; o ; u−1 .

Hence, (R1) holds. Claims (R2) and (R3) both assume ANT〈i, e, V 〉. Thus,
similarly to (11) we have

(i � j) ; f ⊆ v ; (r ∪m) ; φ . (12)

Now,

x �→ y ∈ j[i] � f

⇒ 〈 (12) and Lemma 15 below with “k := r ∪m” 〉
φ−1[{x}] �→ φ−1[{y}] ∈ O(r ∪m)

⇒ 〈 r ∪m ⊆ (r ∪m)+ by def. of + 〉
φ−1[{x}] �→ φ−1[{y}] ∈ O (r ∪m)+ . (13)

As specified in (R2) and (R3) two cases can be distinguished according to
ANT〈j[i], f,W 〉 and CVG〈j[i], f,W 〉. The former implies

x �→ y ∈ j[i] � f ⇒ w(x) �→ w(y) ∈ s ∨ w(x) �→ w(y) ∈ n . (14)

and the latter

x �→ y ∈ j[i] � f ⇒ w(x) �→ w(y) ∈ n . (15)

Thus, (R3) follows because

(13)
⇒ 〈 x �→ y ∈ j[i] � f and (15) 〉

φ−1[{x}] �→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w(x) �→ w(y) ∈ n

⇒ 〈 x ∈ dom(w), y ∈ dom(w) and w is a function 〉
φ−1[{x}] �→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w[{x}] �→ w[{y}] ∈ {∅} �−On

⇒ 〈 def. of o 〉
(φ−1[{x}] �→ w[{x}]) �→ (φ−1[{y}] �→ w[{y}]) ∈ o

⇔ 〈 def. of u 〉
x �→ y ∈ u ; o ; u−1 .
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Concerning (R2) observe that the case “w(x) �→ w(y) ∈ n” of (14) is already
covered by the proof of (R3). With respect to the other case we have

(13)
⇒ 〈 x �→ y ∈ j[i] � f and x �→ y ∈ j[i] � f ⇒ w(x) �→ w(y) ∈ s 〉

φ−1[{x}] �→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w(x) �→ w(y) ∈ s

⇒ 〈 x ∈ dom(w), y ∈ dom(w) and w is a function 〉
φ−1[{x}] �→ φ−1[{y}] ∈ O (r ∪m)+ ∧ w[{x}] �→ w[{y}] ∈ O s

⇒ 〈 def. of t 〉
(φ−1[{x}] �→ w[{x}]) �→ (φ−1[{y}] �→ w[{y}]) ∈ t

⇔ 〈 def. of u 〉
x �→ y ∈ u ; t ; u−1 .

Finally, (R2) follows because

(13) 〈 see above 〉
⇒ x �→ y ∈ u ; t ; u−1 ∨ x �→ y ∈ u ; o ; u−1 〈 distributivity of ∪ and ; 〉
⇔ x �→ y ∈ u ; (t ∪ o) ; u−1 .

This concludes the proof of Theorem 1. ��
The following lemma shows how a concrete convergence or anticipation con-

dition (i � j) ; f ⊆ v ; k ; φ induces a power ordering of the concrete event f .

Lemma 15. Let φ = v−1 ; (i � j) and i ⊆ dom(v). Then

(i � j) ; f ⊆ v ; k ; φ

⇒ (∀x, y · x �→ y ∈ j[i] � f ⇒ φ−1[{x}] �→ φ−1[{y}] ∈ O k) .

Proof. Starting from the premise we have

(i � j) ; f ⊆ v ; k ; φ

⇒ 〈 def. of φ, set theory 〉
φ ; f ⊆ v−1 ; v ; k ; φ

⇒ 〈 v is a partial function 〉
φ ; f ⊆ k ; φ

⇔ 〈 def. of φ 〉
φ ; (j[i] � f) ⊆ k ; φ

⇔ 〈 def. of ∪, def. of ; 〉
(∀p, y · (∃x · p �→ x ∈ φ ∧ x �→ y ∈ j[i] � f) ⇒ p �→ y ∈ k ; φ)

⇔ 〈 predicate logic 〉
(∀x, y · x �→ y ∈ j[i] � f ⇒ (∀p · p �→ x ∈ φ ⇒ p �→ y ∈ k ; φ)) . (16)
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Now,

x �→ y ∈ j[i] � f

⇒ 〈 (16) 〉
∀p · p �→ x ∈ φ ⇒ p �→ y ∈ k ; φ

⇒ 〈 def. of ; , set theory 〉
∀p · p ∈ φ−1[{x}] ⇒ ∃q · q ∈ φ−1[{y}] ∧ p �→ q ∈ k (17)

⇒ 〈 shape (8) of O, and φ−1[{x}] �= ∅ because i ⊆ dom(v) 〉
φ−1[{x}] �→ φ−1[{y}] ∈ O k .

Thus, Lemma 15 holds. ��
Remark 6. In a functional refinement (i� j)−1 is a partial function, hence, φ−1

is a function. Now, because φ−1 is a function and x ∈ dom(φ−1) we have

(17)

⇒ φ−1(x) �→ φ−1(y) ∈ k where k = id or k = m.

For refinements that are not functional we can only assume that φ−1 is a re-
lation. This leads to the use of power sets and power orders and requires the
generalisation to quasi-lexicographical products.

Remark 7. Continuing for relational refinements from (17) with k = id would
yield

(17)
⇒ 〈 k = id 〉

∀p · p ∈ φ−1[{x}] ⇒ ∃q · q ∈ φ−1[{y}] ∧ p �→ q ∈ id

⇒ 〈 def. of id 〉
∀p · p ∈ φ−1[{x}] ⇒ ∃q · q ∈ φ−1[{y}] ∧ p = q

⇒ 〈 one-point rule 〉
∀p · p ∈ φ−1[{x}] ⇒ p ∈ φ−1[{y}]

⇒ 〈 def. of ⊆ 〉
φ−1[{x}] ⊆ φ−1[{y}]

This gives an increasing sequence of sets, a candidate for a quasi-stable relation.
Repeating the process with k = {p �→ q | p ⊆ q} and proceeding similarly for
the well-founded relation m indicates the need for the constructions presented
in this article.

7 An Improved Proof Obligation for Anticipated Events

The current proof obligation for anticipated events could be rewritten in the
following shape

x �→ y ∈ i � e ∧ x �→ y �∈ v ; c � id ; v−1 ⇒ x �→ y ∈ v ; c � m ; v−1
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Similarly the new proof obligation could be rewritten to

x �→ y ∈ i � e ∧ x �→ y �∈ v ; id ; v−1 ⇒ x �→ y ∈ v ; c � m ; v−1

and further

x �→ y ∈ i � e ∧ v(x) �= v(y) ⇒ v(x) ∈ c ∧ v(x) �→ v(y) ∈ m .

And this proof obligation would only need to be generated when x �= y. Following
this approach no proof obligation would be generated in the situation described
in the introductory example in place of (1).

8 Conclusion

The presented improvement of the anticipation proof obligation should be easy
to incorporate into the Rodin tool. Fewer proof obligations need to be generated.
The new proof obligation helps to keep models simple: by using the fact that
some event is non-interfering on some set of variables we permit variants to be
specified “locally” without referring to abstract program counters or similar con-
structs. This could also be useful for composing models where non-interference
is common. (With the current proof rule we would have to change some variant
expressions in order for termination claims to remain valid.)

We have also developed the concept of quasi-lexicographic product that is
necessary for the soundness proof of anticipation and refinement. All lemmas
mentioned in the paper have been proved with the Rodin tool. We are not sure
whether a formalisation of Theorem 1 would be possible with reasonable effort
in the tool. After all, it was never intended for deeper mathematical work.

Acknowledgement. I am grateful to the anonymous reviewers for their thor-
ough work and constructive suggestions. I am particularly indebted to reviewer
2 who pointed out an error in the original proof of Theorem 1.
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Abstract. We argue that B is a good language to conveniently express
a wide range of constraint satisfaction problems. We also show that some
problems can be solved quite effectively by the ProB tool. We illustrate
our claim on several examples, such as the jobs puzzle - for which we
solve the challenge set out by Shapiro. Here we show that the B formal-
ization is both very close to the natural language specification and can
still be solved efficiently by ProB. Our approach is particularly interest-
ing when a high assurance of correctness is required. Indeed, compared
to other existing approaches and tools, validation and double checking
of solutions is available for ProB and formal proof can be applied to
establish important properties or provide an unambiguous semantics to
the problem specification.

Keywords: B-method, constraint programming, logic programming,
Alloy, Kodkod, optimization.

1 Introduction

The B-method [1] is a formal method for specifying safety critical systems, rea-
soning about those systems and generating code that is correct by construction.
The B-Language, part of this method, is a rich, mathematical language based
on abstract machines and built around the concepts of first order logic, higher-
order relations and set theory. Due to its expressiveness the B-Language allows
its users to formalize and express complex problems in a succinct and elegant
way on a high level of abstraction.

Initially, the B-method was supported by two tools, BToolkit and Atelier B,
which both provided mainly automatic and interactive proving environments,
as well as code generators. Later, the ProB validation tool provided automatic
animation and model checking. Due to the characteristics of B, ProB gradually
evolved into a constraint solving tool for the B language, in order to automat-
ically determine values for parameters and quantified variables. This opens up
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new uses of B beyond developing safety critical systems. Indeed, in this paper
we want to show that B is a language well suited to express general constraint
satisfaction problems. Moreover, in combination with the constraint solving ca-
pabilities of ProB, we can solve a non-trivial class of these problems.

First we present a case study which highlights the expressiveness of B as a
constraint modelling language. The case study is based on the jobs puzzle [26]
and takes on the challenges identified and discussed by Shapiro [21]. One of
these challenges is to provide a formalization of the puzzle that follows closely
the English text of the puzzle. This aspect makes it particularly interesting, as
it allows us to showcase how, using B, these kinds of problems can be expressed
very conveniently and still be solved efficiently with ProB. The puzzle, the
challenge and our solution to the puzzle are discussed and compared to other
solutions in Section 2.

Later in the paper, we establish that ProB as a tool can be used to solve an
interesting class of constraint satisfaction problems efficiently, providing a good
balance between the ease of expressing a problem on an abstract level using B
and the efficiency of solving these problems. In Section 3 we discuss a series of
problems that are expressed nicely in B and can be solved by ProB for a wide
range of values, such as the N-Queens problem, the Peaceable Armies of Queens
and the Graph Isomorphism problem. We compare the results to a selection of
different tools to show that ProB gives competitive results, while still having
room for improvement as discussed in Section 5. Finally, in Section 4 we present
how the constraint solving features of ProB, showcased in this article, are being
used in several industrial applications.

Alternate Approaches to Constraint Solving The mathematical language of B is
quite close to that of Z and TLA+. As ProB can deal with those formalisms
[17,8], the gist of the paper is also valid for those languages. Similarly, VDM
and abstract state machines are probably also well suited to express constraint
satisfaction problems.

Dedicated Constraint Solving Libraries. Alternate approaches to our high-
level formal methods approach are dedicated constraint-solving libraries embed-
ded in general purpose programming languages. Examples are the CLP(FD)
library of SICStus Prolog [4] or the ILOG solver. These libraries require a much
higher modelling effort and a relatively high level of expertise, but can obviously
obtain better performance. Another possible approach is the Zinc modelling lan-
guage [14]. It provides a higher level encoding than for example CLP(FD), but
still cannot deal with higher-order sets or relations. Also, to our knowledge, nei-
ther Zinc nor any other tool we are aware of can deal with unbounded constraint
satisfaction problems.

SMT-Based Approaches. It would be interesting to see how an expert in
the Formula language [10], which maps to the Z3 SMT solver, would encode
the problems in this paper, and how the solving times compare with those of
ProB. Recently, an Event-B to SMT-LIB converter has become available for the
Rodin platform [6]. It is very useful for proof, but as shown in [18] not suitable
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for constraint solving. For example, it was not possible to solve various simpler
problems, such as the Who killed Agatha puzzle or a graph colouring problem.
As such, we did not attempt to use this B to SMT converter on the examples in
this paper.

SAT-Based Approaches. The Alloy language [9] was designed from the outset
to be able to effectively translated to SAT problems. This leads to certain expres-
sivity restrictions, e.g., higher-order relations and sets are not allowed as their
SAT encoding would become too large to be tractable. ProB follows another
principle: it accepts the B language in full with all its consequences, and tries to
solve constraints for as many relevant models as possible. Note that ProB also
has a backend [18] which translates B constraints into SAT. This uses the same
Kodkod library [25] that Alloy employs, and can deal much better with certain
relational constraints, but similarly only translates first order sets and relations
(the rest are left for the traditional ProB solver). In this paper we discuss and
compare several B solutions with Alloy counterparts and also discuss the ProB
Kodkod backend.

Finally, one could think of using model checking rather than constraint solv-
ing. In fact, we have experimented with various solutions for the puzzles using
efficient model checkers such as Spin or TLC. However, for constraint satisfac-
tion problems model checking amounts to naive, brute force search and is rarely
able to solve more complicated constraints.

2 On the Expressiveness of B - The Jobs Puzzle

The first and most detailed example we discuss is the jobs puzzle. This puzzle
was originally published in 1984 by Wos et al. [26] as part of a collection of
puzzles for automatic reasoners. A reference implementation of the puzzle, by
one of the authors of the book, using OTTER [15] can be found online.1

The puzzle consists of eight statements that describe the problem domain and
provide some constraints on the elements of the domain. The problem is about
a set of people and a set of jobs; the question posed by the puzzle is: who holds
which job? The text of the puzzle as presented in [21] is as follows:

– There are four people: Roberta, Thelma, Steve, and Pete.
– Among them, they hold eight different jobs.
– Each holds exactly two jobs.
– The jobs are: chef, guard, nurse, clerk, police officer (gender not implied),

teacher, actor, and boxer.
– The job of nurse is held by a male.
– The husband of the chef is the clerk.
– Roberta is not a boxer.
– Pete has no education past the ninth grade.
– Roberta, the chef, and the police officer went golfing together.

1 http://www.mcs.anl.gov/~wos/mathproblems/jobs.txt

http://www.mcs.anl.gov/~wos/mathproblems/jobs.txt
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What makes this puzzle interesting for automatic reasoners, is that not all
the information required to solve the puzzle is provided explicitly in the text.
The puzzle can only be solved if certain implicit assumptions about the world
are taken into account, such as: the names in the puzzle denote gender or that
some of the job names imply the gender of the person that holds it.

2.1 Shapiro’s Challenge

Shapiro [21], following the original authors’ remarks, that formalizing the puzzle
was at times hard and tedious, identified three challenges posed by the puzzle
with regard to automatic reasoners. According to Shapiro [21], the challenges
posed by the jobs puzzle are to:

– formalize it in a non-difficult, non-tedious way
– formalize it in a way that adheres closely to the English statement of the

puzzle
– have an automated general-purpose commonsense reasoner that can accept

that formalization and solve the puzzle quickly.

Any formalization also needs to encode the implicit knowledge used to solve
the puzzle for the automatic reasoners while still trying to satisfy the aspects
mentioned above. Addressing this challenge makes this puzzle a good case-study
for the expressiveness of B to formalize such a problem.

2.2 A Solution to the Jobs Puzzle Using B

The B encoding of the puzzle uses plain predicate logic, combined with set theory
and arithmetic. We will show how this enables a very concise encoding of the
problem, staying very close to the natural language requirements. Moreover, the
puzzle can be quickly solved using the constraint solving capabilities of ProB.
Following the order of the sentences in the puzzle we will discuss one or more
possibilities to formalize them using B.

To express “There are four people: Roberta, Thelma, Steve, and Pete” we
define a set of people, that holds the list of names:

PEOPLE={"Roberta", "Thelma", "Steve", "Pete"}

We are using strings here to describe the elements of the set. This has the
advantage, that the elements of the set are implicitly different.2 Alternatively, we
could use enumerated or deferred sets defined in the SETS section of a B machine.

As stated above we need some additional information that is not included
in the puzzle to solve it. The first bit of information is that the names used in
the puzzle imply the gender. In order to express this information we create two
sets, MALE and FEMALE which are subsets of PEOPLE and contain the corresponding
names.
2 This encoding allows us to input the puzzle directly into the ProB console (available
at http://stups.hhu.de/ProB/index.php5/ProB_Logic_Calculator).

http://stups.hhu.de/ProB/index.php5/ProB_Logic_Calculator
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FEMALE={"Roberta", "Thelma"} & MALE={"Steve", "Pete"}

The next statement of the puzzle is: “among them, they hold eight different
jobs”. This can be formalized in B using a function that maps from a job to the
corresponding person that holds this job using a total surjection from JOBS to
PEOPLE:

HoldsJob : JOBS -->> PEOPLE

Although redundant, as we will see below, to express “Among them, they hold
eight different jobs” we can add the assertion that the cardinality of HoldsJob is
8. This is possible, because in B functions and relations can be treated as sets of
pairs, where each pair consists of an element of the domain and the corresponding
element from the range of the relation.

card(HoldsJob) = 8

Constraining the jobs each person holds, the puzzle states: “Each holds exactly
two jobs”. To express this we use the inverse relation of HoldsJob, it maps a
PERSON to the JOBS associated to her. The inverse function or relation is expressed
in B using the ~ operator. For readability we assign the inverse of HoldsJob to
a variable called JobsOf. JobsOf is in this case is a relation, because, as stated
above, each person holds two jobs.

JobsOf = HoldsJob~

Because JobsOf is a relation and not a function, in order to read the values,
we need to use B’s relational image operator. This operator maps a subset of
the domain to a subset of the range, instead of a single value. To read the jobs
Steve holds, the relational image of JobsOf is used as shown below:

JobsOf[{"Steve"}]

Using the JobsOf relation we can express the third sentence of the puzzle using
a universally quantified expression over the set PEOPLE. The Universal quantifi-
cation operator (∀) is expressed in B using the ! symbol followed by the name
of the variable that is quantified. This way of expressing the constraint is close
to the original text of the puzzle, saying that the set of jobs each person holds
has a cardinality of two.

!x.(x : PEOPLE => card(JobsOf[{x}]) = 2)

The fourth sentence assigns the set of job names to the identifier JOBS. This
statement also constraints the cardinality of HoldsJob to 8.

JOBS = {"chef", "guard", "nurse", "clerk", "police", "teacher", "actor", "boxer"}

The following statements further constrain the solution. First “The job of
nurse is held by a male”, which we can express using the HoldsJob function and
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the set MALE by stating that the element of PEOPLE that HoldsJob("nurse") points
to is also an element of the set MALE.

HoldsJob("nurse") : MALE

Additionally, we add the next bit of implicit information, which is that typi-
cally a distinction is made between actress and actor, and therefore the job name
actor implies that it is held by a male. This information is formalized, similarly
as above.

HoldsJob("actor") : MALE

The next sentence: “The husband of the chef is the clerk” contains two relevant
bits of information, based on another implicit assumption, which is that marriage
usually is between one female and one male. With this in mind, we know that
the chef is female and the clerk is male. One possibility is to do the inference
step manually and encode this as:

HoldsJob("chef") : FEMALE & HoldsJob("clerk") : MALE

Alternatively, and in order to stay closer to the text of the puzzle we can add
a function Husband that maps from the set FEMALE to the set MALE as a partial
injection. We use a partial function, because we do not assume that all elements
of FEMALE map to an element of MALE.

Husband : FEMALE >+> MALE

To add the constraint using this function we state that the tuple of the person
that holds the job as chef and the person that holds the job as clerk are an
element of this function when treated as a set of tuples.

(HoldsJob("chef"), HoldsJob("clerk")) : Husband

The next piece of information is that “Roberta is not a boxer”. Using the
JobsOf relation we can express this close to the original sentence, by stating:
boxer is not one of Roberta’s jobs. This can be expressed using the relational
image of the JobsOf relation:

"boxer" /: JobsOf[{"Roberta"}]

The next sentence provides the information that “Pete has no education past
the ninth grade”. This again needs some contextual information to be useful in
order to find a solution for the puzzle [21]. To interpret this sentence we need
to know that the jobs of police officer, teacher and nurse require an education
of more than 9 years. Hence the information we get is that Pete does not hold
any of these jobs. Doing this inference step we could, as above, state something
along the lines of HoldsJob("police") /= "Pete", etc. for each of the jobs. The
solution used here, tries to avoid doing the manual inference step. Although we
still need to provide the information needed to draw the conclusion that Pete
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does not hold any of these three jobs. We create a set of those jobs that need
higher education:

QualifiedJobs = {"police", "teacher", "nurse"}

Using the relational image operator we can now say that Pete is not among
the ones that hold any of these jobs. The relational image can be used to get
the set of items in the range of function or relation for all elements of a subset
of the domain.

"Pete" /: HoldsJob[QualifiedJobs]

Finally, the last piece of information is that “Roberta, the chef, and the police
officer went golfing together”, from this we can infer that Roberta, the chef, and
the police officer are all different persons. We write this in B stating that the
set of Roberta, the person that holds the job as chef, and the person that is the
police officer has cardinality 3, using a variable for the set for readability.

Golfers = {"Roberta", HoldsJob("chef"), HoldsJob("police")} & card(Golfers) = 3

By building the conjunction of all these statements, ProB searches for a valid
assignment to the variables introduced that satisfies all constraints, generating
a valid solution that answers the question posed by the puzzle “who holds which
job?” in form of the HoldsJob function. The solution found by ProB is depicted
in Fig. 1.3

This satisfies, in our eyes, the challenges identified by Shapiro. In the sense
that the formalization, is not difficult, although it uses a formal language. The
elements of this language are familiar to most programmers or mathematicians
and it builds upon well understood and widely known concepts. The brevity of
the solution shows that using an expressive high-level language it is possible to
encode the puzzle without having tedious tasks in order to be able to solve the
puzzle at all.

The encoding of the sentences follows the structure of the English statements
very closely. We avoid the use of quantification wherever possible and use set
based expressions that relate closely to the puzzle. We are able to encode the
additional knowledge needed to solve puzzle in a straight forward way, that is
also close to how this would be expressed as statements in English. Lastly it
is worth to note that the formalization of “Each holds exactly two jobs” is the
one furthest away from the English expression, using quantifications and set
cardinality expressions.

2.3 Related Work

In his paper Shapiro discusses several formalizations of the puzzle with regard
to the identified challenges. A further formalization using controlled natural

3 We used the “Visualize State as Graph” command and then adapted the generated
graph using OmniGraffle
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Fig. 1. The solution to the Jobs puzzle, depicted graphically

language and answer set programming (ASP) was presented in [19] by Schwit-
ter et al.

The first of the solutions discussed by Shapiro is a solution from the TPTP
website, encoded as a set of clauses and translated to FOL. The main disadvan-
tages of this encoding is that it requires 64 clauses to encode the problem and
many of them are needed to define equality among jobs and names. This is in
contrast to our B encoding using either enumerated sets or strings, where all
elements are implicitly assumed to be different. Thus the user does not have to
define the concept of equality for simple atoms.

The second solution discussed by Shapiro uses SNePS [22], a common sense
and natural language reasoning system designed with the goal to “have a formal
logical language that captured the expressibility of the English language” [21].
The language has a unique name assumption and set arguments making the
encoding simpler and less tedious. On the other hand the lack of support for
modus tolens requires rewriting some of the statements in order to solve the
puzzle.

The last formalization discussed by Shapiro uses Lparse and Smodles [16]
which uses stable model semantics with an extended logic programming syntax.
According to Shapiro several features of Lparse/Smodels are simmilar to those
of SNePS. This formalization also simplifies the encoding of the puzzle, but ac-
cording to Schwitter et al. both solutions still present a “considerable conceptual
gap between the formal notations and the English statements of the puzzle” [19].

Schwitter et al. in their paper “The jobs puzzle: Taking on the challenge via
controlled natural language processing” [19] present a solution to the jobs puzzle
using controlled natural language and a translation to ASP to solve the jobs puz-
zle in a novel way that stays very close to the English statements of the puzzle
and satisfying the challenges posed by Shapiro. To avoid the mismatch between
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natural and controlled natural languages Schwitter et al. describe the use of a
development environment that supports the user to input valid statements ac-
cording to the rules of the controlled language. A solution using a mathematical,
but high level language like B avoids this problems by having a formal and, for
most, familiar language used to formalize the problem.

3 Solving Constraint Problems with B and ProB

ProB is able to solve our formalization of the jobs puzzle, presented in the
previous Section in about 10ms, finding the two possible instantiations of the
variables that represent the (same) solution to the puzzle.

In this section we will present four examples, that can be elegantly expressed
with B and discuss how these can be solved with the constraint solving features of
ProB.4 There are many more examples, which unfortunately we cannot present
here due to space restrictions.

3.1 Subset Sum

The first example is the subset sum problem 7.8.1 from page 340 of “Optimization
Models For Decision Making: Volume 1”.5 Expressing this problem just takes this
one line of B and ProB can solve it in less than 5 ms:

coins = {16,17,23,24,39,40} & stolen : coins --> NATURAL & SIGMA(x).(x:coins|stolen(x)*x)=100

The goal is to determine how many bags of coins were lost to amount for
100 missing coins. The bags can have different sizes, specified in the set named
coins. In order to find the result with B, we create a function that maps from
the different coin-bag sizes to a number; this number represents how many bags
of that size were stolen. The instantiation of the function stolen is constrained
by the last expression, which states that the sum of all coins in the missing
bags is 100. This is expressed using the SIGMA operator, which returns the sum
of all values calculated in the associated expression, akin the mathematical Σ
operator. An interesting aspect is that we have not explicitly expressed an upper
bound on coins (NATURAL stands for the set of mathematical natural numbers);
ProB determines the upper bound itself during the constraint solving process.
Finally, we can check that there is only one solution by checking:

card({c,s|c = {16,17,23,24,39,40} & s : c --> NATURAL & SIGMA(x).(x:c|s(x)*x)=100})=1

4 The source code of the examples can be obtained at the following web site:
http://stups.hhu.de/w/Pub:Constraint_Solving_in_B

5 http://ioe.engin.umich.edu/people/fac/books/murty/opti_model/

http://stups.hhu.de/w/Pub:Constraint_Solving_in_B
http://ioe.engin.umich.edu/people/fac/books/murty/opti_model/
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3.2 N-Queens

The well known N-Queens problem6 is a further problem, that can be expressed
very succinctly in B by specifying a constant queens, which has to satisfy the
following axioms:

queens : 1..n >-> 1..n & !(q1,q2).(q1:1..n & q2:2..n & q2>q1
=> queens(q1)+(q2-q1) /= queens(q2) & queens(q1)+(q1-q2) /= queens(q2))

The total and injective function queens maps the index of each column to the
index of the row where the queen is placed in that column. The formula states
that for each pair of columns, the queens placed on those columns are not on the
same diagonal. From the set of functions from 1..n to 1..n ProB discards those
candidates that violate the condition on the diagonals and instantiates queens
to the first solution that satisfies it.

To get a better impression of how ProB performs for this and hopefully simi-
lar problems we compared, as shown in Table 1, the B implementation on ProB

1.3.7-beta9 to a C iterative implementation, a version in Prolog using CLP(FD)7

running on SWI-Prolog 6.6.4, a version in Prolog taken from [24] Chapter 148

, a version written in Alloy using the Minisat and Sat4J SAT-solvers of Alloy
4.2. We ran the examples on a MacBook Pro with a four core Intel i7 Processor
with 2.2 Ghz and 8 Gb. RAM for increasing values of n as reported below. All
reported times represent the time needed to find a first valid configuration. For
each tool we stopped collecting data after the first computation that took more
than 10000 ms. to find a solution.

Table 1. Time in ms. to find a first solution to the
N-Queens problem.

n ProB C swipl swipl Alloy Alloy
CLP(FD) Sat4J Minisat

8 1 4 1 7 75 81
10 1 4 1 6 190 120
20 28 34 4941 30 3483 10019
30 67 11467 -9 49 6296 -
40 122 - - 77 57992 -
50 250 - - 483 - -
60 349 - - 479 - -
70 426 - - 178 - -
80 623 - - 278 - -
90 885 - - 759 - -
100 1028 - - 442 - -

Table 2. LoC for the differ-
ent solutions compared

Language LoC
B (ProB) 2
Alloy 21
Prolog 60
swipl CLP(FD) 122
C 171

There are some pathological cases, not shown here, where ProB, but also
other tools perform very badly (such as n = 88) but for most inputs of n < 101
ProB finds a solution in up to 1.2 seconds.

6 http://en.wikipedia.org/w/index.php?oldid=587668943
7 http://www.logic.at/prolog/queens/queens.pl
8 http://bach.istc.kobe-u.ac.jp/llp/bench/queen_p.pl
9 We canceled this run after 40 minutes without result.

http://en.wikipedia.org/w/index.php?oldid=587668943
http://www.logic.at/prolog/queens/queens.pl
http://bach.istc.kobe-u.ac.jp/llp/bench/queen_p.pl
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The results show that constraint based solutions to this problem, with in-
creasing board sizes give better results than the brute force versions. Among
the constraint based results, the direct encoding in Prolog using CLP(FD) is
generally faster than ProB; considering the higher abstraction level of B these
results are to be expected. Taking the size of the implementations into account
(as reported in Table 2) gives evidence that using B to encode such a problem
and ProB to solve it is a good trade-off between the size, the complexity of the
implementation and the time required to find a solution.10

3.3 Peaceable Armies of Queens

A challenging constraint satisfaction problem, related to the previous, was pro-
posed by Bosch (Optima 1999) and taken up in [23]. It consists of setting up
opposing armies of queens of the same size on a n × n chessboard so that no
queen attacks a queen of the opposing colour.

Smith et. al [23] report that the integer linear programming tool CPLEX
took 4 hours to find an optimal solution for n = 8 (which is 9 black and 9
white queens). Optimal here means placing as many queens as possible, i.e.,
there is a solution for 9 queens but none for 10 queens. In order to determine
the optimal solution for n = 8 the ECLiPSe and the ILOG solver are reported
to take just over 58 minutes and 27 minutes and 40 seconds respectively (Table
1 in [23]). After applying the new symmetry reduction techniques proposed in
[23], the solving time was reduced to 10 minutes and 40 seconds for ECLiPSe
and 5 minutes 31 seconds for the ILOG solver.

In a first instance, we have encoded the puzzle as a constraint satisfaction
problem, i.e., determining whether for a given board size n and a given number
of queens q we can find a correct placement of the queens. We first introduce
the following DEFINITION:

ORDERED(c,r) == (!i.(i:1..(q-1) => c(i) <= c(i+1)) &
!i.(i:1..(q-1) => (c(i)=c(i+1) => r(i) < r(i+1))))

The encoding of the problem is now relatively straightforward:

blackc : 1..q --> 1..n & blackr : 1..q --> 1..n &
whitec : 1..q --> 1..n & whiter : 1..q --> 1..n &
ORDERED(blackc,blackr) & ORDERED(whitec,whiter) &

!(i,j).(i:1..q & j:1..q => blackc(i) /= whitec(j)) &
!(i,j).(i:1..q & j:1..q => blackr(i) /= whiter(j)) &
!(i,j).(i:1..q & j:1..q => blackr(i) /= whiter(j)+(blackc(i)-whitec(j))) &
!(i,j).(i:1..q & j:1..q => blackr(i) /= whiter(j)-(blackc(i)-whitec(j))) &

whitec(1) < blackc(1) /* simple symmetry breaking */

The solving time on a MacBook Pro with a four core Intel i7 Processor with
2.2 Ghz and 8 Gb. RAM is as follows using ProB 1.3.7-beta9:

10 We are aware that the different solutions compared might not represent the best
possible solution in each formalism.
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Table 3. Runtime in seconds to solve the Peaceable Queens problem

Board Size n Queens q Result ProB Alloy Minisat Alloy Sat4J
7 7 sat 0.29 sec 3.04 sec 14.90 sec
7 8 unsat 17.6 sec - -
8 1 sat 0.00 sec 0.01 sec 0.02 sec
8 2 sat 0.00 sec 0.02 sec 0.03 sec
8 3 sat 0.01 sec 0.03 sec 0.05 sec
8 4 sat 0.01 sec 0.09 sec 0.17 sec
8 5 sat 0.02 sec 0.21 sec 0.45 sec
8 6 sat 0.02 sec 0.22 sec 1.29 sec
8 7 sat 0.06 sec 1.29 sec 2.10 sec
8 8 sat 0.51 sec 2.58 sec 6.68 sec
8 9 sat 12.10 sec 122.87 sec 106.74 sec
8 10 unsat 661 sec - -

We have also encoded the problem in Alloy. Table 3 shows the results for
board sizes of 7 and 8 for ProB and Alloy. We have used Alloy 4.2. For a board
size of 8 and 9 queens of each colour the solving time was 107 seconds compared
to ProB’s 13 seconds. We were unable to confirm the absence of a solution for
10 queens of each colour (Alloy was still running after more than 4 hours). We
have also directly used the Kodkod library, through our B to Kodkod translation
[18]. Here the runtime was typically a bit slower than running Alloy (e.g., 149
seconds instead of 107 using SAT4J and 123 seconds using MiniSat for 9 queens
of each colour).

Note 1. Model checking using TLC basically hopeless; much like N-queens where
Spin can only solve the puzzle for relatively small values ProB can also solve
the puzzle for n = 8, q = 9 and an additional two kings (on of each colour; see
[7]). The solving time is about one hour.

This example has shown that even problems considered challenging by the con-
straint programming community can be solved, and that they can be expressed
with very little effort. The graphical visualization features of ProB were easy
to setup (basically just defining an animation function in B and declaring a few
images; see [13]) and were extremely helpful in debugging the model.

3.4 Extended Graph Isomorphism

The Graph Isomorphism Problem11 is the final problem discussed here. To de-
termine if two graphs are isomorphic we search for a bijection of the vertices
which preserves the neighbourhood relationship.

Using B, graphs can be represented as relations of nodes, where the vertices
are represented by the tuples in the relation, seen as a set. An undirected graph
can hence be easily represented as the union of the directed graph relation with
the inverse of the relation, basically duplicating all vertices.

Using B we can state the problem using an existential quantification over
the formula used to define the graph isomorphism problem, following closely
the mathematical problem definition. Existential quantification is expressed in

11 http://en.wikipedia.org/w/index.php?oldid=561096064

http://en.wikipedia.org/w/index.php?oldid=561096064


Towards B as a High-Level Constraint Modelling Language 113

B using the # operator, which corresponds to the ∃ symbol in mathematical
notation. We state that there is a total bijection that maps the vertex set from
one graph to the other such that two nodes are adjacent in the domain iff they
are adjacent in the range of the bijection. Additionally we only need to encode
the entities needed in the quantification in order to solve this problem for two
specific graphs.

MACHINE CheckGraphIsomorphism
SETS Nodes = {a,b,c,d,e, x,y,z,v,u}
DEFINITIONS

G1 == {a|->b, a|->c, a|->d, b|->c, b|->d, c|->e, d|->e};
G2 == {x|->v, x|->u, x|->z, y|->v, y|->u, z|->v, z|->u}

CONSTANTS graph1, graph2, relevant
PROPERTIES

graph1: Nodes <-> Nodes & graph2: Nodes <-> Nodes &
graph1 = G1\/G1~ & graph2 = G2 \/ G2~ & /* generate undirected graphs */
relevant = dom(graph1) \/ dom(graph2) \/ ran(graph1) \/ ran(graph2) &
#p.(p : relevant >->> relevant &

!(x, y).(x : relevant & y : relevant =>
(x|->y : graph1 <=> p(x)|->p(y) : graph2)))

END

The above specification can easily be extended with additional constraints.
An industrial application of such an extended graph isomorphism problem was
presented by ClearSy [5]. Here, ClearSy used B and ProB to find graph isomor-
phisms between high level control flow graphs and control flow graphs extracted
from machine code gathered through a black box compiler. In addition, the
memory mapping used by the compiler had to be inferred by constraint solving.
For the main problem on graphs with 192 nodes each, the solution was found
by ProB in 10 seconds. The ability to easily express graph isomorphism and
pair it with other domain specific predicates was an important aspect in this
application.

4 Industrial Applications

As hinted in the previous section where we describe how ClearSy used B and
ProB to decompile machine code, the expressivity of B in combination with
the constraint solving capabilities of ProB are being used in several industrial
applications, in order to validate inputs for models or to solve problems similar
to those shown in this paper.

A further application by Siemens is described in [12]. Siemens use the B-
method to develop safety critical software for various driverless train systems.
These systems make use of a generic software component, which is then instan-
tiated for a particular line by setting a larger number of parameters (i.e., the
topology, the style of trains with their parameters). In order to establish the
correctness of the generic software, a large number of properties about these
parameters and the system in general are expressed in B.

The data validation problem is then to validate these properties for particular
data values. One difficulty is the size of the parameters; the other is the fact
that some properties are expressed in terms of abstract values and not in terms
of concrete parameter values (which are linked to abstract values via a gluing
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invariant in the B refinement process). Initially, the data validation was carried
out in Atelier-B using custom proof rules [3]. However, many properties could
not be checked in this way (due to excessive runtime or memory consumption)
and had to be checked manually. As described in [12], Siemens now use the
ProB constraint solver to this end and have thus dramatically reduced the time
to validate a new parametrisation of their generic software. This success led to
this technique also being applied in Alstom and the development of a custom
tool DTVT with the company ClearSy [11]. The company Systerel is also using
B for data validation for a variety of customers [2]. To this end, Systerel uses
a B evaluation engine which is also at the heart of Brama [20] combined with
ProB.

It is interesting to note, that data validation is now also being applied in
contexts where the system itself was not developed using B; the B language is
“just” used to clearly stipulate important safety properties or regulations about
data. This shows a shift from using B to formally prove systems or software
correct, to using B as an expressive specification language for various constraint
satisfaction problems. In the traditional use of B to develop software or systems
correct by construction, refinement and the proving process play a central role.
In this novel use of B, those aspects of B are almost completely absent. There
often is no use of refinement but the properties to be checked or solved become
larger and more difficult, making the use of traditional provers nigh impossible.

The ProB tool is now used by various companies for similar data validation
tasks, sometimes even in contexts where B itself is not used for the system
development process. In those cases, the underlying language of B turns out to
be very expressive and efficient to cleanly encode a large class of data properties.

5 Conclusion and Future Work

In the first part of this article we focused on the language B and its power to
express constraint satisfaction problems. Using B, we have taken on the chal-
lenges identified by Shapiro regarding the jobs puzzle. Our primary goal was to
show that while B is a formal specification language, it is also very expressive
and can be used to encode constraint satisfaction problems in a readable and
concise way. Our solution to the jobs puzzle addresses all the challenges posed
by this puzzle, we were able to create an encoding, that using mainly simple B
constructs, creates a simple and straight-forward formalization. We only have to
additionally provide an encoding of the implicit information required to solve
the puzzle, which can also be achieved in a way that is not complex and close
to a translation to English. Our encoding follows the original text closely and
ProB is able to solve the puzzle efficiently.

In the second part of this article we focused on solving constraint satisfaction
problems written in B using ProB. We outlined on two similar examples that
it is possible to efficiently solve problems encoded on a high abstraction level.

The pairing of ProB and B can be a good trade-off between the efficiency
of low level constraint solvers that make the encoding of problems very hard
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and high level systems that have to pay the price of abstraction by the in-
creased amount of computation needed to solve problems. Surprisingly, for some
problems (see Section 3.3) we are competitive with low-level modern constraint
solving techniques. But obviously, many large scale industrial optimization prob-
lems are still out of reach of our approach. Also, compared to Alloy, the standard
ProB solver is weak for certain relational operators such as image or transitive
closure. But we work on further improving the constraint solving capabilities of
ProB and thus reducing the overhead associated with the abstraction level of
B, allowing to use ProB on more problems and domains.

As shown in the Peaceable Queens example, B and ProB are still awkward
for solving optimization problems. The current solution is to setup a problem
twice and search for a solution where one problem is solved and the other one
not. This is an area we intend to do further research in the future.

Finally we discussed the industrial uses cases of B in combination with the
constraint solving features of ProB. All the aspects discussed in this article show
the advantages of using a feature rich and high-level language such as B to encode
complex problems and at the same time making use of a high-level constraint
solver to solve them. Compared to other approaches to constraint solving, ours
has the advantage of extensive validation of the tool along with a double chain
[11] to cross-check results, and the ability to apply proof to (parts of) B models.
This makes B and ProB particularly appealing to solving constraints in safety
critical application areas.
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In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012)

19. Schwitter, R.: The jobs puzzle: Taking on the challenge via controlled natural lan-
guage processing. Theory and Practice of Logic Programming 13, 487–501 (2013)

20. Servat, T.: BRAMA: A new graphic animation tool for B models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidel-
berg (2007)

21. Shapiro, S.C.: The jobs puzzle: A challenge for logical expressibility and automated
reasoning. In: AAAI Spring Symposium: Logical Formalizations of Commonsense
Reasoning (2011)

22. Shapiro, S.C., The SNePS Implementation Group.: SNePS 2.7.1 User’s Manual,
Department of Computer Science and Engineering University at Buffalo, The State
University of New York (December 2010)

23. Smith, B.M., Petrie, K.E., Gent, I.P.: Models and symmetry breaking for peace-
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Abstract. Distributed systems and applications are becoming increasingly com-
plex, due to factors such as dynamic topology, heterogeneity of components, fail-
ure detection. Therefore, they require effective techniques for guaranteeing safety,
security and convergence. The self-� systems are based on the idea of managing
efficiently complex systems and architectures without user interaction. This pa-
per presents a methodology for verifying distributed systems and ensuring safety
and convergence requirements: Correct-by-construction and service-as-event
paradigms are used for formalizing the system requirements using incremental
refinement in EVENT B. Moreover, this paper describes a mechanized proof of
correctness of the self-� systems along with a case study related to the P2P-based
self-healing protocol.

Keywords: Distributed systems, self-�, self-healing, self-stabilization, P2P,
EVENT B, liveness, service-as-event.

1 Introduction

Nowadays, our daily lives are affected by technologies such as computers, chips, smart-
phones. These technologies are integrated into large distributed systems that are widely
used, which provide required functionalities, (emergent [11]) behaviors and
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Fig. 1. Diagram for a Self-
Stabilizing System S

properties from interactions between components. Self-
� systems and their autonomous properties (e.g, self-
stabilizing systems autonomically recovering from
faults [5]) tend to take a growing importance in the de-
velopment of distributed systems. In this study, we use
the correct by construction approach [7] for modelling
the distributed self-� systems. Moreover, we emphasize
on the service-as-event [2] paradigm, that identifies the
phases of self-stabilization mechanism.

We consider that a system is characterized by events
modifying the states of a system, and modelling abstract
phases/procedures or basic actions according to the ab-
straction level. We define a self-stabilizing system S
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with three states (see in Fig.1): legal states (correct states satisfying a safety property
P), illegal states (violating the property P) and recovery states (states leading from ille-
gal to legal states). The system S is represented by a set of events M = C L ∪ ST ∪ F .
The subset C L models the computation steps of the system and introduces the notion
of closure [4] : any computation starting from a legal state leads to another legal state.
The occurence of a fault, modelled by an event f ∈ F (dotted transition in Fig.1), leads
the system S into an illegal state. When a fault occurs, we assume that some procedures
identify the current illegal states and simulate the stabilization (recovery (r ∈ ST ) and
convergence (r ∈ C V , with C V ⊆ ST )) procedure to legal states.

This paper is organised as follows. Section 2 introduces the formal verification ap-
proach including service-as-event paradigm and illustrates the proposed methodology
with the study of the self-healing P2P-based protocol [8]. Section 3 finally concludes
the paper along with future work.

2 Stepwise Design of the Self-healing Approach

In this section, we propose a formal methodology for self-� systems that integrates the
EVENT B method, the related toolbox RODIN platform and elements of temporal logics,
such as traces properties (liveness). Using refinement, we gradually build models of
self-� systems in the EVENT B framework [1]. Moreover, we use the service-as-event
paradigm to describe the stabilization and convergence from illegal states to legal ones.
The concept of refinement diagrams [2,9] intends to capture the intuition of the designer
for deriving progressively the target self-� system.

2.1 Introduction to the Self-healing P2P-Based Approach

The development of self-healing P2P-based approach is proposed by Marquezan et

Fig. 2. Architecture

al. [8], where the reliability of a P2P-system is the main concern.
The self-healing process ensures that if a management service (a
task executed by peers) of the system enters a faulty/failed state,
then a self-healing/recovery procedure guarantees that the service
switches back to a legal state. The self-healing is as follows: (1)
Self-detection identifies failed instances (peers) of a management
service. (2) Self-activation is started, whenever a management
service is detected as failed. A failed service does not trigger
recovery if there are still enough instances for running the ser-
vice; otherwise, (3) Self-configuration repairs the service: new
peers running the service are instantiated, and the service is re-
turned into a legal state. We illustrate the use of service-as-event
paradigm and refinement diagrams with the formal design of self-
healing approach.

2.2 The Formal Design

Figure 2 depicts the formal design of self-healing P2P-based approach. The model
M0 abstracts the approach. The refinements M1, M2, M3 introduce the self-detection,
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self-activation and self-configuration. Models from M4 to M20 are used for localis-
ing the self-healing algorithm. The last refinement M21 presents a local model that
describes procedures for recovering process of P2P system.

Abstracting the Self-healing Approach (M0). We use the service-as-event paradigm
to describe the main functionality (i.e. recovery) offered by the self-healing protocol.
Each service (s) is described by two states: RUN (legal/running state) and FAIL (il-
legal/faulty state). A property P =̂ (s �→ RUN ∈ serviceState) expresses that a ser-
vice (s) is in a legal running (RUN) state. An event FAILURE leads service (s) into
a faulty state (FAIL), satisfying ¬P. The self-healing of service (s) is expressed by a
liveness (leads to) property as follows : (¬P) � P, meaning that each faulty state will
eventually be followed by a legal one. The procedure is stated by an abstract event
HEAL, where service (s) recovers from a faulty state to a legal running one. The refine-
ment diagram1 (see Fig.3) and events sum up the abstraction of a recovery procedure.

RUN

FAILURE��
FAIL

HEAL

		

Fig. 3. Abstraction

EVENT FAILURE
ANY

s
WHERE

grd1 : s ∈ SERVICES
THEN

act1 : serviceState :=
({s}�− serviceState)∪ {s �→ FAIL}

EVENT HEAL
ANY

s
WHERE

grd1 : s ∈ SERVICES
grd2 : s �→ FAIL ∈ serviceState

THEN
act1 : serviceState :=
(serviceState\{s �→ FAIL})

∪{s �→ RUN}

This macro/abstract view of the self-healing is detailed by refinement2, using interme-
diate steps guided by the three phases : Self-detection, Self-activation and Self-
configuration. New variables denoted by NAME_{Re f inement Level} are introduced.

Introducing the Self-detection (M1). A new state (FL_DT _1) defines the detection of
failures : a service (s) can suspect and identify a failure (FAIL_1) before triggering re-
covery (HEAL). We introduce a new property R0 =̂ (s �→ FL_DT_1 ∈ serviceState_1)
and a new event FAIL_DETECT. The steps of self-detection are introduced, using the
inference rules [6] related to the operator leads to (�), as illustrated by refinement dia-
gram 4 and proof tree. The event FAIL_DETECT expresses the self-detection: the failed
state (FAIL_1) of a service (s) is detected (state FL_DT _1). The property (¬P)�R0 is
expressed by the event FAIL_DETECT.R0 � P is defined by the event HEAL, where the
service (s) is restored to a legal running state after failure detection. The same method
is applied to identify all the phases of self-healing algorithm. Due to limited space,

Fig. 4. Self-Detection

(¬P)� R0 R0 � P
trans

(¬P)� P

we focus on the interesting parts of models and live-
ness properties. The complete development can be
downloaded from web3 and details can be found in
the companion paper [3].

1 The assertions (s �→ st ∈ serviceState), describing the state (st) of a service (s), are shorten into
(st), in the nodes of the refinement diagrams, for practical purposes.

2 ⊕: to add elements to a model, �: to remove elements from a model.
3 http://eb2all.loria.fr/html_files/files/selfhealing/self-healing.zip

http://eb2all.loria.fr/html_files/files/selfhealing/self-healing.zip
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Introducing the Self-activation (M2) and Self-configuration (M3). The self-activation
is introduced in M2 (see Fig. 5), where a failure of a service (s) is evaluated as criti-
cal or non-critical using a new state FL_ACT_2 and an event FAIL_ACTIV. The self-
configuration step is introduced in M3 (see Fig.6): if the failure of service (s) is critical,
then self-configuration for a service (s) is triggered (state FL_CONF_3), otherwise, the
failure is ignored (state FL_IGN_3).

Fig. 5. Self-Activation Fig. 6. Self-Configuration

Fig. 7. Self-Healing steps

The Global Behaviour (M4). The mod-
els are refined and decomposed into
several steps (see Fig.7) [8]. (1) Self-
Detection phase is used to detect any
failure in the autonomous system. The
event FAIL_DETECT models the failure
detection; and the event IS_OK states
that if a detected failure of a service
(s) is a false alarm, then the service (s)
returns to a legal state (RUN_4). (2) Self-

Activation evaluates detected failures which are actual. The events FAIL_IGN and IG-
NORE are used to ignore the failure of service (s) when it is not critical (FL_IGN_4).
The event FAIL_CONF triggers the reconfiguration of service (s) when failure is criti-
cal (FL_CONF_4). (3) Self-Configuration presents the healing procedure of a failed
service using an event REDEPLOY.

The refinements M5, M6, M7 introduce gradually the running (run_peers(s)), faulty
( f ail_peers[{s}]), suspicious (susp_peers(s)) and deployed instances (dep_inst[{s}])
for a service (s). Each service (s) is associated with the minimal number of instances re-
quired for running service (s): during the self-activation phase, if the number of running
instances of service (s) is below than minimum, failure is critical. Models from M8 to
M10 detail the self-detection and self-configuration phases to introduce the token own-
ers for the services. Models from M11 to M20 localise gradually the events (we switch
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from a service point of view to the point of view of peers). Due to limited space3, in the
next section, we present only M21.

The Local Model (M21). This model details
locally the self-healing procedure of a service
(s). The notion of token owner is more detailed:
the token owner is a peer instance of service (s)
that is marked as a token owner for the Manage-
ment Peer Group (MPG), i.e. the set of peers
instantiating service (s). It controls self-healing
by applying self-detection, self-activation, and
self-configuration steps. (1) Self-Detection in-
troduces an event SUSPECT_INST that states
that the token owner is able to suspect a set
(susp) of unavailable instances of service (s).
Events RECONTACT_INST_OK and RECON-
TACT_INST_KO are used to specify the suc-

cessful and failed recontact, respectively, of the unavailable instances for ensuring
failures. Moreover, the token owner is able to monitor the status of service (s) us-
ing two events FAIL_DETECT, and IS_OK. If instances remain unavailable after the
recontacting procedure, the token owner informs the safe members of MPG of failed in-
stances (FAIL_DETECT); otherwise, the token owner indicates that service (s) is running
properly (IS_OK). (2) Self-Activation introduces an event FAIL_ACTIV where the token
owner evaluates if a failure is critical. Event FAIL_IGNORE specifies that the failure is
not critical. It is ignored (event IGNORE), if several instances (more than minimum) are
running correctly. Otherwise, the failure will be declared critical, and self-configuration
will be triggered using an event FAIL_CONFIGURE. (3) Self-Configuration introduces
three events REDEPLOY_INSTC, REDEPLOY_INSTS and REDEPLOY that specify that
new instances of running service (s) are deployed until the minimal number of instances
is reached. And after, the event HEAL can be triggered, corresponding to the conver-
gence of the self-healing process.

Moreover, in this model, we have formulated hypotheses for ensuring the correct
functioning of the self-healing process: (1) If the token owner of a service (s) becomes
unavailable, at least one peer, with the same characteristics as the disabled token owner
(state, local informations about running, failed peers, etc.) can become the new token
owner; (2) There is always a sufficient number of available peers that can be deployed
to reach the legal running state of a service (s). In a nutshell, we say that our methodol-
ogy allows users to understand the self-� mechanisms, to gain insight into their architec-
tures (components, coordination, etc.); and gives evidences of their correctness under
some assumptions/hypotheses.

3 Discussion, Conclusion and Future Work

We present a methodology based on liveness properties and refinement diagrams for
modelling the self-� systems using EVENT B. The key ideas are to characterize the
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self-stabilizing systems by modes : 1) legal (correct) state, 2) illegal (faulty) state, and
3) recovery state (see Fig.1); then identify the required abstract steps between modes,
for ensuring convergence; and enrich abstract models using refinement. We have il-
lustrated our methodology with the self-healing approach [8]. The complexity of the
development is measured by the number of proof obligations (POs) which are automati-
cally/manually discharged (see Table 1). A large majority (∼ 70%) of the 1177 manual
proofs is solved by simply running the provers from the Atelier B. The actual sum-
mary of POs is given by Table 2. Manually discharged POs require analysis and skills,
whereas quasi-automatically discharged POs would only need a tuning of RODIN (e.g.
provers run automatically).

Table 1. Summary of Proof Obligations

Model Total Auto Interactive
CONTEXTS 30 26 86.67% 4 13.33%

M0 3 3 100% 0 0%
M1 21 15 71.4% 6 28.6%
M2 46 39 84.8% 7 15.2%
M3 68 0 0% 68 100%
M4 142 16 11.27% 126 88.75%

OTHER MACHINES 1111 158 14.22% 953 85.78%
M21 13 0 0% 13 100%

TOTAL 1434 257 17.9% 1177 82.1%

Table 2. Synthesis of POs

Total Auto Quasi-Auto Manual
1434 257 17.9% 850 59.3% 327 22.8%

Furthermore, our refinement-based formal-
ization produces local models close to the
source code. Our future works include the
generation of applications from the resulting
model extending tools like EB2ALL [10].
Moreover, further case studies will help us
to discover new patterns that could be im-
plemented in the RODIN platform. Finally,
another point would be to take into account
dependability properties and concurrency.
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Abstract. The B method is a formal specification method and a means
of formal verification and validation of safety-critical systems such as
railway systems. In this short paper, we use the B4MSecure tool to trans-
form the UML models, fulfilling requirements of European Railway Traf-
fic Management System (ERTMS) operating rules, into B specifications
in order to formally validate them.

Keywords: Railway operating rules, UML models, Role Based Access
Control, B method, formal validation.

1 Introduction

ERTMS [6] is the European Railway Traffic Management System which is de-
signed to replace the national on-board railway systems in Europe in order to
make rail transport safer and more competitive, and to improve cross-border con-
nections. ERTMS includes the European Train Control System (ETCS) which
specifies the on-board equipment and its communication with the trackside.

The aim of our work is to confront the European specifications with the na-
tional operating rules, as well as the use of formal models to validate whether
a given scenario fulfills the specification regarding the functional and safety re-
quirements. We propose to model a nominal scenario of Movement Authority
(MA), extracted from ERTMS operating rules, and to translate it into B speci-
fications in order to validate it.

In the following section, an overview of the nominal scenario MA is given and
its UML models are described. Section 3 highlights the B formal validation after
an automatic translation of these models into B specifications using B4MSecure.
Finally, section 4 concludes this paper.
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2 Movement Authority Overview

Movement Authority (MA) is an authorization given to a train to move to a given
point as a supervised movement. Some features can be used to define an MA,
such as sections subdividing it, the time-out value attached to each section, etc.
The MA function unfolds with interactions between the OnboardSafetyManage-
ment (the on-board computer-based machine), the TracksideSafetyManagement
(the trackside computer-based machine), and the Driver, as follows:

MA.1 The OnboardSafetyManagement requests anMA to the TracksideSystem.
MA.2 The TracksideSafetyManagement receives the MA request from the

TracksideSystem.
MA.3 The TracksideSafetyManagement proposes an MA to the TracksideSys-

tem after creating it. It can also modify and/or delete the MA.
MA.4 The OnboardSafetyManagement receives the proposed MA from the

TracksideSystem, authorizes it and processes the MA authorization in or-
der to be displayed in the Driver Machine Interface (DMI).

MA.5 The Driver reads the authorized MA.

Each step of this scenario represents a permission to do an action on an entity
by a role. On this basis, 3 roles (OnboardSafetyManagement, TracksideSafety-
Management, Driver), 3 system entities (TracksideSystem, MA, DMI ) and 10
possible permissions (underlined actions) can be extracted.

Our approach consists in, on the one hand, the modeling of ERTMS operat-
ing rules in semi-formal UML notations with their graphical views and dedicated
profiles extensions taking into account various aspects (structural, dynamic, be-
havioural, etc.), and on the other hand, their validation and verification with
a formal B method with its mathematical notations and automated proof. The
combination of these two notations has been studied and several approaches of
UML to B translation have been proposed, cited in [3]. In order to model the
scenario above, we use B4MSecure platform supporting the UML/B modeling
process and lying within the scope of Model Driven Engineering (MDE).

For the sake of concision, the B4MSecure platform [7] is briefly presented.
As an Eclipse platform, it is dedicated to formally validate a functional UML
model enhanced by an access control policy. It uses a Role Based Acces Con-
trol (RBAC) profile inspired from SecureUML profile [4]. This profile aims at
specifying information related to access control in order to model roles and their
permisssions. This platform acts in 3 steps: a functional UML class diagram
specifying system entities, security UML models with an access control policy
and the translation of both models into B specifications.

