
123

Didar Zowghi
Zhi Jin (Eds.)

First Asia Pacific
Requirements Engineering Symposium, APRES 2014
Auckland, New Zealand, April 28–29, 2014, Proceedings

Requirements
Engineering

Communications in Computer and Information Science 432

Communications
in Computer and Information Science 432

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Didar Zowghi Zhi Jin (Eds.)

Requirements
Engineering
First Asia Pacific
Requirements Engineering Symposium, APRES 2014
Auckland, New Zealand, April 28-29, 2014
Proceedings

13

Volume Editors

Didar Zowghi
University of Technology, Sydney (UTS)
Faculty of Engineering and Information Technology
Sydney, NSW, Australia
E-Mail: didar.zowghi@uts.edu.au

Zhi Jin
Peking University
Department of Computer Science
School of Electronics Engineering and Computer Science
Beijing, China
E-Mail: zhijin@pku.edu.cn

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-662-43609-7 e-ISBN 978-3-662-43610-3
DOI 10.1007/978-3-662-43610-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939036

© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The inaugural Asia Pacific Requirements Engineering Symposium (APRES 2014)
was held at the Auckland University of Technology (AUT), in the beautiful city
of Auckland, in New Zealand during April 28–29, 2014. Requirements engineer-
ing (RE) has become a well-established discipline of research and practice in
software and systems development. The importance of eliciting and document-
ing high-quality requirements and following effective RE practices has long been
recognized by researchers and practitioners alike. The main aim of this initiative
is to develop and expand the RE research and practice community specifically
in the Asia Pacific region and to foster collaborations among researchers and
practitioners in Asia, Australia, and New Zealand.

We sought submissions on all aspects of RE. In particular, papers that present
novel ideas, methods, tools, and techniques for improving and enhancing RE
products and processes. We were also interested in reflections on current indus-
trial RE practices. A total of 30 submissions were received, of which 27 entered
the review process (after discarding three papers, two were out of scope and
one was an abstract only). Each paper was reviewed by three members of the
APRES Program Committee. All the reviews were assessed for quality by the
program chairs. Sixteen papers written by authors from ten different countries
were selected for publication and were presented in four sessions.

This volume serves as a record of APRES 2014 proceedings but it also rep-
resents a snapshot of the state of RE research in the Asia Pacific region. We
believe that these proceedings will be of interest to the entire RE community,
whether students or experienced researchers.

We would like to express our gratitude to the Auckland University of Technol-
ogy, especially the Software Engineering Research Lab (SERL), and its director
Jim Buchan for hosting the inaugural APRES. We would also like to acknowl-
edge the support provided by the Centre for Human Centred Technology Design
Research from the University of Technology, Sydney (UTS).

April 2014 Didar Zowghi
Zhi Jin

Organization

General Chair

Jim Buchan Auckland University of Technology,
New Zealand

Program Co-chairs

Didar Zowghi University of Technology, Sydney, Australia
Zhi Jin Peking University, China

Website Manager and Publicity Chair

Muneera Bano University of Technology, Sydney, Australia

Program Committee

Mikio Aoyama Nanzan University, Japan
Muhammad Ali Babar Adelaide University, Australia
Muneera Bano University of Technology, Sydney, Australia
Tony Clear Auckland University of Technology,

New Zealand
Mohamed El-Attar King Fahd University of Petroleum and

Minerals, Saudi Arabia
Smita Ghaisa Tata Research Design and Development Center,

India
Aditya Ghose University of Wollongong, Australia
Asif Gill University of Technology, Sydney, Australia
John Grundy Swinburne University of Technology, Australia
Naveed Ikram Riphah International University, Pakistan
Massila Kamalrudin Universiti teknikal Malaysia Melaka, Malaysia
Seok-Won Lee Ajou University, South Korea
Lin Liu Tsinghua University, China
Stephen MacDonell University of Otago, New Zealand
Stuart Marshall Victoria University of Wellington, New Zealand
Mahmood Niazi King Fahd University of Petroleum and

Minerals, Saudi Arabia

VIII Organization

Lemai Nguyen Deakin University, Melbourne Australia
David Parsons Massey University Auckland, New Zealand
Xin Peng Fudan University, China
Samiaji Sarousa Atma Jaya Yogyakarta University, Indonesia
Shahida Sulaiman University Teknologi Malaysia, Malaysia
Tetsuo Tamai Hosei University, Japan
Xinyu Wang Zhejiang University, China
Yijian Wu Fudan University, China
Haiyan Zhao Peking University, China
Li Zhang Beihang University, China

Table of Contents

A Process-Oriented Conceptual Framework on Non-Functional
Requirements . 1

Lianshan Sun and Jaehong Park

Capturing Security Requirements Using Essential Use Cases (EUCs) . . . 16
Syazwani Yahya, Massila Kamalrudin, Safiah Sidek, and
John Grundy

Utilizing TOPSIS: A Multi Criteria Decision Analysis Technique for
Non-Functional Requirements Conflicts . 31

Dewi Mairiza, Didar Zowghi, and Vincenzo Gervasi

Analysis of Economic Impact of Online Reviews: An Approach for
Market-Driven Requirements Evolution . 45

Wei Jiang, Haibin Ruan, and Li Zhang

An IT-Driven Business Requirements Engineering Methodology 60
Masahiro Ide, Tomoko Kishida, Mikio Aoyama, and
Yasuhiro Kikushima

Efficient Identification of Rationales by Stakeholder Relationship
Analysis to Refine and Maintain GQM+Strategies Models 77

Takanobu Kobori, Hironori Washizaki, Yoshiaki Fukazawa,
Daisuke Hirabayashi, Katsutoshi Shintani, Yasuko Okazaki, and
Yasuhiro Kikushima

Addressing the Challenges of Alignment of Requirements and Services:
A Vision for User-Centered Method . 83

Muneera Bano and Naveed Ikram

Evaluating the BPCRAR Method: A Collaborative Method for
Business Process Oriented Requirements Acquisition and Refining 90

Han Lai, Rong Peng, and Yuze Ni

Modeling and Specifying Parametric Adaptation Mechanism for
Self-Adaptive Systems . 105

Zhuoqun Yang and Zhi Jin

Evaluating Presentation of Requirements Documents: Results of an
Experiment . 120

Yu-Cheng Tu, Ewan Tempero, and Clark Thomborson

X Table of Contents

Impact Analysis of Granularity Levels on Feature Location
Technique . 135

Chakkrit Tantithamthavorn, Akinori Ihara, Hideaki Hata, and
Kenichi Matsumoto

A Pair-Oriented Requirements Engineering Approach for Analysing
Multi-lingual Requirements . 150

Massila Kamalrudin, Safiah Sidek, Norsaremah Salleh,
John Hosking, and John Grundy

An Empirical Cognitive Model of the Development of Shared
Understanding of Requirements . 165

Jim Buchan

Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature
Diagrams . 180

Mazin Saeed, Faisal Saleh, Sadiq Al-Insaif, and Mohamed El-Attar

The Role of Requirements Engineering Practices in Agile Development:
An Empirical Study . 195

Xinyu Wang, Liping Zhao, Ye Wang, and Jie Sun

Support Method to Elicit Accessibility Requirements 210
Junko Shirogane

Author Index . 225

A Process-Oriented Conceptual Framework

on Non-Functional Requirements

Lianshan Sun1 and Jaehong Park2

1 Dept. of Comp. Sci., Shaanxi Univ. of Sci. & Tech., Xi’an, China, 710021
2 Institute of Cyber Security, Univ. of Texas at San Antonio, TX, USA, 78249

Abstract. Non-Functional Requirements (NFR), as its emergence, is a
buzzword that is mostly overused while remaining obscure. There is no
consensus on what NFR is, how to identify NFR during software devel-
opment, and what capabilities a desired NFR modeling approach should
deliver. To this end, this paper proposes a process-oriented conceptual
framework on NFR. It explicitly distinguishes NFR from application-
independent domain knowledge, such as quality attributes, tactics, and
various constraints, then defines NFR as the composition in specific con-
texts of domain knowledge and various system abstractions, which in-
clude not only the target system, but software models that conceptually
define the target system at early stages of software development. Enlight-
ened by the framework, we produce a checklist for NFR identification in
the whole development process. We also analyze the methodological im-
plications of our framework and discuss the fundamental capabilities of
a desired NFR modeling approach.

1 Introduction

Software requirements, derived from stakeholders’ needs and environment con-
straints, guide software development and determine whether a target software
meets the intended purposes [1,2]. Requirements engineering, also called soft-
ware analysis, is the process of eliciting, analyzing, specifying, validating, and
managing software requirements. The primary focus of requirements engineer-
ing has been functional requirements, which specify functions that a system or
system component must deliver to users [3]. Increasingly, both researchers and
practitioners realized that there exist many other requirements that play impor-
tant role in shaping the target system, defining the development process, and
managing the development project [4]. Non-Functional Requirements (NFR), as
an umbrella term, then was coined to name these requirements [5].

Noticed the importance of NFR, researchers have paid much efforts on clari-
fying NFR from functional requirements and have proposed plenty of NFR def-
initions over the last three decades [6,7]. For example, Chung et al. define NFR
as any “-ilities”, “ities”, along with many other things that do not necessarily
end with either of them, such as performance, user-friendliness and coherence,
as well as concerns on productivity, time, cost and personal happiness [6]. Un-
like Chung’s broad NFR definition, Glinz rules out the process requirements

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 1–15, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 L. Sun and J. Park

and project requirements from system requirements, which include functional
requirements and NFR. Glinz defines NFR as an attribute of or a constraint
on a system, where an attribute is a performance requirement or a specific qual-
ity requirement and a constraint is requirement that constrains the solution space
beyond what is necessary for meeting the given functional, performance, and spe-
cific quality requirements [7]. Unfortunately, none of these definitions has been
adopted as consensus in the community partly due to the diversity, subjective-
ness, and relativeness of NFR [4,6,7,8].

Although it is not clear what NFR exactly is, it has been widely agreed that
NFR should be explicitly handled during software development and maintenance
process in order to get software systems with high quality [6]. However, existing
NFR definitions, such as the two afore-mentioned ones, provide very little oper-
able guidance on identifying and specifying NFR, and on clarifying relationships
between NFR and functional requirements, other NFR, and other artifacts in
software development. To this end, requirements engineering community took
a process-oriented approach to elicit and model NFR in software development
process, such as the well-known NFR-Framework [9]. NFR-framework models
intermediate artifacts of analyzing and operationalizing NFR as an AND/OR
tree [9,10], which could then be used to justify design decisions [6].

Software architecture community also noticed the fact that NFR plays an im-
portant role in shaping software architecture while usually remaining implicit
or obscure. They also took a process-oriented point and argued that software
architects should analyze and refine NFR before or during software architect-
ing [11]. However, an aftermath is that the borderline between NFR and design
knowledge-related artifacts, such as design issues, tactics, design rationale, and
even design decisions, is likely to be blurred in practice [8]. Furthermore, the two
threads of research efforts that share the fundamental idea of process-orientation
differ from each other in terms of understanding, modeling, and managing NFR.
This partially hinders the adoption of these approaches in practice because stake-
holders in one community usually do not understand (hence cannot use) an
approach initially invented to solve problems of another community.

We argue that the idea of process-orientation requires a revamped NFR defi-
nition that helps stakeholders unambiguously understand NFR in whole software
development process. This paper proposes a process-oriented conceptual frame-
work that concisely characterizes the essence of NFR identified in different devel-
opment phases in a unified manner. Specifically, it explicitly distinguishes NFR
from application-independent domain knowledge, such as quality attributes, tac-
tics, and other constraints, and then defines NFR as the composition in specific
contexts of domain knowledge and various system abstractions, which include
not only the target system, but requirements model and software architecture
that conceptually define the system at early stages of software development.

The proposed conceptual framework of NFR has two main benefits. First, it
uniformly models the relationships between NFR and functional requirements,
other NFR, and other intermediate artifacts produced in software development,
which provides stakeholders an operable and consistent guideline, a checklist, for

A Process-Oriented Conceptual Framework on Non-Functional Requirements 3

NFR identification and management in software development process. Second, it
implicitly regulates the fundamental capabilities that a desired NFR modeling
approaches should deliver, which can guide the improvement to the existing
approaches or the invention of more practical approaches for better adoption.
We analyze the methodological implications of our framework and then discuss
the fundamental capabilities of a desired NFR modeling approach.

The rest of this paper is organized as follows. Section 2 analyzes what process-
orientation means to NFR. Section 3 proposes the process-oriented conceptual
framework on NFR. Section 4 defines the checklist for NFR identification. Sec-
tion 5 analyzes the methodological implications of the proposed framework on
understanding, modeling, and managing NFR. Section 6 introduces related work
and finally section 7 concludes this paper and foresees our future work.

2 NFR in Software Development Process

Software development is going through a transition from the code-centric
paradigm to a so-called model-centric paradigm [12]. The model-centric devel-
opment is concerned with the construction of software models at various level
of abstractions and the transformations from software models at higher level to
those at lower level, such as from requirements to software architecture, and up
to implementation model, i.e. the target system. Requirements engineering and
software architecting are two closely-related early phases in software develop-
ment process [8], which produces requirements model and software architecture
respectively. However, the two phases usually weave together with each other and
the line separating them is very fuzzy [8,13]. In particular, as important driving
factors of software architecting, NFR is usually identified and refined not only
in requirements engineering but also in software architecting [10,11,14,15,16].

From the requirements engineering perspective, NFR should ideally be elicited
from stakeholders’ needs and expectations. These needs and expectations can-
not be well satisfied and some of them may even be totally failed when a target
system does not fulfill NFR. For various reasons, most stakeholders tend to use
obscure terminologies, such as security, usability or performance, to denote their
non-functional expectations. Some stakeholders may even propose unattainable
NFR or conflicting NFR, which could not be identified until software archi-
tecting stage. It is the responsibility of requirements engineers to define NFR
with specificity necessary for downstream development activities according to
various domain knowledge, such as various quality models [17], tactics reposito-
ries [10,11], and NFR-related artifacts documented in domain models [18].

From the software architecting perspective, most NFR are architecturally sig-
nificant requirements that shape software architecture and finally the target
system. In real settings, software architects usually have to identify and refine
NFR before or during software architecting [15] due to the fact that NFR is
often not well documented in requirements specification [11]. Traditionally, soft-
ware architecture is considered to be a high-level structural model that consists
of components and connectors. A NFR such as usability or performance usu-
ally affects multiple modules (components or connectors) scattered across the

4 L. Sun and J. Park

whole system. This makes it very difficult to establish and manage the traceabil-
ity of NFR [19] and to evaluate how NFR are impacted by software architecture
changes. Even worse, design knowledge about why software architecture changes
happened was usually vaporized after a change is done. The newly identified or
refined NFR that drive the evolution of software architecture are usually not
documented in either requirements model or software architecture [15].

To address the design erosion problem, software architecture has been in-
creasingly seen as a set of design decisions that led to the software architecture
that consists of components and connectors. Design decisions document the de-
signers’ knowledge gained in the design process and are modeled as first-class
entities in software architecture [20,21]. However, an aftermath is that NFR-
related knowledge is usually captured and mixed in a set of architecture-level
artifacts, including design issue, tactic or solution, design decision, and design
rationale [20,21]. Design issue describes problems that need to be solved in soft-
ware architecture; tactic or solution has pros and cons in solving design issues;
design decision records which solutions are selected to solve design issues; and
design rationale models the reason of making design decisions [20,21].

In fact, before design decision oriented solutions are proposed to compile de-
sign knowledge produced during software architecting, Mylopoulos and Chung
et al. have proposed a comprehensive NFR-Framework to model NFR-related
design knowledge in a set of requirement-level terminologies [9,10]. In the NFR-
framework, NFR is modeled as a set of softgoals. Each softgoal may be inter-
related with goals that mainly representing functional requirements and other
softgoals. Each softgoal can be refined into multiple child softgoals or operational-
ization goals that contribute to their parents, or into argument goals that justify
their parents. All softgoals and their operationalizations and arguments form a
AND/OR tree, called Softgoal Interdependency Graph (SIG). Operationaliza-
tion is a concept similar to tactic and argument is a concept similar to design
rationale. A SIG finally serves as justifications of making decisions on selecting
right operationalizations to meet NFR [6].

Although the above two threads of research efforts are both closely related
to NFR, there exist subtle differences between them in terms of their under-
standing on NFR and terminologies used to document NFR-related knowledge.
For example, design issue is similar but not identical to NFR. Some functional
requirements may introduce challenging design issues, such as a requirement of
enabling the undo/redo function in an editor. Meanwhile some NFR may not
introduce design issue because they can be satisfied by commonly adopted prac-
tices, such as a time requirement on retrieving a specific item in a small-size
address book. It is very difficult for people from one field to understand and use
approaches from another field to handle NFR. This partially hinders the adop-
tion of these approaches in practice [15]. We argue that it is inappropriate to
understand and identify NFR only at requirements engineering stage, software
architecting stage, or system implementation stage. It is natural and even imper-
ative to identify NFR and clarify the relationships among NFR and other related
artifacts in the whole software development process, in particular in the iterative

A Process-Oriented Conceptual Framework on Non-Functional Requirements 5

process of requirements engineering and software architecting. We believe that
an unified view on NFR across the whole software development process would
shed a light on integrating achievements from different communities, and as a
result on producing a more adoptable approach in practice.

3 A Process-Oriented Conceptual Framework on NFR

This section first overviews the fundamental components of the process-oriented
conceptual framework on NFR and then presents a formal NFR definition to
clarify how these components can be composed into NFR at different stages.

3.1 Framework Overview

As shown in Figure 1, the proposed framework has four key components: stakehol-
ders’ needs, system abstractions abstractly defining the target system, NFR-
related domain knowledge base that will be reified in system abstractions, and
the contexts where the target system would be operated in.

First, stakeholders’ needs are main sources of both functional requirements
and non-functional requirements. Ideally, any NFR should be traced back to
one or more stakeholders’ needs, no matter at which stage it is identified. For
example, NFR related to availability of an e-shop could be derived from the need
that the e-shop should be online 24-7 to keep its competence in market. Note
that a target system may have many stakeholders with various needs. These
needs could not be completely identified before identifying NFR. In practice,
some NFR could be identified first and then corresponding stakeholders’ needs
should be identified by requirements engineers and confirmed by stakeholders.

NFR: a composition of domain knowledge and system abstractions in specific contexts, reflecting stakeholders’needs.

NFR-related

Domain

knowledge base

System abstractions

Requirements Model NFR FR

Software Architecture Architectural views

Others

Implementation Model Software Hardware Documentation

Design Knowledge

Context: normal mode, energy-saving mode, service-peak mode, ...

Stakeholders’needs: good competence, lower cost, time to market, easy to

maintenance, easy to use, privacy protection, law compliance, ...

Reified in

Meet

Operated in

Fig. 1. A Process-Oriented Conceptual Framework on NFR

Second, according to Glinz [7], we confine NFR as a part of system re-
quirements, not including requirements related to the development process or
project management. However, the target system does not exist and is only
imagined and modeled as various system abstractions when modeling NFR. Sys-
tem abstractions usually include a stack of software models produced at differ-
ent development stages, such as requirements model and software architecture,

6 L. Sun and J. Park

and implementation model. We believe that identifying NFR of a target sys-
tem at a specific development stage is actually identifying NFR of the system
abstractions produced at that stage. Note that system abstractions will keep
evolving during the whole development process. So it is necessary to explicitly
state which part of system abstraction NFR is targeting when we identify and
specify NFR. Note that the relationship between NFR and system abstractions
is very tricky. On one side, NFR is a part of requirements model, i.e. a part of a
system abstraction. On the other side, NFR itself is usually identified on the ba-
sis of available system abstractions. In addition, NFR could drive the evolution
of some system abstractions, such as software architecture.

Third, NFR with enough specificity usually cannot be easily derived from
stakeholders’ needs and system abstractions. The degree to which NFR spec-
ification is analyzable or useful in software development process is heavily in-
fluenced by NFR-related domain knowledge of requirements engineers, which
is accumulated during the construction of similar systems before or learned
from literature. Domain knowledge is application independent but important
for identifying and elaborating NFR in a specific application. Typical NFR-
related domain knowledge includes standardized quality models [17,22], tactics
(design patterns/architectural styles) repositories [23,24], catalogues of conflic-
tions among quality attributes [25], as well as constraints regulated by various
parties. Note that public domain knowledge bases, such as the standardized
quality models [17], may be either too verbose in terms of irrelevant knowledge
or too general in terms of relevant knowledge to fully meet the requirements of
a specific application development. So developers need to create and maintain
a tailored knowledge base to capture the consensus on NFR-related knowledge
in a specific project, organization, or domain [6]. NFR-related knowledge items
with different specificity can be organized into a hierarchy. Each item in a hierar-
chy could have one or more offsprings which elaborate, support, or complement
the parent. For example, we create three hierarchies of domain knowledge on
security, performance, and usable(CAPTCHA) in Figure 2.

Security

Secure communication

Authentication

Authorization

User-password

Anti-BFA

CAPTCHA

Biometric

MAC RBAC

Performance

Time Space

Cache Increase resourceMore efficient algorithm

A knowledge item:

Attributes / tactics / constraints

Separation of duty

Secure Socket Layer

Refined intotriggered-CAPTCHA

Usable(CAPTCHA)

Fig. 2. Two hierarchies of domain knowledge

The security hierarchy in Figure 2 tells that security can be refined into secure
communication, authentication, authorization, and separation of duty. Secure
communication could then be refined into secure socket layer, which encrypts
and decrypts the transmitted messages across networked components. Authenti-
cation concerns user identification. Authorization concerns user rights on services

A Process-Oriented Conceptual Framework on Non-Functional Requirements 7

and resources and is usually implemented by various access control systems [26],
such as mandatory access control (MAC) and role-based access control (RBAC).
RBAC supports separation of duty. The most common authentication solution
is to check user passwords. Performance hierarchy elaborates performance into
several possible solutions/tactics, including employing cache, increasing compu-
tation power or storage, and improving algorithm efficiency. Note that these
hierarchies keep evolving along with NFR modeling and software architecting.
For example, if customers realize that user-password based authentication has
to be free from brute force attacks (Anti-BFA), two possible solutions might
be added into the security hierarchy, including CAPTCHA [27] and Biometric
authentication [28]. Note that these tactics come at a cost of usability and per-
formance. Researchers have compiled the correlations among quality attributes
into catalogues [25], which are also important domain knowledge.

Fourth, the context of a NFR is the set of circumstances in which system
abstractions are analyzed for NFR identification. NFR identified in one context
could be different from ones identified in other contexts. For example, security
threats to a system that runs on an isolated network may be different than the
threats to a system that runs on the public network. Performance-related NFR
of an online ticketing system in peak period might be different from those in
off-peak period. A change request that arrives after the code has been frozen for
a release may be treated differently than one that arrives before the freeze [11].

The framework in Figure 1 only defines the fundamental components that
have to be considered when identifying and refining NFR. Note that none of
them can independently be treated as NFR. A specific enough NFR is usually
the refinement of the composition of an item in domain knowledge base and a
specific part of system abstractions in a set of explicitly defined contexts and
can be traced back to one or more stakeholders’ needs. For example, we can
analyze performance issue with regard to a downloading function to identify a
NFR such as the download speed should be as fast as possible. We can also analyze
the RBAC issue with regard to a function of adding goods onto an online store
inventory to identify a NFR that only users with a manager role can add goods.
Note that the knowledge items in a hierarchy, either the general ones at the top
level or the specific ones at the bottom level, can be composed with modules
in a system model to define NFR. As a result, some NFR could be implicitly
declared by automatically refining the composition of a general knowledge item
with subordinate offsprings and a module with inside structure.

3.2 Formal Definition

This section defines a formal process-oriented NFR definition to concisely clarify
how the four components in the framework are composed together to form NFR.

Definition 1. Stakeholders’ Needs U: Let U be the set of stakeholders’ needs.
The subset U ∈ 2U denotes a subset of stakeholder’s needs.

Definition 2. Domain Knowledge K: Let K be the set of domain knowledge,
which includes one or more hierarchies. A hierarchy H ⊆ K is a directed acyclic

8 L. Sun and J. Park

graph capturing a subset of domain knowledge. Given a hierarchy H, we can
define a refinement function ΨH : H → 2H .

Beside domain knowledge, system abstractions can also be viewed as several
hierarchies corresponding to software models at different level. Each hierarchy
has the most general element the whole system as its root, which is then itera-
tively refined into subsystems or modules in smaller granularity.

Definition 3. System Abstractions S: Let S be the set of system abstractions,
which includes functional requirements model R, software architecture A, and
implementation model I. For each hierarchical software model M ∈ S (R, A,
or I), we can define a refinement functional ΦM : M → 2M. For each module
m ∈ M, ΦM(m) is the set of offsprings of m in the hierarchy M.

Definition 4. Context C: Let C be the set of contexts. Each C ∈ 2C is a subset
of contexts where a NFR is identified.

With the above notations, we can formally define the set of NFR (N) as the
following recursive equations.

Definition 5. Context specific, Process-Oriented NFR

N := {n|n = (u, c, k,m),m ∈ M,k ∈ K,C ∈ 2C, u ∈ U}, (1)

N := {n|n = (u, c, k, r), r ∈ N, k ∈ K,C ∈ 2C, u ∈ U}. (2)

Definition 5 includes two equations. Equation 1 defines NFR as the compo-
sition of a subset of domain knowledge k with a module in system abstractions
(r ∈ R, a ∈ A, and, and i ∈ I) in specific contexts C. For example, in web-
based systems, a functional requirement Log-on must be secure enough to pre-
vent brute force attacks on user identification and password. So we need a NFR
Anti-BFA(Log-on), where Anti-BFA is an item from domain knowledge shown in
Figure 2. Equation 2 recursively defines NFR as the composition of the NFR and
a knowledge item k in specific contexts C. For example, Anti-BFA(Log-on) also
needs to be efficient and usable to allow a legitimate user to log on in an easy and
efficient way. In that, usable(Anti-BFA(Log-on)) and time(Anti-BFA(Log-on))
could also be modeled as NFR, which imply the potential conflictions between
security and performance or usability.

Note that Definition 5 suggests that there exists complex iterations among
defining system abstractions, collecting domain knowledge, and analyzing NFR
in real setting, and that any intermediate version of R, A, I, C, U or K that
are produced during software development process could be used as the basis of
analyzing NFR. In theory, all possible compositions of domain knowledge and
system abstractions should be analyzed for NFR identification during software
development process. However, it is not possible to do so due to limited time-to-
market and human resources. That means, the recursive equations in Definition
5 would not achieve the fixed point in a desired speed. In practice, the iterative
process of NFR identification is interweaved with the whole software develop-
ment process and should be increasingly dropped out when the target system is
increasingly emerged.

A Process-Oriented Conceptual Framework on Non-Functional Requirements 9

4 A Checklist for NFR Identification

This section further clarifies what NFR is and what NFR is not according to
Definition 5 and presents a checklist for NFR identification at different software
development stages. We explain the checklist with regard to the account man-
agement subsystem in an e-commerce system (eStore) that sells goods online.

4.1 An Account Management Subsystem in eStore

There are many eStores deployed on the Internet, such as Amazon and eBay.
An eStore usually allows users to register new accounts, log on the eStore, and
maintain their accounts. A usable interface is very important for the success of
an eStore. Users may want to log on an eStore as easy and fast as possible. In ad-
dition, user account profile, which might include billing addresses or credit card
number, needs to be securely protected from illegitimate accesses and abuses.

4.2 A Checklist for NFR Identification

Definition 5 suggests that the initial set of system abstractions, stakeholders’
needs, the NFR-related domain knowledge base, and system operating contexts,
should be available before identifying NFR at a specific stage. Generally, Es-
sential functional requirements, such as creating account and editing account
profiles, and some typical NFR, such as those directly related to the well-known
quality attributes, such as security, performance, and usability [17], can be easily
identified from stakeholders’ needs. For example, an account management sub-
system in eStore must provide functions of account management and be easy-to-
use, fast, and secure. However, it is not obvious to identify and elaborate NFR
that is not directly elicited from quality attributes. To that end, we give the fol-
lowing checklist for NFR identification. Note that the following discussion will
continuously refer to tactics defined in hierarchies in Figure 2.

