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Abstract. In this work, we have developed a new observation model for a
stereo-based simultaneous localization and mapping (SLAM) system within the
standard Extended-Kalman filter (EKF) framework. The observation model
was derived by using the inverse depth parameterization as the landmark
model, and contributes to both bearing and range information into the EKF
estimation. In this way the inherently non-linear problem cause by the camera
projection equations is resolved and real depth uncertainty distribution of
landmarks features can be accurately estimated. The system was tested by real-
world large-scale outdoor data. Analysis results show that the landmark feature
depth estimation is more stable and the uncertainty noise converges faster than
the binocular stereo-based approach. We also found minor drift in the vehicle
pose estimation even after extended periods demonstrating the effectiveness of
the new model.
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Inverse depth parameterization � Stereo observation model � Extended Kalman
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1 Introduction

Over the past years, Simultaneous Localization and Mapping (SLAM) has received
extensive research interest because it serves as a basic methodology for robots moving
autonomously in an unknown environment. Current methods of SLAM have found to
achieve accurate mapping for extended periods of time especially by using laser
sensor with well bounded result for both indoor and outdoor environments [1].

Since vision systems have properties of being low cost, lightweight and contain
rich information when compared to traditional robotic sensors, like laser scanners or
sonars, vision-based systems are employed in a wide range of robotic applications.
These applications include object recognition, obstacle avoidance, navigation, topo-
logical global localization and, more recently, in simultaneous localization and
mapping, which in this case is the so-called visual SLAM.
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One can distinguish visual SLAM as either monocular or binocular approaches.
The first remarkable work in monocular visual SLAM was done by Davison et al. [2],
in which a single camera is used under the Extended Kalman filtering (EKF)
framework. Since camera is a bearing-only sensor, crucial limitation of monocular
SLAM is the unobservability of the scale, and this cause the scale of the map to slowly
drift in large environment. On the other hand, stereo vision systems are often applied
in which the absolute measurement of 3D space, especially the feature depths, can be
directly estimated to avoid the scale ambiguity.

In stereo systems, the observation pair (u1, v1, d) contains both bearing and range
information, where (u1, v1) is the left image coordinate and di is the disparity. By
projecting this observation pair through the pinhole model one can get the 3D
Euclidean XYZ position of landmark relative to the camera [3]. Many stereo SLAM
systems, including indoor and outdoor, build the map using the 3D Euclidean rep-
resentation for landmark model [3–6].

Standard pinhole model projection equations used in the vision systems with EKF
framework suffers from nonlinearity [7, 8]. Due to this nonlinearity, the true uncer-
tainty of 3D Euclidean XYZ landmark can be modeled by Gaussian only for nearby
features. However, true distributions of faraway features are non-Gaussian, which
makes the EKF filter estimation inconsistent [9]. Other work also tried using UKF
(Unscented Kalman Filter) for a stereo system on an unmanned aerial vehicle [10] to
solve the nonlinearity issue, but a better way is to find a landmark model that has a
high degree of linearity. Therefore, Montiel et al. [11] proposed an inverse depth
parameterization to represent the landmark model. The key concept is to parameterize
the inverse depth of features relative to the camera locations from which they were
first viewed directly. This way of parameterization would achieve a high degree of
linearity, and furthermore, the features are initialized with no delay and can suc-
cessfully estimate for both near and distant features.

The drawback of inverse depth parameterization is that the 6-D state vector rep-
resentation is computational intensive. Therefore, Civera et al. [12] proposed a line-
arity index, that inverse depth representation can be safely converted to Euclidean
XYZ form; once the depth estimate of a feature has converged. The speed of con-
vergence therefore is important.

The most closely related work is by Paz et al. [13], in which they proposed a
binocular stereo-based EKF SLAM. They combine both the inverse depth parame-
terization and Euclidean XYZ parameterization in the map, which alleviate the
nonlinearity issue effectively. The system can map both near and far features with
proper uncertainty distribution, and it can be used in large-scale outdoor environment.