Following the three-stepped approach of B4MSecure, a functional UML class
diagram containing all system entities as classes and the relationships between
them is built. Then, security UML class diagrams enhance the functional model
by expressing which role has the permission to perform a given action in the
railway system: a class diagram dedicated to the roles and others dedicated to
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the access control policies which are based on permissions linking the roles to
the entities, such as the access control of the MA in Fig. 1. A permission is
modeled as a UML association class, between a role and a class of the functional
model, with a stereotype Permission. For instance, MA.4 is modeled in Fig. 1
by the permission of the OnboardSafetyManagement to authorize the MA. All
these diagrams are translated to B specifications.

Fig. 1. Roles and permissions associated with MA

3 B Formal Validation of Movement Authority

The functional model is translated into a unique B machine, named Functional,
and permissions are translated into a B machine, named RBAC Model. As shown
in Fig. 2, the functional formal model follows a classical translation scheme sim-
ilar to [5]. The RBAC Model adds variables about permissions and roles. For
example, PermissionAssignement is a total function from PERMISSIONS to
the cartesian product (ROLES * ENTITIES), and isPermitted is a relation be-
tween ROLES and Operations sets. PERMISSIONS, ENTITIES and Operations
are the sets defined in RBAC Model, while ROLES is a set defined in the in-
cluded UserAssignments machine. Initialization of these variables is conformant
to the SecureUML model. Then, initialization proof obligation, produced by the
AtelierB prover for these variables, allows to verify whether the SecureUML
model respects RBAC well-formedness rules such as no cycles in role hierarchy,
etc. The operations of the security formal model encapsulate the operational
part of the functional formal model. Each functional operation is associated
with an operation in the security model verifying that a user has permission to
call the functional operation. For instance, secure MA authorizeMA operation
of RBAC Model checks the permissions associated with the functional operation
MA authorizeMA. Secured operations add a statement in the postcondition
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Machine

Functional

SETS

MA_AS; ...

ABSTRACT_VARIABLES

MA, ...

INVARIANT

MA <: MA_AS & ...

INITIALISATION

MA := {} || ...

OPERATIONS

MA__authorizeMA(Instance)=

PRE

Instance : MA &

MA__AuthorizedMA(Instance) = FALSE

THEN

MA__AuthorizedMA(Instance) := TRUE

END; ...

END

Machine

RBAC_Model

INCLUDES

Functional, UserAssignments

SEES

ContextMachine

SETS

ENTITIES = {MA_Label, ...};

Attributes = {MA_AuthorizedMA_Label, ...};

Operations ={MA_authorizeMA_Label, ...} ...

VARIABLES

PermissionAssignement, isPermitted, ...

INVARIANT

PermissionAssignement: PERMISSIONS --> (ROLES * ENTITIES)

& isPermitted: ROLES <-> Operations ...

INITIAISATION

PermissionAssignement :=

{(OSM_MAPerm|->(OnboardSafetyManagement|->MA_Label)),...}

OPERATIONS

secure_MA__authorizeMA(Instance)= PRE

Instance: MA & MA__AuthorizedMA(Instance) = FALSE THEN

SELECT MA__authorizeMA_Label : isPermitted[currentRole]

THEN MA__authorizeMA(Instance)

END

END; ...

END

Fig. 2. Functional and RBAC Model machines

e.g SELECT MA authorizeMA Label: isPermitted[currentRole] in order to ver-
ify whether MA authorizeMA Label is allowed to the connected user using a
particular role. Indeed, isPermitted computes, from the initial state, the set of
authorized functional operations for each role.

UML models of extracted ERTMS/ETCS operating rules containing 7 func-
tional classes, 5 roles and 17 permissions are transformed into 830 lines of func-
tional formal model and 1545 lines of security formal model. We use the ProB
animator in order to validate these specifications. A first animation checks the
nominal behaviour ofMovement Authority. Then variants of this animation check
that the given permissions forbid the execution of secure actions by unautho-
rized roles, since a secure action can be performed only with a permission given
to a role. The ability of the system specified by the class diagram to play the
ERTMS scenarios is checked through animations of the corresponding trans-
formed B model. These animations validate the permissions assigned to each
role. But they don’t check that the sequence of actions models the MA protocol.
Actually, the sequence of actions is defined in the animation by the user, but
it is not embedded in the UML/B model. This can be resolved by adding some
contraints as preconditions in secured operations. Nevertheless, adding these
conditions breaks the consistency between the UML model and the B machine.
Owing to the lack of dynamic aspects in UML class diagrams, we intend to ex-
plore more UML diagrams as future work. Then we will focus on enriching UML
class diagrams with, for instance, sequence diagrams which model the ordered
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interactions in scenarios and deriving B specifications from them in order to
validate system’s behavior.

At this stage, safety requirements have not yet been integrated to B specifica-
tions. As further work, we will consider enriching the B specifications with safety
properties stemming from safety requirements of the ERTMS operating rules in
order to formally verify them using the B prover. Moreover, SysML requirement
diagrams combined with our UML diagrams may guarantee the traceability as-
pects of system requirements when they will be translated to B specifications.

4 Conclusion

In this short paper, we have presented a Movement Authority function extracted
from the ERTMS/ETCS operating rules. This function was modeled using UML
graphical notations and then translated automatically, via the B4MSecure plat-
form, into B specifications which were checked successfully using the ProB ani-
mator. The combination of UML/B aims to ease the understanding of the system
with the graphical notations of UML and formally validate system requirements
with B formal notations. Research works done in the Selkis project [1], [2] and [3]
show the efficiency of this platform and its different steps leading to the formal
validation of scenarios in the healthcare Information Systems by seeking for ma-
licious sequences of operations. However, in this paper, we show the use of this
existant platform in another context related to distributed railway systems and
their operating rules.
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018).

References

1. Ledru, Y., Idani, A., Milhau, J., Qamar, N., Laleau, R., Richier, J.-L., Labiadh,
M.-A.: Taking into Account Functional Models in the Validation of IS Security
Policies. In: Salinesi, C., Pastor, O. (eds.) CAiSE 2011 Workshops. LNBIP, vol. 83,
pp. 592–606. Springer, Heidelberg (2011)

2. Milhau, J., Idani, A., Laleau, R., Labiadh, M.A., Ledru, Y., Frappier, M.: Com-
bining UML, ASTD and B for the formal specification of an access control filter.
In: Innovations in Systems and Software Engineering, vol. 7, pp. 303–313. Springer
(2011)

3. Idani, A., Labiadh, M.A., Ledru, Y.: Infrastructure dirigée par les modèles pour
une intégration adaptable et évolutive de UML et B. Ingénierie des Systèmes
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Abstract. Today’s embedded systems are typically battery powered devices with
a limited energy budget, which makes optimal usage of energy a critical task
faced by embedded system developers. One approach to making an embedded
system energy-efficient is by putting its processing units (CPUs) into less energy
consuming modes when their computational resources are not needed. Physical
prototyping enables exploration of different strategies for energy usage by con-
trolling the power modes of the system CPUs. This may lead to construction of
many different hardware and software systems and thus impose high costs. In
this paper we propose language extensions for VDM-RT that enable modelling
and execution of different strategies for energy usage in embedded systems by
controlling the hardware architecture and power modes of the system CPUs.

Keywords: Energy-aware design, embedded systems, VDM-RT.

1 Introduction

This work presents a formal modelling approach for performing analysis and evaluation
of the energy consumption in embedded systems. The approach is based on the VDM-
RT [4] dialect and specifically focuses on including CPU sleep mode in the simulation.
This mode is an operational state that most of the modern CPUs used in today’s micro-
controllers implement. In this mode the system enters a low power consumption mode
in which the CPU is deactivated and waiting for an event to wake up.

We proposed the representation of sleeping states in VDM-RT by applying a design
pattern structure at the modelling level [1]. This initial approach, while effective, intro-
duced an additional level of complexity at the modelling stage. In this paper we present
the extensions to the language to incorporate the notion of a sleeping CPU state. The
preliminary application of this modelling approach to a simple case study has shown
that it is possible to produce estimates of approximately 95% accuracy without having
to prototype each solution under consideration.

The reminder of this paper presents: The language and tool modifications in sec-
tions 2 and 3 respectively. An example of how this approach can be used is presented
in section 4. Finally, section 5 elaborates on future work and section 6 concludes this
paper.
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2 Language Modifications

2.1 CPUs in VDM-RT

CPUs in VDM-RT are computational environments where parts of a model can be de-
ployed so they will be executed. They include a real time operating system and can
be configured in terms of frequency and scheduling policy. CPUs are configured in a
system class together with the bus abstraction, that represents connectivity between
them. An example of this is shown in Listing 1, where CPUs are declared and model
components mapped to them.� �
instance variables
public static mcu : CPU := new CPU(<FP>, 20E6);
public static ctrl : Controller := new Controller();
public static irq : CPU := new CPU(<FP>,20E6);
public static wu : WakeUpL := new WakeUpL(); ...

operations
public System : () ==> System
System () == (
mcu.deploy(appLogic,"ApplicationLogic");
irq.deploy(wu,"Interrupt Provider"); ...� �

Listing 1: Main body of the System class showing two CPUs and logic being deployed

VDM-RT CPUs are always in the same operational state, active, and therefore they
do not incorporate any representation of low power state.

2.2 Language Extensions

Extending VDM-RT with the sleep operation makes it possible to represent embed-
ded software that sleeps the CPU responsible for executing the application logic. This is
shown in Listing 2. In this example the ApplicationLogic executes in APP TIME
time units and then the CPU (microcontroller unit, mcu in Listing 2) is put to sleep.
Once woken up execution resumes by invoking the PostWULogic operation.� �
duration (APP_TIME) ApplicationLogic();
System‘mcu.sleep(); -- Blocks until activated externally
duration (POST_WAKE_UP) PostWULogic();� �

Listing 2: High-level representation of the embedded software sleeping the CPU

The operation active can be invoked by the parts of the model that represent internal
wake-up sources such as the sleep timer or external sources such as interrupts (see
Listing 2). This allows the sleeping CPU to resume execution (see Listing 3).
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� �
System‘mcu.active();� �

Listing 3: Static call waking up (activating) the mcu

2.3 Modelling Different Wake-up Policies

The language extensions presented above, and more specifically the way the active
operation is used, can model different wake-up policies. In order to represent an ex-
ternal interrupt based wake-up policy, the model needs to incorporate additional logic
to represent external events that can be fed to the system. These events will trigger the
wake-up logic at a certain time as shown in Listing 4.� �
if time > TM1 and time < TM2 then System‘FeedEvent();� �

Listing 4: Event fed to the model of the system between TM1 and TM2.

The system model uses a periodic thread deployed on a non-sleeping CPU to repre-
sent a hardware block that waits for the external interrupt. This is shown in Listing 5.
Once the event has been recognized by the model representing the system, it can invoke
the active operation and resume application processing.� �
thread periodic (CHECK_EVENT_PERIOD,0,0,0) (monitorEvent);� �

Listing 5: Periodic execution of the monitor event logic

The second wake-up policy is based on sleep timer expiration. From the modelling
perspective it can be treated in a manner analogous to the external event modelling
approach presented above. A periodic thread runs the sleep timer logic (see Listing 6)
that periodically checks if the overflowOn time mark has elapsed. If this condition
is satisfied the CPU is activated and resumes execution of application logic. It is the
responsibility of the application logic to set up the sleep timer again before going to
sleep the next time.� �
duration(0)( if (time > overflowOn) then (
System‘mcu.active();) );� �

Listing 6: Sleep Timer logic

3 Tool Modifications

Implementing support for CPU power modes in VDM-RT involved changing both the
interpretation of VDM-RT models and the scheduling of the system resources, i.e. the
CPUs and buses comprising the VDM-RT system. In this section we highlight the most
important changes made to the Overture tool in order to implement the proposed VDM-
RT language extensions.
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3.1 Interpreter Modifications

The sleep and active operations were added to the existing VDM-RT specification
of the CPU class operations. Listing 7 shows the specification of the operations added
as part of the tool extensions we have made. Since the sleep and active operations
are specified in VDM-RT there was no need to extend the lexer and parser. The type
checker, however, needs to decorate the nodes of the abstract syntax tree representing
the operation invocations of sleep and activatewith appropriate type information.� �
public sleep : () ==> ()

sleep() == is not yet specified;
public active : () ==> ()

active() == is not yet specified� �
Listing 7: Specification of the existing sleep and active operations in VDM-RT

Our implementation further introduces a flag called sleeping that indicates
whether a CPU is asleep or active. When the sleep and active operations are
invoked in the VDM-RT model the VDM-RT interpreter invokes the is not yet
specified statement, which results in the VDM-RT execution being delegated to
a Java execution environment where the sleeping flag is set. The implementation
allows consecutive invocations of sleep or active although this has no effect.

3.2 Scheduler Modifications

The VDM-RT interpreter of Overture [3] uses a resource scheduler for coordinating the
activity of resources. The resource scheduler is responsible for controlling the execu-
tion on the resources according to their scheduling policy (e.g. fixed priority), which
determines the order at which threads execute (on the CPU on which they are allocated)
and what message is to be sent on a bus. In addition, the scheduling policy is used for
calculating the amount of time a thread is allowed to execute (its time slice). In partic-
ular, a periodic thread with period p0 that is scheduled to run will have to wait p0 time
units before it will execute again.

Active threads can request the resource scheduler to advance the global time by some
time step, (e.g. the end of a statement is reached) and the resource scheduler now stops
including it in the scheduling process. When all resources have reached this state the
resource scheduler will advance the global time by the smallest time step. All waiting
threads that are satisfied by this time step are allowed to run (they are considered for
scheduling again), while the other threads will have to wait for the time remaining of
their time step.

The sleeping flag is used in the scheduling process to indicate to the resource
scheduler that the CPU is asleep. When the scheduler executes the scheduling process
it will invoke the reschedule method on every resource. For CPUs that are asleep
reschedule will always return false to inform the scheduler that the CPU cannot
be rescheduled.
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4 Application Example

We proposed a concrete modelling structure to use the language extensions presented
above. This structure is shown in the class diagram in Fig. 1. This is a generic structure
that uses the two energy saving policies presented in section 2.3. This structure uses
two VDM-RT CPUs that are connected through a VDM-RT bus (esBUS):

WakeUpHWSource: represents a hardware block that features the necessary compo-
nents to wake up the CPU from a sleeping state.

MCU: represents a microcontroller unit containing the CPU that will be operating in
active and sleep mode depending on the logic under study.

These CPUs run the following model components:

WakeUpSource: defines a generic template that must be realized by the components
that wake up the CPU. It specifies the use of the operation mcu.active().

SleepTimer: is a concrete realization of the WakeUpSource that models a wake up
configuration based on a resettable timer. This is modelled following the structure
proposed above.

WakeUpInterrupt: is a concrete realization of the WakeUpSource that models a wake
up configuration based on an interrupt generated on the occurrence of an external
event. This is modelled following the structure proposed above.

Application Logic: models the application logic running in the main CPU. This ap-
plication is able to sleep the CPU through the invocation of the mcu.sleep()
operation. This logic will time mark the transitions between the active and sleep
states and logs them in a file.

<<HWblock>>
WakeUpHWSource

<<CPU>
mcu

<<BUS>>
esBUS UsesUses

<<static>>
WakeUpSource

<<static,active>>
ApplicationLogic

Runs Runs

<<static>>
SleepTimer

<<static>>
WakeUpInterrupt

1

1

1 1 1 1

1

1

Fig. 1. Generic structure for models using the sleep extension

The Log produced by the application logic can be analysed once the simulation has
completed in order to study both power and energy consumption. Based on this log and
taking into consideration the manufacturers specification for the CPU under study one
can plot directly the power consumption of the CPU over time. In order to determine
the energy consumption this curve should be integrated. This analysis is considerably
easier than a study based on prototypes and measurements and provides a high level of
accuracy (≈95%).
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5 Future Work

The work presented in this paper is focused on the analysis of CPU energy consump-
tion in embedded systems. However, in some cases communication with other systems
also has large impact on energy consumption. VDM-RT incorporates the bus abstrac-
tion to represent communication between CPUs. Part of our future work is to evaluate
the capability of this abstraction to study energy consumption aspects during the design
of communication subsystems. This could require the creation of libraries or language
modifications, following a similar approach to the one presented in this paper. The
future analysis of energy consumption in communication combined with the work pre-
sented in this paper can be beneficial when design trade-offs between computation and
communication exists. This is common in design of communication protocols for low
power embedded systems. We frame communication, computation and other factors
that impact energy consumption under a concrete design approach in [2].

6 Conclusions

Exploring different strategies for efficient energy usage in embedded system develop-
ment by controlling the power modes of CPUs has most traditionally been done through
the construction of different physical prototypes. In this paper we have enabled design
space exploration of energy usage in embedded systems using the VDM-RT notation.
This enables making design decisions based on accurate energy consumption predic-
tions without having to realise multiple system architectures. We have implemented
language extensions for VDM-RT in the Overture tool, which enable controlling power
modes of system CPUs at the modelling level. Combining our language extensions with
existing support for describing hardware architectures enables reasoning about energy
usage in embedded systems using VDM-RT.
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Abstract. Physical means of securing information, such as sealed envelopes and
scratch cards, can be used to achieve cryptographic objectives. Reasoning about
this has so far been informal.

We give a model of distinguishable sealed envelopes in Z, exploring design
decisions and further analysis and development of such models.

1 Introduction

Physical mechanisms for securing information such as sealed envelopes and scratch
cards have powerful properties. They contain information, which remains hidden un-
til an explicitly decided moment. Up to then, anyone who has not constructed the item
can plausibly argue ignorance. Reasoning about such mechanisms so far has been done
informally, which is insufficient for complex applications like voting and polling proto-
cols [9], and most fundamentally: general cryptographic schemes [8]. In such schemes,
scratch cards and sealed envelopes play an intricate role, and the notions of security are
sophisticated, starting from possibilistic and extending to probabilistic and complexity
aspects.

This paper explores the formal modelling and analysis of sealed distinguishable
envelopes containing a single bit, applied in protocols for bit commitment[8]. Our em-
phasis will be on constructing the model and protocols, looking ahead to semantic re-
quirements for systematic analysis and formal development.

2 Modelling Sealed Envelopes in Z

This is a story about Agents who pass Envelopes about:

[Agent, Envelope]

Envelopes contain bits, and may be uncreated, closed or open. The value in a closed
envelope may only be known by its creator; the value in an open envelope is known by
anyone who possesses it. A created envelope is in the possession of exactly one agent in
any state. We model an agent knowing the content of an envelope by relations zero and
one. The predicate a �→ e ∈ zero encodes that agent a has direct evidence (it created the
envelope, or has seen it when open) that e contains a 0-bit; and similarly for one. The
predicates below state that all open envelopes are held by some agent, the content of
every created envelope is known by some agent, and all agents who know the content
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of an envelope agree on it. Operations on this state need to satisfy the criteria that open
envelopes cannot be closed, and agents’ knowledge never decreases.

S
holder : Envelope � �→ Agent
open : FEnvelope
zero, one : Agent ↔ Envelope

open ⊆ dom holder
ran(zero ∪ one) = dom holder
ran zero ∩ ran one = ∅

OpS
ΔS

open ⊆ open′

zero ⊆ zero′

one ⊆ one′

There are three operations, to create, move and open sets of envelopes. When an
agent a? creates envelopes it does so for a set of envelopes to store 0-bits, zs?, and for
a set of 1-bits, os? – either may be singleton or empty. New envelopes are held by their
creator, are closed, and their values are known to their creator only.

Create
OpS; a? : Agent; zs?, os? : FEnvelope

(zs? ∪ os?) ∩ dom holder = ∅ ∧ zs? ∩ os? = ∅
holder′ = holder ∪ ((zs? ∪ os?)× {a?}) ∧ open′ = open
zero′ = zero ∪ ({a?} × zs?) ∧ one′ = one ∪ ({a?} × os?)

A set of envelopes may be moved to a named agent as long as they have all been created,
and are held by one agent. The receiving agent learns the values of any open envelopes.
No envelope is opened by this operation.

Move
OpS; b? : Agent; es? : FEnvelope

es? ⊆ dom holder ∧ ∃ a : Agent • holder(| es? |) = {a}
holder′ = holder ⊕ (es? × {b?}) ∧ open′ = open
zero′ = zero ∪ ({b?} × (es? ∩ open ∩ ran zero))
one′ = one ∪ ({b?} × (es? ∩ open ∩ ran one))

The holder of a set of envelopes can open them. The holder learns their values, they do
not change hands.

Open
OpS; es? : FEnvelope

es? ⊆ dom holder ∧ es? ∩ open = ∅
holder′ = holder ∧ open′ = open ∪ es?
∃ a : Agent • holder(| es? |) = {a} ∧

zero′ = zero ∪ ({a} × (es? ∩ ran zero)) ∧
one′ = one ∪ ({a} × (es? ∩ ran one))

We define a schema that reports an agent’s view of a state. This is a finalisation opera-
tion, not commonly used in Z states-and-operations models, but a good way of encod-
ing non-standard observations of abstract data types. The variables with 0-subscripts
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are those which represent b?’s view of (an instance of) state S.

View
S; S0; b? : Agent

holder0 = holder� {b?} ∧ open0 = open ∩ dom holder0
zero0 = {b?}� zero ∧ one0 = {b?}� one

3 Bit Commitment: A Challenge

Commitment is an essential cryptographic primitive between two parties. In the simplest
case, where the value committed to is a single bit, it works as follows.

One party, the sender, executes an action Commit(b) for given value b. From then,
the receiver knows the sender has committed to a bit, but not which. This is the hid-
ing property, which a cheating receiver may try to break. The situation now set up is
typically exploited in other protocols, e.g. authentication, for further actions. After that,
the sender can execute an Open action, upon which the receiver finds out b. The value
learned should be the same value committed to – this is called the binding property,
which a cheating sender may try to break. A surrounding protocol would typically be
aborted on discovery of foul play.

The obvious but flawed implementation attempt using envelopes just has the sender
(here a?) passing an envelope with the bit in to the receiver (here b?):

Commit =̂ [Create; es? : FEnvelope | es? = zs? ∪ os? ∧ #es? = 1] o
9 Move

Now we can specialise to the case of committing to a zero-bit, and the recipient’s view
afterwards (for one-bit it’s the analogous CommitOneView), and state and prove that
the two cases are indistinguishable (“hiding”).

CommitZero =̂ [Commit | os? = ∅]
CommitZeroView =̂ ∃ es?, zs?, os? : FEnvelope • CommitZero o

9 View

∀ a?, b? : Agent | a? �= b? • θCommitZeroView = θCommitOneView

The recipient, b?, can open the envelope to discover the value of the bit in it. We in-
troduce a view for the receiver once that has happened, and a correctness statement for
“binding” at this stage:

CommitOpenView =̂ Commit o
9 Open o

9 View
CommitZeroOpenView =̂ CommitZero o

9 Open o
9 View

∀CommitOpenView • (es? ⊆ ran zero0 \ ran one0 ⇒ CommitZeroOpenView)
∧ (es? ⊆ ran one0 \ ran zero0 ⇒ CommitOneOpenView)

However, this is not yet a correct implementation of commitment: Open is enabled as
soon as the commitment has been made. Thus, it does not allow the sender to control
when the receiver may learn the bit value. Removing the Move action from the commit-
ment step also would not solve it, as this would break the binding property: the sender
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could then postpone the choice of bit. In the physical world, as in the cryptographic
one, a sledgehammer solution to this is to assume a trusted third party, to which we can
hand the envelope (or the bit) for safekeeping between committing and opening.

The exploration of bit commitment as a two party protocol, with the normal assump-
tions of a fixed number of messages of bounded size, has led to multiple negative results.
First, it is impossible to achieve both perfect hiding and perfect binding. Approximate,
computational, notions of security have been achieved with practical schemes, but the
desirable compositionality property of “Universal Composability” is provably unattain-
able without further assumptions [5]. All this makes commitment a challenge for formal
methods, requiring approximate notions of correctness and having an unsatisfiable “ob-
vious ideal” specification.

4 Envelope Based Commitment Protocols

An envelope-based protocol that is more resistant against cheating needs three addi-
tional enhancements. First, the bit in the envelope needs to be masked with a “ran-
dom” bit r. (In this paper, uniform probabilistic choice is abstracted to non-deterministic
choice.) If the sender puts r xor v? in the envelope, opening the envelope will not reveal
v?. The sender will transmit r to open the commitment, which will allow the receiver
to learn v? by cancellation of xor. However, this allows the sender to cheat against
binding, by transmitting ¬r on opening.

The way out of this is for the receiver to prepare envelopes with random bits for
the sender. With just two of these, cheating attempts always succeed, but with four it
can be detected often enough. The receiver creates these, two with each bit value, and
sends them to the sender. He opens three, and expects to find two zeros and a one, or
vice versa – if not, the receiver’s cheating has been detected. If the receiver biases the
choice by sending (say) three zeroes plus a one, this is detected with a chance of one in
four which seems small, but can be amplified by repeating the scheme to achieve any
required level of security.

Thus, the protocol consists of three communications of envelopes between the par-
ties, with typically a time gap between the second and the third in which the overarching
protocol does its job. In traditional protocol notation it is given below, using two bits of
extra notation:

– values listed between [[ ]] brackets are received in a non-deterministic order;
– [x] denotes a newly created closed envelope containing the bit x, a new open enve-

lope with x is represented by 〈x〉.

Preparation: B → A : [[[1], [1], [0], [0]]]
A receives these as E1 . . . E4, opens E1 . . . E3 and takes the exclusive-or
of their values returning b.
If E1 . . . E3 all had the same value, A finds B has cheated and aborts.

Commitment: A → B : 〈vv〉
The value vv is computed as the exclusive-or of b and the value v? that A
wants to commit to. It is sent in an open envelope called e? below.
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Opening: A → B : E4
B receives and opens this last closed envelope, the value found should be b,
and computes the exclusive-or of b and vv which should be v?.
If the envelope received isn’t one of the original four created by B, A has
cheated and B aborts the protocol (and any surrounding ones).

The Preparation Phase The receiver creates four envelopes and sends them to the
sender. An honest receiver balances the bits to be sent: two of each. A smart dishonest
receiver sends three plus one (four the same would always be found out). The sender
will detect this case with probability 1

4 . With a? as the sender, and b? as the receiver, we
need shorthands for envelopes being created and moving in opposite directions from
before:

CreateB =̂ Create[b?/a?] MoveBA =̂ Move[a?/b?]
SendFour =̂ [CreateB; es? : FEnvelope | es? = zs? ∪ os? ∧ #es? = 4] o

9 MoveBA
Honest =̂ [SendFour | #zs? = 2]
Dishonest =̂ [SendFour | #zs? = 1 ∨ #os? = 1]

We introduce fs? for the set of envelopes to be opened, through renaming. With an
honest receiver the sender knows the value in the unopened envelope:

OpenThree =̂ [Open[fs?/es?]; es? : FEnvelope | #fs? = 3 ∧ fs? ⊆ es?]
HonestOpenThree =̂ Honest o

9 OpenThree
∀HonestOpenThree • (#(ran zero ∩ fs?) = 1 ⇒ es? \ fs? ⊆ ran zero)

∧ (#(ran one ∩ fs?) = 1 ⇒ es? \ fs? ⊆ ran one)

The Commitment Step. The relevant definitions (for a zero bit) for this phase are as
follows.Details are in the full paper [4].

CreateOne =̂ ∃ zs? : FEnvelope • [Create[e?/os?] | #e? = 1 ∧ #zs? = 0]
SendOne =̂ CreateOne o

9 Open[e?/es?] o
9 Move[e?/es?]

CommitToOne =̂ OpenThree o
9 ([SendOne | #(ran zero ∩ fs?) = 1]
∨[SendZero | #(ran zero ∩ fs?) = 2])

CommitOView =̂ ∃ e?, es?, fs?, zs?, os? • Honest o
9 CommitToOne o

9 View

Opening the Commitment. The relevant definitions for this phase are as below, with
analogues for the one-bit:

MoveLast =̂ [es?, fs?, ef ? : FEnvelope | Move[ef ?/es?] ∧ ef ? = es?/fs?]
Same =̂ [S′; e?, ef ? : FEnvelope | e? ∪ ef ? ⊆ ran zero′ ∨ e? ∪ ef ? ⊆ ran one′]
OpenZero =̂ MoveLast o

9 ([Open[ef ?/es?] ∧ Same)

5 Discussion and Further Work

We have not considered refinement for these specifications. Rather, we took an approach
that is more common in security: using security properties over an abstract implementa-
tion. Better would be to state the security properties abstractly, and produce the imple-
mentation as a (gradual, stepwise) refinement of them, for a suitable refinement notion.
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Some of our properties even refer directly to the specification internals, which is less
abstract. The standard Z style is a natural choice for this work, as it considers state hid-
den, and these sealed containers are all about subtle information hiding varying over
time. The use of finalisations (“views”) is a first step towards providing a more abstract
observational semantics, in line with previous work by both authors [3,1].

A number of additional aspects need to be considered in the refinement relation.
Information flow from hidden to visible variables also needs to be incorporated, for
example based on Morgan’s shadow semantics [10] or the fog semantics [2] by Banks
and Jacob. A promising theoretical framework for integrating the missing probabilistic
aspect is the theory by McIver, Morgan and others [7,6]. Integrating also the com-
putational complexity aspects inherent from modern cryptography remains an open
problem.

Acknowledgement. This work is supported by the EPSRC CryptoForma Network, on
formal methods and cryptography (www.cryptoforma.org.uk). The specification
was developed with support from the Z-Eves proof tool [11].
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Abstract. We define a programming language independent transaction
controller and an operator which when applied to concurrent programs
with shared locations turns their behavior with respect to some abstract
termination criterion into a transactional behavior. We prove the cor-
rectness property that concurrent runs under the transaction controller
are serialisable. We specify the transaction controller TaCtl and the
operator TA in terms of Abstract State Machines. This makes TaCtl

applicable to a wide range of programs and in particular provides the
possibility to use it as a plug-in when specifying concurrent system com-
ponents in terms of Abstract State Machines.1

1 Introduction

This paper is about the use of transactions as a common means to control con-
current access of programs to shared locations and to avoid that values stored
at these locations are changed almost randomly. A transaction controller inter-
acts with concurrently running programs (read: sequential components of an
asynchronous system) to control whether access to a shared location can be
granted or not, thus ensuring a certain form of consistency for these locations. A
commonly accepted consistency criterion is that the joint behavior of all trans-
actions (read: programs running under transactional control) with respect to the
shared locations is equivalent to a serial execution of those programs. Serialis-
ability guarantees that each transaction can be specified independently from the
transaction controller, as if it had exclusive access to the shared locations.

It is expensive and cumbersome to specify transactional behavior and prove
its correctness again and again for components of the great number of concurrent
systems. Our goal is to define once and for all an abstract (i.e. programming lan-
guage independent) transaction controller TaCtl which can simply be “plugged
in” to turn the behavior of concurrent programs (read: components M of any
given asynchronous system M) into a transactional one. This involves to also

1 The first author, Humboldt research prize awardee 2007/08, gratefully acknowledges
partial support by a renewed research grant from the Alexander von Humboldt
Foundation.
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define an operator TA(M ,TaCtl) which forces the programs M to listen to the
controller TaCtl when trying to access shared locations.

For the sake of generality we define the operator and the controller in terms of
Abstract State Machines (ASMs) which can be read and understood as pseudo-
code so that TaCtl and the operator TA can be applied to code written in
any programming language (to be precise: whose programs come with a notion
of single step, the level where our controller imposes shared memory access
constraints to guarantee transactional code behavior). On the other side, the
precise semantics underlying ASMs (for which we refer the reader to [5]) allows
us to mathematically prove the correctness of our controller and operator.

We concentrate here on transaction controllers that employ locking strategies
such as the common two-phase locking protocol (2PL). That is, each transac-
tion first has to acquire a (read- or write-) lock for a shared location, before
the access is granted. Locks are released after the transaction has successfully
committed and no more access to the shared locations is necessary. There are
of course other approaches to transaction handling, see e.g. [6,13,14,16] and the
extensive literature there covering classical transaction control for flat transac-
tions, timestamp-based, optimistic and hybrid transaction control protocols, as
well as non-flat transaction models such as sagas and multi-level transactions.

We define TaCtl and the operator TA in Sect. 2 and the TaCtl components
in Sect. 3. In Sect. 4 we prove the correctness of these definitions.

2 The Transaction Operator TA(M ,TaCtl)

As explained above, a transaction controller performs the lock handling, the
deadlock detection and handling, the recovery mechanism (for partial recovery)
and the commit of single machines. Thus we define it as consisting of four com-
ponents specified in Sect. 3.

TaCtl =
LockHandler

DeadlockHandler

Recovery

Commit

The operator TA(M ,TaCtl) transforms the components M of any concur-
rent system (read: asynchronous ASM) M = (Mi )i∈I into components of a con-
current system TA(M,TaCtl) where each TA(Mi ,TaCtl) runs as transaction
under the control of TaCtl:

TA(M,TaCtl) = ((TA(Mi ,TaCtl))i∈I ,TaCtl)

TaCtl keeps a dynamic set TransAct of those machines M whose runs it
currently has to supervise to perform in a transactional manner until M has
Terminated its transactional behavior (so that it can Commit it).2 To turn the

2 In this paper we deliberately keep the termination criterion abstract so that it can
be refined in different ways for different transaction instances.
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behavior of a machine M into a transactional one, first of all M has to register
itself with the controller TaCtl, read: to be inserted into the set of currently to
be handled TransAct ions. To Undo as part of a recovery some steps M made
already during the given transactional run segment ofM , a last-in first-out queue
history(M ) is needed which keeps track of the states the transactional run goes
through; when M enters the set TransAct the history(M ) has to be initialized
(to the empty queue).

The crucial transactional feature is that each non private (i.e. shared or mon-
itored or output) location l a machine M needs to read or write for performing
a step has to be LockedBy(M ) for this purpose; M tries to obtain such locks by
calling the LockHandler. In case no newLocks are needed byM in its currState
or the needed newLocks can be Granted by the LockHandler, M performs its
next step; in addition, for a possible future recovery, the machine has to Record

in its history(M ) the current values of those locations which are (possibly over-)
written by this M -step together with the obtained newLocks . Then M continues
its transactional behavior until it is Terminated . In case the needed newLocks are
Refused , namely because another machine N in TransAct for some needed l has
W -Locked(l ,N ) or (in case M wants a W-(rite)Lock) has R-Locked(l ,N ), M has
to Wait for N ; in fact it continues its transactional behavior by calling again the
LockHandler for the needed newLocks—until the needed locked locations are
unlockedwhenN ’s transactional behavior isCommited, whereafter a new request
for these locks this time may be Granted to M .3

As a consequence deadlocks may occur, namely when a cycle occurs in the
transitive closure Wait∗ of the Wait relation. To resolve such deadlocks the
DeadlockHandler component of TaCtl chooses some machines as Victims
for a recovery.4 After a victimized machine M is Recovered by the Recovery

component of TaCtl, so that M can exit its waitForRecovery state, it continues
its transactional behavior.

This explains the following definition of TA(M ,TaCtl) as a control state
ASM, i.e. an ASM with a top level Finite State Machine control structure. We
formulate it by the flowchart diagram of Fig. 1, which has a precise control
state ASM semantics (see the definition in [5, Ch.2.2.6]). The components for
the recovery feature are highlighted in the flowchart by a colouring that differs
from that of the other components. The macros which appear in Fig. 1 and the
components of TaCtl are defined below.

3 As suggested by a reviewer, a refinement (in fact a desirable optimization) con-
sists in replacing such a waiting cycle by suspending M until the needed locks are
released. Such a refinement can be obtained in various ways, a simple one consist-
ing in letting M simply stay in waitForLocks until the newLocks CanBeGranted
and refining LockHandler to only choose pairs (M ,L) ∈ LockRequest where
it can GrantRequestedLocks(M ,L) and doing nothing otherwise (i.e. defining
RefuseRequestedLocks(M ,L) = skip). See Sect. 3.

4 To simplify the serializability proof in Sect.3 and without loss of generality we define
a reaction of machinesM to their victimization only when they are in ctl state(M ) =
TA-ctl (not in ctl state(M ) = waitForLocks). This is to guarantee that no locks are
Granted to a machine as long as it does waitForRecovery .
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Fig. 1. TA(M,C)

The predicate NewLocksNeededBy(M ) holds if in the current state of M at
least one of two cases happens:5 either M to perform its step in this state
reads some shared or monitored location which is not yet LockedBy(M ) or M
writes some shared or output location which is not yet LockedBy(M ) for writ-
ing. A location can be LockedBy(M ) for reading (R-Locked(l ,M )) or for writing
(W -Locked(l ,M )). Formally:

NewLocksNeededBy(M ) =
newLocks(M , currState(M ))6 �= (∅, ∅)

newLocks(M , currState(M ))7 = (R-Loc,W -Loc)
where
R-Loc = ReadLoc(M , currState(M ))∩(SharedLoc(M )∪MonitoredLoc(M ))

∩LockedBy(M )8

W -Loc = WriteLoc(M , currState(M ))∩ (SharedLoc(M )∪OutputLoc(M ))

5 See [5, Ch.2.2.3] for the classification of locations and functions.
6 For layout reasons we omit in Fig.1 the arguments of the functions newLocks and
overWrittenVal .

7 By the second argument currState(M ) of newLocks (and below of overWrittenVal)
we indicate that this function of M is a dynamic function which is evaluated in
each state of M , namely by computing in this state the sets ReadLoc(M ) and
WriteLoc(M ); see Sect. 4 for the detailed definition.

8 By X we denote the complement of X .
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∩W -LockedBy(M )
LockedBy(M ) = {l | R-Locked(l ,M ) or W -Locked(l ,M )}
W -LockedBy(M ) = {l | W -Locked(l ,M )}
The overWrittenValues are the currState(M )-values (retrieved by the eval -

function) of those shared or output locations (f , args) which are written by M in
its currState(M ). To Record the set of these values together with the obtained
newLocks means to append the pair of these two sets to the history queue of M
from where upon recovery the values and the locks can be retrieved.

overWrittenVal(M , currState(M )) = {((f , args), val) |
(f , args) ∈ WriteLoc(M , currState(M ))∩(SharedLoc(M )∪OutputLoc(M ))
and val = eval(f (args), currState(M ))}

Record(valSet , lockSet ,M ) = Append((valSet , lockSet), history(M ))

ToCallLockHandler for the newLocks requested byM in its currState(M )
means to Insert(M , newLocks) into the LockHandler’s set of to be handled
LockRequests. Similarly we let CallCommit(M) stand for insertion of M into
a set CommitRequest of the Commit component.

CallLockHandler(M ,L) = Insert((M ,L),LockRequest)
CallCommit(M ) = Insert(M ,CommitRequest)

3 The Transaction Controller Components

A CallCommit(M) by machine M enables the Commit component. Using the
choose operator we leave the order in which the CommitRequests are handled
refinable by different instantiations of TaCtl.

Commiting M means to Unlock all locations l that are LockedBy(M ). Note
that each lock obtained by M remains with M until the end of M ’s transac-
tional behavior. Since M performs a CallCommit(M) when it has Terminated
its transactional computation, nothing more has to be done to Commit M
besides deleting M from the sets of CommitRequests and still to be handled
TransAct ions.9

Note that the locations R-Locked(l ,M ) andW -Locked(l ,M ) are shared by the
Commit, LockHandler and Recovery components, but these components
never have the same M simultaneously in their request resp. Victim set since
when machine M has performed a CallCommit(M), it has Terminated its
transactional computation and does not participate any more in any (M ,L) ∈
LockRequest or Victimization.

Commit =
if CommitRequest �= ∅ then
choose M ∈ CommitRequest Commit(M )

9 We omit clearing the history(M ) queue since it is initialized when M is inserted into
TransAct(TaCtl).
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where
Commit(M ) =
forall l ∈ LockedBy(M ) Unlock(l ,M )
Delete(M ,CommitRequest)
Delete(M ,TransAct)

Unlock(l ,M ) =
if R-Locked(l ,M ) then R-Locked(l ,M ) := false
if W -Locked(l ,M ) then W -Locked(l ,M ) := false

As for Commit also for the LockHandler we use the choose operator to
leave the order in which the LockRequests are handled refinable by different
instantiations of TaCtl.

The strategy we adopt for lock handling is to refuse all locks for locations
requested by M if at least one of the following two cases happens:

some of the requested locations is W -Locked by another transactional ma-
chine N ∈ TransAct ,
some of the requested locations is a WriteLocation that is R-Locked by an-
other transactional machine N ∈ TransAct .

This definition, which is specified below by the predicate CannotBeGranted ,
implies that multiple transactions may simultaneoulsy have a R-Lock on some
location. To RefuseRequestedLocks it suffices to set the communication in-
terface Refused of TA(M ,TaCtl); this makes M Wait for each location l that
is W -Locked(l ,N ) and for each WriteLocation that is R-Locked(l ,N ) by some
other transactional component machine N ∈ TransAct .

LockHandler =
if LockRequest �= ∅ then
choose (M ,L) ∈ LockRequest
HandleLockRequest(M ,L)

where
HandleLockRequest(M ,L) =
if CannotBeGranted(M ,L)
then RefuseRequestedLocks(M ,L)
else GrantRequestedLocks(M ,L)

Delete((M ,L),LockRequest)
CannotBeGranted(M ,L) =
let L = (R-Loc,W -Loc),Loc = R-Loc ∪W -Loc
forsome l ∈ Loc forsome N ∈ TransAct \ {M }

W -Locked(l ,N ) or
(l ∈ W -Loc and R-Locked(l ,N ))

RefuseRequestedLocks(M ,L) = (Refused(M ,L) := true)
GrantRequestedLocks(M ,L) =
let L = (R-Loc,W -Loc)

forall l ∈ R-Loc (R-Locked(l ,M ) := true)
forall l ∈ W -Loc (W -Locked(l ,M ) := true)

Granted(M ,L) := true
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A Deadlock originates if two machines are in a Wait cycle, otherwise stated
if for some (not yet Victimized) machine M the pair (M ,M ) is in the transitive
(not reflexive) closure Wait∗ of Wait . In this case the DeadlockHandler

selects for recovery a (typically minimal) subset of Deadlocked transactions
toResolve—they are Victimized to waitForRecovery, in which mode (control
state) they are backtracked until they become Recovered . The selection criteria
are intrinsically specific for particular transaction controllers, driving a usually
rather complex selection algorithm in terms of number of conflict partners, pri-
orities, waiting time, etc. In this paper we leave their specification for TaCtl

abstract (read: refinable in different directions) by using the choose operator.

DeadlockHandler =
if Deadlocked ∩ Victim �= ∅ then // there is a Wait cycle
choose toResolve ⊆ Deadlocked ∩ Victim
forall M ∈ toResolve Victim(M ) := true

where
Deadlocked = {M | (M ,M ) ∈ M ∗}
M ∗ = TransitiveClosure(Wait)
Wait(M ,N ) = forsome l Wait(M , l ,N )
Wait(M , l ,N ) =
l ∈ newLocks(M , currState(M )) and N ∈ TransAct \ {M } and
W -Locked(l ,N ) or (l ∈ W -Loc and R-Locked(l ,N ))
where newLocks(M , currState(M )) = (R-Loc,W -Loc)

Also for the Recovery component we use the choose operator to leave the
order in which the Victims are chosen for recovery refinable by different instan-
tiations of TaCtl. To be Recovered a machine M is backtracked by Undo(M )
steps until M is not Deadlocked any more, in which case it is deleted from the
set of Victims, so that be definition it is Recovered . This happens at the latest
when history(M ) has become empty.

Recovery =
if Victim �= ∅ then
choose M ∈ Victim TryToRecover(M )

where
TryToRecover(M ) =
if M �∈ Deadlocked then Victim(M ) := false
else Undo(M )

Recovered =
{M | ctl -state(M ) = waitForRecovery and M �∈ Victim}

Undo(M ) =
let (ValSet ,LockSet) = youngest(history(M ))
Restore(ValSet)
Release(LockSet)
Delete((ValSet ,LockSet), history(M ))

where
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Restore(V ) =
forall ((f , args), v) ∈ V f (args) := v

Release(L) =
let L = (R-Loc,W -Loc)
forall l ∈ Loc = R-Loc ∪W -Loc Unlock(l ,M )

Note that in our description of the DeadlockHandler and the (partial)
Recovery we deliberately left the strategy for victim seclection and Undo

abstract leaving fairness considerations to be discussed elsewhere. It is clear
that if always the same victim is selected for partial recovery, the same deadlocks
may be created again and again. However, it is well known that fairness can be
achieved by choosing an appropriate victim selection strategy.

4 Correctness Theorem

In this section we show the desired correctness property: if all monitored or
shared locations of any Mi are output or controlled locations of some other Mj

and all output locations of any Mi are monitored or shared locations of some
otherMj (closed system assumption)10, each run of TA(M,TaCtl) is equivalent
to a serialization of the terminating Mi -runs, namely the Mi1 -run followed by
the Mi2 -run etc., where Mij is the j -th machine of M which performs a commit
in the TA(M,TaCtl) run. To simplify the exposition (i.e. the formulation of
statement and proof of the theorem) we only consider machine steps which take
place under the transaction control, in other words we abstract from any step Mi

makes before being Inserted into or after being Deleted from the set TransAct
of machines which currently run under the control of TaCtl.

First of all we have to make precise what a serial multi-agent ASM run is
and what equivalence of TA(M,TaCtl) runs means in the general multi-agent
ASM framework.

Definition of Run Equivalence. Let S0, S1, S2, . . . be a (finite or infinite) run
of TA(M,TaCtl). In general we may assume that TaCtl runs forever, whereas
each machine M ∈ M running as transaction will be terminated at some time –
at least after commit M will only change values of non-shared and non-output
locations11. For i = 0, 1, 2, . . . let Δi denote the unique, consistent update set
defining the transition from Si to Si+1. By definition of TA(M,TaCtl) the
update set is the union of the update sets of the agents executing M ∈ M resp.
TaCtl:

Δi =
⋃

M∈M
Δi(M ) ∪Δi(TaCtl).

10 This assumption means that the environment is assumed to be one of the component
machines.

11 It is possible that one ASM M enters several times as a transaction controlled by
TaCtl. However, in this case each of these registrations will be counted as a separate
transaction, i.e. as different ASMs in M.
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Δi(M ) contains the updates defined by the ASM TA(M ,TaCtl) in state Si
12

and Δi(TaCtl) contains the updates by the transaction controller in this state.
The sequence of update sets Δ0(M ), Δ1(M ), Δ2(M ), . . . will be called the sched-
ule of M (for the given transactional run).

To generalise for transactional ASM runs the equivalence of transaction sched-
ules known from database systems [6, p.621ff.] we now define two cleansing op-
erations for ASM schedules. By the first one (i) we eliminate all (in particular
unsuccessful-lock-request) computation segments which are without proper M -
updates; by the second one (ii) we eliminate all M -steps which are related to a
later Undo(M ) step by the Recovery component:

(i) Delete from the schedule of M each Δi(M ) where one of the following two
properties holds:

Δi(M ) = ∅ (M contributes no update to Si),
Δi(M ) belongs to a step of an M -computation segment where M in
its ctl state(M ) =TA-ctl does CallLockHandler(M , newLocks) and
in its next step moves from waitForLocks back to control state TA−ctl
because the LockHandler Refused(M , newLocks).13

In such computation steps M makes no proper update.
(ii) Repeate choosing from the schedule of M a pair Δj (M ) with later Δj ′(M )

(j < j ′) which belong to the first resp. second of two consecutiveM -Recovery
steps defined as follows:

a (say M -RecoveryEntry) step whereby M in state Sj moves from TA-ctl
to waitForRecovery because it became a Victim,
the next M -step (say M -RecoveryExit) whereby M in state Sj ′ moves
back to control state TA-ctl because it has been Recovered .

In these two M -Recovery steps M makes no proper update. Delete:

(a) Δj (M ) and Δj ′(M ),
(b) the ((Victim,M ), true) update from the corresponding Δt (TaCtl) (t <

j ) which in state Sj triggered the M -RecoveryEntry,
(c) TryToRecover(M )-updates in anyΔi+k (TaCtl) between the consid-

ered M -RecoveryEntry and M -RecoveryExit step (i < j < i + k < j ′),
(d) eachΔi′ (M ) belonging to the M -computation segment from TA-ctl back

to TA-ctl which contains the proper M -step in Si that is UNDOne
in Si+k by the considered TryToRecover(M ) step; besides control
state and Record updates these Δi′(M ) contain updates (�, v) with

12 We use the shorthand notation Δi(M ) to denote Δi(TA(M ,TaCtl)); in other
words we speak about steps and updates of M also when they really are done
by TA(M ,TaCtl). Mainly this is about transitions between the control states,
namely TA-ctl , waitForLocks, waitForRecovery (see Fig.1), which are performed dur-
ing the run of M under the control of the transaction controller TaCtl. When we
want to name an original update of M (not one of the updates of ctl state(M ) or of
the Record component) we call it a proper M -update.

13 Note that by eliminating this CallLockHandler(M ,L) step also the corresponding
LockHandler step HandleLockRequest(M ,L) disappears in the run.
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� = (f , (valSi (t1), . . . , valSi (tn))) where the corresponding Undo updates
are (�, valSi (f (t1, . . . , tn))) ∈ Δi+k (TaCtl),

(e) the HandleLockRequest(M , newLocks)-updates in Δl′(TaCtl) cor-
responding to M ’s CallLockHandler step (if any: in case newLocks
are needed for the proper M -step in Si) in state Sl (l < l ′ < i).

The sequenceΔi1(M ), Δi2(M ), . . . with i1 < i2 < . . . resulting from the appli-
cation of the two cleansing operations as long as possible – note that confluence is
obvious, so the sequence is uniquely defined – will be called the cleansed schedule
of M (for the given run).

Before defining the equivalence of transactional ASM runs let us remark that
TA(M,TaCtl) has indeed several runs, even for the same initial state S0. This
is due to the fact that a lot of non-determinism is involved in the definition of
this ASM. First, the submachines of TaCtl are non-deterministic:

In case several machines M ,M ′ ∈ M request conflicting locks at the same
time, the LockHandler can only grant the requested locks for one of these
machines.
Commit requests are executed in random order by the Commit submachine.
The submachine DeadlockHandler chooses a set of victims, and this
selection has been deliberately left abstract.
The Recovery submachine chooses in each step a victim M , for which the
last step will be undone by restoring previous values at updated locations
and releasing corresponding locks.

Second, the specification of TA(M,TaCtl) leaves deliberately open, when a
machine M ∈ M will be started, i.e., register as a transaction in TransAct to be
controlled by TaCtl. This is in line with the common view that transactions
M ∈ M can register at any time to the transaction controller TaCtl and will
remain under its control until they commit.

Definition 1. Two runs S0, S1, S2, . . . and S ′
0, S

′
1, S

′
2, . . . of TA(M,TaCtl) are

equivalent iff for each M ∈ M the cleansed schedules Δi1(M ), Δi2 (M ), . . . and
Δ′

j1
(M ), Δ′

j2
(M ), . . . for the two runs are the same and the read locations and

the values read by M in Sik and S ′
jk

are the same.

That is, we consider runs to be equivalent, if all transactions M ∈ M read
the same locations and see there the same values and perform the same updates
in the same order disregarding waiting times and updates that are undone.

Definition of Serializability. Next we have to clarify our generalised notion of
a serial run, for which we concentrate on committed transactions – transactions
that have not yet committed can still undo their updates, so they must be left
out of consideration14. We need a definition of the read- and write-locations of

14 Alternatively, we could concentrate on complete, infinite runs, in which only com-
mitted transactions occur, as eventually every transaction will commit – provided
that fairness can be achieved.
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M in a state S , i.e. ReadLoc(M , S ) and WriteLoc(M , S ) as used in the definition
of newLocks(M , S ).

The definition of Read/WriteLoc depends on the locking level, whether locks
are provided for variables, pages, blocks, etc. To provide a definite definition,
in this paper we give the definition at the level of abstraction of the locations
of the underlying class M of component machines (ASMs) M . Refining this
definition (and that of newLocks) appropriately for other locking levels does not
innvalidate the main result of this paper.

We define ReadLoc(M , S ) = ReadLoc(r , S ) and analogously WriteLoc(M , S )
= WriteLoc(r , S ), where r is the defining rule of the ASM M . Then we use
structural induction according to the definition of ASM rules in [5, Table 2.2].
As an auxiliary concept we need to define inductively the read and write locations
of terms and formulae. The definitions use an interpretation I of free variables
which we suppress notationally (unless otherwise stated) and assume to be given
with (as environment of) the state S . This allows us to write ReadLoc(M , S ),
WriteLoc(M , S ) instead of ReadLoc(M , S , I ), ReadLoc(M ,S , I ) respectively.

Read/Write Locations of Terms and Formulae. For state S let I be the
given interpretation of the variables which may occur freely (in given terms or
formulae). We write valS (construct) for the evaluation of construct (a term or a
formula) in state S (under the given interpretation I of free variables).

ReadLoc(x , S ) = WriteLoc(x , S ) = ∅ for variables x
ReadLoc(f (t1, . . . , tn), S ) =
{(f , (valS (t1), . . . , valS (tn)))} ∪ ⋃

1≤i≤n ReadLoc(ti , S )
WriteLoc(f (t1, . . . , tn), S ) = {(f , (valS (t1), . . . , valS (tn)))}

Note that logical variables are not locations: they cannot be written and their
values are not stored in a location but in the given interpretation I from where
they can be retrieved.

We define WriteLoc(α, S ) = ∅ for every formula α because formulae are not
locations one could write into. ReadLoc(α, S ) for atomic formulae P(t1, . . . , tn)
has to be defined as for terms with P playing the same role as a function sym-
bol f . For propositional formulae one reads the locations of their subformulae. In
the inductive step for quantified formulae domain(S ) denotes the superuniverse
of S minus the Reserve set [5, Ch.2.4.4] and I dx the extension (or modification)
of I where x is interpreted by a domain element d .

ReadLoc(P(t1, . . . , tn), S ) =
{(P , (valS (t1), . . . , valS (tn)))} ∪ ⋃

1≤i≤n ReadLoc(ti , S )
ReadLoc(¬α) = ReadLoc(α)
ReadLoc(α1 ∧ α2) = ReadLoc(α1) ∪ ReadLoc(α2)
ReadLoc(∀xα, S , I ) = ⋃

d∈domain(S) ReadLoc(α, S , I
d
x )

Note that the values of the logical variables are not read from a location but
from the modified state environment function I dx .
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Read/Write Locations of ASM Rules

ReadLoc(skip, S ) = WriteLoc(skip, S ) = ∅
ReadLoc(t1 := t2, S ) = ReadLoc(t1, S ) ∪ ReadLoc(t2, S )
WriteLoc(t1 := t2, S ) = WriteLoc(t1, S )
ReadLoc(if α then r1 else r2, S ) =

ReadLoc(α, S ) ∪
{
ReadLoc(r1, S ) if valS (α) = true
ReadLoc(r2, S ) else

WriteLoc(if α then r1 else r2, S ) =

{
WriteLoc(r1, S ) if valS (α) = true
WriteLoc(r2, S ) else

ReadLoc(let x = t in r , S , I ) = ReadLoc(t , S , I ) ∪ ReadLoc(r , S , I
valS (t)
x )

WriteLoc(let x = t in r , S , I ) = WriteLoc(r , S , I
valS (t)
x ) // call by value

ReadLoc(forall x with α do r , S , I ) =
ReadLoc(∀xα, S , I ) ∪ ⋃

a∈range(x ,α,S ,I )ReadLoc(r , S , I
a
x )

where range(x , α,S , I ) = {d ∈ domain(S ) | valS ,I d
x
(α) = true}

WriteLoc(forall x with α do r , S , I ) =
⋃

a∈range(x ,α,S ,I )WriteLoc(r , S , I ax )

In the following cases the same scheme applies to read and write locations:15

Read [Write]Loc(r1 par r2, S ) =
Read [Write]Loc(r1, S ) ∪ Read [Write]Loc(r2, S )

Read [Write]Loc(r(t1, . . . , tn), S ) = Read [Write]Loc(P(x1/t1, . . . , xn/tn), S )
where r(x1, . . . , xn) = P // call by reference

Read [Write]Loc(r1 seq r2, S , I ) = Read [Write]Loc(r1, S , I ) ∪{
Read [Write]Loc(r2, S +U , I ) if yields(r1, S , I ,U ) and Consistent(U )
∅ else

For choose rules we have to define the read and write locations simultaneously
to guarantee that the same instance satisfying the selection condition is chosen
for defining the read and write locations of the rule body r :

if range(x , α,S , I ) = ∅ then
ReadLoc(choose x with α do r , S , I ) = ReadLoc(∃xα, S , I )
WriteLoc(choose x with α do r , S , I ) = ∅ // empty action

else choose a ∈ range(x , α, S , I )
ReadLoc(choose x with α do r , S , I ) =
ReadLoc(∃xα, S , I ) ∪ ReadLoc(r , S , I ax )

WriteLoc(choose x with α do r , S , I ) = WriteLoc(r , S , I ax )

We say that M has or is committed (in state Si , denoted Committed(M , Si))
if step Commit(M ) has been performed (in state Si).

