
Realtime Simulation-in-the-Loop Control
for Agile Ground Vehicles

Nima Keivan(B) and Gabe Sibley

George Washington University, Washington, DC 20052, USA
{nimski,gsibley}@gwu.edu

Abstract. In this paper we present a system for real-time control of
agile ground vehicles operating in rough 3D terrain replete with bumps,
berms, loop-the-loops, skidding, banked-turns and large jumps. The pro-
posed approach fuses local-planning and feedback trajectory-tracking in
a unified, simulation-based framework that operates in real-time. Experi-
mentally we find that fast physical simulation-in-the-loop enables impres-
sive control over difficult 3D terrain. The success of the proposed method
can be attributed to the fact that it takes advantage of the full expres-
siveness of the inherently non-linear, terrain-dependent, highly dynamic
systems involved. Performance is experimentally validated in a motion
capture lab on a high-speed non-holonomic vehicle navigating a 3D map
provided by an offline perception system.

1 Introduction

We present a unified approach to both planning and control that leverages accu-
rate physical simulation to perform both tasks jointly and in real-time. Physical
simulation is beneficial because it can model not only complex vehicle dynamics,
but also vehicle-terrain interaction. For instance, simulation can include complex

Fig. 1. Long jump and loop-the-loop experiment. A feasible trajectory is first solved
through waypoints using a boundary value solver on a 3D scanned terrain model (right).
The trajectory is then tracked and executed by the real-time feedback controller (left).

A. Natraj et al. (Eds.): TAROS 2013, LNAI 8069, pp. 276–287, 2014.
DOI: 10.1007/978-3-662-43645-5 29, c© Springer-Verlag Berlin Heidelberg 2014



Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles 277

3D surface models, varying friction models, realistic contact models – indeed
anything deemed necessary to more faithfully predict reality. Our approach is
based on the insight that if simulation is sufficiently fast and accurate, it can be
used to predict system state farther into the future. This allows us to servo on
errors between desired future performance and simulated future performance.
One may think of this as closing the loop using an accurate, long-range process
model (Fig. 1).

For both feasible trajectory-generation and feedback-control we employ an
optimization-based boundary-value solver. The solver takes as input a starting
configuration, a terrain model, and a goal. The goal can be either a waypoint
or a desired trajectory. The aim is to find a command sequence, c(p), that will
drive, in simulation and in reality, the vehicle from the start to the goal, over
the intervening terrain. The command sequence itself is a low-degree-of-freedom
generator parameterized by p, such as a polynomial, spline, etc. The solver is
used to find the parameters that yield a desired command sequence. We find
that this approach allows accurate real-time planning and control in full 3D
environments, with complex vehicle dynamics and terrain interaction, including
slipping, jumping and driving upside-down.

The use of motion primitives [17] and stochastic search methods such as RRT
and RRT* [12,13] and probabilistic methods such as PRMs [2,4] and POMDPs
have resulted in algorithms that successfully navigate complex obstacle fields
even in higher order configuration space. A major advantage of these methods
is that they can employ nonlinear dynamics models thereby enabling physi-
cally accurate planning in complex environments without approximation or lin-
earization. However, this advantage comes at a performance price as stochastic
methods invariably sample infeasible trajectories. Conversely, optimization based
methods [10] employ effective initial guesses and numerical or analytical opti-
mization techniques to rapidly converge on optimal paths. However due to the
reliance on the accuracy of the initial guess, these methods are susceptible to
failure or suboptimal performance depending on the quality of this guess. The
quality, optimality and methodology of the plans notwithstanding, their open
loop performance in real robots is inevitably impaired by the existence of imper-
fections or extraneous inputs that may not have been included in the dynamics
model. Therefore for real-life applications, some form of closed loop control is
desired.

In contrast to simulation-in-the-loop or model-predictive control, traditional
feedback systems use static and/or dynamic feedback of the state to deter-
mine the controls for the next time steps. To aid stability analysis, traditional
approaches also typically model the system with simplified, analytically treat-
able, vehicle models. Recent developments have resulted in methods allowing the
calculation of Lyapunov functions for nonlinear systems [11] and defining graphs
of Lyapunov-stable regions around states as in the case of LQR-Trees [20]. These
methods rely on the linearization of the state transfer function in order to obtain
analytically tractable control policies, and the automatic recovery of stability
regions. Linearized time-varying systems often entail substantial gain-tuning,



278 N. Keivan and G. Sibley

which is known to be an arduous and time consuming process, especially due
to their non-intuitive nature [6]. In contrast, with simulation-in-the-loop based
approaches, we find that it is possible to automatically learn physically mean-
ingful parameters that lead directly to improved system performance – that is,
learning to make simulation match reality.