However, the observation model in previous studies is bearing-only. When a 3D
feature is acquired simultaneously by left and right camera images, the stereo system
are treated as two bearing-only observers. In each instance, EKF update is done once
for left and right camera without using any range information. Thus, range informa-
tion such as disparity does not directly contribution to camera poses and map spatial
location estimation. In contrast we wish to incorporate not just bearing but also range
information.
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In this research, we want to focus on using EKF to solve the stereo-based SLAM
problem. It is essential to find an appropriate probabilistic models for observations of a
stereo camera that is still consistent to the linear property. Thus, our contribution is to
derive a new stereo observation model that incorporates the inverse depth parame-
terization with observation pair (u1, v1, d). In this way, both range and bearing
information can be directly injected into the EKF estimation process to handling the
nonlinear projection issue. In order to develop the new observation model, two Jac-
obians needs to be derived for the EKF framework. The first instance is in the feature
initialization step and the second instance is in the feature prediction step. Based on
our knowledge this is the first time this observation model is proposed in the stereo-
based EKF SLAM.

2 Stereo-Based EKF SLAM System Models

2.1 State Vector Definition

Following the standard EKF-based approach of SLAM, the system state vector x
consists the current estimated pose of camera and physical location of features. x will
change in size dynamically as features are added to or deleted from the map.

x ¼ ðxC; y1; . . .yi; . . .ynÞ
T ð1Þ

The camera state XC is composed by the position rWC with respect to a world
reference frame W, and qWC quaternion for orientation, and linear and angular
velocity vW and xC relative to world frame W and camera frame C, respectively.

xC ¼ ð rWC qWC vW xC ÞT ð2Þ

The feature yi is defined by the inverse depth parameterization [11] using a 6-D
state vector:

yi¼ xiyizihi/iqið ÞT ð3Þ

The yi vector encodes the ray from the first camera position from feature observed
by xi, yi, zi, the camera optical center, and hi; /i azimuth and elevation (coded in the
world frame) defining unit directional vector m hi;/ið Þ. The feature point’s depth
along the ray di is encoded by its inverse qi ¼ 1=di.

yi models a three-dimensional point located at
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2.2 Motion Model

The motion model in this work describes an ego motion with 6 DOF. The camera
orientation is represented in terms of quaternions, which can deal with the issue of
gimbal lock in Euler angles. It is assumed to be both in constant velocity and angular

velocity with a zero-mean Gaussian acceleration noise n ¼ aW aC
� �T

uncertainty.

At each step, there is an impulse of linear velocity VW ¼ aWDt and angular velocity
XC ¼ aCDt, with zero mean and known Gaussian distribution.
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where q xC
k þ XC

� �
Dt

� �
is the quaternion defined by the rotation vector xC

k þ XC
� �

Dt.

2.3 Stereo Observation Model

In this work, we define a new nonlinear function h(XC, yi), which allows the pre-
diction of the value of observations measurement bzi given the current estimatiom
camera pose xC and the ith feature yi in the map. The observation model can be written
in a general form as:

bzi ¼
uli

vli

di

2
4

3
5 ¼ h xC; yið Þ þ wuividi

ð7Þ

The vector bzi is a observation of the feature yi relative to the camera pose xC,
where wuividi

is a vector of uncorrelated observation errors with zero mean Gaussian
noise and covariance matrix Ruividi

.
The observation model can be divided in three steps. In step 1, through inverse

depth parameterization, feature yi is transformed to Euclidean XYZ landmark repre-
sentation with respect to the world reference frame W:
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In step 2, Euclidean XYZ is transformed into camera reference frame C, while
plugging into xC camera pose:

hC ¼
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Next, using the typical pinhole camera model [3], we will project this 3D position
hC to its expected image coordinates and compute its expected disparity in the new
view:

bzi ¼
buli

bvlibdi

2
4

3
5 ¼

hC

x

hC

z

f þ Cx

hC

y

hC

z

f þ Cy

fb
hC

z

2
666664

3
777775

ð10Þ

where CxCYð Þ are the camera center in pixels, f is the focal length, b the baseline of
stereo.