Definition 2. A run of TA(M,TaCtl) is serial iff there is a total order < on
M such that the following two conditions are satisfied:

(i) If in a state M has committed, but M ′ has not, then M < M ′ holds.

15 In yields(r1, S , I ,U ) U denotes the update set produced by rule r1 in state S under I .
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(ii) If M has committed in state Si and M < M ′ holds, then the cleansed
schedule Δj1(M

′), Δj2(M
′), . . . of M ′ satisfies i < j1.

That is, in a serial run all committed transactions are executed in a total
order and are followed by the updates of transactions that did not yet commit.

Definition 3. A run of TA(M,TaCtl) is serialisable iff it is equivalent to a
serial run of TA(M,TaCtl).16

Theorem 1. Each run of TA(M,TaCtl) is serialisable.

Proof. Let S0, S1, S2, . . . be a run of TA(M,TaCtl). To construct an equiv-
alent serial run let M1 ∈ M be a machine that commits first in this run, i.e.
Committed(M , Si) holds for some i and whenever Committed(M , Sj ) holds for
some M ∈ M, then i ≤ j holds. If there is more than one machine M1 with this
property, we randomly choose one of them.

Take the run of TA({M1},TaCtl) starting in state S0, say S0, S
′
1, S

′
2, . . . ,S

′
n .

As M1 commits, this run is finite. M1 has been Deleted from TransAct and
none of the TaCtl components is triggered any more: neither Commit nor
LockHandler because CommitRequest resp. LockRequest remain empty; not
DeadlockHandler because Deadlock remains false since M1 never Waits for
any machine; not Recovery becauseVictim remains empty. Note that in this
run the schedule for M1 is already cleansed.

We now define a run S ′′
0 , S

′′
1 , S

′′
2 , . . . (of TA(M−{M1},TaCtl), as has to be

shown) which starts in the final state S ′
n = S ′′

0 of the TA({M1},TaCtl) run and
where we remove from the run defined by the cleansed schedules Δi(M ) for the
originally given run all updates made by steps of M1 and all updates in TaCtl

steps which concern M1. Let

Δ′′
i =

⋃
M∈M−{M1}

Δi(M ) ∪ {(�, v) ∈ Δi(TaCtl) | (�, v) does not concern M1}.

That is, in Δ′′
i all updates are removed from the original run which are

done by M1—their effect is reflected already in the initial run segment from
S0 to S ′

n—or are LockHandler updates involving a LockRequest(M1,L) or are
Victim(M1) := true updates of the DeadlockHandler or are updates involv-
ing a TryToRecover(M1) step or are done by a step involving a Commit(M1).

Lemma 1. S ′′
0 , S

′′
1 , S

′′
2 , . . . is a run of TA(M−{M1},TaCtl).

Lemma 2. The run S0, S
′
1, S

′
2, . . . ,S

′
n , S

′′
1 , S

′′
2 , . . . of TA(M,TaCtl) is equiv-

alent to the original run S0, S1, S2, . . . .

By induction hypothesis S ′′
0 , S

′′
1 , S

′′
2 , . . . is serialisable, so S0, S

′
1, S

′
2, . . . and

thereby also S0, S1, S2, . . . is serialisable with M1 < M for all M ∈ M−{M1}.�
16 Modulo the fact that ASM steps permit simultaneous updates of multiple locations,
this definition of serializability is equivalent to Lamport’s sequential consistency
concept [15].
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Proof.(Lemma 1). We first show that omitting in Δ′′
i every update from

Δi(TaCtl) which concernsM1 does not affect updates byTaCtl in S ′′
i concern-

ing M �= M1. In fact starting in the final M1-state S ′′
0 , TA(M− {M1},TaCtl)

makes no move with a Victim(M1) := true update and no move of Commit(M1)
or HandleLockRequest(M1,L) or TryToRecover(M1)

It remains to show that every M -step defined by Δ′′
i (M ) is a possible M -step

in a TA(M−{M1},TaCtl) run starting in S ′′
0 . Since the consideredM -schedule

Δi(M ) is cleansed, we only have to consider any proper update step of M in
state S ′′

i (together with its preceding lock request step, if any). If in S ′′
i M uses

newLocks , in the run by the cleansed schedules for the original run the locks
must have been granted after the first Commit, which is done for M1 before S ′′

0 .
Thus these locks are granted also in S ′′

i as part of a TA(M − {M1},TaCtl)
run step. If no newLocks are needed, that proper M -step depends only on steps
computed after S ′′

0 and thus is part of a TA(M−{M1},TaCtl) run step. �

Proof.(Lemma 2) The cleansed machine schedules in the two runs, the read
locations and the values read there have to be shown to be the same. First
consider any M �= M1. Since in the initial segment S0, S

′
1, S

′
2, . . . ,S

′
n no such M

makes any move so that its update sets in this computation segment are empty,
in the cleansed schedule of M for the run S0, S

′
1, S

′
2, . . . ,S

′
n , S

′′
1 , S

′′
2 , . . . all these

empty update sets disappear. Thus this cleansed schedule is the same as the
cleansed schedule of M for the run S ′

n , S
′′
1 , S

′′
2 , . . . and therefore by definition of

Δ′′
i (M ) = Δi(M ) also for the original run S0, S1, S2, . . . with same read locations

and same values read there.
Now consider M1, its schedule Δ0(M1), Δ1(M1), . . . for the run S0, S1, S2, . . .

and the corresponding cleansed schedule Δi0 (M1), Δi1(M1), Δi2(M1), . . . . We
proceed by induction on the cleansed schedule steps of M1. When M1 makes its
first step using the Δi0(M1)-updates, this can only be a proper M1-step together
with the corresponding Record updates (or a lock request directly preceding
such a Δi1(M1)-step) because in the computation with cleansed schedule each
lock request of M1 is granted and M1 is not Victimized. The values M1 reads
or writes in this step (in private or locked locations) have not been affected by
a preceding step of any M �= M1—otherwise M would have locked before the
non-private locations and keep the locks until it commits (since cleansed sched-
ules are without Undo steps), preventing M1 from getting these locks which
contradicts the fact that M1 is the first machine to commit and thus the first
one to get the locks. Therefore the values M1 reads or writes in the step defined
by Δi0 (M1) (resp. also Δi1(M1)) coincide with the corresponding location val-
ues in the first (resp. also second) step of M1 following the cleansed schedule to
pass from S0 to S ′

1 (case without request of newLocks) resp. from S0 to S ′
1 to S ′

2

(otherwise). The same argument applies in the inductive step which establishes
the claim. �
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5 Conclusion

In this article we specified (in terms of Abstract State Machines) a transaction
controller TaCtl and a transaction operator which turn the behaviour of a set
of concurrent programs into a transactional one under the control of TaCtl.
In this way the locations shared by the programs are accessed in a well-defined
manner. For this we proved that all concurrent transactional runs are serialisable.

The relevance of the transaction operator is that it permits to concentrate on
the specification of program behavior ignoring any problems resulting from the
use of shared locations. That is, specifications can be written in a way that shared
locations are treated as if they were exclusively used by a single program. This is
valuable for numerous applications, as shared locations (in particular, locations
in a database) are common, and random access to them is hardly ever permitted.

Furthermore, by shifting transaction control into the rigorous framework of
Abstract State Machines we made several extensions to transaction control as
known from the area of databases [6]. In the classical theory schedules are se-
quences containing read- and write-operations of the transactions plus the corre-
sponding read- and write-lock and commit events, i.e., only one such operation
or event is treated at a time. In our case we exploited the inherent parallelism in
ASM runs, so we always considered an arbitrary update set with usually many
updates at the same time. Under these circumstances we generalised the notion
of schedule and serialisability in terms of the synchronous parallelism of ASMs.
In this way we stimulate also more parallelism in transactional systems.

Among further work we would like to be undertaken is to provide a (proven to
be correct) implementation of our transaction controller and the TA operator, in
particular as plug-in for the CoreASM [7,8] or Asmeta [4] simulation engines. We
would also like to see refinements or adaptations of our transaction controller
model for different approaches to serialisability [13], see also the ASM-based
treatment of multi-level transaction control in [14]. Last but not least we would
like to see further detailings of our correctness proof to a mechanically verified
one, e.g. using the ASM theories developed in KIV (see [1] for an extensive list of
relevant publications) and PVS [9,12,11] or the (Event- [3]) B [2] theorem prover
for an (Event-) B transformation of TA(M,TaCtl) (as suggested in [10]).

Acknowledgement. We thank Andrea Canciani and some of our referees for
useful comments to improve the paper.
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Hamed Yaghoubi Shahir1, and Hans Wehn2,�

1 Software Technology Lab, Simon Fraser University, B.C., Canada
2 MDA Systems Ltd, Research & Development, B.C., Canada

{nnalband,glaesser,syaghoub}@sfu.ca,hw@mdacorporation.com

Abstract. Situation Analysis is critical for dynamic decision-making in
responding to real-world situations. The complex and intricate nature of
situation analysis processes calls for evolutionary modeling and formal
engineering methods that facilitate experimental validation of abstract
mathematical descriptions to link the essential design aspects with rapid
prototyping in early development phases. For the transition from abstract
concepts and requirements to precise specifications to high level design of
situation analysis systems, we derive here a generic ASM ground model
as a framework for defining the precise meaning of fundamental situation
analysis concepts applicable to different application domain models.
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1 Introduction

Situation Analysis (SA) is generally defined as a process, the examination of
a situation, its elements, and their relations, to provide and maintain a state
of situation awareness [1], which is critical for situation assessment in dynamic
decision-making to respond to security threats and disaster situations. Situation
awareness refers to the perception of the elements in the environment within a
space-time continuum, the comprehension of their meaning, and the projection
of their status in the near future [2]. Computational situation analysis models
are important in situations that routinely call for intelligent coordination and
management of multiple mobile surveillance platforms (satellites, surveillance
aircrafts, drones, radar, etc.) operating in vast geographical areas. Situational
evidence is collected for maritime security and military surveillance to protect
critical infrastructure against a variety of threats and illegal activities, and also
for emergency management to coordinate rescue and relief operations after a
disaster such as a major flooding, oil spill, earthquake, or tsunami. Increasing
complexity of decision-making problems and elaborate contextual situations have
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altered the nature of decision support. Interactive decision-making, to be facili-
tated by decision support systems, has become a complex multifaceted process
that requires “solving various semi- to ill-structured problems involving multiple
attributes, objectives and goals” [3]. A comprehensive design approach based on
evolutionary and iterative processes is needed to address the non-deterministic
complexities arising from today’s real-world decision-making requirements [4].

In this paper we propose a formal semantic framework for engineering and
prototyping of Distributed Situation Analysis (DSA) models using the Abstract
State Machine (ASM) method [5] for the construction and analysis of ground
models and their refinements [6]. Progressive real-world SA system design calls
for evolutionary modeling and formal methods for experimental validation of
mathematical models to link essential design aspects with rapid prototyping
in early development phases to facilitate: i) analysis of the problem space, ii)
reasoning about complex design decisions, and iii) systematic derivation of con-
formance criteria for checking the validity of domain models. A formal approach
is justified and unavoidable if one strives for robustness, reliability and repro-
ducibility of results, satisfaction of constraints, and a language to represent and
reason about complex dynamic situations [7]. Formulating SA models in abstract
computational terms turns out to be challenging since the underlying concepts
lack semantic clarity (as will be explained), and faces two notoriously problem-
atic questions: 1) How can one formulate the problem in a concise but precise and
yet understandable form? and 2) How can one describe and evaluate a solution
prior to building it into a system?

Various SA models have been proposed and studied by different communities
and in different application fields (see Sections 2-3). The two novel contributions
of this paper are the fully decentralized organization of the analysis framework
based on an asynchronous computation model with multiple mobile observers,
and a clear separation of generic system concepts from domain specific analysis
methods and fusion algorithms needed for processing time series (sequences of
consecutive data points collected over time) to detect and identify objects of
interest, analyze and assess their behavior. Observers cooperate in gathering sit-
uational evidence by monitoring discrete events, distributed in time and space,
to develop a coherent and consistent global picture of a dynamic situation as
it unfolds. Our goal is to derive a robust and extensible, generic framework as
a semantic foundation for defining the meaning of fundamental SA concepts in
abstract computational terms as distributed ASM ground model, the validity of
which can be established by analyzing and reasoning about its key attributes,
consistency, correctness and completeness [6], and by observation and experi-
mentation with realistic scenarios, maritime security in our case. To the best of
our knowledge the approach presented here is new and original.

Section 2 discusses related work. Section 3 defines the problem scope. Next,
Section 4 explains common situation analysis concepts and illustrates the DSA
system model. Section 5 then introduces the ASM ground model and refinements
for various core components of the DSA framework, and Section 6 summarizes
lessons learned. Section 7 concludes the paper.
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2 Related Work

We discuss here related work on formal analysis and design of situation analysis
models and on distributed problem solving frameworks.

Formal Approaches to Situation Analysis: The three major approaches to
formalizing SA concepts can be characterized as using: 1) general purpose formal
logics (e.g., [8]), 2) methods based on machine learning and ontologies (e.g., [9]),
and 3) distinct SA methods and models like Dynamic Case-Based Reasoning
[10] and State Transition Data Fusion (STDF) [11]. STDF, an extension of the
JDL Data Fusion Model [1], the dominant sensor fusion paradigm, provides a
unification of both sensor and higher-level fusion across three principal levels [11]:
Object Assessment, Situation Assessment, and Impact Assessment. Like the JDL
model, STDF is a functional model, although less abstract than the JDL model,
and seeks to demonstrate a unifying framework across the three levels.

Some of the above works make specific commitments prior to rigorous require-
ments analysis and design validation. The approach proposed in [8] attempts to
make their decision support model operational by employing reasoners that are
associated with the specific logics. A situation analysis system must necessarily
be able to reason about data over time, an aspect that is not supported by the
applied reasoners; hence, the authors had to design their framework so as to
work around this issue.

Although the above approaches may not lend themselves well to SA and
decision support systems design as addressed here, they each have their own
strengths and benefits. Approaches specifically focusing on early phases of prob-
lem formulation and design are explored in [12] and [7, 13].

There is a necessity for integrated approaches to design SA decision sup-
port systems for complex domains [4]. “Large, complex systems are hard to
evolve without undermining their dependability. Often change is disproportion-
ately costly, ... system architectures are pivotal in meeting the above challenge. ...
First, dependability properties tend to be emergent, and are much more readily
modeled and controlled at an architectural level.” [4, 14].

Formal frameworks proposed for SA models mainly focus on specific and
mostly theoretical aspects. Practical needs call for adaptive and evolutionary
design methods that encompass iterative modeling, interactive simulation and
experimental validation for the purpose of linking essential aspects of design
with rapid prototyping of executable SA models in early phases to facilitate:
1) analysis of the problem space, 2) reasoning about design decisions, and 3)
deriving conformance criteria for checking the validity of SA domain models.

Distributed Problem Solving: Distributed problem solving is defined as the
cooperative solution of problems by a decentralized and loosely coupled collection
of problem solvers [15]. This approach provides increased performance through
scalability, robustness, and fault tolerance, as such a system can easily respond
to dynamic changes by reconfiguration as needed to maintain its function.

The Multi-agent systems paradigm facilitates understanding and building dis-
tributed systems [16]. Multi-agent systems are “composed of multiple interacting
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computing elements, known as agents”, where an agent is “a computer system
situated in some environment and capable of autonomous action in this environ-
ment in order to meet its objectives” [16]. Wooldridge and Jennings [17] suggest
that, in order to meet their design objectives, agents need to be proactive, i.e.,
able to take initiatives in performing goal-directed actions; reactive, i.e., able
to perceive the environment and react to its changes, and social, i.e., able to
interact with other agents and humans.

According to [16], a multi-agent system can be conceptually divided into two
components: the agents and the environment (viewed as a special agent). Each
agent has a local state at any time, which represents all the information the
agent possesses. The state of the environment represents information about the
outside world. Agents may have partial views of the world, which may or may
not be accurate. The behavior of environment is typically nondeterministic, for
it is not always possible to accurately predict the behavior of environment ahead
of time. The global state of the system is composed of the combination of local
states of its constituent agents and the environment.

3 Problem Description

The three main, partially overlapping, views on situation analysis across different
communities are: the cognitive science perspective [18], which comes from the
human factors community and focuses on measuring team situation awareness by
“taking the system itself as the unit of analysis and focusing on the interactions
between the parts of the system and resultant emerging behavior rather than
study its parts in isolation” [18]; the computer science perspective represented
by agent-based systems [12], which views SA systems as systems operated by
multiple intelligent autonomous agents; and the information fusion perspective,
which provides a framework for SA from the viewpoint of data fusion, defined
as “the process of utilizing one or more data sources over time to assemble a
representation of aspects of interest in an environment” [11].

While these perceptions of processes for which we need computational models
appropriately define situation analysis from their respective viewpoints, there
are noticeable semantic gaps between them. In particular, the cognitive science
approach is more at the abstraction level of human interactions and thus does
not provide an explicit representation of a system model and its entities. On
the other hand, existing agent-based approaches, while providing clear system
models, do not provide experimental platforms for testing their models and do
not explicitly define the underlying SA concepts. Lastly, existing data fusion
approaches lack intuitive formalizations for building systems. To the best of our
knowledge, currently there is no formal SA framework that provides notational
means for turning abstract requirements into precise specifications of relevant
concepts, and subsequently using these specifications for high level system de-
sign. The goal of this paper is to unify the three viewpoints mentioned above
through a novel Distributed Situation Analysis framework, filling in the major
semantic gaps and coming up with a comprehensive definition of the framework.
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Fig. 1. Fusion Model: Adopted from Simplified JDL Model

Figure 1 illustrates our interpretation of the common ground in terms of an
abstract fusion model adopted from the Simplified JDL model [1]. In this paper,
we focus on the Object Assessment and Situation Assessment layers.

SA systems inevitably deal with complex situations: processing complex data,
resolving conflicting observations, reasoning about uncertainty, adjusting system
parameters like sensor characteristics and positions, etc. While the main role of
the system is not (and cannot be) to make decisions, it assists and guides human
operators in making decisions. Accuracy, performance and reliability are vital
factors. This calls for explorative modeling to identify and accurately define
the key concepts so as to gradually refine complex models; likewise, this entails
formal approaches to properly define semantics in abstract mathematical terms.

4 Key Concepts in DSA

In this section, we identify common concepts associated with SA system models
and define a DSA architecture which is generic and potentially suitable in diverse
application domains, including maritime safety and security, air traffic control,
road traffic management, search and rescue operations, and more. We start with
two notorious challenges that any such system needs to address.

Observation Uncertainty: Realistic DSA system models need to take into
account adversarial impact factors of the physical environment in which a sys-
tem operates. Observers use mobile and stationary sensor platforms for mon-
itoring areas of interest to gather situational evidence of events distributed in
time and space. This results in a series of discrete observations, or time series.1

However, noise and uncertainty pose a notorious problem. Due to weather con-
ditions, failing equipment, technological limitations like observation errors of

1 A time series is a sequence of discrete data points, measured typically at successive
points in time spaced at uniform time intervals.
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sensor equipment, observations may be (and often are) inaccurate, incomplete
or even invalid. Another challenge is integrating local observations from multi-
ple observers to develop a coherent and consistent global picture of a complex
situation as it unfolds. Additionally, differences between the local view of in-
dividual observers and the resulting global view of the system require conflict
resolution algorithms to be deployed for maintaining a coherent and consistent
global picture.

Concepts and Terminology: We outline here the main concepts and vocab-
ulary of our situation analysis system model.

– Environment refers to the part of the external physical world that interacts
with the system. The environment has an impact on the margin of accuracy
of sensor values. In that regard, the environment is left implicit; however,
we see its effects in the accuracy and reliability of sensory input.

– Observation refers to a data point in a time series, normally associated with a
single object in the environment. We generally assume that each observation
enters the system with an associated timestamp.

– Objects are all entities in the environment that can be observed by sensors
and are typically divided into two basic types: objects of interest (OOI) (e.g.,
a vessel) and other objects (e.g., a log drifting in the water). Objects that
are not an OOI at a given time are considered noise. The type of an object
may change from OOI to noise and vice versa as the situation unfolds.

– Sensors are interfaces of the system with the external world. Often, multiple
heterogeneous sensors are used in combination to provide a collection of
observations in any given state. We distinguish between logical and physical
sensors. A logical sensor is an input source for an observer and belongs to
only one observer. More than one logical sensor can be mapped onto one
physical sensor. Typical sensor types include radar, satellites, sensor units
on aircrafts, drones, the human eye, etc.

– Trajectory refers to a time series that describes how an object moves through
space as a function of time, assuming that data points may as well specify
additional object characteristics beyond geospatial and kinematic aspects of
observable behavior such as position, heading and speed over ground.

– Monitoring means continued reading of sensor values and is subject to un-
certainty due to possible malfunctioning of sensors, weather conditions, and
other possible factors.

– Observers are computational agents processing sensor output values. Each
observer has a number of sensors which generate local observations. They
may be mobile or stationary, where stationary observers are considered a
special case of mobile ones.

– Reasoners are computational agents with a more global view of the envi-
ronment and typically have access to additional contextual and background
information. Each reasoner has a number of observers which provide input
values.
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– Confidence refers to a real number in the closed interval [0, 1] and reflects
the likelihood of a sensor to produce reliable output relative to other sen-
sors in a system. Confidence values are assigned by observers and may vary
dynamically, depending on the type of data it senses. Observers may have a
confidence value too, assigned by their associated reasoners.

There are more attributes of perceived information such as completeness and
timeliness of information, which are outside of the scope of this paper. The
relevant concepts introduced above are carefully selected in consultation with
domain experts, based on their knowledge and experience (see [1], [19]).

Physical Network vs. Logical Network: We generally distinguish between
the logical network, which defines the interactions between different conceptual
components of the system, i.e., connections and interactions between sensors,
observers, and reasoners, and the physical network, which refers to the network
situated in the environment. As Figure 2 illustrates, in the logical network, which
constitutes the generic system architecture of the framework, a set of observers is
connected to a reasoner. Each observer has a number of logical sensors providing
observations as input to the observer. Each logical sensor belongs to only one
observer, and each observer reports to only one reasoner. In Figure 2, the rea-
soners constitute a flat hierarchical structure; however, the framework provides
flexibility for structuring the level of hierarchy of reasoner interactions from flat
and decentralized to more hierarchical paradigms, resulting in architectures that
can have additional layers. A fourth layer, not explicitly shown in Figure 2, is
the human decision-maker who relies on the information from reasoners (see [4]).

Figure 3 illustrates the physical network structure. Observers are located ge-
ographically close to the area they monitor. Sensors have possibly overlapping
observation areas, which may differ in size, and different sensing capabilities.
Observers assign appropriate confidence values to sensors based on what they
observe and how accurate the measurements are relative to the observation of
the same object by other sensors. These confidence values are used for conflict
resolutions and inconsistency management of conflicting observations. Observer
agents may change these confidence values over time, as they perform internal
examination and reconfiguration during the operation of the system.
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Fig. 3. Physical Network Structure

Global situation awareness of such a distributed collaborative system is more
than the sum of the bits and pieces from local awareness associated with each
of the collaborating members. For forming global situation awareness, the DSA
system incorporates autonomous reasoning of reasoner and observer agents. For-
mation of the global situation awareness is achieved from local observations and
local understandings, through communication, decentralized decision making,
and distributed agreement.

5 Formal Semantic Framework

This section introduces and formally describes our generic DSA system model in
terms of a distributed ASM with multiple autonomously operating agents, which
is intended to serve as a ground model [6] of a semantic framework for defining the
meaning of the abstract system concepts identified in the previous section. We
assume an asynchronous computation model with mobile and stationary agents,
where each agent is identified with either an observer entity or a reasoner entity
in the network. Additionally, a single distinguished agent represents the part of
the physical environment that interacts with the system. The respective agents
are referred to as: observer agent, reasoner agent, and environment agent.

Sections 5.1 and 5.2 present the control units associated with observer and
reasoner agents, respectively, while Section 5.3 addresses data and information
flow in the system. Because the underlying concepts are fairly abstract and thus
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require some explanation, we can present here only part of our formalization.
Certain parts are left open intentionally for a clear separation of concerns be-
tween the generic DSA model and instantiations of this model in a given domain
context (see Sect. 6). The below domains and universes represent basic entities.

Universes and Domains

Agent ≡ ObserverAgent ∪ReasonerAgent ∪ EnvironmentAgent

Sensor ≡ Radar ∪ Sonar ∪ Satellite ∪ · · · ∪Human

Object

Observation

Confidence ≡ RealNumber ∈ [0 . . . 1]
Trajectory

Mode ≡ {Idle, Cleaning,Association, . . . } // Operating modes of control units

Characteristic attributes of basic entities are ASM functions as illustrated below.

Functions

reasoner : Observer �→ Reasoner // Network structure
observers : Reasoner �→ Set(Observer)

observer : Sensor �→ Observer

sensors : Observer �→ Set(Sensor)

object : Observation �→ Object // Observed object
location : Observation �→ Position // Object coordinates
time : Observation �→ Time // Observation timestamp
observationConfidence : Observation �→ Confidence // Confidence values

The initial state of the DSA model when the system starts is monitoring, in
which dynamic ASM functions for observations, objects, and trajectories are set
to undef. A distinguished monitored function now represents the logical system
time, assuming that the values of now increase monotonically over system runs.
Actual physical time constraints depend on operational aspects like speed of
moving objects, size of the observation area, observation time window, et cetera.

5.1 Observer Agent Controller

Observer agents run the observer agent controller program, which is formulated
as a Control State ASM [5]. Figure 4 shows the graphical representation. At
the highest level of abstraction, this ASM program consists of the following four
components (i.e., ASM rules) for analyzing and processing time series.

– Detection & Registration: Each observer agent receives raw sensor data
from its sensors in a format that depends on the sensor type. Data is subject
to inconsistencies, corrupted and missing data, and noise. At this level, the
agent detects observed objects and pre-processes data to generate collections
of cleaned observations (see Section 5.3) as input for the next step.

– Object Association:Processing the cleaned observations, an observer agent
determines for each observed object whether the object occurs for the first
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Fig. 4. Control State ASM of Observer Agent

time or has already been spotted before in a previous state. First, multiple
observations of the same object by different sensors are fused into a merged
observation. In this process, any inconsistencies are resolved by taking into
account the confidence values of sensors either to determine the most likely
observation or to assign a combined confidence value to the resulting ob-
servation. Next, the agent updates its set of visible objects and produces
processed observations by associating with each object a history of related
observations over time, which constitutes part of the object trajectory. For
details on the seq-construct, see [5, Chapter 4.1].

ObjectAssociation(O : ObserverAgent, T : Time) ≡
if mode(O) = Association then

mergedObs(O,T )←
EvaluateObjects({ ⋃

s∈sensors(O)

cleanedObs(s, T )}, O, T ) seq

processedObs(O, T )←
AssociateObjects({mergedObs(O, T )}, { ⋃

T−δ≤t<T

processedObs(O, t)}, O, T )

mode(O) := Trigger

The ObjectAssociation rule above consists of two consecutive steps. Evaluate-
Objects merges different observations of the same objects into a single ob-
servation. AssociateObjects then checks each object being observed in the
current state, trying to link the object with matching observations (for the
same object) in a previous state, and effectively associates objects with their
related history of observations, where δ limits the history being considered.
The first step of vertical refinement of AssociateObjects is illustrated below.
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AssociateObjects(mergedObs, processedObs : Set(Observation),
O : ObserverAgent, T : Time) ≡

objectSet(O) := {object(x) | x ∈ ( ⋃
t<T

processedObs(O, t))}
forall obs in mergedObs(O, T ) do

if �object(obs) ∈ objectSet(O) then // New object detected
objectStatus(object(obs)) := initiated
processedObs(O,T ) := processedObs(O, T ) ∪ {obs}

else
objectStatus(object(obs)) := updated // Update known object

tempAssociatedObs ← AssociateObservations(obs,
{x | object(obs) = object(x) ∧ x ∈ ( ⋃

t<T

processedObs(O, t))}) seq
processedObs(O,T ) := processedObs(O, T ) ∪ tempAssociatedObs
// Update history of known objects observed in current state

– Trigger Generation: Each observer agent notifies its associated reasoner
agent once the processed observations are ready. The reasoner agent starts
processing its input once it has received notifications from all its observers.

– Confidence Adjustment: Observer agents dynamically update confidence
values associated with sensors based on accuracy assessment of the sensor
observations by comparing the current and previously processed observations.

5.2 Reasoner Agent Controller

Reasoner agents run the reasoner agent controller program specified as Control
State ASM in Figure 5. At the highest level of abstraction, the behavior is
defined in terms of a synchronous parallel composition of two main components:
intra-reasoner controller and inter-reasoner controller. Each of these controllers
is explained and formally defined below.
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Intra-Reasoner Controller

– Combine Observations: A reasoner agent fuses information received from
its observer agents by combining the processed observations for the respective
objects being identified so as to eliminate any redundancy. The following
ASM specification of the CombineObservations rule describes in more detail
the process of combining observations.

CombineObservations(R : ReasonerAgent, T : Time) ≡
if mode(R) = Fusion then

tempCategorizedObs(R,T )←
CategorizeObservations({ ⋃

o∈observer(R)

processedObs(o, T )}, R, T ) seq

combinedObs(R, T )← FuseObservations({tempCategorizedObs(R,T )})
mode(R) := Resolution

First, CategorizeObservations orders in a list the processed observations re-
ceived from observer agents according to the observed objects (⊕ adds an
element at the end of a list). Next, FuseObservations joins and blends multiple
observations of the same object into a single, combined observation.

CategorizeObservations(processedObs : Set(Observation),
R : ReasonerAgent, T : Time) ≡

objectSet(R) := {object(x) | x ∈ ( ⋃

o∈observer(R)

processedObs(O, T ))}

forall obj in objectSet(R) do
forall obs in {( ⋃

o∈observer(R)

processedObs(o, T )) | object(obs) = obj} do

tempCategorizedObs(R,T ) := tempCategorizedObs(R,T )⊕ obs

– Resolve Inconsistencies: Processing of combined observations requires to
resolve any inconsistencies that may arise from conflicting observations in
overlapping observation areas. Factors include different sets of sensors used
by different observers, weather conditions, sensor limitations, transmission
problems, etc. The reasoner agent manages inconsistencies by relying on the
confidence values of reported observations and other relevant parameters.

– Adjust Confidence: Reasoner agents dynamically update the confidence
values associated with their observer agents. This is a more complex compu-
tational procedure that we intend to address in detail outside of this paper.

– Detect (Object) Relationships: The agent uses consistent observations
to detect relationships between the objects. Further, the agent incorporates
contextual information and other additional sources to detect whether an
interaction between two or more objects is suspicious and requires special
attention or even interjection [20].
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Inter-Reasoner Controller

– Exchange Information: Each reasoner agent communicates with a set of
neighbors (i.e., reasoner agents), which may vary from a single one to all
the others. If there is any new relevant information to share with neighbors
after performing the Detect Relationships rule, the agent prepares the new
information and communicates it to its neighbors in the logical network.

– Distributed Agreement: In every state, reasoner agents assess the newly
received information. If this conflicts with their own local “perception” of
a situation, they apply conflict resolution strategies using confidence values
and eventually agree on the situation. Upon reaching mutual agreement, the
updated information is shared with neighbors, eventually forming coherent
global observations. Different distributed agreement protocols exist in litera-
ture, and the selection of a suitable protocol is context dependent (e.g., [21]).

In the transition from Object Assessment to Situation Assessment (see Fig. 1),
the focus shifts from single observations of objects to object trajectories as a
fundamental concept in defining a situation analysis process. The meaning of
trajectory, as associated with each observable object o in a state St of the DSA
system model, is uniquely defined by the history of global observations for o
shared among all reasoner agents, up to state St−1. That is, a trajectory for a
given object is equivalent to the global view of the history of observations re-
lated to this object; this history will be be extended in the next step by fusing
the collection of observations reported for this object in the current state into a
single observation. We define the trajectory of an object o inductively as follows.

Trajectory

trajectory : Object → Trajectory

derived trajectory(o) ≡ trajectory∗(o, time(now − 1))
where the inductive definition of trajectory∗ is as follows:

trajectory∗ : Object×Time → List(Observation) // list of globalObs
trajectory∗(o, t) := trajectory∗(o, t− 1) ⊕ {o′|o′ ∈ globalObs(t) ∧ object(o′) = o}
trajectory∗(o, 0) := Ø

Reasoner agents use trajectories of objects along with additional contextual
and background information to reason about complex situations. The concept
of trajectory, as defined above, has the following properties:

Corollary 1. The function trajectory is a bijective mapping between the set of
objects in any given DSA state and their history of global observations.

Corollary 2. For each object o in a DSA state, trajectory(o) is a time series
of coherent and, in a probabilistic sense based on confidence values, consistent
observations of o over a run of the DSA model.2

2 Intuitively, the function trajectory yields the best possible situational evidence one
can compute under uncertainty from multiple observations of how objects move.
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Fig. 6. Data & Information Flow

5.3 Data and Information Flow

A vital aspect of any situation analysis system is fusion of raw data (after fil-
tering out noise) at the sensor level into information that is relevant to deci-
sion makers. Figure 6 illustrates the data and information flow in the proposed
framework. As explained in Sections 5.1 and 5.2, an observer agent receives raw
observations from its sensors and, through its operational components, produces
processed observations for each object. The reasoner agent then combines those
observations, seeking to maintain consistency in the presence of uncertainty.

6 Lessons Learned

Research collaborations with MDA Systems Ltd. and Defence R&D Canada
in several funded projects on maritime safety and security have inspired the
work we present here [7, 13, 22]. Maritime situation awareness [23] is critical
for Canada to secure its vast coast lines against a variety of threats and illegal
activities. The DSA model applies directly to maritime surveillance operations,
for instance, to detect suspicious multi-vessel interactions that point to a threat
(e.g. piracy, smuggling) or a dangerous situation (e.g. imminent collision). This
is a research project to develop probabilistic anomaly-detection algorithms using
clustering methods for grouping vessels and Hidden Markov Models for activity
and scenario detection [20]. In our experiments, we use US Coast Guard AIS data
from marine traffic in coastal waters around North America, which amounts to
billions of data points (one every few minutes for each vessel: position, speed,
course, type, etc.) forming complex time series [20]. Striving for what works
best in real-world situations, we often face modeling decisions that inevitably
require “getting one’s hands dirty” and combine qualitative with quantitative
modeling to evaluate solutions. Large-scale situation analysis calls for design
and engineering methods and tools that are distinguished by their mathematical
rigor and facilitate evolutionary processes for analyzing the suitability and the
validity of abstract models by observation and experimentation with real data.
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7 Conclusions and Future Work

For the work presented here, the ASM method simplified the daunting task of
bridging the gap between intuitive understanding of abstract requirements and
a formal situation analysis model that specifies how the underlying concepts are
interpreted in terms of a DSA ground model. This model only addresses Object
Assessment (detection, identification and tracking) and Situation Assessment (in
combination with domain-specific methods) to describe how time series related to
observation of objects under uncertainty can be fused into trajectories associated
with the monitored objects. Propagation of confidence values and distributed
agreement are beyond the scope of this paper as well. We are working on such
extensions through horizontal and vertical refinements, which introduce new
challenges since trajectories are more complex entities than objects. We also
work on integrating distributed agreement and conflict resolution algorithms.
After all, our model provides a robust and scalable mathematical framework for
turning common knowledge and understanding of situation analysis processes,
in the maritime domain and beyond, into computational descriptions with a
precise semantic foundation for defining the meaning of the underlying concepts
in an explicit and tangible form to analyze and reason about key attributes prior
to construction of systems. Finally, we aim at a fully executable DSA model in
CoreASM [24] for the maritime security domain, and encourage others to explore
other application fields by extending and evolving our model.

Acknowledgements. We would like to sincerely thank four anonymous re-
viewers for their detailed and valuable feedback contributing substantially to
the final version of this paper.
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24. Farahbod, R., Gervasi, V., Glässer, U.: Executable Formal Specifications of Com-
plex Distributed Systems with CoreASM. Science of Computer Programming 79(1),
23–38 (2014)



Introducing Aspect–Oriented Specification
for Abstract State Machines

Marcel Dausend and Alexander Raschke

Institute of Software Engineering and Compiler Construction
Ulm University, Ulm, Germany

Abstract. With the paradigm of aspect orientation, a developer is able
to separate the code of so-called cross-cutting concerns from the rest
of the program logic. This possibility is useful for formal specifications,
too. For example, security aspects can be separated from the rest of the
specification. Another use case for aspect orientation in specifications is
the extension of specifications without touching the original ones. The
definition of formal semantics for UML profiles without changing the
original UML specification is an example for this application. This paper
describes the implementation of the aspect oriented approach in Abstract
State Machines. We introduce an aspect language with its syntax and
formal semantics. It allows for specifying pointcuts where an original
specification is augmented with aspect specification. Besides the general
overview of this language extension, some ASM specific features of the
realization are depicted in detail.

1 Introduction

Aspect-oriented programming (AOP) [1] facilitates a clear separation and mod-
ularization of cross-cutting concerns. A cross-cutting concern is an issue like
logging that cannot be encapsulated in one function or class, but its correspond-
ing code has to be spread over the whole program [2]. According to AspectJ
[3], the most common representative of AOP, such a concern can be integrated
in an aspect. An aspect consists of pointcuts, advices and new local or global
definitions. A pointcut declares in a formal language where and under which
conditions the advices are inserted into the original program code.

This paper presents an approach of adapting the ideas of AOP for
Abstract State Machine (ASM) specifications. Besides the advantage of mak-
ing it possible to specify cross-cutting concerns like logging or security at one
joint place, aspect-orientation in ASMs allows for extending existing specifica-
tions without touching the original ASM. An example for this use case is the
definition of the semantics for an Unified Modeling Language (UML) profile. The
UML offers extensions to its syntax and semantics via so called profiles. Profiles
can be used to add new elements to UML models in order to define a domain
specific language for a special purpose.

Since there exist formal specifications of the semantics of significant parts
of the UML in ASMs ([4,5]), it is reasonable to define the semantics of UML
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profiles with ASMs, too. However, the UML specification "does not allow for
modifying existing metamodels" [6] through defining profiles. In this context,
aspect-orientation provides a comfortable solution to integrate the semantics of
profile elements into the UML. An aspect defines the partial semantics of new
elements and where they have to be deployed into the original specification. An
application of this approach is described in [7].

Aspect-oriented ASMs (AoASM) comprises the most important concepts of
AOP that are part of AspectJ (cf. [3,8]). Obviously, we have to restrict the
language features of AoASM to those that can be mapped from AspectJ to
ASM. The semantics of AoASM is defined by ASM and makes only use of existing
language features so that we can state that AoASM is a conservative extension
to ASM. Moreover AoASM introduces ASM specific concepts, e. g. dealing with
agents and parallelism.

1.1 Fundamental Terms of Aspect–Oriented Programming

In order to understand the core of AOP, the most important terms and concepts
are introduced in the following. As every AOP language, AoASM is based on
a join point model consisting of join points, "point[s] in the execution of a
program together with a view into the execution context when that point[s]
occur[s]" [8] and pointcuts "that picks out join points and expose[s] data from
the execution context of those join points." [8]. An advice declares a specification
fragment, given by regular ASM statements, to be inserted.

In other words, a join point depicts specific points during the execution of
a program, where the execution of the aspect code will be inserted. Thus, a
join point describes a dynamic situation of an execution.

In order to specify a dynamic join point, a pointcut expression describes static
positions in the code together with constraints that must hold at this position
during execution. An appropriate orchestration of the original code ensures that
if the constraints hold, the code of the advice is executed at the specified situa-
tions. The concrete static position in the code or specification is called a weaving
candidate, because the aspect execution is "weaved" into the original execution.
A pointcut language defines well-formed pointcut expressions.

An aspect is a unit of pointcuts, advices, and new definitions. In AoASM, an
aspect is allowed to introduce new universes, (derived) functions, and rules.

1.2 Intuitive Use of Aspect-Oriented ASMs

In the following, we show by an example from [9] how the AoASM pointcut
language can be used to specify a join point. The rule ProcessMoneyRequest

shown in spec. 1 describes how an automated teller machine (ATM) processes
a request for a given amount of money In and a current card CurrCard. If the
request is allowed the ATM will grant the money and change the balance of the
card account MoneyLeft. Otherwise, the card will be rejected and the ATM will
output a message that gives a reason for the refusal.
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If one would like to extend this specification in the sense of AoASM, one has
to identify join points where the extension should take place. In spec. 1 possible
extension points can be determined by pointcut expressions (cf. annotations) of
different kinds.

1 ProcessMoneyRequest(In) =
2 if allowed(In, CurrCard) then
3 GrantMoney(In)
4 MoneyLeft := MoneyLeft − In
5

args

get

call
this
set

executionwithin,
cflow

else Out := {NotAllowedMsg, CurrCard}

ASM-specification 1. The rule ProcessMoneyRequest [9]

The pointcut language defines pointcut expressions by a couple of patterns
that describe different constructs of the base language, in our case ASM, includ-
ing some properties of these constructs like the name or parameters.

Spec. 2 defines an aspect CommunicateMoneyGrant that extends spec. 1 in
order to prevent money laundering. Whenever an amount of money of more than
Euro 10.000 shall be granted, the finance authority has to be informed.

1 aspect CommunicateMoneyGrant =
2 pointcut ptcGrantMoney(currIn) :
3 within(’’ProcessMoneyRequest’’, ’’.∗’’) and
4 call(’’GrantMoney’’, ’’.∗’’) and
5 args(currIn)
6

7 advice CommunicateMoneyRequestToFinanceAuthority(currIn)
8 after : ptcGrantMoney(currIn) =
9 if currIn > 10.000 then

10 InformFinanceAuthority(accountHolder, currIn, date)

ASM-specification 2. The aspect CommunicateMoneyGrant.

The pointcut ptcGrantMoney conjuncts three pointcut expression. The key-
word within restricts the static context for the extension to a rule or derived
function of the given name and arguments, here ProcessMoneyRequest and
the regular expression pattern ".*" for one arbitrary argument. The name and
the arguments are string based regular expressions that are used for matching
the textual representation of the original ASM.

Additionally, call determines that the extension will be executed at rule calls
or derived function calls of the given name and arguments, here GrantMoney

with one arbitrary argument. Now, the join point is exactly determined because
the macro rule call GrantMoney(In) matches exactly the defined pointcut.

Last, the pointcut expression args exposes the context, here the one and only
argument of GrantMoney(In), so that it can be accessed within the advice.
Therefore, the pointcut definition uses this argument as an argument by its
own. A binding between In and currIn is created so that the actual value can be
considered in the advice’s body.
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The advice (spec. 2, ll. 6-9) uses the pointcut ptcGrantMoney(currIn) and defines
the behavior, that is inserted at matching weaving candidates in the original spec-
ification. The locator after states that the advice’s body has to be executed after
the matching weaving candidate. In order to make it possible that the advice may
be affected by updates of the matching weaving candidate, the macro call and the
advice are combined by sequential execution replacing the original macro call.

The pointcut expressions get and set in spec. 1 expose the context of functions
analogously to the args pointcut expression. The execution pointcut expression
describes the entry point of the body of a derived function or a rule.

The cflow pointcut expression gets an arbitrary pointcut expression as pa-
rameter. It matches any join point that is evaluated in the control flow de-
fined by the given pointcut expression, i. e. cflow(call("ProcessMoneyRequest",
".∗")) and call("GrantMoney", ".∗") matches the same join point as the pointcut
ptcGrantMoney, but does it dynamically. This dynamically restricts the execu-
tion of an extension to specific agents.

2 Ground Model of the Semantics of AoASM

In this section, we present a ground model according to [9] for the semantics of
AoASM. The semantics is described by operations on abstract syntax trees (ASTs)
of the specifications. We use a faintly extended AST representation by ASM func-
tions and universes as used by [10] to describe the semantics of the ASM interpreter
CoreASM. Differently from that work, we define our semantics not by giving new
interpretations but rather by analyzing, creating, and manipulating ASTs.

The aspect weaving activity analyses the original specification (α), tak-
ing into account the aspect-oriented specification (δ) in order to create the
resulting specification (ω). Most of the weaving can be done statically, but some
pointcut expressions (e. g. cflow) have to be checked during runtime. Therefore,
it is necessary to orchestrate ω, so that runtime information can be derived and
accessed for dynamic conditions (e. g. the callstack). This complex activity of
weaving is broken into the following self-contained tasks:

1. initialization (INIT)
2. identification of weaving candidates (IDENTIFY)
3. orchestration of the resulting specification (ORCHESTRATE)
4. weaving (WEAVE)

The ground model consists of an ASM rule Weaving that controls these four
different modes (cf. spec. 3). Each mode is described in detail in the following
subsections.

2.1 Initialization

The static part of the AoASM semantics is defined by ASM functions that
enable the navigation through the AST, like parent and firstChild, and functions
that provide information about a node, like its kind of node in the function
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grammarRule, its source specification spec (position in the textual representa-
tion), and its token (identifier or symbol). The function grammarRule defines the
kind of a node. Fig. 1 shows the AST representing the update rule of spec. 1.

Fig. 1. AST representation of the update rule of ProcessMoneyRequest

Different universes are introduced to mimic the hierarchy of node types. Each
node becomes a member of the universe NODE and if it is a non terminal it is
added to the universe ASTNODE, too. In particular, each node is a member of
the universe that corresponds to its grammar rule, e. g. the node with the token
In (see Figure 1) will be a member of the universe NODE as well as ID. The
representation of the AST for δ is built analogously.

In order to store the information collected during the identification phase, two
new universes JOINPOINT and BINDING are defined.

Analogously, we introduce some functions to keep track of dynamic infor-
mation that is required during the weaving process. If a join point in universe
JOINPOINT is created, its corresponding weaving candidate, advice, and bind-
ing, are stored by dynamic functions, here jpCandidate, jpAdvice, and jpBinding.

The dynamic part of the initialization prepares the abstract state for the
weaving process. All functions representing the ASTs of α and δ are initialized.
Next, the initial resulting specification ω is created as a copy of α. The corre-
sponding ASM specification is omitted because it is straight forward.

2.2 Identification of Weaving Candidates

During the identification phase, the universe JOINPOINT will be extended with
new join points for each pointcut (cf. spec. 3, ll. 11-12) that successfully matches
a weaving candidate.

The semantics of finding weaving candidates and creating corresponding join
points is defined in spec. 3. Every ASTNODE from the specification ω is matched
against each advice’s pointcut from δ (see subsection 3.1 for the refinement of
rule Matching). The result is a tuple of matchingResult and a binding.

A binding is a tuple of the name of the argument respectively the context
and the name of this argument inside the pointcut. It is added to the universe
BINDING and can be undef if the matching was not successful or no context
has to be exposed for this particular pointcut.
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1 rule Weaving =
2 [..]
3 else if mode(self) = IDENTIFY then
4 forall can ∈ ASTNODE with spec(can) = ω
5 forall ptc ∈ POINTCUT

6 let adv = parent(ptc) in
7 local matchingResult, binding in
8 let
9 (matchingResult, binding) ← Matching(can, ptc)

10 in
11 if matchingResult then
12 CreateJoinPoint(can, adv, binding)
13 mode(self) := ORCHESTRATE

14 [..]

ASM-specification 3. Identification of Pointcuts.

Each successful matching creates a join point based on its candidate, the
corresponding advice, and the binding. This join point is added to the uni-
verse JOINPOINT by the rule CreateJoinPoint. Finally, mode(self) is set to
ORCHESTRATE in order to continue with the orchestration.

2.3 Orchestration

The orchestration prepares ω for requests about the abstract state at runtime.
These requests are necessary to implement the pointcut expressions cflow and
this. The refinement in subsection 3.2 illustrates the orchestration for cflow.
Specification 4 shows the relevant excerpt of the ground model within the rule
Weaving. The specification ω is extended by rule AddCallStackSupport and
rule AddStateQuerySupport. The second rule AddStateQuerySupport inte-
grates auxiliary rules into ω that are used to dynamically query the state or call
stack. Last, mode(self) is set to WEAVE in order to proceed with the weaving
phase that is partitioned into the two parts SORT and INSERT.

1 rule Weaving =
2 [..]
3 else if mode(self) = ORCHESTRATE then
4 seq
5 AddCallStackSupport

6 seq
7 AddStateQuerySupport

8 mode(self) := WEAVE

9 weavingPhase(self) := SORT

10 [..]

ASM-specification 4. Orchestrating the resulting specification.

2.4 Weaving

In phase SORT, all join points are split into three sets for each weaving candidate
according to the locator ("before", "around", or "after") of the corresponding
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advice. The sets for each weaving candidate are used to create subtrees that are
woven into ω at their specific location during the second phase INSERT.

The semantics of the defined locators before, around, and after is a crucial
issue: What does before mean in the context of an ASM statement in AoASM?
The execution context of a single ASM statement is the current step of the
machine. In order to be able to guarantee that the inserted advice statements
will affect the corresponding statement of its weaving candidate or vice versa,
both have to be encapsulated into a sequential rule construct (cf. [9]).

The order regarding the sequential execution is determined by the locator,
e. g. before means that the advice call precedes the call referenced by the cor-
responding weaving candidate. The locator around states that the call of the
weaving candidate has to be replaced by the advice’s call. An around advice can
be used in combination with the proceed construct to call the replaced rule one
or multiple times from within the advice’s body, even with different parameters.

We introduce the locator parallel which reflects the basic semantics of ASMs
best and should be used to avoid over-specification. This locator means that
additional behavior will be woven into a parallel block relative to a matching join
point. The parallel locator’s semantics can be reduced to the semantics of around
if the corresponding advice’s body is a parallel block that contains exactly one
proceed call that reuses the original parameters of the weaving candidate beside
the additional advice behavior. Therefore and for the sake of clarity, we omit the
detailed description of the parallel locator in the following.

1 rule Weaving =
2 [..]
3 else if mode(self) = WEAVE then
4 if weavingPhase(self) = SORT then
5 forall jp ∈ JOINPOINT do
6 seq
7 advCall ← CreateAdviceCall(jpAdvice(jp), jpBinding(jp))
8 seq
9 let can = jpCandidate(jp) in

10 case locator(jpAdvice(jp)) of
11 "before" : add advCall to beforeAdvs(can)
12 "around" : add advCall to aroundAdvs(can)
13 "after" : add advCall to afterAdvs(can)
14 weavingPhase(self) := INSERT

15 [..]

ASM-specification 5. Weaving phase SORT: All advices of a join point are collected.

The insertion of advice calls into ω is prepared when the weaving phase is SORT.
We create advice calls taking into account an existing binding for each join
point. If the execution of advice’s statements depends on the current state, e. g.
in case of a cflow pointcut, the call is encapsulated into a guard that reflects the
dynamic parts of the pointcut’s condition (cf. spec. 5, l. 7). Those guarded calls
are sorted into sets, one set for each kind of locator (cf. spec. 5, ll. 9-13).
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The first task of the weaving phase INSERT is to add the additional definitions
of aspects to the definitions of ω. After that, the sets of advice calls are used to
create a sequential rule that consists of three parallel blocks, one for each kind
of locator (cf. spec. 6). All advice calls from beforeAdvs(can) build the first block,
the ones from aroundAdvs(can) the second block, and the ones from afterAdvs(can)
form the last block. The rule CreateParBlock creates a parallel block for the
given set of advice calls and returns the root node of this block (see fig. 2).

Fig. 2. Insertion template for different locators of advice calls

A sequential block is created for the three parallel blocks (cf. spec. 6, ll. 17).
Last, the original call referenced by the join point is replaced by the sequential
block of advice calls (cf. spec. 6, ll. 19).

1 rule Weaving =
2 [..]
3 else if mode(self) = WEAVE then
4 [..] //phase SORT
5 else if weavingPhase(self) = INSERT then
6 InsertAspectDefinitions

7 forall can ∈ {c | c ∈ ASTNODE, jp ∈ JOINPOINT

8 with c = jpCandidate(jp)}
9 seq

10 beforeBlock ← CreateParBlock(beforeAdvs(can))
11 if aroundAdvs(can) = undef then
12 aroundBlock := can
13 else
14 aroundBlock ← CreateParBlock(aroundAdvs(can))
15 afterBlock ← CreateParBlock(afterAdvs(can))
16 seq
17 seqBlock ← CreateSeqBlock([beforeBlock, aroundBlock,

afterBlock])
18 seq
19 ExchangeNode(can, seqBlock)
20 [..]

ASM-specification 6. Insert joinpoints’ advice calls into the resulting specification ω.
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3 Excerpts of the Refined Semantics of AoASM

In this section, we pick out some important concepts of the semantics of AoASM
and provide a more detailed description for the matching and the orchestration
by means of an example as well as a refinement of the semantics of those concepts.

3.1 The Matching - How to Find Weaving Candidates

The rule Matching performs the matching for the given arguments candidate
and pointcut (cf. spec. 3) and returns a tuple of a boolean value and a binding
(cf. subsection 2.2). It selects a more specific matching rule depending on the func-
tion grammarRule, the kind of the given pointcut. There exists one specific match-
ing rule for each pointcut expression, e. g. BinOrMatching, CallMatching, and
CFlowMatching. The selected rule performs a specific matching algorithm based
on the given arguments. A pointcut is constructed as an expression tree according
to spec. 7, so that the rule Matching may be called mutually recursive by more
specific matching rules, like CFlowMatching.

Binary Or-Pointcut. BINOR-, BINAND- and NOT-pointcut expressions are
the top-level nodes for building expression trees. The tail-recursive EBNF-
grammar for expression trees of pointcuts is given in lst. 7.

1 PointcutExpressionTree ::= BinOr
2 BinOr ::= BinAnd [ or BinOr ]
3 BinAnd ::= PointcutExpression [ and BinAnd ]
4 PointcutExpression ::= PointcutTerm | ( BinOr )
5 PointcutTerm ::= call(SignaturePattern) | args(SignaturePattern) |

get(SignaturePattern) | set(SignaturePattern) | not BinOr |
within(SignaturePattern) | cflow(BinOr) | this(IdPattern) | . . .

6 SignaturePattern ::= Pattern ( , Pattern )∗

7 Pattern ::= (RulePattern | FunctionPattern | IdPattern) [ as Identifier ]
8 FunctionKind ::= ( monitored | controlled | in | out ) | derived
9 FunctionPattern ::= [ FunctionKind ] SignaturePattern [ from UnivPattern ]

10 RulePattern ::= SignaturePattern [ ( with | without) ( return | result ) ]
11 IdPattern ::= Identifier | RegularExpressionString
12 . . .

Listing 7. Partial grammar of pointcut expressions.

Of course, the expressions defined by AspectJ have been adapted with re-
spect to ASMs. Hence, the FunctionPattern can restrict matching to functions
of a certain kind or demand the value of a function to be a member of specific
universes. RulePattern specifies whether side effects (as defined by [10, p. 108])
are forbidden, allowed, or gratuitous and whether a return value is expected.
The grammar rule Pattern can expose the context join points similar to the args
pointcut expression by writing as followed by one of the pointcut’s parameters
to bind a value of a join point to a parameter of the pointcut’s declaration. For
example, the combination of call and args pointcut expressions in spec. 2 can be



Introducing Aspect–Oriented Specification 183

rewritten by the expression call("GrantMoney", ".∗" as currIn). This extension to
the binding concept makes its application more flexible.

Since BinOr is the root of the expression tree, the rule BinOrMatching(can,
ptc) is always called first. The matching result depends on the number of children
of the BinOr-node ptc. If ptc has one child, the result is the matching result of
this child (which is a BinAnd-node) and the given candidate can. In case of two
children, the matching result is the conjunction of the children’s results. The
derived function astChildren(ptc) returns an order preserving list of all children
of ptc.

1 rule BinOrMatching(can, ptc) =
2 if | astChildren(ptc) | = 1 then
3 result ← Matching(can, firstChild(ptc))
4 else if | astChildren(ptc) | = 2 then
5 result ← Matching(can, firstChild(ptc)) or
6 Matching(can, nextSibling(firstChild(ptc)))

ASM-specification 8. The rule BinOrMatching

If the pointcut consists of a single call, the rule Matching will be called
mutually recursive so that BinAndMatching will be performed similar to the
semantics of BinOrMatching. We assume that the pointcut expression call will
be evaluated next.

Call-Pointcut The call pointcut matches calls of derived functions and macro
call rules. The matching takes into account the name and the parameters of the
call given by can and the call pointcut expression ptc with its signature pattern
(cf. spec. 9). Pattern matching is performed between the children of can and ptc.
Thereby, each child of can is compared against a regular expression given by a
child of ptc with a corresponding position.