Recent developments in model predictive control (MPC) [9] and learning-
based model predictive control (LBMPC) [3] both implement model-based con-
trol schemes and infer the underlying model parameters. Likewise, our system
relies on accurate models of the physical parameters that define the system. In
our case, these models are learned beforehand using online non-linear regression
[15]. We find that expressive models learned via online regression are advanta-
geous as they allow accurate simulation, farther into the future, over difficult
and challenging terrain.

2 Methodology

The proposed approach relies on simulating the effect of applying a sequence
of linear and angular velocity commands which are defined by a low-degree of
freedom control-function, c (p). Feasible trajectories are generated by solving a
boundary value problem for the parameterized control function that links two
waypoints – i.e., the command sequence that will move the car between these two
waypoints. To control the vehicle we repeatedly minimize the difference between
a forward-simulated vehicle and the desired trajectory. This approach leverages
accurate simulation of the vehicle and terrain dynamics at the expense of a
model which is not analytically differentiable. Therefore, in order to generate
a control law to optimize either the boundary or the trajectory cost, we will
rely on finite-difference estimations of the gradient of the vehicle model, in a
least-squares optimization setting.

Fig. 2. (a) Planning to a waypoint: eb is the boundary residual between a trajectory
and the waypoint xf . (b) Trajectory tracking: et is the trajectory residual calculated
between the simulation Ψ and the reference trajectory over a finite horizon tl. Control
delay compensation is shown where the delay is td (For more refer to Sect. 2.3).



Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles 279

2.1 Optimization

The boundary error as shown in Fig. 2a, is used when planning feasible trajec-
tories between waypoints and is formulated as:

eb =
∥
∥xlf � Ψl (c (p),xi, tf )

∥
∥
2

We define the function Ψl (c,xi, tf ) as representing the numeric simulation,
where c (p) is the control function defined by parameters p, xi is the starting
state, and tf is the time instant for which we desire the state of the vehicle. Ψl

returns the state φltf =
[
Tlv v

]

where v ∈ R
3 is the velocity vector in local

coordinates and Tlv ∈ R
4×4 is the transformation matrix from vehicle to the

local coordinates. The local coordinates are defined by the average of the initial
and final waypoint terrain normals. xf =

[
Tlv v

]

is the desired state at the
end of the trajectory in local coordinates, set by a waypoint. The optimization
minimizes the weighted square norm of the error vector by varying the parameter
vector p, and consequently the control function that drives the vehicle forward
in time. The operator � calculates the velocity and se (3) pose error between
two vehicle states.

The trajectory cost is shown in Fig. 2b and is used to track a reference tra-
jectory. The error vector is taken between samples on the simulated trajectory
(defined by Ψl) and a finite horizon over the reference trajectory, X = {x0...xn}:

et =
∥
∥
∑n

j=0 wjxlj � Ψl (c,xi, tj) + tf
∥
∥
2

Where tl is the duration of the finite horizon and is included in the error to
favor time optimal solutions, that is the optimization will search for the shortest
path that converges to the trajectory being tracked. This error is a weighted
average between the reference trajectory set X and the simulated trajectory
given by Ψ . The weighting imposed by the set W = {w0...wn} ,

∑ W = 1 is
required to ensure more importance is placed at the end of the trajectory rather
than the beginning, since due to the non-holonomic constraints, the initial cost
cannot be minimized. In our implementation, a simple linear weighting scheme
was used from the beginning to the end of the trajectory.

The optimization attempts to minimize the error vector by the weighted
least squares optimization

(

JT WJ
)

p = JT Wr where W is a diagonal matrix of
weights for each individual row of the error vector and r is the error vector. The
weight matrix is required as we are optimizing cartesian poses, angles and veloci-
ties in the same vector, and a rational weighting scheme based on the importance
of the relative units is required for efficient optimization. These weights can also
reflect the fact that certain degrees of freedom are more important to minimize
than others (i.e. in-plane yaw, vs. pitch and roll).

