
Motion Planning and Decision Making for
Underwater Vehicles Operating in

Constrained Environments in the Littoral

Erion Plaku1(B) and James McMahon1,2

1 Department of Electrical Engineering and Computer Science,
Catholic University of America, Washington, DC 20064, USA

plaku@cua.edu
2 U.S. Naval Research Laboratory, Washington, DC 20375, USA

Abstract. This paper seeks to enhance the mission and motion-
planning capabilities of autonomous underwater vehicles (AUVs) oper-
ating in constrained environments in the littoral zone. The proposed
approach automatically plans low-cost, collision-free, and dynamically-
feasible motions that enable an AUV to carry out missions expressed as
formulas in temporal logic. The key aspect of the proposed approach is its
use of roadmap abstractions in configuration space to guide the expan-
sion of a tree of feasible motions in the state space. This makes it possible
to effectively deal with challenges imposed by the vehicle dynamics and
the need to operate in the littoral zone, which is characterized by con-
fined waterways, shallow water, complex ocean floor topography, varying
currents, and miscellaneous obstacles. Experiments with accurate AUV
models carrying out different missions show considerable improvements
over related work in reducing both the running time and solution costs.

1 Introduction

As maritime operations shift from deep waters to the littoral, it becomes increas-
ingly important to enhance the mission and motion-planning capabilities of
AUVs. Operating in the littoral brings new challenges which are not adequately
addressed by existing approaches. As the littoral is characterized by highly-
trafficked zones, the AUV must operate near the ocean floor in order to avoid
collisions with medium- to small-sized ships. Operations are further complicated
when tankers are present, which often cause large drafts, or when fishing vessels
are trawling, which could cause the AUV to get entangled. Additional compli-
cations arise from boulders, wreckage, and other objects found at the bottom of
the ocean, sudden changes in elevation of the ocean floor, and varying ocean cur-
rents associated with tides and weather patterns. Dealing with these challenges
requires efficient motion-planning approaches that take into account the vehicle
dynamics and quickly plan feasible motions that enable the AUV to operate
close to the ocean floor while avoiding collisions.

The demand to enhance the capabilities of AUVs operating in the littoral
becomes more pressing when coupled with critical missions, such as monitoring

A. Natraj et al. (Eds.): TAROS 2013, LNAI 8069, pp. 328–339, 2014.
DOI: 10.1007/978-3-662-43645-5 36, c© Springer-Verlag Berlin Heidelberg 2014

Motion Planning and Decision Making for Underwater Vehicles Operating 329

harbors or searching for mines and other objects of interest. AUV operations,
however, are currently limited to simple missions given in terms of following a
set of predefined waypoints or covering an area of interest by following specific
motion patterns. Conventional approaches to motion planning for AUVs based
on potential fields, numeric optimizations, A*, or genetic algorithms [1–5] have
generally focused on largely unobstructed and flat environments where dynamics
and collision avoidance do not present significant problems. As a result, while
conventional approaches are able to plan optimal paths in 2D environments, they
become inefficient when dealing with the challenges arising from dynamics and
the need to operate close to the ocean floor in constrained 3D environments. The
restrictions to follow predefined waypoints or motion patterns and to operate in
essentially flat environments greatly limits the feasibility of such approaches
being used for complex missions in constrained 3D environments.

To enhance the mission and motion-planning capabilities of AUVs, this paper
develops an approach that makes it possible to express maritime operations in
Linear Temporal Logic (LTL) and automatically plan collision-free and
dynamically-feasible motions to carry out such missions. As missions are charac-
terized by events occurring across a time span, LTL allows for the combination of
these events with logical (∧ and, ∨ or, ¬ not) and temporal operators (� always,
♦ eventually, ∪ until, © next). As an illustration, the mission of inspecting sev-
eral areas of interest while avoiding collisions can be expressed in LTL as

�πsafe ∧ ♦πA1 ∧ . . . ∧ ♦πAn
, (1)

where πsafe denotes the proposition “no collisions” and πAi
denotes “searched

area Ai.” As another example, searching A1 or A2 before A3 or A4 is written as

�πsafe ∧ ((¬πA3 ∧ ¬πA4) ∪ ((πA1 ∨ πA2) ∧ ©(πA3 ∨ πA4))) . (2)

The expressive power of LTL makes it possible to consider sophisticated mis-
sions, making planning even more challenging. Motions need to be coupled with
decision making to determine the best course of action to accomplish a given
mission. The discrete aspects, which relate to determining the propositions that
need to be satisfied to obtain a discrete solution, are intertwined with the contin-
uous aspects, which need to plan collision-free and dynamically-feasible motions
in order to implement the discrete solutions.