1 rule CallMatching(can, ptc) =
2 //ptc has the addition keyword ’call’
3 if can /∈ DerivedFunction or can /∈ MacroCallRule
4 or | astChildren(can) | �= | astChildren(ptc) | + 1
5 then
6 result := (false, undef)
7 else
8 if ∀c ∈ astChildren(can), p ∈ tail(astChildren(ptc)):
9 pos(c) = pos(p) ∧ matches(toString(c), toString(p))

10 then
11 result ← (true, CreateBinding(can, ptc) )
12 else
13 result ← (false, undef)

ASM-specification 9. The rule call matches a derived function or a macro call rule
against a call-pointcut.
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3.2 Orchestration - Introducing a Call Stack

The semantics of the cflow pointcut requires information about the current call
stack during interpretation. Therefore, one step of orchestration is to implement
a call stack into ω (cf. spec. 4, l. 4). We use sequential steps to introduce a kind
of entry and exit behavior for any macro call rule body. The function callStack is
defined to keep track of each agent’s call of macro rule calls and derived functions.
Whenever a rule or function is called, we have to add its signature to the current
agent’s callStack and whenever the rule or function has been interpreted, this
signature has to be removed from the callStack again. This can be guaranteed if
each rule body is encapsulated into a turbo ASM sequential rule block. This block
starts with seq add «signature of current call» to callStack (self), continues with
seq «original rule block», and ends with next remove head from callStack(self).

Introducing the additional statements does not change the semantics of the
current specification, because the sequential rule block will never produce an
update according to the regular ASM step. The updates resulting from add .. to
and remove .. from cancel each other out.

1 function callStack : AGENTS → LIST //of signatures
2

3 derived getSignature(def) =
4 [sig | sig ∈ astChildren(def), grammarRule(sig) = ID]
5

6 rule AddCallStackSupport =
7 forall def ∈ RULEDECLARATION with spec(def) = ω do
8 choose ruleblock ∈ astChildren(def) with nextSibling(def) = undef do
9 local add, rem, newRuleBody in

10 seq
11 add ← CreateSeqElem(AddToCallStack(GetSignature(def)))
12 rem ← CreateSeqElem(RemoveCallStackHead)
13 seq //also creates an update for parent(def)
14 newRuleBody ← CreateSeqBlock([add, def, rem])
15 seq //change specification’s ast of ω
16 ExchangeNode(def, newRuleBody))
17

18 derived OnCallStack(call) =
19 return match in
20 seq
21 callSig := getSignature(call)
22 seq
23 choose sig ∈ callStack(self) do
24 if ∀ nb ∈ [0 .. |sig|] : |sig| = |callSig| ∧
25 matchingParameter(nth(sig, nb), nth(callSig, nb))
26 then match := true
27 else match := false

ASM-specification 10. Introducing a Call Stack.
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Certainly, during the interpretation, the function callStack can be used as
intended, e. g. guards for cflow pointcuts can use this information. The rule
AddCallStackSupport changes a specification ω by introducing the described
constructs (cf. spec. 10).

Specification 11 shows the result of our orchestration by means of an example
applying the orchestration for cflow on the rule ProcessMoneyRequest.

1 rule ProcessMoneyRequest(In) =
2 seq
3 if callStack(self) = undef then
4 callStack(self) := [ ["ProcessMoneyRequest", "In"] ]
5 else
6 callStack(self) := cons (["ProcessMoneyRequest","In"], callStack(self))
7 seq
8 if allowed(In, CurrCard) then
9 GrantMoney(In)

10 MoneyLeft := MoneyLeft − In
11 else Out := {NotAllowedMsg, CurrCard}
12 seq
13 if | callStack(self) | = 1 then
14 callStack(self) = undef
15 else
16 callStack(self) := tail( callStack(self) )

ASM-specification 11. The result of orchestration for cflow of the rule
ProcessMoneyRequest (cf. spec. 1).

4 Discussion and Validation

There exists some work on the semantics of AOP (cf. [11],[12]), although AspectJ
has not yet a formal semantics. From our point of view, a vast number of existing
approaches generally tend to clarify specific aspects of AOP or reasoning about
AOP by defining their own base- and aspect language (cf. [13]), but are not
intended for practical use.

Our approach is aimed at application in a real context starting with the
requirements phase in order to enable continuous separation of concerns. The
idea of aspect-oriented specification has been conceived by [14], but never has
been lead to results in the sense of an applicable aspect-oriented extension to
any common specification language. The latest approach by [15] has been a case
study using metadata and templates to introduce AOP into the early phases of
software development, but did not base on any or offer a well-formed specification
language.

The validation of AoASM is twofold: First, AoASM is implemented as a plu-
gin for CoreASM [10]. Second, AoASM is used to specify the semantics of an
extension of UML for multi-modal interaction.

The AoASM plugin for CoreASM implements a parser for AoASM, a weaver
according to our semantics, and provides a set of tools to make the specification
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process as easy as possible. This is done by refining the ground model speci-
fication down to the implementation. Further, we make sure that the refined
semantics of the ground model takes into account compatibility with the Core-
ASM implementation. Specifications that are generated by the AoASM plugin
can be inspected either as text or as AST. Meaningful warnings, error messages
and tooltips are provided to support the user. In the future, weaving candidates
will be marked in the original specification so that these markers can be used as
links to matching advices or vice versa.

The second part of the validation will be to apply AoASM on the extension
of UML for multi-modal interactive systems as described in [7]. This approach
is based on the formal semantics of UML by [4] on the one hand and defines
a semantics for a UML-profile on the other hand. The combination of those
semantics is given in a semi formal manner in [7]. We are going to apply AoASM
to precisely define the combination of both semantics. This work will benefit
from the opportunity to separate concerns as well as extend the basic semantics
of UML without touching it.

5 Conclusion and Future Work

In this paper, we introduce an ASM model of AoASM as a conservative exten-
sion to the formal specification language ASM. We define AoASM’s operational
semantics and describe some interesting refinements. AoASM covers a compre-
hensive subset of concepts of modern aspect-oriented programming languages
like AspectJ [3,8] and introduces some expansions that take into account the
characteristics of ASMs [9]. AoASM introduces several ASM-specific extensions
to optimize the exploit for its application. The pointcut language is extended to
support guards that restrict advice executions to specific agents, functions and
its locations inside conditional pointcut expression. Finally, the locator parallel
exposes new possibilities offered by ASMs.

Our pointcut language uses well known regular expressions as a basis for
the matching process based on the text of an ASM specification. These kinds
of matchings can be performed statically, or as type based matchings that are
performed on programs of strongly typed languages. As ASM-domains can be in-
terpreted in terms of types (like in [5]), one could introduce conditional pointcuts
to dynamically check if a certain parameter is a member of a certain universe.

The orchestration could be smoothly integrated into ASM specifications. Es-
pecially the call stack, which is needed for control flow based pointcuts, is imple-
mented so that it does not influence the original specification as it is built and
decomposed during each step of the interpreter, so that the update set of every
step will not contain any update of the call stack.

Currently, the defined semantics for AoASM is validated by implementing an
extension for CoreASM. This extension brings some comfort to users applying
aspect-oriented specification with ASM. For instance, the tool does not only
perform the weaving according to our semantics, but it also allows the inspection
of the resulting specification, and offers some support during the specification of
aspects, e. g. for pointcut design.
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Abstract. We describe and formalize a compositional, contract-based
submachine refinement for a variant of Abstract State Machines. We
motivate the approach by models of the Flash file system case study,
where it is infeasible to refine a complete machine as a whole.

1 Introduction

Abstract State Machines (ASMs, [5]) are a general software development method
for state-based systems. By integrating them with refinement [4] and the alge-
braic specification of data types they provide a rigorous framework for verifying
correctness critical applications.

This paper contributes a formally defined instance of ASM refinement theory,
which is compositional for submachines that respect information hiding. For-
mally, we prove that a machine M that calls the operations of a submachine L
satisfies the following substitution law: If K is a correct refinement of L, then
substituting calls to L with calls to K in M is a refinement of M. The theorem
allows to refine submachines independently of the context formed by M.

This work is strongly motivated by our current effort to construct a verified
file system for flash memory. This challenge has been proposed by NASA [15] in
response to problems with the flash file system of the Mars Rover “Spirit” [20].

As a consequence, the syntax and semantics of the variant of ASMs we con-
sider here differs and is somewhat restricted compared to traditional ASMs. In
particular, we define both an atomic semantics and an non-atomic semantics
for the rules. The former is intended for the environment of rules, e.g. the caller
of a POSIX operation like “create directory”. It is also the semantics of calls
to submachines. The non-atomic semantics is necessary to study the effects of
power failures while an operation (i.e., a rule of a control-state ASM which goes
through a potentially infinite sequence of intermediate states) is running: the
recovery mechanism that runs when rebooting after a power failure must restore
a consistent state from any intermediate state.

On the syntactic level our approach currently considers sequential constructs
only, since we have not investigated concurrent execution for the Flash file sys-
tem. Thus, the atomic semantics is an instance of sequential ASMs, the non-
atomic semantics is an instance of control-state ASMs with a single control state.
An extension to several control states and interleaved execution is possible, at
the price that reasoning with the wp-calculus has to be replaced with the more
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complex reasoning using the temporal logic RGITL we define in [26]. The ASM
rules we use here could also be called (a subset of) RGITL programs.

Our earlier work on ASM refinement [22,24] assumed that rules have guards,
and that an ASM chooses to invoke rules only when the guard is true. This view
is not suitable for submachines, where no guarantee can be given that calls to
the submachine will respect the guards, nor that a refined submachine (viewed
in isolation) has fewer runs than the original submachine with the guard view.
Instead we will use preconditions for rules, where a call with precondition false
is possible, but results in arbitrary behavior. Our approach takes up ideas from
contract refinement as used in Z [29], and adapts it to our scenario.

We motivate the need for compositional refinement of submachines in Sec. 2,
by giving an overview over the structure of our development. Sec. 3 demonstrates
why preconditions are necessary instead of guards. For reasons of space, we
only sketch the machines needed. For an overview over the project we refer the
reader to [25] (this volume). The full details and a list of previous publications is
available online [9]. Sec. 4 defines syntax and semantics of the ASM rules we use.
We contribute two compatible semantic definitions: a non-atomic view, where
execution of an ASM rule results in a sequence of steps; and an atomic view, on
which we base the definition of runs of an ASM, the semantics of submachine
calls, and the weakest precondition calculus we use for deduction in our prover
KIV [21]. Sec. 5 defines refinement for our setting, gives the proof obligations
for forward simulation, and proves that refinement is modular for submachines.
Sec. 6 gives related work and Sec. 7 concludes.

2 Submachines in the Flash File System

In this section, we briefly show the topmost refinement of the refinement hier-
archy and motivate that the file system challenge is inherently compositional.

root 

path 

file1 file2 

Fig. 1. FS graph

Figure 2 displays the structure of the topmost part of the
project, where boxes represent components, and layers re-
spectively, connected by refinement (dotted lines). These are
formally given by Abstract State Machines (ASMs) with al-
gebraic states. The grey boxes are the leaves of the hierarchy
from which we will generate the final code.

At the toplevel, POSIX [28] specifies the requirements: The
file system (FS) is a graph consisting of directories (inter-
nal nodes) and files (leaves), an example is shown in Fig. 1.
Files can be referred to by multiple directories under differ-
ent names (“hard-links”), consequently, names are attached
to edges of the graph. The directory part is a proper tree. The POSIX inter-
face is based on paths. Our formal POSIX model can be found in [11]. As an
example, Fig. 4 shows the specification of the unlink operation, which removes
one link to the file denoted by path, and also deletes the file’s content once it is
unreferenced.

Real file system implementations consist of two parts. Generic aspects, i.e.
traversing paths and checking access rights are realized in Linux by the Virtual
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AFS 

POSIX requirements 

VFS 

Flash file system 

Fig. 2. FFS upper layers

VFS Flash FS 

lookup* 

... 

unlink 

POSIX 
unlink 

Fig. 3. Call sequence in the final com-
posed file system code

posix unlink(path ; err)
tree � tree − path
// conditionally delete content

Fig. 4. POSIX specification of unlink

vfs unlink(path ; err)
ino � ROOT INO;
while path .length > 1 do {

let n = path .head
in afs lookup(ino, n; ino′, err);
path � path .tail, ino � ino′

}
let dent = negdentry(path .head)
in afs unlink(ino; dent , err)
// conditionally evict ino

pre: dirs[ino] �= undef ∧ . . .
afs unlink(ino; dent , err)

let name = dent .name in
dirs [ino].entries[name] � undef

Fig. 5. VFS/AFS rules (no error-
handling, submachine calls underlined)

Filesystem Switch (VFS). Windows’ “Installable File System” serves the same
purpose. Concepts specific to individual file system implementations are realized
by the individual file systems (FS). For standard magnetic discs ext4 or ReiserFS
would be such file systems, for flash memory we use UBIFS [14] as a design
blueprint for our formal models.

VFS communicates with individual file systems through a well-defined inter-
face visualized by the symbol in Fig. 2. The main data structure used in this
interface is called inodes in Linux. To specify this interface we define an ASM
called Abstract File System (AFS). Technically, AFS is a submachine of VFS.

A typical ASM rule for the VFS operation unlink is sketched in Fig. 5 (full
models can be found in [10]). Several calls of afs lookup are used to traverse the
path, checking that the individual directories exist with suitable access rights.
Finally, afs unlink is called for the actual removal of the link in the target
directory. Operation afs unlink has a precondition to characterize valid inputs,
which needs to be checked at every call site. The use of an abstract AFS specifica-
tion makes the proof that VFS is a proper refinement of the POSIX specification
[11] independent of the actual file system.

Figure 3 shows the corresponding sequence of operations in the final composed
code we generate (marked grey in Fig. 2). In this code calls to abstract AFS
operations have been replaced by calling the concrete FS code. The main theorem
we prove in this paper, is that this methodology is sound, i.e., the composed code
refines the top-level specification (see Theorem 2 in Sec. 5).
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EBM 

logical blocks 

Flash 

write buffer 

Fig. 6. FFS lower layers

write 
Ø Ø 

wear- 
leveling 

write 
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wear- 
leveling 

logical blocks 

physical blocks Ø Ø 

PEB i PEB i PEB j 
Ø 

Ø 

Ø 

Fig. 7. Abstract/concrete run with wear-leveling

As expected, the size of implementation components is much larger than the
size of their respective specifications (POSIX: 50 lines, VFS: 500 lines, AFS:
100 lines, abstract specification of UBIFS again calling some submachines: 500
lines). This pattern repeats all the way down to the hardware interface, forming
a deep hierarchy. An approach that exploits the compositional structure is key
to make the verification of the whole file system tractable.

3 Contracts in the Eraseblock Management Layer

This section motivates why we need preconditions, not guards for our refine-
ments. In the following we present a (simplified) example taken from the lower
layers of our flash file system and show how this technique is employed to simplify
the abstract layer.

Figure 6 shows a section of these layers. We have a model of flash hardware
at the bottom. A device is divided into physical erase blocks (PEBs). The basic
limitation of flash hardware is that only sequential writes within a block are
allowed and overwriting is not possible. Space can only be reclaimed by erasing
a full block. Erasing is slow and physically degrades the memory, i.e., after 104-
106 erasures a block is unusable. In order to increase the reliability and lifetime of
the device, the layer directly above the hardware, the Erase Block Management
(EBM), performs wear-leveling in the background. Wear-leveling moves stale
data to new blocks, in order to spread the erases evenly amongst the blocks. This
is implemented transparently by introducing a mapping from logical to physical
erase blocks. The mapping is managed by the EBM internally, the client can
only access logical erase blocks (LEBs). We then abstract this implementation
to a layer similar to the flash device (“logical blocks” in the figure). The aim
of the following is to show how preconditions can be used to hide wear-leveling
from upper layers. For technical details not covered here, the reader is referred
to [18].

The basic idea to specify the limitation to sequential writes on physical and
their abstraction to logical blocks is to associate an offset called fillcount with
each block. It stores how far the block is already programmed with data. This
offset can not be accessed by the EBM and is only used to express the precon-
dition of a write (to logical as well as physical blocks): the offset of the write is
above the fillcount of the target block. The vertical arrows in Fig. 7 denote
the fillcount. The upper part of the figure shows a logical block and how it is af-
fected by a write operation and a subsequent wear-leveling cycle. The lower half
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depicts the PEB mapped for this LEB at any point in time. During writing the
fillcount fields are affected in the same way. For efficiency the implementation
of wear-leveling, however, does not copy the entire contents of the block (if the
remainder is already empty). This means that in general the target block j may
have a lower fillcount than the source block i, as shown in the figure.

If the guard-semantics is used, the EBMmodel has more runs than its abstrac-
tion: In Fig. 7 for example after wear-leveling additional writes to physical block
j are possible, which the abstract model can not reproduce. These additional
runs, however, will never be exploited by a client, since their existence crucially
depends on wear-leveling, which is not triggered by the client but performed
non-deterministically in the background.

In conclusion, preconditions are more appropriate for submachines than the
guards. The reason is that operations of a submachine are explicitly called and
are not triggered internally. Therefore, an implementation may have a more
liberal precondition than the abstract system. This can be used to simplify the
abstract system by strengthening the abstract precondition and thereby hiding
inconsequential runs of the concrete system. Refinement can still be expressed
as the usual trace inclusion if all possible runs (including divergence) are added
to the semantics of an operation outside of its precondition (see Def. 3 and 5).

4 Syntax and Semantics of ASMs with Submachines

Section 4.1 defines the syntax of ASMs without submachines. Roughly, an ASM
consists of a number of rules with preconditions (called “operations”). The rules
are given a non-atomic semantics in Sec. 4.2 that is similar to the one of control
state ASMs, however, we never use an explicit control state. We then abstract
to an atomic view, which is used to define runs of ASMs in Sec. 4.3 and calls
to submachine operations in Sec. 4.4. Finally, Sec. 4.5 gives the semantics of
wp-formulas that we use to define and verify properties.

4.1 Syntax

This subsection defines the syntax of the ASMs we use. We assume the reader
is familiar with first-order logic, where based on a signature SIG = (F, P ) with
functions f ∈ F and predicates p ∈ P terms t, formulas ϕ and boolean expres-
sions ε (= quantifier-free formulas) can be defined. The semantics �t�(s) of terms
t and the semantics s |= ϕ of formulas ϕ is defined over a state s consisting of
an algebra and a valuation for variables x as usual.

We assume the signature is partitioned into four parts: a static signature (no
updates allowed), an input signature (that is only read by ASM rules), an output
signature (that is only written by ASM rules), and a controlled signature that
may be read and written by ASM rules.

We use the general convention to underline sequences of elements, i.e., a stands
for a sequence (a1, . . . , an) for some n ≥ 0. We write s{x �→ a} for the modified
state, where variable x now maps to value a, and s{f(t) �→ a} for the state, where
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function f has been updated to have value a for arguments �t�(s). A location
loc is either a variable x or f(t), so s{loc �→ a} denotes a generic update. We
introduce the abbreviation s{loc �→ t} = s{loc �→ �t�(s)} for terms t, and the
generalization s{loc �→ t} to a parallel update, when all locations are different.
The leading symbol of a location is x and f , respectively. An input resp. output
location is a location f(t) where the leading symbol f is in the input resp. output
signature. We use the following syntax for our rules α, β:

α ::= loc � t | α;β | if ε then α else β |
while ε do α | choose x with ϕ in α ifnone β

For parallel updates we require that the leading symbols of loc are all distinct
(so no clashes are possible) and writable, i.e., are local variables or part of the
controlled or output signature. We write skip for an empty parallel update.

The choose constructs binds local variables x to values such that ϕ is satisfied
and executes α. If there is no possible choice (e.g. if ϕ ≡ false) then β is executed
instead. Standard local variable declarations are defined as

let x = t in α ≡ choose y with y = t in α
y
x ifnone skip

where y are new variables and α
y
x denotes the substitution of x with y in α.1 Note

that ifnone skip is never executed here, and we will we drop such irrelevant
ifnone-clauses as well as random choice (i.e., with true) in the following.

Based on the syntax of rules we define abstract state machines.

Definition 1. A (data type-like) ASM M = (SIG,Ax , Init , {Opj}j∈J ) consists
of a signature SIG, a set Ax of predicate logic axioms for the static part of the
signature, a predicate Init to characterize initial states, and a set of operations
for indices j ∈ J . Each operation Opj = (prej , inj , αj , outj) consists of an ASM
rule αj that describes possible state transitions, provided precondition prej holds.
It reads input from a vector inj of input locations, and writes output to a vector
outj of output locations. It may modify local variables, controlled locations and

the locations of outj. The rules should have no non-local variables.2

In concrete code like the one given in Fig. 4 each operation Opj has a name
(instead of using an index j), the precondition is given after keyword pre, and
the other components are given in the form of name(inj ; outj){ αj }.

4.2 Non-atomic Semantics of Rules

This section gives a semantics to rules that assumes that they are executed non-
atomically: each update and each test of a condition is executed as a separate
step. The semantics of rules is therefore based on sequences I = (I(0), I(1), . . .)
of states I(k), which may be finite or infinite. Such sequences are called intervals.
Formally, I |= α expresses that the interval I is a possible execution of α.

1 The renaming avoids conflicts when x is used in t.
2 Thus, states of M are just SIG-Algebras; the values of variables are irrelevant.
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We introduce some auxiliary notation: The length of an interval #I is in
N ∪ {∞}. If I is finite it consists of #I + 1 states. In particular, the smallest
interval with #I = 0 has one state only. We also lift modification of states
to intervals: given a vector of variables x and a sequence of value vectors a =
(a0, a1, . . .) of the same length as the interval (where each element ak has the
length of vector x), then I{x �→ a} is the modified interval, where I(k)(x) is ak.

For sequential execution we need the sequential composition of intervals I1
and I2, written I1 o

9I2, which is defined in two cases. For finite I1, the last state of
I1 (written I1.last) must agree with the first of I2: I1.last = I2(0), and the result
is (I1(0), . . . , I1.last, I2(1), I2(2), . . .), i.e., the duplicate middle state is removed.
If I1 is infinite, then I1 o

9 I2 := I1.

Definition 2.

I |= loc � t iff I = (s, s′) and s ′ = s{loc �→ t}
I |= α;β iff there are I1, I2 such that I1 |= α, I2 |= β and I = I1 o

9 I2

I |= if ε then α else β

iff either I(0) |= ε and I |= skip;α or I(0) �|= ε and I |= skip;β

I |= choose x with ϕ in α ifnone β

iff either I(0){x �→ a0} |= ϕ and I{x �→ a} |= skip;α

for some a = (a0, a1, . . .)

or I |= skip;β and there are no values a with I(0){x �→ a} |= ϕ

I |= while ε do α

iff I ∈ ν(λ I. {I0 |
either I0(0) �|= ε and I0 |= skip

or #I0 = ∞ and I0(0) |= ε, I0 |= skip;α

or I0 = I1 o
9 I2 with #I1 < ∞, I1(0) |= ε, I1 |= skip;α, I2 ∈ I})

Most of the clauses should be intuitive. The skips in the clauses for if , while
and choose indicate that evaluating the test is done in a separate step.3 In the
first disjunct of the semantics of choose, the sequence of states a captures the
values x in the entire interval of α, not just in the first state. The set of runs of a
while loop is defined as the greatest fixpoint ν4 of interval sets I whose elements
I0 denote different possibilities to execute the loop. Informally, an interval I is
a run of the while loop, if it can be split into a (finite or infinite) sequence of
adjacent pieces. Each piece I1 must be finite and execute the loop body (last
case I1(0) |= ε, I1 |= skip;α), the only exception being the last interval, when
the sequence is finite. This interval may either be a nonterminating (infinite)
execution of the loop body (second case of the definition), or it may be one skip
step, where the loop test evaluates to false (first case of the definition).

3 It is possible (and sometimes useful; e.g., to define atomic test-and-set instructions),
to define the semantics such that evaluations of tests takes no additional step.

4 The greatest fixpoint ν(λI. {I | ϕ(I, I)}) can be understood as the union of all sets
I whose elements satisfy the recursive property ϕ. The more commonly used least
fixpoint is inadequate here, since it gives finite executions only.
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4.3 Semantics of ASMs

The interval semantics of rules is relevant when we want to study the effect of
power cuts, which will interrupt execution and produce prefixes of the intervals.
It is also relevant when we add calls to submachines in the next subsection.

To define the runs of a machine M, the fine-grained semantics of rules can be
abstracted to an atomic view of the execution of an operation. It is also much
easier to reason about the atomic semantics (using wp-calculus, see Sec. 4.5).
The atomic view is therefore a relation over the set of states augmented with a
bottom element, to indicate nontermination: S⊥ := S ∪ {⊥}.

Definition 3. The atomic semantics �Op� ⊆ S⊥ × S⊥ of an ASM operation
Op = (pre, in, α, out) is defined as:

(s, s′) ∈ �Op� iff either s �= ⊥ and s �|= pre (and s′ is arbitrary from S⊥)
or s �= ⊥, s |= pre and there is I with I(0) = s, I |= α

and if I is finite then s′ = I.last, otherwise s′ = ⊥
or s = s′ = ⊥

The first line of the definition gives the idea of a precondition: if it is violated in
state s, then calls to α may result in any successor state (including nontermina-
tion). The second clause collapses terminating runs I of α to their first and last
state. Infinite runs yield ⊥. The last line allows to define the semantics of call-
ing two operations sequentially as relational composition: If the first operation
does not terminate (gives ⊥), then attempting to call another operation is not
possible and will also give ⊥.

Based on the semantics of single operations we can define runs of a machine:

Definition 4. An ASM program over a machine M is a possibly infinite se-
quence j = (j0, j1, . . .) of (indices or names of) operation calls. An execution of

the program j is an interval I with states in S⊥ and #I = #j,5 where

(s, s′) ∈ �Opjk� for s = I(k) and s′ = I(k + 1){injk
�→ s(injk

)}

holds for all 0 ≤ k < #I. An execution is a run of the program, written I ∈
runsM(j) if it starts with an initial state I(0) �= ⊥, I(0) |= Init .

The definition of runs of programs mimics the definition of runs of data types,
although we consider both finite and infinite runs. Note that state I(k) stores the
input s(injk

) for calling Opjk . The operation itself does not change it, so state
s′ still stores the old input. Instead, the environment of the ASM is assumed to
modify the input arbitrarily to the next one stored in I(k + 1).

In contrast to the standard definition of guarded rules, runs as defined here
may well call an operation with the precondition being false. According to the
semantics of one operation (Def. 3) the rest of the run is unpredictable then:
either the operation diverges, or execution may continue with an arbitrary state.

5 We write intervals that may contain ⊥ in bold.
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4.4 Submachines

Now we define ASMs M = (SIG,Ax , Init , {Opj}j∈J ) that call operations of a

submachine L = (SIGL,AxL, InitL, {OpLk }k∈K). We require that M uses L prop-
erly, indicated by the notationM(L). The following conditions must be satisfied:

– M extends L’s signature and axioms: SIGL ⊆ SIG and AxL ⊆ Ax ,
– initialization of M includes initialization of L, i.e., Init → InitL holds and
– M respects information hiding: The signature of L is never accessed directly

by operations of M, i.e., M can only read and update the signature of L
indirectly via calls to operations of L.

The latter means that the local state of L, consisting of the locations in the
input, output and controlled signature of L, may not be used in updates or tests
of M operations. We write ls for this local state (and similarly ls ′ for the local
part of s ′). The global state gs is the state of M without ls .

Rules αj of the ASM may now contain calls to operations of L. We extend
the syntax of rules of Sec. 4.1 with

α ::= . . . | OpLk (t ; loc)

The call copies (values of) actual input parameter terms t to the input locations
inL

k of OpLk , executes the rule Op
L
k , and finally copies outLk back to actual outputs

loc, which must be writable locations of M. Within the run of αj the call to OpLk
is considered as one atomic step. The semantics is therefore defined as

I |= OpLk (t ; loc)
iff I = (s , s ′{loc �→ outLk }) and gs ′ = gs and (ls{inL

k �→ t}, ls ′) ∈ �OpLk �

or #I = ∞, I(0) = s and (ls{inL
k �→ t},⊥) ∈ �OpLk �

Note that we avoid adding ⊥ to the non-atomic semantics here: if the call of
OpLk does not terminate, then the resulting interval for OpLk is infinite, implying
that the operation calling OpLk does not terminate, too. Intervals I ∈ runsM(j)

therefore contain the outputs of the submachine (in the formal outputs outLk ).
Given an interval I |= α, where α calls operations of a submachine L, it

is possible to extract the execution I
∣∣
L of the submachine. It is an interval

over the state space of L including ⊥ and its length matches the number of
submachine calls in I. For every call (s , s ′) in I, I

∣∣
L has a state transition

(ls , ls ′), all other transitions are left out. If the last call to an operation of L
starting in a state s does not terminate, a transition (ls ,⊥) is added. Note that
merging the intervals of consecutive calls to L is possible because the local state
is not altered in between the calls. We lift this definition to an execution I of
a program j on M(L): I ∣∣L is the concatenation of the submachine intervals of
each of the operations of j. It follows:

Lemma 1. Given an execution I of a program of M(L), then I
∣∣
L is an execu-

tion of L. It is a run if I is. ��
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4.5 Calculus

To define and to verify properties of ASM rules we use the wp-calculus. The
calculus defines two program formulas 〈|α|〉ϕ and 〈α〉ϕ as follows:

s |= 〈|α|〉ϕ iff all intervals I |= α with I(0) = s have #I < ∞ and I.last |= ϕ

s |= 〈α〉ϕ iff there is a finite interval I |= α with I(0) = s and I.last |= ϕ

Formula 〈|α|〉ϕ expresses the weakest precondition for rule α to be guaranteed
to terminate and to establish postcondition ϕ (which is often written wp(α, ϕ)
in the literature). Formula 〈α〉ϕ is from Dynamic Logic [12] and expresses that
α has a terminating run after which ϕ holds.6

Note that in contrast to standard wp-calculus formula ϕ is not restricted
to a predicate logic formula, but may be another program formula. This will
be exploited in the proof obligation for simulations (see Theorem 1). The wp-
calculus has simple symbolic execution rules for reasoning about rules α (some
of these rules can e.g. be found in [21]; an extension of symbolic execution to
temporal logic formulas is described in [26]).

5 Refinement of ASMs and of Submachines

5.1 Contract Refinement for ASMs

ASM refinement between an abstract machine A = (SIGA, InitA,AxA, {OpAj }j∈J)

and a concrete machine C = (SIGC, InitC,AxC, {OpCj }j∈J) with the same operation
set J is defined relative to a relation IO (“input/output correspondence”) over
the input and output part of the two algebras. It specifies what matching inputs
and outputs are. Often IO requires identity for input and output locations, but
more general cases are possible. IO(as , cs) is given syntactically as a formula
over the combined signature SIGA ∪̇ SIGC . Correspondence of two executions
I C and IA of C and A (“I C matches IA via IO”) is defined as

I C $IO IA iff #I C = #IA and for all k < #I C :

either IA(k) = ⊥ (and I C(k) is arbitrary)
or I C(k) �= ⊥, IA(k) �= ⊥ and IO(IA(k), I C(k)) holds.

Refinement relative to IO is then defined as follows.

Definition 5. Machine C refines A relative to IO, written C $IO A, if for every
program j and every I C ∈ runsC(j) an abstract run IA ∈ runsA(j) exists, such

that I C $IO IA holds.

The refinement definition allows to refine an abstract run, which calls a diverg-
ing operation (i.e., one where the precondition is violated) with a terminating
run: the state IA(k) after the diverging operation (and all subsequent states)
will be ⊥, and match any concrete state.

Proofs of refinement are done with forward simulation:
6 Dynamic Logic writes wlp(α, ϕ) as [α]ϕ; 〈α〉ϕ is equivalent to ¬ [α]¬ϕ.
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Theorem 1 (Forward Simulation). C $IO A follows from a forward simu-
lation R ⊆ IO that satisfies

Initialization: InitC(cs) → ∃as . InitA(as) ∧ R(as , cs)

Correctness: R(as , cs) ∧ preAj (as) ∧ 〈|αA
j |〉 true

→ preCj (cs) ∧ 〈|αC
j |〉 〈αA

j 〉R(as , cs) for all j ∈ J

Proof. For finite runs the proof is by induction over its length. Infinite runs
require a simple diagonalization argument. ��

5.2 Refinement of Submachines

In this section we show that refinement is modular in the following sense: Given
a machine M(L), and a refinement K $LIO L, then replacing calls for L in oper-
ations of M with calls to K gives a machine C := M(K) that refines A := M(L).
The result needs one additional restriction compared to general refinement: re-
lation LIO is the identity relation over the input and output parameters of L
and K. Otherwise calls could not just be replaced. The replacement of L by K
in M(L) is defined as follows: The signature is (SIG \ SIGL) ∪̇ SIGK and the
initialization condition is

InitM(K)(ks , gs) ↔ InitK ∧ ∃ ls . R(ls , ks) ∧ InitM(L)(ls , gs),

where ks is the local state of K. The I/O correspondence IO extends LIO to the
entire set of input/output parameters of C and A by identity.

In order to express the modularity of refinement on the level of intervals, we
define the substitution I ′ := I{I∣∣K �→ IL} of all calls to a submachine K by

corresponding calls to L taken from IL assuming IL satisfies I
∣∣
K $LIO IL.

For each transition τ =(gs , ks , gs ′, ks ′) in I after k calls to the submachine, the
corresponding transition of the substitution I ′ is (gs , IL(k), gs ′, ls ′) with

ls ′ =

⎧⎨
⎩

IL(k), if τ is not a call

IL(k + 1), if τ is a call and IL(k + 1) �= ⊥
arbitrary, if τ is a call and IL(k + 1) = ⊥

In the last case the (k + 1)-th call to L did not terminate and we additionally
demand that the interval I ′ is infinite and may be arbitrary after the call. Ac-
cording to $LIO , #IL = #I

∣∣
K and IL reaches ⊥ before I

∣∣
K (if at all). After

lifting this substitution to an execution I of a program j it follows:

Lemma 2. Given an execution I of a program j on M(K) and IL with I
∣∣
K $LIO

IL, then I ′ := I {I∣∣K �→ IL} is an execution of j on M(L) with I $IO I ′. I ′ is
a run if I is.

Proof. The proof is by inspecting the (non-atomic) runs of each operation. For
a single operation induction over rule complexity gives the desired result. ��
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Given these prerequisites we prove the compositionality theorem:

Theorem 2 (Compositionality). K $LIO L implies M(K) $IO M(L)
Proof. Let I ∈ runsC(j) be arbitrary. According to Lemma 1 I

∣∣
K is a run of the

submachine K. By assumption there is a run IL of L with I
∣∣
K $LIO IL. The

matching abstract run then is I {I∣∣K �→ IL} by Lemma 2. ��

6 Related Work

In general our approach is based on (iterated) refinement, following the general
idea of ASM refinement [4]. We prefer this over an approach that just anno-
tates code with pre- and postconditions. With such an approach all the abstract
layers would become ghost code and extra ghost state, cluttering the implemen-
tation with annotations. This would be particularly problematic for the Flash
file system, since its refinement hierarchy is deep, at least a dozen layers and
various submachines are necessary to conceptually isolate the relevant building
blocks. Verifying that the whole implementation is a refinement of the POSIX
specification in one step is practically infeasible.

The specific instance of refinement defined here is based on data refinement
[13], in particular the contract-based approach of Z [29] (see [8] for other ap-
proaches, and [23] for a comparison to ASM refinement). It can be viewed as
an adaption of this approach to the setting of ASMs. We prefer the operational
style of ASM rules over the relational style of Z operations, since ASMs can be
executed (and we think that they are easier to understand).

Nevertheless, our atomic semantics (Def. 3) of ASM operations parallels the
contract embedding of Z relations into states with bottom, except that we do
not add {⊥}×S⊥, but just {⊥}×{⊥} to preserve the meaning of ⊥ as “nonter-
mination” (not “unspecified”). [23] argues that for both embeddings the same
refinements are correct. As a result the proof obligations for forward simulations
are similar to those of Z refinement. As a minor difference our theory allows an
operation to have diverging runs, even when its precondition is satisfied, though
we have not exploited this in the Flash project (we always prove termination).
The generalization results in the extra precondition 〈|αA

j |〉 true in the correctness
proof obligation.

It is a folklore theorem of data refinement that proof obligations for individual
operations are sufficient to allow substitution of abstract with concrete opera-
tions in any reasonable context, i.e., one that does not access the local state
of operations. Our formal proof of Theorem 2 shows that ASM rules are one
suitable context. In [7] an analogous result is proved on a semantic level using
relations of μ-calculus as context.

It should however be noted that the contract approach [29] itself is not suffi-
cient for such a result, since it considers finite sequences of operation calls only,
while our context (the main rule of an ASM) may be a loop calling operations
of the submachine an infinite number of times. Considering finite runs only has
the advantage that forward and backward simulation together give a complete
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proof technique. Here, as in most refinement definitions that consider infinite
runs, backward simulation is not sound: it may result in implementing a ter-
minating run of a rule of M(L) with a non-terminating run of M(K), when
the abstract machine has infinite nondeterminism (i.e., has a choose from some
infinite domain). Most of our ASMs have infinite nondeterminism.

The refinement concept discussed here differs from our earlier formalisation
[22,24], and from Event-B [3] in that it uses preconditions, not guards (the earlier
B formalism [2] had both preconditions and guards). Whether one needs one or
the other concept is application dependent: when rules are “called” by the envi-
ronment (as here), the precondition approach is appropriate, while applications,
where the machine itself chooses a rule (e.g., an interpreter for a programming
language, where the next rule is chosen according to the next statement to in-
terpret), then the guard interpretation is appropriate.

The definition given here is on the one hand more liberal than the one in [24],
as it allows one to implement a diverging operation on the abstract level with
any run on the concrete level (since for IA(k) = ⊥ any concrete state is allowed).
On the other hand it is more strict, as it forbids general m : n diagrams where
m abstract operations are implemented with n concrete ones. The case m > 1
is disallowed here, since any sequence of submachine calls must be verified. The
case m = 0 can be simulated by adding an abstract skip operation that does
nothing. Diagrams with n �= 1 are still implicitly possible, by using a concrete
rule that takes n atomic steps (in the fine-grained semantics) to complete.

With respect to ASMs, our syntax only uses a fragment of the syntax available
in [5]. In particular we use parallel updates only in the atomic updates, while
control state ASMs allow arbitrary ASM rules. It would be possible to generalize
the atomic steps to general ASM rules, however this would have two drawbacks.
Code generation would become more difficult, and simple symbolic execution
rules would be precluded since parallel rules may have clashes. These require a
complex axiomatization of update and consistency predicates, even when nonde-
terministic choice (that we often use for specification purposes) is omitted (see
[27] and Chapter 8 of [5]).

For the atomic semantics given in Def. 3 it is not difficult to show that it agrees
with standard rule semantics of ASM rules, when α;β is interpreted as α seq β
in the following sense: (s, s′) ∈ �Op� corresponds to a successful computation of
a consistent set of updates of a Turbo ASM rule in [5], Chapter 4. (s,⊥) ∈ �Op�
corresponds to either a diverging computation of updates, or to the computation
of an inconsistent set. Our largest fixpoint for the non-atomic semantics ofwhile
reduces to the least fixpoint definition 4.1.2 of iterate that is used to define the
semantics of while with deterministic body in [5]. In general, using a largest
fixpoint is unavoidable to characterize guaranteed termination for rules with
infinite nondeterminism.

The non-atomic semantics we give in Def. 2 is based on Interval Temporal
Logic (ITL [16,17]). We prefer this alternative over a structural operational se-
mantics (SOS, [19]), since SOS must model an explicit stack of local variables
which is unnecessary for a direct interval semantics.
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The non-atomic semantics in this paper is a simplified version of the one we
give in [26], which additionally handles interleaved concurrency and temporal
operators.

Our definition of submachines is different from the one in [5]. A submachine
there is a subrule that may be called within a rule, with the purpose to support
mutual recursion in Turbo ASMs. These are similar to the calls of submachine
operations, however, submachines as defined here are full ASMs (with initial-
ization, signature etc.). Additionally, information hiding constraints have to be
satisfied for modular refinement. To be able to check these constraints syntacti-
cally we use input and output parameters passed by value, whereas subrules in
[5] use call by name. This extension does not give additional expressivity: a dec-
laration Op(x, y){α} could be replaced Op(;x, y){α} using reference parameters
only. Calls Op(t; z) for a submachine operation with declaration would have to
be replaced with let in = t in Op(; in, z).

The ASM formalism is also strong enough such that preconditions are defin-
able. A rule RULE working on dynamic functions f1, . . . fn with precondition
pre is equivalent to the extended rule if pre then RULE else CHAOS where

CHAOS = choose diverge? in if diverge? then abort
else RANDOM (f1)

. . .
RANDOM (fn)

and
RANDOM (fi) = forall args i choose val in fi(args i) � val

Rule CHAOS either diverges (when diverge? is true) or chooses a random
next state by overwriting each fi with a new function in RANDOM (fi).

Event-B has two decomposition concepts for machines that roughly corre-
spond to interleaved [1] and synchronous parallel execution of rules [6]. It is
not immediately clear how our submachine concept could be encoded by such
a decomposition, since events in Event-B have no internal control structure (al-
though a construction with program counters and explicit call/return events for
subrules may be possible).

7 Conclusion

We have defined a refinement theory for ASMs with submachines, which respect
information hiding. The theory has been key to enable modular, incremental
development of the Flash case study.

So far we have used forward simulations for our proof only. As noted in related
work, backward simulation is not a sound proof technique in the presence of
infinite runs. A completeness proof will therefore be possible only along the lines
of [24], by replacing choose with choice functions, but such a proof is still future
work.

Althoughwehave no need for guards in theFlash case study (the toplevelPOSIX
specification has total operations, all intermediate layers have preconditions),
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it would be interesting to analyze, whether our refinement definition for subma-
chines is compatible with the main machine having guards.

Finally, it should be noted that our definition of refinement does not solve
all problems in the Flash case study. One important extension is necessary to
deal with power failures and recovery. A paper on this issue based on the same
semantic setting (with the idea that runs of a rule may be aborted in any in-
termediate state) is currently in preparation. Another important issue, which
we will have to consider, is that the actual implementation uses concurrency to
do work in the background: As an example, actually erasing blocks is done in a
concurrent thread that calls back to the main thread, when it has finished.
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Abstract. This paper shows how to use multi-agent Abstract State Ma-
chines to specify self-adaptive behavior in a decentralized adaptation
control system. A traffic monitoring system is taken as case study.

1 Introduction

Modern software systems typically operate in dynamic environments and are
required to deal with changing operational conditions: components can appear
and disappear, may become temporarily or permanently unavailable, may change
their behavior, etc. Self-adaptation (SA) has been widely recognized [4,6] as
an effective approach to deal with the increasing complexity, uncertainty and
dynamics of these advanced systems. A well recognized engineering approach
to realize self-adaptation is by means of a feedback control loop conceived as a
sequence of four computations: Monitor-Analyze-Plan-Execute [6].

One major challenge in self-adaptive systems is to assure the required quality
properties (e.g., flexibility, robustness, etc.). Formal methods are an attractive
option for solving this problem as they provide a means to precisely model and
reason about the behaviors of self-adaptive systems. The survey in [7] shows
that the attention for self-adaptive software systems is gradually increasing, but
the number of studies that employ formal methods remains low, and is mainly
related to runtime verification. However, formally founded design models that
cover structural and behavioral aspects of self-adaptation, and of approaches
to validate behavioral properties are of extreme importance in order to provide
guarantees about qualities at the early stages of the system design.

By exploiting the theoretical framework of the Multi-Agent Abstract State
Machines (ASM) [2], we here show how to model the behavior of self-adaptive
distributed systems with decentralized adaptation control, where the MAPE
control loop is naturally formalized in terms of agents’ actions (transition rules).
A traffic monitoring application, inspired from [5], is taken as case study.

This is a first work of our ongoing research activity on answering the request
of precise models that help reasoning about adaptation at design time. In the
conclusion we report some lessons learned from our experience that reveal the
high potentiality of the ASMs in the context of self-adaptive systems.
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Fig. 1. Adaptation scenarios (adapted from [5])

2 The Traffic Monitoring Case Study

We present a traffic monitoring application inspired by the case study in [5].
A number of intelligent cameras are distributed along a road, each with a

limited viewing range (see Fig. 1). Cameras are equipped with a data processing
unit capable of processing the monitored data, and a communication unit to
communicate with other cameras. Traffic jams can span the viewing range of
multiple cameras and can dynamically grow and dissolve. Each camera monitors
the traffic state within its viewing range. Because there is no central point of
control, cameras have to aggregate the monitored data to determine the position
of the traffic jam on the basis of the head and tail of it. Cameras enter or leave
the collaboration whenever the traffic jam enters or leaves their viewing range.

There are two main adaptation concerns. The first is system flexibility for
the dynamic adaptation of an organization. See, e.g., the scenario in Fig. 1 from
configuration T0 to T1, where camera 2 joins the organization of cameras 3
and 4 after it monitors a traffic jam. The second is related to robustness due to
camera failures, i.e., when a failing camera becomes unresponsive. This scenario
is shown in Fig. 1 from T2 to T3, where camera 2 fails.

3 Multi-Agent ASM Specification

Because of the distributed nature of adaptive systems, we use the notion of multi-
agent ASMs where multiple agents interact in parallel in a synchronous/
asynchronous way. Each agent executes its own (possibly the same but differently
instantiated)ASM-based programthat specifies the agent’s behavior. Some agents
form the managing ASM part encapsulating the logic of self-adaptation. Some
other agents form the managed ASM part encapsulating the functional logic.

For the traffic monitoring application, we introduce four ASM agents: the
agents OrganizationController and SelfHealingController representing the man-
aging components, an agent Camera and an agent TrafficMonitor (the sensor
that in case of “congestion” or “no longer congestion” notifies the organization
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Listing 1.1. Organization controller’s program
macro rule r_organizationControl =
seq //MAPE control loops

r_selfFailureAdapt[] //Adaptation due to internal failure
r_failureAdapt[] //ROBUSTNESS: Adaptation due to external failure (silent nodes)
r_congestionAdapt[] //FLEXIBILITY: Adaptation due to congestion

endseq

controller) both representing the managed camera subsystem. An ASM module,
called knowledge, is used as knowledge for the MAPE loops to define the ASM
signature (domains and functions symbols) shared among the managing agents.
We specify the self-adaptive behavior of the managing components of a camera
using two main MAPE loops: the first loop deals with flexibility concerns to
restructure organizations in case of congestion, the second loop deals with ro-
bustness concerns to restructure organizations in case of failing cameras. Both
the two loops start with the program associated to the agent OrganizationCon-
troller, however due to the decentralized nature of MAPE computations, part of
the monitoring functionality of the second loop is on the SelfHealingController
behavior. A further MAPE loop to deal with internal failures of the camera is
also executed by the two managing agents.

For the lack of space, we describe only part of the behavior of the Organiza-
tionController. The complete specification is available online1.

Organization middleware for Flexibility. An organization controller runs on
each camera and is responsible for managing organizations depending on the
data it gets from the traffic monitor and from the self-healing controller of the
camera. A master/slave control model is adopted to structure organizations in
case of congestion. Each camera has a unique ID (a static integer-valued function
id). To keep the master election policy simple, we assume the camera ID is
monotonically increasing on the traffic direction and the camera with the lowest
ID becomes master. Traditional election algorithms (like the Bully algorithm
and the Ring algorithm) or new ones are out of the scope of this paper.

Each camera has four basic states (the function state). In normal operation,
the camera can be master with no slaves (i.e., master of a single organization),
master of an organization with slaves, or it can be slave. Additionally, the cam-
era can be in the failed state, representing the status of the camera after a
silent node failure. Initially, all cameras are master. A camera state is changed
by the organization controller as part of the adaptation logic. The organization
controller has the same four basic states of the camera it manages. The orga-
nization controller’s program (see the rule r_organizationControl in Listing
1.1) executes sequentially the three MAPE control loops.

We here focus on the third MAPE loop for adapting organizations in case of
traffic congestion notified by the traffic monitor. Such a behavior is represented
by the rule r_congestionAdapt defined in Listing 1.2.

1 See the examples directory in the ASMETA repository http://asmeta.sf.net/

http://asmeta.sf.net/
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Listing 1.2. ASM rule r_congestionAdapt
//@M_c context−aware monitoring

macro rule r_congestionAdapt =
par
if state(self) = MASTER
then

if ( cong(camera(self)) and not congested(self) )//Congestion detected!
then //@P Planning

par
congested(self) := true
cong(camera(self)) := false
if isDef(next(camera(self))) then s_offer(next(camera(self))) := true endif

endpar
else if congested(self) then r_analyzeCongestion[] endif endif endif

if state(self) = SLAVE
then

if no_cong(camera(self)) //No longer congested!
then //@P Planning

par
no_cong(camera(self)):= false
congested(self) := false
slaveGone(getMaster(camera(self)),camera(self)) := true
r_turnMaster[]

endpar
else

r_receiveOrgSignals[] endif endif
if state(self) = MASTERWITHSLAVES
then if no_cong(camera(self)) //No longer congested!

then //@P Planning
par r_removeSlavesTurningMaster[]
no_cong(camera(self)):= false
congested(self):= false endpar

else r_analyzeOrganization[] endif endif
endpar

In the role of master of a single member organization, when a congestion
is detected (the signal cong) the organization controller sends a request (the
predicate s_offer) to the next alive camera (if any) in the direction of the traffic
flow to join the organization as slave. Depending on the traffic condition of the
next camera and its role, the organizations may be restructured according to
the rule r_analyzeCongestion reported in Listing 1.3. If traffic is not jammed
(the controlled predicate congested is false) for the next camera, organizations
are not changed, otherwise organizations are joined. The next camera becomes
slave of the requester camera by executing the rule r_turnSlave that changes
the camera state, sets the requester camera as new master and informs back it
by setting the shared function newSlave and (indirectly) the derived predicate
m_offer to true. When the m_offer signal is set the requester camera becomes
master of the joined organization executing the rule r_turnMasterWithSlaves
(see Listing 1.3) to concretely add the new slave to its list and change state.

In the role of slave, if the traffic in the viewing range of the camera is no
longer jammed (the signal no_cong), the organization controller leaves the or-
ganization it belongs to (by setting the function slaveGone) and becomes mas-
ter of a single member organization (by executing the rule r_turnMaster in
Listing 1.2). Otherwise (still congested), the organization controller waits (by
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Listing 1.3. ASM rules for analysis computations
//@A Analyzing
macro rule r_analyzeCongestion =
if m_offer(camera(self)) then r_turnMasterWithSlaves[]
else if s_offer(camera(self)) then r_turnSlave[prev(camera(self))] endif endif

//@A Analyzing
macro rule r_receiveOrgSignals =

par
if change_master(camera(self)) then //Master changed!

//@P Planning
par
r_setMaster[prev(getMaster(camera(self)))]
newSlave(prev(getMaster(camera(self))),camera(self)) := true
change_master(camera(self)) := false

endpar endif
if masterGone(camera(self)) then r_turnMaster[] endif
if m_offer(camera(self)) then r_notifyPendingSlavesMasterChanged[] endif

endpar
//@A Analyzing
macro rule r_analyzeOrganization =
if m_offer(camera(self)) then r_addNewSlave[]
else if isEmpty(slaves(camera(self))) //Simply turn master

then r_turnMaster[]
else if (s_offer(camera(self)) and congested(self))

then r_turnSlave[prev(camera(self))] endif endif endif
//@P Planning
macro rule r_addNewSlave =

forall $s in Camera with newSlave(camera(self),$s) do
par

r_addSlave[$s]
newSlave(camera(self),$s):= false
s_offer($s):=false

endpar

the rule r_receiveOrgSignals) for a trigger from its master. The rule r_-
receiveOrgSignals is reported in Listing 1.3. If (in the slave role) the controller
receives a signal change_master as effect of a restructuring of the organization,
it is responsible for planning adaptations to change its master to the new mas-
ter. If it receives that the master is gone (by the shared predicate masterGone),
it restarts the camera as master of a single member organization (by invoking
the rule r_turnMaster[] already shown in Listing 1.2). Finally, if it receives an
m_offer signal, it means there are slaves not effectively engaged when in the
role of master it asked them to join the organization as slave. In this last case it
is responsible for notifying them that the master changed by executing the rule
r_notifyPendingSlavesMasterChanged in Listing 1.3.

Finally, in the role of master with slaves, when the traffic is no longer jammed
(the signal no_cong), the organization controller notifies all its depending slaves
that the master is gone (setting the predicate masterGone to true) and leaves
the organization becoming master of a single member organization (see rule r_-
removeSlavesTurningMaster in Listing 1.2). Otherwise (still congested),
the organization controller analyzes the organization by the rule
r_analyzeOrganization (see Listing 1.3) to add and remove slaves dynami-
cally. When no slaves remain, the master with slaves becomes master of a single
member organization again. During analysis of its organization, it has also to
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wait for a trigger s_offer, and if notified it has to plan to become slave of the
requester camera by executing r_turnSlave in Listing 1.2.

For the lack of space, macro rules (such as r_turnSlave, r_turnMaster,etc.)
and those annotated with @E for atomic adaptation actions in a master/slave
organization (such as r_clearSlaves, r_addSlave, etc.) are not reported.

4 Conclusion and Future Directions

Besides modeling, we were also able to validate the Traffic Monitoring case study
by exploiting model simulation and scenario construction. We focused on two
qualities: flexibility (i.e., the ability of the system to adapt dynamically with
changing conditions in the environment), and robustness (i.e., the ability of
the system to cope autonomously with errors during execution). By means of
the ASM tools[1,3], we simulated different scenarios with increasing number of
cameras. In particular, we reproduced the adaptations scenarios shown in Fig.
3 from T0 to T2 for flexibility, and from T2 to T3 for robustness.

From modeling and validation, we learned some lessons briefly reported. We
were able to achieve a clear separation of concerns: (i) separation between adap-
tation logic and function logic, (ii) separation between behavior of managing and
managed components, (ii) separation between the specification of the MAPE
functions. This helps the designer to focus on one adaptation concern at a time,
and, for each concern, separate the adapting parts from the adapted ones.

In the future, we plan to define a formal framework providing high level con-
structs for expressing context-awareness, self-awareness, adaptation actions, dis-
tributed communication patterns. We plan to investigate on the verification of
self adaptive systems by using the ASMETA tool set.
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Abstract. While sequential Abstract State Machines (ASM) capture
the essence of sequential computation, it is not clear that this is true
of distributed ASM. This paper looks at two kinds of distributed pro-
cess, one based on a global state and one based on variable access. Their
commonalities are extracted and conclusions for the general understand-
ing of distributed computation are drawn, providing integration between
global state and variable access.

1 Introduction

For many years, models and languages of astonishing variety and depth have
been developed to describe distributed computation, and still its essence is far
from understood.

Distributed Abstract State Machines (ASM) [8] are a key part of a drive to
establish a distributed ASM thesis analogous to the successful sequential ASM
thesis [7]. This work has not yet led to a final result, although Glausch and Reisig
in [5] have established that distributed algorithms that fulfil certain criteria are
captured by DASM.

This paper looks at characteristics of distributed computations and scenarios
that are not fully captured by distributed ASM. Based on the work of Lam-
port [9], a new ASM model is proposed that captures more of these scenarios.

The paper is structured as follows. Section 2 introduces distributed ASM.
Section 3 argues that they do not fully capture distributed algorithms. The
Lamport model is presented in section 4. Section 5 extracts essential properties
of distributed computations, and section 6 proposes how the global view can be
combined with the local variables view. Section 7 concludes the paper.

2 Asynchronous Multi-agent (Distributed) ASMs

A distributed ASM (DASM) is a family of pairs (a;Module(a)) with pairwise
different agents, elements of a possibly dynamic finite set Agent, each equipped
with a sequential ASM Module(a). Each sequential ASM provides a set of states
(first order structures over the same vocabulary), a set of initial states and a
state transition function which can only take into account a bounded number of
elements.
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Definition 1 ((global) DASM run). A partially ordered run of a DASM
is a partially ordered set (M ;≺) of moves m (rule applications) of its agents
agent(m) with a state function s satisfying the following conditions [8]:

– finite history: each move has only finitely many predecessors, i.e. {m′ ∈
M |m′ ≺ m} is finite for each m ∈ M .

– sequentiality of agents: for each agent a the set of its moves is linearly or-
dered, i.e. agent(m) = agent(m′) implies m ≺ m′ or m′ ≺ m.

– coherence: each finite initial segment (downward closed subset) I of (M ;≺)
has an associated state s(I) – think of it as the result of all moves in I –
which for every maximal element mmax ∈ I is the result of applying the state
transition function of agent(mmax) in state s(I − {mmax}).

This definition implies a global state accessible to all agents, where each agent
has its own local view given by the variables read by the agent. The definition
does not say how moves are to be scheduled in a run; moves can be performed
in parallel, or by interleaving the moves of different agents. However, every run
leads to the same end state.

Proposition 1. All linearizations of the same finite initial segment of a DASM
run have the same final state [8].

This means that each ASM run is essentially sequential and we conclude.

Proposition 2. If DASM runs are the most general way to look at distributed
computation, then distributed computation is essentially sequential.

3 Distributed ASM Do Not Capture Distributed
Algorithms

The distributed ASM thesis is still open, because there are many distributed
scenarios that are not properly captured by distributed ASM.