The Jacobian is defined as J = ∂e/∂p. Due to the inclusion of the simulation
function Ψ in the error vector, the Jacobian cannot be evaluated analytically
and must be obtained through finite differences. In order to obtain real-time
performance, we calculate the Jacobian via a multi-threaded simulation scheme,
whereby each column of the Jacobian (which corresponds to an evaluation of the



280 N. Keivan and G. Sibley

simulation function Ψ) is undertaken in a separate thread. Due to the extreme
nonlinearity caused by the terrain, a parallelized trust region damping scheme
is used.

In the trajectory cost function, we have used the set X to represent the
reference trajectory. The duration of this set, denoted as tl, represents the finite
horizon for which we optimize when tracking a feasible trajectory. As time itself
is a cost in the optimization and tl is allowed to change (due to the change in xf ),
the solutions will favor time-optimal trajectories, if they can be planned without
increasing the trajectory cost. The choice of initial tl however, has an impact on
convergence. If tl is too small, there will be insufficient time and space for the
vehicle to be able to close the gap on the trajectory. In the pathological case,
this can lead to a local minimum whereby tl cannot be incrementally increased
by the optimization, and convergence will fail. Conversely, if tl is set too large,
there may be insufficient expressivity in the command sequence to solve solutions
that adhere to the reference trajectory. This problem has been studied in the
literature and heuristics-based methods exist to find the optimal finite horizon
[8]. In our solution, we have experimentally determined tl = 0.4s as a suitable
horizon duration to initialize the solution. The optimization will then attempt
to reduce (and may potentially increase) the finite horizon time.

2.2 Control Parametrization

Our vehicle model is controlled via steering and acceleration commands. As
stated previously, we are interested in a low degree of freedom control function,
c = C (p) which generates an expressive command sequence.

Here p is a vector which parametrizes the command sequence, which is then
discretized for simulation. In our previous work [15] we had employed the use
of cubic curvature polynomials [13] to parametrize steering. However, cubic cur-
vature polynomials require expensive optimizations in order to generate com-
mand sequences given the boundary conditions. This necessitates the use of
pre-calculated lookup tables and an additional optimization in order to produce
an initial guess for real-time planning. Therefore, in the proposed methodology,
we have employed the use of 2D bezier curves for steering, and a constant accel-
eration parameter to control velocity. Bezier curves have been used extensively in
path planning for autonomous vehicles [5,14] due to the ease with which one can
extract the path curvature given the control points and final pose. The desired
quality for the chosen parameterization (cubic-curvature, bezier curves, etc.) is
that (a) the resulting command sequence is “expressive” – i.e., it can actually
cause the vehicle to move in a desired fashion, and (b) that it is parameterized
by few degrees of freedom – to facilitate fast finite differences optimization. In
Appendix A we detail how we have used bezier curves to this effect.

2.3 Feedfoward

An advantage of the simulation-in-the-loop approach is that it provides easy access
to physically meaningful parameters like terrain surface and vehicle configuration.



Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles 281

These can be used for feedforward compensation to help the optimization avoid
local minima that litter the cost landscape. We employed the use of three feedfor-
ward terms in our implementation: gravity, wheel friction and control-delay.

Gravity feedforward is useful to mitigate the effects of steep and undulating
terrain. A simple gravity feedforward model was implemented as

ag =
1
m

4∑

i=1

niFi.vx

where ni is the surface normal at the point of contact of wheel i, Fi is the
normal force at contact for wheel i, vx is the axis orientation vector for the
vehicle chassis and m is the mass of the vehicle.

Friction feedforward is used to compensate for wheel resistance. The accel-
eration compensation for friction is calculated as

af =
1
m

4∑

i=1

μFi

where μ is the friction coefficient and Fi is the normal force of wheel i. Once ag

and af are calculated for the current time step, they are fed forward into the
acceleration parameter a of the next time step. The final acceleration used in
the simulation is given by atotoal = a+ ag + af where a is the parameter used in
the optimization. This type of terrain-aware feed-forward compensation (which
uses terms such as Fi and ni) is made possible by a full physical simulation of
the vehicle and terrain dynamics.