As a result, approaches that compute discrete solutions without taking into
account the intertwined dependencies with the continuous aspects have been lim-
ited in scope and capability [6,7]. Such approaches rely on the limiting assump-
tion that a motion controller would be available to implement any discrete solu-
tion. However, due to dynamics, obstacles, complex ocean floor topography, and
drift caused by currents, only some discrete solutions could be feasible. Indeed,
determining which discrete solutions are feasible is one of the major challenges
when dealing with the combined planning problem. As a result of such strong
requirement on the availability of motion controllers to implement any discrete
solution the applicability of these approaches is limited to 2D environments, disk
robot shapes, low-dimensional state spaces, and simplified dynamics.

330 E. Plaku and J. McMahon

To address the challenges imposed by the intertwined dependencies of the
discrete and continuous aspects of the combined planning problem, the pro-
posed approach simultaneously conducts the search in the discrete space of
LTL sequences and the continuous space of feasible motions. The proposed
approach builds on our recent framework [8,9], which combined discrete search
with sampling-based motion planning to compute collision-free and dynamically-
feasible trajectories that satisfy LTL specifications.

The proposed approach significantly enhances our previous framework [8,9]
by (i) improving the computational efficiency; (ii) generating lower cost solu-
tions; and (iii) enhancing the application from ground vehicles to AUVs, taking
into account drift caused by ocean currents and complex ocean floor topogra-
phy. A key aspect of the technical contribution is the introduction of roadmap
abstractions in configuration space to guide a sampling-based exploration of the
state space. The roadmap is constructed by sampling collision-free configurations
and connecting neighboring configurations with simple collision-free paths. The
roadmap represents solutions to a simplified motion-planning problem that does
not take into account the vehicle dynamics. These solutions are converted into
heuristic costs and heuristic paths to guide sampling-based motion planning as
it expands a tree of feasible motions in the state space, taking into account the
vehicle dynamics, drift caused by ocean currents, and collision avoidance. The
roadmap abstraction also facilitates the decision-making mechanism by provid-
ing estimates on the feasibility of reaching intermediate goals as part of the over-
all mission specified by the LTL formula. Simulation experiments with accurate
AUV models carrying out different missions show considerable improvements
over related work in reducing both the running time and solution costs.

2 Problem Formulation

AUV Simulator: This paper uses the MOOS-IvP framework [10], which pro-
vides a 3D AUV simulator that accurately models the vehicle dynamics. The
simulator propagates the dynamics based on a set of control inputs and external
drift forces caused by the ocean currents, i.e., snew ← simulator(s, u, drift, dt),
where snew is the new state obtained by applying the control input u and the
external forces drift to the current state s and propagating the dynamics for dt
time steps. The MOOS-IvP vehicle model has a state space which consists of
the vehicles position and orientation, the actuator values (thrust, rudder, ele-
vator), and the vehicle dynamics (speed, depth rate, buoyancy rate, turn rate,
acceleration, etc.). The model represents a second-order dynamical system that
has been tested in many applications and shown to be robust and accurate [10].

From Co-Safe LTL to Finite Automata: As mentioned, LTL formulas are
composed by combining propositions with logical (∧ and, ∨ or, ¬ not) and
temporal operators (� always, ♦ eventually, ∪ until, © next). The temporal
semantics are as follows: �φ indicates that φ is always true; ♦φ indicates that

Motion Planning and Decision Making for Underwater Vehicles Operating 331

φ will eventually be true; φ ∪ ψ indicates that φ will be true until ψ becomes
true; ©φ indicates that φ will become true in the next time step.

Since LTL planning is PSPACE-complete [11], as in prior work [8,9], this
paper considers co-safe LTL, which is satisfied by finite sequences. Co-safe LTL
formulas are converted into Deterministic Finite Automata (DFA) [12], which is
more amenable for computation. Figure 1 shows an example.