First, a newly identified requirement item is NFR if it is the composition of
domain knowledge and functional requirements. This rule is obvious for high-
level knowledge items directly related to quality attributes, such as performance
and security. For example, Security(Log-on) is definitely a NFR where Log-on is
a functional requirement of an eStore and security itself is an item in security
related knowledge. However, for some low-level operationalizable tactics, such
as CAPTCHA contributing to security, things get tricky. Some may argue that
CAPTCHA(Log-On) composed of CAPTCHA and Log-on is a functional re-
quirement because it does accept user inputs and produce outputs. However, we
argue that it is not an essential functional requirement that is proposed by users
as a fixed feature in the eStore and users can achieve their purpose of logging
onto the eStore without CAPTCHA(Log-On). In fact, it is only a tactic identi-
fied to support security of Log-on and is deployed in a context where malicious
attackers would appear. So this rule suggests to model CAPTCHA(Log-on) as
a NFR that can be traced back to the stakeholders’ security need rather than a
functional requirement. Categorizing CAPTCHA(Log-on) as NFR can explicitly

10 L. Sun and J. Park

drive related downstream developers to pay more attention to make it secure,
such as choosing longer string of characters or exerting more distortion on char-
acters. After all, a secure software does not only come from the adoption of the
right tactic but also from corresponding good implementation.

Second, a requirement item is NFR if it is the composition of domain knowl-
edge and existing NFR. For example, after adopting CAPTCHA, it is diffi-
cult for users to recognize the intentionally blurred digits and alphabets in
a picture. Even the words are recognizable, it is still annoying for an user
to pass the CAPTCHA every time he/she logs on. From this point of view,
usable(CAPTCHA(Log-on)) is definitely a NFR that can be traced back to the
users’ needs that Log-on should be secure and usable simultaneously. Apparently,
usable(CAPTCHA(Log-on)) also models a possibility of confliction among secu-
rity and usability. Our framework enables the uniform treatment on individual
NFR as well as on conflictions among multiple NFR. Note that before adopt-
ing CAPTCHA, usability of Log-on is tacitly acceptable and usually neglected.
So usable(CAPTCHA(Log-on)) is optional because it depends on the binding
state of CAPTCHA, which could be tailored off when developers adopt bio-
metric authentication. By modeling conflictions among NFR as separate NFR,
our framework enables explicit management of the binding state of conflictions
among NFR and suggests explicit treatment on these conflictions later.

Third, a requirement item is NFR if it is refined from another NFR. For
example, the NFR usable(CAPTCHA(Log-on)) can be further refined to the
composition of appropriate tactics and Log-on, such as triggered-CAPTCHA that
limits the application of CAPTCHA only after three failed log-on attempts. A
tactic that contributes a NFR in a specific application often deserves to be reused
as domain knowledge in later development. So we add triggered-CAPTCHA into
domain knowledge hierarchy as a child node of usable(CAPTCHA) in Figure 2.

Fourth, a requirement item is NFR if it is the composition of domain knowl-
edge and architectural elements. NFR that are not clearly specified in require-
ment engineering stage could be further refined in software architecting stage.
For example, triggered-CAPTCHA(Log-On) could be identified on the basis of
the Log-on module in software architecture at software architecting stage when
some stakeholders noticed the importance of usability of Log-on. Also, soft-
ware architects may identify new NFR that is overlooked in requirements en-
gineering. Suppose after Biometric(Log-on) was modeled as a NFR, a software
architect finds out that the Biometric technologies to be used, such as those
based on fingerprint recognition, are not reliable enough because they may fail
to authenticate a legitimate user. So the software architect may explicitly model
reliable(Log-on) as NFR and try to find out tactics satisfying it. Note that the
NFR reliable(Log-on) cannot be directly elicited from stakeholders because the
most common authentication solution user-password is inherently reliable.

Fifth, a requirement item is NFR if it is the composition of domain knowledge
and an implementation model. After implementation is done, both customers
and developers can evaluate the target system in use. The identified NFR could

A Process-Oriented Conceptual Framework on Non-Functional Requirements 11

be used to drive the evolution of the system in the future. For example, many
security leaks in Windows XP has been identified and fixed.

Sixth, design knowledge captured in software architecture is not NFR. Software
architecture includes not only architectural views, but also design knowledge [20].
In fact, NFR is a part of requirements model that describe the system to be
at requirements level. However, Design knowledge describes issues identified,
solutions used, rationale abided by, and decisions made during designing software
architecture to satisfy requirements. They are closely related to NFR. NFR may
introduce design issues, enlighten design tactics, or serve as design rationale for
making design decisions. However, all these design knowledge are not NFR. They
should be documented and maintained independently.

Seventh, domain knowledge is not NFR. NFR we are discussing is a part of re-
quirements model of a specific application. Apparently, application-independent
domain knowledge is not NFR. They are important components that can be
composed with system abstractions to form NFR in specific contexts.

Eighth, process requirements and project requirements are not NFR. Process
requirements and project requirements are non-system requirements but could
be as relevant as system requirements in some situations [15]. However, being
consistent with Glinz’s definition [7] that NFR is part of system requirements,
our NFR definition does not cover the non-system requirements, such as con-
straints on project and process in terms of cost, time, and scope. One benefit of
doing so is to achieve a consist framework that defines NFR as the composition
of domain knowledge with system abstractions in specific contexts.

In practice, the initial set of essential functional requirements should be iden-
tified first. Then most NFR should be identified on the basis of these functional
requirements. Later, these functional requirements and NFR are used to drive
the software architecting. Again on the basis of the produced software archi-
tecture model, developers can refine and identify NFR at software architecting
stage. Finally, developers can implement the target system under the guidance
of software architecture and can identify and refine NFR on the basis of imple-
mentation model during this process. The final set of NFR is the union of NFR
identified on the basis of system abstractions produced at different stages.

5 Methodological Implications

Definition 5 impacts the way stakeholders understand, model, and manage NFR
in software development process. This section defines the fundamental capabili-
ties of a desired NFR modeling approach on top of Definition 5.

First of all, the desired approach should enable the explicit specification of
contexts where the target system would be operated and NFR would be analyzed.
For example, it does not make sense to discuss security without knowing what
kind of threats would arrive.

Second, the desired NFR modeling approach should document NFR indepen-
dently from both domain knowledge and functional requirements while explicitly
model the relationships among them. In fact, it is a well-known myth to abuse

12 L. Sun and J. Park

some typical quality attributes, such as security and performance, as NFR. And
it is a long recognized challenge to consistently and efficiently distinguish NFR
from functional requirements. In addition, automation facilities are required to
make the desired approach more efficient and thus more practical due to the
complexity of real requirements model.

Third, the desired approach should enable iterative NFR identification across
the whole software development process. System abstractions must be explicitly
specified before corresponding NFR can be identified and the newly identified
NFR would also drive the evolution of system abstractions. It is a huge challenge
to systematically create and manage the complex relations among NFR and
related system abstractions across the whole software development process due
to the varieties of modeling languages and tools used in different stages.

Fourth, it is better for a the desired approach to take a hierarchical view on
both domain knowledge and system abstractions and to manage and evolve them
in a relatively independent process than modeling NFR. As a result, the desired
approach could enable implicit NFR identification by automatically composing
the offsprings of either system abstractions or knowledge items composing NFR.

Fifth, the desired approach should carefully design the semantics of refining
functional requirements or NFR for easier management of relationships among
functional requirements and NFR. On one side, no functional requirements
should be refined into NFR. All functional requirements can only be composed
with various domain knowledge to form NFR, which suggests that functional
requirements have to be implemented while meeting corresponding NFR. On
the other side, no functional requirements should be refined from a NFR. NFR
should only be refined into NFR. In fact, NFR mainly elaborates stakeholders’
expectations on quality of a target system. A refinement of NFR contributes to
the original stakeholder’s needs no matter how it is represented, whether it is
‘soft’, ‘operationalizable’, ‘cross-cutting’ or not. As a result, the original ‘support ’
relationship from functional requirements (usually operationalizations of a NFR)
to the NFR is modeled as the ‘contribute-to’ relationships from child NFR to
their parents. Note that the original ‘hurt ’ relationship from an operationaliza-
tion of a NFR to another NFR is modeled as a new NFR that substitutes for the
operationalization. For example, usable(CAPTCHA(Log-on)) can be introduced
to substitute for the CAPTCHA (Log-on) which hurts usability of Log-on.

Finally, the desired approach should model conflictions among multiple NFR
as special NFR for easier management on their traceability and optionality. Note
that potential conflictions among multiple NFR must be carefully solved in re-
quirements model, software architecture, or ultimately a target system [11]. That
is to say, a so-called confliction can only exist in the process of analyzing NFR
but not in the final requirements model. Two conflicting NFR are just two inter-
acting NFR that need to be satisfied simultaneously and can be reasonably seen
as a new NFR to be satisfied. For example, as CAPTCHA(Log-on) contributes to
security while hurts usability, the confliction among security and usability can be
modeled as another NFR usable(CAPTCHA(Log-on)). Modeling conflictions as a
new NFR will explicitly drive developers to consider possible correlations among

A Process-Oriented Conceptual Framework on Non-Functional Requirements 13

multiple NFR during downstream development activities and enable easier NFR
traceability management.

In addition, a desired NFR should enable the explicit management of option-
ality of a NFR (modeling its binding-state) because some NFR are optional due
to the optionality of domain knowledge items (tactics) or system abstractions
they are associated with. In fact, conflictions among NFR are also optional due
the optionality of NFR. So modeling conflictions as a new NFR would enable
the uniform management on the optionality of NFR as well as of conflictions
among multiple NFR.

6 Related Work

The concept of NFR has been proposed for almost three decades [5]. Although
there is no consensus on NFR, two most popular and influential working NFR
definitions suggest that NFR are mainly concerned with constraints or attributes
of a system [7], such as various “ilities” and “ities”, along with many other things
that do not end with either of them [6]. These definitions focus on characterizing
NFR from the product perspective and lack of operable guidance for understand-
ing and handling NFR in the process of software development.

From process-oriented perspective, some researchers argued that there are no
clear-cut distinction between requirements engineering and software engineer-
ing [8,13]. Some researchers even argued that functional requirements, NFR, and
software architecture should not be separated [16]. Researchers also proposed to
represent and use NFR from the process-oriented perspective [9,10] or to record
NFR-related design knowledge along with software architecting [20,21]. How-
ever, no researchers have discussed how to concisely and uniformly characterize
the essence of NFR observed across different development stages in a formal def-
inition to clarify relationships between NFR and functional requirements, NFR
and NFR, NFR and other system abstractions, and NFR and domain knowl-
edge. In contrast, this paper unified some essential characteristics of NFR that
are identified in process-oriented perspective across different development stages
into a concise NFR definition, which forms a theoretical foundation for inventing
more practical NFR modeling approaches.

Note that there are some controversial requirements that could be catego-
rized into either functional requirements or non-functional requirements, such as
CAPTCHA or undo/redo. These requirements on one side can take inputs and
produce outputs, which makes them deserve to be treated as functional require-
ments. They on the other side usually influence NFR positively or negatively and
also deserve to be modeled as NFR. Some researchers noticed the particularity of
these requirements and name them as neither functional requirements nor NFR,
but as operationalizations [10] or responsibilities [11]. By doing so, additional
types of relationships had to be introduced to record the inherent connections
among operationalizations or responsibilities and NFR. Our strategy is to uni-
formly model the controversial requirements as operationalizable NFR. As a
result, the possible types of relationships among functional requirements and

14 L. Sun and J. Park

NFR and those among NFR in requirements model would be simplified. Fur-
thermore, traditional NFR definitions did not reveal that multiple NFR might
interfere with each other. As a result, existing NFR modeling approaches model
conflictions among NFR as new relationships and then manage and trace them
separately [10,25]. This makes the NFR modeling approaches unnecessarily com-
plex in terms of managing various relationships among functional requirements
and NFR and those among NFR and makes it difficult to trace conflictions to
software architecture [19]. In contrast, our definition models the refinements of
NFR or the possible conflictions among multiple NFR as special NFR, which
drives developers to focus on NFR-related issues during downstream develop-
ment activities and is also conducive for NFR traceability management.

7 Conclusion

It is long believed that explicitly identifying, modeling, managing Non-Functional
Requirements (NFR) is necessary for developers to build software with satisfi-
able quality. However, existing NFR definitions cannot provide operable guidance
for developers to identify and manage NFR. This paper proposes a conceptual
framework on NFR to concisely and uniformly characterize the essence of NFR
observed from the process-oriented perspective, and presents a checklist to guide
NFR identification in software development process. It suggests developers to
identify NFR as the composition of domain knowledge and system abstractions,
such as functional requirements, NFR, architectural components and connectors,
and modules in a target system, in specific contexts. This paper also analyzes
the fundamental capabilities that a desired NFR modeling approach should de-
liver. In the future, we will explore more practical NFR modeling and managing
approaches on the basis of the proposed conceptual framework.

Acknowledgment. This work is supported by National Science Foundation of
China (No. 61202019).

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: A roadmap. In: ICSE
2000, pp. 35–46. ACM, New York (2000)

2. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:
FOSE 2007, pp. 285–303. IEEE Computer Society Press, Washington, DC (2007)

3. Software & Systems Engineering Standards Committee: IEEE Std 1061-1998, IEEE
Standard for a software quality metrics methodology. IEEE Computer Society,
Tech. Rep. (1998)

4. Sommerville, I., Kotonya, G.: Requirements Engineering: Processes and Tech-
niques. John Wiley & Sons, Inc., New York (1998)

5. Yeh, R.T., Zave, P., Conn, A.P., Cole, G.E.: Software requirements analysis - new
directions and perspectives. In: Vick, C.R., Ramamoorthy, C. (eds.) Handbook of
Software Engineering, Van Nostrand Reinhold Co. (1984)

6. Chung, L., do Prado Leite, J.C.S.: On Non-Functional Requirements in Software
Engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) My-
lopoulos Festschrift. LNCS, vol. 5600, pp. 363–379. Springer, Heidelberg (2009)

A Process-Oriented Conceptual Framework on Non-Functional Requirements 15

7. Glinz, M.: On non-functional requirements. In: RE 2007, pp. 21–26 (October 2007)
8. de Boer, R.C., van Vliet, H.: On the similarity between requirements and architec-

ture. Journal of Systems and Software 82(3), 544–550 (2009)
9. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional re-

quirements: A process-oriented approach. IEEE Transactions on Software Engi-
neering 18(6), 483–497 (1992)

10. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements
in Software Engineering, 1st edn. The Kluwer International Series in Software
Engineering, vol. 5. Springer (October 1999)

11. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Professional (2003)

12. Forward, A., Lethbridge, T.C.: Problems and opportunities for model-centric versus
code-centric software development: A survey of software professionals. In: MiSE
2008, pp. 27–32. ACM, New York (2008)

13. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3),
115–119 (2001)

14. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing (2009)

15. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects con-
sider non-functional requirements: An exploratory study. In: RE 2012, pp. 41–50
(September 2012)

16. Paech, B., Dutoit, A.H., Kerkow, D., Knethen, A.V.: Functional requirements,
non-functional requirements, and architecture should not be separated -a position
paper. In: REFSQ 2002, Essen, Germany (2002)

17. ISO/IEC: ISO/IEC 9126. Software engineering – Product quality. ISO/IEC (2001)
18. Pohl, K., Böckle, G., Linden, F.V.D.: Software product line engineering: founda-

tions, principles, and techniques. Springer (2005)
19. Cleland-Huang, J., Marrero, W., Berenbach, B.: Goal-centric traceability: Using

virtual plumblines to maintain critical systemic qualities. IEEE Transactions on
Software Engineering 34(5), 685 (2008)

20. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: WICSA 2005, pp. 109–120. IEEE Computer Society (2005)

21. Kruchten, P.: An Ontology of Architectural Design Decisions in Software Intensive
Systems. In: 2nd Groningen Workshop Software Variability, pp. 54–61 (October
2004)

22. Bøegh, J.: A new standard for quality requirements. IEEE Software 25(2), 57–63
(2008)

23. Kienzle, D., Elder, M., Tyree, D., Edwards-Hewitt, J.: Security patterns repository
version 1.0. Technical report (2002)

24. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, University of California, Irvine (2000)

25. Mairiza, D., Zowghi, D.: Constructing a catalogue of conflicts among non-functional
requirements. In: Maciaszek, L.A., Loucopoulos, P. (eds.) ENASE 2010. CCIS,
vol. 230, pp. 31–44. Springer, Heidelberg (2011)

26. Sandhu, R., Samarati, P.: Access control: principle and practice. IEEE Communi-
cations Magazine 32(9), 40–48 (1994)

27. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 294–311. Springer, Heidelberg (2003)

28. Wayman, J.L., Jain, A.K., Maltoni, D., Maio, D.: Biometric Systems: Technology,
Design and Performance Evaluation, 1st edn. Springer (2010)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 16–30, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Capturing Security Requirements Using Essential Use
Cases (EUCs)

Syazwani Yahya 1, Massila Kamalrudin1,**, Safiah Sidek1, and John Grundy2

1 Innovative Software System and Services Group,
Universiti Teknikal Malaysia Melaka, Malaysia

2 Faculty of Science, Engineering and Technology
Swinburne University of Technology

Melbourne, Australia
{massila,safiahsidek}@utem.edu.my, syazwaniyahya13@gmail.com,

jgrundy@swin.edu.au

Abstract. Capturing security requirements is a complex process, but it is crucial
to the success of a secure software product. Hence, requirements engineers need
to have security knowledge when eliciting and analyzing the security require-
ments from business requirements. However, the majority of requirements en-
gineers lack such knowledge and skills, and they face difficulties to capture and
understand many security terms and issues. This results in capturing inaccurate,
inconsistent and incomplete security requirements that in turn may lead to inse-
cure software systems. In this paper, we describe a new approach of capturing
security requirements using an extended Essential Use Cases (EUCs) model.
This approach enhances the process of capturing and analyzing security re-
quirements to produce accurate and complete requirements. We have evaluated
our prototype tool using usability testing and assessment of the quality of our
generated EUC security patterns by security engineering experts.

Keywords: Software Engineering, Requirements Capturing, Security Require-
ments, Secure Software Development, Essential Use Case (EUC).

1 Introduction

There is an increasing need to look at the cost, reliability and safety of software sys-
tems. With the increase of threats and vulnerabilities in many software systems, secu-
rity issues involving software have become widespread, frequent and serious. We
believe that enumerating accurate security requirements can help system architects
and security engineers to develop realistic and meaningful secure software [1]. Secu-
rity requirements elicitation is usually conducted during the early phase of the system
life cycle. Often these are only generic lists of security mechanisms, such as password
protection, firewalls, virus detection tools and SSL layer (for cryptographically pro-
tecting communications) [1, 2] [12]. However, these security requirements often do

* Corresponding Author.

 Capturing Security Requirements Using Essential Use Cases (EUCs) 17

not present a complete solution to the security problems of the target application un-
der development. It is crucial for software engineers to accurately capture the essen-
tial security mechanisms (such as access control) and implement the correct design
solutions for security (such as robust design and good technology choices) that makes
software attacks much more difficult. In our experience, we have found that security
requirements elicitation and analysis necessary for a better set of security require-
ments seldom happens. According to Salini [12], even if it is done, the security re-
quirements are often developed independently from the rest of the requirements engi-
neering activities: They are not integrated into the mainstream of the requirements
engineering activities. As a consequence, security requirements that are specific to the
application of software or system and the protection of essential services and assets
are often neglected. A lot of requirements engineering research and practice have tried
to address the security capabilities that a software or system should provide. Howev-
er, they have limited focus since they tend to describe design solution in terms of
protection mechanisms only. They lack of making declarative propositions [12] with
regards to the required level of protection that can be accurately established by captur-
ing the correct security requirements in the first place.

A lot of attention has been given to the functional requirements of the system from
the user’s view, whilst less attention is given to security requirements. [6][12]. Many
practices do not tackle security requirements at all, but rather focus on the implemen-
tation mechanisms intended to satisfy unstated requirements and assumptions. As a
result, security requirements that are specific to the system and that provide protection
of essential services and assets are often neglected. This can cause substantial security
problems at a later stage [2, 3]. In practice, when capturing security requirements
from clients, requirements engineers frequently use some forms of natural language,
written either by clients or themselves. This forms a human-centric representation of
the requirements accessible to both the engineers and clients. However, due to the
ambiguities and complexities of the natural language and the process of capture, these
requirements often have inconsistencies, redundancies, incompleteness and omissions
which can lead to the development of inaccurate secure software. Our research de-
scribed in this paper introduces a new, more effective approach using semi-formal
models called Essential Use Cases (EUCs) that support requirements engineers in
capturing security requirements. This study is an extension of our earlier work [34]
[36] to provide better supports for the capturing of security requirements that can
enhance the correctness and completeness of the captured security requirements.

This study contributes to the enhancement of the quality of software intended to be
developed. The essence of the approach is to support capturing security elements from
the normal business requirements expressed in natural language. To allow require-
ments engineers and stakeholders to detect security requirements, we adopted the
concept of essential interactions patterns and essential use case patterns. We hig-
hlighted the potential of this tool for quality security requirements by annotating a
visual, semiformal model of the security requirements and normal business require-
ments depicted in our support tool. We evaluated the usability of our prototype tool
using a survey conducted with a sample of selected end-users. An evaluation of our
security requirements patterns by experts was also conducted.

18 S. Yahya et al.

2 Background

The Essential Use Case (EUC) approach was developed by Constantine and Lock-
wood [37]. EUCs are designed to resolve problems which occur in conventional Use
Case modeling and they have important benefits over that approach [41]. An EUC is
defined as a “structured narrative, expressed in a language of the application domain
and of users, comprising a simplified, generalized, abstract, technology free and inde-
pendent description of one task or interaction that is complete, meaningful, and well-
defined from the point of view of users in some role or roles in relation to a system
and that embodies the purpose or intentions underlying the interaction” [37]. An EUC
is thus a form of dialogue between a user and a system which supports better commu-
nication between the developers and the stakeholders. An EUC is shorter and simpler
as compared to a conventional use case since it comprises an abstraction of only es-
sential steps and the user’s intrinsic interest. An EUC aims to identify “what the sys-
tem must do” without being concerned on “how it should be done”.

EUCs are made up of a set of organized “abstract interactions” and EUCs extracted
from natural language specifications can be compared against templates of “interac-
tion patterns” to detect requirements quality problems. Requirements engineers need
to derive appropriate essential interactions from the requirements at a correct level of
abstraction. Biddle et al. [42] and Kamalrudin et al. [5] found that almost all users
have problems defining the right level of abstraction and exerted that the abstraction
process to be time consuming. These problems are some of the reasons why it is diffi-
cult to check security requirements for consistency and completeness. In this case,
we anticipate that a Security Essential Interaction Library can mitigate these prob-
lems. This library consists of important key phrases (security essential interactions)
and mappings to appropriate essential security requirements (security abstract
interactions).

A key reason for choosing the EUC model is that it lends itself to a deeper analysis
that enables the identification of security requirements by extracting from the normal
business requirements. Once a EUC model has been extracted, it can be compared
against a pattern in our SecEUC Interaction Pattern Library.

3 Motivation

Many studies have found that most software engineers have poor training in eliciting,
analyzing, and specifying the security requirements. This is due to a considerable lack
of security knowledge [1] [15] [16] [17] [18]. New security challenges are growing
along with today’s complexity and interoperability software systems development.
Requirements are provided by a variety of project partners; thus, the specifications are
voluminous and contain many requirements. Further, the process of manually eliciting
requirements is tedious [3]. To correctly capture security requirements, good skills
and knowledge in both the requirements and security areas are required. Shielding
security loopholes and establishing correct and accurate security requirements are
considered to be a difficult task. Yet, this essential element is taken for granted by

 Capturing Security Requirements Using Essential Use Cases (EUCs) 19

many. It is important for requirements engineers to understand that security require-
ments are more than just dealing with security solutions that provide strong pass-
words, configure SSL, or validate user input. It involves a process of accurately cap-
turing the right security controls for what the applications and business really needs.
However, requirements engineers often fail to pay sufficient attention to security con-
cerns, treating them as non-functional requirements [4]. The majority of software
projects deal with the security when the system has already been designed and some-
times even when it has been put into operation. In extreme cases, the actual security
requirements themselves are never well understood [4]. Requirements engineers
without sufficient experience in security face the risk of over-looking security re-
quirements leading to security vulnerabilities that are easily exploited [3]. It is widely
known that security requirements need to be considered at the early stage of software
development.

Recognizing the importance of security requirements in achieving a secure soft-
ware development, Microsoft has adopted a systematic security assurance process, the
Security Development Lifecycle (SDL). As a company-wide initiative and a mandato-
ry policy since 2004, the SDL has a significant role in embedding security and priva-
cy in the software and culture at Microsoft. During the software development life
cycle (SDLC), security requirements are elicited at the most early phase, which is at
the requirement phase, as shown in Figure 1 [13]:

Fig. 1. The Microsoft Security Development Lifecycle – Simplified [13]

In a software organization, it is common to have a project team that consists of re-
quirements engineers and security engineers. The primary responsibilities of require-
ments engineers or system analysts are to gather, analyze, document and validate the
needs of the project stakeholders [14]. They are responsible at the requirement phase
which is to capture security requirements from clients. Security engineers, on the
other hand are responsible for designing, developing and deploying security related
systems and security in systems. Their responsibilities and skills can be very specific
such as designing a hardware security appliance [19]. The task of a security engineer
is usually centered at the implementation or design phase.

Although both engineers have complementary responsibilities in capturing re-
quirements, they do not communicate effectively with each other; hence, there is a

20 S. Yahya et al.

lack of integration on the work done between them. This condition can lead to incon-
sistency and incorrectness of the developed software and it fails to fulfill the needs of
the stakeholders. Additionally, the existing standard, such as the Common Criteria
(ISO) has been identified as extensive, complex and difficult to comprehend by re-
quirements engineers [27]. The existing techniques, such as interviews and brains-
torming are found to be time consuming and fail to accurately identify security
requirements. In this case, captured security requirements using the existing standards
and techniques are prone to be inaccurate, inconsistent and incomplete, and this can
lead to insecure software systems.

4 Our Approach

We explored the use of semi-formal model Essential Use Cases (EUCs) to develop a
new approach for capturing security requirements. We automate the capturing process
of security requirements from the business requirements using (EUCs) model. Fur-
ther, a rapid prototyping approach was adopted to ensure the production of accurate
and secure software. Next, pattern libraries called Security Essential Use Cases (Se-
cEUC), Security Essential Interactions (SecEI) and Security Controls Patterns
(SecCtrl) library were developed to assist the capturing process for security require-
ments. This is a lightweight approach that allows requirements engineers to identify
and capture the security requirements and keep them consistent within the business
requirements. The following section describes the pattern library for capturing securi-
ty requirements.

4.1 SecEUC Pattern Libraries

Our security pattern library consists of three library patterns, which are the Security
Essential Use Cases (SecEUC), Security Essential Interaction (SecEI), and Security
Controls (SecCtrl) patterns. The SecEUC library patterns which is based on EUCs
was generated from the normal business requirements, while the SecEI library pat-
terns is based on the essential interactions found in the textual requirements related to
security elements. The development of the SecEUC patterns was adapted from the
works of Kamalrudin et al. 2011 [34] [36]. Through the extraction process, phrases
from the textual natural language requirements were analyzed and matched to the
essential interaction pattern library to find an appropriate abstract interaction. The
abstract interactions associated with security are called SecEUC. Essential Interac-
tions that contain the security elements are called SecEI.

The identification of associated security elements are based on the definitions from
the basic security services [38]. It was found that multiple SecEI are associated with
one SecEUC. For example, the essential interaction “key in username and password”
and “log in” were identified as security related and they were mapped to a SecEUC
“identify self”. This is because all of them have the attributes of security. Other ex-
amples of the pattern library are shown in Table 1.We then designed our SecCtrl
library patterns based on basic security services [38], such as the access control
(authorization), authentication (integrity), confidentiality (privacy), availability and
accountability (non-repudiation). The SecCtrl was developed for the purpose of

 Capturing Security Requirements Using Essential Use Cases (EUCs) 21

mapping it to the prototype generation and providing the mandatory security controls.
This pattern library helped us to identify the security controls that are relevant to a
particular SecEUC. The association between the SecEUC and SecCtrl is that one Se-
cEUC can have one or more than one SecCtrl. For example, “Identify Self” of SecEuc
was mapped to “Authentication” and “Authorization” SecCtrl. Other examples of the
pattern library are shown in Table 1.

Table 1. Examples of our security-oriented EUC pattern libraries

 SecEI SecEUC SecCtrl

Check password Identify Self Authentication
Authorization Check username

Verify username

Make payment Make payment Authentication
Transaction Complete payment form

4.2 Using Our Approach

Figure 2 shows the overview of our approach that enhances the process of capturing
security requirements. The process of our approach begins after the requirement engi-
neer gathered the requirements from the stakeholders. The collected requirements are
in the forms of textual natural language requirements. The followings are the se-
quence of the process.