1. Context switching between threads can occur between a read and a write. In
ASM, an update is performed instantaneously, which means that the state
is read, the answer is computed and the result is written as a single atomic
action.

2. In larger distributed systems, inconsistent system states are possible. With
ASM, the system state is always consistent.

3. In parallel computation, two processors can simultaneously write the same
memory location. Similarly, a write could be at the same time as a read. The
ASM consistency condition [4] excludes such conflict, and a more elaborate
treatement by [1] treats memory locations as proclets (active processors) in
their own right, that do some computing to resolve write conflicts.

4. The meaning of distributed computations varies a lot according to the level
of atomicity used. DASM have a fixed level of atomicity.

This brings us to the following conclusion.
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Proposition 3 (Failed Distributed ASM Thesis). DASM as defined in sec-
tion 2 do not capture distributed computation; at least they do not capture the
scenarios given above.

If certain restrictions are accepted, then DASM do capture some kinds of dis-
tributed computation[5]. However, those restrictions conflict with our scenarios.
A consistent global state cannot be assumed for a highly distributed computa-
tion. Context switching between reads and writes conflicts with the assumption
of instantaneous actions. For autonomicity, the update sets of [5] introduce con-
straints by claiming that the input (read) and output (write) locations should
be the same. This leads to the impossibility of parallel read, which is not in
line with our understanding.1 Finally it has to be noted, that the concept of
DASM run as introduced in [5] is not the same as the traditional DASM run.
In particular, the consistency condition is not introduced, and no proof is given
that both concepts coincide. As our examples in section 4 show, these two ideas
of DASM run do not coincide.

4 Sequentially Consistent Runs

A different way of looking at distributed computation was introduced by Lam-
port [9]. Here, a distributed execution is a set of sequential executions (one per
agent), each being a sequence of reads and writes of locations. Not all Lamport
executions are valid. Lamport defines sequential consistency as follows[9].

Definition 2 (sequential consistency). Consider a computation (execution)
composed of several sequential processors accessing a common memory. The com-
putation is sequentially consistent iff the result of any execution is the same as if
the operations of all the processors were executed in some sequential order, and
the operations of each individual processor appear in this sequence in the order
specified by its program.

A sequentially consistent execution has at least one witness, which is a legal in-
terleaving of the reads and writes. Different witnesses may yield different results.

The level of granularity is lower for Lamport reads and writes as opposed to
moves for DASM. Reading and writing is implicit in the DASM model. As a
contrast, Lamport does not look into the global system state.

4.1 Examples to Compare DASM and Lamport Runs

It might not be obvious how Lamport and DASM runs differ, so we give some
small examples with agents A and B, and variables x and y.
1 Please note that [5] is not altogether consistent at this place. In requirement D4

(autonomicity), the parameter values of the locations could be locations themselves.
However, this is not used in the examples shown later. But if there are no loca-
tions used as parameters, D4 is trivially true. On the other hand, using locations as
parameters, the notion of “same location” suddenly becomes quite advanced.
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Table 1. ASM and Lamport witnesses - all examples

No witness ASM witness Lamport result
W1 mA;mB write(x, 1); write(x, 2) x=2

E
x1

W2 mB;mA write(x, 2); write(x, 1) x=1
W1 mA;mB read(x, 0); write(x, 1); read(x, 1); write(x, 2) x=2
W2 mB;mA read(x, 0); write(x, 1); read(x, 1); write(x, 2) x=2

E
x2

W3 – read(x, 0); read(x, 1); write(x, 1); write(x, 1) x=1
W1 mA;mB read(y, 0); write(x, 1); read(x, 1); write(y, 2) x=1, y=2
W2 mB;mA read(x, 0); write(y, 2); read(y, 2); write(x, 1) x=1, y=2
W3 – read(x, 0); read(y, 0); write(x, 1); write(y, 2) x=1, y=2E

x3

W4 – read(x, 0); read(y, 0); write(y, 2); write(x, 1) x=1, y=2

Example Ex1 : A : x := 1 ; B : x := 2 ; initially x = 0.
ASM: two possible runs: {W1}, {W2}
Lamport: one possible run: {W1, W2}

Example Ex2 : A : x := x+ 1 ; B : x := x+ 1 ; initially x = 0.
ASM: two possible runs: {W1}, {W2}
Lamport: two possible runs: {W1, W2}, {W3}2

Example Ex3 : A : x := y ∗ 0 + 1 ; B : y := x ∗ 0 + 2 ; initially x = y = 0
ASM: one possible run: {W1, W2}
Lamport: three possible runs: {W1}, {W2}, {W3, W4}3

4.2 Distributed ASM Runs Are Sequentially Consistent

Since each move of a DASM run writes the same values, regardless of the lin-
earization, it is possible to translate DASM runs into sequentially consistent
Lamport runs. Please note that it is not true that each move reads the same
values independent of the linearization, see the last example in the previous
section.

Thus, one DASM run can produce several Lamport runs and each Lamport
run of a DASM run is sequentially consistent.

5 General Properties of Distributed Computation

Distributed computation generally comprises sequential agents that work to-
gether. They may use synchronization of memory locations to coordinate their
work. However, it is essential that their work has to respect causality (proper
synchronization of writes with reads). When conflicts arise, then there is an
underlying mechanism to handle inconsistencies between reads and writes of
different agents.
2 Observe that W3 is not possible in ASM, although it is not conflicting.
3 The last two runs have one more witness each where the reads are swapped. As

opposed to DASM, [5] would not consider W1 and W2 independent but view them
as two different runs.
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Property 1 (Sequentiality). The actions of each agent are sequential. 4

Property 2 (Synchronization). There are (global) memory locations where
access is sequential.

Property 3 (Causality). It is impossible to read values before they have been
written. 5

Property 4 (Consistency). When two agents try to write to the same posi-
tion, then one of them wins as opposed to having arbitrary outcome. In the same
way, also possible conflicts between read and write are solved.

With these requirements in mind, we will describe a local state model that
captures our idea of distributed computation.

6 Localized State

We introduce a localized DASM model where a memory location can be updated
by one agent, and its value can take some time before it is available to other
agents. This is addressed with reference to persistent queries in [2,3], where a
query is accompanied by the location where its result is to be deposited.

Definition 3 ((localized) DASM run). A localized partially ordered run of
a DASM is a partially ordered set (M ;≺) of moves m (rule applications) of its
agents agent(m) with a state function s satisfying the following conditions:

1. finite history: see definition 2
2. sequentiality of agents: see definition 2
3. The (local) states of an agent before and after a move m are related using

the state transition function of agent(m).
4. The (local) state of an agent before a move is a combination of all the (local)

states after the directly preceding moves. If there are no preceding moves, an
initial state is used.

5. A combination of two (local) states is done with the following rules.
– When the value of a location is the same in both states, then this value

is taken.
– When the value of a location is different in the two states, then the one

resulting from the later move with respect to the partial order is taken.
– When the value of a location is different in the two states and both values

are coming from moves that are not ordered by the partial order, then an
arbitrary value of the two is chosen.

The new definition brings the following advantages, in particular related to the
problems given earlier.
4 Although this property looks innocent enough, it is rejected by the Java memory

model for distributed computation [6].
5 This property is also called no-out-of-thin-air in the context of Java.
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1. Context switching is implicit in the new model, since the write of a move is
taken into account first when the new read is done.

2. Since agents work independent of each other and each agent has its own local
state, a global inconsistent system states is not only possible but normal.

3. Concurrent write at the same time onto the same memory location is possible
and would result in one of the written values.

4. Reads and writes are the level of atomicity.
5. The new definition does not guarantee sequential consistency. Please note

that all examples from section 4 will be captured in one run using the local-
ized model. In all three cases, the moves of agents A and B can be unordered.

6. The new definition provides a higher level of abstraction than Lamport and
at the same time brings less restrictions to the runs. It aligns better with
the moves of ASM.

7 Summary and Conclusions

In this paper, we have shown that distributed computation is not always easy to
understand and that DASM do not capture the essence of distributed computa-
tion. We have compared DASM with the Lamport model and have extracted a
new model that is not sequential in the bottom. This local state model captures
at least the problems indicated with the DASM model.
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Abstract. We describe WebASM, a web-based environment that em-
beds the CoreASM execution engine in a web page. WebASM provides
several advantages to specification writers: (1) complex behaviour ex-
pressed via ASM can be made visible by using the full power of the
web-based presentation layer; (2) ASM specifications can be edited and
run interactively via any web browser; (3) the full CoreASM environment
is made available via zero-install deployment, thus eliminating a major
barrier to the adoption of the language.

In this paper, we briefly outline the technicalities of the approach,
present an example, and survey possible applications of WebASM.

1 Introduction

Abstract State Machines (ASM) [2] have been demonstrated to be a powerful
yet intuitive formalism for describing specifications. A vast number of case stud-
ies, including language specifications, microprocessor design, sequential and dis-
tributed algorithms, and industrial plant control machines (see [1] for a full sur-
vey) have established the practical applicability of ASMs to real-world
systems.

In the 30 years history of the ASM method, a number of execution envi-
ronments have been developed; among the major efforts, we cite [9,8,4,6]. In
varying degrees, all these approaches required setting up a moderately com-
plicated programming environment (e.g., using a Gofer interpreter in [9], or a
.NET development environment for [8], or using the Eclipse IDE for [4]). More-
over, none of the existing environments are endowed with convenient graphics
facilities (although some of them, e.g. AsmL and CoreASM, can make recourse
to native calls to platform-specific graphic APIs).

With WebASM, we set to improve on those two aspects by providing a
web-based, fully self-contained embodiment of the CoreASM execution environ-
ment [4] which can be run in any modern web browser, and that can be controlled
via JavaScript so that arbitrarily complex user interfaces and graphical displays
can be rendered as a (dynamic) HTML page.

In the following, we first describe the technical approach taken by WebASM;
we then present an example, describing the graphical animation of a distributed
leader election protocol specified in ASM. A discussion about possible applica-
tions of WebASM and some reflections on future work conclude the paper.

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 216–221, 2014.
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2 Technical Outline

One of the premises of the CoreASM project was that the resulting execution
engine should be easy to embed in other applications. In WebASM, we made
good on that promise by embedding the whole CoreASM engine (including all
the plugins packaged in the official distribution) in a Java applet, which is then
connected to the hosting web page through JavaScript bindings.

Security policies restrict what applets can do: in particular, by default no
access to the local filesystem is possible (and special configurations are unde-
sirable in a zero-install perspective). As a consequence, dynamic addition of
user-developed plugins is not allowed in WebASM. Saving and loading specifica-
tions, instead, is managed on the JavaScript side by treating the specification as
a string and passing it to the engine for interpretation. In a typical application,
the specification text could be obtained from a text editor hosted on the same
page, thus allowing the user to write and run ASM specifications in the same
environment.

The JavaScript bindings exposed by WebASM include methods to create and
initialise ASM machines, to load specifications, to perform an ASM step, and to
access the whole abstract state of the machine or a single location.

In particular, access to the abstract state is limited by the concrete represen-
tation of values. Indeed, in its full generality the ASM model allows for arbitrary
sorts, including those whose values do not have a literal notation. The JavaScript
bindings for WebASM allow reading any value in the ASM state (technically,
any CoreASM Element instance) as a string; the converse is not always possible
(e.g., an element of Agent can be printed as a name, but not re-created from
its name alone). However, all basic types which are commonly used (e.g., strings
and numbers) are fully mapped between ASM and JavaScript.

The final element in our implementation is a map between locations of the
ASM state and attributes of DOM elements in the page, optionally transformed
by a custom JavaScript function (to account for syntactic differences between
ASM and HTML/CSS notations).

What is left to the user is to design an HTML page with suitable graphics to
visualise the salient elements of the ASM state, and define a map, as described
above, in order to visualise state evolution during the ASM computation. Af-
ter each ASM step, locations of the ASM state mentioned in the map are read
(through the JavaScript bindings), their values are mapped or transformed, and
finally applied to attributes of the various corresponding DOM elements, thus
updating the DOM state. After each update cycle, the browser re-renders the
modified portions of the web page (namely: the part hosting the graphical de-
piction of the ASM state), and the engine is then ready to execute the next
step.

Designing suitable HTML graphics for the desired representation of the ASM
state can be a tricky at times, depending on how sophisticated the depiction
is. However, HTML design and JavaScript programming skills are much more
readily available than what would be required to produce a custom, full-blown
application to the same end. Moreover, it is reasonable to assume that in a
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context where the goal is to teach formal modeling skills, programming skills
are already available, so we do not expect this part of the approach to be a
significant burden.

In extreme cases, our technique can be extended to manipulate elements of
arbitrary SVG vector graphics embedded in a web page, instead of DOM ele-
ments, again by using simple JavaScript mappings. We had no need of such an
extension in our experiences with the tool.

3 Examples

To exemplify the WebASM approach, we use a specification for a classical dis-
tributed algorithm, namely the Extrema Finding by Franklin [5]. In this problem,
a number of processes (modelled in ASM as separate agents) are arranged in a
ring topology with bidirectional communications, with each process holding a
value; their task is to identify the process holding the maximal value.

The corresponding ASM specification, which is a straightforward translation
of the algorithm provided in [5], is shown in Figure 1.

ExtremaFinding =
if mode(self ) = ACTIVE then

if not isLargest(self ) then
rightMsg(l(self )) := id(self )
leftMsg(r(self )) := id(self )

if largerMsgReceived then
mode(self ) := INACTIVE

if myMsgReceived then
isLargest(self ) := true
notified(r(self )) := true

if mode(self ) = INACTIVE then
if notified(self ) then

notified(r(self )) := true
else

rightMsg(l(self )) := rightMsg(self )
leftMsg(r(self )) := leftMsg(self )

if isLargest(self )
and notified(self ) then

ExtremaFound

Fig. 1. The main rule in ExtremaFinding (signature can be seen in Figure 2)

As for the visualisation, we have chosen to show each process (hence, each
ASM agent) as a box displaying three figures: at the top, the process’ value
(id(self )); on the bottom left and the right the values received from its left and
right neighbour according to the ring topology (leftMsg(self ) and rightMsg(self )).
Moreover, a box’s border colour indicates the process state (mode(self ), with
ACTIVE → green and INACTIVE → red), and a box’s background colour
indicates whether the process has been notified (notified(self ), false → white
and true → grey). Finally, the border style indicates the value of isLargest(self )
(true → dashed, false → solid).

The user can then experiment running (and modifying) the specification, in
a continuous way or step-by-step, while observing its progress through the an-
imation happening on the page. Figure 2 shows the browser-hosted animation
environment.
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Fig. 2. A screenshot of WebASM animating the Extrema Finding specification

As an additional example, Figure 3 shows three subsequent stages of ani-
mation for another classical specification, based on the Distributed Termina-
tion Protocol from [3] (the corresponding ASM specification has been published
in [7]). Here, each box represents an agent (simulating a different machine), with
each machine spontaneously exchanging messages with others. At each step, ex-
actly one machine holds a coloured token (which can be black or white), that is
passed around as the protocol progresses. The goal is to determine whether the
entire distributed computation has finished, which is detected when a “white”
token is returned to the master machine (depicted with a grey background).

Fig. 3. Three steps of the Distributed Termination Protocol specification
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4 Applications

WebASM offers a fully self-contained, zero-install environment for executing and
animating CoreASM specifications. By self-contained we mean that the whole
environment is contained in a single web page – there is no need of a web server,
although if so desired one can be used to serve the page remotely. By zero-install
we mean that there is no need of any special software on the client computer: a
standard web browser (capable of executing Java applets) suffices.

Both these features, united to the convenience of HTML/CSS rendering capa-
bilities, make WebASM ideally suited to occasional users and ASM newcomers,
as they greatly reduce technical barriers to entry.

WebASM is in particular suited for teaching. In teaching algorithms, it pro-
vides a double advantage due to the pseudocode-over-abstract data syntax of
ASM, and to the positive reinforcement obtained by showing the algorithm’s
progress via graphical means. In teaching formal modelling, WebASM allows for
experimenting with specifications, which can be modified and animated (and
thus, tested) interactively.

Also in a teaching context, WebASM can be used to prepare exercises, where
the signature and graphic visualisation for a certain problem are given by the
instructor, and the task set on students is to write ASM rules to accomplish the
desired behaviour. One could envision an entire course based on a number of
web pages, each allowing students to experiment with different specifications.

Finally, WebASM provides an alternative to traditional scripting languages
for the web. Instead of programming some desired behaviour in languages such as
JavaScript or VBScript, a developer could provide a ground model as a CoreASM
specification, and have it executed behind the scenes by WebASM. In such a
setup, conformance of the implementation to its ASM specification would be
guaranteed by construction.

5 Conclusions and Future Work

We have presented WebASM, a self-contained, zero-install, interactive, graphical
execution engine for CoreASM specifications which can be run entirely in any
standard web browser.

A set of APIs allow accessing the ASM state and controlling the ASM com-
putation from JavaScript code, thus enabling interactive, graphical visualisation
of the progress of the computation. The resulting environment is well suited to
quick experimentation with specifications and algorithms.

As a work in progress, WebASM can be extended in several directions; the
most promising of which are (1) providing a graphical highlight of the rules
being executed at each step, in addition to visualising the state resulting from
their execution, (2) providing a better editor, with support for syntax highlight-
ing and code completion, and (3) empowering users to visually build graphical
representations of the state, by providing a palette of tools to draw graphical
elements and link their appearance to elements of the ASM state.
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Some of these improvements, and especially (3), we consider as crucial to the
full realization of the promises of WebASM. Currently, a modicum of web pro-
gramming prowess is required to define the graphical representation of the state
and the mapping between locations of the ASM state and the DOM elements
depicting them. Ideally, the mapping could be defined – at least in most standard
cases – by a simple “property sheet”-style editing interface.

In a teaching setting, (3) is geared towards the instructor preparing exercises
(on a given problem) for students. In contrast, (1) and (2) are geared towards
the students, in that improvements in these areas would directly lead to more
effective feedback and ease of experimentation with changing the ASM specifi-
cation for the given problem. We are currently in the process of implementing
(1) and (2) for the first public release of the tool.
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Abstract. We present a formal modelling approach using Abstract Data Types
(ADTs) for developing large-scale systems in Event-B. The novelty of our ap-
proach is the combination of refinement and instantiation techniques to manage
the complexity of systems under development. With ADTs, we model system
components on an abstract level, specifying only the necessary properties of the
components. At the same time, we postpone the introduction of their concrete
definitions to later development steps. We evaluate our approach using a large-
scale case study in train control systems. The results show that our approach
helps reduce system details during early development stages and leads to simpler
and more automated proofs.

Keywords: Event-B, refinement, abstract data types.

1 Introduction

Event-B [3] is a formalism for developing systems whose components can be modelled
as discrete transition systems. An Event-B model contains two parts: a dynamic part
(called machines) modelled by a transition system and a static part (called contexts)
capturing the model’s parameters and assumptions about them. Event-B’s main tech-
nique to cope with system complexity is stepwise refinement, where design details are
gradually introduced into the formal models. Refinement enables abstraction of ma-
chines, and since abstract machines contain fewer details than concrete ones, they are
usually easier to verify.

However, when developing large, complex systems, refinement alone is often insuffi-
cient. Machines containing sufficient details to state and prove relevant safety properties
may lead to proofs of unmanageable complexity. We observed this limitation while de-
veloping a large-scale train control system by refinement in Event-B. To specify and
reason about collision-freeness properties, we needed to model the trains in detail, for
example formalising their layout and movement. As a consequence, we had to state
numerous complex invariants which resulted in many complicated manual proofs. This
motivated an alternative approach to abstract away additional details from the system’s
model to reduce the complexity and increase the automation of the resulting proofs.
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Approach. To model a system at a more abstract level, we introduce the notion of
Abstract Data Types (ADTs) [16] in Event-B. An ADT is a mathematical model of a
class of data structures. It is typically defined in terms of a set of operations that can be
performed on the ADT, along with a specification of their effect. By using Event-B con-
texts to formalise ADTs and their operations, we can subsequently utilise the ADTs to
model the system’s dynamic behaviour in the machines. We use generic instantiation [5]
as a means to further concretise and thereby implement the ADTs. As the ADTs evolve,
the machines are also refined accordingly.

We evaluate our approach by developing a substantial industrial case study in the
railway domain. Given an informal specification of a train control system, we incre-
mentally develop a formal model of the overall system. This includes modelling the
trains, the interlocking system, and the train controller. The complexity of the case
study is comparable with that of real train control systems such as CBTC [15] or ETCS
Level 3 [6]. We develop the controller all the way to a concrete implementation that
runs on specialised hardware. To our knowledge, this is the first published development
of a train control system on the system level, i.e., modelling the train controller together
with its environment, that is correct-by-construction.

Contribution. Our contribution is the introduction of ADTs in Event-B. We show that
reasoning using ADTs can be done purely based on the properties of the ADTs’ opera-
tions, regardless of how the ADTs will be implemented. As a result, systems specified
with ADTs are more abstract and hence easier to verify than systems developed directly
without them. In fact, ADTs encapsulate part of the system’s dynamic behaviour in the
static context of Event-B. This is novel as traditionally Event-B contexts are only used
to specify static parameters of a system’s model and all dynamic behaviour is mod-
elled as a transition system in the Event-B machines. Furthermore, our use of generic
instantiation in Event-B is novel as this technique has until now only been applied to
reuse developments, for example in [19]. In contrast, we use generic instantiation as a
mechanism to gradually introduce details into the formal models similar to refinement.

The way we introduce ADTs in Event-B allows ADTs to be used alongside Event-
B refinement. Hence, one can combine these two different abstraction techniques dur-
ing development and apply whichever fits better at a particular development stage and
results in simpler proofs. In contrast to development strategies that use refinement or
ADTs exclusively, our approach is better suited for developing large-scale industrial
systems.

Structure. The rest of our paper is structured as follows. In Section 2, we briefly
review Event-B, including refinement and instantiation techniques. We motivate and
present our approach in Section 3. We evaluate our approach on an industrial case study
in Section 4. Finally, we discuss related work in Section 5 and conclude in Section 6.

2 The Event-B Modelling Method

Event-B [3] represents a further evolution of the classical B-method [1], which has been
simplified and focused around the general notion of events. Event-B has a semantics
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based on transition systems and simulation between such systems. We will not describe
in detail Event-B’s semantics here; full details are provided in [3]. Instead, we will
describe some Event-B modelling concepts that are important for the later presentation.

Event-B models are organized in terms of the two basic constructs: contexts and
machines.

Contexts. Contexts specify the static part of a model and may contain carrier sets,
constants, axioms, and theorems. Carrier sets are similar to types. Axioms constrain
carrier sets and constants, whereas theorems express properties derivable from axioms.
The role of a context is to isolate the parameters of a formal model (carrier sets and
constants) and their properties, which are intended to hold for all instances.

Machines. Machines specify behavioral properties of Event-B models. Machines may
contain variables, invariants, theorems, and events. Variables v define the state of a
machine. They are constrained by invariants I (v). Theorems are properties derivable
from the invariants. Possible state changes are described by events. An event e can be
represented by the term

e =̂ any t where G(t , v) then S (t , v) end ,

where t is the event’s parameters, G(t , v) is the event’s guard (the conjunction of one
or more predicates), and S (t , v) is the event’s action. The guard states the condition
under which an event may occur, and the action describes how the state variables evolve
when the event occurs. The action of an event is composed of one or more assignments
of the form x := E (t , v), where x is a variable in v . Assignments in Event-B may also
be nondeterministic, but we omit this additional complexity here as it is not used in this
paper. All assignments of an action S (t , v) occur simultaneously. A dedicated event
without any parameters or guard is used for initialisation.

Refinement. Refinement provides a means to gradually introduce details about the
system’s dynamic behaviour into formal models [3]. A machine CM can refine another
machine AM. We call AM the abstract machine and CM the concrete machine. The
states of the abstract machine are related to the states of the concrete machine by gluing
invariants J (v ,w), where v are the variables of the abstract machine and w are the
variables of the concrete machine. A special case of refinement (called superposition
refinement) is when v is kept in the refinement, i.e. v ⊆ w . Intuitively, any behaviour
of CM can be simulated by a behaviour of AM with respect to the gluing invariant
J (v ,w).

Refinement can be reasoned about on a per-event basis. Each event e of the abstract
machine is refined by one or more concrete events f. Simplifying somewhat, we can
say that f refines e if f’s guard is stronger than e’s guard (guard strengthening), and the
gluing invariants J (v ,w) establish a simulation of f by e (simulation).

Instantiation. Instantiation is a common technique for reusing models by providing
concrete values for abstract model parameters. Since an Event-B model is parameterised
by the carrier sets and constants, instantiation in Event-B [5,19] amounts to instantiating
the contexts.



Formal System Modelling Using Abstract Data Types in Event-B 225

Suppose we have a generic development with machines M1, . . . ,Mn building a
chain of refinements with carrier sets s and constants c, constrained by axioms A(s , c).
Suppose too that we want to reuse the development within another context, speci-
fied by (concrete) carrier sets t and constants d , constrained by axioms B(t , d). Let
T (t), which must be an Event-B type expression, and E(t , d) be the instantiated val-
ues for s and c respectively. Given that the instantiation is correct, i.e., B(t , d) ⇒
A(T (t), E(t , d)), the instantiated development where s and c are replaced by their
corresponding instantiated values is correct-by-construction.

For more details on instantiation in Event-B and its tool support see [5] and [19]. All
instantiation steps described in this paper were performed using the generic instantiation
plug-in developed by Hitachi and ETH Zurich [13].

3 Abstract Data Types in Event-B

In this section, we describe how to specify and implement ADTs in Event-B. Our ap-
proach is based on refinement and generic instantiation. An ADT is typically defined
in terms of a set of operations that can be performed on the ADT, along with a specifi-
cation of their effect. Let us start with the standard example: the stack ADT is a last in
first out (LIFO) data type that contains a collection of elements.

A stack is characterised by three operations:

– push: takes a stack S and an item e, and returns a new stack where e is added to
the top of S .

– pop: takes a (non-empty) stack S and returns a new stack where S ’s top element is
removed.

– top: takes a (non-empty) stack S and returns S ’s top element.

A special stack is the empty stack that contains no elements. Some important con-
straints for the operations of the stack ADT are as follows. Given a stack S and an
element e, push(S , e) �= empty , pop(push(S , e)) = S , and top(push(S , e)) = e.

Specifying ADTs in Event-B. ADTs and their operations can be modelled using car-
rier sets, constants and axioms in Event-B. Instantiation can then be used to “imple-
ment” the ADTs. The instantiation proofs ensure that the ADTs’ implementations sat-
isfy their specifications.

Each ADT A is modelled as follows:

– A carrier set A TYPE defining the type of the A objects along with an associated
– set constant A ⊆ A TYPE representing all valid A objects. 3

– Each operation is modelled using a constant.
– The constraints on the operations are specified using axioms.

Consider the stack ADT for elements of type ELEM . It can be modelled in Event-B
as follows.

3 Note that we do not currently support the definition of parameterised ADTs, which would
allow one to specify a generic stack ADT independent of its elements’ type.
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sets : STACK TYPE constants : STACK , empty , push, pop, top
axioms :
axm0 1 : STACK ⊆ STACK TYPE
axm0 2 : empty ∈ STACK
axm0 3 : push ∈ STACK × ELEM → STACK
axm0 4 : pop ∈ STACK \ {empty}→ STACK
axm0 5 : top ∈ STACK \ {empty}→ ELEM
axm0 6 : ∀S , e ·S ∈ STACK ⇒ push(S �→ e) �= empty
axm0 7 : ∀S , e ·S ∈ STACK ⇒ pop(push(S �→ e)) = S
axm0 8 : ∀S , e ·S ∈ STACK ⇒ top(push(S �→ e)) = e

Axioms axm0 7 and axm0 8 specify the relationship between the pop, top, and push
operations. Notice that there is no need to fully specify an ADT. In subsequent exam-
ples, we will only define as many axioms as needed to prove the stated properties.

Instantiating ADTs. A possible implementation of the stack ADT is one where a stack
is represented as an array. More formally, a stack is represented by a pair (f, n), where
n is the stack’s size and f is an array of size n representing its content. In other words,
we intend to implement the stack ADT by the array datatype. Operations of the array
datatype are as follows:

– append : takes an array and an element, and returns a new array where the element
is appended to the end of the input array.

– front : takes an array and returns a new array where the last element of the input
array is removed.

– last : takes an array and returns the last element of the input array.

The array datatype is specified in Event-B as follows.

constants : ARRAY , append , front , last
axioms :
axm1 1 : ARRAY = {f �→ n | n ∈ N ∧ f ∈ 0 .. n− 1→ ELEM }
axm1 2 : append = (λ (f �→ n) �→ e·f �→ n ∈ ARRAY ∧ e ∈ ELEM

| (f �− {n �→ e}) �→ n+ 1)

axm1 3 : front = (λ f �→ n·f �→ n ∈ ARRAY ∧ n �= 0
| (({n− 1}�− f) �→ n− 1))

axm1 4 : last = (λ f �→ n·f �→ n ∈ ARRAY ∧ n �= 0 | f(n− 1))

Notice that at this point all the constants are concretely defined by lambda expressions.
To prove that the array datatype implements the stack ADT, we instantiate

STACK TYPE with P(Z × ELEM ) × Z, STACK with ARRAY , and the opera-
tions push , pop , and top with append , front , and last , respectively. Constant empty
is instantiated with ∅ �→ 0. We must prove that the instantiated abstract axioms,
i.e., axm0 1–axm0 8, are derivable from the concrete axioms, i.e., axm1 1–axm1 4.
The proofs can be constructed by expanding the definitions of the concrete constants
accordingly.

For more information on how to implement ADTs in Event-B using generic instan-
tiation, we refer the reader to [7].
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4 Developing a Train Control System Using ADTs

In this section, we illustrate our approach on an industrial case study. We first briefly
describe the system and explain the difficulties when developing such a complex system
without ADTs. We then present part of the development where we applied our approach
using ADTs. Finally, we evaluate our approach by giving an overview of the entire
development of this case study together with some statistics to justify our approach’s
effectiveness.

4.1 System Description

The scope of our case study is the development of a modern train control system. The
main goal of the system is to keep all trains in the railway network a safe distance apart
to prevent collisions. The network consists of tracks (divided into sections) and points
connecting these tracks. An interlocking system switches the points to connect different
tracks with each other, and results in a track layout that dynamically changes. Instead
of light signals, the train control system uses radio communication to send the trains the
permission to move or stop.

While classic train control systems use trackside hardware to detect whether a sec-
tion is occupied by a train, our system determines this information from the trains’
position and length. The trains themselves determine their positions and send them to
the train control system by radio. Based on information on what part of the network is
occupied, the controller calculates for every train the area in which it can safely move
without collisions. This area is called the Movement Authority (MA) and represents the
permission for a train to move as long as it does not leave this area. The calculated MAs
are then directly sent to the trains where an onboard unit interprets them to calculate the
location where the permission to drive ends (Limit of Authority, LoA). To prevent driv-
ing over the LoA, the onboard unit continuously determines a speed limit and applies
the emergency brakes if necessary. An overview of the interacting system components
is given in Figure 1.

Collision-freeness between trains is guaranteed by the overall system and relies on
two conditions: (1) The trains are always within their assigned movement authorities,
and (2) the controller ensures that the MAs issued to the trains do not overlap. In fact,
(1) is implementable only if the MAs issued by the controller are never reduced at the
front of the trains.

Fig. 1. Train control system with the interlocking system as its environment
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4.2 The Need for Abstraction

Our first challenge in developing the train control system is formalising the trains in the
network. Figure 2 depicts a train occupying some part of the network. It illustrates a
sequence of sections with fully occupied ones in the middle and partially occupied ones
at each end of the train.

Fig. 2. A train occupying a sequence of sections

In our first attempt at modelling the train control system, we used different variables
to denote how the trains occupy the network. Let ids be the set of active trains in the
network. We modelled the different aspects of the trains, such as their head, rear, middle,
connections, etc., by total functions as follows. For clarity, we omit from the presentation
other aspects of the trains, such as the head- and rear-position within a section.

variables : ids , head , rear ,middle , connection, . . .
invariants :
inv0 1 : head ∈ ids → SECTION
inv0 2 : rear ∈ ids → SECTION
inv0 3 : middle ∈ ids → P(SECTION )
inv0 4 : connection ∈ ids → (SECTION �� SECTION )
inv0 5 : ∀t ·t ∈ ids ⇒ head(t) /∈ middle(t)
inv0 6 : ∀t ·t ∈ ids ⇒ rear(t) /∈ middle(t)
inv0 7 : ∀t ·t ∈ ids ∧ connection(t) = ∅ ⇒ head(t) = rear (t)
. . .

Invariants inv0 5–inv0 7 specify several important properties of trains. For example,
inv0 7 specifies that if a train occupies only one single section, its head and rear are in
the same section. Note that due to the lack of space, we omit other invariants that ensure
that trains are connected and do not contain loops.

To motivate the need for additional abstraction in Event-B, we focus on the event
train extend. Its purpose is to extend the train, denoted by t , to a section, denoted by s .
Namely, train extend prepends s to the head of the train and s becomes the new head.
This event is used whenever the train reaches the end of the current head section and
moves to the beginning of the next section in front of it.

train extend :
any t , s where
t ∈ ids
s /∈ dom(connection(t))
head(t) /∈ ran(connection)

then
head(t) := s
middle(t) := (middle(t) ∪ {head(t)}) \ {rear(t)}
connection(t) := connection(t) ∪ {s �→ head(t)}

end
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The event’s guard ensures that the connection of t remains a partial injective func-
tion (inv0 4). When updating middle(t), we remove rear(t) to guarantee that in the
case where the train occupies only one section (i.e., connection(t) = ∅ and hence
head(t) = rear (t), according to inv0 7), the train’s middle is still empty afterwards.

Proving that train extend maintains the invariants, in particular inv0 5, requires more
invariants, which we omit for clarity. All additional invariants are universally quantified,
i.e., of the form “∀t ·t ∈ ids ⇒ . . .” and they express the relationship between different
aspects of a train.

Encapsulation. The invariants above describe the trains’ layouts that change indepen-
dently of each other. As a result, the preservation of the invariants should be proven on
a per train basis and by hiding the rest of the model. In Event-B, however, invariants are
global and all other parts of the system are taken into account during the proof, which
increases their complexity. This indicates that some encapsulation for the models of
trains will be useful for our proofs.

High-level Properties of Low-level Details. An attempt to specify and prove prop-
erties such as collision-freeness at a concrete level like that described above leads to
complicated models and difficult proofs. In particular, expressing relationships between
sequences, such as “containment” (e.g., a train is always within its movement authority)
and “being disjoint” (e.g., the movement authorities of two different trains do not over-
lap) using information about the sequences’ head, rear, middle and connections, is far
from trivial. This indicates that we should start modelling the system at an even more
abstract level by omitting the detailed aspects of the sequences.

Reuse. In addition to the above mentioned difficulties, another motivation for using
ADTs in our development is that modelling the trains’ movement authorities is similar
to modelling the trains. In fact, both trains and their MAs should be modelled using the
same ADT.

4.3 Development Using Abstract Data Types

The Region ADT. Abstracting away the details of sequences, such as head, rear, mid-
dle, and connections, we start our modelling with an ADT corresponding to regions on a
network, focusing on relationships between regions such as “contained” and “disjoint”.
The region ADT includes the following operations:

– extend : takes a region R and a section s , and returns a new region where s is added
to R.

– contained : binary relation associating a region R1 with every region R2 that con-
tains R1.

– disjoint : binary relation associating two regions R1 and R2 with each other if they
do not overlap.

Note that there are other operations of the region ADT that we omit for clarity.
In Event-B, this ADT is modelled as follows. Constants contained , disjoint , and

extend correspond to the operations mentioned above.
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sets : REGION TYPE
constants : REGION , contained , disjoint , extend
axioms :
axm0 1 : REGION ⊆ REGION TYPE
axm0 2 : contained ∈ REGION ↔ REGION
axm0 3 : disjoint ∈ REGION ↔ REGION
axm0 4 : extend ∈ REGION × SECTION �→ REGION

Constraints on the operations of the region ADT are modelled as axioms. For ex-
ample, contained is transitive, disjoint is symmetric, extend is strengthening with
respect to contained . Note that in the following, we use R1	R2 to denote R1 �→ R2 ∈
contained , and R1 �
 R2 to denote R1 �→ R2 ∈ disjoint .

axioms :
axm0 5 : ∀t1, t2, t3 ·t1 	 t2 ∧ t2 	 t3 ⇒ t1 	 t3
axm0 6 : ∀t1, t2 ·t1 �
 t2 ⇒ t2 �
 t1
axm0 7 : ∀t , s ·t �→ s ∈ dom(extend)⇒ t 	 extend(t �→ s)
axm0 8 : ∀t1, t2, t3 ·t1 	 t2 ∧ t2 �
 t3 ⇒ t1 �
 t3

The current states of the active trains and their associated movement authorities are
represented by a mapping from trains to the set of all possible regions (train) and a
mapping from movement authorities to the set of all possible regions (ma). Invariant
inv0 3 states that the trains always stay within their movement authorities. Invariant
inv0 4 states that the movement authorities of any two trains are disjoint.

variables : ids , train ,ma
invariants :
inv0 1 : train ∈ ids → REGION
inv0 2 : ma ∈ ids →REGION
inv0 3 : ∀t ·t ∈ ids ⇒ train(t)	ma(t)
inv0 4 : ∀t1, t2 ·t1 ∈ ids ∧ t2 ∈ ids ∧ t1 �= t2 ⇒ ma(t1) �
ma(t2)

Importantly, the collision-freeness property, i.e.,

∀t1, t2 ·t1 ∈ ids ∧ t2 ∈ ids ∧ t1 �= t2 ⇒ train(t1) �
 train(t2) ,

is derivable (as a theorem) from the invariants inv0 3, inv0 4 and the property relating
contained and disjoint , i.e., axm0 8.

The event train extend can be specified abstractly as follows. Its last guard ensures
that the extended train cannot exceed its assigned movement authority.

train extend :
any t , s where

t ∈ dom(train)
train(t) �→ s ∈ dom(extend)
extend(train(t) �→ s)	ma(t)

then
train(t) := extend(train(t) �→ s)

end



Formal System Modelling Using Abstract Data Types in Event-B 231

The Sequence ADT. The model at this stage is abstract in two ways: (1) its dynamic
behaviour is not fully described by the machine and (2) it uses the region ADT which
is not fully “implemented”. For (2), we utilise generic instantiation to introduce more
details on how the region ADT and its operations are realised. Similar to refinement,
this realisation of ADTs can be split into multiple instantiation steps.

In our development, we first replace the region ADT by the sequence ADT. The
sequence ADT includes the following operations:

– prepend : takes a sequence S and a section s , and returns a new sequence where s
is added to the head of S .

– head : takes a sequence S and returns the head section of S .
– rear : takes a sequence S and returns the rear section of S .
– middle : takes a sequence S and returns the middle sections of S .
– connection: takes a sequence S and returns the connection between sections of S .

sets : SEQUENCE TYPE
constants : SEQUENCE , prepend , head , rear ,middle , connection
axioms :
axm1 1 : SEQUENCE ⊆ SEQUENCE TYPE
axm1 2 : prepend ∈ SEQUENCE × SECTION �→ SEQUENCE
axm1 3 : head ∈ SEQUENCE → SECTION
axm1 4 : rear ∈ SEQUENCE → SECTION
axm1 5 : middle ∈ SEQUENCE → P(SECTION )
axm1 6 : connection ∈ SEQUENCE → (SECTION �� SECTION )
axm1 7 : ∀S ·S ∈ SEQUENCE ⇒ head(S ) /∈ middle(S )
axm1 8 : ∀S ·S ∈ SEQUENCE ⇒ rear(S ) /∈ middle(S )

We prove that the sequence ADT is a valid representation of the region ADT with
the instantiation of the set REGION TYPE by SEQUENCE TYPE , the constants
REGION by SEQUENCE , extend by prepend , etc. We replace (instantiate) the oper-
ations contained and disjoint using head , rear , middle , and connection . For example,
contained is instantiated as follows.

contained =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
S1 �→ S2 |

S1 ∈ SEQUENCE ∧ S2 ∈ SEQUENCE ∧
connection(S1) ⊆ connection(S2) ∧
middle(S1) ⊆ middle(S2) ∧
head(S1) ∈ {head(S2)} ∪ middle(S2) ∪ {rear(S2)}
rear(S1) ∈ {head(S2)} ∪ middle(S2) ∪ {rear(S2)}
. . .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Note that we omit from our presentation additional conditions related to the exact posi-
tion of the head and rear within the section.

At this point the sequence ADT is still abstract. In particular, we do not give the exact
definition for sequences and we still rely on the operators such as head , rear , middle ,
and connection and the relationships between them.

Given the instantiation, we subsequently refine the dynamic behaviour of the system
(i.e., the machines). For event train extend, the refinement removes the reference to
contained in the guard.
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train extend :
any t , s where
t ∈ dom(train)
head(train(t)) �= head(ma(t))
. . . // other guards related to head/rear positions

then
train(t) := prepend(train(t) �→ s)

end

The Arbitrarily-based Array Data Type. The model based on the sequence ADT
is abstract. To ensure that the model is implementable, we must give a representation
for the sequence ADT. In our development, we use an arbitrarily-based array data type
as the implementation for the sequence ADT. An arbitrarily-based array is an array
that starts from an arbitrary index, in contrast to the common zero-based array that
always starts from 0. More formally, each arbitrarily-based array can be represented
by a tuple (a, b, f), where a and b are the starting and ending indices and f represents
the array’s content. The operations of the arbitrarily-based array such as head , rear ,
middle , and connection are defined accordingly. For example, the head operation is
defined as follows.

head = (λ a �→ b �→ f ·a �→ b �→ f ∈ ARRAY | f(a))
The advantage of using arbitrarily-based arrays compared to normal (zero-based)

arrays is that there is no need to shift indices when extending or reducing the arrays.
For example, the prepend operation is defined as follows.

prepend = (λ (a �→ b �→ f) �→ s · a �→ b �→ f ∈ ARRAY ∧ s ∈ SECTION ∧ . . .
| (a− 1) �→ b �→ (f �− {a− 1 �→ s}))

This simplifies the proof that the sequence ADT is correctly implemented by the array
data type.

4.4 Development Summary

In our development of the train control system, the transformation of the region ADT
into the sequence ADT is carried out in several instantiation steps. The benefit of having
steps with small changes in the ADTs is that the machines that are specified using ADTs
can also be gradually transformed in small steps. This also serves to decompose the
proof of correctness of the systems into small instantiation and refinement steps.

Our development contains five different stages (numbered 0–4), connected by instan-
tiation relationships, where a subsequent stage starts as an instantiation of the previous
stage. Each stage contains several refinement steps for developing the system’s main
functionality.

Stage 0: We formalise the system at the most abstract, generic level, using the region
ADT and the network ADT. In the refinement steps, we gradually introduce the active
network, the active trains, the trains’ movement authorities, the movement authorities
calculated by the controller, and the relationships between them.
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Stage 1–3: We carry out the transformation from the region ADT to the sequence ADT
in three different instantiations. First, we instantiate the contained operation. Second,
we instantiate the operation “part-of” between the region ADT and the network ADT
(stating whether or not a region is part of a network). Finally, we instantiate the disjoint
operation. The refinement steps in these stages have two purposes: (1) they transform
the events to use the new data types, and (2) they introduce the design details of the
system, including notions like train ahead, train behind, and last train within a section.

Stage 4: We instantiate the sequence ADT by the arbitrarily-based array data type. We
also incrementally introduce details on the calculation of the trains’ MAs.

Statistics and Comparison. We present statistics for our development in Table 1 and
compare the development of the train control system with and without ADTs. Table 1a
shows the proof statistics for our first attempt where we did not use ADTs. After 14
refinement steps and 45 difficult manual proofs, we stopped our development with nu-
merous remaining undischarged proof obligations, due to missing invariants. We would
have needed additional invariants that are complex to express and lead to even more
complex proofs. Considering the proof effort needed up to this point, and the additional
effort anticipated to complete the development, we were forced to adapt our develop-
ment strategy and find additional abstraction techniques to simplify the proofs.

Table 1b shows the proof statistics of the development using ADTs. We distinguish
between proofs related to instantiation and proofs related to refinement. Overall, 14%
of the proofs are related to instantiation, and the other 86% are related to refinement.
As expected, the machines at the more abstract and generic levels are more automated.
Most of the manual proofs originating from instantiation (in particular of Stage 4) have
a similar structure that includes manually expanding the instantiation definitions. These
proof steps could be automated with a dedicated proof strategy, which would increase
the amount of proof automation. Overall, the instantiation proofs have a better automa-
tion rate (82%) compared to the refinement proofs (58%).

The number of refinement steps as well as the total number of discharged proof obli-
gations indicate that the size and complexity of our case study is significantly higher
than typical academic examples. Moreover, given the level of detail in our model, stem-
ming from realistic requirements, this supports our claims about the relevance of our
approach for large and complex systems.

5 Related Work

5.1 Instantiation and Data Types

In our approach to introducing ADTs into formal development, generic instantiation [5]
is the key technique for realising the ADTs. This differs from [19] where instantiation
provides a means to reuse formal models in combination with a composition technique.
In particular, to guarantee the correctness of the instantiated model, carrier sets (which
are assumed to be non-empty and maximal) must be instantiated by type expressions.
This has been overlooked in [5] and [19].
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Table 1. Statistics

(a) Development without ADTs

Obligations Auto. Manual Undischarged
14 Refinements 666 497 (75%) 45 (7%) 124 (18%)

(b) Development using ADTs

Obligations Auto. Manual
Stage 0 8 Refinements 267 267 0
Stage 1 Instantiation 34 24 10

14 Refinements 632 477 155
Stage 2 Instantiation 165 161 4

1 Refinement 52 44 8
Stage 3 Instantiation 175 172 3

16 Refinements 765 314 451
Stage 4 Instantiation 174 90 84

18 Refinements 1748 891 857

Total 4012 2440 (61%) 1572 (39%)
Instantiation 548 (14%) 447 (82%) 101 (18%)
Refinement 3464 (86%) 1993 (58%) 1471 (42%)

Part of our approach was previously published in [7]. There, our main motivation
for using ADTs was to encapsulate data and to split the development process into two
parts that can be handled by a domain expert and a formal methods expert, respectively.
In this paper, we focus more on the need for alternative forms of abstraction when
developing large and complex systems in Event-B. We not only use ADTs to abstract
away implementation details for the domain expert, but we use them as an integral part
from the beginning of our development to simplify the proofs. We describe relations
between different ADTs to abstractly specify the system’s properties.

The development of the Theory Plug-in [11] for Rodin allows users to extend the
mathematical language of Event-B, for example, by including new data types. Theo-
rems about new data types can be stated and later used by a dedicated tactic associated
with the Theory Plug-in. There is also a clear distinction between the theory modules
(capturing data structures and their properties) and the Event-B models using the newly
defined data structures. The main difference between the Theory Plug-in and our ap-
proach is that the data types in the Theory Plug-in are “concrete”. One must give the
definitions for the data types and prove theorems about them before using these data
types for modelling. This bottom-up approach is in contrast with our top-down approach
where the choice of implementations for ADTs can be delayed. More specifically, we
can have different implementations for the ADTs. For example, instead of implement-
ing the sequence ADT using arbitrarily-based arrays, we can use standard, zero-based
arrays for the same purpose. In fact, we did experiment with both implementations and
decided to use arbitrarily-based arrays due to the simpler proofs for the systems.

Our approach of using ADTs in Event-B is similar to work on algebraic specifi-
cations [18]. In this domain, a specification contains a collection of sorts, operations,
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and axioms constraining the operations. Specifications can be enriched by additional
sorts, operations, or axioms. Furthermore, to develop programs from specifications, the
specifications are transformed via a sequence of small “refinement” steps. During these
steps, the operations are “coded” until the specification becomes a concrete descrip-
tion of a program. For each such refinement step, one must prove that the code of the
operations satisfies the axioms constraining them. An algebraic specification therefore
corresponds to an Event-B context, while refinement in algebraic specifications is simi-
lar to generic instantiation in Event-B. In contrast to algebraic specifications [12], where
the entire functionality of a system is modelled as ADTs (in the form of many-sorted
algebras) [18], we use ADTs to abstract only part of our system’s functionality. Mod-
elling every aspect of a complex system like our example as an algebraic specification
would be very challenging. In addition to the data types, the transition systems must
also be encoded as ADTs in the specification. This would require a large number of
axioms to describe the transitions.

5.2 Formal Development of Railway Systems

Bjørner gives in [9] a comprehensive overview of formal techniques and tools used for
developing software for transportation systems. Beside techniques like model checking
and model-based test case generation, he mentions approaches using refinement. The
following approaches are of special interest for us.

The development of Metro line 14 in Paris [8,2] is one of the better known indus-
trial application of formal methods. In particular, the safety critical part of the software
was developed using the (classical) B Method [1]. The formal reasoning there was only
at the software-level, i.e., reasoning about the correctness of the software in isolation.
In contrast, in our work we not only model the train control system, but also its en-
vironment such as the trains and their movement behaviour. Hence, we can reason on
the system-level covering the overall structure of the system, its components, and their
relationship [4].

In [14], Haxthausen and Peleska present the formal development and verification of
a distributed railway control system using the RAISE formal method. Their approach
is similar to our work as they also use stepwise refinement and ADTs to cope with the
complexity of their system. However, their system is overly simplified at some points
which reduced the development challenges that we found to be the most difficult in our
work. First, they only consider simple network topologies without loops. Second, they
develop a system where sections are either fully occupied or free. Third, their trains can
occupy at most two sections. Although they claim that the system can be easily adapted
for trains occupying more than two sections, from our experience, this generalisation
is a challenging task. Moreover, in their proof they require that if any two events are
enabled in a valid state, executing one of the events and therefore changing the state
cannot disable the other event’s guard. This is a strong property that is cumbersome
to verify as one must prove it for all pairs of events. Our model does not require this
property in order to guarantee the system’s safety.

Platzer and Quesel verify parts of a similar train control system in [17] using their
own verification tool KeYmaera. While we developed the functionality of the controller,
their work focuses on developing the onboard unit. In their development, the controller
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belongs to the environment of the onboard unit and they assume that the controller does
not issue MAs that are physically impossible for the trains. Our development fulfils this
assumption by guaranteeing that the MAs are never reduced.

6 Conclusion

In this paper we presented an approach to building formal models in Event-B using
ADTs. ADTs allow us to hide irrelevant details that are unimportant for proving abstract
properties. On an abstract level, one can therefore focus on modelling the system’s core
functionality.

The way we introduce ADTs in our approach allows us to utilise generic instantia-
tion. This handles both the instantiation of an ADT by the chosen data structure as well
as the generation of the required proof obligations to guarantee that the chosen structure
is a valid instance of the ADT. As a large scale case study we have successfully applied
our approach to the development of a realistic train control system. We identified the
limitations of only using refinement for this system and showed how we overcome these
limitations using ADTs.

As future work we would like to overcome some of the current limitations of our
work. As previously mentioned, we cannot presently specify parameterised ADTs. To
overcome this limitation, we need to extend the semantics of Event-B contexts and adapt
the generic instantiation technique accordingly. The Theory Plug-in might be useful to
specify parameterised ADTs.
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Abstract. MapReduce is a powerful distributed data processing model
that is currently adopted in a wide range of domains to efficiently handle
large volumes of data, i.e., cope with the big data surge. In this paper, we
propose an approach to formal derivation of the MapReduce framework.
Our approach relies on stepwise refinement in Event-B and, in particu-
lar, the event refinement structure approach – a diagrammatic notation
facilitating formal development. Our approach allows us to derive the
system architecture in a systematic and well-structured way. The main
principle of MapReduce is to parallelise processing of data by first map-
ping them to multiple processing nodes and then merging the results.
To facilitate this, we formally define interdependencies between the map
and reduce stages of MapReduce. This formalisation allows us to pro-
pose an alternative architectural solution that weakens blocking between
the stages and, as a result, achieves a higher degree of parallelisation of
MapReduce computations.

Keywords: formal modelling, Event-B, refinement, event refinement
structure, MapReduce.

1 Introduction

MapReduce is a widely used framework for handling large volumes of data [5].
It allows the users to automatically parallelise computations and execute them
on large clusters of computers. Essentially, the computation is performed in two
stages – map and reduce. The first stage maps the input data to multiple process-
ing nodes, while the second stage performs parallel computations to merge the
obtained results. Typically, execution of the map stage is blocking, i.e., execu-
tion of the reduce stage does not start until the map stage is completed. Though
MapReduce is already a highly performant framework, to keep pace with the
drastically increasing volume of data, it would be desirable to loosen the cou-
pling between the stages and hence exploit the potential for parallelisation to
the fullest.

In this paper, we undertake a formal study of the MapReduce framework. We
formally model the control flow and data interdependencies between the map and
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reduce tasks, as well as derive the conditions under which the execution of the
reduce stage can overlap with the execution of the map stage. Our formalisation
of the (generic) MapReduce framework relies on the Event-B method and the
associated Rodin platform. Event-B [1] is a formal approach that is particularly
suitable for the development of distributed systems. The system development
in Event-B starts from an abstract specification that is transformed into a de-
tailed specification in a number of correctness-preserving refinement steps. In
this paper, the Event Refinement Structure approach [3,6] is used to facilitate
the refinement process. The technique provides us with an explicit graphical
representation of the relationships between the events at different levels of ab-
straction and helps to gradually derive the complex MapReduce architecture.

Event-B relies on proof-based verification that is integrated into the develop-
ment process. The Rodin platform [10] automates development in Event-B by gen-
erating the required proof obligations and automatically discharging a part of
them. Via abstraction, proof and decomposition, Event-B enables reasoning about
system-level properties of complex distributed systems. In particular, it allows us
to explicitly define interdependencies between the processed data and derive the
conditions under which an execution of the reduce stage can start before comple-
tion of the map stage.We believe that the proposed approach provides the design-
ers with a formally grounded insight on the properties of MapReduce and enables
fine-tuning of the framework to achieve a higher degree of parallelisation.

The rest of the paper is organised as follows. In Section 2 we describe the
generic MapReduce framework and our formalisation of it. In Section 3 we give
an overview of the Event-B formalism and the Event Refinement Structure (ERS)
approach. In Section 4 we present our formal derivation of the MapReduce frame-
work in Event-B using the ERS approach. As a result, we derive two alternative
architectures of the MapReduce framework – blocking and partially blocking. In
Section 5 we overview the related work and present some concluding remarks.

2 MapReduce

2.1 Overview of MapReduce

MapReduce is a programming model for processing large data sets. It has been
originally proposed by Google [5]. The framework is designed to orchestrate the
work on distributed nodes, run various computational tasks in parallel, providing
at the same time for redundancy and fault tolerance. Distributed and parallelised
computations are the key mechanisms that make the MapReduce framework very
attractive to use in a wide range of application areas: data mining, bioinformat-
ics, business intelligence, etc. Nowadays it is becoming increasingly popular in
cloud computing. There exist different implementations of MapReduce, among
them open-source Hadoop [2], Hive [11], and others.

The MapReduce computational model was inspired by the map and reduce
functions widely used in functional programming. A MapReduce computation
is composed of two main steps: the map stage and the reduce stage. During
the map stage, the system inputs are divided into smaller computational tasks,
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which are then performed in parallel (provided there are enough processors in the
cluster). The obtained collective results then become the inputs for the reduce
stage, which combines them in some way to produce the overall output. Once
again, the reduce inputs are split into smaller computational tasks that can be
executed in parallel.

The MapReduce framework can be tuned to perform different data transfor-
mations by the user-supplied map and reduce functions. These functions encode
basic mapping and reduction tasks to be performed in single nodes. The MapRe-
duce framework then incorporates the provided functions and orchestrates the
overall distributed computations based on them.

A typical example illustrating MapReduce computations is counting the word
occurrences in a large set of documents. The input data set is split into smaller
portions and the user-provided map function is applied to each such data block.
The map function simply assigns to each word it encounters the value equal to
1. Overall, the map stage produces a collection of (word,1) pairs as intermediate
results. Then, during the reduce stage, the user-supplied reduce function takes
a portion of these intermediate data related to a particular word and sums all
the occurrences of that word. Such a computation is done for each encountered
word. The overall result is a set of (word,number) pairs.

2.2 Towards Formal Reasoning about MapReduce

In this section, we present a formalisation of the MapReduce framework. Specif-
ically, we mathematically represent all MapReduce execution stages, i.e., the re-
quired data and control flow, and identify the computational (map and reduce)
tasks that can be executed in parallel. Moreover, we formally define possible
data interdependencies between the map and reduce tasks. The latter allows us
to propose an alternative architectural solution, which weakens blocking between
the MapReduce phases and, as a result, achieves a higher degree of parallelisa-
tion of MapReduce computations. In Section 4, we will propose two alternative
formal developments of the MapReduce framework in Event-B, both of which
rely on the formalisation presented below.

Let IData be an abstract type defining the input data to be processed within
the MapReduce framework and OData be an abstract type defining the result-
ing output data. In a nutshell, a MapReduce computation processes the given
input data and generates some result. Thus, it can be formally represented as a
function:

MapReduce ∈ IData → OData.