Fig. 1. The mission “visit any two of the areas p1, p2, p3, p4” encoded as a finite automa-
ton and as a co-safe LTL formula

∨
i�=j(♦pi ∧ ♦pj)

Let Π denote the set of propositions. A DFA is a tuple A = (Z,Q, δ, zinit,Accept),
where Z is a finite set of states, Q = 2Π is the input alphabet corresponding
to the discrete space, δ : Z × Q → Z is the transition function, zinit ∈ Z is the
initial state, and Accept ⊆ Z is the set of accepting states.

To facilitate presentation, let A([qi]
n
i=1 , z) denote the state obtained by run-

ning A on [qi]ni=1, qi ∈ Q, starting from the state z. Then, [qi]ni=1 is accepted iff
A([qi]

n
i=1 , zinit) ∈ Accept. Moreover, let Reject denote the states that cannot reach

an accepting state. Let δ(z) denote all the non-rejecting states connected by a
single transition from z, i.e., δ(z) = {δ(z, q) : q ∈ Q}−Reject. Let props(zfrom, zto)
denote all the propositions πi1 , . . . , πik labeling the transition from zfrom to zto.
As an example, referring to Fig. 1, props(4, 6) = {p1, p2, p3}.

Discrete Semantics in the Continuous State Space: The semantics of a
proposition π ∈ Π is defined over the continuous state space S by a function
holdsπ : S → {true, false}, which indicates if a continuous state satisfies π.
This interpretation provides a mapping from S to Q, i.e.,

qstate(s) = {π : π ∈ Π ∧ holdsπ(s) = true}.

Moreover, as the continuous state changes according to a trajectory ζ : [0, T] →
S, parametrized by time, the discrete state qstate(ζ(t)) may also change. In this
way, ζ maps to a sequence of discrete states, qstates(ζ) = [qi]ni=1, qi
= qi+1. As a
result, ζ satisfies a specification given by A iff A accepts qstates(ζ).

The objective is then to compute a dynamically-feasible trajectory ζ : [0, T] →
S that enables the AUV to carry out the mission, i.e., A accepts qstates(ζ), while
avoiding collisions and operating close to the ocean floor.

332 E. Plaku and J. McMahon

3 Method

3.1 Roadmap Abstraction

The approach uses solutions to a simplified version of the problem which ignores
the vehicle dynamics to guide the overall search. The vehicle motions in this
simplified version are defined over the vehicle’s configuration space, denoted as
C, which accounts for translations and rotations, but not for velocities, acceler-
ations, curvature, and other constraints related to dynamics.

Roadmap Construction: Motivated by the success of the Probabilistic
RoadMap (PRM) [13] in dealing with motion-planning problems in configura-
tion spaces, the proposed approach constructs a roadmap RM = (VRM , ERM)
to capture the connectivity of the free configuration space. The roadmap is con-
structed by sampling collision-free configurations and connecting neighboring
configurations via local paths, where a distance metric ρ : C × C → R≥0 defines
the distance between two configurations. Any PRM variant [13–15] can be used
for the roadmap construction. Since the roadmap will be used to define heuristic
costs based on shortest paths it is important to allow cycles during roadmap
construction. Since C is of lower dimensionality than S and the motions are less
constrained in C, the roadmap construction takes only a fraction of the overall
running time.

Implicit Partition of the State Space Induced by the Roadmap: The
roadmap and the distance metric ρ induce an implicit partition of S into equiv-
alence classes where roadmap configurations act as centers of Voronoi sites. In
particular, let cfg(s) ∈ C denote the configuration corresponding to s ∈ S. For
example, cfg(s) could correspond to position and orientation. The state s is then
associated with the configuration c ∈ VRM closest to cfg(s) according to ρ, i.e.,

NearestCfgRM(s) = arg min
c∈VRM

ρ(cfg(s), c).

This partition, as described later in the section, is particularly useful when deter-
mining the region from which to expand the search in the state space S.

Mapping Roadmap Configurations to Propositions: Each configuration
c ∈ VRM is mapped to a discrete state based on the propositions it satisfies, i.e.,

qstate(c) = {π : π ∈ Π ∧ holdsπ(c) = true}.

The inverse map from propositions to configurations is defined as

cfgs(π) = {c : c ∈ VRM ∧ holdsπ(c) = true}.