Control delay feedforward is used to compensate for both delayed state esti-
mation and delays in the control pipeline. Compensating for these phenomenon
increases stability. In order to compensate for control delay, we make use of a
control queue which serves to store all commands that are sent to the vehicle.
The current state of the vehicle x−

i can then be transformed to the compensated
state xi as follows

xi = Ψ
(

cq (ti − td : ti) ,x−
i , td

)

Where Ψ is the simulation function as defined in Sect. 2.1. To compensate for
control delay, we simulate the vehicle forward by the control delay duration td,
using the control queue cq (ti − td : ti), which contains the commands sent to the
car from time ti − td up to the current time ti. The augmented state xi is then
used to generate the next set of commands. In this fashion, we are predicting
the pose of the vehicle at the time after which the current commands will begin
executing (ti + td), using commands already in the execution pipeline (cq).

2.4 Vehicle Modeling

Our experiments use a modified racing remote-control vehicle with rear-wheel
electric propulsion, rack and pinion steering and spring/damper suspension. The
parameters described in the models below are learnt automatically using an



282 N. Keivan and G. Sibley

online nonlinear regression [15]. In order to accurately simulate the dynamics
of our vehicle, and fully consider the uneven terrain, we use a double track
vehicle model with suspension dynamics, as detailed in [7]. The chassis is modeled
as a rigid body with forces and moments imparted due to wheel contacts and
motor torques. The wheel forces are modeled using spring/damper dynamics as
Fw = kx + cẋ where c is the damping coefficient, k is the spring stiffness and x
is the deviation from the spring rest state. As Fw acts along the suspension axis,
moments are induced about the center of gravity of the vehicle. To obtain x and
ẋ, we leverage an off the shelf physics simulation engine [1] along with a scanned
3D model of the terrain, represented as a dense triangle mesh, to calculate the
wheel position and velocities.

When accelerating or braking, the electric motor applies a torque to the rear
wheels which is proportional to the current passing through the motor winding.
This current is itself dependent on the voltage applied to the motor as well as the
current rotor speed. The motor controller hardware employed applies a voltage
across the rotor terminals for a given input signal. Therefore, the torque applied
to the rear wheels is modeled as T = V.CTstall

− ω.Cω where V is the voltage
applied to the motor, CTstall

is a constant relating the stall torque of the motor
to the applied voltage, ω is the motor speed and Cω defines the slope with which
the torque diminishes as the motor gains speed. The torque resulting from this
equation is then applied to the rear wheel axles. As expected, this rear-wheel
torque also induces an opposing torque about the CG, resulting in “wheelies” if
the applied torque is too high.

To enforce non-holonomic constraints, sideways motion from the wheels must
be eliminated. We therefore enforce a constraint on the relative velocities of
the wheels and the terrain, which applies a force to enforce the non-holonomic
constraints of the vehicle, and prevent lateral slip. However in practice, slip
conditions can cause violations of non-holonomic constraints. To model these
phenomena, we use the Magic Tire Model [16] which defines the maximum lat-
eral force applicable as a function of the normal force Fw, the slip angle and 4
coefficients.

3 Results

The local planner and trajectory tracker were experimentally tested on a wide
array of challenging environments including jumps, loop-the-loops and quarter
pipes. The experiments were carried out on a small high-speed autonomous robot
in a motion capture environment. In order to build an accurate model of the
vehicle, a machine learning based approach to model identification was used in
conjunction with the accurate simulation model in order to infer the difficult
to measure parameters such as tire model coefficients, friction coefficients and
electric motor torque parameters. For state estimation, global pose estimates
from a Vicon motion capture system operating at 120 Hz were fused with IMU
measurements at 400 Hz in a sliding window filter in order to obtain accurate
pose and velocity estimates. The local planning and trajectory tracking were



Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles 283

Fig. 3. All experiments are performed on the figure-8 trajectory in Fig. 4. The RMSE
error is taken as the average trajectory residual taken over two consecutive laps of
the figure-8 consisting of a weighted combination of translation, heading and velocity
error. (a) Trajectory error with varying velocity setpoints, showing the effect of tire slip
model at higher velocities. (b) Effects of planning frequency on the error. (c) Effects of
incorrect control delay feedforward on RMSE. (d) The effects of gravity feedforward.
Large errors are apparent for both solutions at the start of the trajectory due to initial
convergence, and on the ramp when gravity feedforward has been turned off.

performed in real-time on an Intel i7 laptop with 4 hyper-threaded cores. Re-
planning rates with the specified hardware was between 40 and 60 Hz depending
on the terrain.