More specifically, a MapReduce computation can be defined as a functional
composition of the following phases: MSplit, Map, RSplit, Reduce, and Combine:

MapReduce = MSplit; Map; RSplit; Reduce; Combine.

Let us note that the phases MSplit and Map together correspond to the map
stage mentioned in Section 2.1, while the phases RSplit and Reduce belong to
the reduce stage.

The MapReduce process starts with the MSplit phase. During this phase, the
input data are split into a number of blocks (portions of the input data), which
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can be handled independently of each other. In the following Map phase, the
user-provided map function is applied to each such input block. Next, in the
RSplit phase, the MapReduce framework groups together all the intermediate
results obtained after the Map phase to prepare for the reduce computations.
Similarly to the MSplit phase, the data are divided into blocks that can be
handled separately. After that, the Reduce phase is executed, during which the
user-supplied reduce function is repeatedly applied (once per each block). Fi-
nally, in the Combine phase, all the obtained results are combined into the final
output.

Formalisation of the MapReduce Execution Phases. Next we define all
the MapReduce execution phases in more detail. In the MSplit phase, the input
data are split into a number of blocks that are later supplied to the map function.
To emphasise the independent nature of map computations, we associate the
notion of a map task with such a portion of the input data to be processed
separately.

Let MTask be a set of all possible map tasks and MData be an abstract type
defining the data obtained after the splitting. Then the MSplit phase can be
mathematically represented as follows:

MSplit ∈ IData→ (MTask �→MData).

Essentially, MSplit produces a partitioning of the input data to be used in the
Map phase among different map tasks. Note that the result of MSplit is a partial
function since only a subset of MTask may be needed for particular input data.

We assume that the input data fully determines the number and the subset of
involved map tasks.1 To extract this information, we use the following functions

mtasks ∈ IData→ P1(MTask), mnum ∈ IData→N1
defined as

∀idata ∈ IData · mtasks(idata) = dom(MSplit(idata)),

∀idata ∈ IData · mnum(idata) = card(MSplit(idata)),

where dom and card are the function domain and set cardinality operators.
The Map phase involves transformation of all the data obtained by the MSplit

phase into the intermediate form to be used in the later phases. Let RData be
an abstract type defining the intermediate data obtained after the Map phase.
Then Map phase can be mathematically represented as the following function:

Map ∈ (MTask �→MData)→ P1(MTask ×RData).

Therefore,Map takes the map data partitioning produced by MSplit and returns
the transformed data associated with the map tasks that produced them. These
results then become the input data for the following reduce computations.

In our formalisation the Map results consist of a set of (mtask, rdata) pairs,
without assuming any further structure among them. This is done intentionally,

1 This applies only to the involved computational tasks. Actual software components
that will be employed to carry out the necessary computations can be dynamically
assigned and re-assigned for a specific map or reduce task.
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since grouping and partitioning of these data will be performed in the RSplit
phase.

All the involved map tasks should be performed within the Map phase. For-
mally, this requirement can be formulated as follows:

∀f ∈ MTask �→MData · f �= ∅ ⇒ dom(f) = dom(Map(f)).

Next the results obtained by the Map phase are grouped together to prepare
for reduce computations. Similarly to the MSplit phase, they should be first
partitioned among the individual reduce tasks.

Let RTask be a set of all possible reduce tasks. Then the RSplit phase can be
formally defined as the following function:

RSplit ∈ P1(MTask ×RData)→ (RTask �→ P1(RData)).

Essentially, the function takes the intermediate results produced by the Map
phase and produces data partitioning among the involved reduce tasks.

We can reason about the actual number and the subset of the involved reduce
tasks. Once again, this is determined by the original input data. Formally, we
introduce the functions

rtasks ∈ IData→ P1(RTask), rnum ∈ IData→ N1

defined as

∀idata ∈ IData · rtasks(idata) = dom(RSplit(Map(MSplit(idata)))),

∀idata ∈ IData · rnum(idata) = card(RSplit(Map(MSplit(idata)))).

The RSplit phase only rearranges the intermediate data, producing their par-
titioning among the reduce tasks. Therefore, neither new data should appear nor
any of the existing data can disappear during this transformation. Mathemati-
cally, this can be formulated as the following property:

∀f ∈ P1(MTask × RData) · ran(f) = (
⋃

rt ∈ dom(RSplit(f)) | RSplit(f)(rt)),
where ran is the function range operator.

The Reduce phase is similar to the Map phase – it takes as input a data
partitioning produced by RSplit and returns transformed data:

Reduce ∈ (RTask �→ P1(RData))→ P1(OData),

where OData is an abstract type defining the resulting output data.
Finally, the last Combine phase can be simply defined as follows:

Combine ∈ P1(OData)→ OData.

Formalisation of the map and reduce functions. The Map phase is based
on repeated invocations of the user-supplied function map. The map function can
be formally represented in the following way:

map ∈ MData→ P1(RData).

Thus, it takes an input data from MData and produces some intermediate data
to be used in reduce computations. The map function and the Map phase are
tightly linked. To be precise, the union of all the results obtained from all the
map function applications should be equal to the overall result of the Map phase:
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Map = {f ·f ∈ MTask �→MData | f �→ (
⋃

mt·mt ∈ dom(f) | {mt}×map(f(mt)))}.

The user-supplied reduce function can be specified as follows:

reduce ∈ P1(RData)→ P1(OData).

It takes as an input a subset of the reduce data RData and produces some subset
of output data from OData.

Finally, the overall result of the Reduce phase should be equal to the combined
results obtained by repeated application of the reduce function:

Reduce = {f ·f ∈ RTask �→P1(RData) | f �→ (
⋃

rt·rt ∈ dom(f) | reduce(f(rt)))}.

Essentially, the Reduce definition is directly based on the user-supplied reduce

function.

Formalisation of Interdependencies between the Map and Reduce
Tasks. The main principle of MapReduce is that all the map and reduce com-
putations are distributed to multiple independent processing nodes. The reduce
inputs are based on the previously produced map outputs. However, in some
cases, the reduce inputs might depend on only particular map outputs. There-
fore, the reduce stage can be initiated before all the map computations are
finished. To relax the limitation of the original MapReduce computation flow,
requiring that the reduce stage starts only after completing the map stage, we
formally define the dependence relation between the map and reduce tasks as
the following function dep:

dep ∈ IData→ P(RTask×MTask),

with the following property:

∀ idata ∈ IData, rt ∈ RTask, mt ∈ MTask · rt �→ mt ∈ dep(idata) ⇔
mt ∈ dom(MSplit(idata)) ∧

(∃rd ∈ RData · rt ∈ dom(RSplit(Map(MSplit(idata)))) ∧
rd ∈ RSplit(Map(MSplit(idata)))(rt) ∧ mt �→ rd ∈ Map(MSplit(idata))).

The property states that for any input data input, a map taskmt and a reduce
task rt are in dependence relation (i.e., a reduce task depends on a map task),
if and only if some intermediate data rd has been generated for this reduce task
rt by the computations of the map task mt during the Map phase. Essentially,
the relation dep defines the data interdependencies between the map and reduce
stages. This formalisation allows us to propose (in Section 4) an alternative
architectural solution that weakens blocking between the stages.

Finally, to make it possible for a particular reduce task to start immediately
after all the necessary data have been produced by the map tasks related by
dep, we need a version of RSplit, defining a partial split related with a specific
reduce task. For a given reduce task, it produces the grouped together results
obtained within the Map phase:

rsplit ∈ RTask �→ (P1(MTask× RData)→ P1(RData)).
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Again, the union of the results obtained from all the rsplit function applica-
tions should be the result of the RSplit phase:

∀f ·f ∈ P1(MTask ×RData)⇒
RSplit(f) = (

⋃
rt·rt ∈ dom(rsplit)|{rt �→ rsplit(rt)(f)}).

In Section 4 we will demonstrate that, by relying on the proposed formalisa-
tion, we can derive a formal model of the MapReduce framework. There we will
propose two models of MapReduce – blocking and partially blocking models.

3 Formal Development by Refinement: Background

3.1 Event-B

Event-B is a state-based formal approach that promotes the correct-by-
construction development paradigm and formal verification by theorem proving
[1]. In Event-B, a system model is specified using the notion of an abstract state
machine. An abstract state machine encapsulates the model state, represented
as a collection of variables, and defines operations on the state, i.e., it describes
the dynamic behaviour of a modelled system. The variables are strongly typed
by the constraining predicates that, together with other important system prop-
erties, are defined as model invariants. Usually, a machine has an accompanying
component, called a context, which includes user-defined sets, constants and their
properties given as a list of model axioms.

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, and (the event guard)
Ge is a predicate over the model state. The body of an event is defined by
a multiple (possibly nondeterministic) assignment to the system variables. In
Event-B, this assignment is semantically defined as the next-state relation Re.
The event guard defines the conditions under which the event is enabled, i.e.,
its body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification that nondeterministi-
cally models the most essential functional requirements. In a sequence of
refinement steps, we gradually reduce nondeterminism and introduce detailed de-
sign decisions. The consistency of Event-B models, i.e., verification of model well-
formedness, invariant preservation as well as correctness of refinement steps, is
demonstrated by discharging the relevant proof obligations. The Rodin platform
[10] provides an automated support for modelling and verification. In particular, it
automatically generates the required proof obligations and attempts to discharge
them.
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machine M1 refines M0  
 
variables Event1 Event2 
invariants 
  @inv1 Event1  BOOL 
  @inv2 Event2 = TRUE  Event1 = TRUE 
  @inv3 Event2 = AbstractEvent 
 
event INITIALISATION then 
      @act1 Event1  FALSE 
      @act2 Event2  FALSE 
end 
 
event Event1 any par  where 
      @grd1 Event1 = FALSE 
     then 
      @act1 Event1  TRUE 
end 
 
event Event2 refines AbstractEvent  
    any par where 
      @grd1 Event1= TRUE 
      @grd2 Event2 = FALSE 
    then 
      @act1 Event2  TRUE 
end 

Machine M0  
 
variables AbstractEvent 
invariants 
  @inv1 AbstractEvent  BOOL 
 
event INITIALISATION then 
      @act1 AbstractEvent  FALSE 
end 
 
event AbstractEvent any par  where 
      @grd1 AbstractEvent = FALSE  
     then 
      @act1 AbstractEvent  TRUE  
end 

Fig. 1. Event Refinement Structure (ERS) Diagram

3.2 Event Refinement Structure

The Event Refinement Structure (ERS) [3,6] approach augments Event-B re-
finement with a graphical notation that allows us to explicitly represent the
relationships between the events at different abstraction levels as well as define
the required event sequence in a model. ERS is illustrated by example in Fig-
ure 1. The diagram explicitly shows that AbstractEvent is refined by Event2,
while Event1 is a new event that refines skip. Moreover, the diagram shows that
the effect achieved by AbstractEvent in the abstract machine is realised in the
refining machine by the occurrence of Event1 followed by Event2.

In ERS, the sequential execution of the leaf events is depicted from left to
right. The event sequencing is managed by additional control variables intro-
duced into the underlying Event-B model. For instance, for each leaf event (node)
represented in Fig. 1, there is one boolean control variable with the same name
as the event. When the event Event1 occurs, the corresponding control variable
is set to TRUE. The following event, Event2, can occur only after Event1. This
is achieved by checking the value of the Event1 control variable in the guard of
Event2.

Boolean variables only allow controlling single execution of events. When mul-
tiple executions of an event are needed, the event is parameterised and set control
variables are used instead of boolean ones. This allows the event to occur many
times with different values of its parameter. A parameter can be introduced in
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Fig. 2. ERS all /some Constructors

an event by the ERS constructors. The ERS constructors used in this paper are
illustrated by two simple examples in Fig. 2. The use of all constructor indicates
that Event1 is executed for all instances of the p parameter before execution of
Event2, while the use of the constructor some indicates that Event1 is executed
for some of instances of the p parameter before execution of Event2. The cor-
responding control variables for Event1 and Event2 are defined as sets in the
model.

Event-B adopts an event-based modelling style that facilitates the correct-
by-construction development of complex distributed systems. Since MapReduce
is a framework designed for large-scale distributed computations, Event-B is a
natural choice for its formal modelling and verification.

4 Formal Development with Event Refinement Structure

In this section, we rely on our formalisation presented in Section 2.2 to de-
velop two alternative Event-B models of the MapReduce framework: blocking
and partially blocking. The presented formal developments make use of the Event
Refinement Structure (ERS) approach, presented in Section 3.2. Our develop-
ment strategy is based on gradually unfolding all the MapReduce computational
phases by refinement. Such small model transformation steps allow us to effi-
ciently handle the complexity of the MapReduce framework.

Let us note that our development of the MapReduce framework is generic.
It relies on the use of abstract functions to represent essential data transforma-
tions of MapReduce. These abstract functions can be treated as generic system
parameters that can be later instantiated with their concrete instances for the
specific MapReduce implementations.

4.1 Blocking Model of MapReduce

The mathematical data structures and their properties from our MapReduce
formalisation constitute the basis for defining the Event-B context component
that is used throughout the whole formal development. Essentially, the whole
presented formalisation is incorporated as the context, e.g.

axm8: MSplit ∈ IData→ (MTask �→MData)

axm9: Map ∈ (MTask �→MData)→ P1(MTask ×RData)

axm10: RSplit ∈ P1(MTask ×RData)→ (RTask �→ P1(RData)), ...

We will constantly rely on these definitions to ensure the correctness of the
overall data transformation process within our MapReduce models. Since the
formalised definitions are still abstract (generic), our presented development es-
sentially formally describes a family of possible MapReduce implementations.
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Due to space limit, we do not present the complete development but rather give
its graphical representation using the ERS graphical notation. The full Event-B
models of this development can be found in [8].

Abstract model of MapReduce. We start with an abstract model in which
the whole MapReduce computation is done in one atomic step. This behaviour
is modelled by the event OutputMapReduce:

OutputMapReduce =̂
any t1, t2, t3, t4
when t1 = MSplit(idata) ∧ t2 = Map(t1) ∧ t3 = RSplit(t2) ∧ t4 = Reduce(t3)
then output := Combine(t4) ‖ done := TRUE end

With help of the ERS approach, we decompose the atomicity of
OutputMapReduce into smaller steps. Verification of the refinement proof obli-
gations ensures that the decomposition preserves correctness. Specifically, in
the next several consecutive refinement steps, we break the atomicity of the
OutputMapReduce event by introducing explicit events for the following MapRe-
duce phases: MSplit, Map, RSplit, and Reduce. Fig. 3 presents the ERS diagram
of the model.

Fig. 3. Blocking model: ERS diagram (for OutputMapReduce)

The new model events MapSplit, MapPhase, ReduceSplit and ReducePhase
specify the sequential execution of the MapReduce phases. The sequence be-
tween the events is enforced by following the rules given in Section 3.2. It is also
specified by the invariant properties on the control variables:

OutputMapReduce = TRUE ⇒ ReducePhase = TRUE,

ReducePhase = TRUE ⇒ ReduceSplit = TRUE,

ReduceSplit = TRUE ⇒ MapPhase = TRUE,

MapPhase = TRUE ⇒ MapSplit = TRUE.

Moreover, to store the intermediate results of separate phases, we introduce
a number of variables (msplit, map result, rsplit and reduce result) that are
updated during execution of the corresponding events. The variable updates are
also performed according to the formalisation given in Section 2.2. For instance,
the variable msplit is introduced to store the result of the MSplit phase. After
the execution of the MapSplit event,msplit gets the value equal to MSplit(idata).
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Fig. 4. Blocking model: ERS diagram (for MapPhase)

Machine MapReduce1 m1 refines MapReduce1 m0
Variables idata, output, msplit, MapSplit, ...
Invariants OutputMapReduce = TRUE ⇒ MapSplit = TRUE ∧

MapSplit = TRUE ⇒ msplit = MSplit(idata) ∧ ...
MapSplit =̂
when MapSplit = FALSE
then MapSplit := TRUE

msplit := MSplit(idata)
end

OutputMapReduce refines OutputMapReduce =̂
any t2, t3, t4
where MapSplit = TRUE ∧ OutputMapReduce = FALSE ∧

t2 = Map(msplit) ∧ t3 = RSplit(t2) ∧ t4 = Reduce(t3)
with t1 = msplit
then output := Combine(t4)

OutputMapReduce:= TRUE
end

Breaking Atomicity of the Map Phase. In the second refinement step, we
introduce the eventMapPhase that abstractly models theMap phase. Essentially,
the Map phase involves parallel execution of all the map tasks. To introduce such
a behaviour, we use the constructor “all constructor”, which is applied to the
MTProcess event that models the execution of a particular map task (see Fig.4).
The expression “all(mt)” means that the MTProcess event can be enabled for
multiple values of mt ∈ dom(msplit). On the other hand, the MapCommit event
can only occur when all the map computations of map tasks have been finished.
In Event-B, we model this by adding a variable MTProcess, which is a set
containing all possible map tasks that should be processed. The order between
the events is ensured by the invariants on the control variables, e.g.,

inv4: MapCommit = TRUE ⇒MTProcess = dom(msplit),

where dom(msplit) defines the set of all current map tasks. The invariant states
that if the MapCommit event has been executed, then all the map tasks have
been completed before it. While specifying the MTProcess event, we rely on the
definition of the map function, given in Section 2.2.

Machine MapReduce1 m5 refines MapReduce1 m4
MTProcess =̂
any mt
where MapSplit = TRUE ∧ mt ∈ dom(msplit) ∧ mt /∈ MTProcess
then MTProcess := MTProcess ∪ {mt}

MTProcess result(mt) := map(msplit(mt))
end

MapCommit refines MapPhase =̂
when MapSplit = TRUE ∧ MapCommit = FALSE ∧ MTProcess=dom(msplit)
then MapCommit = TRUE

map result := (
⋃

mt·mt ∈ dom(msplit)|{mt} × MTProcess result(mt))
end

Further Refinements of the Map Phase. During the MapReduce execu-
tion, all the map and reduce tasks are parallelised and distributed to multiple
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Fig. 5. Blocking model: ERS diagram (for MTProcess)

processing nodes – the actual software components that carry out the computa-
tions. We name these components as map and reduce workers. Moreover, there
is a special component – master – that controls all the computations and assigns
the map and reduce tasks to the workers. The master periodically pings every
worker. In case of a worker failure, the master re-assigns tasks from the failed
worker to a healthy one. This procedure can be repeated until the master gets
the result for a particular map or reduce task from some worker. To introduce
such functionality, we carry out several further refinements focusing on the Map
phase. These refinements elaborate on modelling of map task execution.

Fig.5 illustrates the event MTProcess and its several consecutive levels of
atomicity decomposition. First, the abstract event MTProcess is broken into two
concrete events, MTok and MTSuccess correspondingly. The MTok event models
the execution of the map task mt by a particular map worker mw. The result
of this computation should be approved by the master side, which is modelled
by execution of the MTSuccess event. The “some” constructor indicates that
the event MTok may be executed only for some instances of the mw param-
eter before the MTSuccess event becomes enabled. The MTSuccess and MTok
control variables are defined as sets, which allows for multiple executions of the
MTSuccess andMTok events. Later on, in the next refinement step, the atomicity
of the MTok event is broken into two events AssignMT and ExecMT. The event
AssignMT models an assignment of a map task mt to a particular map worker
mw, while ExecMT models the successful execution of the task by this worker.

Similarly to the Map phase, we refine the Reduce phase by gradually unfolding
its computations. The overall refinement structure is presented on Fig.6.

Let us note that the proposed architecture is blocking in the sense that the
reduce computations can be only started after all the map computations have
been finished. The formal derivation of the blocking model and its dynamics is
performed under this condition. Next we propose an alternative architectural
solution of the MapReduce framework that weakens blocking between the map
and reduce stages and, as a result, achieves a higher degree of parallelisation
of the MapReduce computations. For this purpose, we will make use of the
dependence relation between map and reduce tasks introduced in the Section
2.2. We call this model partially blocking model.

4.2 Partially Blocking Model of MapReduce

We start from the same initial specification as for the blocking model, in which
the whole MapReduce computation is done in one atomic step, and then refine
it in order to introduce the MSplit phase. Next, in contrast to the previous
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derivation, we separate the phase that combines executions of the RSplit and
Reduce phases – RSplitReducePhase. Fig.7 (a) presents the ERS diagram of the
refined model.

RSplitReducePhase involves executions of the RSplit and Reduce phases for
all reduce tasks. Essentially, these computations are parallelised. To introduce
such behaviour, we use the“all” constructor applied to the RTSplitReduceProcess
event that, for a particular reduce task rt, performs split and then reduce com-
putations (see. Fig.7 (b)). Next, we separate these split and reduce executions
of the particular reduce task rt. Namely, the event RTSplitReduceProcess is split
into two concrete events, RTSplitProcess and RTProcess. Here we again rely on
the rsplit and reduce functions formalised in Section 2.2.

Up to now we did not introduce the Map phase explicitly. However, the results
of MapPhase are simulated internally, by storing the intermediate results in the
local variables of the RTSplitProcess event. To explicitly model the Map phase,
the event RTSplitProcess is now split into two events MTProcess and RSplit (see
Fig.8). The constructor “all” is parameterised by (mt ∈ dep[{rt}])”. It means
that the event MTProcess is executed for all those map tasks, mt, that are in
data dependency with the reduce task rt. Therefore, to start the RSplit phase,
we do not need to wait until all the map tasks are completed. Here we are
relying on the definition of data interdependency dep between the map and
reduce stages, formalised in Section 2.2. Finally, the MTProcess and RTProcess
events are refined in the same manner as in the blocking model presented in the
Section 4.1.

Let us note that the proposed partially blocking model allows us to achieve a
higher degree of parallelisation of MapReduce computations. Indeed, for a par-
ticular reduce task, when the dependent map tasks have already been executed,

Fig. 6. MapReduce ERS Diagram: blocking model
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(a) (b)

Fig. 7. Partially blocking model: ERS diagrams

the RSplit phase for this reduce task can be performed, and then reduce com-
putations can be started. In other words, the computations from three different
phases – Map, RSplit, and Reduce – can be performed in parallel, provided the
involved data are independent. Therefore, the proposed architectural solution
weakens blocking between the stages and, as a result, achieves a higher degree of
parallelisation. The overall refinement structure of the partially blocking model
is presented on Fig.9.

Fig. 8. Partially blocking model: ERS diagram (for RTSplitProcess)

Fig. 9. MapReduce Event Refinement Structure: partially blocking model
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4.3 Discussion and Future Work

To verify correctness of the presented models, we have discharged around 270
proof obligations for the first formal development, as well as more than 300 for
the second one. Approximately 93% of them have been proved automatically
by the Rodin platform and the rest have been proved manually in the Rodin
interactive proving environment. With help of the ERS approach, we have de-
composed the atomicity of the MapReduce framework and hereby achieved a
higher degree of automation in proving. Moreover, the ERS diagrammatic nota-
tion has provided us with additional support to represent the model control flow
at different abstraction levels and also simplified reasoning about possible refine-
ment strategies. The whole development and proving effort has taken about one
person-month.

As a result of the presented refinement chains, we have arrived at two different
centralised Event-B models of the distributed MapReduce framework. As a part
of the future work, we are planing to derive distributed models by employing
the existing decomposition mechanisms of Event-B. This would result in cre-
ating separate formal specifications of the involved software components of the
MapReduce framework (such as master, map worker, reduce worker, etc.).

The static part of the modelled system is formally defined in the corresponding
context component. The definitions of static data structures in the context are
mostly very abstract, i.e. they state only essential properties to be satisfied.
This makes them generic parameters of the whole formal development. In its
turn, such formal development becomes generic, representing a family of the
systems that can be described by providing suitable concrete values for the
generic parameters. The proposed formal model can be used then as a starting
point for future development of a specific MapReduce application. The actual
concrete values can be supplied by either the end-user (e.g., the map and reduce

functions) or the developer of the MapReduce framework (e.g., the MSplit or
RSplit transformations).

As a continuation of this work, it would be interesting to create formal models
for a concrete MapReduce implementation, e.g., the word counting example,
by using the Event-B generic instantiation plug-in. Moreover, to analyse the
quantitative characteristics of the proposed models, we are planing to use the
Uppaal-SMC model checker. This would allow us to, e.g., assign different data
processing rates for the map and reduce tasks and then compare the execution
time estimations of two considered architectures.

5 Related Work and Conclusions

The problem of formalisation of the MapReduce framework has been studied in
[12]. The authors present a formal model of MapReduce using the CSP method.
In their work, they focus on formalising the essential components of the MapRe-
duce framework: the master, mapper, reducer, the underlying file system, and
their interactions. In contrast, our focus is on modelling the overall flow of con-
trol as well as the data interdependencies between the MapReduce computational
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phases. Moreover, our approach is based on the stepwise refinement technique
that allowed us to gradually unfold the complexity of the MapReduce framework.

Formalisation of MapReduce in Haskel is presented in [9]. Similarly to our
approach, it focuses on the program skeleton that underlies MapReduce compu-
tations and considers the opportunities for parallelism in executing MapReduce
computations. However, in addition to that, we also reason about the involved
software components – the master, map and reduce workers – that are associated
with the respective map and reduce tasks.

The work [7] presents two approaches based on Coq and JML to formally
verify the actual running code of the selected Hadoop MapReduce application.
In our work we are more interested in formalisation of MapReduce computa-
tions and gradual building of different MapReduce models that are correct-by-
construction. The performance issues of MapReduce computations have been
studied in the paper [4], focusing on one particular implementation of the MapRe-
duce – Hadoop. In contrast, we have tried to formally investigate the data in-
terdependencies between the MapReduce phases and their effect on the degree
of parallelisation, independently of a concrete MapReduce implementation.

In this paper we have proposed an approach to formalising the MapReduce
framework. Our main technical contribution of this paper is two-fold. On the one
hand, based on our definition of interdependencies between the processed data as
well as the map and reduce stages, we have derived the conditions under which
blocking between the stages can be relaxed. Therefore, we have rigorously derived
constraints for implementing MapReduce with a higher degree of parallelisation.
On the other hand, we have demonstrated how to use the Event Refinement
Structure (ERS) technique to formally derive and verify a model of a complex
system with a massively parallel architecture and complex dynamic behaviour.

The stepwise refinement approach to deriving a complex system model has
demonstrated good scalability and allowed us to express system properties at
different levels of abstraction and with a different degree of granularity. Moreover,
combining the refinement technique with tool-assisted mathematical proofs have
provided us with a scalable approach to verification of a complex system model.
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Abstract. We validate the RBAC ANSI 2012 standard using the B
method. Numerous problems are identified: logical errors, inconsistencies,
ambiguities, typing errors, missing preconditions, invariant violation, in-
appropriate specification notation. A clean version of the standard written
in the B notation is proposed. We argue that the ad hoc mathematical no-
tation used in the standard is inappropriate and we propose that a more
methodological and tool-supported approach must definitely be used for
writing standards, in order to avoid the issues identified in the paper. Hu-
man reviewing is insufficient to produce error-free international standards.

Keywords: Role-Based Access Control, B method, invariant preserva-
tion.

1 Introduction

RBAC is one of most cited access-control models in the scientific literature (27 300
reference in Google Scholar, 1 326 reference in ACM digital library), and one of the
most widely used models in industry [8]. It is an ANSI standard developed by IN-
CITS (International Committee for Information Technology Standards) [1,2,11],
with a first edition produced in 2004 and a recent revision published in 2012. It is
recommended by numerous governmental agencies, like Canada’s Health Infoway,
for controlling access to sensitive information like electronic health records. In a
recent project on access control and consent management, we decided to follow
these recommendations and evaluate the adequacy of RBAC for managing access
to EHR. We were surprised by the number of errors and inconsistencies found in
the standard. Even more surprising, all errors can be found in both editions (2004
and 2012), and the 2012 edition has been reviewed/voted by more than 141 per-
sons (as listed in the standard).

The standard is written using mathematical definitions in the style of Z, but
without strictly following the Z syntax. The mathematical definitions have not
been syntax-checked nor type-checked, thus several errors could have been easily
avoided. Some mathematical notations are not drawn from Z and seem rather ad
hoc, as they are not easily found in standard mathematical textbooks, leaving the
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reader to guess their meaning from the context. More importantly, not sticking
to the Z syntax also leads to several ambiguities, since the mathematical text
interpreted with the Z semantics does not always match the natural language
description. In order to make sense of the mathematical definitions, the reader
must assume declarations which have been omitted in the Z schemas, relying
on the natural language text to make such inferences. This is contrary to good
specification practice, where the mathematical text is the definitive description,
since it offers more precision than natural language The standard leaves out
important concepts, which certainly do not help in reaching the objective stated
in the introduction of the standard:

Development [of] this standard was initiated [. . . ] in recognition of a
need among government and industry purchasers of information technol-
ogy products for a consistent and uniform definition of role-based access
control (RBAC) features. [. . . ] This lack of a widely accepted model re-
sulted in uncertainty and confusion about RBAC’s utility and meaning.
This standard seeks to resolve this situation [. . . ].

The idea of using mathematics to write the standard was certainly a good idea,
as it significantly helped in describing abstract concepts, and allowed us to iden-
tify inconsistencies, ambiguities and missing elements. Finding errors in a natu-
ral language text is definitely more difficult, because two many interpretations
are possible, and each reader picks one, according to his personal experience,
knowledge and context. For comparison, we have also evaluated the XACML
standard [10] where mathematics are not used at all. We found that it is far
more difficult to grasp the subtle concepts of XACML and to be reasonably sure
that we could comply to it. Thus, using mathematics is a great idea, but it is
insufficient to achieve the highest level of confidence in the quality of a standard.
In this paper, we hope to show that the use of a formal method, which has a
formal syntax and a formal semantics, supported by tools like syntax checkers,
type checkers, provers, model checkers and animators, can definitely help in pro-
ducing a precise and unambiguous description of a standard. We have chosen to
use the B method for its rich tool set. In addition, we believe that B has helped
us in detecting errors that may not be easy to find with Z, mainly because B
requires proving invariant preservation, whereas in Z, invariants are typically
included in the state definition and in the definition of operations through the
ΔState decoration, as it was implicitly done in the RBAC standard. Proving
invariant preservation helps in finding missing preconditions in operations and
in reviewing the behaviour of operations when proof obligations fails.

Li et al published a critique of the 2004 standard in [7]. They identified sev-
eral technical problems and suggested improvements to the standard, which they
formulated using plain mathematics [6]. The leading authors of the standard re-
sponded to this critique in [4], without really agreeing on any of the critique
of [7] (even the typos and typing errors identified by Li et al are still present
in the 2012 version of the standard). The improvements suggested by Li et al
in [6] do not simply correct the logical flaws, but also propose a different view
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of RBAC, where, among other things, the notion of session is not included in
the core part of RBAC, and permissions are inherited when a role hierarchy is
used. Noticing issues with the format of the specification of [6], Power et al [9]
provided a formal Z specification of its state pace, leaving out the specification
of administrative functions described in [2]. They also suggested normalization
functions for permission assignment, and formalized the three interpretations of
role hierarchy suggested in [6].

In this paper, our objective is to show that formal methods can significantly
help avoiding errors in the specification of RBAC. We take the RBAC standard
as it is described in [2], and fix all errors that we have found, to the best of
our understanding of the natural language description and the accompanying
mathematical text found in [2]. We do not suggest any new behaviour or feature,
contrary to [6,9]. Another goal is to stress that formal methods should be used
in a comprehensive manner when writing a standard. This includes specifying
both the state invariant and the administrative functions; specifying only the
state invariant is insufficient. Proving that administrative functions preserve the
invariant provides a greater level of confidence in the standard. We have identified
errors that neither [6] nor [9] identified. Using a specification animator is also
crucial to validate a specification. It allows to uncover inappropriate behaviour
which are not detected by invariant preservation proofs.

The paper is structured as follows. Section 2 provides relevant excerpts of
the RBAC standard [2] on data structures. Section 3 describes the specification
of administrative functions to update the value of RBAC data structures. Er-
rors and omissions are identified and discussed in these two sections. We briefly
describe the structure of our B specification in Section 4. The complete specifi-
cation is omitted and provided in [3], due to space constraints. We conclude this
paper with an appraisal of our work in Section 5.

2 Data Structures of the ANSI RBAC Standard

The RBAC standard [2] is decomposed in three components.

1. Core RBAC is the main component and is required in any RBAC system.
2. Hierarchical RBAC introduces a role hierarchy which defines role inheritance.
3. Constrained RBAC introduces separation of duties (SOD) constraints.

A compliant RBAC system is made of the Core RBAC component plus any
combination of the other two.

2.1 Core RBAC

The main idea of RBAC is that permissions are assigned to roles, and users are
granted these permissions by being assigned to roles. The Core RBAC component
includes the following sets: USERS , ROLES , OPS , OBS and SESSIONS, which
respectively stand for the set of users, the set of roles, the set of operations, the



258 N. Huynh et al.

set of objects on which are applied the operations, and the set of sessions, where
a user can activate a role.

The following definitions are reproduced verbatim from [2]. As a convention,
all verbatim excerpts from [2] are framed, while problems are underlined within
the excerpts, and numbered in superscript. Problems are explained in the text
following the excerpts, numbered with Pi.

Core RBAC Reference Model

• USERS ,ROLES ,OPS and OBS 1 (users, roles, operations and objects
respectively).

• UA ⊆ USERS × ROLES , a many-to-many mapping user-to-role assign-
ment relation.

• assigned users : (r : ROLES) → 2USERS ) the mapping of role r onto a
set of users.
Formally: assigned users(r) = {u ∈ USERS |(u, r) ∈ UA}

• PRMS = 2(OPS×OBS) 2, the set of permissions.
• PA ⊆ PERMS 3 × ROLES a many-to-many mapping permission-to-role

assignment relation.
• assigned permissions(r : ROLES) → 2PRMS , the mapping of role r onto

a set of permissions. Formally:
assigned permissions(r) = {p ∈ PRMS |(p, r) ∈ PA}

• Op(p : PRMS) → {op ⊆ OPS} 4, the permission to operation mapping,
which give the set of operations associated with permission p.

• Ob(p : PRMS) → {ob ⊆ OBS} 5, the permission to objects mapping,
which give the set of objects associated with permission p.

• SESSIONS = the set of sessions.
• session users 6(s : SESSIONS) → USERS , the mapping of session s onto

the corresponding user.
• session roles(SESSIONS) → 2ROLES , the mapping of session s onto a

set of roles.
Formally: session roles(si) ⊆ {r ∈ ROLES |(session users(si), r) ∈ UA}

• avail session perm 7(s) → 2PRMS , the permissions available to a user in
a session =

⋃

r∈session roles(s)
assigned permissions(r)

Description of Problems

P1 Typo: all functions of Section 7 (Functional Specification Overview) of [2]
use set OBJS instead of OBS . OBS is declared here and used everywhere
in this section, but not in the rest of the standard.

P2 Type error: functions of Section 7 (Functional Specification Overview) of
[2] use this set as if it was defined as OPS × OBS . Note that this set is
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never updated in any administrative functions of Section 7. This leads us
to conclude that PRMS is a type, and that all operations on objects are
possible, that is, the standard does not provide means for controlling which
operations are valid for which objects. On the other hand, functions Op
and Ob, declared afterwards, but undefined, hint at the usage of a subset of
operations on objects; otherwise, they would be useless. But these functions
are not used in the rest of the standard.

P3 Typo: this symbol is not declared so far. One could presume that it is a
typo for PRMS defined above, and used everywhere in the rest of the data
structure declarations, but PRMS is not used in Section 7; PERMS is used
instead.

P4 Noise: this function is not used in the rest of the specification. By its de-
scription, it is a derived function, but its definition is not provided; only its
type.

P5 Noise: same issues as for Op. This function is undefined and not used in the
rest of the specification.

P6 Noise: this function is not used in the rest of the standard. The function
user sessions, which maps users to sessions is used instead (and undeclared
anywhere).

P7 Noise: this function is not used in the rest of the standard. Administrative
function CheckAccess provides the same information.

Appraisal of the Definitions

None of these definitions clearly emphasizes under what conditions a user can
use an operation on an object. This is quite surprising, because this is the core
purpose of the standard. The definition of avail session perm describes the per-
missions available in a session, but it does not explicitly state that it determines
if a user can execute an operation on an object. The reader has to wait until
Section 7, page 17, where function CheckAccess, buried among other admin-
istrative functions, nails it down in a decisive manner:

This function returns a Boolean value meaning whether the subject of a given
session is allowed or not to perform a given operation on a given object.

The standard introduces a number of symbols (sets, relations, functions), but
does not state whether they are state variables, specification parameters, or
sets used only for typing. For instance, no distinction is made on the nature of
sets USERS , ROLES , OPS and OBS . The first two are state variables (since
they are updated by some administrative functions of Section 7); the last two
are never updated and can be considered as parameters of the specification
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used for typing only. These distinctions would be made if a formal specification
like B, Z or ASM was used. The use of derived functions like assigned users,
assigned permissions and avail session perms can create some confusion ands
inconsistencies when writing administrative functions. For instance, UA and
assigned users(r) are both updated and kept consistent in administrative func-
tions updating them. Similarly for PA and assigned users. On the other hand,
function avail session perm is never maintained in the administrative functions.
In the B method, these derived functions would be not be included as state vari-
ables, since they do not contain any new information. Their inclusion would only
complicate the invariant preservation proof and the specification of operations
They would be included as DEFINITIONS, which are similar to LET constructs
in programming languages. Li et al [7] also suggested not to use derived func-
tions.

Finally, ad hoc mathematical notations are used (e.g., declaration of function
Op), while in Section 7, the Z notation is said to be used for specifying operations.
For the sake of uniformity, the Z notation could have also been used to define
functions.

2.2 Hierarchical RBAC

This component introduces role hierarchies which define an inheritance relation
among roles.

This relation has been described in terms of permissions: r1 ”inherits” role r2
if 8 all privileges of r2 are also privileges of r1. [...]
This standard recognizes two types of role hierarchies—general role hierarchies
and limited role hierarchies. General role hierarchies provide support for an
arbitrary partial order to serve as the role hierarchy, to include the concept of
multiple inheritances of permissions and user membership among roles. Lim-
ited role hierarchies impose restrictions resulting in a simpler tree structure
(i.e., a role may have one or more immediate ascendants, but is restricted to
a single immediate descendent).

General Role Hierarchy Specification

• RH ⊆ ROLES × ROLES is a partial order on ROLES called the inher-
itance relation written as � , where r1 � r2 only if 9 all permissions of
r2 are also permissions of r1, and all users of r1 are also users of r2, ie. ,
r1 � r2 ⇒ authorized permissions(r2) ⊆ authorized permissions(r1).

• authorized users(r : Roles) → 2USERS , the mapping of role r onto a
set of users in the presence of a role hierarchy. Formally:
authorized users(r) = {u ∈ USERS |r′ � r, (u, r′) ∈ UA}

• authorized permissions 10(r : ROLES) → 2PRMS , the mapping of role
r onto a set of permissions in the presence of a role hierarchy. Formally:
authorized permissions(r) = {p ∈ PRMS |r′ � r 11, (p, r′) ∈ PA}
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[. . . ]
Roles in a limited role hierarchy are restricted to a single immediate descen-
dent.
[. . . ]
Node r1 is represented as an immediate descendent 12 of r2 by r1 �� r2,
if r1 � r2 but no role in the role hierarchy lies between r1 and r2. That
is, there exists no role r3 in the role hierarchy such that r1 � r3 � r2,
where r1 �= r2 and r2 �= r3

13.

Limited Role Hierarchy Specification

General Role Hierarchies 14 with the following limitation:

• ∀ r, r1, r2 ∈ ROLES , r � r1 ∧ r � r2
15 ⇒ r1 = r2 .

Description of Problems

P8 Confusion: this is the first sentence where the inheritance relation is de-
scribed, and the standard uses a sufficient condition (“all privileges of r2
are also privileges of r1”) to describe it; the reader shall later understand
that this is instead a necessary condition (a consequence of stating r1 � r2).

P9 Noise: this is the formal declaration of the inheritance relation, but it is
provided in a necessary condition referring to two functions not declared
yet (authorized users and authorized permission), leading the reader to
question whether he has overlooked some definitions involving � in the
previous sections.

P10 Noise (major!): this function is never used in the rest of the standard. More-
over, it leads the reader to believe that the permissions of a role include
the permissions inherited by the role, but this is not the case. The reader
shall later learn, after reading the definition of CheckAccess page 17 and
CreateSession and AddActiveRole page 21, that a user only gets the
permissions of his active roles, and the inheritance hierarchy has no effect on
the permissions of a role. The inheritance hierarchy only changes the users
authorized to activate a role. For instance, following the definition of the
two aforementioned administrative functions, if r1 � r2 and u �→ r1 ∈ UA,
then user u is allowed to activate r1 and r2. By activating r1, user u only
gets the permission granted to r1 in PA; the permissions of r2 can be ex-
ercised only if u also activates r2. Li et al. [7] claim that inheritance as
presented in the standard can be interpreted in three different ways, but
we do not agree with them. If the reader sticks to the mathematical defi-
nitions of the standard, then there is only one plausible interpretation. Of
course, the natural language text, the errors and superfluous definitions
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like authorized permissions create confusion, diverting the reader from
the mathematical text, which should prevail.

P11 Error: it should be r � r′, to match the necessary condition defined for �
just above, i.e.,

r1 � r2 ⇒ authorized permissions(r2) ⊆ authorized permissions(r1)

This error was also pointed out by Li et al. [7].

P12 Ambiguity: The sentence
Roles in a limited role hierarchy are restricted to a single immediate
descendent.

and its formal representation as the following assertion
∀ r, r1, r2 ∈ ROLES , r �� r1 ∧ r �� r2 ⇒ r1 = r2

(where we have corrected the error P15 on � explained below) entail that
r2 is the descendent in r1 �� r2. This usage is also consistent with the
formal definition of operation AddInheritance provided on page 19 of [2].

AddInheritance(r asc, r desc)

This commands establishes a new immediate inheritance relationship
r asc �� r desc between existing roles r asc, r desc.

However, the following sentence defines r1 as the descendent:

Node r1 is represented as an immediate descendent of r2 by r1 �� r2, if
r1 � r2 but no role in the role hierarchy lies between r1 and r2.

Thus, there is confusion in the usage of the word “descendent”.

P13 Error: the standard claims to define the covering relation of an ordered
set, which they call immediate descendent, and which is typically used in
Hasse diagrams. A third condition is missing to do so, namely r1 �= r3. This
error was also pointed out by Li et al. [7], but their suggested correction is
incorrect: they suggest to replace r1 �= r2 by r1 �= r3, which is insufficient,
because the intent of the authors is to define the covering relation of a
partial order. All three inequalities are required.

P14 Version change: we have reproduced the 2004 version of the standard [1]
here, because the 2012 version [2] uses Definition 2a instead, but there is
no definition labeled with 2a in the standard.



Validating the RBAC ANSI 2012 Standard Using B 263

P15 Error: the standard claims to define the notion of single immediate descen-
dent in a partial order, i.e., the partial order is a tree, as claimed in the
following sentence:

Limited role hierarchies impose restrictions resulting in a simpler tree
structure (i.e., a role may have one or more immediate ascendants, but is
restricted to a single immediate descendent).

To do so, the standard should use instead r �� r1 ∧ r �� r2. This error
was also pointed out by Li et al. [7].

Appraisal of the Definitions

Given all these problems, this section of the standard is quite hard to understand.
The meaning of relation � is unclear until the specification of the administrative
functions are provided in Section 7 of the standard. This is where the reader
learns the indirect effect of � on the CheckAccess predicate, which describes
if a user can perform an operation on an object in a given state of the RBAC
system. Describing the connection between � and the active sessions would help
clarify the meaning of �. The following assertion, which is the body of function
CheckAccess, would show that � does not directly impact the access of a user
has in a given state.

CheckAccess(s, op, ob) ⇔ s ∈ SESSIONS ∧ op ∈ OPS ∧ ob ∈ OBJS ∧
∃ r • r ∈ ROLES ∧ r ∈ session roles(s) ∧
(op �→ ob) �→ r ∈ PA

This assertion shows that what is accessible is determined by the roles activated
by a user in a session. One then has to find out how variable session roles is
updated, by looking at the administrative functions updating it. This is where �
comes into play. Function AddActiveRole(u, s, r) says that user u can activate
role r in session s if u ∈ authorized users(r).

2.3 Constrained RBAC

Constrained RBAC adds Separation of Duty relations to the core RBAC model.
Static Separation of Duty is specified by a role set rs and an integer n such as
2 ≤ n ≤ card(rs). That type of constraint specifies that a user can be assigned
at most n − 1 roles of rs. Formally, let SSD be the set of the static separation
of duty constraints :

• SSD ⊆ 2ROLES × N
• ∀(rs, n) ∈ SSD, ∀ t ⊆ rs : |t| ≥ n ⇒

⋂

r∈t

assigned users(r) = ∅
• In presence of role hierarchy

∀(rs, n) ∈ SSD, ∀ t ⊆ rs : |t| ≥ n ⇒
⋂

r∈t

authorized users(r) = ∅
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Dynamic Separation of Duty is specified by a role set rs and an integer
n such as 2 ≤ n ≤ card(rs). That type of constraint specifies that a user can
simultaneously hold at most n − 1 roles of rs, during one session. Formally, let
DSD be the set of dynamic separation of duty constraints :

• DSD ⊆ (2ROLES × N)
• ∀ rs ∈ 2ROLES , n ∈ N, (rs, n) ∈ DSD ⇒ n ≥ 2, |rs| ≥ n and

∀ s ∈ SESSIONS , ∀ rs ∈ 2ROLES , ∀ role subset ∈ 2ROLES ,
∀ n ∈ N, (rs, n) ∈ DSD, role subset ⊆ rs,
role subset ⊆ session roles(s) ⇒ |role subset| < n.

We didn’t find any problem with this part of the specification. The constraint
could be formulated in a simpler manner, which we have done in our B specifica-
tion.

3 Administrative Functions

Administrative functions describe how the RBAC system state evolves. The
standard claims to use the Z notation for specifying administrative functions.

The notation used in the formal specification of the RBAC functions is a subset
of the Z notation. The only change is the representation of a schema as follows:

Schema-Name (Declaration) � Predicate; . . . ; Predicate �

Most abstract data types and functions used in the formal specification are
defined in Section 3, RBAC Reference Model. New abstract data types and
functions are introduced as needed.

Some examples of such specification are provided below to illustrate problems
with the adapted Z notation used in the standard.

AddUser
This command creates a new RBAC user. [. . . ]

AddUser (user : NAME ) 16

�

user �∈ USERS
Users’= Users ∪ {user}
user sessions 17’= user sessions ∪ {user �→ ∅ }

�
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DeleteUser
This command deletes an existing user from the RBAC database. [. . . ]

DeleteUser(user : NAME )
�

user ∈ USERS
[∀ s ∈ SESSIONS • s ∈ user sessions(user)⇒ DeleteSession(s) 18]
UA′ = UA \ {r : Roles • user �→ r}
assigned users′ = {r : Roles • r �→ (assigned users(r) \ {user})}
USERS’= USERS \ {user}

�

DeleteSession(user,session)
This function deletes a given session with a given owner user. [. . . ]

DeleteSession (user,session : NAME) 19 =
�

user ∈ USERS ; session ∈ SESSIONS; session ∈ user sessions(user)
user sessions′ = user sessions \ {user �→ user sessions(user)} ∪

{user �→ user sessions(user) \ {session}}
session roles′ = session roles \ {session �→ session roles(session)}
SESSIONS ′ = SESSIONS \ {session}

�

DeleteRole
This commands deletes an existing role from the RBAC database. [. . . ]

DeleteRole (role : NAME) 20 =
�

role ∈ ROLES
[ ∀ s ∈ SESSIONS • role ∈ session roles(s) ⇒ DeleteSession(s)]
UA′ = UA \ {u : USERS • u �→ role}
assigned users′ = assigned users \ {role �→ assigned users(role)}
PA′ = PA \ {op : OPS , obj : OBJ • (op, obj) �→ role}
assigned permissions′ = assigned permissions\

{role �→ assigned permissions(role)}
ROLES ′ = ROLES \ {role}

�

Description of Problems

P16 The notation used in the standard omits important elements of a Z oper-
ation schema. First, it does not identify the state space of the operation.
A typical Z operation schema will include a ΔState declaration, introduc-
ing unprimed and primed variables, to denote the before and after states,
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and their associated invariant. The predicate part should describe the rela-
tionship between unprimed and primed variables. Primed variables which
are not subject to any condition are allowed to take any value. Obviously,
this convention has not been followed in the standard, because we do not
expect operation AddUser to let all other state variables take any value af-
ter execution. Thus, we must assume that the standard uses the convention
that primed variables x′ which are not occurring in the operation specifica-
tion are preserved with the equality x′ = x. However, this convention has
not been followed everywhere. For instance, symbol �� is used in opera-
tion AddInheritance where � is updated, but �� isn’t. But since ��
is supposed to be the covering relation of �, we can’t assume the equality
��′=��, because it would break the invariant linking � and ��. This
may suggest that the standard assumes that derived functions need not to
be explicitly updated since their definition acts like a state invariant which
is assumed to be maintained by operations, as is the case in Z when ΔState
is used. But the standard doesn’t follow this convention either. For instance,
in operations maintaining variable UA, which maps users to roles, variable
assigned users is also maintained, which is not needed, since assigned users
is derived from UA.

P17 Variable user sessions has not been declared in the data structures in the
previous section. Variable session users, which has been declared in the
data structure section, is not updated by this operation. So the assumption
we made in P16 to make sense of the notation used is broken here, because it
makes session users inconsistent with user sessions. Luckily, session users
does not seem to be used at all in the specification of administrative func-
tions, so we deduce that its declaration is superfluous in the data structure
section of the standard, which solves the inconsistency problem.

P18 This is one example of operation call which does not follow and the Z
syntax and that is logically unsatisfiable. The reader must suppose that a
more “programming language” view is used here. There are other cases in
the standard (e.g., AddAscendant, AddDescendant, where two calls are
represented implicitly as a conjunction, but sequential composition should
have been used, to make sense out of it).

P19 Signature inconsistency: DeleteSession is declared with parameters (user,
session: NAME), but called as DeleteSession(session) in DeleteRole
and DeleteUser. Since a session is related to a single user, as provided
by the unused function session users, there is no need for parameter user.
Note also that updating function session users is simpler than updating its
functional inverse user sessions, i.e.,

session users′ = {session} −� session users .

The Z domain subtraction is not used in the standard, and that makes the
specification harder to read.
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P20 Operation DeleteRole does not update relation “�” and separation of
duty constraints SSD and DSD. The last two raise more serious issues to
deal with. We see two options:

– remove the deleted role from all the constraint role sets where it appears;

– restrict the operation to a role which is not used in SSD/DSD con-
straints.

The first option raises the issue of updating the cardinality. Recall that an
SSD/DSD constraint (RS, n) states that at most n−1 roles of RS can be as-
signed to/activated by a user. It is subject to the invariant n ≥ 2∧|RS| ≥ n.
If |RS| < n, then the constraint can never be violated and it is useless. After
deleting a role, we have the following cases:

– n > 2 ∧ |RS′| = n − 1: n must be decremented by 1, in order for the
constraint to satisfy the state invariant;

– if n = 2 ∧ |RS′| = 1, the constraint is deleted because it is does not sat-
isfy the state invariant |RS′| ≥ n and n cannot be fixed by decrementing
n, since n ≥ 2 is required by state invariant;

– |RS′| ≥ n: n could be decremented by 1 or left unchanged; it depends
on the particular access-control requirements of the application.

In any case, the constraint could be deleted if it does not make sense in the
security requirements of the application. Furthermore, removing a role in a
constraint role set may introduce constraint redundancy: if two constraints
have the same role set, the one with the bigger cardinality is redundant.
Then, DeleteRole should in addition remove the redundant constraint.
Given these cases, it seems safer to let the RBAC manager manually adjust
SSD/DSD affected by a role deletion before deleting a role. Hence, we have
added a precondition in our specification of DeleteRole to check that a
role is not used in any SSD/DSD constraint.

We have discovered this issue by proving that operations preserve state
invariants and it hasn’t been raised in [6,9].

4 The B Specification of the RBAC Standard

Due to space limitation, our B specification is omitted and fully provided in [3].
Each RBAC component has its own machine, and the Core RBAC machine is
included in the other two components. The only modification to the standard
was to use an acyclic directed graph RH such that � = RH∗, as suggested in [6].
This greatly simplifies the maintenance of the role hierarchy, while preserving
the intent of the RBAC standard.



268 N. Huynh et al.

The modeling phase in B allowed us to discover most of the noises and typo
problems. Then the validation phase hilighted major problems by animation
and proof. ProB1 has been used to animate the model and discover invariant
violation. Once the model corrected, all proofs have been discharged using Atelier
B2. We also tried to prove an invariant which was not in the standard, the
acyclicity of the role hierarchy, expressed as RH+∩id(Roles) = ∅. Since Atelier B
has no rule about closure, it was impossible to prove without adding new rules in
the prover. Instead, we use abstract relation algebra [12] and Kleene algebra [5],
of which binary relations are models, to formally prove preservation of acyclicity
when adding a new pair in an acyclic relation. The proof is provided below.
For the sake of concision, we adopt some of the conventions of abstract relation
algebra. For instance, we write P Q instead of P ;Q for relational composition. Let
L = Roles×Roles denote the universal relation, P = L−P , I = id(Roles) denote
the identity relation, A ⊆ Roles ×Roles denote the role hierarchy, B = {x �→ y}
where x �= y and {x, y} ⊆ Roles, be a new pair to add to A.

Theorem 1. Assuming

A+ ∩ I = ∅ (1) B ∩ I = ∅ (2) B−1 ∩ A+ = ∅ (3)
BB = ∅ (4) BLLB−1 ⊆ I (5)

then (A ∪ B)+ ∩ I = ∅
To this end, we use the following laws of [5,12], which include the laws of Boolean
algebra, since a relation algebra is a Boolean algebra.

P Q ⊆ R ⇔ P −1R ⊆ Q ⇔ RQ−1 ⊆ P (6)
P ∪ RQ ⊆ R ⇒ P Q∗ ⊆ R (7)

We also need the following two lemmas, which follow from (1) to (5).

A∗BA∗ ∩ I = ∅ (8)
(A ∪ B)+ ⊆ A+ ∪ A∗BA∗ (9)

Proof of (8)

A∗BA∗ ∩ I = ∅
⇔ A∗BA∗ ⊆ I P ∩ Q = ∅ ⇔ P ⊆ Q, P = P

⇔ B−1A∗−1I ⊆ A∗ (6)
⇔ A∗A∗ ⊆ B−1 P I = P ,(6)
⇔ A∗ ∩ B−1 = ∅ P ∗P ∗ = P ∗, P ∩ Q = ∅ ⇔ P ⊆ Q, P = P
⇔ (I ∪ A+) ∩ B−1 = ∅ P ∗ = I ∪ P+

⇐ I ∩ B = ∅ ∧ A+ ∩ B−1 = ∅ (2), (3)

Proof of (9)
1 http://www.stups.uni-duesseldorf.de/ProB
2 http://www.atelierb.eu/

http://www.stups.uni-duesseldorf.de/ProB
http://www.atelierb.eu/
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(A ∪ B)+ ⊆ A+ ∪ A∗BA∗

⇔ (A ∪ B)(A ∪ B)∗ ⊆ A+ ∪ A∗BA∗

⇐ A ∪ B ∪ (A+ ∪ A∗BA∗)(A ∪ B) ⊆ A+ ∪ A∗BA∗ by (7)
⇔ A∗BA∗B ⊆ A+ ∪ A∗BA∗ Distributivity, A ⊆ A+, B ⊆ A∗BA∗,

A+A ⊆ A+, A+B ⊆ A∗BA∗,
A∗BA∗A ⊆ A∗BA∗

⇐ BA∗B ⊆ ∅
⇔ BB ⊆ ∅ ∧ BA+B ⊆ ∅ BA∗B = BA+B ∪ BB

⇐ BB−1B ⊆ ∅ (4), A+ ⊆ B−1 by (3)
⇔ LB−1B ⊆ B (6)
⇔ BLB ⊆ B (6)
⇔ BLLB−1B ⊆ B LL = L, LB−1B = LB by (6)
⇐ BLLB−1 ⊆ I (5)

Proof of Theorem 1

(A ∪ B)+ ∩ I = ∅
⇐ (A+ ∪ A∗BA∗) ∩ I = ∅ (8)
⇐ A+ ∩ I = ∅ ∧ A∗BA∗ ∩ I = ∅ (1),(9)

5 Conclusion

RBAC is a widely adopted access-control model and is also widely used in com-
mercial products, such as database management systems or enterprise man-
agement systems. The RBAC model has been published as the NIST RBAC
model[11] and adopted as an ANSI/INCITS standard in 2004, which has been
revised in 2012. In this paper, we have pointed out a number of technical errors
identified using formal methods, by modelling in a B machine the RBAC specifi-
cations, then animating it and proving it. The main types of errors found in the
RBAC standard are the following: i) typing errors, ii) unused definitions which
add noise and detract attention from the specification of the essential concepts of
RBAC, iii) inconsistencies in operation signatures and specification conventions,
iv) inappropriate operation specification style, which leads to ambiguities and
unsatisfiable specifications, v) invariants broken by operations. All these types of
errors can be easily avoided by using a formal specification method. Using math-
ematics without a methodological framework and a supporting tool set is bound
to open the door to errors. The B method seems to be particularly appropriate
for specifying standards of dynamic systems like RBAC. The fact that B makes a
clear distinction between the specification of operations and the state properties
that these operations must satisfy (i.e., invariant preservation) proved to be very
useful in validating the RBAC standard. The example of role deletion (problem
P20) is a nice illustration of this. This case study also shows that human-based
reviews are insufficient to detect errors in a standard. Mechanical verification is
essential; animation, model checking and theorem proving are complementary
in finding errors in specification.
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Abstract. We re-examine the problem of decomposing systems in Event-B. We
develop a pattern for cross-cutting events and invariants that enables the core
dependencies in multi-machine systems to be tracked. We give the essential veri-
fication conditions.
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1 Introduction

In top down model based development methodologies, especially the B-Method, the
issue of composition and decomposition of (sub)systems has received a lot of interest.
See e.g. [1,3,2,5]. For us, the main issue may be illustrated in a simple example.