Fig. 2. Overview of our approach

22 S. Yahya et al.

The process starts when the textual requirements are analyzed and traced to the
EUCs patterns library for appropriate abstract interaction in a form of EUC model (1).
Then, SecEUC are derived from the generated EUC Models based on the categoriza-
tion of their attribute related to the security element as defined in the SecEUC pattern
library (2). Each SecEUC is mapped to EUI pattern library (3) for the generation of
abstract prototype in a form of EUI model. Then, each EUI model is verified with a
defined mandatory security control in the SecCtrl library patterns (4). Next, a recom-
mendation of graphical user interfaces (GUI) is provided to visualize the security
requirements based on the generated SecEUC (5). This helps to ensure the consisten-
cy and correctness of the captured security requirements with the original business
requirements provided by the end-user.

5 Tool Support and Usage Example

5.1 SecMEReq : Prototype Tool

We have developed a prototype tool to support our EUC-based requirements capture
and analysis process, an extension of our earlier MEReq [7] tool. Figure 3 shows our
extended version of MEReq, called SecMEReq. The tool allows requirements engi-
neers to automate the elicitation process for capturing security requirements. The
selected phrases in the textual requirements show the resulting extracted security es-
sential interactions. Meanwhile, the selected essential interactions show the sources
from which the textual natural language phrases were derived. This provides a tracea-
bility support mechanism between the textual natural language requirements and the
derived security EUC models. Engineers can then modify the generated security EUC
model and/or the original textual natural language requirements. This includes adding
phrases and interactions, re-ordering phrases and interactions, uploading and re-
uploading requirements, deleting phrases and interactions and modifying phrases and
interactions descriptive texts. Users (engineers) are also allowed to re-extract the es-
sential interactions and associated traceability links. In this case, engineers need to
have a basic understanding of the Essential Use Case concept and methodology only.
To demonstrate, our tool key features, user scenario and figure of the tool support are
provided as below:

Nancy, a requirements engineer, would like to validate the security requirements
which has a mixture of the business and security requirements, which she has col-
lected from a client, Nick, who is a car rental information manager. To do this, as
shown in Figure 3, she types the requirements in a form of user scenario or copies
them from an existing file on the textual editor (1). Once she has finished typing or
copying the requirements, the tool generates the model of the essential requirements
(abstract interactions) and the screen will show the EUC models containing the user
interaction and system responsibility side by side to the chosen requirements (2). On
the same display screen, she verifies the list of abstract interactions provided by the
tool as shown in figure 4. From the generated EUC, she then captures the security
requirements from the business requirements in a form of SecEUC which is presented
in the green color boxes. Further, she checks the consistency and dependencies

 Capturing Se

between the SecEUC comp
“capture SecEI” (3) event
tween the captured security
this stage, the associated S
quirements (3A). In order to
ease the discussion process
low-fidelity prototype - EU
that has the relation with s
the tool then provides her
SecEUC (4). In order to vis
tool that translates the EUI
then verify the consistency
with the client-stakeholder.

Fig. 3. Require

F

1

3A

3

ecurity Requirements Using Essential Use Cases (EUCs)

ponents and the SecEI by performing a trace back using
handler. From here, she could verify the consistency
y requirements with the original textual requirements.

SecEI are highlighted with yellow colors at the textual
o further validate her captured security requirements and
 with Nick, she has the tool map the SecEUC model to

UI prototype (3B). As shown in Fig 3(3B), the EUI mo
security is also colored in green. From the EUI prototy
with a set of mandatory security control for the captu

sualize the captured security requirements, she then has
prototype to a more concrete UI view (5). From here,

y and the correctness of the captured security requireme

ements Example and a SecMereq Usage Example

Fig. 4. SecMereq Tool Support in use

2
3B

4

5

23

the
be-

. At
 re-
d to
the

odel
ype,
ured

the
she

ents

24 S. Yahya et al.

5.2 Tool Architecture

Fig. 5

We have enhanced our Me
capture security requiremen
type tool that consists of th
the interaction with users. U
bile or a web browser. A te
mandatory security controls
graphical user interfaces (G
information. A dynamic co
Apache tomcat servers are u
at this stage. To build the J
it is recognized to provide a
Java Server Pages (JSP) all
JavaScript and HTML5. T
patterns library: the essent
essential use cases (SecEU
terns are used to capture th
security controls as well as

6 Evaluation

6.1 Tool Usability

We conducted a prelimina
usability. The participants o

5. A High-level architecture of SecMereq

ereq [7] tools by adding a new module and functions
nts. Figure 5 shows the high-level architecture of the pro
hree tiers. The first tier contains the front-end that hand
Users are able to view the prototype tool either from a m
extual documentation of the requirement is inserted and
s are provided along with the recommendations for suita
GUI). The middle-tier contains the rules for the process
ontent processing and generation takes place at this le
utilized as the middleware or platform for the developm

Java applications, Eclipse Juno was selected for the IDE
a superior Java editing with validation and code assistan
lows writing a text using client’s languages, which are

Tier 3 manages the access to the database that stores
tial use cases (EUCs), essential interactions (EI), secu

UC) and security essential interactions (SecEI). These p
he security requirements and to recommend the mandat
to generate security requirements prototype.

ary evaluation of our developed prototype to evaluate
of this study were 40 students, comprising 16 males and

s to
oto-
dles
mo-
the

able
sing
vel.

ment
E as
nce.
the
the

urity
pat-
tory

e its
d 24

 Capturing Security Requirements Using Essential Use Cases (EUCs) 25

females. The average age of the students was 22 years old. They were final year stu-
dents from the Bachelor of Computer Science majoring in Software Engineering.
They have sufficient understanding of requirements engineering and were familiar
with the concept and methodology of essential use cases and security .To explore the
functionality of the tool, the students were provided with a set of requirements on
“online car rental registration”. They were informed that they will be observed and
they are free to say aloud their responses of the tool while completing the task. The
purpose of the observation was to identify the problems and misconceptions faced by
the participants when using the tool. Further, the say aloud evaluation of the tool pro-
vided us with the users’ spontaneous responses and suggestions for improvement.
After the completion of the task, students were requested to answer four questions
related to the usability [5] which consists of the usefulness, ease of use, ease of
learning and satisfaction of the tool based on a five-level Likert scale. Students’ res-
ponses for these questions were analysed and the results of the survey are shown in
Figure 6.

Fig. 6. Preliminary Usability Test Results

More than 90% of the participants agreed that the tool is useful, 70% agreed that
the tool is easy to use, 80% agreed that the tool is easy to learn, and 70% were satis-
fied with the tool. None of the participants expressed disagreement to the four aspects
evaluated in this survey. It can be concluded that our prototype tool is useful, easy to
use, easy to understand and able to satisfy users. There are some enhancements that
we need to consider for the refinement of our tool. Based on the say aloud responses,
the suggestions given by the participants were mostly related to the improvement of
the interface design of the tool and the provision of a user manual or a tutorial for
users. Therefore, we plan to integrate the tool with existing security tools with the
security features to ease the design and development phase. This stage is closely re-
lated to the work of the security engineers. Key threats to the validity of this findings
are the selection bias due to our method of selecting the sample. The selection of par-
ticipants for the preliminary study was based on one group of students. Hence, the
subjects in the group were not homogenous with regards to the preference of the

26 S. Yahya et al.

interface design. However, they were similar in one or more of the subject-related
variables, such as the agreement towards the easiness of using the tool.

6.2 Preliminary SecEUC Patterns Evaluation

We also conducted an evaluation of our SecEUC patterns using five experts in securi-
ty requirements from IBM Corporation from India, Austria, France and Malaysia.
They were invited to evaluate the correctness of our new SecEUC patterns library by
evaluating the classification of security controls with the associated SecEUC and
SecEI. They were given five sets of requirements from a small size security applica-
tion requirements document. This consisted of 10 SecEUC, 50 SecEI and five basic
security controls: confidentiality, integrity, availability, authentication and authoriza-
tion. They were asked to answer a few questions using likert-scale and some open
ended questions. The results of this expert evaluation are shown in Figure 7.

Fig. 7. Preliminary Patterns Evaluation Results

As shown in Figure 7, all of the general security controls rating have some disa-
greement. Based on this feedback, the disagreement does not mean that we have
provided incorrect selection, but they would prefer some other security control classi-
fications for each of the SecEUC. They requested more options for security controls
for more complex requirements. For example, the security requirements “login” are
currently mapped to the security controls “Authorization”. Some experts think it
should be mapped to another security control such as Authentication. They also of-
fered some recommendations for correct and relevant security controls associated to a
particular SecEUC. Here, we will update the security patterns from time to time in
accordance with this feedback. Based on this study, the dependency on basic security
services is not purely relevant for capturing more complex security requirements.
Therefore, a further study on the patterns relates to more establish security standards
is required.

0%

20%

40%

60%

80%

100%

CONFIDENTIALITY INTEGRITY AVAILABILITY AUTHENTICATION AUTHORIZATION

stongly agree agree neutral disagree strongly disagree

PRELIMINARY PATTERNS EVALUATION

 Capturing Security Requirements Using Essential Use Cases (EUCs) 27

7 Related Work

Many methods, approaches, techniques and tools have been used to capture security
requirements. Viega [22], showed how to build security requirements in a structured
manner that is conducive to iterative refinement. If this structured procedure is fol-
lowed correctly according to the metrics for evaluation, it would serve as a framework
that provides a significant improvement for the traditional methods that do not con-
sider security at all. They also provided an example using a simple three-tiered archi-
tecture. The basic idea behind the way that CLASP handles security requirements is
the performance of a structured walkthrough of resources, determining how they ad-
dress each core security service throughout the lifetime of that resource. While it is
obviously far more effective than any ad-hoc treatment of security requirements, this
methodology is still new and immature.

Hussein and Zulkernine [23], proposed a framework for developing components
with intrusion detection capabilities. The first stage of this framework is requirements
elicitation, in which developers identify services and intrusions. In this framework,
they capture users requirements regarding the services and functionalities provided by
the components, and identify the unwanted or illegal usage of components by intrud-
ers. Intrusion scenarios are elicited through the use of misuse-cases of a UML profile
called UMLintr. Yet, their proposed framework still needs an extension scope on
UMLintr to other security requirements. UMLintr can be extended by exploring how
to specify and handle other security requirements like authentication, authorization,
integrity, etc. Their framework is also considered as complex intrusion scenarios.
While Agile Security Requirements Engineering proposes the extension of agile prac-
tices to deal with security in an informal, communicative and assurance-driven spirit,
it has its own limitation. It is only partially support consistency and does not support
correctness and validation checking between security and business requirements.

i* frame is a modeling and analysis framework for organizational environments
and their software systems, and is based on the intentionality relations between
agents. Tropos [26] adopts the i* modeling framework and is an agent- oriented soft-
ware system development methodology. However, it focuses on describing both or-
ganizational environment of a system and a system itself. A secure Tropos framework
to model and analyze the security requirements is then built using the Secure Tropos
methodology [27]. It especially addresses the problem of modeling security require-
ments through ownership, permission and delegation among the actors or agents
involved in the software system. In our previous research [26] we reviewed a few
related tools, such as STS-Tool [27], SecTro [28], SecReq [31], SREPPLine [30] and
ST-Tool [31]. Many researchers have done great works on their research of security
requirements engineering, particularly involving a tool that supports the security re-
quirement engineering. We found that most work used a modeling approach, such as
use cases, misuse cases, and UMLsec, to handle security requirements. UML models
are the most commonly used [34], especially use case diagrams that are widely used
by developers and requirements engineers to elicit and capture requirements. Kama-
lrudin et al. [7], [34] have shown that EUCs are useful to capture and validate
the quality of requirements. EUCs also benefit the development process as they fit a

28 S. Yahya et al.

problem-oriented rather than solution–oriented approach, thus they have the potential
to allow designers and implementers of the user interface to explore more possibili-
ties. This approach allows for a more rapid development, whereby when using EUCs,
it is no longer necessary to design an actual user interface. Although EUCs simplify
captured requirements as compared to the conventional UML use cases, and it is
beneficial to integrate the requirements and design [35][39], they have not explored
the process of capturing security requirements.

8 Conclusion and Future Work

We have described a new approach to supporting security requirements capture and
analysis using Essential Use Case models. Our prototype tool, SecMereq, provides
support for extracting EUCs and security requirements from natural language text,
prototype generation including security interfaces, and validation of extracted security
requirements using a library of security related patterns. We have evaluated our tool
in terms of both its usability for target end users, and for quality of the encoded EUC-
based security patterns.

In future, we plan to enhance our security pattern library using a-well-established
standard: Common Criteria. Then we intend to compare the efficacy of our tool with
manual approaches of extracting security requirements. Additionally, we will work on
the possibility of automating currently complicated usage of the standard to produce a
simpler practice by using our tool support. This would then create the possibility of
allowing a complete and consistent capture of security requirements from normal
business requirements.

Acknowledgments. The authors also would like to acknowledge Universiti Teknikal
Malaysia Melaka and the Ministry of Education Malaysia of the scholarship My-
brain15. We also would like to thank the funding of this ERGS research grant:
ERGS/2013/FTMK/ICT01/UTEM/E00026 for funding this research.

References

1. Alam, M.: Software Security Requirements Checklist. International Journal of Software
Engineering, IJSE 3(1), 53–62 (2010)

2. McGraw, G.: Building Security. In: Software Security. IEEE Security and Privacy, pp. 80–83
(2004)

3. Schneider, K., Knauss, E., Houmb, S., Islam, S., Jürjens, J.: Enhancing security require-
ments engineering by organizational learning. Requirements Engineering 17(1), 35–56
(2011)

4. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P., Giorgini, P.: STS-tool: Socio-technical
Security Requirements through social commitments. In: Conference on IEEE International
Requirements Engineering, pp. 331–332 (2012)

5. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using essential
use case interaction patterns. In: Proceeding of the 33rd International Conference on Soft-
ware Engineering - ICSE 2011, p. 531 (2011)

 Capturing Security Requirements Using Essential Use Cases (EUCs) 29

6. Elahi, G., Yu, E.: A Semi-automated Decision Support Tool for Requirements Trade-Off
Analysis. In: IEEE 35th Annual Computer Software and Applications Conference,
pp. 466–475 (2011)

7. Kamalrudin, M., Grundy, J., Hosking, J.: Tool Support for Essential Use Cases to Better
Capture Software Requirements, pp. 327–336 (2010)

8. Mellado., D., et al.: A systematic review of security requirements engineering. Computer
Standards and Interfaces (2010)

9. Ding, W., Marchionini, G.: A Study on Video Browsing Strategies. Technical Report,
University of Maryland (1997)

10. Fröhlich, B., Plate, J.: The cubic mouse: A new device for three-dimensional input. In:
Proceedings of the SIGCHI (2000)

11. Firesmith, D.: Specifying reusable security requirements. Journal of Object Technology
(2004)

12. Salini, P.: Survey and analysis on Security Requirements Engineering. Journal Computers
and Electrical Electrical Engineering,
http://linkinghub.elsevier.com/retrieve/pii/
S0045790612001644 (accessed October 1, 2012)

13. Corporation, M.: Simplified Implementation of the SDL. pp. 1–17 (2010)
14. Wiegers, K.E.: Software Requirements. O’Reilly (2009)
15. Souag, A., Salinesi, C., Comyn-Wattiau, I.: Ontologies for Security Requirements: A Lite-

rature Survey and Classification. In: Bajec, M., Eder, J. (eds.) CAiSE Workshops 2012.
LNBIP, vol. 112, pp. 61–69. Springer, Heidelberg (2012)

16. Rodríguez, A., Fernández-Medina, E., Piattini, M.: Towards a UML 2.0 extension for
the modeling of security requirements in business processes. In: Fischer-Hübner, S.,
Furnell, S., Lambrinoudakis, C. (eds.) TrustBus 2006. LNCS, vol. 4083, pp. 51–61.
Springer, Heidelberg (2006)

17. Backes, M., Pfitzmann, B., Waidner, M.: Security in Business Process Engineering. In:
van der Aalst, W.M.P., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 168–183.
Springer, Heidelberg (2003)

18. Herrmann, G., et al.: Viewing Business Process Security from Different Perspectives. In:
11th International Bled Electronic Commerce Conference, Slovenia, pp. 89–103 (1998)

19. The SANS Institute, Determining the Role of the IA / Security Engineer, InfoSec Reading
Room (2010)

20. Kamalrudin, M.: Automated Support for Consistency Management and Validation of Re-
quirements”. PhD thesis. The University of Auckland (2011)

21. Myagmar.: Threat Modeling as a Basis for Security Requirements. In: Proceedings of the
ACM Workshop on Storage Security and Survivability, pp. 94–102 (2005)

22. Viega, J.: Building Security Requirements with CLASP. In: Proceedings of the Workshop
on Software Engineering for Secure Systems Building Trustworthy Applications, SESS
2005, pp. 1–7 (2010)

23. Hussein, M., Zulkernine, M.: Intrusion detection aware component-based systems: A spe-
cification-based framework. Journal of Systems and Software 80(5), 700–710 (2007)

24. Du, J., et al.: An Analysis for Understanding Software Security Requirement Methodolo-
gies. In: Third IEEE International Conference on Secure Software Integration and Reliabil-
ity Improvement, pp. 141–149 (2009)

25. Giorgini, P., et al.: Modeling security requirements through ownership, permission
and delegation. In: 13th IEEE International Conference on Requirements Engineering
(RE 2005), pp. 167–176 (2005)

30 S. Yahya et al.

26. Yahya, S., Kamalrudin, M., Sidek, S.: A Review on Tool Supports for Security Require-
ments Engineering. In: IEEE Conference on Open Systems, Sarawak, Malaysia (2013)

27. Paja, E., et al.: STS-tool: Socio-technical Security Requirements through social commit-
ments. In: 2012 20th IEEE International Requirements Engineering Conference (RE), pp.
331–332. IEEE (2012)

28. Pavlidis, M., Islam, S.: SecTro: A CASE Tool for Modelling Security in Requirements
Engineering using Secure Tropos. In: Proceedings of the CAiSE forum, CAiSE 2011,
pp. 89–96 (2011)

29. Houmb, S.H., Islam, S., Knauss, E., Jürjens, J., Schneider, K.: Eliciting security require-
ments and tracing them to design: An integration of Common Criteria, heuristics, and
UMLsec. Requirements Engineering 15(1), 63–93 (2010)

30. Mellado, D., Fernández-medina, E., Piattini, M.: Security Requirements Engineering
Process for Software Product Lines: A Case Study and Technologies SREPPLine. pp. 1–6
(2008)

31. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: ST-Tool: A CASE tool for securi-
ty requirements engineering. In: Proceedings of 13th IEEE International Conference on
Requirements Engineering, pp. 451–452 (2005)

32. Kamalrudin, M., Hosking, J.G., Grundy, J.C.: Improving Requirements Quality using Es-
sential Use Case Interaction Patterns. In: ICSE 2011, Honolulu, Hawaii, USA (2011)

33. Kaindl, H., Constantine, L., Pastor, O., Sutcliffe, A., Zowghi, D.: How to Combine Re-
quirements Engineering and Interaction Design? In: 16th IEEE International Requirements
Engineering, RE 2008, Barcelona, Catalunya, Spain, pp. 299–301 (2008)

34. Kamalrudin, M., Grundy, J., Hosking, J.: Managing Consistency between Textual Re-
quirements. Abstract Interactions and Essential Use Cases, 327–336 (2010)

35. Yahya, S., Kamalrudin, M., Sidek, S.: The Use of Essential Use Cases (EUCs) to enhance
the Process of Capturing Security Requirements for Accurate Secure Software. In: Pro-
ceeding of Software Engineering Postgraduates Workshop, SEPoW (2013)

36. Kamalrudin, M.: Automated Software Tool Support for Checking the Inconsistency of Re-
quirements. In: 24th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2009. IEEE (2009)

37. Constantine, L.L., Lockwood, A.D.L.: Software for Use: A Practical Guide to the Models
and Methods of Usage-Centered Design. ACM Press/Addison Wesley Longman, Inc.
(1999)

38. Develop functional security requirements in Document security-relevant requirements re-
trieve, https://www.owasp.org/index.php/
Document_security-relevant_requirements (accessed July 15, 2013)

39. Blackwell, A.F., et al.: Cognitive Dimensions of Notations: Design Tools for Cognitive
Technology. In: Beynon, M., Nehaniv, C.L., Dautenhahn, K. (eds.) CT 2001. LNCS
(LNAI), vol. 2117, pp. 325–341. Springer, Heidelberg (2001)

40. What is the Common Criteria (CC) in Common Criteria and Mutual Recognition retrieve
from, http://www.cybersecurity.my/myc (accessed August 5, 2013)

41. Biddle, R., Noble, J., Tempero, E.: Essential use cases and responsibility in object-oriented
development. In: Proceeding of the Twenty-Fifth Australasian Conference on Computer
Science, Melbourne, Victoria, Australia, pp. 7–16. ACM (2002)

42. Biddle, R., Noble, J., Tempero, E.: Patterns for Essential Use Case Bodies. In: Proceedings
of the 2002 Conference on Pattern languages of programs, CRPIT 2002, vol. 13, pp. 85–98.
Computer Society, Australian (2002)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 31–44, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Utilizing TOPSIS: A Multi Criteria Decision Analysis
Technique for Non-Functional Requirements Conflicts

Dewi Mairiza1, Didar Zowghi1, and Vincenzo Gervasi1.2

1 Faculty of Engineering and Information Technology,
University of Technology, Sydney (UTS), Australia

2 Dipartimento di Informatica
Università di Pisa, I-56125 Pisa, Italy

mairiza@it.uts.edu.au, Didar.Zowghi@uts.edu.au,
gervasi@di.unipi.it

Abstract. Experience shows that many software systems suffer from inherent
conflict among Non-Functional Requirements (NFRs). It also confirms that
resolution strategies for handling NFRs conflicts often result in changing
overall design guidelines, not by simply changing one module. Therefore, in
software system development, software developers need to analyse the NFRs
and conflicts among them in order to make decisions about alternative design
solutions. This paper presents the use of Multi Criteria Decision Analysis
(MCDA) approach for NFRs conflict decision analysis. TOPSIS (Technique for
Order of Preference by Similarity to Ideal Solution), as one of the essential
MCDA techniques has been adopted to resolve such conflict. We show how the
systematic application of TOPSIS can assist software developers select the most
preferable design solutions with respect to the conflicting NFRs. The
quantitative result generated with this technique will be used as the basis for
decision support. An example that shows the application of TOPSIS is also
presented.

Keywords: Non-Functional Requirements, design solution, conflict resolution,
MCDA, TOPSIS, decision analysis.

1 Introduction

Non-Functional Requirements play a critical role in the success of software projects.
They address the essential issue of software quality [1-3] and they are also considered
as the qualifications of operations [4, 5]. Prior study reveals that there are 252 types of
NFRs listed in the literature [6]. Among them, 114 types correspond to the NFRs
perspective in relation to the “quality”. This huge number reflects how NFRs can be
more critical than individual Functional Requirements (FRs) in the determination of a
system’s perceived success or failure. Neglecting NFRs may lead to software failure,
as discussed in a series of systemic failures in the literature [6-9].

NFRs are interacting, which means that they tend to interfere, conflict, and
contradict with one another [1]. Achieving a particular type of NFR can hurt the

32 D. Mairiza, D. Zowghi, and V. Gervasi

achievement of the other type(s) of NFRs. Unlike FRs, this inevitable conflict arises
as a result of inherent contradiction among various types of NFRs [1, 2]. Certain
combinations of NFRs in the software systems may affect the inescapable trade offs
[2, 8, 10]. Dealing with and managing NFRs conflict is essential [11], not only
because conflict among software requirements are inevitable [1, 12, 13], but also
because conflicting requirements are one of the three main problems in the software
development in term of the additional effort or mistakes attributed to them [13]. A
study of two-year multiple-project analysis conducted by Egyed & Boehm [14, 15]
reports that between 40% and 60% of requirements involved are in conflict, and
among them, NFRs involved the greatest conflict, which was nearly half of the total
requirements conflict [16]. Therefore, since conflict among NFRs have also been
widely acknowledged as one of NFRs characteristics, managing this conflict as well
as making this conflict explicit is important [17].

This paper presents the outcome of our longitudinal study of investigating conflicts
among NFRs. Utilizing TOPSIS, an MCDA technique to resolve the NFRs conflicts
is presented as the novel contribution of the paper. Integrating TOPSIS with our
foregoing sureCM Framework can assist software developers performing NFRs
conflict decision analysis quantitatively.

This article is organized in five sections. The first section is the introduction to
NFRs and conflicts among them. The second section describes the research
background and some earlier works. The use of TOPSIS for NFRs conflict decision
analysis is presented in section three, continued by illustrating an example of how
TOPSIS can be applied in NFRs conflict management in section four. Then, section
five concludes this paper by highlighting some open issues that have emerged from
the investigation.

2 Study Background

A number of techniques to manage NFRs conflict have been discussed in the
literature [11]. Majority of them provide documentation, catalogue, or list of potential
conflicts. These catalogues represent the interrelationships among various types of
NFRs. Some examples are: the QARCC win-win approach [8, 18, 19], trace analyzer
of the requirements traceability technique [20], and a technique that adopts a
hierarchical constraint logic programming approach [21]. Apart from strength and
weaknesses of each technique, NFRs can be viewed, interpreted, and evaluated
differently by different people and different context within which the system is being
developed. Consequently, the positive or negative relationships among NFRs are not
always obvious. These relationships might change depending on the meaning of
NFRs in the context of the system being developed. Due to this relative characteristic,
cataloguing the NFRs relationships in order to represent the conflict among them
would inevitably produce disagreement. Identifying the NFRs conflict without
understanding the meaning of NFRs in the system may produce erroneous conflict
identification and analysis.

 Utilizing TOPSIS: A Multi Criteria Decision Analysis Technique 33

This study is conducted as part of a long-term project of investigating the relative
conflicts among NFRs. The project’s ultimate goal is to develop a novel framework to
effectively identify, characterize and resolve the NFRs conflict. Earlier versions of the
framework have been published in [22-24]. The sureCM Framework utilizes an
experimental approach as the basis to attain the evidence for managing the NFRs
conflict. As shown in Figure 1, sureCM Framework has five-layer sequential process:
P1 (Define Case); P2 (Identify Metrics and Measure); P3 (Setup and Run
Experiments); P4 (Characterize Conflict); and P5 (Conflict Decision Analysis). Each
process has different roles and outputs. Here, NFRs are characterized as the
associated system functionality and systems operationalizations, and NFRs metrics
and measures are used as parameters to gather the quantitative evidence in the
experiments. Then, this empirical evidence will be used to perform conflict decision
analysis. Conflict Decision Analysis (P5) process is currently limited to translating
the experimental result into the conflict categorization. The decision about which
alternative design solutions to be implemented within the system is not defined yet.
Given the above context, we are motivated to perform further research into extending
the framework for NFRs conflict decision analysis. The objective is to select the best
design solution with respect to those conflicting NFRs. The main research question
that we address is as follow:

“How can we use the Multi Criteria Decision Analysis (MCDA) approach to
perform NFRs conflict decision analysis?”

The utilization of MCDA approach for conflict decision analysis is presented as the

novel contribution of this paper. This approach will be applied to analyze the
alternative design solutions, with the ultimate goal to select the one that best
satisfices1 the conflicting NFRs.

3 NFRs Conflict Decision Using TOPSIS

Every decision requires the balancing of multiple factors, i.e. criteria. Therefore a
formal analysis is needed to promote a good decision-making. Multi Criteria Decision
Analysis (MCDA) assists decision makers to structure and solving decision problems
involving multiple criteria. It provides guideline that help decision makers to organize
and synthesize such information so that they will feel comfortable and confident
about making the decision [26, 27]. It also helps to structure the problem. Based on
these characteristics, we propose to apply MCDA to perform the NFRs conflict
decision analysis in sureCM Framework. It can be used to evaluate and analyze the
alternative design solutions. It can also be used to decide the best design solution that
best satisfices the conflicting NFRs.

1 Satisfice is the term first coined by Hebert Simon [25] H. A. Simon, "The science of the

artificial," 1996.

34 D. Mairiza, D. Zowghi, and V. Gervasi

Fig. 1. sureCM Framework [23]

 Utilizing TOPSIS: A Multi Criteria Decision Analysis Technique 35

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) is a
goal-based technique in MCDA for finding the alternative that is closest to the ideal
solution. The fundamental idea of TOPSIS is that the best solution is the one, which
has the shortest distance to the ideal solution and the farthest distance from the
negative-ideal solution. Therefore, the best solution is the one that can maximize all
criteria.