Fig. 4. Experimental figure
8 over flat terrain and quar-
ter pipe, showing boundary
value solution trajectory

For results on solving and tracking the aforemen-
tioned challenging environments, please refer to the
video submission. In order to qualitatively explore
the effects of parameters on the performance of the
real-time trajectory tracker, a number of experi-
ments were performed over the figure-8 trajectory
shown in Fig. 4. A feasible trajectory was solved
between a series of manually placed waypoints, and
the controller was subsequently used to track the
trajectory with the experimental vehicle.

In Fig. 3a, the effects of the tire model described
in Sect. 2.4 on the tracking error are shown. At
higher speeds, there is significant slip between the
plastic wheels and the carpet floor. Furthermore,
the acceleration applied reduces the normal forces
on the front wheels, increasing slip. The inclusion of the tire model allows the
optimization to fold in these effects and correct the steering. Figure 3b shows the
effect of planning frequency on the error. It is apparent that stable performance



284 N. Keivan and G. Sibley

is observed down to re-planning rates of 5 Hz, however this is at the expensive
of higher tracking error. Figure 3c demonstrates the effect of control delay feed-
forward on tracking accuracy. The control delay of the system was determined
via model identification to be 0.11s. The negative effect on tracking accuracy as
the control delay parameter deviates from the true value is due to the inability
to properly compensate the control inputs for delays. Figure 3d demonstrates
the effect of gravity feedforward on tracking accuracy. The plot demonstrates
two separate runs with sections taking place on the ramp. It can be seen that
when gravity feedforward is not used, there is a large increase in tracking error
on the ramp. Due to the increased acceleration required to maintain velocity
on the incline, the lack of gravity feedforward leads to bad initialization and
convergence problems.

4 Discussion

Our approach to local planning and control is different in that it does not
make use of an analytically differentiable model to provide a feedback command-
sequence. Rather, we solve an optimization problem involving the full simulation.
This approach works not only for obtaining feasible paths given the boundary
conditions (i.e. local planning), but also in the case of trajectory tracking. In
the latter case, continuous re-planning based on an accurate vehicle and terrain
model provides stability and accurate tracking even without an explicit feedback
law. This tracking stability is observed down to very low re-planning frequencies.

However, that is not to say that continuous re-planning does not constitute
feedback control. On the contrary, perturbations are folded into subsequent plans
as they are sensed by the state estimation. However, the level of detail folded into
the simulation ensures that unexpected perturbations are rare, as all extraneous
effects of the terrain and vehicle model are already considered.

Indeed, traditional guarantees about stability, given a perturbation are no
longer possible due to the lack of an analytical model, however our results show
that convergence is fast and reliable for a wide range of terrain and vehicle con-
ditions including large jumps, loop-the-loops, quarter pipes, bumps and berms.
These situations all pose challenges to traditional control schemes including lin-
ear and nonlinear MPC, due to the non-analytical terrain term. Even though
a feedback controller designed with an analytical model would yield guarantees
of stability, if the terrain were to be sufficiently perturbed, divergence of con-
trol would be inevitable. However, with simulation-in-the-loop the knowledge
obtained from simulating the future would provide powerful predictions of the
failure modes, and would also facilitate triggering of abort maneuvers.

Furthermore, the use of an accurate simulation model replaces gains in tra-
ditional control schemes with physically meaningful model parameters. Whereas
tuning LQR, PID and other feedback control schemes involves the calculation
and setting of abstract gains relating to error and control amplitudes, the only
parameters that need to be tuned in the proposed methodology are the model
parameters, which have physical meanings.



Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles 285

5 Conclusions

We have presented a unified approach to planning and control based on fast
physical simulation-in-the-loop. To find feasible trajectories between waypoints,
we solve a boundary-value-problem that depends on a low degree-of-freedom
but highly expressive control function that drives a simulated vehicle forward
in time. To track the reference trajectory, a trajectory-cost is repeatedly min-
imized using the same optimization. Similar to receding horizon or model pre-
dictive control, constant re-planning provides feedback to mitigate deviation
from the desired trajectory, however we avoid simplifying the underlying model.
Simulation-in-the-loop can include any phenomenon worth modeling, such as 3D
terrain, complex tire models, friction, slipping and jumping. Simulation also pro-
vides a means to fold in perturbations before they happen, and to preemptively
adjust the control sequence accordingly. The results show that this methodology
is able to control a high-speed autonomous vehicle through challenging terrain
such as large jumps, skids, steep banks and loop-the-loops.