Additional sampling may take place during roadmap construction to ensure
cfgs(π) is nonempty. Based on the problem under consideration, it may be easier
to sample directly from the regions associated with the propositions. For exam-
ple, propositions in the experiments in this paper correspond to areas of interest
in the environment. As such, a configuration can be generated by sampling a
position inside the area and then a random orientation.

Motion Planning and Decision Making for Underwater Vehicles Operating 333

Heuristic Costs Based on Shortest Paths: The roadmap is used to define
heuristic costs of the form hcost(c, πi1 , . . . , πik) as the length of the shortest
path from c to a roadmap configuration c′ satisfying one of the propositions
πi1 , . . . , πik , i.e., c′ ∈ ∪k

j=1cfgs(πij). This heuristic cost serves as an estimate on
the difficulty of expanding the motion tree T from tree vertices associated with
the Voronoi site defined by c to reach states that satisfy one of the propositions
πi1 , . . . , πik . Dijkstra’s shortest-path algorithm is used for the computation of
the heuristic cost, where ρ(ci, cj) defines the weight of an edge (ci, cj) ∈ ERM .

3.2 Overall Search

The roadmap abstraction in conjunction with the automaton A guides the search
in S. A tree data structure T is used as the basis for conducting the search in S.
The tree starts at the initial state sinit and is incrementally expanded by adding
new collision-free and dynamically-feasible trajectories as branches.

The tree vertices are partitioned according to their corresponding automaton
states. More specifically, let traj(v) denote the trajectory obtained by concatenat-
ing the trajectories associated with the edges connecting the root of T to v. The
vertex v keeps track of the automaton state obtained by running qstates(traj(v))
on A, denoted as astate(v). The computation of astate(v) is done incrementally
when checking for collisions the trajectory from the parent of v to v, as described
in Sect. 3.2. The partition induced by A is then defined as

TreeVertices(z) = {v : v ∈ T ∧ z ∈ Z ∧ z = astate(v)}.

To speed up computation, the approach keeps track of the automaton states
reached by T , referred to as active automaton states and defined as

ActiveAStates = {z : z ∈ Z ∧ |TreeVertices(z)| > 0}.

A solution is obtained if T reaches an accepting automaton states, i.e.,
ActiveAStates ∩ Accept
= ∅. The search proceeds incrementally at each itera-
tion as follows:

1. an automaton state zfrom is selected from ActiveAStates;
2. an automaton state zto is selected from δ(zfrom);
3. attempts are made to expand T from TreeVertices(zfrom) toward zto.

These steps are repeated until a solution is obtained or an upper bound on
computational time is exceeded. A description of each of these steps follows.

Selecting Automaton States: The selection of zfrom from ActiveAStates deter-
mines the tree vertices from which to expand the search. Since the overall objec-
tive is to compute a trajectory that reaches an accepting automaton state,
the selection is biased toward states that are close to an accepting state, i.e.,
prob(zfrom) = 2−d(zfrom)/

∑
z′∈ActiveAStates 2−d(z′), where d(z) denotes the mini-

mum number of transitions to reach an accepting state in A from z.

334 E. Plaku and J. McMahon

The selection of zto aims to promote expansion toward unreached automaton
states (|TreeVertices(zto)| = 0) in order to explore new regions. Similar to the
bias in the selection of zfrom, preference is given to those unreached automaton
states that are close to accepting states. Taking these into account, zto is selected
from the neighbors of zfrom according to the probability distribution prob(zto) =
2−d(zto)/

∑
z′∈δ(zfrom)−ActiveAStates 2−d(z′).

TreeExpansion: The tree expansion fromTreeVertices(zfrom) adds new collision-
free and dynamically-feasible trajectories aiming to reach zto. Since zto ∈ δ(zfrom)
the automaton transition from zfrom to zto determines the propositions that need
to be satisfied in order to reach zto, which, as described in Sect. 2, are denoted as
props(zfrom, zto). Recalling again the example in Fig. 1, the automaton state z6 can
be reached from z4 by satisfying one of the propositions p1, p2, p3. Then, the objec-
tive is to expand TreeVertices(zfrom) towards states s ∈ S such that holdsπ(s) =
true for some π ∈ props(zfrom, zto).