TOPSIS consists of 6 steps as shown in Figure 2: (1) construct the normalized
decision matrix; (2) construct the weighted normalized decision matrix; (3) determine
the positive ideal solution and negative ideal solution; (4) determine separation from
ideal solution; (5) calculate the relative closeness to the ideal solution; and (6) rank
the preference order and select the closest option to ideal solution.

Some basic principles of TOPSIS are:

 The chosen alternative should be as close as possible to the ideal solution
and as far as possible from the negative-ideal solution.
 The positive-ideal solution is formed as a composite of the best
performance values exhibited (in the decision matrix) by any alternative for
each attribute.
 The negative-ideal solution is the composite of the worst performance
values; this means the one that has the worst attribute values.
 Proximity to each of these performance poles is measured in the
Euclidean sense (e.g., square root of the sum of the squared distances along
each axis in the "attribute space"), with optional weighting of each attribute.

Figure 2 shows the six steps of TOPSIS. It starts with creating an evaluation matrix

xij(mxn) consisting of m alternative, n attributes/criteria and the score of each

alternative with respect to each attribute. The matrix xij(mxn) is then normalized

using such formula in step 1 to form the matrix rij. A normalized decision matrix will
be formed. Next step is calculating the weighted normalized decision matrix vij by
multiplying the normalized scores rij by their corresponding weights wj. Weight is
defined as a certain points that estimate the relative importance of each criteria. And
weight is optional. Continue to step 3 to determine the positive ideal solution and
negative ideal solution, that is, the worst alternative and the best alternative. A+ is the
maximum value of each attribute, and A- is the minimum value of each attribute.

Step 4 is then calculating the distance for each alternative to the ideal solution.
This step is taken to calculate the similarity to the worst condition, by calculating the
separation measures for each alternative from the positive (S+) and negative (S-) ideal
solution. This is then continued by calculating the relative closeness to the ideal
solution (Ci

*) and rank the preference order of alternative based on its relative
closeness to the ideal solution, i.e. a set of alternatives would be preference-ranked
according to descending order of Ci

*.

36 D. Mairiza, D. Zowghi, and V. Gervasi

Fig. 2a. – NFRs Conflict Decision Analysis with TOPSIS (Step 1 – 3)

 Utilizing TOPSIS: A Multi Criteria Decision Analysis Technique 37

Fig. 2b. NFRs Conflict Decision Analysis with TOPSIS (Step 4 – 6)

Figure 3 shows how TOPSIS can be implemented in sureCM Framework. In the
framework, input for TOPSIS is the conflict relationship diagram, which is obtained
from the previous sureCM process (P3 and P4). Conflict relationship diagram (as
shown in Figure 4) is a two-dimensional conflict relationship graph that uses
quantitative data obtained in process P3, i.e. running the experiments, as the evidence
of existence of conflict [23]. Each operationalization taken in the experiments will be
plotted based on its NFRs metrics calculation result. By plotting all of the defined
operationalizations, a conflict relationship characterization will be created. In the
context of this framework, the criteria refer to the conflicting NFRs, and the
alternatives refer to the alternative design solutions/operationalizations. Output of this
conflict decision process is a decision, which is the ranking of each alternative design
solution based on its closeness to the ideal solution, i.e. maximum satisficing for each
conflicting NFRs.

38 D. Mairiza, D. Zowg

Fig. 3. sur

4 Applying TOPS

To show how TOPSIS can
paper we use two statemen
consider the two NFRs giv
security requirement, while

NFR 1: The Chemical Tra
and protect user’s personal

NFR 2: A chemist who has
the system easily and indep

The sureCM Framework
well as performing conf
characterization and identi
previously in [23], so here w
described in [23], the first
experimental data and the c

hi, and V. Gervasi

reCM Framework Conflict Decision Analysis

SIS: An Example

n be applied for NFRs conflict decision analysis, in
nt of NFR from the Chemical Tracking System [23].
ven in the specification document. NFR1 is considere

e NFR2 is a usability requirement.

acking System shall have identified/authenticated the u
information.

s never used the system before shall be able to learn us
pendently.
k supports the characteriz and identification of conflict
flict decision analysis. The details of NFRs conf
ification (process P1; P2; P3; P4) have been presen
we only focus on conflict decision analysis (process P5).
t four processes of sureCM Framework produce a set
onflict relationship diagram. By using 7 types of alterna

this
We

ed a

user

sing

t, as
flict
nted
. As
t of

ative

 Utilizing

design solutions for implem
Card; (3) Scrambled Key;
Scanner; (7) Retina Scanner

Fig. 4. Conflict Rela

TOPSIS: A Multi Criteria Decision Analysis Technique

menting security and usability, i.e. (1) Fixed Key; (2) Sm
; (4) Geometrical Pin Code; (5) Finger Print; (6) P
r, the nature of conflict is illustrated as follow:

ationship Diagram of Security – Usability Conflict [23]

39

mart
alm

40 D. Mairiza, D. Zowghi, and V. Gervasi

This will be used as the input for NFRs conflict decision analysis with TOPSIS,
presented in Table 1. Then each TOPSIS step is described.

Table 1. TOPSIS Input

Weight

1 1

Security Usability

GA.T.1 4 0.0641

GA.T.2 1 0.1053

GA.T.3 7 0.0503

GA.T.4 9 0.0500

GA.T.5 1 0.1563

GA.T.6 1 0.1370

GA.T.7 1 0.1266

Goal Maximize Maximize

Step 1: Construct the normalized decision matrix.
Using formula in TOPSIS step 1, we normalize input data to form the matrix rij,
shown in Table 2.

Table 2. TOPSIS Step 1

Alternative Security Usability

GA.T.1 0.326598632 0.2274

GA.T.2 0.081649658 0.3736

GA.T.3 0.571547607 0.1784

GA.T.4 0.734846923 0.1774

GA.T.5 0.081649658 0.5545

GA.T.6 0.081649658 0.4860

GA.T.7 0.081649658 0.4491

Step 2: Construct the weighted normalized decision matrix.
In this software project, there is no priority set for each criteria. Both security and
usability have the same priority level. Therefore, the weighted normalized decision
matrix gives the same result as generated in step 1.

 Utilizing TOPSIS: A Multi Criteria Decision Analysis Technique 41

Step 3: Determine the positive ideal (S+) and negative ideal (S-) solutions by
determining A+ and A- for each criteria. This is done by selecting the highest element
(for A+) and the lowest element (for A-) in each criteria of the matrix in Table 2. The
result is presented in Table 3.

Table 3. Positive Ideal and Negative Ideal Solutions

A+

Security Usability

0.734846923 0.55450207

A-

Security Usability

0.081649658 0.1773839

Step 4: Calculate the separation measures for each alternative
Euclidean distance is used to measure the separation of each alternative design solution
from the ideal alternative (positive ideal) and negative ideal alternative.

Table 4. Separation Measures

Alternative (S+) (S-)

GA.T.1 0.523123696 0.250004453

GA.T.2 0.677792669 0.196186593

GA.T.3 0.409979485 0.489899105

GA.T.4 0.377118171 0.653197265

GA.T.5 0.653197265 0.377118171

GA.T.6 0.656776090 0.308647985

GA.T.7 0.661640891 0.271752134

Step 5: Calculate the relative closeness to the ideal solution Ci

*
The higher Ci

* is the better, which means the closer the alternative to the ideal
solution. Using TOPSIS step 5 formula, Ci

* is calculated and presented in Table 5.

42 D. Mairiza, D. Zowghi, and V. Gervasi

Table 5. Relative Closeness

Alternatives C*

GA.T.1 0.323367417

GA.T.2 0.224475112

GA.T.3 0.544405779

GA.T.4 0.633977947

GA.T.5 0.366022053

GA.T.6 0.319701977

GA.T.7 0.291144381

Step 6: Rank the preference order
A set of alternatives can now be preference ranked according to the descending order
of Ci*. The best solution is the alternative with Ci

* closest to 1, which is the highest
one. The result of step 6 is presented in Table 6.

Table 6. Final Result

Alternatives C* Ranked Ranked Design Solutions

GA.T.1 0.323367417 4 1 Geometrical Pin Code

GA.T.2 0.224475112 7 2 Scrambled Key

GA.T.3 0.544405779 2 3 Finger Print

GA.T.4 0.633977947 1 4 Fixed Key

GA.T.5 0.366022053 3 5 Palm Scanner

GA.T.6 0.319701977 5 6 Retina Scanner

GA.T.7 0.291144381 6 7 Smart Card

As shown in Table 6, the highest Ci
* is the alternative 4 (Ci

* = 0.633977947), that
means GA.T.4 is the design solution that has maximum security and maximum
usability, among other alternatives. Therefore, according to TOPSIS, software
developer should consider taking alternative 4 (Geometrical Pin Code) as the design
solution that can maximize the satisfaction of those conflicting NFRs, security and
usability.

5 Conclusion

This paper describes a novel idea of utilizing TOPSIS, an MCDA technique, to
resolve the conflict among NFRs, particularly to perform conflict decision analysis
that can assist software developer deciding the best alternative design solution that

 Utilizing TOPSIS: A Multi Criteria Decision Analysis Technique 43

can maximize the satisficing of NFRs in conflict. Conflict decision analysis using
TOPSIS will be integrated as part of our foregoing sureCM Framework [22-24], i.e.
an integrated experimental-based framework for NFRs conflict management and
analysis. Requirements statement from a Chemical Tracking System has been used as
an example to show how TOPSIS can be applied.

As part of a long-term project of investigating conflict among NFRs, a number of
important task remain to complete:

1) Conducting empirical evaluation
The effectiveness of the framework will be empirically evaluated through

controlled experiments. The reason for conducting controlled experiments is because:
(a) “controlled experiments make it possible for the careful observation and precise
manipulation of independent variables (e.g. proposed framework); (b) allowing for
greater certainty; and (c) encourage the researcher to try out novel frameworks in a
safe and exploratory environment before implementing them in the real world
settings” [28]. Effectiveness and efficiency will be used as the evaluation criteria.
Effectiveness means that this framework can be used to manage the NFRs conflict by
considering NFRs relative characteristic, while efficiency represents how fast people
can identify the conflict using the framework.

2) Developing a semi-automatic tool
To support the framework utilization, we also plan to develop a semi-automatic

tool that can assist software developers, particularly requirements engineers to
perform conflict management among NFRs.

Acknowledgments. We would like to thank The International Schlumberger Foundation
Paris for funding this research through Faculty for the Future Award Program. We would
also like to thank The Centre for Human Centered Technology Design (HCTD) at UTS
for partially funding Dr Gervasi’s trip for research collaboration.

References

[1] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional requirements in software
engineering. Kluwer Academic Publishers, Massachusetts (2000)

[2] Ebert, C.: Putting requirement management into praxis: Dealing with nonfunctional
requirements. Information and Software Technology 40, 175–185 (1998)

[3] Firesmith, D.: Using quality models to engineer quality requirements. Journal of Object
Technology 2, 67–75 (2003)

[4] Kotonya, G., Sommerville, I.: Non-functional requirements (1998)
[5] Mittermeir, R.T., Roussopoulos, N., Yeh, R.T., Ng, P.A.: Modern software engineering,

foundations and current perspectives. Van Nostrand Reinhold Co., New York (1989)
[6] Mairiza, D., Zowghi, D., Nurmuliani, N.: An investigation into the notion of non-

functional requirements. In: 25th ACM Symposium on Applied Computing, Switzerland
(2010)

[7] Breitman, K.K., Prado Leite, J.C.S., Finkelstein, A.: The world’s a stage: A survey on
requirements engineering using a real-life case study. Journal of the Brazilian Computer
Society 6, 1–57 (1999)

44 D. Mairiza, D. Zowghi, and V. Gervasi

[8] Boehm, B., In, H.: Identifying quality-requirements conflict. IEEE Software 13, 25–35
(1996)

[9] Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. IEEE
Computer 26, 18–41 (1993)

[10] Wiegers, K.E.: Software requirements, 2nd edn. Microsoft Press, Washington (2003)
[11] Mairiza, D., Zowghi, D., Nurmuliani, N.: Managing conflicts among non-functional

requirements. In: 12th Australian Workshop on Requirements Engineering (AWRE
2009), Sydney, Australia (2009)

[12] Chung, L., Nixon, B.A., Yu, E.: Dealing with change: an approach using non-functional
requirements. Requirements Engineering 1, 238–260 (1996)

[13] Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Communication of the ACM 31, 1268–1287 (1988)

[14] Boehm, B., Egyed, A.: WinWin requirements negotiation processes: A multi-project
analysis. In: 5th International Conference on Software Processes (1998)

[15] Egyed, A., Boehm, B.: A comparison study in software requirements negotiation. In: 8th
Annual International Symposium on Systems Engineering, INCOSE 1998 (1998)

[16] Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements interaction management.
ACM Computing Surveys 35, 132–190 (2003)

[17] Paech, B., Kerkow, D.: Non-functional requirements engineering - quality is essential. In:
10th International Workshop on Requirements Engineering: Foundation for Software
Quality, pp. 27–40 (2004)

[18] Boehm, B., In, H.: Aids for identifying conflicts among quality requirements. IEEE
Software (March 1996)

[19] In, H., Boehm, B., Rodgers, T., Deutsch, M.: Aplying WinWin to quality requirements:
A case study. In: 23rd International Conference on Software Engineering, Toronto,
Ontario, Canada, pp. 555–564 (2001)

[20] Egyed, A., Grünbacher, P.: Identifying requirements conflicts and cooperation: how
quality attributes and automated traceability can help. IEEE Software 21, 50–58 (2004)

[21] Guan, Y., Ghose, A.K.: Use constraint hierarchy for non-functional requirements analysis.
In: Lowe, D., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 104–109. Springer,
Heidelberg (2005)

[22] Mairiza, D., Zowghi, D.: An ontological framework to manage the relative conflicts
between security and usability requirements. In: The Third International Workshop on
Managing Requirements Knowledge (MaRK 2010), in conjunction with the 18th IEEE
International Requirements Engineering Conference (RE 2010), Sydney, Australia (2010)

[23] Mairiza, D., Zowghi, D., Gervasi, V.: Conflict characterization and analysis of non
functional requirements: An experimental approach. In: 12th International Conference on
New Trends in Software Methodologies, Tools and Techniques (SOMET 2013),
Budapest, Hungary, pp. 83–91 (2013)

[24] Mairiza, D.: Non-functional requirements in software development projects: A systematic
review. Presented at the ACS – BRASIG 29, Sydney, Australia (September 2011)

[25] Simon, H.A.: The science of the artificial (1996)
[26] Belton, V., S.T.J.: Multiple criteria decision analysis: An integrated approach. Kluwer

Academic Publishers (2002)
[27] Zopounidis, C., Pardalos, P.M.: Handbook of multicriteria analysis. Springer, Heidelberg

(2010)
[28] Damian, D.: Empirical studies of computer support for distributed requirements

negotiation. University of Calgary (2001)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 45–59, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Analysis of Economic Impact of Online Reviews: An
Approach for Market-Driven Requirements Evolution

Wei Jiang1, Haibin Ruan2, and Li Zhang1

1 School of Computer Science and Engineering, Beihang University, Beijing, China
jiangwei@cse.buaa.edu.cn, lily@buaa.edu.cn

2 Investment Department, Central University of Finance and Economics, Beijing, China
nivadacufe@gmail.com

Abstract. As a novel market data, online reviews can manifest user demands in
real contexts of use. Thereby, this paper proposes a demand-centered approach
for requirements evolution by mining and analyzing online reviews. In our ap-
proach, it is challenging to improve the accuracy of opinion mining techniques
for huge volume of noisy review data. Furthermore, how to quantitatively eva-
luate the economic impact of user opinions for determining candidate require-
ments changes is also a challenging problem. In this paper, an opinion mining
method augmented with noise pruning techniques is presented to automatically
extract user opinions. After automatic synthesizing the information extracted, a
utility-oriented econometric model is employed to find causal influences be-
tween the system aspects frequently mentioned in user opinions and common
user demands for revising current requirements. A case study shows that the
presented method of opinion mining achieves good precision and recall even if
there is a large amount of noisy review data. The case study also validates the
effectiveness of our approach that it discovers the candidate requirements
changes related to the software revenue, especially the ones that are ignored by
software developers.

Keywords: Electronic market, requirements evolution, online reviews, opinion
mining, econometric analysis.

1 Introduction

Evolution is an inherent attribute of software requirements due to changing user needs
and application environment [1]. In today’s competitive market, it is crucial for the
software system to respond to the social environment where users form opinions
based on their experience with it [2]. With user generated content becoming main-
stream in Web platforms, consumers are willing to publish online reviews to express
their opinions about software systems. As market data, these reviews manifest user
demands in real contexts of use, which have become a very important resource for
eliciting requirements for designing future systems. Therefore, our goal is to explore a
demand-centered approach for requirements evolution through mining and analyzing
online reviews. We first automatically extract software features and relevant user

46 W. Jiang, H. Ruan, and L. Zhang

opinions from online reviews. Second, we determine candidate requirements changes
by econometric analysis of user opinions.

Currently, some automated techniques, such as text mining, information retrieval,
and machine learning are utilized in identifying the aspects of the software system and
associated opinions mentioned in user comments [3, 4]. However, due to different
content quality of reviews, it is challenging to ensure the accuracy of automated tech-
niques for huge volume of review data. In this paper, we augment the existing opinion
mining method with noise pruning techniques. Experiment results show that our me-
thod achieves good performance even if large amounts of noisy review data.

Furthermore, the system aspects frequently commented on in user opinions are use-
ful evidence to design requirements for future systems. Several approaches have pro-
vided a set of techniques and processes about how to analyze and determine require-
ments in accordance with user feedback [5, 6]. However, content analysis in these
approaches relies more on the manual effort. Moreover, the evaluation models of user
opinions cannot consider market elements. How to quantitatively evaluate the eco-
nomic impact of user opinions for determining candidate requirements changes is also
a challenging problem. In our approach, we first adopt the text clustering technique
and heuristic method to group and rate user opinions. Then, we employ a utility-
oriented econometric model to find causal influences between the system aspects
frequently commented on in user opinions and common user demands for revising
current requirements. A case study validates the effectiveness of our approach that it
discovers the candidate requirements changes related to user demands, especially the
ones that tend to be ignored by software developers.

The contributions of our research are as follows: (1) our opinion mining method
can accurately deal with large amounts of noisy reviews; and (2) our approach can
support analysts to make wise decision on requirements evolution in the open market
by suggesting the requirements changes that are more economically valuable.

The rest of this paper is organized as follows. Section 2 describes the method for
opinion mining. Section 3 elaborates econometric analysis for requirements evolution
according to the exracted user opinions. To evaluate our approach, Section 4 presents
a case study in which the candidate requirements changes for the future system are
derived from the review data of Kaspersky Internet Security 2011. Finally, Section 5
and Section 6 discuss related work, conclusions and future work.

2 User Opinion Mining

The user opinion in a review of the software system is defined as a pair of feature and
opinion. The feature refers to a software feature that is a prominent or distinctive user-
visible aspect, quality, or characteristic of the system [10]. The opinion is a subjective
user evaluation expressed on the feature. Opinions and features are often related
syntactically and their relations can be modeled using the dependency grammar [4].
Therefore, we adopt the syntactic relation-based propagation approach (SRPA) [7] for
fine-gained opinion mining. However, once there is a large amount of noisy review

 Analysis of Economic Impact of Online Reviews 47

data, SRPA may introduce much noise and result in the decrease in the accuracy.
We augment SRPA with pruning noisy opinion words and features. Finally, we recover
complete expressions of user opinions according to the extracted individual words.

2.1 Extracting User Opinions Using SRPA

SRPA is a bootstrapping approach, which uses the syntactic relations that link opinion
words and features to expand the initial opinion lexicon and extract features. A rule-
based strategy is used to iteratively perform the extraction task through propagation.
The extration rules modeling noun features and adjective opinion words are defined
according to the syntactic dependency relations in which people often express their
opinions. Through the identification of extration rules, the propagation algorithm is
first bootstrapped by the seed opinion lexicon to extract opinion words and features,
then applies newly extracted words to further extraction, and finally stops until no
more new words are extracted. In this way, SRPA has good results of precision and
recall even if the initial opinion lexicon is small.

For opinion extraction, we first redefine the exraction rules based on Stanford syn-
tactic parser1. Second, we take raw review data of the software system and a seed
lexicon as the input of SRPA and then obtain the set of extracted features and the
expanded opinion lexicon. Third, we identify the reveiw sentences matching the
extraction rules and extract <feature, opinion> pairs whose features and opinion
words are respectively involved in the extracted feature set and expanded opinion
lexicon. Finally, we adopt the noise pruning method in SRPA to remove the user
opinions for other competitive systems.

2.2 Pruning Noisy Opinion Words

Although some adjectives modify features, they do not have any positive, negative or
neutral sentiment polarity. For example, in the sentence “The latest version is good”,
good is a positive opinion word whereas latest is an ordinary adjective. However,
latest is extracted incorrectly. This means that SRPA may introduce noisy opinion
words, as the extraction rules are unconstrained.

We determine whether the extracted adjectives are noise using the following heu-
ristic rules, which are defined from observing contexts of the reviews. Rule 1: When
two adjectives modify the same feature in a clause, the adjective before it as the ad-
jectival modifier is an ordinary adjective if the adjective after it as the predicative
adjectives is an opinion word. Rule 2: Two adjectives in a clause that are connected
by a coordinating conjunction or have a coordinating relation are either opinion words
or ordinary adjectives. Rule 3: When two adjectives modify the same feature in dif-
ferent sentences, the adjective after it as the predicative adjectives is also an opinion
word if the adjective before it as the adjectival modifier is an opinion word.

1 http://nlp.stanford.edu/software/lex-parser.shtml

48 W. Jiang, H. Ruan, and L. Zhang

The extracted adjectives are initially recognized as opinion words if they are in-
volved in an opinion word lexicon, such as MPQA2 and Liu’s opinion words3. The
reasoning is performed according to the above three rules. Most adjectives may be
identified as either ordinary adjectives or opinion words. However, some adjectives
are still not determined on the context evidence. Such adjectives are regarded as opi-
nion words for avoiding that excessive pruning decrease the recall of opinion mining.

2.3 Pruning Noisy Features

In expressions of user opinions, features refer to domain-specific nouns that appear
more frequently in a certain domain and less in other domains. However, most opi-
nion words are domain-independent adjectives that can modify any object. As a re-
sult, SRPA increases the risk of introducing ordinary nouns when using opinion
words to extract features. For example, there are two sentences “Kaspersky occupies
many resources” and “I have used Kaspersky for many years”. The ordinary noun
years is incorrectly extracted through the opinion word many modifying the feature
resources.

Observing the way in which people express their opinions, we can see that features
are frequently modified by opinion words. Based on such observation, we count the
numbers of opinon words and ordinary adjectives modifying each extracted noun and
employ the standard Support Vector Machine (SVM) algorithm [8] to identify correct
features. The SVM inputs a set of pre-classified nouns with high frequency opinion
words or ordinary adjectives, and then trains a binary linear classifier to predict the
category of a new noun.

In the training phase, suppose F={f1, f2, …, fn} is the training feature set. For ∀ fi∈

F, it is assigned a (xi, yi) where xi is a 2-dimensional integer vector xi={xi1, xi2} cor-
responding to the nubmers of opinon words and ordinary adjectives of fi and yi∈(1, -
1) determines whether fi is a feature. The SVM model trains a classifier as

 L(xi)=wxi +b (1)

where w={w1, w2} is the weight vector, b is a real offset. In accordance with maximal
margin that wants to find decision boundary that is as far away from the data of both
classes as possible, we can get the optimal vector. Furthermore, when a new noun
comes, we can determine whether it is a feature through the trained SVM classifier.

2.4 Recovering Expressions of User Opinions

Base on the propagation algorithm, the extracted features and opinion are individual
words. However, the feature can be a noun phrase and the opinion may be an adjec-
tive phrase including an opinion word and its adverb modifiers. For example, in the
sentence “The user interface is not very intuitive”, the feature user interface is a noun
phrase and the opinion not very intuitive is a negative adjective phrase. We thereby

2 http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
3 http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html

 Analysis of Economic Impact of Online Reviews 49

use shallow parsing techniques to recover complete expressions of user opinions. The
Stanford parser can output the phrase structure tree of a sentence. In the tree, the
noun/ adjective phrase that contains the extracted feature/opinion word is recognized
as the feature/opinion phrase. Moreover, a negative word in the clause modifying the
opinion word is also identified as a part of the opinion phrase even if it is not directly
contained in the adjective phrase.

3 Econometric Opinion Analysis

High ratings of user satisfaction are widely believed to be the best indicator of the
company’s future profits [9]. In requirements analysis, we thereby emphasize the
economic benefits that result from the system improvement with changing user de-
mands. A utility-oriented econometric model is employed to find the candidate re-
quirements changes for system improvement. The detailed steps are as follows: (1)
organizing the similar extracted features into a system aspect relevant to an overall,
functional or quality requirement, (2) rating the associated opinions with the extracted
features, (3) analyzing the causal relationships between the utilities of system aspects
and software sales and then determine the important aspects for revising current
requirements, and finally (4) generating a meaningful report on the candidate
requirements changes.

3.1 Categorizing Features

As what features may be mentioned in the reviews is unknown, the k-means cluster-
ing [20] is adopted to categorize the extracted features into system aspects that depict
their semantic commonalities. The k-means clustering aims to divide n data points
into k clusters so as to minimize the mean squared distance from each point to the
center within a cluster. There are two potential problems using the k-means algorithm
for categorizing features: how to compute the distance between features and how to
choose k seeds for avoiding poor clusters.

For the first issue, the distance between features is defined as the difference be-
tween 1 and their semantic similarity. We rely on an explicit semantic analysis
algorithm (ESA) to compute semantic similarity. The idea of ESA is to use machine
learning techniques to represent the meaning of any text as a weighted vector of Wi-
kipedia-based concepts and then assess the relatedness of texts in this space amounts
to comparing the corresponding vectors using conventional metrics [10]. ESA can
enhance the feature representations described by nouns/noun phrases and further im-
prove the accuracy of clustering. For the second issue, we now choose a larger value
(50-100) for k to cover as more feature categories as possible and then use k-means++
algorithm [21] for optimizing k seeds to cluster the extracted features.

Each feature category can represent an overall description or a user-perceived func-
tional/quality aspect of the software system. As the value of k is larger, there may be
duplicated feature categories. To solve the problem, we regard the feature that is near-
est to the center within a cluster as the name of each feature category and manually
merge those categories whose names are similar.

50 W. Jiang, H. Ruan, and L. Zhang

3.2 Rating User Opinions

We propose a two-stage strategy for rating the associated opinion with an extracted
feature on a five-point scale. In the first stage, a heuristic method based on the context
evidence [7, 11] is adopted for assigning polarities to opinion words. The heuristic
rules are defined according to the observations about the consistent manner in which
people often express their opinions. The same polarity is propagated between features
and opinion words based on the extraction rules unless there are explicit contrary
words or negative words in the clauses. There are new opinion words extracted by
some features without polarities. Their polarities are inferred using the overall review
polarity. In the second stage, the opinion word is rated based on its polarity and the
ratings that users place on the reviews. The steps are indicated in Fig. 1.

Input: Opinion word o and its polarity p,

Review data set R, Ratings of review data Rat
Output: Rating of o Rat(o)
1. if p is neutral
2. then Rat(o)=3
3. else if p is positive
4. then
5. compute the sum S4 of o mentioned in R with its Rat=4
6. compute the sum S5 of o mentioned in R with its Rat=5
7. Rat(o)=S5>S4?5:4
8. else
9. compute the sum S1 of o mentioned in R with its Rat=1
10. compute the sum S2 of o mentioned in R with its Rat=2
11. Rat(o)=S2>S1?2:1
12. endif
13. endif

Fig. 1. Rating opinion words

3.3 Econometric Model-Based Requirements Analysis

The importance of a system aspect represents its priority for requirements evolution.
It is stated that its importance to revising the requirements for future releases lies on
the proportional to the number of reviews relevant to the system aspect [4, 12]. From
the market’s perspective, however, the importance of a system aspect depends more
on its economic benefits. If changes in the system aspect can improve the ability of
the software system satisfying changing user demands, its improvement will result in
the company’s future profits. Thus, we present a utility-oriented econometric model to
analyze which system aspects are required in the requirements for future releases.