3 The Estimation Process of Stereo-Based EKF SLAM

3.1 The Prediction Step

In the prediction stage, the camera motion model Eq. (6) is used to produce a state
prediction from the previous state. Since the camera motion model only propagates
the pose of previous state, we leave the map states unchanged:

x kþ 1jkð Þ ¼ fv xC kjkð Þ; nð Þ ð11Þ

In the prediction of covariance, state-augmentation methods [14] is used, which
results in an optimal SLAM estimate with reduced computation from cubic com-
plexity to linear complexity, and has the form:

P kþ 1jkð Þ ¼ FPxx kjkð ÞFT þ GQkGT ð12Þ

where F ¼ ofv

oxC
is the Jacobian of fvðÞ evaluated at the estimate xC kjkð Þ,Qkthe Gaussian

noise covariance and G ¼ ofv

on is the Jacobian of fvðÞ evaluated with the noise n.

3.2 The Update Step

In the update step, an observation ziðk þ 1Þ ¼ uli; vli; dið Þ of the ith feature will be
available. Stereo observation model Eq. (7) is used to form an observation prediction
bzi k þ 1jkð Þ and innovation viðk þ 1Þ

bzi kþ 1jkð Þ ¼ h xC kþ 1jkð Þ; yi kjkð Þð Þ ð13Þ

vi kþ 1ð Þ ¼ zi kþ 1ð Þ � bzi kþ 1jkð Þ ð14Þ

and then, one can calculate the innovation covariance matrix:

Si kþ 1ð Þ ¼ HP kþ 1jkð ÞHT þ Ruividi
ðkþ 1Þ ð15Þ
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where H is the Jacobian of h :ð Þ evaluated at xC kþ 1jkð Þ and yi kjkð Þ, and the Kalman
gain Ki kþ 1ð Þ can be obtained as

Ki kþ 1ð Þ ¼ P kþ 1jkð ÞHT þ Si kþ 1ð Þ�1 ð16Þ

The observation matrix ziðkþ 1Þ is used to update the predictions and form a new
estimation of the state by using the standard EKF update equations:

x kþ 1jkþ 1ð Þ ¼ x kþ 1jkð Þ þ Ki kþ 1ð Þvi kþ 1ð Þ ð17Þ

P kþ 1jkþ 1ð Þ ¼ P kþ 1jkð Þ � Ki kþ 1ð ÞHP kþ 1jkð Þ ð18Þ

The main focus here is the innovation viðkþ 1Þ (14), which represents the dif-
ference between the actual sensor measurement ziðkþ 1Þ and the predicted mea-
surement zi kþ 1jkð Þ, both containing range and bearing information. It means that
when multiplying innovation with Kalman gain Ki kþ 1ð Þ, both bearing and range
information optimize the state estimation directly

3.3 Landmark Initialization

The initialization process includes both the feature state initial values and the
covariance assignment. Therefore we use inverse depth parameterization to represent
features initial values, and derived the feature initialization model,

g rWC
kþ1jkþ1ð Þ; q

WC
kþ1jkþ1ð Þ; zi kþ1jkþ1ð Þ

� �
to describe the initial values in terms of current

camera pose rWC
kþ1jkþ1ð Þ, qWC

kþ1jkþ1ð Þ and a new sensor observation pair

zi kþ1jkþ1ð Þ ¼ uli; vli; dið Þ

yi ¼ g rWC
kþ1jkþ1ð Þ; q

WC
kþ1jkþ1ð Þ; zi kþ1jkþ1ð Þ

� �
¼ xiyizihi /i qið ÞT ð19Þ

The end-point of the projection ray is taken from the camera location estimate:

xiyizið ÞT¼ rWC
kþ1jkþ1ð Þ ð20Þ

The feature spatial location vector (in the camera reference frame) is computed

from the observation pair zi ¼ ulivlidið ÞT, by rearranging stereo observation model
Eq. (10), we have