In this way, the expansion from TreeVertices(zfrom) toward zto gives rise to a
motion-planning problem. The roadmap abstraction is used to effectively guide
the tree expansion. To speed up computation, TreeVertices(z) are further grouped
according to the nearest configuration in the roadmap RM , i.e.,

TreeVertices(z, c) = {v : v ∈ TreeVertices(z) ∧ c = NearestCfgRM(sstate(v))},

where sstate(v) denotes the state in S associated with v. The approach also keeps
track of all the active roadmap configurations, i.e.,

ActiveCfgs(z) = {c : c ∈ VRM ∧ |TreeVertices(z, c)| > 0}.

From an implementation perspective, each time a vertex v is added to T , it
is also added to the corresponding TreeVertices(z, c). Moreover, c is added to
ActiveCfgs(z) if not already there.

The tree expansion proceeds incrementally for several iterations. During each
iteration, a roadmap configuration c is selected from ActiveCfgs(zfrom). The selec-
tion is based on hcost(c, π1, . . . , πk) where {π1, . . . , πk} = props(zfrom, zto). In
particular, the procedure selects the configuration c in ActiveCfgs(zfrom) with
the lowest hcost(c, π1, . . . , πk). As described in Sect. 3.1, hcost(c, π1, . . . , πk) is
initially computed as the length of the shortest-path in the roadmap from c
to a configuration satisfying one of the propositions π1, . . . , πk. As such, the
selection strategy provides a greedy component necessary to effectively expand
the search toward zto. To balance the greedy exploitation with methodical explo-
ration, hcost(c, π1, . . . , πk) is increased after each selection. Increasing the heuris-
tic cost, for example, by doubling it, promotes selection of other configurations
in future iterations. In this way, the tree expansion has the flexibility to make
rapid progress toward zto while effectively discovering new ways to reach it. A
hash map keep tracks of the heuristic costs using 〈c, π1, . . . , πk〉 as keys.

After selecting c from ActiveCfgs(zfrom), a vertex v is selected from vertices
in TreeVertices(zfrom, c). A simple strategy that has worked well in practice is
to select v at random. A collision-free and dynamically-feasible trajectory is

Motion Planning and Decision Making for Underwater Vehicles Operating 335

then obtained by applying control inputs for several time steps starting from
sstate(v) and running the AUV simulator to obtain the new state. The approach
uses motion controllers to generate the control inputs. In particular, PID con-
trollers are used to adjust the heading and steer the AUV toward selected target
positions. To expand the search toward zto, the target is often selected near con-
figurations associated with the roadmap path from c to configurations satisfying
propositions in props(zfrom, zto). At other times, the target is selected uniformly
at random from the entire workspace to expand the search along new directions.
After selecting the target position, the PID controllers are invoked until the tra-
jectory comes close to the target, a collision is found, or a maximum number
of steps is exceeded. Intermediate states along the generated trajectory and the
final state are added to T . Bookkeeping information is updated accordingly.

4 Experiments and Results

The approach is tested on a simulated environment using an accurate and robust
AUV simulator, as described in Sect. 2. Several LTL formulas are used to specify
different missions.

4.1 Experimental Setup

Ocean Floor: A simulated ocean floor map is created by adding random peaks.
A uniform grid is imposed over (x, y) and the center of each peak is sampled
at random. The height of each grid cell is determined based on the distance to
the closest peak. The height map is then converted to a triangular mesh. As
shown in Fig. 2, this setting provides a challenging environment due to changes
in topography. In the experiments, the dimensions of the grid are set to 1.5 km×
1.5 km, which correspond to realistic settings for AUV missions.

The AUV is 4.93m long and has a diameter of 0.53m. The AUV moves at a
maximum speed of 1.5m/s. The AUV is restricted to an altitude of 2m to 8m
from the ocean floor. Operation this close to the ocean floor is required in order
to provide high quality acoustic bathymetric data along with detecting objects
of interest. The environment is populated with 100 obstacles placed at random
positions to test the ability of the approach to avoid collisions.

Ocean Currents: The drift caused by ocean currents is modeled as vector
fields. The drift magnitude becomes smaller as the depth increases since the
ocean currents are stronger closer to the surface. For the experiments, we used
publicly-available data from the National Data Buoy Center [16] describing the
ocean currents for the Chesapeake Bay Channel (see Fig. 3(a)). From this data,
the vector field was extracted and then scaled to match the area dimensions used
in the experiments (see Fig. 3(b)).