In economics, utility is the ability that a good or service satisfies consumer wants.
The rating of a user opinion represents the degree to which the system satisfies a cer-
tain user about the feature. Thus, the utility of a system aspect is measured by average
ratings of user opinions related to the aspect. It is computed as follows:

 () ()
1

1
,

an

i i
ia

U a Rat f o
n =

= (2)

 Analysis of Economic Impact of Online Reviews 51

where na is the number of features belonging to aspect a and Rat(fi, oi) is the rating of
associated opinion oi with feature fi.

In marketing communication, online reviews are a novel word-of -mouth that has
positive impact on the product sales [13]. Furthermore, the change in software sales is
triggered by the change in user satisfaction of some system aspects frequently men-
tioned on in the reviews. In order to estimate the importance of a system aspect from
the market’s perspective, we need to find the causal influence between the utilities of
system aspects in real contexts of use and software sales. We adopt the Granger
causality model (GCM) to analyze whether the utility of a system aspect is useful in
forecasting the software sales. GCM is a linear regression method often used in
econometrics to quantify the causal influence from time series variables. It has better
results than Bayesian network and information theory [14]. Its improvement of pre-
diction may reduce the influence of coincidental causality.

Suppose there are two time series X and Y. X is said to Granger-cause Y if Y can be
better predicted using the histories of both X and Y than the history of Y alone [15].
We test whether X causes Y or not by estimating the following regressions:

 () ()0 1
1

n

i
i

Y t Y t iα α ε
=

= + − + (3)

 () () ()0 2
1 1

n n

i i
i i

Y t Y t i X t iα α β ε
= =

= + − + − + (4)

where n is the maximal time yield, εi is a random distribution. If (4) is a significantly
better than (3) through hypothesis testing, time series X causes time series Y.

Estimating the importance of a system aspect based on GCM follows a series of
steps. First, the review set R of a software system S is divided into a set of sequential
groups G={g1, g2, …, gz} according to the chosen time yield. The relevant sales S(S)t=i
and utility of a system aspect U(a)t=i to group gi are measured and then the time series
X={U(a)t}t∈Z and Y={S(S)t}t∈Z (Z={1, 2, …, z}) are constructed based on their mea-
surements from the group set G. Second, Equation (3) and (4) are used for examining
the Granger causal relationships between time series X and Y without considering the
correlations among system aspects. Finally, in light of the Granger causality test, the
system aspects whose utilities have significant positive correlations with the software
sales are discovered as the useful evidence to revise the requirements for future re-
leases. The correlations of system aspects indicate their importance for market-driven
requirements evolution.

3.4 Generating Report

The goal of generating the report is to provide a meaningful information for
developers to improve the software system. The report contains system aspects and
associated statements that describe candidate requirements changes for system
improvement. The statements are used to interpret the meanings of candidate
requirements changes. They can be mapped to the user opinions mentioned in the

52 W. Jiang, H. Ruan, and L. Zhang

reviews through the corresponding system aspects. Although system aspects for
designing furture systems are discovered in previous analysis, whether they are
related to candidate requirements changes cannot be determined through the Granger
causality test. We distinguish these system aspects in accordance with the statistical
characteristics of their utilities. We first compute the mean EU(a) and standard devia-
tion SU(a) of the utility of each system aspect and the overall user satisfaction OS(R)
over review set R. OS(R) is measured by the average of ratings that users place on the
reviews. Second, we determine the system aspects relevant to candidate requirements
changes using the following steps depicted in Fig. 2.

candidate requirements changes

no requirements
changes

potential requirements changes

necessary
requirements changes

1
y

y

n

n

y

Fig. 2. A strategy of determining candidate requirements changes

We therefore check the software requirements specification (SRS) to revise the
corresponding statements to the system aspects relevant to candidate requirements
changes. We conclude the new statement based on several negative review sentences
revelant to such system aspect with the highest probability to alter the old one in SRS.

4 Case Study

A case study was carried out to elicit the requirements for system improvement using
the reviews of Kaspersky Internet Security 2011 (KIS 2011). In the study, we first
evaluate the validity of the opinion mining technique on dealing with large amounts
of noisy review data and then evaluate the effectiveness of the generated report for
system improvement.

4.1 Experiments for Mining User Opinions of KIS 2011

Experimental Design.
Correct user opinions derived from large amounts of noisy review data are the evi-
dence to requirements elicitation for system improvement. Based on the review data
of KIS 2011, we compare our method P-SRPA with SRPA and discuss the advantages
and disadvantages according to all metrics including recall, precision and F-score.

Input: aspect a, mean EU(a) and
standard deviation SU(a) of its
utility overall user satisfaction
OS(R) over review set R
Output: the category of candidate
requirements changes relevant to
aspect a Req(a)
Note: λ is the threshold

 Analysis of Economic Impact of Online Reviews 53

The raw review data of KIS 2011 used in this paper was scraped from Ama-
zon.com. The data set contains 380 reviews and 3200 sentences from September 2,
2010, to February 25, 2012. Each review has a user rating on a five-point scale. All
sentences of the review data are descended by the helpfulness of a review that is com-
puted through our previous work [16]. Then these ordered sentences are divided into
five subsets D={d1, .., d5}. For each subset, the potential features and opinions in the
sentences are manually labeled as the testing data for the comparison experiment.

We perform P-SRPA and SRPA using the seed opinion lexicon provided by Hu
and Liu [11], which involves 654 positive and 1098 negative opinion words. Recall is
computed as the number of true positives divided by the sum of the number of true
positives and the number of false negatives. Precision is computed as the number of
true positives divided by the sum of the number of true positives and the number of
false positives. F-score is computed as follows:

precision recall

F-score 2
precision+recall

×= × (5)

Comparison Results and Discussion.
The Fig. 3 shows the results of recall, precision and F-score of P-SRPA and SRPA
using different subsets. From Fig. 3 (a), the average recall of P-SRPA is 0.86 and that
of SRPA is 0.77. This shows that the propagation is reasonable in achieving high
recall. Clearly, the recall may be affected by natural language processing (NLP) tech-
niques. The sentences in high noisy data subsets often have many errors of spelling
and grammatical structure so that automatic tagging and parsing don’t work correctly.
Fortunately, the recall values of P-SRPA do not decrease significantly with the in-
crease of noisy data, only from 0.92 to 0.82.

(a) Recall (b) Precision (c) F-score

Fig. 3. Results of mining user opinions from KIS 2011 review data

Observing Fig. 3 (b), we can see P-SRPA outperforms SRPA in precision. In the
low noisy data subsets, the precision values of P-SRPA and SRPA are more than 0.70.
This indicates that dependency relation-based extraction rules are effective for identi-
fying correct features and opinions. However, the precision values of SRPA decrease
obviously with the increase of noisy data, from 0.60 to 0.40, while our precision val-
ues decrease from 0.71 to 0.53. In addition to NLP problems, the causes are as

54 W. Jiang, H. Ruan, and L. Zhang

follows. First, there are many ordinary nouns and adjectives irrelevant to user opi-
nions in the high noisy data subsets. Due to unconstrained dependency relations, the
words match the extraction rules so as to be extracted incorrectly. Second, the expres-
sions of user opinions are flexible and diverse in the reviews. The descriptions of
the same feature do not usually have a unified term. Thus, noisy feature pruning
in SRPA does not produce obvious effect, as it relies on the frequency of terms.
Moreover, SRPA does not still provide a method for noisy opinion word pruning. To
address these problems, P-SRPA employs a heuristic method to distinguish opinion
words from ordinary adjectives and then filters incorrect features through the SVM
classifier.

Fig. 3 (c) shows P-SRPA archives better average F-score than that of SRPA. We
can draw the conclusion that P-SRPA is useful to provide user feedback for require-
ments evolution analysis even if dealing with large amounts of noisy review data.

4.2 Requirements Analysis for KIS 2011 Improvement

Evaluation of Generated Report.
We organize a human subject study to determine the usefulness of the generated re-
port for system improvement. In the study, five participants are the developers that
work in the computer security companys. All of them have more than three years of
experience in software development. The participants are required to use KIS 2011
and read its SRS for developing a set of candidate requirements changes. As the SRS
of KIS 2011 is not open to users, we create it according to understanding of the appli-
cation and other information, such as product introduction, user manual and AV-Test
results. The SRS contains 21 functional statements and 14 quality statements that are
appreciable to users. We compare the generated report and participants’ results to
determine whether our approach can discover the candidate requirements changes that
are ignored by developers.

Generating Candidate Requirements Changes of KIS 2011.
We carried out the following steps for generating the report on the candidate require-
ments changes of KIS 2011. We first utilized k-means++ algorithm with k=80 to
classify the extracted features and then obtained 23 system aspects after merging dup-
licated feature categories. Table 1 shows 15 systems aspects that contain the features
frequently mentioned in the reviews.

Second, we chose a week as the time yield and used the Granger causality test to
analyze whether the time series of the utility of each system aspect shown in Table 1
were useful in forecasting the time series of the sales rank of KIS 2011. As the exact
sales of KIS 2011 are not available, we modify the utility-oriented GCM in Section
3.3 by replacing the software sales with the software sales rank that is publicly availa-
ble information in most Web platforms. As the prior research in marketing experi-
mentally observed that the distribution of sales in terms of associated sales rank has a
Power distribution [17], we select the principal system aspects whose utilities have
the negative correlations with the sales rank as shown in Table 2. These system

 Analysis of Economic Impact of Online Reviews 55

aspects are related to the requirements of KIS future releases. Note that the system
aspects of scan, safe run, and parental control have not the causal influences on the
sales rank, although they receive many user opinions in the reviews. Such system
aspects do not have to be changed from the economic perspective, since the software
revenue is not significantly enhanced by improving their utilities.

Table 1. Results of categorizing features

Perspective Aspect Feature

Overall
Software, product, application, package, program, suit, version, Internet
security, Kaspersky, Kaspersky internet security, KIS

Function

Protection Computer protection, Virus protection, Malware protection, Protection
Antivirus Antivirus, Anti-virus, Anti virus

Firewall Two-way firewall, Personal firewall, Firewall
Scan Scan, Computer scan, System scan, Virus scan, Malware scan, Scanning

Safe run Safe run, Safe desktop, Safe mode
Parental
control

Parental control

Installation Installation, Installation process, Installing

Update Update, Upgrade

Quality

Performance Performance, Speed, Time, Slowdown

Resource
Resource utilization, System resource, Resource, Memory, CPU,
Footprint

Reliability Reliability, Bug, Crash, Reboot

Usability Usability, Easy to use, Use friendly
User interface User interface, Window, Setting, Look

Flexibility Flexibility, Configuration, Customization

Table 2. Causal relationships of KIS 2011

Function

Protection Antivirus Firewall Installation Update

-0.738* -0.625* -0.226** -0.558* -0.387**
Quality

Performance Resource Reliability Usability User interface Flexibility

-0.815* -0.764* -0.317* -0.832* -0.629* -0.315**

 *p=0.05; **p=0.1

Table 3. Statistics of Utilities of System Aspects of KIS 2011

 Function Quality

 Installation Update Performance Resource Reliability Usability
User inter-

face
EU(a)/SU(a) 3.79/0.96 3.75/1.29 3.44/1.24 3.50/1.02 2.83/0.58 3.71/0.95 3.85/0.97

Finally, we generated the report on the candidate requirements changes through

observing the overall user satisfaction OS(R) of KIS 2011 (4.08) and the statistics
(EU(a) and SU(a)) of the utility of each system aspect. We used the strategy in sec-
tion 4.4 (λ=1.36) to find the system aspects relevant to the candidate requirements

56 W. Jiang, H. Ruan, and L. Zhang

changes of KIS 2011 that are shown in Table 3. The categories of potential/necessary
requirements changes are distinguished through yellow/red colors. Through the above
analysis, we checked the SRS of KIS 2011 and revised the associated statements with
the system aspects in Table 3 to generate the report shown in Table 4.

Table 4. Candidate requirements changes of KIS 2011

ID Statement Aspect Type
1 Automatic configuration during installation Installation #necessary
2 Update databases and application modules more smoothly Update #potential
3 Make less impact on the computer in daily use. Performance #necessary
4 Reduce the resource footprint when performing the user’s task resource #necessary
5 Fix bugs and issues that are causing crashing and rebooting Reliability #necessary
6 Improve usability Usability #potential

7
Make user interface more intuitive and reduce needless pop-up
messages

User interface #potential

Analysis and Discussion of Requirements Changes.
Fig. 4 indicates the requirements changes designed by the participants, which contains
4 functional and 3 quality aspects of KIS 2011. Only quality aspects are consistent
with those in our report whereas functional aspects are completely different.

Fig. 4. Requirements changes designed by developers

We investigated the decision-making processes of participants. They stated that the
changed functional requirements were designed based on the evaluation criteria for
Internet security technology and personal experience. For functional requirements,
developers paid more attention to key and special features while users were more
concerned with the features closely related to user habits. As KIS 2011 is one of best
sellers in the Internet security domain, its main functional aspects implicitly meet
mass user desires in the open market. The improvement of such aspects cannot have
significant impact on software revenue only when they have serious issues and bugs.
In terms of KIS 2011, however, automatic remote installation and regular online up-
date often fail in different contexts of use in the real world. The improvement of
those aspects can promote the purchase of most users. Developers often ignore the

 Analysis of Economic Impact of Online Reviews 57

requirements changes in these aspects as they may not be regarded as important mod-
ules of the software from the perspective of technology.

We showed the participants the report generated by our approach and told them
that changes in the functional aspects of installation and update could bring about
significant growth in the software revenue. Three participants admitted to lose sight of
these aspects, and the other two participants tried to revise them. Thereby, our ap-
proach can discover the requirements changes that developers sometimes overlook.

From Fig. 4, we find that the participants have obvious disagreements in the quali-
ty aspects of reliability and usability. Few participants determined the changes in
them. The other participants stated that it was hard to well implement reliability and
usability because their user preferences were diverse. Considering huge development
costs, the participants gave up their improvement. However, the report generated by
our approach shows that changes in such quality aspects are necessary from the eco-
nomic perspective. Therefore, it is a trade-off between economic factors and technical
levels for requirement evolution. Our approach suggests the requirements changes
that are more economically valuable. Further, the analysts are required to make deci-
sion on how to meet user interests through a certain technical level as far as possible.

5 Related Work

Several researchers have developed techniques for eliciting requirements from online
user feedback. Gebauer et al found the factors significantly related to overall user
evaluation through the content analysis of online user reviews and then resulted in
user requirements of mobile devices [5]. Lee et al. gathered customer’s opinions from
social network service to facilitate requirements elicitation [6]. These approaches
capture changing requirements without limited range of users and insufficient expres-
sions. However, they rely more on the manual content analysis of user opinions.

Cleland-Huang et al utilized a classification algorithm to detect non-functional re-
quirements from stakeholder comments [19]. Hao et al. adopted machine learning
techniques to extract the aspects of service quality from Web reviews for conducting
automatic service quality evaluation [3]. Carreño et al. adapted topic modeling tech-
niques to deal with available user feedback of mobile applications for extracting
new/changed requirements for next versions [4]. Our previous research compared the
changes in user satisfaction before and after software evolution to provide instructive
information for designing future systems [18]. Although the existing approaches vali-
date that automated techniques can efficiently explore user feedback for requirements
evolution, they lack the deep analysis about how valuable user feedback of different
system aspects are for determining changes in requirements.

In our research, opinion mining techniques make it possible to automatically elicit
requirements from huge volume of user feedback data. Common approaches generally
fall into two categories. One category is to identify user opinions through grammatical
structures [7, 20-22]. Such approaches have good performance for mining fine-gained
features and related opinion words. However, the completeness of extraction rules/
templates and domain knowledge have obvious impact on the accuracy of algorithms.

58 W. Jiang, H. Ruan, and L. Zhang

The other category is to use topic modeling techniques for simultaneously extracting
and grouping user opinions [23-25]. These approaches are governed by how often
feature terms and opinion words co-occur in different context. As expressions of user
opinions are diverse, topic models are appropriate for mining coarse-gained features.
A protential problem is that the extracted features may be not meaningful.

6 Conclusions

This paper has presented a novel approach for requirements evolution from the eco-
nomic perspective. We explore a broad spectrum of online reviews and combine the
techniques of opinion mining, machine learning, and text clustering with a utility-
oriented econometric model to find system aspects significantly related to software
sales for revising the requirements. A case study in the Internet security domain was
carried out to show that our opinion mining method achieved good recall and preci-
sion in large amounts of noisy review data. Moreover, our approach supported ana-
lysts by suggesting the requirements changes that were more economically valuable.
Therefore, it is useful to improve existing approaches for requirements evolution in
understanding user demands in an open market.

Future work will refine our opinion mining method for improving the accuracy and
efficiency of automated user feedback acquisition in the big data era. Furthermore, we
will evaluate our approach using a broader data set from different domains.

Acknowledgments. The work in this paper was partially fund by National Natural
Science Foundation of China under Grant No. 61170087 and State Key Laboratory of
Software Development Environment of China under Grant No. SKLSDE-2012ZX-13.

References

1. Zowghi, D., Offen, R.: A Logical Framework for Modeling and Reasoning about the Evo-
lution of Requirements. In: 3rd IEEE International Symposium on Requirements Engineer-
ing, pp. 247–257. IEEE Computer Society (1997)

2. Godfrey, M.W., German, D.M.: The Past, Present, and Future of Software Evolution. In:
2008 Frontiers of Software Maintenance, FoSM 2008, pp. 129–138 (2008)

3. Hao, J., Li, S., Chen, Z.: Extracting Service Aspects from Web Reviews. In: Wang, F.L.,
Gong, Z., Luo, X., Lei, J. (eds.) WISM 2010. LNCS, vol. 6318, pp. 320–327. Springer,
Heidelberg (2010)

4. Galvis, L.V., Winbladh, K.: Analysis of User Comments: An Approach for Software
Requirements Evolution. In: 35th International Conference on Software Engineering,
pp. 582–591. IEEE Press, New York (2013)

5. Gebauer, J., Tang, Y., Baimai, C.: User Requirements of Mobile Technology: Results from
A Content Analysis of User Reviews. Inf. Syst. E-Bus. Manage 6, 361–384 (2008)

6. Lee, Y., Kim, N., Kim, D., Lee, D., In, H.P.: Customer Requirements Elicitation based on
Social Network Service. KSII Trans. on Internet and Information Systems 5(10), 1733–
1750 (2011)

 Analysis of Economic Impact of Online Reviews 59

7. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion Word Expansion and Target Extraction through
Double Propagation. Comput. Linguist. 37(1), 9–27 (2011)

8. Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20(3), 273–297 (1995)
9. Kotler, P.: Marketing Management: Analysis, Planning, Implementation, and Control.

Prentice Hall College Div. (1999)
10. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness Using Wikipedia-based

Explicit Semantic Analysis. In: 20th Int’l Joint Conf. on Artificial Intelligence, pp. 1606–1611.
Morgan Kaufmann Publishers Inc. (2007)

11. Qiu, G., Liu, B., Bu, J., Chen, C.: Expanding Domain Sentiment Lexicon through Double
Propagation. In: 21st Int’l Joint Conf. on Artificial Intelligence, pp. 1199–1204. Morgan
Kaufmann Publishers Inc. (2009)

12. Pagano, D., Brügge, B.: User Involvement in Software Evolution Practice: A Case Study.
In: 2013 Int’l Conf. on Software Engineering, pp. 953–962. IEEE Press, New York (2013)

13. Chevalier, J.A., Mayzlin, D.: The Effect of Word of Mouth on Sales: Online Book
Reviews. Journal of Marketing Research 43(3), 345–354 (2006)

14. Cantone, I., Marucci, L., Iorio, F., Ricci, M.A., Belcastro, V., Bansal, M., Santini, S., di
Bernardo, M., di Bernardo, D., Cosma, M.P.: A Yeast Synthetic Network for In Vivo As-
sessment of Reverse-Engineering and Modeling Approaches. Cell 137(1), 172–181 (2009)

15. Granger, C.W.J.: Testing for Causality: A Personal Viewpoint. Journal of Economic
Dy-namics and Control 2, 329–352 (1980)

16. Jiang, W., Zhang, L., Dai, Y., Jiang, J., Wang, G.: Analyzing Helpfulness of Online Re-
views for User Requirements Elicitation. Chinese Journal of Computers 36(1), 119–131
(2013)

17. Goolsbee, A., Chevalier, J.: Measuring Prices and Price Competition Online: Amazon.com
and Barnesand Noble.com. Quantitative Marketing and Economics 1, 203–222 (2003)

18. Lew, P., Olsina, L., Becker, P., Zhang, L.: An Integrated Strategy to Systematically Un-
derstand and Manage Quality in Use for Web Applications. Requirements Engineer-
ing 17(4), 299–330 (2012)

19. Cleland-Huang, J., Settimi, R., Xuchang, Z., Solc, P.: The Detection and Classification of
Non-functional Requirements with Application to Early Aspects. In: 14th IEEE Int’l Re-
quirements Engineering Conf., pp. 39–48. IEEE CS (2006)

20. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: Tenth ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining, pp. 168–177. ACM, New York
(2004)

21. Popescu, A., Etzioni, O.: Extracting Product Features and Opinions from Reviews. In:
Conf. on Human Language Tech. and Empirical Methods in Natural Language Processing,
pp. 339–346. ACL (2005)

22. Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase Dependency Parsing for Opinion Mining.
In: Conf. on Empirical Methods in Natural Language Processing, pp. 1533–1541. ACL
(2009)

23. Mei, Q., Ling, X., Wondra, M., Su, H., Zhai, C.: Topic Sentiment Mixture: Modeling Fa-
cets and Opinions in Weblogs. In: 16th Int’l Conf. on World Wide Web, pp. 171–180.
ACM, New York (2007)

24. Zhao, W., Jiang, J., Yan, H., Li, X.: Jointly Modeling Aspects and Opinions with A
Max-Ent-LDA Hybrid. In: Conf. on Empirical Methods in Natural Language Processing,
pp. 56–65. ACL (2010)

25. Jo, Y., Oh, A.H.: Aspect and Sentiment Unification Model for Online Review Analysis.
In: 4th ACM Int’l Conf. on Web Search and Data Mining, pp. 815–824. ACM (2011)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 60–76, 2014.
© Springer-Verlag Berlin Heidelberg 2014

An IT-Driven Business Requirements Engineering
Methodology

Masahiro Ide1,2, Tomoko Kishida1, Mikio Aoyama2, and Yasuhiro Kikushima2

1 Qunie Corporation, Tokyo, Japan
2 Nanzan University, Seto, Japan

{idem,kishidat}@qunie.com, mikio.aoyamapnifty.com,
y-kiku@ark.ocn.ne.jp

Abstract. We propose a business requirements engineering methodology in or-
der to rapidly generate a business requirements and its supporting business
architecture centered around the IT (Information Technology). As a high-level
representation of business requirements along with the business value chain, we
propose XBMC, an extension of BMC (Business Model Canvas) of the Busi-
ness Model Generation. To align the business requirements onto an enterprise
information system, we propose a new framework of the SMC (System Model
Canvas) and a bidirectional mapping between XBMC and SMC governed by a
business meta-model. Based on the mapping, we propose a technique of incre-
mentally aligning business requirements represented in XBMC to and from ITA
(IT Architecture) in SMC, which is intended to effectively utilize IT capabilities
and resources. We demonstrate the effectiveness of the proposed methodology
by applying it to the development of a mobile music delivery business.

Keywords: Business Requirements Engineering, Business Analysis, Business
Design, Business Model, Business Model Canvas, System Model Canvas,
Business Value Chain.

1 Introduction

The IT is the critical resources for corporate management, and a comprehensive de-
sign of the business that utilizes the IT is indispensable to the competitive advantage
of the business. Therefore, various business analysis methods have been proposed and
draw attentions [2]. In the business analysis transcending the simple business model
design, it is required to clarify capability and limitation of the information system to
realize a business strategy and to develop a business and information system to realize
it. However, conventional methods rather focus on business model design first, utili-
zation of IT capability is postponed after the design.

In this article, we first clarify the problems of the conventional business design
from the viewpoints of IT utilization. Then, we propose a set of representations to
model the BA (Business Architecture) and ITA (IT Architecture), a technique to align
BA and ITA, and a business design technology that combines the above-mentioned
representations and techniques. We apply the proposed methodology to mobile music
delivery business and evaluate its effectiveness.

 An IT-Driven Business Requirements Engineering Methodology 61

2 Background of Problems

Fierce global competitions and kaleidoscopic environmental changes have raised the
importance of agility of the business. Instead of spending time on simply "a design"
of business, a new approach is necessary to evolve into the most suitable business by
quickly repeating the feedback cycle of "design, execution, evaluation, and re-
design". Therefore, the business design methodology to capture the overall business
situation and resources is required. In such a situation, as one of the crucial business
resources, the importance of IT increases, and the business design that utilizes the IT
becomes indispensable to lead business toward success. While authors are engaged in
the business development for many companies in different industry sectors, we rea-
lized that CIO and IT department strongly need the methodology to design a business
that fully utilizes IT. However, the conventional business model development me-
thods focus on the business view of a business model, have some difficulties in the
design of a business that utilizes IT capabilities.

3 Problems

3.1 Business Design Framework

In order to realize the business strategy of the company, it is necessary to capture
problems from a viewpoint of both business and IT. Therefore, the authors propose
the framework of a business design comprised of the business strategy, the BA, and
the ITA, as shown in the Fig. 1.

Fig. 1. A Framework of Business Design

The business model design is mainly based on the model that is a static structure of
the business. However, to lead the business to a success by improving its value, "a
strategic scenario," that utilizes and develops business model to achieve the business
goal, should be designed too. In this study, we define "BA (Business Architecture)" in
Fig.1 as a set of "a strategic scenario" and "business model." For the information sys-
tem, we call the model that captures its entire structure as "system model". Also, we
call a system behavior to utilize and develop system models as "system scenario." The
combination of "system model" and "system scenario" is defined as "ITA (IT Archi-
tecture)".

IT Architecture (ITA)Business Architecture(BA)
Business model (structure)

Strategic scenario (behavior)

System model (structure)

System scenario (behavior)

Requirements

Capability,
constrains
(resources)

＋ ＋

Business strategy
Goal Strategy

62 M. Ide et al.

3.2 Conventional Methods of Business Requirements Engineering

The information system is an important resource to control competitive advantage of
the business. In business requirements, the BA should be designed considering infor-
mation system and the capability and constrain of information system environment.
However, we may encounter difficulties to execute the BA or problems in the realiza-
tion of ITA in the current business requirements, because ITA is designed based on a
one-way demand from BA after the BA design is completed. As a result, it ends with
a re-design of the BA. Also, it implies the BA designed could not fully utilize the
capability of the information system and information system environment (Fig. 2).

Fig. 2. Conventional methods of Business Requirements Engineering

The BA is designed for not only a new business plan, but also a re-development of
the existing business. In the latter case, effective asset utilization is necessary for the
restraint of the investment and the improvement of the further competition, superiori-
ty by utilizing the existing internal asset as a resource of the company’s competitive
advantage, are demanded. Therefore, the re-design of the BA in consideration of pos-
sibility and constraints of the existing information system and environment is re-
quired. The unpractical BA which is not aligned with the existing information system
leads to the business failure and the waste of the investment and time.

3.3 Desirable Method of Business Requirements Engineering

In order to develop and operate agile and competitive business that utilize information
system and information system environment, ITA needs to be designed by capturing
the overall information system and its environment while synchronizing with a design
of the BA and aligning with BA as shown in Fig. 3.

Fig. 3. Desirable method of Business Requirements Engineering

Design of Business
Architecture

Design of IT
Architecture

Evaluation of
Business

Architecture

Evaluation of
IT Architecture

Re-design of
Business

Architecture

Re-design of
IT Architecture

Execution of
Business

Architecture

Execution of
IT Architecture

Requirements Capability,
Constrains

Start new business development Start re-development of existing business

Require-
ments

Capability,
Constrains

Design of
Business

Architecture

Design of IT
Architecture

Evaluation of
Business

Architecture

Evaluation of IT
Architecture

Re-design of
Business

Architecture

Re-design of IT
Architecture

Execution of
Business

Architecture

Execution of IT
Architecture

Require-
ments

Requirements

“Co-Evolution Model of business and system” required in the current business environment

Start new business development Start re-development of the existing business

Capability,
Constrains

Capability,
Constrains

 An IT-Driven Business Requirements Engineering Methodology 63

In the case of development of the existing business, not only for the new business
development, ITA needs to be aligned with BA in the continuously re-design. Thus,
business value is raised through the co-evolution of business and system, and it
enables the continuous growth of the business.

3.4 Problem Structure in the Current Business Requirements

The authors, through their consulting experiences in business design for many compa-
nies, collected problems of existing business requirements to utilize IT. As a result of the
root cause analysis, we identified four problems as shown in the lower part of Fig. 4.