hC ¼
uli � Cxð Þ b

di

vli � CYð Þ b
di

fb
di

0
BB@

1
CCA ð21Þ

where ulivlið Þ are the pixels on the left image, and di is the horizontal disparity.
The inverse depth prior qi can be computed from hC
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qi ¼
1

hC
�� �� ð22Þ

Using the current camera orientation estimation from the state vector, hC can be
transformed to the world reference frame and the azimuth and elevation angles are
extracted as:

hW ¼ RWCðqWC
kþ1jkþ1ð ÞÞhC ð23Þ

hi
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� �
¼

arc tanðhW
x ; h

W
z Þ

arc tan �hW
y ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hW

x þ hW2

z

q� �
0
@

1
A ð24Þ

The newly initialized feature yi ¼ xiyizihi/iqið ÞT is added to the state vector
x kþ 1jkþ 1ð Þ.

In order to model the uncertainty of the newly initialized feature, we derived the
Jacobian matrix of the functions in (19), using a first-order error propagation to
approximate the distribution of the variables in (19) as multivariate Gaussians. The
covariance matrix of newly feature is:

Pyiyi
k + 1jk + 1ð Þ ¼ JxcPxxJT

xc þ JRRJT
R ð25Þ

R includes ru; rv; rd, which represents the pixel uncertainties in image ulivlið Þ
location and disparity di . In our experiments, we use ru ¼ 1 pixel ;
rv ¼ 1 pixel; rd ¼ 1 pixel. Since R is the error covariance describing the noisy
measurements of the stereo system, the uncertainty through JR is propagated to the
newly feature yi of landmark model space. JR is the Jacobian of g :ð Þ which is derived
by the observation pair zi. Pxx is the camera pose covariance matrix, representing
current pose estimation uncertainty. This uncertainty through Jxc is propagated to the
newly feature yi of landmark model space. Jxc is the Jacobian of g :ð Þ which is
derivative by rWC

kþ1jkþ1ð Þ; q
WC
kþ1jkþ1ð Þ.

4 Experimental Results

4.1 Analysis of Landmark Uncertainty

In order to validate that our proposed observation model describes the uncertainty of
3D points accurately, we have simulated an experiment where the true uncertainty of
the landmark location (derived from a Monte Carlo simulation) is compared to the
estimated uncertainty from Eq. (25) and the traditional Euclidean XYZ landmark
model.

The actual intrinsic parameters of the stereo camera, such as the baseline, are
accounted in the simulation. The origin of the left camera is set as the reference frame,
with the principal axis pointing to Z and X axis pointing to the right.

Consider a landmark point in front of the left camera that is at 70 m distance along
the Z axis, a Monte Carlo simulation has been performed by drawing a set of 10,000

346 Y.-C. Chen et al.



samples from the Gaussians distributions of uli, vli, and di (assuming a standard
deviation of ru ¼ rv ¼ 1 and rd ¼ 2 pixels, respectively), and by projecting them
through Eq. (21), yielding a set of 10,000 samples of the landmark 3D position (X Y
Z). In Fig. 1 (Left), the black sample points show the true measurement uncertainty
from stereo systems, green point shows the real position of the landmark point. Next,
the estimated uncertainty is calculated using first-order error propagation based on our
observation model Eq. (25), shown by the enclosing red lines. The traditional
Euclidean XYZ model is shown by the enclosing blue lines. One can see that the red
lines enclose the true uncertainty noise, while blue lines do not. In Fig. 1 (Right),
histogram is used to show the uncertainty distribution. Gray rectangles show the true
uncertainty of the landmark location, red rectangles show our proposed observation
model uncertainty, and blue indicates the traditional Euclidean XYZ model. The red
rectangles have more closely covered the true gray rectangles distribution.

In Fig. 2(a), (b), (c), black sample points indicates the real distributions with
various distances, using 15 m, 30 m, 45 m respectively, and the red points shows the
real position of the landmark point. The estimated uncertainty is calculated using first-
order error propagation using our observation model, shown by blue enclosing lines.
One can see that for any distance close or far, the uncertainty region estimated by our
model accurately bounds the true uncertainty.