LTL Mission Specifications: Each area of interest Ai defines a proposition
πi. The function holdsπi

(s) is true iff the AUV is in area Ai when its state is s.

336 E. Plaku and J. McMahon

Fig. 2. One of the environments used in the experiments. The ocean floor and the
obstacles are shown in gold. The areas of interest are shown as red boxes. The AUV in
its initial state is shown in red. A zoomed-in illustration is shown below the environment
(Color figure online).

An area Ai is defined as a box, placed at random inside the test environment.
The inspection mission, which requires the AUV to visit each area of interest, is
defined by the following LTL formula:

φ1 =
n∧

i=1

♦πAi
.

Note that the mission specification leaves it up to the approach to determine an
appropriate order in which to visit the areas. Experiments were also conducted
with a mission that requires visiting the areas of interest in a predefined order
A1, . . . , An. This mission, referred to as “sequencing,” is given by

φ2 = β∪(πA1 ∧((πA1 ∨β)∪(πA2 ∧(. . . (πAn−1 ∨β)∪πAn
)))), where β = ∧n

i=1¬πAi
.

Computational Time and Normalized Solution Cost: Due to the prob-
abilistic nature of sampling-based motion planning, results are based on 30 dif-
ferent runs for each problem instance. The five worst and the five best runs are
discarded to avoid the influence of outliers. Results report on average computa-
tional time and normalized solution costs. Standard deviations are also included
as bars in the plots. To understand how good a trajectory cost is, we normal-
ize it with respect to the cost of the shortest-path in the roadmap abstraction
from config(sinit) that satisfies the LTL mission specification. Such shortest path
is computed by running the graph search over the product graph formed by
combining the roadmap with the automaton [9]. The roadmap cost provides a
lower bound as it is over the configuration space and does not take dynamics
into account. Experiments are run on an Intel Core i7 machine (CPU: 1.90 GHz,
RAM: 4 GB) using Ubuntu 12.10. Code is compiled with GNU g++-4.7.2.

Motion Planning and Decision Making for Underwater Vehicles Operating 337

Fig. 3. (left) Ocean currents for the Chesapeake Bay Channel. Data obtained from
National Data Buoy Center [16]. (right) Current field with the missing data filled in
and scaled to fit each area used in the experiments. See Sect. 4.1 for more details.

4.2 Results

The proposed approach is compared to our prior framework [8]. Figure 4 sum-
marizes the results when varying the number n of areas of interest.

Results show considerable improvements both in reducing the running time
and the solution cost. The approach in prior work has difficulty solving the prob-
lem instances as n is increased. In contrast, the proposed approach effectively
solves the problem instances. Prior work relies on a workspace decomposition
to guide the tree expansion, which, as the problems become more challenging,
can lead the exploration along infeasible discrete paths. The lead will eventually
be corrected, but it may take the approach in considerable time to do so and
find other more feasible leads. In contrast, the proposed approach relies on a
roadmap abstraction to capture the connectivity of the free configuration space,
which more effectively guides the tree expansion in the state space.

The results show that in addition to computational time the proposed app-
roach effectively computes low-cost, dynamically-feasible, solution trajectories.
The costs of these solutions are comparable to those obtained by the roadmap
abstraction, which provides a lower bound as it is over the configuration space
and does not account for the motion dynamics (recall that the plots show the
normalized solution cost over the roadmap abstraction solution cost). By using
the roadmap abstraction as a guide, and the expansion heuristics, the proposed
approach is able to effectively find low-cost solutions.

5 Discussion

This paper focused on enhancing the mission and motion-planning capabili-
ties of AUVs operating in the littoral zone, which is characterized by confined
waterways, shallow waters, complex ocean floor topography, varying currents,
and miscellaneous obstacles. The proposed approach can take into account mar-
itime operations expressed in LTL and automatically plans collision-free and
dynamically-feasible motions to carry out such missions. The key aspect of the

338 E. Plaku and J. McMahon

 0

 3

 6

 9

 12

 15

 1 2 3 4 5 6

tim
e

[s]

nr. of areas of interest

prior work
new

 0

 3

 6

 9

 12

 15

 1 2 3 4 5 6

tim
e

[s]

nr. of areas of interest

prior work
new

(a) task φ1: “all” (b) task φ2: “sequencing”