Fig. 4. Root Cause Analysis of Conventional Methods

(1) Problem 1: Modeling ITA visually
In BA design, ITA, which captures the components by overlooking information sys-
tem, is not visualized.
(2) Problem 2: Relations between components of BA and ITA
The relations among components of both ITA and BA, which aligns and synchronize
both architectures, are not clarified.
(3) Problem 3: Relations between IT evolution and ITA components
Relations between IT evolution and ITA components, which utilize evolving IT tech-
nology to business and enable business growth, are not clarified.
(4) Problem 4: Continuous evolution of BA and ITA
For the continuous development of business, continuous evaluation and re-design of
both BA and ITA are required. Co-evolution of business and system is not planned
through evaluation, re-design, and execution by aligning both models.

Fig. 5. Problems to be solved in this study

Explanatory note：

Problems to be
solved in this

study
(fundamental

problems)

Problems

Not able to revise
business architecture

and IT architecture
continuously

Business and system are separated and not
able to align/unite them

Difficult for a designer of business architecture
to describe and visualize it by overlooking IT

architecture

Not able to re-design the plan which
synchronize business architecture and IT

architecture

Not able to develop/operate
business swiftly by utilizing IT

No able to clarify the relations among the
components of business architecture and

IT architecture

Not able to clarify the
relation between

business architecture and
IT architecture

Not able to specify the
influence on business

architecture considering
constraints and opportunities

of the existing information
system

Not able to specify the influence of IT
evolution on IT architecture and its

relations

Not able to specify the
influence and its range on
business architecture due

to the evolved IT

Not able to specify the
influence and its range on IT

architecture due to the
change of business

architecture

Not able to design the new plan which
synchronize business architecture and IT

architecture

Effective information system for
the business is not implemented

Business plan is not carried out
because of the unpractical

business design

Difficult for a designer of business
architecture to describe and
visualize it by overlooking IT

architecture

No able to clarify the relations
among the components of business

architecture and IT architecture

Define components of IT
architecture

Not able to specify the influence of
IT evolution on IT architecture and

its relations

Define relations among
components of IT and IT

architecture

Not able to revise business
architecture and IT architecture

continuously

Define frame to overlook and
visualize IT architecture

Define the relations among
components of IT architecture

Evolving process to align
business architecture and IT

architecture continuously

1

2

3

Define components of business
architecture

4

6

Define the relations between the
business architecture components and

IT architecture components

5

7

64 M. Ide et al.

Table 1. Five problems focused in this study

No Problem
1 Define components of ITA
2 Define frame to overlook and visualize ITA
3 Define the relations among components of ITA
4 Define components of BA
5 Define the relations between the BA components and ITA components

3.5 Problems to be Solved by IT Driven Business Requirements

To realize the framework in Fig.3, visualization of ITA and relation definition of BA
is required. Thus, among the problems identified in Fig. 4, visualization of overall
ITA and relation definition of the components of the ITA and BA are the two prob-
lems to be solved in the first place. To solve them, we analyzed the problems as illu-
strated in Fig. 5, and identified five concrete problems as the objectives of this study
in Table 1.

4 Related Works

(1) BMM (Business Motivation Model)
BMM of OMG is one of the techniques related to the business model development
[5]. It is a meta-model defined based on a concept that the fundamental components
of a business plan compose a purpose and means. The analysis technique to utilize
BMM in information system planning is proposed.

(2) BMG (Business Model Generation)
BMG is one of methodologies to develop business model [1][4]. It is a method to
design value generation and its delivery to a customer in a business model. BMC
(Business Model Canvas) shown in Fig. 6 is one of the BMG techniques. BMC is a
visualized framework to gather important components for business model design, to
arrange typical issues for checking, and to examine business model. BMC is com-
prised of nine blocks covering four areas including customer, value proposition, infra-
structure, and fund. BMC enables to share the problems of the business model among
stakeholders who related to business development. BMC is a concept of design from
the business view, and does not provide any method to examine ITA required to real-
ize business model, to develop ITA, and to design BA that utilize the possibility of
information system.
(3) Zachman Framework
The Zachman framework shows system components and its abstract degree in a ma-
trix [9]. It can be used to analyze a structure of organizations and system; However, it
does not offer any concrete method to design BA and ITA.

Fig. 6. BMC

Value
Propositions

Revenue streamCost structure

Key
resource

Customer
segments

Key
activities

Channels

Key
Partners

Customer
relations

 An IT-Driven Business Requirements Engineering Methodology 65

(4) EA(Enterprise Architecture) and TOGAF
EA is the business model development framework is derived from Zachman Frame-
work [6]. TOGAF [8] is one of the representative frameworks of EA. EA is defined as
four layers including BA, data architecture, application architecture, and technical
architecture; However, it does not offer any method to develop business models and
the business model that utilize IT.
(5) ArchiMate
ArchiMate is proposed as EA modeling language [4]. It provides a development me-
thod for EA from the business model defined by applying BMC; however, there is no
feedback of the possibility and constraints of ITA toward a business model.
(6) BABOK (Business Analysis Body of Knowledge)
BABOK is a body of knowledge for the business analysis [2]. It assumes the business
model a given condition, and its object is an analysis of the condition; however, it
does not offer any method to design business model.
(7) REBOK (Requirements Engineering Body Of Knowledge)
REBOK is a body of knowledge on the requirement engineering to connect the busi-
ness requirements to software requirements [3]. However, it does not offer any con-
crete method for business model development.
(8) Value Chain Analysis
It provides a framework to analyze the value chain of business that utilizes information
system [7]. However, it does not offer any method to develop business models.

5 Approach

This study adopts two approaches to solve the five problems in Table 1.

Fig. 7. Extended BMC

(1) Approach 1: Expanded BMC
This approach distinguishes business view, which corresponds to BA, from IT view,
which corresponds to ITA, and specialize them to develop a business model that con-
siders constrains by bringing out the capability of information system resources such
as information system, organizations related to the information system and a human
resource. It extends the BMC, the written framework of BMG, as a method to visual-
ize the overall BA and ITA.
(2) Approach 2: Definition of architecture conversion layer
This approach is to define conversion layer, which converts and to align the visualized
BA to ITA. The definition of conversion layer clarifies the requirements of business and
system to realize the business model and enables the IT driven business design.

Business Model Canvas System Model Canvas

Generic Model Canvas

Business View IT View

66 M. Ide et al.

Fig. 8. Architecture conversion layer

6 Business Requirements Engineering Methodology

This study proposes four technologies of IT driven Business Requirements
Engineering Methodology.

Fig. 9. SMCs

6.1 SMC (System Model Canvas)

In order to solve problem 1, 2, and 3 shown in Table 1, we propose SMC (System
Model Canvas), an extension of BMC, as a framework to feed back the capability and
constraints of the ITA for the design of BA by visualizing ITA as a whole.

SMC, as shown in Fig. 9, describes the value chain generated and delivered by ITA
in one figure. The structure and components of SMC are derived from the extension
of BMC, Zachman framework, and software supply chain. Definitions and category
of SMC components are in Table 2.

Table 2. Categories and Definitions of SMC Components

No Components Category Definition
1 IT consumer Scenario Users who enjoy the value of the system, Place where they use the service

2 IT utilization
scenario Scenario Relations between users and system such as scenario and ways utilizing

system that users enjoy the value

3 IT channel Model IT channel that users require to receive the value and utilize the system, such
as communication, device, and interface

4 IT value Model The value of IT delivered to IT consumer to realize the business value
5 IT revenue Scenario Revenue and effects gained by building and operating system
6 IT process Scenario A process required to build and operate the system

7 IT resource Scenario Assets required to build and operate the system, such as human resource,
intellectual property, knowledge

8 IT partner Scenario Partners and its role and place required to build and operate the system

9 IT cost structure Scenario Cost structure required to build and operate the system (Fixed IT cost
factors, variable IT cost factors)

Business Model Canvas System Model Canvas

Conversion
Layer

Harmonization/
coevolutionBusiness Architecture IT Architecture

Explanatory note：

System model

System scenario IT value
IT resources

(Data, Aplication,IT
infrastructure, IT personnel,

knowledge, etc.)

IT consumers

IT process

IT channels
(telecommunication, device,

I/F, information
security, etc.)

IT partners

IT utilization scenario
(IT consumer

relations)

IT revenueIT cost structure

 An IT-Driven Business Requirements Engineering Methodology 67

Fig.10 shows SMC meta-model, which defines the relations among SMC compo-
nents. The relations enable to analyze the formation of value chain throughout the
ITA by defining the resources to build ITA on the left side of SMC and the value
provided from ITA on the right side. SMC shows the hierarchic structure by placing
intangible components such as software and service in the upper part and tangible
components such as IT platform in the lower part.

Fig. 10. Meta Model of System Model Canvas

6.2 XBMC

To solve Problem 4 shown in Table 1, we propose XBMC (eXtended Business Model
Canvas) as a technology to visualize overall BA for approach 1. This re-defines the
components of BA from the business view. XBMC describes the value chain of busi-
ness that generated and offered by BA in one figure as in Fig. 11. Table 3 presents the
definition of the components of XBMC, and Fig.12 shows the relations among
XBMC components.

Fig. 11. XMBC

Fig. 12. Meta Model of XBMC

Table 3. Categories and Definitions of XBMC Components

No Components Category Definition
1 Customer segments Scenario Segment of target customers to whom the business value is delivered
2 Customer relations Scenario A method to build and maintain relations with customer segments
3 Business channel Model Business channel to deliver value to customer segment
4 Business Value Model Business value to be delivered to customer segments
5 Revenue streams Scenario Revenue stream and structure gained by business value delivery
6 Business processes Scenario Business process required to deliver business value
7 Business resources Scenario Business resources required to deliver business value
8 Business Partners Scenario Business partners required to deliver business value
9 Cost structure Scenario Cost structure required to deliver business value

User contact pointIT service

IT financial fundamentals

IT supply chain

IT process

IT cost structure

IT resources IT channels IT consumers

IT revenue

provide

contact

maintain
utilize

form

promote

form

provide

form

complement

provide
IT value

generateutilize
form

IT partners IT utilization scenario

Business
value

Business resources
Customer segments

Business activities

Business channel
Business partner

Customer relations

Revenue streamCost structure

Customer Contact PointBusiness Service

Financial Fundamentals

Business Management Fundamentals

Business value

Cost structure

Business resources

Business Partner Customer relations

Business channels Customer segments

Revenue Stream

provide
contact

maintainconstruct

formform

promote

form

provide

generate
form

complement

provide
Business activities

68 M. Ide et al.

6.3 Architecture Conversion between BA and ITA

As shown in Fig.8, BA and ITA are required to be converted each other and aligned
to realize business model. We propose the technology of architecture conversion layer
that offers architecture conversion function. Architecture conversion layer, as shown
in Fig.13, aligns XBMC to SMC. We define the conversion layer as meta-model that
describes the relations among components of XBMC and SMC. We call this BSTM
(Business-System Translation Meta-model). BSTM defines the relations among com-
ponents of XBMC and SMC. Thus, BSTM comprised of the following four compo-
nents in terms of value chain from value generation to delivery.

Fig. 13. BSTM (Business-System Translation Meta-model)

(1) Business value generation components: elements related to the business value
generation in XBMC

(2) IT value delivery components: elements related to the IT value delivery in SMC
(3) IT value generation components: elements related to the IT value generation in

SMC
(4) Business value delivery components: elements related to the business value deli-

very in XBMC

6.4 Design Process of BA and ITA

Fig.14 shows the proposed design process of business model. A merit of BSTM is to
map BA and ITA on the value chain. Thus, the conversion between XBMC and SMC
enables to analyze how BA and ITA contribute to the value chain, while the design of
the BA and ITA is in progress. It enables the business design that maximizes the val-
ue by bringing out the IT capability and balancing with IT constrains.
(1) Step 1: Value chain analysis of BA
Compose BA from business value delivery component in BMC based on the business
goal and strategy. First, we identify customer segments, to which a company delivers
its business value. Next, we identify business value to deliver to the customer

Business Value
Delivery Components

Business Value
Generation Components

IT Value
Delivery Components

IT Value
Generation
Components

Customer
relations

Business
value

Business
channel

deliver

Customer
segments

promote

Revenue
stream

form

form
Business
activities

generate

IT revenue

compose

IT value

IT channel

form

reinforce
execute

require

contact

IT consumer

provide

build

Business
resources

provide

Business
partner

complement
provide

utilize

IT utilization
scenario

enable

utilize

IT process

support

IT resources

execute

IT partner

complement

execute

Cost
structure

IT cost
structure

form

compose

form

compose

form
promote

form

form

(1)

(2)(3)

(4)

 An IT-Driven Business Requirements Engineering Methodology 69

segments and business channel or the value chain, in which it is delivered. Further-
more, in order to continuously deliver business value to the customer segments, we
evaluate the method to build and maintain the customers in each business channel and
revenue from the customer segments.
(2) Step 2: Description of value chain of BA
Describe the analysis results from Step 1 using XBMC, and analyze the alignment
among components form XBMC meta-model. If we have some inconsistencies, go
back to analyze in Step 1.
(3) Step 3: Analysis of IT Value delivery components through BSTM
Identify IT value delivery component in SMC required to deliver the value in XBMC
by referring to the relations among components of XBMC and SMC, which are
defined in the business meta-model in conversion layer.
To do so, first, we identify IT consumers from Customer relations, Channels and
business activities in BMC. Analyze IT value delivered to identified IT consumers,
then we evaluate IT channel, which is IT value chain in which IT value is delivered,
the relations with IT consumers (IT utilization scenario), and IT revenue gained in
return of IT value delivery.
(4) Step 4: Description of IT value delivery component in ITA
Describe analysis results of IT value delivery components in SMC based on the
XBMC through the conversion layer. We clarify the conditions, in which components
align, from BSTM and if there is any inconsistency, go back to Step 3 and analyze IT
value delivery components again.

Fig. 14. Design process of BA and ITA

(5) Step 5: Analysis of IT value generation components in ITA
Identify IT value generation components, which are to provide IT value to IT value
delivery components visualized in SMC, based on the relations defined in BSTM. We
identify IT process which generates IT value and resources, and IT partners that are
required to perform IT process and evaluate IT cost structure required for IT value
generation.
(6) Step 6: Description of IT value generation component of ITA in SMC
Describe analysis results of IT value generation components in SMC. Analyze the
alignment of components from BSTM, and if there is any inconsistency, go back to
Step 5 and analyze again.

Value chain
analysis of BA

Analyze
business value

generation
components

Description of
value chain of

BA

Analysis of IT
Value delivery
components

Description of IT
value delivery
component in

ITA

Executable?
（Any change?）

Design
complete

YES

Convert
by BSTM

Convert
by BSTM

Description of
business value

generation
components

Analysis of IT
value generation
components in

ITA

Description of IT
value generation

component of
ITA

Evaluate BA

Evaluate ITA Executable?
（Any change?）

NO

YES

NO

Start

XBMC

SMC SMC

XBMCDesign BA
(Business
Architecture)

Design ITA
(IT Architecture)

BSTM

BSTM

1 2

3 4 5 6

7 8 9

9

70 M. Ide et al.

(7) Step 7: Analyze business value generation components in BMC through BSTM
Based on the relations of XBMC and SMC components defined in the business meta-
model in the conversion layer, we identify business value generation components in
XBMC, which correspond to the structure of IT value delivery and IT value genera-
tion in SMC. Through BSTM, identify required business activities from business
value in XBMC, and IT consumer, IT value, and IT process in SMC. Based on the
results, we analyze the business cost structure composed of business resources, the
cost of the business activities, and IT cost structure defined in BSTM.
(8) Step 8: Description of BA in XBMC
Describe the analysis results of business value delivery components in XBMC. Ana-
lyze the alignment among components based on the meta-model in XBMC, and if
there is any inconsistency, go back to Step 7 and analyze again.
(9) Step 9: Evaluation of BA and ITA and redesign using XBMC and SMC
Evaluate feasibility and possibility of BA visualized in XBMC and ITA visualized in
SMC.
If there is any problem, go back to the related process from Step 1 to Step 8, and
repeat processes until the problem is solved and decision of execution is made.
The processes enables to design XBMC and SMC that align BA and ITA.
Designed XBMC, the origin of business requirement, and designed SMC, the origin
of information system requirement, leads to requirements definition, design and
development of business process, design of organizations, and resource procurement.

7 Application to a Business Case and Evaluation

7.1 Outline of the Case

We applied the proposed technology to the mobile music delivery business, which the
author involved in the development project in the past, and evaluated the
effectiveness. We visualized BA of mobile music delivery business in XBMC and
ITA in SMC, and realize business model that visually align BA and ITA via BSTM in
the conversion layer. An outline of the case is explained in the following two stages.
(1) Application of XBMC
Conventional designs of BA are described in figures and texts based on the original
idea or experiences on the business designer. So, different designers have different
descriptions. In this case, we apply XBMC to design BA.
(2) Application of SMC
In this case, we design ITA by applying SMC in the earlier phase of BA design. Also,
we feed back the capability and constraints of ITA in the phase of BA design by ap-
plying the conversion layer.

7.2 Design of BA and ITA

Even in the business model development that largely depends on IT, only BA is de-
signed with usual business goals and strategies. Therefore, analysis and design of ITA
are postponed, and IT capability is not utilized enough.

 An IT-Driven Business Requirements Engineering Methodology 71

The proposed technology enables to analyze BA synchronized with ITA, to visualize
as a whole and to align both architectures in order to realize mobile music delivery
business as planned. The following chapters provide an example of business model
design process, BA, and ITA in this case.
(1) Step 1: Value Chain analysis of BA for mobile music delivery business
The business strategy for mobile music delivery is “deliver music contents utilizing
the cutting–edge IT for the cellular phone users who demand latest services other than
incoming melody.” Through value chain analysis, we analyze and design business
value delivery component required to realize the strategy.
We identify the customer segment of mobile music delivery; “users who want to lis-
ten to music via cellular phone”. We analyze the business value of the mobile music
delivery, mobile network as a channel, direct marketing and music delivery as me-
thods to maintain the customer relations, and then we examine the music contents fee
as the revenue stream (Fig.15).

Fig. 15. Analysis of Business Value Delivery Components

(2) Step 2: Description of Value Chain in BA
Describe the analysis results in XBMC and analyze the alignment among components
using the XBMC meta-model. We confirmed there is no inconsistency.
(3) Step 3: IT value delivery components analysis in ITA via BSTM
Based on the designed value delivery components in XBMC, we analyzed IT value
delivery components in SMC using BSTM in conversion layer.
In this case we analyzed IT consumer in B2C business, based on the customer rela-
tions via business channel designed XBMC. Internal users are also extracted as IT
consumer involved in business activities. We analyze IT value to be delivered, IT
channel required to deliver it, relations with IT or IT utilization scenario, and IT reve-
nue for “cell phone users” who are IT consumers in B2C.
In this case, IT channel, 3G mobile network, has technical limitation of communica-
tion capacity. The limitation prevents to meet the requirement of network perfor-
mance in business channel and causes constrain in the quality of the music contents
and download time. The revise of business value was in need. As a result, changes are
made to deliver only a main part of music, not a full piece, to slash the length of con-
tents, to lower the quality level of the sound, and to adjust the revenue along with the
service changes (Fig.16). BSTM in conversion layer enabled to identify the range of
influence and to revise.

Direct marketing/ delivery
for individual customers

via cellular phone

Enable download via
cellular phone any time

anywhere
Cellular phone with

music player function

Users who want to enjoy
music on cellular phone

Music contents
exploitation fee

Mobile network

Deliver the song like
listening to music CD

Business value

Business channel

Business Value
Delivery Components

72 M. Ide et al.

Fig. 16. Analysis of IT Value Delivery Components

We also analyzed UI requirements for mobile site for IT consumers by utilizing the
possibility of web browsing technology of cellular phones. As a result of the analysis,
IT value is improved by reducing IT consumers’ stress when they access the site.
(4) Step 4: Description of IT value delivery component in ITA
We describe analysis results of IT value delivery component as components of SMC.
(5) Step 5: Analysis of IT value generation components in ITA
Based on the designed IT value delivery components and BTSM, we analyze IT value
generation components. We analyze the IT value generation component sequentially
to generate IT value for the mobile music delivery business, “able to deliver music
contents for 365 days/24 hours without stress even during access concentration.”
IT process, IT resources required to perform IT process, Required IT partner and
range of outsourcing to IT partners, based on the preparation status of IT resources
and IT process, Required IT cost structure(Fig.17).

Fig. 17. Analysis of IT Value Generation Components

Direct marketing/ delivery for
individual customers via cellular

phone

Enable download via cellular
phone any time anywhere

Cellular phone with music
player function

Users who want to enjoy
music on cellular phone

Music contents
exploitation fee

(N/A)

Deliver contents for 365
days/24 hours without stress

even during access
concentration

3G mobile network(slow
data communication)

Users who are good at
cellular phone operation

Access mobile site with a
cellular phone and

search/choose music and
download

Web browser for mobile

Mobile network

Deliver the main part of
song like listening to music

CD

IT channel

Business value

Business channel

Constrains

Capability

Business Value
Delivery Components

IT Value Delivery Components

Constrains

IT staff

Skill to implement/
operate the system to

deliver incoming
melody

Direct marketing/
delivery for individual
customers via cellular

phone

Enable download via
cellular phone any

time anywhere

Cellular phone with
music player function

Users who want to
enjoy music on
cellular phone

Music contents
exploitation fee

(N/A)

Deliver contents for
365 days/24 hours

without stress even
during access
concentration

3G mobile
network(slow data
communication)

Users who are good
at cellular phone

operation

Access mobile site
with a cellular phone
and search/choose

music and download

Development management

Delivery system
implementation cost

Web browser for
mobile

Mobile network

Data center vendor

Operation management
Delivery system

running cost

IT staff cost

Planning,
requirement definition

Deliver the main part
of song like listening

to music CD

IT channel

IT process

IT partner

Business value

Business channel

IT resources

Capability

Business Value
Delivery Components

IT Value Delivery Components

IT Value
Generation
Components Operation vendorDevelopment vendor

 An IT-Driven Business Requirements Engineering Methodology 73

Fig. 18. The case study of SMC

According to the analysis, members of the case company who have system planning
or management skills and experiences in the mobile music delivery or a similar busi-
ness, incoming melody business, perform system planning and requirement definition
by themselves, and development and operation are outsourced to vendors who are IT
partners.
(6) Step 6: Description of IT value generation components of ITA in SMC
Based on the analysis of IT value generation component, we describe ITA of mobile
music delivery as shown in Fig. 18 by using SMC, and visualize ITA.
(7) Step 7: Analysis of business value generation components using XBMC via

BSTM
We analyzed the designed business value generation component referring to the de-
signed SMC, XBMC, and BSTM (Fig.19).
1) Identify and analyze the request on business activities required to generate business
value, business resources, and business partners.
2) Analysis of cost structure to generate business value and IT value

Fig. 19. Analysis of Business Value Generation Components and BSTM in the case study

IT resources

1.IT staff who has skills of
platform system to deliver
incoming melody

2.Development/ operation
knowledge for the
platform of incoming
melody

IT consumers

1.Experienced cellular
phone users who are
not good at using PC
(10’s to 30’s)

IT process

1.Requirement definition
and project management
for system development

2.Operational management
to maintain system

IT partner

1.Vendor in charge of
planning, design,
manufacture, test.

2.Vendor maintain and
operate the large scale
platform to deliver
contents

3.Vendor of data center
where platform is
located

IT usage scenario
(Relations between users)

1.Access to the mobile site
via cellular phone,
search/select favorite
music and download

IT channel

1.3G mobile network that is
relatively slow data
communication (in about
1MB)

2.Different mobile web
browsers for each carrier

IT Value

1.Deliver contents for 365
days/24 hours without
stress even during the
access concentration

2.Able to search favorite
music from 400,000 music
managed.

3.Able to recommend the
music suit with users’
preferences based on the
data in access logs and
download logs.

IT revenue

1. (None)

IT cost structure

1.System implementation cost
2.System running cost (fee for business partners, data center, etc.)

IT staff

Skill to implement/
operate the system to

deliver incoming
melody

Direct marketing/
delivery for individual
customers via cellular

phone

Enable download via
cellular phone any

time anywhere

Cellular phone with
music player function

Users who want to
enjoy music on
cellular phone

Music contents
exploitation fee

Music procurement

(N/A)

Deliver contents for
365 days/24 hours

without stress even
during access
concentration

3G mobile
network(slow data
communication)

Users who are good at
cellular phone

operation

Music exploitation
right

Record company to
procure from

Access mobile site
with a cellular phone
and search/choose

music and download

Development
management

Music fee

Delivery system
implementation cost

Cellular phone carrier

Web browser for
mobile

Mobile network

Payment collection
fee

Sales and
administration cost

Data management/
encode

Site operation

Operation
management

Payment collection

Delivery system
running cost

IT staff cost

Planning,
requirement

definition

Deliver the main part
of song like listening

to music CD

Business activities

Business
resources

Business
partner

Cost structure

IT channel

IT process

IT partner

Business value

Business channel

IT resources

Business Value
Delivery Components

IT Value Delivery Components

IT Value
Creation
Components

Business Value Generation Components

Con-
strains

Operation vendorDevelopment vendor Data center vendor

Delivery operation
staff

74 M. Ide et al.

The business activities such as music contents procurement, data management and
encode for the music contents, and site operation are important for mobile music deli-
very business to generate business value. And as a business partner, we analyze the
importance of record companies as a business partner who provide new music con-
tents as many as possible at the release timing and also maintenance of the relations
with them.

Fig. 20. The case study of XBMC

(8) Step 8: Description of BA in XBMC
We visualized the analysis results of business value generation components in
XBMC. We evaluate the alignment among the components and the feasibility and
effectiveness of BA in XBMC. If the evaluation results indicate the re-analysis, per-
form re-design. When we complete the design, describe in XBMC to create XBMC
for mobile music delivery as shown in Fig. 20.
(9) Step 9: Evaluation and re-design of BA and ITA
We evaluate feasibility and possibility of BA of mobile music delivery based on
XBMC shown in Fig. 20. Also, we evaluate the feasibility of IT utilization of ITA of
mobile music delivery based on SMC shown in Fig. 18. If the evaluation results indi-
cate needs for re-analysis of SMC and XBMC, perform re-design. In this case, we
evaluated that the feasibility and possibility are relatively high. Thus, we conclude the
completion of design in XBMC and SMC without re-design processes.
After the completion of design and decision making for execution, designed XBMC
and SMC become the origin of requirements of the BA and ITA. They lead to refining
the requirements, design the business process, and development. Also, the visualized
SMC leads to refining requirements and conditions of information system environ-
ment, such as information system to realize mobile music delivery business, IT organ-
ization, IT personnel, IT knowledge and IT partners, then procurement and prepara-
tion follow.

Visualizing ITA clarifies the capability and constraints of information system envi-
ronment, such as a purpose of information system, IT personnel, and IT process for
mobile music delivery. BSTM of the conversion layer enables feedback the capability
and constraints to BA, thus IT driven business model development is realized.

Business value

1.Provide main part of
songs from music CD,
and enjoy it via the
cellular phone.

2.Enable download via
cellular phone any time
anywhere.

Revenue stream

1.Music contents fee (collect from cellular phone users who download the
contents via carriers)

Cost structure

1.Payment collection fee for mobile carrier
2.Music fee (The copyright royalty/ master fee for use ）
3.Music management, development and running cost of delivery

platform
4.Sales and administration cost(Advertisement, sales, and personnel

expenses)

Business resources

1.Music exploitation right
2.Delivery operation staff

Customer segments

1.Users who want to
enjoy music like
listening CD or
setting incoming
melody via cellular
phone (domestic 10’s
to 20’s)

Business activities

1.Music procurement
2.Music data management
3.Delivery site operation
4.Marketing

Business channel

1.Cellular phone with music player
function

2.Mobile network with quantitative
charge

Business partner

1.Record company to
procure music from

2.Mobile carrier

Customer Relations

1.Direct marketing/ delivery for
individual customers via mobile
site

2.Billing of music charge along
with mobile communication fee

 An IT-Driven Business Requirements Engineering Methodology 75

8 Evaluation

As an evaluation of the proposed methodology, we conducted an interview with two
consultants who in charge of business model development. We gathered three evalua-
tion comments, which indicate the effectiveness of the proposed methodology.
(1) The proposed methodology provides frameworks of business and information

system to be analyzed in business model development, and they give hints or
clues to analyze and design.