From the simulation result, we shown that the measure error can be accurately
estimated basing on our proposed observation model, which will help the EKF filter
estimation to be consistent and avoid filter divergence.

4.2 Real World Experiments

4.2.1 Dataset and Feature Points Matching
All experiments are verified by using the Karlsruhe dataset [15], a real-world, large-
scale, grayscale stereo sequences. Odometry data is available from OXTS RT
3000 GPS/IMU system. An experimental vehicle is equipped with a stereo camera rig

Fig. 1. (Left) The black point clouds represent the true uncertainty which are samples of
distribution of a real landmark point position, given that the pixel noise in the images is
Gaussian. Red line enclosed regions represent the estimated uncertainty using our proposed
observation model. Blue line enclosed regions represent the estimated uncertainty using the
traditional Euclidean XYZ model. (Right) The histogram is used to show the uncertainty
distribution, gray rectangles show the true uncertainty of the landmark location, red rectangles
show the estimated uncertainty using our proposed observation model, and blue indicates the
traditional Euclidean XYZ model. Our model describes true noise distribution more accurately.
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Pointgrey Flea2 firewire cameras covering inner city traffic. All the frames are rec-
tified with a resolution of 1344 9 391 pixels running at 10 fps. In our experiment we
set the left image frame as the reference coordinate system. Our algorithm is imple-
mented by LabVIEW on an Intel Core i5 with 1.7 GHz and 4 GB RAM computer.

In order to obtain the matching stereo observation pairs, stereo points matching
based on LIBVISO2 [16], an open-source library is used to demonstrate real-time
computation of point feature match of left and right images. The matching stereo pairs
are done only in the first frame for initialization.

We use a different method to track the initialized points in the subsequent frames.
When each stereo observation pair is initialized and saved in the map, it also save
corresponding 11 9 11 surrounding patch, which serves as a photometric identifier.
When the next image comes, the saved pairs in 3D space are projected back to image
plane. The pairs are deleted if it is outside the visible field of view of left and right
images. If they are within the field of view, we use active search concept to decide the
searching region, in which the region size is determined by the EKF innovation
covariance. The corresponding patch of the features first will be warped according to
the predicted camera motion, and then normalized cross-correlation is performed in
the searching region to find the matching point, for details see [17].

4.3 Analysis of Features Location Estimation and Stability

In this part of the experiment, we want to compare the two monocular observers based
visual SLAM systems and our proposed stereo observer based visual SLAM systems
with regard to the accuracy of landmark features spatial location estimation.

We used a subset of the Karlsruhe dataset, the 2009_09_08_drive_0010 from
frame 61 to frame 72. The scenario is that the vehicle is moving forward on the road,
and then turns right. The features are initialized first in frame 61 (Fig. 3 Left), and
then were continuously tracked until frame 72 (Fig. 3 Right). Therefore the camera

(a) (b) (c)

Fig. 2. Simulated experiment of a point reconstruction from a stereo pair observation for a
point at (a) 15 m, (b) 30 m, (c) 45 m distance. The point clouds are samples of distribution of a
real landmark point position, given that the pixel noise in the images is Gaussian. The black
sample points show the distribution. Blue line enclosed regions represent the estimated
uncertainty using our proposed observation model (color figure online).

348 Y.-C. Chen et al.



poses and features locations were updated 10 times. We recorded every state vector
and covariance matrix along the way, and select a near (number 7) and far (number 0)
feature point for analysis.

In Fig. 4 (Left) and (Right) each time the feature updates its depth uncertainty, no
matter the feature is either far or near, it can be seen that our proposed method depth
and uncertainty converge faster.

Figure 5 (Left) and (Right) shows the raw measurement of each feature’s depth
(green points), and the depth estimation. The blue points shows the two monocular
observers based visual SLAM systems estimation result, and the red points shows the
stereo observer based visual SLAM systems estimation result.

From Fig. 5 it shows that our proposed method estimation is more stable, therefore
the curve is smoother. Also after 10 updates, the estimation result is also closer to the
mean values of raw measurement. After 10 updates, only the estimation of near
feature is closer to the raw measurement mean values, Fig. 5 (Left), while the features
far away cannot get close to the raw measurement mean values Fig. 5 (Right).