Appendix A

We define the bezier curve P(s), s ∈ [0, 1] as P(s) =
∑n

i=0 Bn
i (s)Pi where Pi ∈

R
2 is the ith control point. We have initially parametrized the bezier curve with

the variable s rather than the traditional t, as we desire the final curve to indeed
be parametrized by time, which we represent as t. The relationship between s
and t depends on the evolution of the vehicle velocity. As we have proposed a
constant acceleration parameter a, we can parametrize the bezier curve w.r.t
time as P(s(t)) where s(t) = t/ttotal = t/(2d/(vi + vf ), d is the distance along
the bezier curve, and vi and vf are the initial and final velocities respectively.
The curvature of the bezier curve at any value of t defined as κ (t) can then be
calculated using the analytical first and second derivatives of the curve in x and
y [5]. The steering angle θs can then be obtained from κ, based on a simplified
symmetric bicycle steering model with zero slip [18] θs = tan−1 (lκ)where l is
the wheel base.

The order of the bezier curve is chosen such that sufficient expressivity exists
to satisfy boundary conditions. For trajectory tracking, a major requirement is
C2 continuity. This is needed to ensure maximum feasibility of steering com-
mands, as the actuators cannot be discontinuously controlled, when switching
from one command sequence to the next. To independently constrain the cur-
vature on the boundary of a bezier curve, three control points are required [19],
therefore we use fifth degree bezier curves (n = 6) in order to independently
satisfy the constraint at both ends of the curve.

Given the bezier curve control points, the parameter vector p′ can be
expressed as p′ =

[
P0, ... ,P6 a

]T where P0, ...,P6 ∈ R
2 are the control points.

p′ is defined by 13 parameters: 2 for each control point and 1 for accelera-
tion. There are three gauge freedoms associated with transforms in SE2, reduc-
ing the actual parameter space to 10. However, properties of the bezier curve



286 N. Keivan and G. Sibley

can be exploited to further reduce the number of parameters. Given the ini-
tial projected 2D pose (xiproj =

[
xi yi θi κi

]

, as described below), the posi-
tion, heading and curvature of the vehicle can be constrained (the curvature
is constrained by the current curvature κi). Consequently, the first three con-
trol points can be parametrized using only hi and ai (refer to [19]). Fixing xi,
yi and θi also removes the gauge freedoms of the control points. At the other
end of the bezier curve, xfproj

=
[
xf yf θf κf

]

is used to reduce the parameter
space of the final 3 control points from 6 to 3, as the end curvature is also con-
strained by kf to enforce C2 continuity. This leaves the parameters hi, ai, hf

and af . To further reduce the parameter space, these values were set as follows:
hi = ai = hf = af = 1

5

∥
∥
[
xf yf

] − [
xi yi

]∥
∥ where the factor of 1/5 times the

distance between the start and end points was empirically determined to result
in adequate control laws for a wide range of start and goal positions, headings
and curvatures. Therefore, the initial parameter space p can be obtained from
the reduced parameter space: p′ = B(p,xiproj , κf ) where p =

[
xf yf θf a

]T , and
B is a function which maps the reduced parameter space to the full 5th degree
bezier control points. Note that B () requires the initial state xi to constrain
the first three control points, and the final curvature κf to constrain the last 3
points according to p. Therefore the command-sequence used in the optimization
is defined as c = C

(

xi,B(p,xiproj , κf )
)

.
The control law parametrization scheme detailed previously uses bezier curves

in R
2. While control commands generated from these curves would perfectly steer

an ideal vehicle in R
2, the same statement can not be made for a vehicle in R

3

driving over rough terrain. For this reason, we are interested in initializing the
steering command-sequence in a way which places us in the basin of attraction
of the optimization that follows.