(2) By visualizing an overall picture of the ITA that includes information system
resources and environment, it provides hints to utilize IT in the phase of business
model design.

It enables to identify information system resources and environments, which are
necessary to realize and execute the business, and analyze these requirements in the
phase of business model design. Starting preparations for the system implementation
and procurement in an earlier phase accelerates the speed toward the business realiza-
tion.

9 Discussions

Two main roles, a business designer who designs the business model, and the
management who make the decision to execute the designed business model, are
involved in business model development. We study the proposed technology from
those viewpoints.
(1) Improve the quality of BA requirements
The proposed XBMC and SMC visualize BA and ITA as a whole. This helps a busi-
ness designer design and requirements analysis for BA considering the ITA as prere-
quisites or constraints. It reduces the rework of the design and improves the feasibility
of business.
(2) Improve the quality of ITA requirements
A business designer can design ITA that aligns with BA in the early phase, and that
leads to the design and requirements analysis of ITA, which is feasible and effective
for the business. It shortens the lead time to business realization by starting design and
preparation earlier for the information system that contribute to the business.
(3) Accelerate decision making and facilitate for the agreement
Visualization of business and system in XBMC and SMC in a structured and simple
way helps a business designer evaluate it. Also, stakeholders of business model
development can easily understand the BA and system architecture to realize the
business, and it helps to reach the agreement faster.
(4) Better understanding of information system and its environment
Visualization of ITA in SCM enables managements to capture the required
components to realize the business, such as information system, personnel to
implement and maintain information system, process and partners. As a result,
management is able to evaluate the investment in the information system and make a
decision quickly.

76 M. Ide et al.

10 Future Work

The proposed methodology needs to be applied to the business model development
project and to be evaluated quantitatively in comparison with conventional methods.

Also, we think of a future study of the problems, problem 6 and 7 in Fig. 5, in the
continuous evolution of parameters of components in XBMC and SMC, a description
guideline, and the designed business model.

The relations between BSTM in conversion layer and IT technology enable to de-
sign a business model that utilizes more evolving IT. We think it is effective to ex-
pand BTSM to correspond to each component of IT technology.

11 Conclusion

In order to develop competitive business model that utilizes IT, since the contribution
of information systems to the business success is required, this study technically
contributed by proposing four technologies as a practical methodology for business
model development: 1) Expansion of BMC to visualize BA, 2) proposing SMC to
visualize ITA, 3) BSTM as business meta-model to define the conversion layer to
align BA and ITA, and 4) design process of BA and ITA.

We apply the proposed methodology to design mobile music delivery business,
where its competitive superiority largely depends on IT utilization, and evaluate the
effectiveness.

For future work, we develop the guideline of the proposed methodology and eva-
luate the effectiveness of the proposed methodology by applying it to actual business
model development.

References

1. Osterwalder, A., Pigneur, Y.: Business Model Generation. Wiley (2010)
2. IIBA, A Guide to the Business Analysis Body of Knowledge, Version 2.0 (2009)
3. JISA REBOK WG, Requirements Engineering Body of Knowledge (REBOK), Version 1.0,

Kindaikagaku (2011) (in Japanese)
4. Meertens, L.O., Lacob, M.E.: Mapping the Business Model Canvas to Archimate. In: SAC

2012, pp. 1694–1701 (2012)
5. OMG, Business Motivation Model (BMM), Version 1.1,

http://, http://www.omg.org/spec/BMM/ (May 2010)
6. Sowa, J.F., Zachman, J.A.: Extending and Formalizing the Framework for Information Sys-

tems Architecture. IBM Systems J. 31, 590–616 (1992)
7. Barnes, S.J.: The Mobile Commerce Value Chain: Analysis and Future Developments. Int‘l

J. of Information Management 22, 91–108 (2002)
8. The Open Group, A Guide to TOGAF Version 8.1 Enterprise Edition (2005)
9. Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems J. 26,

276–292 (1987)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 77–82, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Efficient Identification of Rationales by Stakeholder
Relationship Analysis to Refine and Maintain

GQM+Strategies Models*

Takanobu Kobori, Hironori Washizaki, Yoshiaki Fukazawa, Daisuke Hirabayashi,
Katsutoshi Shintani, Yasuko Okazaki, and Yasuhiro Kikushima

Goal-oriented Quantitative Management Research Group
Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 Japan

uranus-tk@ruri.waseda.jp

Abstract. GQM+Strategies1 is an approach that aligns business goals at each
level of an organization to strategies to realize overall business goals and as-
sesses the achievement of such goals. Strategies are extracted from business
goals based on rationales (contexts and assumptions). Using the proposed ap-
proach, which refines the GQM+Strategies model by extracting rationales based
on the analysis of the relationships between stakeholders, it is possible to ex-
tract rationales exhaustively and to reconsider the GQM+Strategies model even
if the business environment changes.

Keywords: Software development, GQM+Strategies, Stakeholder, business
goal, organizational change, rationales (contexts and assumptions), Require-
ments engineering.

1 Introduction

Currently, software is responsible for a lot of business in corporate activities [1]. It is
unclear if the IT/software related strategies and an organization’s business goals are
aligned. One approach to resolve this issue is GQM+Strategies, which aligns the
business goals of each level to the overall strategies and goals of the organization as
well as assesses the achievement of business goals. It is possible for the entire organi-
zation to communicate easily and to work toward common goals.

Nowadays both business and technical environments are changing rapidly. Thus, a
model must continuously evolve [2][3]. To understand these changes, an analysis and
validation mechanism that adapts the relationships among stakeholders, business goals,
and strategies to GQM+Strategies is necessary. Previously, the rationales and business
goals have been evaluated using GQM+Strategies for Business Value Analysis [4], but
it remains unclear how to extract rationales efficiently and exhaustively. This work
proposes the Context-Assumption-Matrix (CAM) to refine business goals and strate-
gies iteratively by analyzing the relationships of stakeholders as a complement to

1 GQM+Strategies® is registered trademark No. 302008021763 at the German Patent and Trade Mark

Office; international registration number IR992843.

78 T. Kobori et al.

GQM+Strategies and the Context Assumption (C/A) extraction sheet to unify the ex-
pressive style of contexts and assumptions.

This paper examines the following three research questions.
RQ1: Can CAM and the C/A extraction sheet efficiently extract new rationales?
RQ2: Can CAM exhaustively extract rationales?
RQ3: When the management policy or business environment changes, can the ratio-
nales and the GQM+Strategies Grid be easily analyzed via CAM?

The contributions of this paper are two-fold. First, the proposed method may pro-
vide a way to efficiently and exhaustively extract contexts and assumptions. Second,
when the management or business environment changes, GQM+Strategies, contexts,
and assumptions can be easily analyzed.

2 Background

2.1 GQM+Strategies

The GQM+Strategies approach extends the goal/question/metric paradigm to measure
the success or failure of goals and strategies, while adding enterprise-wide support to
determine actions on the basis of the measurement results [5].

GQM provides support for measurements by developing software-related goals and
generating questions to refine goals and to specify measures that need to be consi-
dered in order to answer generated questions [6]. Although the GQM approach can
measure whether a business goal is achieved in an organization, it does not provide a
mechanism to link higher-level business goals to lower-level goals nor does it support
and integrate goals at different levels of the organization. On the other hand, GQM+
Strategies creates maps between goal-related data at different levels, so that the in-
sights gained relative to a goal at one level can help satisfy goals at higher levels [4].

The major feature of GQM+Strategies is to determine business goal strategies
based on rationales as “contexts” and “assumptions”. Contexts are environmental
characteristics, and assumptions are aspects of uncertain environments, including
estimated ones. Although many strategies are considered for a goal, the best strategy
is then selected based on the rationales. Because all of the selected strategies are de-
tailed to lower level goals, it is possible to determine strategies that reflect the actual
business environment. Figure 1 overviews the concept of GQM+Strategies. The
GQM+Strategies Grid visually confirms the link between a goal and strategy, allow-
ing the entire organization to communicate easily and work toward a common goal.
Furthermore, through the GQM paradigm, it is possible to evaluate whether the goals
at each level are achieved.

Fig. 1. GQM+Strategies components (based on Basili et al. [5])

 Efficient Identification of Rationales by Stakeholder Relationship Analysis 79

2.2 Motivating Example

As an example, we applied GQM+Strategies to a stationary company, which sells
stationary to corporations. The company receives orders from corporate customers
and then ships based on the order form. Figure 2 overviews the corporate structure of
the stationary company. Although the scope of the application is the sales department,
the purpose of using GQM+Strategies is to improve accepting orders in the sales de-
partment and the shipping business. Figure 3 shows a level 3 business goal, the strate-
gy, and rationales.

Fig. 2. Corporate structure of a stationary company

Fig. 3. Business goal, strategy, and rationales (excerpt)

Although the GQM+Strategies process derives business goals, strategies, and ra-
tionales, it is unclear whether the contexts and assumptions cover all existing goals
and strategies. For example, there may be a context where ensuring the budget of
system construction is difficult. The lack of contexts and assumptions tends to be
misleading, and incorrect strategies are derived. Therefore, the mechanism must be
able to extract contexts and assumptions efficiently and exhaustively.

Business environments are constantly changing. For example, consider a manage-
ment policy change when a company that began with individuals is sold to a corpora-
tion. The GQM+Strategies Grid must be adjusted, and some contexts and assumptions
may change. However, it is difficult to grasp exactly what has changed. Thus, the
mechanism must also be able to grasp exact changes and adapt GQM+Strategies.

3 Our Approach

3.1 Context-Assumption-Matrix

CAM organizes contexts and assumptions, which are common between stakeholders,
into a two-dimensional table. Our approach defines stakeholders as people, systems,

80 T. Kobori et al.

Fig. 4. CAM and GQM+Strategies Grid of a stationary company (excerpt)

or processes. This definition allows CAM to respond to the actual shape of corpora-
tions. Figure 4 provides an example of applying CAM to a stationary company and
GQM+Strategies Grid.

Each row element denotes a stakeholder who views the context or assumption.
Each column element represents a stakeholder who is the subject of the context or
assumption. TBD denotes a stakeholder who is undecided or does not currently exist.
Row and column elements have commonalities. For example, in Fig. 4, level 1 con-
tains C2 (Context 2): “Profit rate decreases due to a recession of customers.” This
means that the “Management Department” views that a “Corporate Customer” is ex-
periencing a recession. In CAM, “Context 1” is written as “C1”. The details of the
contexts and assumptions are described in the CA Extraction Sheet, which is ex-
plained in the next section.

CAM has a hierarchy, which corresponds to the corporate structure similar to
GQM+Strategies. In this case, CAM has three levels because the example stationary
company has three levels. The stakeholders of CAM have the same levels as the cor-
porate structure.

The example in Fig. 4 shows how to use CAM when the order reception group in
level 3 lacks contexts or assumptions. It is possible to omit the contexts and assump-
tions related to the order reception group. In fact, there is a context, “When the order
reception group receives an order, it must confirm that the order is placed by a regis-
tered customer on the basis of the customer ledger.” In addition to the strategy in Fig.
3, it is possible to plan a new strategy, “Construction of a customer information con-
trol system” based on this context. By organizing the contexts, assumptions, and
stakeholders two-dimensionally in CAM, the contexts and assumptions can be visual-
ly reviewed.

3.2 C/A Extraction Sheet

Contexts and assumptions are often described ambiguously. For example, consider
the context, “We take an order via telephone, FAX, or email from a corporate
company.” This context does not clarify who “we” refers to, which may lead to a

 Efficient Identification of Rationales by Stakeholder Relationship Analysis 81

misunderstanding of the context or assumption even if it is extracted via CAM. There-
fore, it is important to unify he expressive style of contexts and assumptions.

To unify the expressive style, we developed the C/A Extraction Sheet. Table 1
shows the definitions and an example of a C/A Extraction Sheet. This expressive style
allows contexts and assumptions to be described exactly. Furthermore, the “view-
point” in this sheet corresponds to the row elements, while “who” corresponds to the
column elements in CAM. Conversely, extracting the contexts and assumptions in
this sheet can create CAM.

Table 1. Definitions and an example of the C/A Extraction Sheet

Item Explanation Example
Level Level of corporate structure Level 3
when Period of Context and Assumption until now

viewpoint
Stakeholder who views context or assumption

(row element in CAM)
Order Group

who
Stakeholder who are subject of Context

or Assumption (column element in CAM)
Order Group

what Contents of Context and Assumption
We take an order

via telephone.

+/-
Context and Assumption are + or - for viewpoint

+ is positive, - is negative, +- is positive and negative
+-

Source Source of Context and Assumption business outline

3.3 Steps of Our Approach

This section explains how we use the GQM+Strategies Grid, CAM, and the C/A
Extraction Sheet. Our approach uses the following steps:

1. Collect contexts and assumptions using the C/A Extraction Sheet.
2. Extract stakeholders of CAM from the corporate structure.
3. Apply the collected contexts and assumptions to CAM.
4. Use CAM to extract missing contexts and assumptions.
5. Create a GQM+Strategies Grid based on contexts and assumptions.
6. Update CAM and the C/A Extraction Sheet by referring to the related stake-

holders when the management policy or business environment changes.
7. Update the GQM+Strategies Grid based on contexts and assumptions.
8. Repeat steps 6 and 7.

4 Discussion

We applied CAM and the C/A extraction sheet to a stationary company. Thus, the
research questions are discussed using this example. In the future, we plan to adapt
our method to other examples.
RQ1: Can CAM and the C/A extraction sheet efficiently extract new rationales?

People unfamiliar with GQM+Strategies have difficulties deriving rationales
without hints. As shown in Fig. 4, CAM can ascertain information of stakeholders.

82 T. Kobori et al.

Additionally, fitting the items in the C/A extraction sheet can extract rationales (Table 1).
Thus, CAM and the C/A extraction sheet can extract new rationales efficiently.
RQ2: Can CAM exhaustively extract rationales?

As shown in Fig. 4, CAM uses stakeholders in the organization as elements. Based
on the relationships of stakeholders, rationales are extracted exhaustively.
RQ3: When the management policy or business environment changes, can the
rationales and the GQM+Strategies Grid be easily analyzed via CAM?

As shown in Fig. 4, CAM has a mechanism to extract rationales by analyzing the
relationships of stakeholders. Accordingly, if changes related to stakeholders occur,
elements related to change can be extracted using CAM.

5 Conclusion and Future Work

Often, insufficient requirements management is on top of the list of factors contribut-
ing to project failures [7]. GQM+Strategies is an effective approach to align business
goals with the systemization of strategies. However, rationales may be ambiguous or
omitted. In our approach, ideal rationales are extracted by analyzing the relationships
of stakeholders in an organization. Moreover, we propose a mechanism that can re-
spond to changes in the management policy or business environment.

To demonstrate the effectiveness of CAM, an experiment involving 50 students at
Shimane University in Japan began in February 2014.

Acknowledgement. In addition to co-authors, I would like to thank other members of
Goal-oriented Quantitative Management Research Group (GQM-RG) who provided
carefully considered feedback and valuable comments.

References

[1] Adam, T., et al.: Aligning software projects with business objectives. In: 6th IWSM-
MENSURA 2011. IEEE (2011)

[2] Munch, J., et al.: “Experiences and Insights from Applying GQM+Strategies in a Systems
Product Development Organization. In: 39th SEAA 2013, p. 21 (2013)

[3] Ebert, C., et al.: Requirements Engineering–Industry Needs. In: 6th RE 2008 (2008)
[4] Mandić, V., Basili, et al.: Utilizing GQM+ Strategies for business value analysis: An ap-

proach for evaluating business goals. In: 4th ESEM 2010. ACM (2010)
[5] Basili, V.R., et al.: Linking software development and business strategy through measure-

ment. Computer 43(4), 57–65 (2010)
[6] Tatsuya, K., et al.: Application of GQM+ Strategies in the Japanese Space Industry. In: 6th

IWSM-MENSURA 2011. IEEE (2011)
[7] Christof, E.: Requirements before the requirements: understanding the upstream impacts.

In: 13th RE 2005. IEEE (2005)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 83–89, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Addressing the Challenges of Alignment of Requirements
and Services: A Vision for User-Centered Method

Muneera Bano 1 and Naveed Ikram 2

1 Faculty of Engineering and IT
 University of Technology Sydney, Australia
Muneera.Bano@student.uts.edu.au

2 Faculty of Computing
Riphah Internaitonal University, Islamabad, Pakistan

naveed.ikram@riphah.edu.pk

Abstract. One of the major challenges in Service Oriented Requirements
Engineering is for business analysts to find services that accurately match the
customer requirements. Several attempts have been made to propose different
methods and techniques for finding the best suitable service to align with cus-
tomer requirements. However, these solutions are mainly focusing only on the
technical side of the problem and the social side of the challenge of alignment
has been largely neglected. In this vision paper, we propose a novel user-
centered method of alignment, which involves end-users in the process of
analysis and decision process for the selection of the service. The analysis and
decision for service selection is based on end-user feedback and customer prefe-
rences. The aim is to assist the business analysts in making informed decisions
for selecting the optimally best-aligned service among available options.

Keywords: Requirements, Services, Alignment, User involvement.

1 Introduction

Service Oriented Software Engineering (SOSE) aims to reuse existing software com-
ponents in the form of services to reduce the time, cost and effort of the development
[1]. In the Service Oriented Requirements Engineering (SORE) there is an additional
task of alignment of services and requirements [2]. By aligning a service to the re-
quirements we refer to finding the best matched service for the requirements while
making a tradeoff among cost, functional and non functional requirements. Alignment
of requirements to services is considered to be the most challenging and problematic
task in SORE [3, 12] due to the following major reasons:
Lack of User Involvement: In our previous study of SOSE [3], the practitioners’ most
frequently mentioned reason for challenges in alignment is the lack of end-user in-
volvement during the analysis and decision process for service selection. The current
solutions for the alignment (e.g. [4-9]), are focused primarily on the technological
aspect of the problem. Lack the end-user involvement in the process will leads to their
dissatisfaction with the resulting system [10, 11]. It has already been acknowledged
that a solution may never be complete unless it takes into account multiple perspec-
tives of the problem e.g. organizational, technical and individual [13].

84 M. Bano and N. Ikram

Mismatch in Granularity Level: Service granularity is the range of functionality of-
fered by a service [4] Services can either be fine-grained (focused, limited functional-
ity) or coarse-grained (broader functionality). Fine granularity offers more flexibility
and reusability in customizing the system but also results in increasing the effort and
cost of integration [5]. A coarse-grained service is typically expected to carry out
more functions but would also exchange more messages and data, and may present a
complex interface [6]. This reduces the reusability as the functionality might be too
overloaded for the actual need of most consumers [2]. The details provided in the
service specifications about their functionality mostly do no provide the same level of
details that is needed for matching them against requirements [7].
Context: Services are developed to cover needs of a wide range of customers and thus
are developed free of context so to be utilized in various projects from different do-
mains. Aligning context free services to specific project requirements is therefore a
challenging task [3].

These identified challenges for the alignment of requirements and services, have
motivated to propose a user-centered alignment method in this paper. The construc-
tion of our proposed method is grounded in the findings and systematic analysis of the
literature [1, 10], a quantitative study (online survey) [22], and qualitative study (in-
terviews with practitioners) [3, 12].

2 Background

Users can have various degrees and levels of involvement in any software project
[10], and one form of involvement is where their feedback is utilized in decision mak-
ing processes [14-18]. Active end-user involvement is required in order to provide
personalized systems that can be customized for individual user needs [15]. User
feedback analysis from online resources has recently gained a lot of focus in Re-
quirements Engineering research e.g. Requirements Elicitation [15], Software Evolu-
tion [16, 17], Software Quality [19]. The end-user comments and feedback has been a
major source of evolution in product line release in some cases, e.g. Android Market
and Apple’s store [16, 19]. The main focus of our proposed method is to make the
alignment process user-centered. There are two types of users whose involvement is
required in the analysis process of our proposed method and we will be referring to
them throughout the paper based on the following definition: The customers: for whom
the service based software system is being developed and who are the project sponsors and will
actually use this system in future, The end-users: who have experience of using a particular
service in the past and have either provided their feedback on online forums or can provide
(post deployment) feedback when requested. The user involvement in our proposed
method is of two types based on the two types of users.
Customer Involvement: the involvement of customers in the project is in the form of
their actual participation in various activities like for requirements elicitation and
modification, providing preferences for service selection as well as reviewing the
results before making decisions. For making decision based on customer preferences
we will be following the Multi Criteria Decision Analysis (MCDA) [20] approach.
MCDA is used for decision making in situations where a trade-off is required among

 Addressing the Challenges of Alignment of Requirements and Services 85

multiple criteria. It helps the analysts in making more informed decisions. This ap-
proach has been extensively used in Management Sciences for the selection of suppli-
ers. Our proposed method adopts similar concepts for selection of a service form ser-
vice providers.
End-User Involvement: the previous users of the service are involved in the process
with their feedback based on their past experience of using that service. The feedback
is either collected form online resources (if available) or elicited directly from the
users (if approachable). There has been a substantial body of research in recent years
on utilizing users’ feedback from different perspectives and various tools and methods
(e.g. data mining, information retrieval, crowd sourcing, parsing, natural language
processing), are proposed for extracting useful information form the extensive user
comments and feedback available on online resources [14-18].

3 User-Centered Method of Alignment

Besides the three actors that are involved in the alignment process (analyst, service
provider, customer), our proposed method (Figure 1) has an additional actor (end-
user). These actors are required to perform different activities during alignment proc-
ess i.e. Customers: participate in requirements elicitation, providing preferences and ranking
them and reviewing the results before service selection decision making, Analysts: perform
requirements elicitation, searching for available services, carry out the alignment process for
analyzing and selecting services by involving both customers and end-users, Service providers:
publish the specification of services they provide, End-users: provide feedback on services
based on their past experience of using them.

Based on the requirements the services are being searched and the resultant service
specifications are analysed along with the end-user feedback. There are five intercon-
nected and iterative steps required for alignment analysis: Granularity Analysis, Per-
spective based Analysis, Missing information Analysis, End-user Feedback Analysis,
and Multi Criteria Decision Analysis.
Granularity Analysis: The first step requires the development of a table where all
service specifications are evaluated for granularity level against requirements. The
aim is to select the services that provide maximum functional range against require-
ments, i.e. a service that provides more coverage of requirement set. The table will
provide a visual representation of services and requirements in rows and columns
showing their level of granularity in quantifiable scores. The scores can be calculated
by evaluating a service in one of the three following scenarios: fully aligned, totally
misaligned, or partially aligned. Partial alignment has further three cases; (1) Service
functionality fulfils only part of the business requirement (service is too fine grained causing
performance related issues e.g. integration problem, delays in interaction among multiple
services), (2) Service functionality offers more than business requirement specifies (service is
too coarse grained increasing cost), (3) Service functionality and business requirements over-
lap (causing increase in cost and integration issues). Considering the format for service
specification various methods are available (e.g. [5-9]) for determining the level of
granularity of service against requirements
Perspective Based Analysis: A solution cannot be complete unless it takes into ac-
count multiple perspectives of the problem [13]. The proposed method will follow

86 M. Bano and N. Ikram

multiple perspective evaluation of the services for alignment against requirements, i.e.
Organizational, Technical (Functional, non Functional), Economical, and Project
related etc. During this step the requirements are analyzed in order to develop a
checklist for service evaluation. The checks are assigned weights based on customer
preferences for the project. If a particular requirement has more than one criteria then
it has to broken down to single or atomic level so that in checklist yes/no/partial type
answers for scoring and evaluating the services is possible.
Missing Information Analysis: During this step service specifications are evaluated
against checklist developed in previous step, missing information in service specifica-
tions are identified. This information will be extracted from the user feedback.
End-user Feedback Analysis: End-user feedback is either collected directly from
online resources (if available) or elicited directly from the users (if approachable).
Multiple methods and associated tools/techniques are proposed for feedback collec-
tion based on the situations and format in which the feedback is available (e.g. feature
extraction, information retrieval, crowd sourcing, survey and questionnaire etc.). This
feedback is serving two purposes: (1) providing the information about the users’ satisfac-
tion based on their past experience of using the service. This will also reflect users’ trust of
service provider (if the service is from third party). While analysing user satisfaction it is im-
portant to consider the context in which the previous users have used the service. User feed-
back without context may not be useful at all [21], (2) end-user feedback is also used for filling
the gaps in service specification where the information is missing against the checklist that is
developed in previous steps. Service specification may not be at the same level of abstraction as
customer requirements in giving details about functional and non functional capabilities of
service. User feedback can help in identification of missing information in service specification
[17].
Multi Criteria Decision Analysis: Once all the previous steps are executed, the ser-
vice specifications will have specific scores based on user preferred weights for their
criteria. This will help the business analyst to analyze the optimally best available
match for the requirements against multiple criteria and to make a better informed
decision for service selection. Once all the information is available the total score for
all the services is calculated by selected MCDA method. Additive weighting method
is the most widely used approach to deal with MCDA problems [20]. In its simplest
form weights are multipliers to their respective checks or criteria and then all scores
for one option are added. The service with highest score is considered to be possibly
best aligned among available options based on customer preferences.

4 Alignment Method Instantiation

In this section we sketch a generic instantiation of the alignment method. The
requirements elicitation between analyst and customer results in an initial set of re-
quirements represented by R such that R = {R1, R2, R3 … RX} where X is the total
number of requirements. Using the requirement set the analyst would search for avail-
able related services from service repositories. Available services can be represented
by S = {S1, S2, S3 … SY} where Y is number of services found against requirement
set R. The analyst converts the requirements into perspective based checklist and
assigns the weights to the checks based on customer preferences. The set of checks is
represented by C= {C1, C2, C3 … CK} and the weights against these checks is repre-
sented by W= {W1, W2, W3 … WK} where K is the number of checks in the perspective

 Addressing the Challenges of Alignment of Requirements and Services 87

based checklist. The analyst evaluates service specification to provide answers to the
checks in the checklist which can be yes=1 or no=0 or partial=0.5. If there is some
missing information then the end-user feedback is either retrieved or elicited to get the
required information using suitable methods (e.g. feature extraction, information re-
trieval, survey questionnaire etc). Once the information is complete the perspective
based checklist scores are calculated for all Y candidate services. For a service Si from
the set of services S the perspective based score is represented by Pi which is calcu-
lated by adding all the answers to the K number of checks in set C for that service
according to the following formula:

The next step is to calculate the granularity of the service Si using a function gi against
all requirements in set R. The granularity method is represented by G-Method which
is selected according to the project situation (e.g. format of service specification) to
calculate the functional range of service specifications against requirement set R. the
scoring can be fully-aligned=1, totally-misaligned=0, and partially-aligned=0.5

gi = G-Method (Si , R)
The next step is to calculate user satisfaction ui against that service by using suitable
method with function US-Method by analysing the available end-user feedback. The
user comments and ratings are utilized for creating the score for user satisfaction with
help of suitable methods. The scores can be selected by the analyst in both positive
and negative values.

ui = US-Method (Si)
The customer provides the preferences for the weights for Perspective based checklist
wp and the level of granularity wg and user satisfaction wu to be considered for final
decision. The final score for a service Si in the set S can be calculated as following.

Score (Si) = (Pi * wp) + (gi * wg) + (ui * wu)
When the scores are calculated for all Y number of services, the highest service score
among the set S will be the optimally the best aligned service according to the cus-
tomer preferences and end-user feedback.

Fig. 1. User-Centered Method for Alignment of Requirements and Services

88 M. Bano and N. Ikram

5 Future Work

In this paper we have proposed a vision for a user –centered method for alignment of
requirements and services. By utilizing the design of our alignment method described
in this paper, we plan to develop an automated tool to support the business analyst in
analyzing and simulating the alignment of the services and requirements. Our aim is
to use the method and the supporting tool in an industrial project to empirically eva-
luate the effectiveness of our proposed method.