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

no
rm

ali
ze

d
so

lut
ion

 co
st

nr. of areas of interest

prior work
new

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

no
rm

ali
ze

d
so

lut
ion

 co
st

nr. of areas of interest

prior work
new

Fig. 4. Results when comparing the proposed approach (labeled as new) to prior work
[8]. Bars indicate one standard deviation. A missing data point in the graph indicates
the method timed out before obtaining a solution. Results include the time to construct
the DFAs from the LTL formulas (in the order of milliseconds). For the proposed
approach, results also include the time to construct the roadmap abstraction, which
took between 0.1 s–0.4 s. Solution costs are normalized with respect to those obtained
by the roadmap abstraction, which provides a lower bound as it is over the configuration
space and does not take the vehicle dynamics into account.

approach is the introduction of roadmap abstractions to capture the connec-
tivity of the free configuration space and, in conjunction with an automaton
representing the LTL formula, to effectively guide the expansion of a tree of
feasible motions in the state space.

In future work, we plan to enhance the approach so that it can be applied
to real AUVs operating in the littoral. This would require adaptations to fit a
replanning framework, building the map from sensory information, and quickly
responding to unanticipated obstacles, changes in elevation, or other events.

Acknowledgment. The work of J. McMahon is supported by the Office of Naval
Research, code 32.

Motion Planning and Decision Making for Underwater Vehicles Operating 339

References

1. Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., Lane, D.: Path planning
for autonomous underwater vehicles. IEEE Trans. Robot. 23(2), 331–341 (2007)

2. Alvarez, A., Caiti, A., Onken, R.: Evolutionary path planning for autonomous
underwater vehicles in a variable ocean. IEEE J. Oceanic Eng. 29(2), 418–429
(2004)

3. Soulignac, M.: Feasible and optimal path planning in strong current fields. IEEE
Trans. Robot. 27(1), 89–98 (2011)

4. Yilmaz, N.K., Evangelinos, C., Lermusiaux, P., Patrikalakis, N.M.: Path planning
of autonomous underwater vehicles for adaptive sampling using mixed integer lin-
ear programming. IEEE J. Oceanic Eng. 33(4), 522–537 (2008)

5. Ho, C., Mora, A., Saripalli, S.: An evaluation of sampling path strategies for an
autonomous underwater vehicle. In: IEEE International Conference on Robotics
and Automation, pp. 5328–5333 (2012)

6. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion
planning for dynamic mobile robots. Automatica 45(2), 343–352 (2009)

7. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from
temporal logic specifications. IEEE Trans. Robot. 26(1), 48–61 (2010)

8. Plaku, E.: Planning in discrete and continuous spaces: from LTL tasks to robot
motions. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C.,
Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS, vol.
7429, pp. 331–342. Springer, Heidelberg (2012)

9. Plaku, E.: Path planning with probabilistic roadmaps and linear temporal logic.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vil-
amoura, Algarve, Portugal, pp. 2269–2275 (2012)

10. Benjamin, M.R., Schmidt, H., Newman, P.M., Leonard, J.J.: Nested autonomy for
unmanned marine vehicles with MOOS-IvP. J. Field Robot. 27(6), 834–875 (2010)

11. Sistla, A.: Safety, liveness and fairness in temporal logic. Form. Asp. Comput. 6,
495–511 (1994)

12. Kupferman, O., Vardi, M.: Model checking of safety properties. Form. Methods
Syst. Des. 19(3), 291–314 (2001)

13. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Autom. 12(4), 566–580 (1996)

14. Yeh, H.Y., Thomas, S., Eppstein, D., Amato, N.M.: UOBPRM: a uniformly distrib-
uted obstacle-based PRM. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2655–2662, Vilamoura, Algarve, Portugal (2012)

15. Hsu, D., Latombe, J.C., Kurniawati, H.: On the probabilistic foundations of prob-
abilistic roadmap planning. Int. J. Robot. Res. 25(7), 627–643 (2006)

16. National Data Buoy Center.: NOAA HF radar national server and architecture
project. http://www.ndbc.noaa.gov/

http://www.ndbc.noaa.gov/

	Motion Planning and Decision Making for Underwater Vehicles Operating in Constrained Environments in the Littoral
	1 Introduction
	2 Problem Formulation
	3 Method
	3.1 Roadmap Abstraction
	3.2 Overall Search

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Results

	5 Discussion
	References