Suppose there is a machine M with variables x, y. Suppose M needs to be partitioned
into two machines, M1 and M2. Suppose that x needs to go into M1 and y needs to go
into M2. Suppose that there is an invariant of M involving both variables, InvM(x, y). If
the partitioning is to go ahead, what are we to do about InvM(x, y)?

Sometimes it is suggested that an invariant like InvM(x, y) might be replaced by
InvM1(x) ≡ (∃ y • InvM(x, y)) in M1, say. However although InvM(x, y) ⇒ InvM1(x),
the converse does not hold. Therefore, recognising that InvM and InvM1 are inequiva-
lent, if InvM(x, y) is a critical safety invariant, then the suggested partitioning strategy
would render the system incapable of discharging its most important duty. The usual
approach if InvM is important enough, is simply to not partition. However, such an
approach does not scale.

The remainder of the paper is as follows. Section 2 introduces our approach to de-
composition in generic terms. Section 3 covers verification issues, while Section 4 cov-
ers machine decomposition. Section 5 looks at refinement. Section 6 concludes.

2 Variable Sharing via INTERFACEs

We note that in typical embedded systems, connections are invariably unidirectional,
often mirroring physical connections such as wires. We exploit this unidirectionality to
design a methodology for handling a useful class of invariants that cut across subsys-
tem boundaries. We first introduce a concept of INTERFACE, rooted in the work of
Hallerstade and Hoang [4], which we extend, just enough to achieve what we desire.

An interface is a syntactic construct that declares some variables, and (going beyond
[4]), some invariants that interrelate them, and their initialisations. Any machine that

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 271–276, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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needs to access any of these variables must refer to the interface. The interface mecha-
nism is the only permitted way for more than one machine to have access to the same
set of variables. Our use of interfaces is based on the following principles.

Consider a set of variables V , a set of invariants I that mention some of those vari-
ables (and no others), and a set of events E that read and update some of those variables
(and no others). Suppose the set of variables can be partitioned into subsets A,B,C . . . ,
such that for every invariant Inv ∈ I:

[•1] either all variables mentioned in Inv belong to some subset, eg. A;
[•2] or the invariant Inv is of the form U(u) ⇒ V(v), where there are distinct subsets
of the partition A and B say, such that u and v refer to variables in A and B respectively.

We call these type [1] and type [2] invariants respectively (t1i and t2i). For a t2i, the
A and B subsets are the local and remote subsets (containing the local variables u and
remote variables v). We observe that unless a system already consists simply of two
unconnected, completely independent subsystems, in which all properties split into a
conjunctionof properties of the two subsystems, there will be, in general, an infinity of
properties that couple the two subsystems nontrivially. Referring to the discussion of the
Introduction, the problem of what to do about cross-cutting invariants is unavoidable.
Our thesis is that, in the kind of embedded systems we spoke of, the unidirectional-
ity of the connections between subsystems implies that t2is are adequate to capture a
sufficiently rich class of inter-subsystem properties for practical use.

Henceforth we restrict to collections of variables/invariants/events conforming to
these restrictions, calling them pre-systems. Note that any collection of variables and
invariants is as a pre-system with a sufficiently coarse variable partition, e.g. a singleton
partition. We can organise a pre-system into machines and interfaces as follows.

Every subset of variables of the partition can consist of variables that, exclusively:

[•3] either are declared as the variables of a single machine;
[•4] or are declared as the variables of a single interface.

Each interface:

[•5] must contain all the type [1] invariants that mention any of its variables;
[•6] may contain type [2] invariants for which the interface’s variables are in the local
subset; in each such case the interface must contain a READS ReadItf declaration for
the interface ReadItf that contains the remote variables.
[•7] may contain REFERS RefItf declarations, whenever any of its variables are the
remote variables of a type [2] invariant declared in an interface RefItf .

Each machine:

[•8] may declare the variables belonging to a subset of the partition as local (i.e. un-
shared) variables;
[•9] may contain one or more CONNECTS Itf declarations giving access to the vari-
ables of the interface;
[•10] may contain one or more READS Itf declarations giving read-only access to the
variables of the interface;
[•11] must contain all the type [1] invariants that mention any of its local variables;

Each event:
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• • •

•••

•

•••

MA MB

Itf1 Itf2

Fig. 1. An illustration of the constraints [•1]–[•15]

[•12] may read and update variables that are declared locally in the machine contain-
ing the event, or that are introduced via CONNECTS Itf declarations in the machine
containing the event;
[•13] may read (in its guards or in the expressions that define update values) variables
that are introduced: either via READS ReadItf declarations in the machine contain-
ing the event, or via READS ReadItf or REFERS RefItf declarations contained in an
interface Itf that the machine containing the event CONNECTS (to).
[•14] must preserve all invariants that are declared in the machine that contains it, or that
are declared in any CONNECTS Itf declarations of the machine, or that are contained
in any READS ReadItf or REFERS RefItf declarations contained in an interface Itf that
the machine containing the event CONNECTS (to).

Each invariant:

[•15] must be contained in the interface or machine which declares all its variables (if
it is a type [1] invariant), or must be contained in the interface which declares its local
variables (if it is a type [2] invariant).

By a system, we mean a collection of machines satisfying [•1]–[•15] above. We note
that the keywords we introduced, CONNECTS, READS, REFERS, have no semantic
connotations other than the ones we mentioned. We can see fairly readily that in a sys-
tem, verifying that all the invariants are preserved by all event executions (provided the
initial state satisfies them all), can be readily accomplished using verification conditions
that depend on information that is easily located from the syntactic context of the event,
namely, from the interfaces explicitly mentioned in the machine that defines the event.
We examine verification conditions in more detail in the next section.

In Fig. 1 we show an illustration of the constraints [•1]–[•15]. Dots represent vari-
ables, while small squares represent type [1] invariants. Small rectangles represent
events. Events and invariants are connected to the variables they involve by thin lines.
Interfaces are large rectangles containing the variables and invariants they encapsu-
late — there are two in Fig. 1, Itf1 and Itf2. Machines are large rounded rectangles,
containing their events and local variables — again there are two, MA and MB. The
CONNECTS relationship is depicted by thick dashed lines. Finally, type [2] invariants
are represented by arrows from the local to the remote interface.
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3 Verification of Type [2] Invariants

In this section we focus on the verification of nontrivial t2i invariants, assuming that
t1i invariants can be handled unproblematically by reference to the relevant interfaces
during verification. (The same applies to an event that must maintain a t2i if it can
access and update variables in both relevant interfaces (simultaneously).)

Consider a t2i (∗) ≡ U(u) ⇒ V(v), where u and v belong to different interfaces. We
prime after-state expressions generically, thus: (∗′) ≡ U′(u′) ⇒ V ′(v′). We write the
events of interest as EvXYZ where X, Y, Z ∈ {U,V}. This means that the guard gUVV

of EvUVV mentions the variables u, v and the before-after relation BAUVV of EvUVV
updates variable v. The shorter notation EvUV means that the guard mentions only u
and the update is to variable v alone.

We assume that for events EvUU and EvVV , verification would be restricted to vari-
ables u and v of invariant (∗) respectively, while for EvUVU and EvUVV , both parts
of (∗) could participate in verification, since both sets of variables are read via the rel-
evant interfaces. Read access to additional variables is obviously harmless and is not
considered further.

Theorem 1. Assuming that initial states are invariant, and that all events preserve all
type [1] invariants declared locally and in CONNECTS Itf declarations on reachable
states, the following proof obligations (POs) are sufficient to preserve reachable invari-
ance for type [2] invariants.

EvUVU : gUVU(u, v) ∧ ¬V(v) ⇒ gUVU(u, v) ∧ ¬U(u) ⇒ BAUVU(u, u′) ⇒ ¬U(u′)
(obvious analogue for EvVU) (1)

EvUU : gUU(u) ∧ ¬U(u) ⇒ BAUVU(u, u′) ⇒ ¬U(u′) (2)

EvUVV : gUVV(u, v) ∧ U(u) ⇒ gUVV(u, v) ∧ V(v) ⇒ BAUVV(v, v′) ⇒ V(v′)
(obvious analogue for EvUV) (3)

EvVV : gVV(v) ∧ V(v) ⇒ BAVV(v, v′) ⇒ V(v′) (4)

The above gives a selection of POs which can be used for verifying the preservation
of cross-cutting invariants of the t2i kind that we have considered, based on the occur-
rences of the relevant variables in the events that access those variables.

4 Machine Decomposition

The account so far permits us to assemble a large system by composing a number of ma-
chines together via a collection of interfaces that obey [•1]–[•15]. Equally interesting
though for the B-Method in general, is the problem of the decomposition of a machine
into a collection of smaller (sub)machines M1 . . .Mk, the development of which can
subsequently be pursued (at least relatively) independently. We examine this issue now.

We approach the decomposition problem by positing that decomposition should be
a syntactic manipulation whose correctness ought to be demonstrable generically. In
this light, the principle constraining decompositions of a machine can be described as
follows:
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• •

• ••

•••

• •

•

• • •

• • •

MA

MM

MM1 MM2 MM3

ItfM1 ItfM2

Fig. 2. An illustration of the decomposition mechanism. MA, refined to a larger machine MM, is
decomposed into smaller machines and interlinking interfaces.

[•16] Regarding the variables and invariants (and events) declared in a machine M as
a pre-system (but not including the variables or invariants of any interface accessed
by M), any decomposition of M into submachines and interfaces is considered valid
provided: firstly, it conforms to restrictions [•1]–[•15]; secondly, any submachine Mj

that includes an event of M that uses a variable accessed (directly or indirectly) via an
interface of M, must access the same interface appropriately.

It is clear that adhering to [•16] refines the partition of variables when M is part of a
larger system already adhering to [•1]–[•15], without spoiling [•1]–[•15] overall.

Fig. 2 shows the decomposition mechanism at work. Machine MA from Fig. 1 is
first refined to a larger machine MM, containing more local variables and invariants, as
well as some new events shown using broken small rectangles. One new invariant is
connected to its variables using slightly thicker lines. Machine MM is now decomposed
into a collection of smaller machines and interfaces, MM1, MM2, MM3, and ItfM1,
ItfM2. The connections from MA events to previously existing interfaces are retained,
while the decomposition of the new ingredients conforms to constraints [•1]–[•15]. The
invariant connected using slightly thicker lines becomes a type [2] invariant with ItfM1
and ItfM2 as its local and remote interfaces respectively (on the presumption that it was
of the correct syntactic shape at the outset).

5 Refinement

We turn to the crucial issue of refinement. As for decomposition, there is a key guiding
principle behind the way that refinement is handled in our scheme.

[•17] The variables of an interface Itf must be refined to the variables of its refining
interface ItfR via a retrieve relation that mentions only the variables of Itf and ItfR.
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[•18] The variables of a machine M must be refined to the variables of its refining
machine MR via a retrieve relation that mentions only the variables of M and MR.

The independence of refinement of machines and interfaces prevents the inadvertent
falsifying of refinement relations in situations such as the following.

Suppose each of M1 and M2 CONNECTS Itf ; these constructs being refined to M1R,
M2R and ItfR respectively. Suppose the joint invariant of the M2 to M2R refinement
involves the variables of Itf and ItfR too. Then when concrete machine M1R executes
an event, faithful to some abstract event of M1, there is no guarantee that the new state
in M1 and M1R and Itf and ItfR still satisfies the joint invariants of M2 and M2R via the
coupled joint invariants linking the state in M2 and M2R to the state in Itf and ItfR.

Adhering to [•17]–[•18] though, it is easy to see that the problem described cannot
arise. The decoupling of variables of M2 and M2R on the one hand, from those of Itf
and ItfR on the other, means that when the variables of Itf and ItfR change at the behest
of M1 and M1R, the invariants linking the M2 and M2R variables remain true.

6 Conclusions

In this paper we have proposed, rather tersely, an Event-B decomposition scheme
inspired by the INTERFACE idea of [4]. This was broadly in the shared variables tra-
dition, but was driven primarily by the structure of a system’s invariants. Although os-
tensibly a shared variable approach, there are strong influences from the shared events
approach too, since a key feature of both ours and the shared events approach is the
desire to communicate values between machines. In this brief treatment, we just gave a
minimal description of the technical details of our approach, of which a kind of pattern
for cross-cutting events and invariants was the key element, and we outlined the requi-
site verification machinery. In a more extended treatment, we will be able to describe the
mechanisms more fully, we will be able to formulate the statements as theorems, and,
crucially, we will be able to illustrate the technique using examples and case studies.
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Abstract. Event-B provides a promising feature of refinement to grad-
ually construct a comprehensive specification of a complex system in-
cluding various aspects. It has unique difficulties to design complexity
mitigation, while obeying Event-B consistency rules, among the poten-
tially large possibilities of refinement plans. However, despite of the dif-
ficulties, existing studies on specific examples or high-level and intuitive
guidelines are missing clear rationales, as well as principles, guidelines or
methods supported by the rationales. In response to this problem, this
paper presents a method for refinement planning from an informal/semi-
formal specification. By defining primitive rationales, the method can
eliminate undesirable plans such as the ones failing to mitigate the com-
plexity. In a case study on a popular example from a book, we derived
an enough small number of valid plans only by using the general and
essential rationales while explaining the one presented in the book.

1 Introduction

Event-B [1] supports a flexible refinement mechanism that allows a comprehen-
sive formal specification to be constructed and verified, by gradually introducing
various elements of the target system to an abstract model. This kind of refine-
ment mechanism is essential, as nowadays specifications are abstract but enough
complex, handling various elements in system’s surrounding environment.

As the refinement mechanism of Event-B deals with the essence of complexity
mitigation, it poses unique difficulties. The decision space of possible refinement
plans is potentially very large: what aspects are handled in each space, in which
order the whole aspects are introduced, what concrete elements (e.g., variables)
are introduced for each aspect, etc. This situation is different from the refinement
mechanism for deriving a program code, which consists of simple steps (auto-
mated with BART tool [6] in classical B). In addition, there are consistency rules
on refinement mechanism as proof obligations. A naive plan, just following the
intuition “from abstract to concrete”, may fail and cause rollback.

There are thus strong demands for principles, guidelines and methods to help
human developers to plan refinements for an efficient use of Event-B, especially
for widely uses in the industry. Even with active efforts, it is left almost un-
touched how to construct a refinement plan.
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Fig. 1. Example: Cars on Island and Bridge

Available teaching materials for Event-B provide examples of refinement, e.g.,
the book by the method founder [1]. These examples are probably the best and
seem widely accepted. However, the rationales and reasons why the refinement
plans are considered “good” have not been explicitly explained, leaving questions
such as “why not others?” and “how can we proceed for our problems?”.

There are some studies that provide systematic ways to construct Event-B
models. However, they do not provide any systematic or generic methods or only
provide domain-specific knowledge. Moreover, they do not discuss the essence of
why the proposed guidelines can derive “good” refinement plans.

All these backgrounds strongly motivate us to explicitly discuss rationales for
refinement plans and provide a systematic method supported by the rationales.

It may be helpful to consider an analogy with object-oriented design. There
are many intuitive and high-level guidelines for “good” design with separation
of concerns, reusability, etc. As the “good/bad” designs, rationales can often ex-
plain like “here is a dependency between these classes, but this class is likely to
change and affect the others, while this good design eliminates this direct depen-
dency”. Experienced developers may omit such explicit details, and the actual
situation forms a mixed problem of various issues. However, the rationales in an
extracted and idealized problem are essential enabler of education for beginners
and systematic engineering more independent of individual experiences, as well
as supporting methods and tools.

Similarly, this paper explicitly defines and discusses an extracted problem of
refinement planning. The problem is how to construct a refinement plan, given an
informal/semi-formal specification (e.g., natural language with UML) as input
to rigorous modeling and verification in Event-B.

2 Refinement Planning

In Event-B, a comprehensive formal specification is constructed and verified
gradually, by iteratively introducing various elements of a target system to a
simple, abstract model. Fig. 1 illustrates a simplified version of the first system
explained in the book by the method founder [1]. The system defines control
of cars that enter and leave a bridge that connects an island and a mainland.
Traffic lights realize the control of the constraints about the capacity on the
whole bridge and island, as well as the one-way bridge. The initial model (left
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in the figure) considers the capacity constraint by modeling cars leaving and
entering the mainland, with the combined model of outside (bridge and island).
The second model considers the one-way constraint by separating the bridge
and the island. The third model considers the constraints about how traffic
lights change to satisfy the previous constraints.

A model at each step is verified in terms of consistency inside the model as well
as consistency with the previous models. We consider verification of constraints
such as described above the key of modeling in Event-B, which is distributed
into multiple steps.

This paper calls the application constraints (requirements, assumptions or
environmental knowledge) as artifacts. Each refinement step is considered to
introduce artifact(s) while inheriting artifacts already introduced in the previous
steps. The sequence of such refinement steps composes a refinement plan. An
example of a refinement plan is [{a, b}, {c}], which introduces artifacts a and b
in the first setup, and c in the second step.

Each artifact is composed of primitive elements for concepts and state transi-
tions, such as “capacity” and “traffic light at the mainland side turns red”. We
call such elements as phenomena. Formal specification of artifacts requires that of
phenomena as variables, constants, and so on. Note that this paper does not put
specific assumptions on the input of artifacts and phenomena, e.g., semi-formal
notations such as Problem Frames or UML.

This paper explicitly discusses how to make decisions on refinement plans.
Potentially, three artifacts a, b, and c lead to the solution space of possible re-
finement plans, such as [{a}, {b}, {c}], [{b}, {a}, {c}], [{a, b}, {c}], and so on.
Rather than intuitive and high-level claims to select one plan, this paper tries to
apply a set of primitive rationales for eliminating invalid plans from the solution
space.

3 Primitive Rationales for Elimination of Plans

In order to prevent obviously failing to pass type check or discharge proof obli-
gations, developers should take care of dependencies among phenomena. For
example, a variable of a traffic light’s color requires a carrier set of “colors of
traffic lights”. Another aspect is equality of preserved variables imposed as proof
obligations. Since it is impossible to broaden the scope in which a state vari-
able changes through a refinement, for example, a variable of “the number of
cars outside the mainland” must be specified together with all of its possible
transitions “incremented (a car enters)” and “decremented (a car exits)”.

Given these dependencies, an artifact a depends on phenomena dep(a), i.e.,
introduced in the same step, such that
dep(a) =

⋃
p∈inc(a){phenomenon q|p depends on q} where inc(a) denotes phe-

nomena that directly appear in a. A set of artifacts A depends on phenomena
DEP(A) =

⋃
a∈A dep(a).

In a refinement plan PL = [A1, A2, · · · , An, · · · ], the phenomena introduced
in the step n are: intro(PL, n) = DEP(An) −

⋃
i=1···n−1 DEP(Ai). This is a set

of phenomena required for the artifacts An and have not been introduced yet.
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(constraint such as invariant)

Phenomena
(elements such as states/actions)

Fig. 2. Modeling of Refinement Plans

Suppose a simple system includes two constraints a and b, illustrated in Fig. 2.
Dependencies are represented as arrows in the figure. The left side shows one re-
finement plan [{a}, {b}] (i.e., a is introduced in the first step and b in the second
step). The first step introduces elements p and q according to the dependencies
(intro([{a}, {b}], 1) = DEP({a}) = {p, q}). The second step introduces (only) r
and s (enclosed by bold lines) (intro([{a}, {b}], 2) = DEP({b}) − DEP({a}) =
{r, s}). The another plan [{b}, {a}] includes a step that do not introduce any
phenomena. Since intro([{b}, {a}], 2) = DEP({a}) − DEP({b}) = ∅, the second
step only requires to verify a without extending the previous model (the verifi-
cation can be actually done in the first step simultaneously). This plan can be
said invalid, failing to mitigate the complexity through several steps.

It is notable that although this elimination may seem artificial, the authors
found it often explains intuitively natural ordering or merging: “abstract arti-
facts (dependent on fewer phenomena) first” and “conceptually-close artifacts
(dependent on the same phenomena) together”.

One more point to consider is how to prevent empty steps. Suppose a situ-
ation DEP(B) ⊂ ⋃

i=1···n DEP(Ai). Then any plans including a step only for
B later than n ([A1, · · · , An, · · · , B, · · · ]) make the step empty. These may be
trivially prevented by introducing B together with other artifacts that require
some phenomena ([A1, · · · , An, · · · , (B∪C), · · · ]). However, in this way the step
becomes strange to talk about B that has nothing to do with the phenomena
introduced in that step. Thus the solution should be [A1, · · · , (An ∪ B), · · · ],
where DEP(B) ⊂ ⋃

i=1···n DEP(Ai) and DEP(B) �⊂ ⋃
i=1···n−1 DEP(Ai). Intu-

itively, there is no step in which an artifact is introduced but no phenomena are
introduced for the artifacts. In other words, artifacts are introduced as soon as
all the phenomena required for them are introduced.

Further rationales can be considered to eliminate invalid plans in terms of
common refinement intentions. These rationales are represented as ordering or
merging rules of phenomena or artifacts. An ordering rule “x no later than
y” eliminates plans that introduce y earlier than x. A merging rule “x and y
together” eliminates plans that introduce them in different steps.



Understanding and Planning Event-B Refinement 281

1: function NextPlans(plan)
2: next plans ← ∅
3: for all artifact a not introduced do
4: next step ← {a}∪ Together(plan, a)
5: next plan ← plan + [next step]
6: if next plan does not violate any spec-

ified ordering rules then
7: Add next plan to next plans
8: end if
9: end for

10: return next plans

11: end function

1: function Together(plan, artifact)
2: together ← ∅
3: new plan ← plan + [{artifact}]
4: for all artifact a not introduced
5: s.t. a �= artifact do
6: new plan′ ← plan + [{artifact , a}]
7: if Phenomena(new plan)
8: = Phenomena(new plan′) then
9: Add a to together

10: end if
11: end for
12: return together

13: end function

Fig. 3. Core of Our Proposed Method

4 Integration into Proposed Method

As the preliminary phase, the proposed method expects extraction and analysis
of artifacts, phenomena, and dependencies among them. Although a require-
ments document usually just describes concrete artifacts, Event-B models often
have abstract version of artifacts described in the requirements document and
gluing invariants that state relationships among variables or constants of differ-
ent steps. Since abstracted artifacts and gluing artifacts are not usually specified
in a requirements document, it is also necessary to explicitly prepare them.

Refinement plans can be seen as a tree with a root corresponding to a plan
of zero-steps and leaves corresponding to plans that include all artifacts. Our
method is based on depth-first search of the tree, in which at each node at least
one artifact is introduced that has not been introduced. Fig. 3 describes the core
of our method. The function NextPlans generates next steps of a plan. This
corresponds to generating child nodes of a node in a search tree. Suppose the
search process is looking at a specific node in the tree that has a partial plan
[A1, · · · , An]. To construct the next step, each of the artifacts that have not been
introduced are checked as a candidate one by one (Line 3 in NextPlans). At
this point, the artifacts are identified and introduced together such that they
can be introduced without introducing any additional phenomena (Lines 4–11
in Together). The function Phenomena calculates all the phenomena intro-
duced together when an artifact is introduced, reflecting the given merging rules.
In this way, the search proceeds by efficiently generating the plans in complying
with the core rationale and rules.

Although the definition of refinement planning started with artifacts, the re-
sult plans also define phenomena introduced in each step. Sometimes it is easier
to understand by looking at phenomena, e.g., this step introduces traffic lights
and constraints supported by them. Thus the result view can be in terms of ar-
tifacts, phenomena, or both. Fig. 4 shows the result view of the case study to be
presented. Each node shows the whole set of phenomena introduced so far, and
specific sets of phenomena introduced in each step are attached with the edges.
As shown in the right bottom of the figure, the view is simplified by aggregating
a set of choices about ordering and merging.
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Fig. 4. Result View (introduced phenomena so far)

5 Case Study and Discussion

We applied our method to several examples including the island one (Shown in
Fig.1). For the island example, we prepared 41 artifacts, 22 phenomena, and 11
dependencies carefully from the specification. To narrow down plans, we also
considered several common refinement intentions such as subsystem decompo-
sition. By running the search algorithm, 68 plan candidates were derived and
presented in the simplified phenomena view in the left side of Fig. 4. This number
is not so large given the fact it includes some arbitrary ordering. The candidate
included the ideal plan explained in the book. Fig.4 is also simplified by labels to
denote a meaningful set of phenomena, as the right side of Fig. 4 shows. (e.g., B
denotes a set of phenomena related to the number of cars on the island). For ex-
ample, the leftmost path of the view indicates a plan PL such that intro(PL, 1) =
D∪N, intro(PL, 2)∪· · ·∪intro(PL, i) = A∪B∪C, intro(PL, i+1) = COLOR∪IL,
and intro(PL, i+ 2) = ML (where 2 ≤ i ≤ 4).

Thus we succeeded to derive reasonable refinement plans with acceptable
amount of efforts. Although the method often requires developers to give smart
suggestions such as introducing the conceptually same phenomena together, the
method supports iterative procedure for human developers to modify suggestions
after looking at derived plans or even after trying modeling and proof.

There are some studies have leveraged methods (Problem Frames [4], UML
diagrams [7], BPMN models [2], and KAOS goal models [5]) for the preceding
input to Event-B. Although they provide good candidates for representation
of refinement plans, they do not discuss how to make decisions on the plans.
Our work will be complemented by such high-level intuitions as well as usable
notations for the preceding phase.

The authors of this paper had investigated the order in which artifacts are
added to the model in order to find refinement plans that distribute phenomena
most widely [3]. The study presented in this paper is an extension of the method.



Understanding and Planning Event-B Refinement 283

Our work can also be seen as a theoretical foundation to:
– Explain and validate high-level guidelines by intuitions or experiences.
– Evaluate refinement plans with metrics, such as the maximum number of
phenomena introduced in one step (i.e., peak complexity) in the plan.
– Mine characteristics of refinement plans.
– Integrate expression-level patterns (e.g., [8]) to generate model templates.

Future work includes support for the input by considering specific preliminary
analysis methods based on existing ones such as Problem Frames or object-
oriented domain modeling. This will allow for naturally embedding the analysis
to create the input into the efforts that are originally necessary. A practical tool
with a good interface will be also attractive to support workflows and interactions
for our method. Further experiments with developers are also necessary.
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Abstract. The Event-B method, and its tools, provide a way to for-
mally model systems; Tasking Event-B is an extension facilitating code
generation. We have recently begun to explore how we can configure
the code generator, for deployment on different target systems. In this
paper, we describe how templates can be used to avoid hard-coding ‘boil-
erplate’ code, and how to merge this with code generated from the formal
model. We have developed a lightweight approach, where tags (i.e. tagged
mark-up) can be placed in source templates. The template-processors we
introduce may be of use to other plug-in developers wishing to merge a
‘source’ text file with some generated output.

1 Introduction

Rodin [2] is a platform for the rigorous specification of critical systems with
Event-B [1]. Tasking Event-B [3,4,5,6] is an extension to Event-B that facilitates
generation of source code. We can generate Java, Ada, C for OpenMP [9], and
C for the Functional Mock-up Interface (FMI) standard [8]. The work reported
in this paper has been undertaken during the ADVANCE project [7], which is
primarily concerned with co-simulation of Cyber-Physical Systems. This paper
introduces an approach that uses templates, with code injection, to facilitate the
re-use of boilerplate code.

Often, when a software system is being implemented, much of the code is
related to a particular target implementation; and is independent of the state,
and behaviour, of the part of the system being formally modelled. Example
include the code for system life-cycle management, system health monitoring,
or task scheduling. We introduce a simple Eclipse extension, to facilitate the
use of templates, with tagged mark-up. We can then merge the code, generated
from the formal model, and the templates. This facilitates re-use of existing
code, and most importantly, avoids the need to hard-code such details in the
translator. The template creator can add tags to the boiler-plate code. These
define locations where other templates are expanded; or define code injection
points, and meta-data generators. The tags are associated with pre-defined code
fragment-generators. The approach is suitable for use with any text-based source
and target. To validate the approach, it was used in a C code generator, which
was used to generate C code for our work with FMI in Advance. We provide a
brief overview of FMI, and code generation with Tasking Event-B, in Sect. 2. We
introduce templates, and show an example of their use, in Sect. 3, and conclude
in Sect. 4.
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2 Background

We illustrate the approach, using the example of our Event-B-to-FMI transla-
tor. So we provide some background on the Functional Mock-Up Interface (FMI)
standard [8]. It is a tool-independent standard, developed to facilitate the ex-
change, and re-use, of modelling components in the automotive industry. It is
a C-based standard, defining an interface for re-usable components, known as
Functional Mock-up Units (FMUs). FMUs play the role of slave simulators in
simulations that are coordinated by a simulation master. The master simulator
is not defined in the FMI standard, but its job is to coordinate the simulation
e.g. by stopping and starting slaves. It also manages the communication; where
all the slaves’ input and output values are communicated via the master, never
directly between slaves. To target the FMI co-simulation framework, we gener-
ate code for an FMU from the Event-B model. An FMU is a compressed file
containing an XML description of the model being simulated, and the shared
libraries required to run the simulation. In our work the shared libraries, and
model description, are generated from the Event-B model. To conform to the
FMI standard, FMU implementers must provide API functions for simulation
life-cycle management, such as instantiating a slave, initialising a slave’s vari-
ables, and terminating the slave. Many of these functions are not dependent on
the particular model being simulated; the code is the same for all models. We
wish to avoid hard-coding the translation where possible; so, templates provide
a place to define the boilerplate code, and code injection can be used for the
model specific parts.

Tasking Event-B [5] is an extension to the Event-B language; an
implementation-level, specification language. When annotations are added to
a machine, it provides additional information to assist with code generation.
When generating code, it is usually necessary to work with a subset of imple-
mentable Event-B constructs. Machines can be implemented as task/thread-like
constructs; shared, monitor-like constructs; or provide simulations of the envi-
ronment. The machine Types are Autotask, Shared and Environ respectively.
In embedded systems, autotask Machines typically model controller tasks (of
the implementation). An autotask machine has a task body which contains flow
control (algorithmic) constructs. The syntax of the Task body follows,

Task Body ::= TaskBody ; TaskBody
‖ IF Event [ELSEIF Event ]∗ ELSE Event END
‖ DO Event END ‖ Event ‖ EventSynch ‖ output

These elements have program-related Event-B semantics. The Sequence (;) con-
struct is used for imposing an order on events, and maps to a sequence operator
in programming languages. IF provides a choice, with optional sub-branches, be-
tween a number of events (it can only be used with events with disjoint guards,
and where completeness must be shown). It maps to branching program state-
ments, where guards are mapped to conditions and actions map to assignments.
DO specifies event repetition while its guard remains true. It maps to a looping
statement, with the loop condition derived from the event guard. Event is a
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single event, where just its action is mapped to a program statement (assign-
ment), and guards are not permitted. EventSynch describes synchronization be-
tween an event in an autotask machine and an event in a shared machine. Syn-
chronization must be implemented as an atomic subroutine call. The EventSync
construct facilitates subroutine parameter declarations, and substitution in calls,
by pairing ordered Event-B parameter declarations.

Fig. 1 shows how an abstract model may be refined, decomposed, and then
refined again to the implementation-level (i.e. above the horizontal line anno-
tated with Event-B ). The code generation phase (below this line) is a two-step

Fig. 1. The Code Generation Process

process; although only a single step is visible to the user. The first step is to
translate the Event-B machine to a language-neutral model, the Common Lan-
guage Model (CLM). During the second step, when the source code is being
generated, the templates contribute to the generated code.

3 Using Templates

An architectural overview of our template-driven approach can be seen in the
diagram of Fig. 2. We see the artefacts involved in template processing; namely
text-based templates, code-fragment generators, text output, meta-data output
and a template-processor that does the work. The templates may contain plain-
text (which is copied verbatim to the target during processing) and tags. The tags
may refer to other templates, or code-fragment generators. The code-fragment
generators are hard-coded generators that relate to certain aspects of the final
output; for instance, a fragment generator inserts the variable initialisations as
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Fig. 2. The Template Processor and Artefacts

//## <addToHeader>
fmiStatus fmiInitializeSlave(fmiComponent c,
fmiReal relativeTolerance, fmiReal tStart,
fmiBoolean stopTimeDefined, fmiReal tStop){
fmi Component* mc = c;
//## <initialisationsList>
//## <stateMachineProgramCounterIni>
return fmiOK;

}

Fig. 3. An Example Template

specified in a template. We can see an example of this in Fig. 3. The template
shows part of an implementation of the FMI API’s fmiInitializeSlave function;
the code in the template is common to all of the FMUs that we will generate
for a particular target configuration. The tags accommodate variability between
models; e.g. FMUs keep track of state-variables, which may be different for each
model. These state-variables correspond exactly to the variables of the system
that have been modelled in Event-B. In the function shown, the first parameter is
the fmiComponent, the ‘instance’ of the FMU that is to be initialised. The other
parameters relate to the simulation life-cycle. In the template, we insert a place-
holder (which we call a tag), where we want variable initialisation to occur. The
tags in our example begin with the character string, //##. The line continues
with an identifier, <identifier>. A tag is usually (but not always) used as an
insertion point; its identifier can relate to another template (to be expanded and
processed in-line); or the name of a fragment-generator. The fragment-generator
is a Java class that can be used to generate code; or meta-data that is stored
for later use, in the code generation process (see Fig. 2). In the example we
have three tags. The first tag addToHeader identifies a generator that creates
meta-data, which are used at a later stage, for generation of a header file.

It is possible to categorize the users of Rodin into several types of users. One
such type are the ‘ordinary’ modellers, using Event-B in smaller organisations.
But for large scale use, one may have meta-modellers (to develop product lines
for instance), and another level of user may instantiate models (of the product
line). There may also be platform developers, that provide platform tools for
use by meta-modellers, modellers and product-line implementers. The extension
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Fig. 4. The Templates and Generators in the FMI Code Generator

public class InitialisationsListGenerator implements IGenerator {
public List<String> generate(IGeneratorData data){
List<String> outCode = new ArrayList<String>();
Protected prot = null;
IL1TranslationManager tm = null;
//(1) Un-pack the GeneratorData
List<Object> dataList = data.getDataList();
for (Object obj : dataList) {
if (obj instanceof Protected) {prot = (Protected) obj; }
else if(obj instanceof IL1TranslationManager){
tm = (IL1TranslationManager) obj;}}

. . .
//(2) Get the Declarations
EList<Declaration> declList = prot.getDecls();
//(3) Process each Variable Declaration/Initialisation
for (Declaration decl : declList) {
. . .
String initialisation = FMUTranslator.updateFieldVariableName(. . . );
outCode.add(initialisation);

}
// (4) return the new fragment
return outCode;}}

Fig. 5. An Example Fragment-Generator

points allow the platform developer to provide template utilities for the other
users. They can define new tags and fragment-generators. An overview of the
templates and generators used in the FMI translation, can be seen in Fig. 4
(much of the detail is omitted for brevity). The root template is fmuTemplate.c,
from this we can navigate to all of the other templates, and generators. The
root template generates variable declarations and the subroutines, and expands
the main boilerplate functions in fmuOthers.c. The fmuInstantiate and fmuIni-
tialise templates generate the corresponding FMI API function implementations.
From the diagram we can see that these rely on generators to do some of the
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translation. The template-processor scans each line, and copies the output; or
inserts new text, or meta-data as required, until we reach a generator tag. The
class’s generate method is invoked, to begin the process of text insertion. A frag-
ment of the InitialisationListGenerator class can be seen in Fig. 5. The main
steps are highlighted using numbered comments in the code. In step 1, the data
is un-packed; in step 2, the declarations are obtained from the Protected object;
in step 3, the initialisation are translated, and add to an array of initialisation
statements; in step 4, the initialisations are returned to the template-processor.

4 Conclusions

Using the approach that we have described in this paper, we are able to perform
target configuration prior to code-generation; and re-use boilerplate code, with-
out having to hard-code it. The template-processor reads each line of a template
and copies the contents, verbatim, to a target file unless a template tag is en-
countered. A tag can refer to another template, which is processed by expanding
it in-line, or a custom fragment generator. As part of an extensible approach, a
platform developer can enrich the template language, by adding new template
tags and associate them with custom fragment-generators. In this way complex
code generation activities can be performed, to generate text output, or to gen-
erate meta-data in other formats. The meta-data is useful for downstream code
generation. We used the template-driven approach to implement part of a new
code generator, translating Event-B models to FMI-C code.
Acknowledgement: Funded by FP7 ADVANCE Project www.advance-ict.eu.
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Abstract. We introduce BWare, an industrial research project that aims
to provide a mechanized framework to support the automated verifica-
tion of proof obligations coming from the development of industrial ap-
plications using the B method and requiring high integrity. The adopted
methodology consists in building a generic verification platform relying
on different automated theorem provers, such as first order provers and
SMT (Satisfiability Modulo Theories) solvers. Beyond the multi-tool as-
pect of our methodology, the originality of this project also resides in the
requirement for the verification tools to produce proof objects, which are
to be checked independently. In this paper, we present some preliminary
results of BWare, as well as some current major lines of work.

Keywords: B Method, Proof Obligations, First Order Provers, SMT
Solvers, Logical Frameworks, Industrial Use, Large Scale Study.

1 Presentation

The BWare project is an industrial research project, funded by the INS (“In-
génierie Numérique & Sécurité”) programme of the French National Research
Agency (ANR), which aims to provide a mechanized framework to support the
automated verification of proof obligations coming from the development of in-
dustrial applications using the B method and requiring high integrity. The BWare
consortium gathers academic entities, i.e. Cedric, LRI, and Inria, as well as indus-
trial partners, i.e. Mitsubishi Electric R&D Centre Europe, ClearSy, and OCamlPro.

The methodology used in this project consists in building a generic platform
of verification relying on different automated theorem provers, such as first order
� This work is supported by the BWare project (ANR-12-INSE-0010), funded for

4 years by the INS programme of the French National Research Agency (ANR)
and started on September 2012. For more details, see: http://bware.lri.fr/.

�� The BWare project consortium consists of the following partners: Cedric, LRI, Inria,
Mitsubishi Electric R&D Centre Europe, ClearSy, and OCamlPro.
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provers and SMT (Satisfiability Modulo Theories) solvers. This generic platform
is built upon the Why3 platform [2] for deductive program verification. The
considered first order provers are Zenon [4] and iProver Modulo [5], while we
opted for the Alt-Ergo SMT solver [1]. The variety of these theorem provers aims
to allow a wide panel of proof obligations to be automatically verified by our
platform. The major part of the verification tools used in BWare were already
involved in some experiments, which consisted in verifying proof obligations or
proof rules coming from industrial applications.

Beyond the multi-tool aspect of our methodology, the originality of BWare
also resides in the requirement for the verification tools to produce proof objects,
which are to be checked independently. To verify these proof objects, we consider
two proof checkers: the Coq proof assistant and the Dedukti universal proof
checker [3]. These backends should allow us to increase confidence in the proofs
produced by the considered automated theorem provers.

To test our platform, a large collection of proof obligations is provided by
the industrial partners of the project, which develop tools implementing the B
method and applications involving the use of the B method.

2 Preliminary Results

Currently, the BWare platform is already available and works as shown on Fig. 1.
The proof obligations are initially produced by Atelier B. They are then trans-
lated by a specific tool into Why3 files, which are compatible with a Why3 en-
coding of the B set theory [8]. From these files, Why3 can produce (by means of
appropriate drivers) the proof obligations for the automated theorem provers,
using the TPTP format for Zenon and iProver Modulo, and a native format for
Alt-Ergo. This translation together with the encoding of the B set theory aims
to generate valid statements that are appropriate for the automated theorem
provers, i.e. whose proofs can be found by these provers. Finally, once proofs
have been found by these tools, some of these provers can generate proof objects
to be verified by proof checkers. This is the case of Zenon, which can produce
proof objects for Coq and Dedukti [4,7], and iProver Modulo, which can also
produce proof objects for Dedukti [6].

In order to assess the BWare platform, two industrial partners of the project
provided proof obligations coming from several industrial applications. In par-
ticular, Mitsubishi Electric R&D Centre Europe provided the proof obligations of a
complete railway level crossing system use case, while ClearSy provided the proof
obligations coming from three deployed industrial projects. This constitutes an
initial bench of more than 10,500 proof obligations on which we evaluate the
BWare platform. The results obtained at the beginning of the project are as fol-
lows: the main prover (mp) of Atelier B (4.0) is able to prove 84% of these proof
obligations, while Alt-Ergo (0.95.1) obtains a rate of 58%, iProver Modulo (over
iProver 0.7) 19%, and Zenon (0.7.2) less than 1%. As can be observed, the first
order provers (iProver Modulo and especially Zenon) encounter difficulties, which
can be explained by the fact that these provers do not know the B set theory.
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Fig. 1. The BWare Platform for the Automated Verification of B Proof Obligations

Some of the current lines of work of the project therefore focus on extending the
first order provers to make them able to reason modulo the B set theory. Regard-
ing SMT solvers, an intermediate set of results obtained with improved versions
of Alt-Ergo is given at the OCamlPro blog1. These are very promising results:
the development version of Alt-Ergo is now able to automatically discharge more
than 98% of the proof obligations.

3 Current Lines of Work

The BWare project consists of several tasks, which cannot be exhaustively de-
scribed in this paper due to space restrictions. We focus on two major current
lines of work of the project.

The first current line of work is upstream and consists in completing the
axiomatization of the B set theory in Why3 in order to be able to consider all
the provided proof obligations. This is mainly carried out according to what is
described in [8], i.e. by adding B constructs to the axiomatization and modifying
1 Available at the following address: http://www.ocamlpro.com/blog/2013/10/22/
alt-ergo-evaluation-october-2013.html .

http://www.ocamlpro.com/blog/2013/10/22/alt-ergo-evaluation-october-2013.html
http://www.ocamlpro.com/blog/2013/10/22/alt-ergo-evaluation-october-2013.html
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accordingly the translator of proof obligations from Atelier B to Why3. This line
of work will allow us to consider a broad scope of proof obligations related to
different application domains and test the scalability of our platform as well.

A second current line of work focuses on the first order provers to make them
able to reason modulo the B set theory. To do so, we rely on deduction modulo.
The theory of deduction modulo is an extension of predicate calculus, which
allows us to rewrite terms as well as propositions, and which is well suited for
proof search in axiomatic theories, as it turns axioms into rewrite rules. Both
first order provers considered in the project have been extended to deduction
modulo to obtain Zenon Modulo [7] and iProver Modulo [5]. Both tools have also
been extended to produce Dedukti proofs [7,6], which is natural as Dedukti relies
on deduction modulo as well. Currently, most of the efforts in this line of work
consist in building a B set theory modulo, which is appropriate for automated
deduction and keeps some properties such as cut-free completeness.

In the longer term and among the tasks of the project, we plan to do a more
extensive benchmarking of the different provers of the project in order to deter-
mine which proof coverage ratio we can obtain from our platform (in particular,
after the development of the several extensions of the provers). Ultimately, we
intend to disseminate and exploit the results of our project by integrating our
platform into Atelier B and therefore realizing a multi-prover output of Atelier B.
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Abstract. In this paper, we present recent developments in the Alt-
Ergo SMT-solver to efficiently discharge proof obligations (POs) gener-
ated by Atelier B. This includes a new plugin architecture to facilitate
experiments with different SAT engines, new heuristics to handle quanti-
fied formulas, and important modifications in its internal data structures
to boost performances of core decision procedures. Experiments realized
on more than 10,000 POs generated from industrial B projects show
significant improvements.

Keywords: SMT solvers, B Proof Obligations, B Method.

1 The Alt-Ergo SMT Solver

Alt-Ergo is an open-source SMT solver capable of reasoning in a combination of
several built-in theories such as uninterpreted equality, integer and rational arith-
metic, arrays, records, enumerated data types and AC symbols. It is the unique
SMT solver that natively handles polymorphic first-order quantified formulas,
which makes it particularly suitable for program verification. For instance, Alt-
Ergo is used as a back-end of SPARK and Frama-C to discharge proof obligations
generated from Ada and C programs, respectively.

Recently, we started using Alt-Ergo in the context of the ANR project
BWare [8] which aims at integrating SMT solvers as back-ends of Atelier B.
The proof obligations sent to Alt-Ergo are extracted from Atelier B as logical
formulas that are combined with a (polymorphic) model of B’s set theory [7].
This process relies on the Why3 platform [6] which can target a wide range of
SMT solvers. However, we show (Section 2) on a large benchmark of industrial
B projects that it is not immediate to obtain a substantial gain of performances
by using SMT solvers. Without a specific tunning for B, Alt-Ergo together with
other SMT solvers compete just equally with Atelier B’s prover on those indus-
trial benchmarks.

In this paper, we report on recent developments in Alt-Ergo that significantly
improve its capacities to handle POs coming from Atelier B. Our improvements
are: (1) better heuristics for instantiating polymorphic quantified formulas from
B model; (2) new efficient internal data structures; (3) a plugin architecture to
facilitate experiments with different SAT engines; and (4) the implementation
of a new CDCL-based SAT solver.
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2 Benchmarks

Currently, the test-suite of BWare contains 10572 formulas1 obtained from three
industrial B projects provided by ClearSy. The first one, called DAB, is an
automated teller machine (ATM). The last two, called P4 and P9, are obfuscated
and unsourced programs.

The formulas generated from these projects are composed of two parts. The
first one is the context : a large set of axioms (universally and polymorphic quan-
tified formulas). This part contains the B’s set theory model, as well as huge
(in size) predicates describing the B state machines. The second part of each
PO is the goal : a ground formula involving these predicates (see [7] for detailed
explanations about the structure of these POs).

A quick look to the shape of these formulas shows that they mainly contain
equalities over uninterpreted function symbols and atoms involving enumerated
data types. Only a small portion of atoms contains linear integer arithmetic and
polymorphic records. In comparison with our other benchmarks coming from
deductive program verification platforms, the average number of axioms, as well
as the size of the POs are much larger in this test suite, as shown below:

number of POs avg. number of axioms avg. size (Ko)
VSTTE-Comp 125 32 8
Why3’s gallery 1920 41 9

Hi-Lite 3431 125 23
DAB 860 257 236
P4 9341 259 248
P9 371 284 402

At the beginning of the project and without specific improvements, we ran
some SMT solvers (z3, cvc3, and Alt-Ergo) on this test-suite. All measures were
obtained on a 64-bit machine with a quad-core Intel Xeon processor at 3.2 GHz
and 24 GB of memory. Solvers were given a time limit of 60 seconds and a
memory limit of 2 GB for each PO. The results of our experiments are reported
in the following table.

Provers Alt-Ergo Alt-Ergo z3 cvc3
Versions 0.95.1 0.95.2 4.3.1 2.4.1

DAB 707 822 716 684
82.2 % 95.6 % 83.3% 79.5 %

P4 4709 8402 7974 7981
50.4 % 89.9 % 85.4 % 85.4 %

P9 181 213 162 108
48.8 % 57.4 % 43.7 % 29.1 %

Total 5597 9437 8852 8773
52.9 % 89.3 % 83.7 % 83.0 %

1 These benchmarks will be available for the community at the end of the project.
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For every solver, we report the number (and the percentage) of solved POs
for each project. Except for Alt-Ergo 0.95.1, the other versions of SMT solvers
compete equally. From what we know from our BWare partners, these results are
similar to those obtained by the prover of Atelier B 4.0, which proves 84% of this
test-suite. Concerning Alt-Ergo, the low rate obtained with version 0.95.1 is due
to a quantifier instantiation heuristic that disabled the use of large axioms and
predicates during proof search. This was unfortunate for the BWare benchmark
(especially in P4 and P9) since goals mainly involve large predicates, as explained
above. The minor release 0.95.2 mainly relaxes this (misguided) heuristic.

3 Improvements

Profiling Alt-Ergo on this test-suite shows: (1) a large number of axiom instancia-
tions; (2) a high activity of the congruence closure decision procedure; and (3) an
important workload for the SAT engine. A more thorough investigation shows
that (1) is due to some administrative axioms of the B model that represent
properties of basic set theoretic operations (AC properties, transitive closures,
etc). The structure of theses instances mixes Boolean operators and equalities
over uninterpreted terms, which explains the behavior (2) and (3).

One of our main objective was to efficiently handle such axioms by limiting
the number of their instances. For that, we added the possibility of disabling the
generation of new instances modulo known ground equalities. We also modified
the default behavior of the matching algorithm to only consider terms that are
in the active branch of the SAT engine. Finally, we have reimplemented literal
representation and some parts of the Formula module of Alt-Ergo to enable
trivial contextual simplifications, and thus to identify equivalent formulas. In
addition, we have modified the core architecture of Alt-Ergo to facilitate the use
of different SAT-solvers, implemented as plugins.

The results in the following table show the impact of our optimizations. The
master branch version of Alt-Ergo contains all the modifications described above.
As we can see, this version outperforms 0.95.2. The last column contains the
result of a wrapper, called Ctrl-Alt-Ergo, that uses the time given to the solver
to try different strategies and heuristics2.

Alt-Ergo Alt-Ergo Ctrl-Alt-Ergo
Versions 0.95.2 master branch master branch

DAB 822 858 860
95.6 % 99.8 % 100 %

P4 8402 8980 9236
89.9 % 96.1 % 98.9 %

P9 213 234 277
57.4 % 63.1 % 74.7 %

Total 9437 10072 10373
89.3 % 95.3 % 98.1 %

2 All these improvements will be available in future public releases of Alt-Ergo at
http://alt-ergo.ocamlpro.com

http://alt-ergo.ocamlpro.com
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4 Conclusion and Future Works

As demonstrated by our experiments, the results of our first investigations and
optimizations are promising. It turns out that B proof obligations have some
specificities that should be taken into account to obtain a good success rate.

In the near future, we want to study how to extend the core of Alt-Ergo to
handle administrative axioms (definition of union and intersection, AC proper-
ties, etc.) as conditional rewriting rules. For that, we are studying the design
of a new combination algorithm which will extend our parametrized algorithms
AC(X) [2] and CC(X) [3] to handle, in a uniform way, user-defined rewriting
systems. This would allow us to handle a fragment of the set theory of B in a
built-in way.

We also plan to investigate whether deduction modulo techniques, like those in
Zenon Modulo [4,5] and iProver Modulo [1], would be helpful to efficiently handle
quantified formulas in the SMT world. Another line of research would be the
generation of verifiable traces for external proof checkers in order to augment
our confidence in the SMT solver.
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Abstract. This paper demonstrates how to introduce a fixed point
arithmetic in software developed with the classical B method. The prop-
erties of this arithmetic are specified with real numbers in the AtelierB
formal tool and linked to an implementation written in Ada program-
ming language. This study has been conducted to control the loss of
precision and possible overflow due to the use of fixed point arithmetic
in the critical software part of a communication based train control sys-
tem.

Keywords: formal method, B method, fixed-point arithmetic.

1 Introduction

Our context is the industrial production of the control software involved in a
new line of Communication Based Train Control (CBTC) system. As designers,
we are responsible for the on-time delivery, the operational disponibility and the
safety of the produced software. To ensure that, we use the B method [1] in order
to model the software module specification and refine it formally into concrete
code (and translating B0 source code into Ada source code). The B method has
been successfully applied in the industry of urban transportation and is also a
good and efficient way to achieve the high level of quality and confidence required
by the standards and needed of a critical software.

In the railway control industry, the effective use of floating-point numbers is
quite sparse. But in order to improve the precision and the safety of the control
software we have decided to use a customized implementation of a fixed-point
arithmetic. This allows us to represent an important range of numbers with good
precision. And this allows us to express every value in the international system
of units.

However the traditional B language and tools do not support real numbers or
computable approximations. In a first look, this custom fixed-point arithmetic is
incompatible with the use of the B method as it only includes integer numbers.
But recently, types and operators for real numbers (and floating-points numbers)
were added to the Atelier B tool-set. This allows us to specify our arithmetic
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operations while using an abstract set representing our custom implementation
of fixed-point.

The goals we want to achieve are: to study with a high degree of confidence
the possible precision loss due to the fixed-point arithmetic and the possible
overflow; to formally show that the computed values satisfy properties with
respect to the theoretical values and the safety issue of the CBTC system; and
to apply a dimensional analysis as a strong typing discipline on the manipulated
values.

2 Proposal

In railway critical systems, the program is traditionally executed on hardware ar-
chitectures lacking floating-point units. A single signed implementation of fixed
point arithmetic is provided to represent real data type in software. This im-
plementation uses 64 bits: 1 bit is used to represent the sign of the number;
31 bits are used to represent the integer portion of the number; 32 bits are used
to represent the fractional portion of the number.

The Ada type corresponding to this implementation is called T Real 64. The
processor used in our system does not include a floating point unit, our imple-
mentation is done with two 32 bits integer.

The implementation of the fixed point arithmetic is indeed used for every
physical data. Each physical data are expressed in SI units and have its own
Ada type as a partial protection against variable misuse for hand-coded source,
subtyping T Real 64. This gives us a dimensional analysis of the manipulated
values.

On the specification side, experimental real numbers support was added to
the AtelierB since version 4.1.01. The REAL type has been added as a basic
type: AtelierB considers INTEGER and REAL as two distinct types. As a
consequence, it is not possible to mix real numbers and integers in a same equa-
tion without type casting. Arithmetic operators for REAL have been added as
textual operators (such as rle for ≤).

We define Real 64 To Real as a total injective function from the finite set
T Real 64 to REAL 64, the set of reals between the minimum and maximum
implementable reals:

MAX REAL 64 = 2.031 − 2−32

MIN REAL 64 = −2.031 + 2−32

REAL 64 = MIN REAL 64..MAX REAL 64

Real 64 To Real ∈ T Real 64 → REAL 64

This function creates a relation between the abstract set, representing imple-
mented values, to their interpreted real number values.

1 http://www.atelierb.eu/wp-content/uploads/AtelierB-4.1.0-release-notes.

pdf

http://www.atelierb.eu/wp-content/uploads/AtelierB-4.1.0-release-notes.pdf
http://www.atelierb.eu/wp-content/uploads/AtelierB-4.1.0-release-notes.pdf
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Each arithmetic operations (addition, subtraction, multiplication, division,
square) must be modelled as an operation in a B basic machine..

All operations compute approximation of real numbers, but all properties are
defined with real numbers. So two essential properties on those operations have
to be specified: the protection against overflow of the result; and the properties
on the precision of the result.

This overflow protection is defined as a pre-condition to the operations. The
theoretical result of an operation on the operands should be defined in the set
of implementable real numbers.

For example, for the addition Res ← Add Real 64(Left, Right), the protec-
tion against overflow can be expressed as:

Real 64 To Real(Left) +Real 64 To Real(Right) ∈ REAL 64

in the precondition of the operation.
Therefore, the addition can be modelled in B with:

Res <-- Add_Real_64 (Left, Right) =

PRE

Left : T_Real_64 & Right : T_Real_64 &

Real_64_To_Real (Left) rplus Real_64_To_Real (Right) : REAL_64

THEN

Res := Real_64_To_Real~ (Real_64_To_Real (Left) rplus

Real_64_To_Real (Right))

END

In fixed point arithmetics, some operations, like multiplication or division,
differ from the theoretical value computation. The project uses multiple imple-
mentations of the same operation for different platforms. This leads us to specify
the following precision for each operation:

Res = Real 64 To Real−1(Real 64 To Real(Left) · Real 64 To Real(Right))

±2−32

For example, the multiplication can be modelled in B with the same pattern
than the addition but with a more complex definition of the resulting value due
to the possible precision loss.

Res <-- Mul_Real_64 (Left, Right) =

(...)

ANY l_Value WHERE

l_Value : REAL_64 &

l_Value rle Real_64_To_Real (Left) rmul

Real_64_To_Real (Right) rplus 2.0 rpow -32 &

l_Value rge Real_64_To_Real (Left) rmul

Real_64_To_Real (Right) rminus 2.0 rpow -32

THEN Res := Real_64_To_Real~(l_Value) END

END
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2.1 Physical Types and Dimensional Analysis

Each physical type is defined as a subset of T Real 64, limited to plausible values
in the railway context of the project. As an example, 30m/s = 108km/h is a
maximum plausible speed of a subway.