To initialize the bezier curve, we project the pose of the vehicle onto a plane
in R

2, the normal of which is calculated as the average of the terrain normals
at the start and end of the trajectory. This serves to maximize the likelihood
that following the curvature of the bezier curve will lead the vehicle to follow
the shape of the curve. We define the projection as xproj ∈ R

4 = P(Tpwxw, κ).
Where xproj is the state vector in projected R

2 coordinates defined as
[
x y θ κ

]

,
Tpw is the R

4×4 transformation matrix from world coordinates to the projection
plane coordinates (obtained from the terrain normals), and P is the projection
function, which takes the x and y components, and projects the vehicle theta onto
the plane. Once both xiproj and xfproj

have been obtained, a bezier curve can be
initialized using the aforementioned re-parametrization function B(p′,xiproj , κf ),
which returns the initial bezier control points.

References

1. Bullet physics engine. http://bulletphysics.org. Accessed July 2012
2. Amato, N.M., Wu, Y.: A randomized roadmap method for path and manipula-

tion planning. In: IEEE International Conference on Robotics and Automation,
pp. 113–120 (1996)

http://bulletphysics.org


Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles 287

3. Aswani, A., Bouffard, P., Tomlin, C.: Extensions of learning-based model predictive
control for real-time application to a quadrotor helicopter. In: ACC 2012, Montreal,
Canada, June 2012 (to appear)

4. Barraquand, J., Kavraki, L., Latombe, J.-C., Li, T.-Y., Motwani, R., Raghavan,
P.: A random sampling scheme for path planning. Int. J. Rob. Res. 16, 759–774
(1996)

5. Choi, J.-W., Curry, R., Elkaim, G.H.: Continuous curvature path generation based
on bézier curves for autonomous vehicles. IAENG Int. J. Appl. Math. 40 (2010)

6. Divelbiss, A.W., Wen, J.T.: Trajectory tracking control of a car-trailer system.
IEEE Trans. Control Syst. Technol. 5(3), 269–278 (1997)

7. Genta, G.: Motor Vehicle Dynamics: Modeling and Simulation. Advances in Fuzzy
Systems. World Scientific Publishing Company, Incorporated (1997)

8. Grieder, P., Borrelli, F., Torrisi, F., Morari, M.: Computation of the constrained
infinite time linear quadratic regulator. In: Proceedings of the 2003 American Con-
trol Conference, vol. 6, pp. 4711–4716 (2003)

9. Howard, T.M., Green, C.J., Kelly, A.: Receding horizon model-predictive control
for mobile robot navigation of intricate paths. In: Howard, A., Iagnemma, K.,
Kelly, A. (eds.) Field and Service Robotics. STAR, vol. 62, pp. 69–78. Springer,
Heidelberg (2010)

10. Howard, T.M., Kelly, A.: Optimal rough terrain trajectory generation for wheeled
mobile robots. Int. J. Rob. Res. 26(2), 141–166 (2007)

11. Johansen, T.A., Norway, N.-T.: Computation of lyapunov functions for smooth
nonlinear systems using convex optimization. Automatica 36, 1617–1626 (1999)

12. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal
motion planning. In: Robotics: Science and Systems (RSS), Zaragoza, Spain, June
2010

13. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Tech-
nical report (1998)

14. Miller, I., Lupashin, S., Zych, N., Moran, P., Schimpf, B., Nathan, A., Garcia,
E.: Cornell university’s 2005 darpa grand challenge entry. J. Field Robot. 23(8),
625–652 (2006)

15. Lovegrove, S., Keivan, N., Sibley, G.: A holistic framework for planning, real-time
control and model learning for high-speed ground vehicle navigation over rough 3d
terrain. In: IROS (2012)

16. Pacejka, H.B., Society of Automotive Engineers: Tire and Vehicle Dynamics. SAE-
R. Society of Automotive Engineers, Incorporated (2006)

17. Pivtoraiko, M., Kelly, A.: Kinodynamic motion planning with state lattice motion
primitives. In: Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (2011)

18. Rajamani, R.: Vehicle Dynamics and Control. Mechanical Engineering Series.
Springer, New York (2011)

19. Sederberg, T.W.: Computer Aided Geometric Design. Brigham Young University,
April 2007

20. Tedrake, R.: LQR-trees: feedback motion planning on sparse randomized trees. In:
Proceedings of Robotics: Science and Systems, Seattle, USA, June 2009


	Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles
	1 Introduction
	2 Methodology
	2.1 Optimization
	2.2 Control Parametrization
	2.3 Feedfoward
	2.4 Vehicle Modeling

	3 Results
	4 Discussion
	5 Conclusions
	References