Fig. 3. (Left) At frame 60 features are initialized. (Right) At frame 70, features tracking result.

Fig. 4. (Left) Depth uncertainty of feature number 7, over 10 times EKF updates, (Right) depth
uncertainty of feature number 0, over 10 times EKF updates.

Fig. 5. (Left) The depth estimated value of feature number 7 (close by), over 10 times EKF
updates, (Right) the depth estimated value of feature number 0 (far away), over 10 times EKF
updates. The proposed model (red line) is more stable and closer to raw measurement mean
(color figure online).
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4.4 Motion Estimate Results

To evaluate how the capability of the proposed algorithm can correctly estimate the
camera pose and velocity in a large-scale environment after extended periods of time,
we use one of the Karlsruhe dataset, the 2009_09_08_drive_0015 images. Within the
dataset we pick out 800 stereo frames, with a total length of the route approximately
350 m. These images are sequential scenes of inner city urban driving, including two
wide angle turns.

Figure 6 depicts the trajectory estimated by our visual SLAM algorithm (in red)
and ‘groundtruth’ output of a OXTS RT 3003 GPS/IMU system (in green). Note that
the GPS/IMU system can only be considered as ’weak’ groundtruth [16], because
localization errors of up to two meters may occur in inner-city scenarios due to limited
satellite availability. Thus instead, LIBVISO2 [16] visual odometry (in black) is
argued to be a better groundthruth. As we can see, our proposed model estimated
trajectory is quite close to the ’groundtruth’.

From Fig. 6, because the car at frame 250 made a negative x-directional turn, yaw
angle started to increase drastically. This cause the forward velocity Vz to decrease
drastically, while the negative x-direction Vx started to increase. Afterward at frame
600, both Vz and Vx started to decrease, and then at frame 650 the car turns toward
the z-axis direction, making the yaw decreases. Finally the car continues toward the z-
axis direction while Vz velocity started to increase.

From the experimental result, we can see that the proposed algorithm can be used
in large-scale outdoor scenario, that the car pose and velocity can be decently esti-
mated quite well, close to the groundtruth.

5 Conclusions and Future Works

The focus of this work was to develop a new probabilistic observation model in EKF-
based stereo SLAM. The statistical behavior in stereo vision is known to have
inherently non-linear problem. Therefore, we use inverse depth parameterization as

Fig. 6. (Left) Depicts the trajectory estimated by our visual SLAM algorithm (red) and the
trajectory using the OXTS RT 3003 GPS/IMU system provided by the Karlsruhe dataset.
(Right) The progression of vehicle orientation and velocity, estimated by our visual SLAM
algorithm. Our proposed method has estimated well in large-scale scenario (color figure online).
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the landmark model to deal with the non-linear problem, and in contrast to the bin-
ocular stereo-based approach, we used stereo observation pair (u, v, d) to derive a new
observation model, allowing both bearing and range information to be incorporated
into the EKF estimation process. Furthermore, our new observation model is also
computationally faster than the previously mentioned binocular stereo-based
approach. In our approach, we only have to do projection and update in the EKF
framework once, in contrast to the binocular approach which requires projection and
update two times each. Moreover, because update step requires inverse of large
innovation matrix, doing update step twice would be computationally intensive in
large-scale SLAM. Based on our knowledge this is the first time this observation
model with inverse depth parameterization is proposed in the stereo-based EKF
SLAM.

From our experiments, it shows that even in large-scale outdoor environment,
there is only a little ‘scale drift’, which means that our observation model together
with inverse depth parameterization has kept true to the real noise distribution of the
landmark feature. This also means the proposed observation models that is designed
with the additional range information has helped and worked consistently under the
strict requirement of EKF framework. We also demonstrated that the proposed system
has converged faster and has more stable depth estimation from experiment data.
These convergence and stableness characteristics will be critical to our future work.
For future work we want to develop moving objects detection along with static map
into a nice single EKF framework.
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