In Ada T Speed is defined as a new type of T Real 64:

type T_Speed is new T_Real_64 of range -30.0..30.0;

In a B specification we re-use the same pattern as before by defining a set for
the physical unit and a injective function between this set and the acceptable
range of real numbers.

The only operations needed in basic machines are operations for casting from
or to real numberss.

Arithmetic operations on physical types can be entirely modelled in B, im-
plemented in B0 and automatically translated in Ada.

3 Conclusion

With this model, we are able to develop and prove a software with a specification
containing real number arithmetic and a concrete code containing a custom fixed-
point computation. In addition to that, the arithmetic computations are strongly
typed with a dimensional analysis expressed in the international system of unit.
The types of the B model can be translated into Ada types, which allows us
to mix the B coded module with hand made Ada coded module (input-output
or unsafe parts, for example). This strong typing policies lets the Ada run-time
perform dynamic checks during the program execution (for example the check of
the numeric range of types). The type cast between numerical of physical type
is explicit and allows easier safety analysis of the program behavior.

On the other side, we can study statically the precision loss of actual compu-
tation and show formally that the computed values are safe approximations of
the theoretical result values. This specification expressions allows again an eas-
ier safety analysis of the CBTC system issues. We can also study statically the
possible numerical overflow by taking realistic hypotheses on the input interval
values and combining those hypotheses along with the computation.

We can see here that our overall goals can be achieved with this methodolog-
ical pattern, but also we experiment difficulty with the formal proof as there is
a lack of tool support for the real arithmetic. Due to this, this study remains
an experiment but is representative of the goals we follow and the method we
aim to apply. Therefore we are working on a better support of the proof obliga-
tions containing real arithmetic. The next step for that will be to design a set of
proof rules (deduction rules or axioms that ground the formal mechanism of the
AtelierB tool) for the real numbers. Using basic machines (B machine without
implementation) to specify the Ada packages of fixed-point number is another
possible issue. Indeed, with this kind of interface between Ada and B, the speci-
fication found in the machine is just, in fact, a set of hypothesis taken over Ada
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code and thus is only manually validated. It could be possible to build formally
the core fixed-point code in B also but from an industrial point of view we need
to precisely control the low-level code that runs over our embedded computer
platform.
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Abstract. Alloy is a formal modeling language based on first-order re-
lational logic, with no native support for specifying reactive systems. We
propose an extension of Alloy to allow the specification of temporal for-
mulas using LTL, and show how they can be verified by bounded model
checking with the Alloy Analyzer.

1 Introduction

Alloy is a formal modeling language based on first-order relational logic [5]. Its
Analyzer enables model validation and verification by translation to off-the-shelf
SAT solvers. Alloy’s logic is quite generic and does not commit to a particular
specification style. In particular, there is no predefined way to specify and verify
reactive systems, and several idioms and extensions have been proposed to ad-
dress this issue. However, it is rather cumbersome and error-prone to specify and
verify temporal properties with such idioms. In this paper we propose the usage
of standard Linear Temporal Logic (LTL) to specify reactive systems in Alloy,
and show how bounded model checking can be performed with its Analyzer, by
resorting to the technique first proposed by Biere et al [1].

This paper is structured as follows. Section 2 shows how reactive systems and
temporal properties can be specified and verified using Alloy and its Analyzer.
Section 3 discusses how such properties can be specified more easily in LTL and
then translated to Alloy, avoiding some of the potential problems pointed out in
the previous section. Finally, we discuss some related work in Section 4.

2 Verifying Reactive Systems in Alloy

In Alloy, a signature represents a set of atoms. An atom is a unity with three
fundamental properties: it is indivisible, immutable and uninterpreted. A signa-
ture declaration can introduce fields, sets of tuples of atoms capturing relations

Æ This work is financed by the ERDF – European Regional Development Fund through
the COMPETE Programme (operational programme for competitiveness) and by na-
tional funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-
037281.
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open util/ordering[State]

sig State {}

sig Message { to, from : one Partition }

sig Channel { messages : Message set -> State }

sig Partition { port : one Channel, pifp : set Partition }

fact NoSharedChannels { all c : Channel | lone port.c }

pred send [m : Message, s,s’ : State] { ... }

pred receive [m : Message, s,s’ : State] { ... }

pred transfer [m : Message, s,s’ : State] {

m in m.from.port.messages.s and m.to in (m.from).pifp

messages.s’ = messages.s - m.from.port->m + m.to.port->m

}

fact Init { no Channel.messages.first }

fact Trans { all s : State, s’ : s.next |

some m : Message | send[m,s,s’] or receive[m,s,s’] or transfer[m,s,s’]

}

Fig. 1. A PIFP specification in Alloy

between the enclosing signature and others. Model constraints are defined by
facts. Assertions express properties that are expected to hold as consequence
of the stated facts. Commands are instructions to perform particular analysis.
Alloy provides two commands: run, that instructs the Analyzer to search for an
instance satisfying a given formula, and check, that attempts to contradict a
formula by searching for a counterexample.

Since fields are immutable, to capture the dynamics of a state transition sys-
tem a special signature whose atoms denote the possible states must be declared.
Without loss of generality, we will denote this signature as State. Every field
specifying a mutable relation must then include State as one of the signatures
it relates. There are two typical Alloy idioms to declare such mutable fields:
declare them all inside State, or add State as the last column in every mutable
field declaration. The former idiom is known as global state, since all mutable
fields are grouped together, while the latter is known as local state, since mutable
fields are declared in the same signature as non-mutable ones of similar type.

Figure 1 presents an example of an Alloy model conforming to the local state
idiom. It is a simplified model of the Partition Information Flow Policy (PIFP)
of a Secure Partitioning Kernel. Essentially, the PIFP statically defines which
information flows (triggered by message passing) are authorized between parti-
tions. Signature Message declares the fields to and fom, capturing its destination
and source Partition, respectively. Communication is done via channels, here
simplified to contain sets of messages. Obviously, the messages contained in a
channel vary over time. As such, signature Channel declares a mutable rela-
tion messages, that associates each channel with the set of its messages in each
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state. Signature Partition declares two binary relations: port, denoting the
channel used by the partition to communicate, and pifp, that captures to which
partitions it is authorized to send messages.

In Alloy everything is a relation. For example, sets are unary relations and
variables are just unary singleton relations. As such, relational operators (in par-
ticular the dot join composition) can be used for various purposes. For example,
in the fact NoSharedChannels the relational expression port.c denotes the set
of partitions connected to port c. Multiplicities are also used in several contexts
to constrain or check the cardinality of a relation. For example, in the same fact,
multiplicity lone ensures that each channel is the port of at most one partition.

An operation can be specified using a predicate pred op[...,s,s’:State]

specifying when does op hold between the given pre- and post-states: to access
the value of a mutable field in the pre-state (or post-state) it suffices to com-
pose it with s (respectively s’). Our model declares three operations: send and
receive message (whose specifications are omitted due to space limitations),
and transfermessage between partitions. The send operation just deposits the
message in the sending partition port – the transfer operation is executed by
the kernel and is the one responsible to enforce the PIFP. Inside an operation, a
formula that does not refer s’ can be seen as a pre-condition. Otherwise it is a
post-condition. For example, m in m.from.port.messages.s is a pre-condition
to transfer, requiring m to be in the port of the source partition prior to its exe-
cution. Notice that frame conditions, specifying which mutable relations remain
unchanged, should be stated explicitly in each operation.

To specify temporal properties we need to model execution traces. A typical
Alloy idiom for representing finite prefixes of traces is to impose a total ordering
on signature State (by including the parameterized module util/ordering)
and force every pair of consecutive states to be related by one of the operations
(see fact Trans). Inside module util/ordering, the total order is defined by
the binary relation next, together with its first and last states. The initial
state of our example, where all channels are empty, is constrained by fact Init.
A desirable safety property states that the port of every partition only contains
messages sent from authorized partitions:

assert Safety { all p : Partition, m : Message | all s : State |

m.to = p and m in p.port.messages.s implies p in m.from.pifp

}

Model checking this assertion with the Alloy Analyzer yields a counter-
example: every partition can send a message to itself, even if not allowed by
the PIFP. To correct this problem we can, for example, add to our model the
fact all p:Partition | p in p.pifp, stating that all partitions should be al-
lowed to send messages to themselves. Non-invariant temporal assertions can
also be expressed with this idiom, but the complexity of the formulas and ex-
pertise required by the modeler increases substantially. Consider, for example
the liveness property stating that all authorized messages are eventually trans-
ferred to the destination. At first glance, it could be specified as follows (using
transitive closure to access the successors of a given state):
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assert Liveness { all p : Partition, m : Message |

all s : State | m in p.port.messages.s and m.to in p.pifp implies

some s’ : s.*next | m in m.to.port.messages.s’

}

A simple (but artificial) way to ensure Liveness in this model is to disallow
message sending while there are still pending messages to transfer. This could be
done by adding the pre-condition no Channel.messages.s to operation send.
However, even with such pre-condition, model-checking assertion Liveness with
the Alloy Analyzer yields a false counter-example, where a message is sent in the
last state of the trace prefix. In fact, if we consider only finite prefixes of execution
traces, it is almost always possible to produce a false counter-example to a
liveness property. This problem is well-known in the bounded model-checking
community, and the solution, first proposed in [1], is to only consider as (true)
counter-examples to such properties prefixes of traces containing a back loop in
the last state, i.e., those that actually model infinite execution traces. It is easy to
define a parameterized trace module1, that adapts util/ordering to specify
potential infinite traces instead of total orders, by allowing such back loop in
the last state. Module trace also defines a predicate infinite that checks if
the loop is present in a trace instance: if so, next always assigns a successor to
every state, thus modeling an infinite trace. For convenience a dual predicate
finite is also defined. By replacing open util/ordering[State] with open

trace[State], the above liveness property can now be correctly specified (and
verified) as follows:

assert Liveness { all p : Partition, m : Message |

all s : State | m in p.port.messages.s and m.to in p.pifp implies

finite or some s’ : s.*next | m in m.to.port.messages.s’

}

3 Embedding LTL Formulas in Alloy

As seen in the previous section, although we can specify and verify (by bounded
model checking) temporal properties in standard Alloy, it is a rather tricky and
error-prone task, in particular since the user must be careful about where to
check for finitude of trace prefixes. As such, we propose that, instead of using
explicit quantifiers over the states in a trace, such properties be expressed using
the standard LTL operators: X for next, G for always, F for eventually, U for until,
and R for release. For example, the above temporal properties could be specified
as follows:

assert Safety { all p : Partition, m : Message |

G (m.to = p and m in p.port.messages implies p in m.from.pifp)

}

1 Available at http://www.di.uminho.pt/~mac/Publications/trace.als.

http://www.di.uminho.pt/~mac/Publications/trace.als
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�X φ�s � some s.next and �φ�s.next
�G φ�s � infinite and all s� : s.*next � �φ�s�
�F φ�s � some s� : s.*next � �φ�s�

�φ U ψ�s � some s� : s.*next � �ψ�s� and all s� : s.*next & ^next.s� � �φ�s�

�φ R ψ�s � �G ψ�s or some s� : s.*next � �φ�s� and all s� : s.*next & *next.s� � �ψ�s�

�not φ�s � not �φ�s �Φ . Ψ�s � �Φ�s . �Ψ�s
�φ and ψ�s � �φ�s and �ψ�s �Φ & Ψ�s � �Φ�s & �Ψ�s
�φ or ψ�s � �φ�s or �ψ�s �Φ + Ψ�s � �Φ�s + �Ψ�s

�all x : Φ � φ�s � all x : �Φ�s � �φ�s �Φ -> Ψ�s � �Φ�s -> �Ψ�s
�some x : Φ � φ�s � some x : �Φ�s � �φ�s �*Φ�s � *�Φ�s

�Φ in Ψ�s � �Φ�s in �Ψ�s �none�s � none

�x�s �

��
�

x.s if x is the id of a mutable field declared with the local state idiom
s.x if x is the id of a mutable field declared with the global state idiom
x otherwise (i.e., a variable or the id of an immutable field)

Fig. 2. Embedding of temporal formulas

assert Liveness { all p : Partition, m : Message |

G (m in p.port.messages and m.to in p.pifp implies

F (m in m.to.port.messages))

}

Assuming traces are specified with module trace, the embedding of LTL into
Alloy can be done via an (almost) direct encoding of the translation proposed
by Biere et al. [1] (for bounded model checking of LTL with a SAT solver).
Formally, a formula φ occurring in a fact or run command should be replaced by
�NNF �φ��first, where �φ�s is the embedding function defined in Figure 2, and
NNF �φ� is the well-known transformation that converts formula φ to Negation
Normal Form (where all negations appear only in front of atomic formulas).
When finding a model for G φ, only prefixes capturing infinite traces should
be considered, thus assuring that φ is not violated further down the trace. As
clarified in [1], conversion to NNF is necessary since in the bounded semantics of
LTL the duality of G and F no longer hold. The embedding of logic and relational
operators is trivial, and thus only a representative subset of Alloy’s logic is
presented. A formula φ occurring in an assertion or check command should be
replaced by not �NNF �not φ��first. Since assertions in check commands are
negated in order to find counter-examples, the outermost negation ensures they
still remain in NNF.

Note that, to improve efficiency (and likewise to util/ordering), when the
trace module is imported the scope of the parameter signature is interpreted as
an exact scope. This means that trace prefixes are bounded to be of size equal
to the scope of the State signature. Thus, to perform bounded model checking
of an assertion, the user should manually increase the scope of State one unit
at a time up to the desired bound.
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4 Related Work

Several extensions of Alloy to deal with dynamic behavior have been proposed.
DynAlloy [3] proposes an Alloy variant that allows the specification of properties
over execution traces using a formalism inspired by dynamic logic. Imperative
Alloy [6] proposes a more minimal extension to the language, with a simple
semantics by means of an embedding to standard Alloy. Unfortunately, in both
these works the verification of liveness properties may yield spurious counter-
examples, similar to the one presented in Section 2.

One of the advantages of our approach is that reactive systems can be speci-
fied declaratively using Alloy’s relational logic, as opposed to traditional model
checkers where transitions must be specified imperatively. Chang and Jackson [2]
proposed a BDD-based model checker for declarative models specified with rela-
tional logic enhanced with CTL temporal formulas. The current proposal shows
how the Alloy Analyzer can directly be used to perform bounded model checking
of temporal formulas without the need for a new tool.

Recently, Vakili and Day [7] showed how CTL formulas with fairness con-
straints can be model checked in Alloy, by using the encoding to first order
logic with transitive closure first proposed by Immerman and Vardi [4]. Their
technique performs full model checking on state transition systems specified
declaratively, but bounded to have at most the number of states specified in
the scope. This non-standard form of bounded model checking can yield non-
intuitive results in many application scenarios, or even prevent verification at
all if the the specification cannot be satisfied by a transition system that fits in
the (necessarily small) scope of State. Moreover, instead of proposing an Alloy
extension, CTL formulas are expressed using library functions that compute the
set of states where the formula holds. This leads to unintuitive specifications,
since the user is then forced to use relational operators to combine formulas
instead of the standard logical connectives.
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Abstract. The paper presents a work-in-progress on formal verification
of operating system security model, which integrates control of confi-
dentiality and integrity levels with role-based access control. The main
goal is to formalize completely the security model and to prove its con-
sistency and conformance to basic correctness requirements concerning
keeping levels of integrity and confidentiality. Additional goal is to per-
form data flow analysis of the model to check whether it can preserve
security in the face of certain attacks. Alloy and Event-B were used for
formalization and verification of the model. Alloy was applied to provide
quick constraint-based checking and uncover various issues concerning
inconsistency or incompleteness of the model. Event-B was applied for
full-scale deductive verification. Both tools worked well on first steps of
model development, while after certain complexity was reached Alloy
began to demonstrate some scalability issues.

1 Introduction

Complexity of practical security models used in the industrial and government
systems makes their analysis a hard work. A well-known, but not well adopted
yet, approach to decrease the effort needed for such an analysis is usage of
formal modeling with a variety of features supported by modern tools like model
checking, constraint checking, deductive verification, etc.

In this paper we present a work-in-progress on formal analysis of mandatory
entity-role model security of access control and information flows of Linux-based
operating system (MROSL DP) [1], which includes lattice-based mandatory ac-
cess control (MAC), mandatory integrity control (MIC), and role-based access
control (RBAC) mechanisms [2] and is intended to be implemented inside Linux
as a specific Linux Security Module (LSM) [3]. The analysis performed is to
check model consistency and conformance to basic correctness requirements -
ability to prevent break of integrity and confidentiality levels of data and pro-
cesses. In addition a kind of data-flow analysis is executed to prove that the
model is able to preserve security in the face of certain attacks, namely, to keep
high-integrity data and processes untouched even if an attacker gets full control
over some low-integrity processes.
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Alloy [4] and Event-B [5] (Rodin [6]) are used for formalization of the model
and for its analysis and verification. Alloy was applied to provide constraint-
based checking of operation contracts and to uncover various issues concerning
inconsistency or incompleteness of the model. Event-B was applied for full-scale
deductive verification of the model correctness.

Further sections of the paper describe some details of the security model
analyzed, provide the statistics of tool usage, summarize the results obtained,
and depict further development of the project.

2 Main Features of the Model

The model under analysis MROSL DP [1] describes security mechanisms of
Linux-based operating system in terms of user accounts (representing users), en-
tities (representing data objects under control - files, directories, sockets, shared
memory pieces, etc.), sessions (representing processes working with data), and
roles (representing arrays of rights on usage or modification of data objects).

Each session has the corresponding user account on behalf of which it works.
A session has a set of roles assigned to it and a set of accesses to various entities
(which it reads or writes), both these sets can be modified. Entities can be
grouped into other entities (containers) and form a Unix-like filesystem (with
containers-directories and hard links making possible for an entity to belong
to several containers). Roles also form a filesystem-like structure, where roles-
containers are used to group the rights of all the included roles.

The main security mechanisms presented in the model are the following.

– RBAC. Each operation performed by a session should be empowered by a
corresponding right included in some of the current roles of the session.

– MIC. Each entity, session, or role has integrity level - high or low. Modifi-
cation of high-integrity entities or roles by low-integrity sessions or through
low-integrity roles is prohibited.

– MAC. Each entity, session, or role has security label. Security is described by
two attributes - a level of ordered confidentiality (unclassified, confidential,
etc.) and a set of unordered categories (e.g., whether the corresponding in-
formation concerns financial department or research department). Security
labels are partially ordered according to order of levels and inclusion of cat-
egory sets. Read access to an entity is possible only for sessions (or through
roles) having greater-or-equal security labels. Write access is possible only
for sessions (or through roles) having exactly the same security labels.

The model defines 34 operations in form of contracts - preconditions and
postconditions. Operations include actions on creation, reading, or modification
of user accounts, sessions, entities, roles, rights of roles, accesses of a session. For
the purpose of data-flow analysis of attacks additional 10 operations are defined,
which describes control capture of a session and information flows by memory
or time between sessions and entities.
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The model also includes a variety of specific details, like shared containers,
container clearance required (CCR) attributes of containers (integrity or con-
fidentiality ignorance flags), write-only entities (like /dev/null), administrative
roles used to operate with other roles, and so on. Space restrictions prevent us
from discussing them here, but these details are responsible for a large part of
model’s complexity.

3 Formalization and Verification Process and Its Results

Alloy and Event-B are used for model formalization. Both formalizations are
close and consist of type definitions for basic model concepts (user accounts,
sessions, entities, roles, rights, accesses), state data structure, basic invariants
representing well-definedness of data objects (wd-invariants), invariants repre-
senting correctness of a state or conformance to basic requirements presented in
the list in the previous section (c-invariants), and operation contracts.

For now data-flow-related constraints and operations are not yet recorded
in the tool-supported formal models, so the further information is provided for
incomplete models.

Some statistics on models elements and size is presented in the Table 1. Lines
of code numbers shown are rounded to tens.

Table 1. Models’ composition and size

Alloy model Event-B model

Number Lines of code Number Lines of code

Type definitions 20 100 9 1
State variables 25 40 43 1
wd-invariants 17 300 76 200
c-invariants 31 230 31 120
Operation contracts 32 2200 32 1300
Total 2900 1650

Let I(s) denote that all invariants hold in the state s, for each operation
one have precondition pre(s) and postcondition post(s, s′), the latter depending
on pre-call state s and post-call state s′. We try to ensure that the statement
I(s)∧ pre(s)∧ post(s, s′) ⇒ I(s′) holds for all operations specified. Alloy is used
for quick finding omissions of necessary constraints in operation contracts or
invariants by means of constraint checking, which can find small counterexamples
for wrong statements. Several omissions and inconsistencies were found in the
original model with the help of Alloy. Rodin with corresponding plugins was used
to prove formally all the same statements in Event-B model. Rodin generates
from 30 to 90 assertions for an operation, from which up to 25% require human
intervention to prove. In total proof of about 15% of generated assertions need
human aid.

When the number of invariants in the model exceeded 20, Alloy stopped to
generate counterexamples for wrong statements. Sometimes we met this problem
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before, but then it can be resolved by increasing the number of top-level objects.
Since more than 20 invariants are used, this doesn’t help or just causes mem-
ory overflow. We haven’t managed to use ProB [7] tool for constraint checking,
mostly due to model complexity.

The following issues of Event-B make the work harder: lack of possibility to
use auxiliary predicates in contracts, and lack of possibility to introduce some
abbreviations, which can help to ease the notation rigidity, for example, to use
more suitable notation for second and third elements of triples. This can be
implemented with lambda-expressions, but they hinder automated proofs. Ad-
ditional problem for possible work splitting is provided by the structure of proof
log stored. Since it is represented as XML, its size in our example is about 200
MB, and usually a little change in the proof of some assertion strangely result in
many changes in the XML-file stored. So it is hard to split the proof elaboration
between several persons, since merging significantly changed big files is hard.

4 Conclusion and Future Work

The presented in the paper work on formalization and verification of the security
model of Linux-like OS is not finished yet, but the results obtained already
can be used to make some conclusions. First, the project as usual shows that
formalization of requirements helps to uncover some bugs that can become more
serious on the implementation phase. Second, the project demonstrates that
sometimes tools supporting formal analysis of models are not scalable enough
for industrial use, but other suitable tools can be usually found.

On the next steps of the project we are going to finalize model formalization
and verification with the help of Event-B. Then, the security mechanisms mod-
eled are to be implemented as an LSM and the implementation code is to be
verified on conformance to the model with the help of Why [8] platform.
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1 Introduction

In Computer Networks, several studies show that 50 to 80% of infrastructure
downtime is caused by misconfiguration [1]. Current approaches are aimed to
check the configuration of each device and detect conflicts, inconsistencies and
bugs, other approaches focus on the specification of the intended behaviour of a
network and the automatic configuration of each one of its elements [2].

Path-Based Policy Language (PPL) [3] is a language for Policy-based network
management. Using PPL, network administrators specify network policies, i.e.
a set of rules about how the network must deal with specific types of traffic.
Moreover, they can use a PPL compiler to transform these rules into operational
parameters for each entity in the corresponding network.

Existing PPL compilers [3,4] perform validations on policy rules to detect
conflicts such as contradicting rules for the same network segment. However,
this type of compiler only detects conflicts using a subset of the language and
cannot detect conflicts such as contradicting rules for security rules of users
and groups. This paper presents our ongoing implementation of a PPL compiler
based on Alloy with the objective of overcoming these limitations.

2 The Path-Based Policy Language

Path-Based Policy Language (PPL) [3] allows network administrators to specify
1) the network topology, nodes and links; 2) types of paths and network traffic,
and 3) policy rules.

Network topology: PPL provides a set of “define” statements that can be used
to define network nodes and links. For instance, Figure 1 is the PPL specification
of the example network with five nodes shown in Figure 2.

define node Alpha , Bravo , Charlie , Delta , Echo;
define link Alpha_Bravo <Alpha , Bravo >;
define link Alpha_Delta <Alpha , Delta >;
define link Bravo_Charlie <Bravo , Charlie >;
define link Charlie_Delta <Charlie , Delta >;
define link Bravo_Echo <Bravo , Echo >;
define link Echo_Delta <Echo , Delta >;

Fig. 1. Topology definition Fig. 2. Example Topology
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Path Specifications: In addition to nodes and links, PPL supports the defini-
tion of paths, i.e. sequences of nodes and links, in order to define rules over the
traffic that goes through them.

Administrators can set a path specifying all the nodes and links in the path,
or by using wildcards. For instance, a path between Alpha and Echo may be
defined specifying all the nodes using the expression <Alpha,Bravo,Echo>. In
addition, a set of paths can be defined using placeholders that can be replaced
by any set of nodes. Following the example, the complete set of paths between
Alpha and Echo can be defined as <Alpha,*, Echo>, i.e. denoting all the paths
that start in one node and ends in the other.

Policy Specification: PPL supports the definition of constraints over the traf-
fic going through nodes, links or paths in a network. A PPL rule comprises:
policyID a unique identifier, userID the ID of the policy creator, paths the
paths affected by the policy, target the type of traffic and conditions that
determine when the policy must be applied, and action items describing the
intended behaviour of the network.

For instance, a network administrator can define the policy “the video traffic
cannot be transmitted through Charlie”, using the following PPL statement:

policy1 smith {<*,Charlie ,*>} {traffic_class=video} {*} {deny}

Policy Conflicts: Policy conflicts occur when two or more policy rules cannot
be satisfied at the same time. For instance, there is a conflict if another admin-
istrator define a policy “the video traffic can be transmitted from Alpha through
Charlie to Echo” using the following statement:

policy2 neo {<Alpha ,*,Charlie ,*,Echo >} {traffic_class=video} {*} {permit }

Considering the above mentioned policies, there is a contradictory set of poli-
cies, consequently, a policy conflict.

3 Detecting Network Policy Conflicts with Alloy

In this section we show how to translate PPL statements into an Alloy model
and use the Alloy Analyzer to determine conflicts.

Network Topology: Network nodes and links can be translated into Alloy
using signatures and relations. Consider the above example:

abstract sig node{}

abstract sig topology {
nodes : some node ,
links : node -> node

}

one sig Alpha , Bravo , Charlie , Delta , Echo
extends node{}

one sig topologyOne extends topology {}
{

nodes = Alpha+Bravo+Charlie +Delta+Echo
links = Alpha ->Bravo + Alpha ->Delta + ...

}
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Path Abstraction: Network paths can be translated into Alloy signatures and
predicates. Informally, each path is a tuple with a set of nodes and links. Two of
these nodes are the source and the target. In addition, each path must be acyclic,
no loops are allowed, and the target must be accessible from the source, and all
nodes in the path from the source must be included as nodes. The following is
the specifications of the example paths:

abstract sig path {
nodes : some node ,
links : node -> node ,
source : one nodes ,
target : one nodes

} {
no n : nodes | n in n.^(links)
target in source .^(links)
source .^(links) in nodes

}

// Path <Alpha , *,Charlie , *, Echo >

pred isAlphaCharlieEcho ( p : path ) {
isValid [ p, topologyOne ]
p.source = Alpha
p.target = Echo

Charlie in p.nodes
Charlie in p.source .^(p.links)

}

Policy Abstraction: Finally, policy rules can be translated into Alloy facts.
Informally, above mentioned rules state that 1) there is not a network flow where
the traffic type is video and Charlie is included in the path, and 2) exists at least
one flow where the traffic type is video, and Alpha, Charlie and Echo are in the
set of nodes. The following is the specification of these rules.

// smith <*,C,*> { video} {deny}
fact policy1 {

no f: network_flow{
some p: f.paths {

is_C_path [ p ]
}
f.flow_type = traffic_type_video

}
}

// neo <A,*,C,*,E> {video} { permit}
fact policy2 {

some f: network_flow {
some p : f.paths {

isAlphaCharlieEcho [ p ]
}
f.flow_type = traffic_type_video

}
}

Policy Conflicts: Once the Alloy model have been created, policy conflicts
can be detected whenever the model is unsatisfiable. In addition, we are able to
determine which policies produce the conflict using the Unsat-Core available in
Alloy to detect inconsistencies in a specification.

4 Advantages of Translating to Alloy

The existing compilers use algorithms that first expand all the path definitions
in sets of paths, then detect the segments where the paths overlap, and finally
determine if there are conflicting conditions in the common segments [4]. In
contrast, our approach translates PPL into Alloy models. This translation offers
some advantages over the previous work:

– Extended support for wildcards in paths. The existing compilers use algo-
rithms that support expansion of paths specifications such as {A,*,E}, but
not complex path declarations like {*,B,C,*,D,*} [4]. In contrast, these
paths can be easily translated into Alloy predicates.

– Extended support for user and group policies. Existing compilers find a con-
flict if some rules permit and other deny the traffic from the same user, but
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not if a rule permits the traffic from a user and another rule denies the traffic
of the user’s group [4]. We overcome this including relations among groups
and users as in other approaches for role-based access control[5].

– Extended support for action conflicts. The existing PPL compilers have lim-
ited support to detect when two rules try to set different values to attributes
such as the priority or the bandwidth assigned to an specific type of traffic
[4]. We improve this including additional constraints checking that two rules
do not include conflicting assignations on attributes.

5 Future Work

We have implemented a PPL compiler supported on Alloy to detect conflicts in
policy rules. Our compiler exploits relational logic to explore the paths in the
network and reason about constraints defined on them in a simpler and a more
complete way than the existing compilers.

Currently, we are focused on evaluating alternatives to optimise the conflict
detection performance. Mainly, we are considering “model slicing techniques
where the compiler analyses subsets of the network instead all the elements. In
addition, we are working on a implementation that uses KodKod, the internal
library used by Alloy that provides support for partial instances to optimise
processing.

Besides PPL, there are other network policy languages focused on concerns
such as fault tolerance and security such as FML and Merlin [6,7]. Future work
is planned to support these languages and detect conflicts among policies aimed
to deal with different concerns.
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Abstract. To evaluate a property of the form ‘for all x there exists some
y’ with a relational model finder requires a generator axiom to force all
instances of y to exist in the universe of discourse. Without the genera-
tor axiom the model finder will produce a spurious counter-example by
simply not including an important instance of y. Generator axioms are
generally considered to be expensive to evaluate, significantly limiting
the scope of the analysis. We demonstrate that evaluating the genera-
tor axiom in a separate stage from the property results in substantial
improvements in analysis speed and scalability.

1 Introduction

Every integer has a successor: all x : Int | some y : Int | y = plus[x,1]. This proposi-
tion is true (with overflow arithmetic) regardless of the bitwidth, because we all
of the integers in the bitwidth will exist in the universe of discourse. For example,
if the bitwidth is set to two the universe will contain the integers {−2,−1, 0, 1}.
What if the Alloy Analyzer were allowed to arbitrarily drop integers from the
universe? For example, suppose we set the bitwidth to two but got the universe
{−2, 0, 1}. In this truncated universe the successor proposition does not hold.

A näıve user of Alloy might write a similar proposition for their own sig-
natures, for example to say that every state in a transition system must have
a successor: all x : State | some y : State | next[x,y]. The Alloy Analyzer will then
construct a truncated universe in which some State does not have a successor,
and the proposition will be reported as false. In order to make this state succes-
sor proposition true the user will need to write a generator axiom [11] to force
all states to exist. They will probably also write an equality predicate to ensure
that all of the generated states have different field values. Finally, the user will
need to know how many atoms need to be generated so that they can set the
scope of the analysis accordingly.

We propose a new keyword for Alloy, uniq, to be applied to user-defined signa-
tures, from which we automatically synthesize the generator axiom and equality
predicate. With the user’s intent clearly expressed in this manner we can then
automatically compute the appropriate scope.

Evaluating generator axioms can be expensive. We also show that evaluating
the generator axiom and the ∀∃ query in separate stages can improve speed and
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scalability of the analysis. First we evaluate the generator axiom, then save the
result as a partial instance to be used in the evaluation of the ∀∃ query.

There is growing interest in using Alloy for analyzing ∀∃ queries. (e.g.,
[19,3,8,5]). We show that staging makes the analyses of forml [5] feasible.

2 Atoms and Objects

Atoms in Alloy are uninterpreted. When the user writes a generator axiom with
an associated equality predicate they have an interpretation in mind: that the
identity of an atom is defined by the values of its fields. The user signifies this
intent with our uniq keyword. We shall refer to atoms that the user considers in
this way as objects, the signatures that declare them as classes, and the relations
in which they are the first column as fields. These are just conceptual terms for
the purposes of this paper and are not present in the concrete Alloy syntax.

We require that there be a finite number of objects so that they can be enu-
merated and saved in a partial instance for subsequent analysis. Consequently,
the range of each field must be finite. If the range of a field is a sig then the
finite bound comes from the command’s scope. If the range of a field is another
class, then the objects of that class must be computed first. There is, therefore,
a dependency hierarchy of classes that must be acyclic.

The specification might contain a variety of constraints that define which
objects are legal and which are not. When generating all legal unique objects of
a given class we consider only the constraints contained in the appended facts.
If other constraints are subsequently found to be in conflict with these ones then
the specification will be reported as inconsistent. Appended facts in Alloy are
syntactically designed to refer to a single object at a time. We further restrict
appended facts on classes to have no quantifiers.

3 Two Techniques for Staged Generation of Objects

We evaluate two approaches for staging evaluation of the generator axioms: using
the solution enumeration feature of the underlying sat solver, and incrementally
growing the bound until all legal objects are found.

In both cases we first slice the specification to include just what is necessary
to generate the objects: the class declarations and any sig declarations that they
depend on, along with the associated appended facts. Other sigs are removed, as
well as facts and predicates. The generated objects are saved in a partial instance
block [14] for use in evaluating the ∀∃ query in the next stage.

The incremental generation approach starts by first solving for a small scope
that is expected to be less than the total number of legal objects to be generated.
The results are saved as a partial instance block. Then the scope is expanded
and the solver invoked again. The newly found objects are added to the partial
instance block. This process repeats until the solver returns unsat, indicating
that there are no more legal objects to be generated.
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Some sat solvers, such as MiniSat [7], include a feature for solution enumer-
ation. This feature works by appending the complement of the current solution
to the formula and re-solving. This can be efficient because the solver retains
its internal state from the previous solution. We append each returned solution
to our generated partial instance block until the solver returns unsat, indicating
that there are no more objects to be generated.

In order to generate all legal objects with this technique it is necessary to
turn off Alloy/Kodkod’s symmetry breaking feature.

4 Performance Evaluation of Staging

We evaluate the performance of the two staging techniques on a collection of
common data structure specifications (sorted linked-list, binary search tree, and
red-black tree), an extended version of the phone book example [11], and a
specification automatically generated from the forml [6,5] analysis tool.

In all cases the queries are of the form ‘for all states there exists another
reachable legal state’. For the phone book and data structure examples these
queries check that the insert and remove operations take one legal object to
another legal object.

The forml [6,5] (Feature-Oriented Modelling Language) tool synthesizes an
Alloy specification from a forml specification. forml specifications describe
‘features’ as finite state machines that operate on shared phenomena. These
state machines (features) might interact in unintended ways. The purpose of the
Alloy analysis is to detect these unintended interactions. The queries are of the
same familiar form: there is always a legal next state.

As a baseline for comparison we also show the times taken to simultaneously
solve the generator axioms and the ∀∃ query. This is what the Alloy user cur-
rently does. For these tests we suppose that the Alloy user magically knows
the scope required to generate all of the legal objects. Both staging techniques
compute this scope automatically. In current practice the Alloy user will make
educated guesses, running the solver repeatedly until they find the scope that
permits all legal objects to be generated.

Figure 1 shows that staging reduces analysis time and increases scalability
to larger scopes for ∀∃ queries on our benchmark specifications. For sufficiently
small scopes all three approaches work quickly. The non-staged approach almost
always completes quickly or times out: there are only two problems (5 nodes
linked-list with and 3 nodes red-black tree) that take some medium amount
of time. The solution enumeration technique is fastest and most scalable. As
compared to the non-staged approach, staging shifts time from sat solving into
universe generation and Kodkod translation: notice that there are no visible
black bars (sat solving time for query) in columns for techniques 2 and 3.

Table 1 shows the number of clauses and variables in the cnf file generated
to check the ∀∃ query. The staging techniques produce cnf files with orders of
magnitude fewer variables and clauses on all but the smallest problems.
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Fig. 1. Staging improves scalability and reduces runtime of ∀∃ queries. Analysis times
(bars) are broken down into three components: object generation; ∀∃ query translation,
which is performed by Kodkod and includes the generated objects as a partial instance;
and sat solving the ∀∃ query. The x-axis is organized by benchmark and technique.
Technique 1 is not-staged; 2 incremental growth; 3 is enumeration. Lower bars are
better. Bars that hit the top are time-outs. Enumeration is the only technique that
solves every problem. These are the same benchmarks as in Table 1. Benchmarks
available at: http://goo.gl/P7G5r6.

Table 1. Staging results in a significant reduction in the number of variables and
clauses in the cnf file generated to check the ∀∃ property of interest

Staged Not-Staged

Specification Size
Gen. Enumeration Incremental
inst. Vars Clauses Vars Clauses Vars Clauses

2 4 19 31 18 28 1892 3964
3 9 59 103 58 99 7089 16401
4 25 166 323 166 323 33327 78833
5 92 489 1159 489 1159 309974 715938
6 458 1849 5868 TO TO TO TO

Sorted Linked List

7 2987 9957 41351 TO TO TO TO

2 5 25 42 24 36 4858 9559
3 15 138 313 138 313 28514 61258
4 51 386 938 386 938 214564 486202
5 188 1192 3246 TO TO 2179446 4955942
6 731 3345 9766 TO TO TO TO

Binary Search Tree

7 2950 10883 34932 TO TO TO TO

2 5 24 42 24 42 19094 46068
3 12 80 154 80 154 143220 389576
4 29 295 685 295 685 900413 2584570
5 74 1669 4477 TO TO TO TO
6 201 5653 16794 TO TO TO TO

Red-black Tree

7 573 10353 30965 TO TO TO TO

NA 15 614 912 614 912 6597 10693
NA 300 15341 110191 TO TO TO TOPhone Book
NA 920 55341 919316 TO TO TO TO

FORML NA 170 903 1582 TO TO TO TO

http://goo.gl/P7G5r6
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5 Related Work

Finding all distinct consistent instances of a propositional logic formula is called
#sat, or the model counting problem. Formally, the model counting problem
is a #P-complete problem; it is complete for problems which are as hard as
polynomial-time hierarchy (PH) problems [17], and dramatically harder problem
than an NP-complete sat problem. Researchers tackle #sat with both exact
and approximate techniques. Biere [2, §20] reports that exact techniques scale
to hundreds of variables and approximate techniques (with guarantees on the
quality of the approximation) scale to a few thousand variables.

When the Alloy user needs to write generator axioms they usually also need to
specify the correct scope, which can be difficult. Both of our staging approaches
compute this scope for the user ‘dynamically’ by solving a sliced version of the
specification. In Margrave [15], a security policy checker, Nelson et alia [16],
claimed that a signature’s scope can be approximated statically if predicates in
the specification belong to a particular subclass of first-order logic.

The idea of generating all legal instances is also of interest in the context of
test-case generation (e.g., [9,1,12]). Khurshid et alia [12] used sat-solver based
enumeration with Alloy for this purpose.

Symmetry breaking can significantly reduce the number of generated instances
when using sat-solver based solution enumeration [13,18]. We require symmetry
breaking to be turned off for now, as our experiments have shown that symmetry
breaking can still lead to spurious counter-examples for ∀∃ queries.

Others have also sliced Alloy specifications (e.g., [10]).

6 Conclusions and Future Work

Staging using sat-solver based solution enumeration and partial instances en-
ables the Alloy Analyzer to scale to larger ∀∃ queries than were previously feasi-
ble. The research community has a growing interest in analyzing these kinds of
queries (e.g., [19,3,8,5]). We examined on the forml analysis tool [5]) as a case
study. The forml tool synthesizes Alloy specifications that involve ∀∃ queries
for detecting unintended interactions in a forml specification. Staging made
analyzing these forml specifications feasible.

Alloy specifications with ∀∃ queries usually require generator axioms. A com-
mon pattern for generator axioms is to treat atoms as ‘objects’ that are distin-
guished by their ‘field’ values. We propose a new keyword for Alloy, uniq, from
which such generator axioms (and their associated equality predicates) can be
automatically synthesized. This keyword makes it clearer and easier for the user
to specify their intent and facilitates the staging techniques.

The main direction for future scalability is to incorporate symmetry breaking.
Currently turning off symmetry breaking results in spurious counter-examples
for ∀∃ queries. Future usability and expressiveness enhancements could be made
by relaxing some of the restrictions currently in place on appended facts and
signature declarations using the uniq keyword.
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Domain-Specific Visualization of Alloy Instances

Löıc Gammaitoni and Pierre Kelsen

University of Luxembourg, Luxembourg

Motivation. Alloy is a modelling language based on first order logic and re-
lational calculus combining the precision of formal specifications with powerful
automatic analysis features [4]. The automatic analysis is done by the Alloy
Analyzer, a tool capable of finding instances for given Alloy models in a finite
domain space using SAT solving.

The utility of this instance finding mechanism relies on the small scope hy-
pothesis that claims that many design errors can be detected in small model
instances. Those design errors can be identified by evaluating expressions in the
instances generated, but also through the direct visualization of those instances.
In the latter case, the intuitiveness and expressiveness of the instance visualiza-
tion play a key role in efficiently diagnosing the validity of an instance.

The current visualizations offered by the Alloy Analyzer produce visual dia-
grams that are close to the structure of instances. These low level visualizations
become difficult to read when instances become more complex.

To highlight this issue, let us consider the formalisation of a Finite State Ma-
chine (FSM). Figure 1 is the visualization of an FSM instance provided by the
Alloy Analyzer (using magic layout), while fig. 2 is an intuitive domain-specific
visualization produced by Lightning[1], a tool implementing the approach de-
scribed in this paper.

Fig. 1. Visualization of an FSM instance as given by the Alloy Analyzer

Approach Overview. In order to clearly frame the set of possible visualiza-
tions definable using our approach, we designed a Visual Language Model (VLM)
as generic as possible in Alloy, such that a large variety of domain specific visu-
alizations can be supported. The work in [3] explains how such a visual language
can be defined. This VLM contains basic visual elements such as shapes and
text which can be composed or related to each other via connectors and can be
arranged through the definition of layouts.

The visualization of instances for a given Alloy model m is defined as a model
transformation from m to VLM. We define this transformation through a set of

Y. Ait Ameur and K.-D. Schewe (Eds.): ABZ 2014, LNCS 8477, pp. 324–327, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Fig. 2. Instance depicted in fig. 1 visualized using Lightning

mappings and constraints, all expressed in Alloy. Those relations and constraints
enforce that any instance of the transformation contains an instance of m as
well as its corresponding VLM instance. The VLM instance contained in the
transformation instance can be interpreted and rendered accordingly. In fig. 3
we provide an overview of this approach. We call m2VLM the Alloy module
containing the transformation specification.

Fig. 3. Overview of our approach for visualizing an Alloy model m

This whole process is implemented by the Lightning tool[1].

Transformations. A transformation is composed of backbone mappings and
constraints. Each mapping composing the backbone of the transformation is
expressed via binary relations as illustrated in fig. 4.

Guard predicates, one per backbone mapping, are used to define the condition
under which a given element of the input model has an image via the backbone
mapping (fig. 5).
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1 one sig Bridge{

2 map1: State one -> lone ELLIPSE,

3 map2: End one -> one DOUBLE_ELLIPSE,

4 map3: Transition lone -> one CONNECTOR,

5 map4: Start lone -> one CONNECTOR,

6 map5: State one -> one TEXT

7 }

Fig. 4. Backbone mappings of the FSM2VLM transformation

1 pred in_map1(s:State){

2 // all the state except the end state are to be represented by an ellipse (map1)

3 s in State - End

4 }

Fig. 5. Example of guard for mapping map1

The way the image of a given element is integrated in the result of the trans-
formation is defined through constraints. Those constraints are rules which have
the particularity to be interpretable (they can be viewed as imperative assign-
ments or calls, rather than declarative constraints). We give an example of such
rules in fig.6

1 pred prop_map4(t:Transition , c:CONNECTOR){

2 // color of the connector is black

3 c.color=BLACK

4 // connector source point to the visual element representing t.source

5 c.source=Bridge.(map1+map2)[t.source]

6 // connector target point to the visual element representing t.target

7 c.target= Bridge.(map1+map2)[t.target]

8 // the connector is labelled according to the trigger of the transition.

9 c.connectorLabel[0]=t.trigger

10 }

Fig. 6. Example of rules for mapping map4

From Analysis to Interpretation. We can use the Alloy Analyzer to generate
the VLM instance from a given m-instance. This is done by promoting a given m-
instance into an Alloy model and then solving the transformation model together
with this promoted instance. Unfortunately this approach is not really practical
because the analysis itself may be quite time consuming, being based on SAT
solving.

In recent work [2], we discuss the use of functional Alloy modules to improve
the performance of the Alloy analysis of functional transformations. In particu-
lar, we show for this case study (FSM2VLM) that the time needed to generated
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an instance of this transformation is much lower when using interpretation than
when using analysis. As it is reasonable to assume that each instance of a given
module m should have exactly one corresponding visualization, we can consider
the transformation defined to achieve such a visualization as a function. Visual-
izations can thus be defined by a functional module.

Besides making the computation of the visualization really fast, the use of
functional modules relieves us of another limitation induced of the Alloy an-
alyzer: scope calculation. The determination of a small scope is important in
order to limit the running time of the analyzer. Interpreting Alloy modules via
functional modules rather than analyzing them makes scope determination un-
necessary.

Conclusion. In this paper we have presented an approach to define intuitive
visualizations for Alloy instances. The approach uses Alloy itself to define a visual
model and a transformation from the input instance to this visual instance. We
use the recently introduced notion of functional modules to make our approach
practical: rather than performing SAT solving to obtain the visual instance,
we interpret the input instance and the transformation specification to directly
compute the visual instance.

In the future, we plan further investigation on the use of Alloy to define
different aspects of modelling languages (semantics, full concrete syntax), as well
as combinations of those aspects (e.g., visualization of semantics). The ultimate
goal is to develop a language workbench based on Alloy.
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Abstract. Software product line (SPL) engineering involves the model-
ing, analysis, and configuration of variability-rich systems. We improve
the performance of the multi-objective optimization of SPLs in Alloy by
several orders of magnitude with two techniques.

First, we rewrite the model to remove binary relations that map to
integers, which enables removing most of the integer atoms from the uni-
verse. SPL models often require using large bitwidths, hence the number
of integer atoms in the universe can be orders of magnitude more than the
other atoms. In our approach, the tuples for these integer-valued relations
are computed outside the sat solver before returning the solution to the
user. Second, we add a checkpointing facility to Kodkod, which allows
the multi-objective optimization algorithm to reuse previously computed
internal sat solver state, after backtracking.

Together these result in orders of magnitude improvement in using
Alloy as a multi-objective optimization tool for software product lines.

Keywords: Product Lines, Multi-objective Optimization, Kodkod,
Alloy.

1 Introduction

Alloy is used for a wide variety of purposes, from analyzing software designs
to checking protocols to generating test inputs and beyond. Recently, there has
been some interest in using Alloy for design exploration or product configura-
tion [11,13]. These specifications often involve constraints on sums of integers (or
other arithmetic expressions). For example, there might be a restriction on the
total weight of a car, or on the disk footprint of a configured operating system
kernel. Sometimes the user wishes to not only compute a viable product con-
figuration, but an optimal one [11], often in the presence of multiple conflicting
objectives.

These specifications often require solving with fairly large bitwidths, to sup-
port large metric values. In the general case, where the specification involves
arbitrary constraints over relations containing integers, Alloy needs to create an
atom for every integer in the bitwidth. At higher bitwidths the number of integer
atoms dominate the number of other atoms, affecting solving time.
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1 one sig Car {
2 e : Engine,
3 f : Frame,
4 w : Int,
5 }{
6 w = (e.x).plus[f.x]
7 w < 9
8 }

9

10 abstract sig Part { x : Int }
11 abstract sig Engine extends Part {}
12 one sig Petrol extends Engine {}{ x = 3 }
13 one sig Diesel extends Engine {}{ x = 4 }
14 abstract sig Frame extends Part {}
15 one sig Aluminum extends Frame {}{ x = 5 }
16 one sig Steel extends Frame {}{ x = 6 }

Fig. 1. An example design exploration model. The goal is to choose components (engine
and frame) for a car design according to some constraints (total weight < 9).

We observe that SPL specifications are not completely arbitrary, but usu-
ally associate equality constraints with each integer-valued relation (e.g., lines
12,13,15,16 of Fig. 1). We use these equality constraints to rewrite other parts
of the specification that refer to these integer-valued relations. If the rewritten
specification meets certain conditions (see Section 2), then most integer atoms
can be removed, thus producing much smaller sat formulas. After solving, we
use the equality constraints and the solution to the modified specification to
produce a model of the original specification.

The approach we use for multi-objective optimization, called the guided im-
provement algorithm [13], requires many calls to Kodkod, first by adding con-
straints to find optimal solutions, and then backtracking. We have enhanced
Kodkod to allow the removal of constraints following a stack discipline. (Note
that Kodkod 2.0 already supports incremental addition of constraints.)

Together, these two enhancements to the Alloy toolchain result in several
orders of magnitude improvement for performing multi-objective optimization
of SPLs. We experienced an average of over 200X speedup on our experiments.

We focus on multi-objective optimization (MOO) on software product lines
(SPLs) for our experiments. The goal of SPL engineering is to facilitate the
modeling and analysis of variability-rich systems [3,12]. These systems are typi-
cally represented as feature models : concise tree-like structures, whose products
are valid configurations of the system [7]. Features may additionally contain
attributes, indicating the effect of a feature on the overall quality of a product.

A natural analysis on attributed feature models is to identify optimal products
with respect to the set of quality attributes. There may be many products that
are considered optimal, particularly when conflicting objectives exist (e.g., low
cost vs. high performance). In such a case we say a product is Pareto optimal if
increasing its value in some objective decreases its value in another. The goal of
MOO is to discover all Pareto optimal solutions.

In this paper we work with a version of Alloy extended [11] with partial
instances [10] and the guided improvement algorithm (GIA), an exact algorithm
for MOO (see [13] for a full description). ClaferMOO [11] – an extension to
Clafer [1] for MOO of attributed feature models – has been built using the GIA.
We use a set of ClaferMOO specifications to evaluate our tool in Section 4.
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(a) Original Spec.

1 one sig Car {
2 e : Engine,
3 f : Frame,
4 w : Int
5 }{
6 w = (e.x).plus[f.x]
7 w < 9
8 } ...

(c) Final Soln.

e = Petrol
f = Aluminum
w = 8

Alloy

Splitter

(b) Complete Universe

−16, −15, ..., 14, 15
Car
Petrol, Diesel
Aluminum, Steel

Kodkod

(e) Minimized Spec.

1 one sig Car {
2 e : Engine,
3 f : Frame,
4 }{
5 (e.x).plus[f.x] < 9
6 } ...

(d) Minimal Univ.

3, 4, 5, 6
Car
Petrol, Diesel
Aluminum, Steel

(f) Arithmetic Equality Constraints

6 Car.w = (e.x).plus[f.x]

CalculatorKodkod

(g) Partial Soln.

e = Petrol
f = Aluminum

Fig. 2. Contrast of a standard Alloy run (above the dotted line) and our approach
(below). The example model here is abridged from Fig. 1.

2 Eliding Integer Relations and Atoms

Fig. 2 contrasts the standard Alloy approach (above the dotted-line), and our
approach to eliding integer relations and atoms through substitutions (below
the dotted-line). Normally, Alloy generates the complete universe (Fig. 2b) and
Kodkod specification, after which Kodkod produces our final solution (Fig. 2c).

First we divide the integer relations into dependent and independent (de-
noted Splitter). Integer-valued relations are identified as independent if they are
bound to constants through equality constraints. Dependent integer relations
are defined by an expression involving independent relations (e.g., w in Fig. 1).
Standard substitution techniques are used to remove dependent relations (Fig.
2e), however the equality constraints are retained (Fig. 2f). Integer atoms that
are not explicitly named as constants in the specification may also be elided (Fig.
2d, see conditions below). A solution to the modified specification elicits values
for independent relations (Fig. 2g). Dependent integer relations are computed
from the retained equality constraints and the partial solution (Fig. 2c).

Conditions for when substitutions can be performed and relations can be elided:
1. The candidates for dependent integer-valued relations are functional (i.e.,

one-multiplicity in Alloy) binary relations that map atoms to integers.
2. If the dependent relations depend on each other (and not just the indepen-

dent relations), then they must do so according to some partial order.
3. The equality constraints must occur in top-level conjuncts, inside a single

universal (all) quantifier. Alloy’s appended facts meet this criteria.
4. The equality constraints must name just the dependent relation on one side

or the other. (This constraints could be relaxed in future.)
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5. If there exists multiple constraints on the same dependent variable, e.g., w =
expr1 and w = expr2, we remove both but add the constraint expr1 = expr2.

Conditions for when integer atoms can be elided from the universe:
1. All dependent integer-valued relations must be elided.
2. There can be no quantification over the integers (e.g., {all x : Int | p(x)}).

3 Checkpointing

The GIA works through repeated calls to the solver, and then backtracking
to find other Pareto optimal points. When backtracking, constraints must be
removed in order to find new points. Checkpointing allows us to revert to a
previously saved state of the solver, without discarding all of the work that the
solver has performed. Removal of constraints can be achieved by checkpointing
before every constraint addition and reverting at a later time to remove that
constraint. In the case of the GIA, it is not necessary that we be able to remove
arbitrary constraints from the problem. It suffices to checkpoint after finding
each starting point before we begin the drive to the Pareto front. This allows us
to return to a solver state that only contains the problem constraints and the ex-
clusion constraints specified by the previously found Pareto optimal points. We
can then begin our search for a new starting point by adding the exclusion con-
straints from the last Pareto optimal point. To test the performance benefits of
adding checkpointing support to Kodkod on the guided improvement algorithm,
we have added the required support to version 2.2.0 of the MiniSat solver. This
implementation simply creates a copy of the entire MiniSat solver object and
stores it on a checkpoint stack. While simple, it is sufficient to show the benefits
of checkpointing as a concept.

4 Evaluation

Our evaluation was over a set of 93 variants of nine MOO-specifications of SPLs,1

compiled for work in [11], and originally described in [4,14,15,16]. Each variant
specification modifies the original by adding additional objectives and/or adjust-
ing attribute values. The number of objectives ranges from one to seven.

Table 1 summarizes the speedup produced by just checkpointing, just the re-
ductions (which include both formula changes and universe reductions), and their
combination. Both techniques always result in some speedup in all experiments.
Their combination results in an average speedup of over 200X, ranging from 20X
to almost 1500X. Fig. 3 gives a graphical view of the data underlying the sum-
mary in Table 1. The x axis contains an entry for each of the 93 multi-objective
product line specifications, ordered by their baseline solving time.

1 The product line specifications can be found at: https://github.com/TeamAmalgam/
test-models/tree/f348271b005ee7d4929f73846e6ad8c4a19e0bd4/spl .

https://github.com/TeamAmalgam/test-models/tree/f348271b005ee7d4929f73846e6ad8c4a19e0bd4/spl
https://github.com/TeamAmalgam/test-models/tree/f348271b005ee7d4929f73846e6ad8c4a19e0bd4/spl
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Table 1. Summary of speedups obtained on a 3.4GHz quad-core Intel i7, 16 GB RAM,
64-bit Ubuntu 12.04, Java SE 64-bit 1.7.0.12. GIA ‘magnifying glass’ turned off.

Min Max Mean Median Std. Dev.

Baseline 2473 ms 3,515,676 ms 145,523 ms 15,800 ms 449758

Checkpointing 1.32 X 19.23 X 2.53 X 2.57 X 1.75
Reductions 13.25 X 1014.93 X 161.70 X 193.52 X 104.09
Combined 22.81 X 1458.82 X 221.02 X 276.18 X 134.23
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Fig. 3. Solving times of 93 multi-object product line models. Each point on the x axis
represents a different model. The models are ordered by their baseline solving time.

5 Related Work

A variety of researchers have used equality constraints to rewrite formulas for im-
proved performance. The idea is perhaps as old as the Knuth-Bendix completion
algorithm [8]. In recent years the idea has been used in a number of smt solvers
[2,5,17,6] and bounded model checkers [9]. For example, stp [6] is intended to
solve constraints generated from the static analysis of software that makes use
of arrays. stp uses rewriting to reduce these constraints into a form suitable for
a sat solver. In addition, solvers such as Z3 [17] support checkpointing as well.

In our work the efficiency gains come more from reducing the size of the
universe than from the rewriting per se: the rewriting is a transformation that
enables the universe size reduction. Smaller universes correspond to smaller sat
formulas with faster solving times.

6 Conclusions

For Alloy specifications that characterize multi-objective product lines, rewrit-
ing based on equality constraints facilitates the elision of both integer-valued
relations and integer atoms. This elision results in an average speedup of over
150X. Further, adding checkpointing to the underlying sat solver results in a
2X speedup. The combined speedup is over 200X.
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