References

1. Bano, M., Ikram, N.: Issues and Challenges of Requirement Engineering in Service
Oriented Software Development. In: Fifth International Conference on Software Engineer-
ing Advances (ICSEA), pp. 64–69 (2010)

2. Heinrich, B., et al.: Granularity of services–an economic analysis. Business & Information
Systems Engineering 3(6), 345–358 (2011)

3. Bano, M., Zowghi, D., Ikram, N., Niazi, M.: What makes Service Oriented Requirements
Engineering challenging? A qualitative study. IET Software, doi:10.1049/iet-sen.2013.0131

4. Papazoglou, M.P., Van Den Heuvel, W.-J.: Service-oriented design and development me-
thodology. International Journal of Web Engineering and Technology 2(4), 412–442
(2006)

5. Adam, S., Riegel, N., Doerr, J.: Deriving software services from business processes of rep-
resentative customer organizations. In: IEEE International Workshop on Service-Oriented
Computing: Consequences for Engineering Requirements, SOCCER (2008)

6. Steghuis, C.: Service granularity in SOA projects: A trade-off Analysis., Master’s the-
sis,University of Twente (2006)

7. Galster, M., Bucherer, E.: A business-goal-service-capability graph for the alignment of
requirements and services. In: IEEE Congress on Services-Part I (2008)

8. Gehlert, A., Bramsiepe, N., Pohl, K.: Goal-driven alignment of services and business re-
quirements. In: IEEE International Workshop on Service-Oriented Computing: Conse-
quences for Engineering Requirements, SOCCER 2008 (2008)

9. Zachos, K., Maiden, N., Howells-Morris, R.: Discovering web services to improve re-
quirements specifications: Does it help? In: Paech, B., Rolland, C. (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 168–182. Springer, Heidelberg (2008)

10. Bano, M., Zowghi, D.: User involvement in software development and system success: A
systematic literature review. In: Proceedings of the 17th International Conference on Eval-
uation and Assessment in Software Engineering (2013)

11. Kunda, D., Brooks, L.: Applying social-technical approach for COTS selection. In: Pro-
ceedings of the 4th UKAIS Conference (1999)

12. Bano Sahibzada, M., Zowghi, D.: Service Oriented Requirements Engineering: Practition-
er’s Perspective. In: Ghose, A., Zhu, H., Yu, Q., Delis, A., Sheng, Q.Z., Perrin, O., Wang,
J., Wang, Y. (eds.) ICSOC 2012. LNCS, vol. 7759, pp. 380–392. Springer, Heidelberg
(2013)

13. Mitroff, I.I., Linstone, H.A.: The unbounded mind: Breaking the chains of traditional busi-
ness thinking. Oxford University Press (1993)

 Addressing the Challenges of Alignment of Requirements and Services 89

14. Hao, J., Li, S., Chen, Z.: Extracting service aspects from web reviews. In: Wang, F.L.,
Gong, Z., Luo, X., Lei, J. (eds.)WISM 2010. LNCS, vol. 6318, pp. 320–327. Springer,
Heidelberg (2010)

15. Seyff, N., Graf, F., Maiden, N.: Using mobile REre tools to give end-users their own
voice. In: 18th IEEE International Requirements Engineering Conference, RE (2010)

16. Galvis Carreño, L.V., Winbladh, K.: Analysis of user comments: An approach for software
requirements evolution. In: Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press (2013)

17. Pagano, D., Maalej, W.: User feedback in the appstore: An empirical study. In: 21st IEEE
International Requirements Engineering Conference, RE (2013)

18. Harman, M., Jia, Y., Zhang, Y.: App store mining and analysis: MSR for app stores. In:
9th IEEE Working Conference on Mining Software Repositories, MSR (2012)

19. Chen, M., Liu, X.: Predicting popularity of online distributed applications: iTunes app
store case analysis. In: Proceedings of the 2011 Conference. ACM (2011)

20. Vetschera, R.: Preference-based decision support in software engineering. In: Value-Based
Software Engineering, pp. 67–89. Springer (2006)

21. Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschbach, J., Aguirre, L.: Feedback
in context: Supporting the evolution of IT-ecosystems. In: Ali Babar, M., Vierimaa, M.,
Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 191–205. Springer, Heidelberg (2010)

22. Bano, M., Ikram, N.: KM-SORE: knowledge management for service oriented require-
ments engineering. In: The Sixth International Conference on Software Engineering Ad-
vances ICSEA (2011)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 90–104, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Evaluating the BPCRAR Method: A Collaborative
Method for Business Process Oriented Requirements

Acquisition and Refining

Han Lai1,2,3, Rong Peng1,*, and Yuze Ni1

1 State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China
2 Chongqing Key Lab. of Electronic Commerce & Supply Chain System

3 School of Computer Science and Information Engineering
Chongqing Technology and Business University, Chongqing, China

{laihan,rongpeng,niyuze}@whu.edu.cn

Abstract. The goal of requirements elicitation is to understand the stakehold-
ers’ needs and constraints, and form the system requirements. But gathering re-
quirements correctly, completely and understandably in a natural way is a great
challenge to traditional methods, for requirements analysts always play key
roles in the elicitation process dominantly while stakeholders participate in pas-
sively. Therefore, strategies that help the identification of requirements based
on reducing the requirements analysts’ dominance and promoting stake-
holders’ self-expression and self-improvement are welcomed. This paper
reports a controlled experiment to evaluate the Business Process oriented Col-
laborative Requirements Acquisition and Refining (BPCRAR) method. Com-
pared to JAD, the statistical results show that the requirements elicited by
BPCRAR are more complete and understandable. Besides that, the perceived
usefulness, ease to learn, and ease of use of BPCRAR are all confirmed by the
statistical data got from the questionnaire to the participants.

Keywords: Controlled experiment; Requirements elicitation; BPCRAR; JAD;
Evaluation.

1 Introduction

Requirements Elicitation (RE) is a critical process in system/software engineering. Its
goal is to understand the stakeholders' needs and constraints, which will be analyzed
and specified with requirements [1]. RE should consider the analysis of the organiza-
tion structure with its business domain and processes. The identification and modeling
of organization business processes can (i) help the requirements to represent the real
business needs, (ii) reduce the number of redundant requirements, and (iii) be used to
guide the development life cycle as a whole [2].

Defining requirements is not a simple knowledge transfer process where requirement
engineers elicit and document existing client knowledge [3]. Rather, it is a cognitive

* Corresponding Author.

 Evaluating the BPCRAR Method: A Collaborative Method for Business Process 91

process, in which stakeholders collaboratively find out what has to be done by under-
standing problems and domains, learning from other stakeholders by negotiating and
discussing different viewpoints [4]. The major challenges of defining requirements for
software intensive systems are: (i) lack of adequate communication between users and
analysts; (ii) users do not have a clear and detailed expectation about their real needs;
(iii) each stakeholder has different expectations and describes his/her needs differently.
Thus, the requirements identified are always incomplete, ambiguous, and highly vola-
tile. The different communication languages used among stakeholders are prone to
misunderstanding.

To meet those challenges, many collaborative RE methods have been proposed.
For example, Joint Application Development (JAD), Quality Function Deployment
(QFD) and Cooperative Requirements Capture (CRC) have been proposed to rein-
force the communication between stakeholders and analysts. But most traditional
approaches lack the capabilities to gather requirements clearly and completely in a
natural flow [5], as the requirements analysts always dominate the RE process. There-
fore, the quality of the elicited requirements heavily depends on the knowledge and
the experiences of the requirements analysts.

To reduce the requirements analysts' dominance and promote stakeholders' self-
expression and self-improvement, a Business Process oriented Collaborative Re-
quirements Acquisition and Refining (BPCRAR) method is proposed [6].

This paper reports the results got from a controlled experiment to evaluate the ef-
fectiveness and usefulness of the BPCRAR method. We discuss the quantitative and
qualitative findings of our empirical study and their potential for improving the
BPCRAR method. These findings indicate that BPCRAR could be considered as a
promising method to capture and refine business process oriented requirements.

The remainder of this paper is organized as follows: Section 2 introduces related
work about collaborative RE. Section 3 outlines BPCRAR. Section 4 presents the
empirical work conducted to evaluate BPCRAR. Section 5 discusses possible threats
to validity. Section 6 presents our conclusions and further work.

2 Collaborative Requirements Elicitation

Group work is a common way to elicit requirements collaboratively through the pro-
motion of stakeholders' cooperation and commitment [7]. Brainstorm, JAD and Focus
Group are all typical RE Group meeting methods. Group meeting have two modes:
face-to-face mode and online mode. Due to the number of stakeholders that may be
involved, face-to-face mode group meeting is difficult to organize and schedule; and
online mode group meeting becomes popular. The RE methods such as WinWin[8],
EasyWinWin [9], CoREA [10] and Athena [11] all support both modes by electronic
tools. In addition, many studies have been proposed to facilitate the communication
and participation of distributed stakeholders mainly from the computer supported
cooperative work, such as RE-specific wikis [12] and iRequire [13]. Last but not
least, some studies are focused on utilizing the stakeholders’ profile, the social net-
work among stakeholders and data mining technology to generate effective recom-
mendation mechanism to promote the collaboration in RE, such as [14] [15].

92 H. Lai, R. Peng, and Y. Ni

All these studies concentrate on facilitating the stakeholders’ participation. The
BPCRAR method is also a collaborative method and mainly focused on the business
process oriented requirements’ acquisition and refining. It is a solution about how to
refine requirements from group stories to formal expression (i.e. business process
models) based on progressive refinement.

3 Overview of BPCRAR

The BPCRAR method is proposed to promote stakeholders' self-expression, self-
improvement and collaboration. It adopts the group storytelling [11], dialogue game
[16], and narrative network modeling (NNM) [17] to facilitate collaboration and
communication. The overview of BPCRAR is shown in Figure 1. It consists of four
activities: “group storytelling”, “create abstraction”, “build formal presentation”, and
“dialog game”. The first three activities form a fountain model [18] from concreteness
to abstraction and the activity of “dialog game” is a sub activity throughout the three,
which provides the interaction rules and acts as a refining wheel to guide stakehold-
ers’ expression. The whole process and each activity in the process can be iterated
until the final artifacts are gained and validated.

There are three essential roles in BPCRAR: Teller, Facilitator and Modeler.

• Tellers are stakeholders whose expectations are crucial to the success of the sys-
tem, such as customers, users and domain experts. They can tell their expectations,
activities or knowledge about the system to be built by a series of stories.

• Facilitators are experienced professionals who mediate the processes of telling
stories, link facts, and help to produce the first level of abstraction.

• Modelers are assigned to qualified requirement analysts who can develop the
graphic business models based on the abstractions extracted from stories.

Fig. 1. Overview of BPCRAR Method

The Activity name, Motivation, Subjects, Objects, and Results of each activity
are summarized and based on Activity Theory (AT) [19] in Table 1. The main Ac-
tions and Goals in each activity are further described in Table 2. Due to space limita-
tions, the steps (mainly including Community, Division of labor, and the Rules)
taken by BPCRAR are elaborated using the AT in [6].

 Evaluating the BPCRAR Method: A Collaborative Method for Business Process 93

Table 1. The Motivation, Subjects, Objects and Results of each activity

Activity Motivation Subject Object Result

A1: Group
Storytelling

Acquire stakehold-
ers' needs

T, F, M
Knowledge, ex-
pectations and
experiences

Stories

A2: Create
abstraction

Identify the scena-
rios Tellers refer to

F, M, T Stories BPEs/NNMs

A3: Build
formal
presentation

Describe require-
ment formally by
business process
model

M, F, T BPEs/ NNMs BPM

A4: Dialog
game

Provide rule for
interaction and re-
fine requirement

M, F, T
Issues in stories,
BPEs, BPMs and
NNMs

Ideas for
solving the
issues

Note: Teller (T); Modeler(M); Facilitator(F); Business Process Elements (BPE);
Business Process Model(BPM)

Table 2. The main Actions and Goals in each activity

Activity Action Goal

A1:Group
Storytelling

Set Theme Define the scope of the RE process
Storytelling Capture stakeholders' needs

Perform dialogue game
Provide triggers for interaction and refining
acquired stories

A2: Create
abstraction

Read stories and anno-
tate

Set up traceable annotation for abstraction
creation in each story

Extract BPEs based on
stories

Create the first level abstraction of business
process

Build NNMs
Capture actual and potential paths of busi-
ness process

Perform dialogue game
Provide triggers for interaction and refining
business process

A3:Build
formal
presentation

Build BPMs Create formal description of requirements

Perform dialogue game
Provide triggers for interaction and refining
business process

Validate the BPM Reach consensus

A4:
Dialog
game

Raise Issues
Introduce new discussion topics to address
issues identified

Propose of Ideas Generate solutions to resolve the issues

Discuss proposed Ideas
Clarify the reasons to support or counter
proposed Ideas

Vote Evaluate the proposal and reach consensus
Make decision Select final Idea(s) to resolve the issue

94 H. Lai, R. Peng, and Y. Ni

4 The Controlled Experiment

Before the controlled experiment, we have conducted two case studies to test the usa-
bility of BPCRAR in June 2013 with CS graduate students and PHD candidates in
Wuhan University. The results of the case studies help us to improve BPCRAR. The
controlled experiment was designed to validate the feasibility of BPCRAR.

4.1 Experiment Design

The experiment design refers to the guidelines proposed by Wohlin [20]. According
to the Goal-Question-Metric (GQM) [20], the goals of the experiment is to (i) com-
pare the completeness and understandability of the requirements artifacts elicited by
BPCRAR and JAD to evaluate their effectiveness; and (ii) evaluate the Perceived
Usefulness (PU), Perceived Ease of Learning (PEOL) and Perceived Ease of Use
(PEOU) of BPCRAR from the viewpoints of Tellers, Facilitators, and Modelers, (iii)
identify issues to be improved in BPCRAR. JAD was chosen as the basis for a com-
parative measure of effectiveness, because it is one of the most well-known industrial
collaborative RE method and can be executed by the CS undergraduate students [21].

The experiment includes 3 independent variables and 5 dependent variables, as
showed in Table 3. The chosen dependent variables are based on the requirements
engineering process evaluation framework [22] and the collaborative process quality
evaluation framework [23].

Table 3. Independent variables and dependent variables in the controlled experiment

Variable
name

Type Description

Role IV Teller, Facilitator, and Modeler
Method IV BPCRAR and JAD
Object IV O1, O2 (as in Section 4.2)

PU DV The degree to which participants believe that the technology
could improve his/her performance at work

PEOL DV The degree to which participants believe that learning a partic-
ular RE method is effort-free

PEOU DV The degree to which participants believe that using a particular
RE method is effort-free

DOC DV The ratio of all needs are covered by the specified requirements
DOU DV The degree to which the requirements are understandable

Note: Independent Variable (IV); Dependent Variable (DV); Degree of Complete-
ness(DOC); Degree of Understandability (DOU)

According to the experiments’ goals, the research questions and hypothesizes are:
RQ1: Is BPCRAR perceived useful from the viewpoints of Tellers, Facilitators,

and Modelers? And the following hypotheses are:
H10: BPCRAR is perceived not useful from the viewpoints of Tellers.

 Evaluating the BPCRAR Method: A Collaborative Method for Business Process 95

H20: BPCRAR is perceived not useful from the viewpoints of Facilitators.
H30: BPCRAR is perceived not useful from the viewpoints of Modelers.
RQ2: Is BPCRAR perceived easy to learn from the viewpoints of Tellers, Facilita-

tors, and Modelers? And the following hypotheses from the viewpoints of Tellers,
Facilitators and Modelers can be assigned as H40, H50 and H60 accordingly.

RQ3: Is BPCRAR perceived as ease to use from the viewpoints of Tellers, Facili-
tators, and Modelers? And the following hypotheses from the viewpoints of Tellers,
Facilitators and Modelers can be assigned as H70, H80 and H90 accordingly.

RQ4: Does BPCRAR produce requirements that are more complete than JAD?
H100: There is no significant difference between the degrees of completeness of

requirements captured by BPCRAR and JAD.
RQ5: Does BPCRAR produce requirements that are more understandable than

JAD?
H110: There is no significant difference between the understandability of the re-

quirements captured by BPCRAR and JAD.
To answer the RQ1, RQ2, and RQ3, the questionnaire includes 3 sets of closed-

questions (items) as shown in Table 4, 5 and 6. These closed-questions adopt a 7-
point Likert scale (1-Strongly Disagree, 4- Neutral, 7- Strongly Agree). The questions
to the same independent variable were randomized to prevent systemic response bias.
In addition, in order to ensure the balance of questions in the questionnaire, half of the
questions were written in negative sentences to avoid monotonous responses [24]. In
this experiment, we deal with Likert scale as interval data. According to Wohlin [20],
the Mean should be employed as a measure of central tendency and standard devia-
tion. Each subjective dependent variable was quantified by calculating the arithmeti-
cal mean of its closed-question values.

Table 4. Questions about the PU of BPCRAR

Code Question

PU1 The “Group storytelling” activity is helpful to acquire stakeholders' needs

PU2 The “Create abstraction” activity is helpful to identify the scenarios

PU3
The “Build formal presentation” activity is helpful to formal requirement
expressions

PU4
The “Dialog game” activity is helpful to provide rules for interaction and
refine requirements

Table 5. Questions about the PEOL of BPCRAR

Code Question

PEOL1 The rules & DoL of “Group storytelling” activity are easy to learn

PEOL2 The rules & DoL of “Create abstraction” activity are easy to learn

PEOL3 The rules & DoL of “Build formal presentation” activity are easy to learn

PEOL4 The rules & division of labor of “Dialog game” activity are easy to learn
Note: Division of Labor (DOL)

96 H. Lai, R. Peng, and Y. Ni

Table 6. Questions about the perceived ease of use of BPCRAR

Code Question
PEOU1 The “Group storytelling” activity is easy to participate in
PEOU2 The “Create abstraction” activity is easy to participate in
PEOU3 The “Build formal presentation” activity is easy to participate in
PEOU4 The “Dialog game” activity is easy to participate in

For answering the RQ4 and RQ5, the dependent variables, completeness and un-

derstandability, are rated by an expert panel respectively. This panel was formed of
three Software Engineering professionals with considerable industry experience in
reviewing requirements specifications. For reducing the significant discrepancies
based on subjective judgment, they first provided an initial list of requirements on the
given topic based on their own expertise as a baseline. In the process of reviewing, the
baseline was evolved when new requirements in the artifacts proposed by subjects
were confirmed by the panel. And the final version was regarded as the baseline to
judge the degree of requirements completeness and understandability delivered by
each group. Moreover, the DOC and DOU were not only judged by the final artifacts,
BPM models, delivered by the Modeler in each group, but also referred all the arti-
facts delivered in each step. The evaluation was based on three dimensions, syntactic
quality, semantic quality and pragmatic quality independently and rated on 5-Likert
scale (5-Well above average; 3-Average; and 1-Well below average) [25].

Moreover, the questionnaire has 3 open-questions respectively from PEOL, PEOU,
and PU to get feedback from participants.

4.2 Experiment Implementation

The experiment was planned as a balanced within-subject design with a confounding
effect, signifying that the same subjects use both methods in a different order and with
different experimental objects as shown in Table 7. The method in [26] is adopted to
design the experiment. 8 group subjects participated in. Due to the participants’ avail-
ability, the experiment conducted 2 times. The second experiment (EXP. 2) was strict
replications of the first experiment (EXP. 1) with the change of subjects. Strictly rep-
licated experiment also increases the confidence of the experiment validity.

Two experimental objects O1 and O2 were selected. O1 is “Online course enroll-
ment in university” and O2 is “Online train tickets booking”. Both objects are familiar
to the subjects and the subjects can use BPCRAR and JAD to elicit the requirements
of O1 and O2 in 120 minutes.

The experiment was conducted in an Advanced Software Engineering course in
November 2013 at the Chongqing Technology and Business University. 60 third-year
BSc students major in CS participated in the experiment. The participation was volun-
tary and the participants were awarded bonus points in their software engineering
courses in return. We created 8 groups (7 participants per group), and had 4 alternates
in case promised subjects did not show. Finally, the 4 alternates were not used. Each
group involved 3 Tellers, 1 Facilitator, 1 Modeler, 1 Scribe, and 1 Observer in both
BPCRAR and JAD. The Scribes were responsible for documenting the information in

 Evaluating the BPCRAR Method: A Collaborative Method for Business Process 97

the sessions. The Observers took charge of supervising the experiment process com-
plied with the instructions. 56 participants were assigned different roles based on their
communication capability, prior modeling knowledge, domain knowledge, speed and
clarity of writing, and the participation willingness gathered by background question-
naire. They were randomly assigned to each group based on the role assignment. Sev-
eral documents were designed as instrumentation for the experiment: training slides,
method guidelines, data collection tables and questionnaires. The experimental period
of each group was 120 minutes. But the experiment can last a little longer if necessary
to avoid ceiling effect [27]. After the experiment done, each participant (except the
Scribe and Observer) was asked to fill out the questionnaires. To achieve the effect of
single-blind experiment, the JAD groups were also asked to do the similar question-
naire, although the data would not be analyzed.

Table 7. Schedule of the controlled experiment

EXP.1

 Group A Group B Group C Group D

1st Day
(150 min)

1. Introduce Requirements Engineering for all
2. Introduce JAD for all
3. Introduce BPCRAR for all
4. Introduce BPMN for Modeler
5. Train the Scribes to stenograph

Questionnaire on PEOL

2ndDay
(20 + 120
min)

Review BPCRAR Review JAD

BPCRAR to O2 BPCRAR to O1 JAD to O2 JAD to O1

Questionnaire on PU and PEOU

3rdDay
(20 + 120

min)

Review JAD Review BPCRAR

JAD to O1 JAD in O2 BPCRAR to O1 BPCRAR to O2

Questionnaire about PU and PEOU

(A week later)

 EXP. 2 (Strictly replicated EXP. 1)

Experts review and rate

Note: O1: Online train tickets booking; O2:Online course enrollment at university

The formal JAD protocol consists of five stages: “Project definition”, “Background

research”, “Pre workshop preparation”, “The workshop”, and “Final documentation”,
and might execute several days [28]. Due to the time constraints, the subject groups in
JAD were required to perform only “The workshop”, and “Final documentation”
stages. The materials needed in the first three stages have been directly provided.

98 H. Lai, R. Peng, and Y. Ni

Significant differences between the executing processes of BPCRAR and JAD in the
experiment are (i) JAD uses the structured brainstorming [28], whereas BPCRAR
uses group storytelling to capture users’ needs; (ii) JAD is mainly organized and dom-
inated by the Facilitator, while BPCRAR uses dialogue games as the negotiation rules
to guide the requirements negotiation; (iii) NNM are introduced in the BPCRAR to
capture actual and potential paths of business processes.

4.3 Experiment Results

After the whole two experiments execution, the experts reviewed the requirements
artifacts submitted from each experimental group. If a requirement not in the initial
list given by the experts, the experts will determine whether it can be a “Realizable”
or “false-positives”. “Realizable” includes several notions: (i) useful for at least one
stakeholder, (ii) technically already implemented or implementable, and (iii) socially
and legally implementable. A requirement was considered “false-positive”, e.g.
beyond the target scope of the requirement elicitation or not “Realizable”. Repeat
requirements are considered only once. Discrepancies in this review were solved by
consensus.

In this section, the experimental results, the effect of the orders of experiment me-
thods and objects, and the Grader inter-rater reliability are all analyzed quantitatively
and all the hypotheses are tested by SPSS V19, with significance level α = 0.05. In
addition, qualitative analysis is applied to analyze the answers to the open questions
in the questionnaire.

4.3.1 Quantitative and Qualitative Analyses
After the EXP.1 and EXP.2 were performed, the experts reviewed all the artifacts
submitted. After thorough consideration and discussion, a total of 53 and 46 require-
ments are confirmed by experts on the experiment object O1 and O2 respectively.

Table 8. Overall results about the each perceived measure items

Perceived
Measures

Question
Teller (n=24) Facilitator (n=8) Modeler

(n=8)
Mean STD Mean STD Mean STD

PU

PU1 5.17 1.34 5.13 0.99 5.25 1.28
PU2 4.96 1.04 5.38 0.92 5.13 1.25
PU3 4.96 1.04 5.13 0.84 5.25 0.89
PU4 5.17 0.96 5.25 0.89 5.13 1.36

PEOL

PEOL1 4.96 0.96 4.63 1.06 4.88 0.64
PEOL2 4.88 0.85 4.75 0.89 4.88 0.84
PEOL3 4.71 0.86 4.75 0.89 5.00 0.76
PEOL4 4.54 0.88 4.88 0.84 5.00 1.07

PEOU

PEOU1 5.13 0.95 4.88 1.46 4.88 1.25
PEOU2 5.13 0.80 4.50 1.31 5.00 0.93
PEOU3 4.79 0.98 5.38 0.92 5.25 1.17
PEOU4 4.79 1.02 4.75 0.89 4.13 0.84

 Evaluating the BPCRAR Method: A Collaborative Method for Business Process 99

In order to enlarge sample size to get hypothesis testing by statistical test method
[29], the corresponding data from EXP.1 and EXP.2 are merged.

Table 8 shows the results of descriptive statistics for each perceived items of dif-
ferent roles. The mean scores are all superior to 4 points (neutral score in the 7-point
Likert scale), which indicate that Tellers, Facilitators and Molders all showed positive
attitude, “slightly Agree”, toward the PU, PEOL and PEOU for each activity in
BPCRAR. Furthermore, the mean and standard deviation of each perception-based
variable from each role is calculated to analyze the whole method respectively as
shown in Table 9. The results show that different roles of the subjects showed positive
attitude, “slightly agree”, toward the PU, PEOL and PEOU for the whole BPCRAR.

The hypotheses H1-H9 were tested by verifying whether the scores that the sub-
jects assign to the PU/PEOL/PEOU are significantly better than the neutral score on
the Likert-scale. Shapiro-Wilk test is adopted to test the normality of the data distribu-
tion. The data of H1 to H4 and H6 to H9 are normally distributed (p-value ≥ 0.05),
therefore, one-tailed one sample t-test are adopted; and the data of H5 are not normal-
ly distributed (p-value < 0.05), thus, the Wilcoxon signed-rank test was adopted to
test H5. The results in Table 10 state clearly to reject all the hypotheses, namely that
the subjects perceived the BPCRAR as easy to learn, easy to use, and useful.

Table 9. Summary of the results of the perceived-based variables

Dependent variable
Teller (n=24) Facilitator (n=8) Modeler (n=8)
Mean STD Mean STD Mean STD

PU 5.06 0.83 5.22 0.73 5.17 1.13
PEOL 4.77 0.75 4.75 0.82 4.94 0.73
PEOU 4.96 0.62 4.88 0.89 4.81 0.86

Table 10. Hypothesis test for perception-based variables

 p-value Whether to reject null hypothesis
H1 0.000(<0.05) Yes(BPCRAR is perceived as useful by Tellers)

H2 0.001(<0.05) Yes(BPCRAR is perceived as useful by Facilitators)

H3 0.011(<0.05) Yes(BPCRAR is perceived as useful by Modelers)

H4 0.000(<0.05) Yes(BPCRAR is perceived as ease to learn by Tellers)

H5 0.013(<0.05)a Yes(BPCRAR is perceived as ease to learn by Facilitators)

H6 0.004(<0.05) Yes(BPCRAR is perceived as ease to learn by Modelers)

H7 0.000(<0.05) Yes(BPCRAR is perceived as ease to use by Tellers)

H8 0.014(<0.05) Yes(BPCRAR is perceived as ease to use by Facilitators)

H9 0.016(<0.05) Yes(BPCRAR is perceived as ease to use by Modelers)
a Result obtained with the 1- tailed Wilcoxon signed rank test

Table 11 shows the descriptive statistics for the performance variables in each ex-

periment. Bold cells indicate that the completeness and understandability of require-
ments elicited by BPCRAR are higher than those elicited by JAD in both EXP.1 and

100 H. Lai, R. Peng, and Y. Ni

EXP.2. As the distribution was normal, the parametric one-tailed t-test was applied to
verify the significance of the means. The results in Table 12 state clearly to reject the
null hypotheses H100 and H110. To guarantee the scorer reliability, the Kendall's
coefficient of concordance was adopted to judge the inter-rater reliability of three
experts, which validate the reliability (Completeness: W = 0.754, p =0.003; Unders-
tandability: W = 0.718, p =0.006).

Table 11. Descriptive statistics for the performance variable

Performance

Measures
Method Min Max Mean STD

EXP.1 Completeness
BPCRAR 2.67 3.67 3.17 0.43

JAD 2.00 3.33 2.58 0.57

EXP.2 Completeness
BPCRAR 3.00 4.00 3.50 0.43

JAD 2.00 3.67 2.83 0.69

EXP.1 Understandability
BPCRAR 2.67 4.00 3.17 0.58

JAD 2.00 3.33 2.50 0.58

EXP.2 Understandability
BPCRAR 2.67 4.00 3.33 0.54

JAD 2.33 3.67 2.92 0.57

Table 12. Hypothesis test for the performance variables

p-value Whether to reject null hypothesis

H10
0.016

(<0.05)
Yes (BPCRAR produces requirements more complete than JAD)

H11
0.035

(<0.05)
Yes(BPCRAR produces requirements more understandable than
JAD)

To test the effect of the order of both independent variables, RE methods and expe-

rimental objects, the method in [26] is adopted.
Suppose difference function Diffx= observationx(A) – observationx(B), where x de-

notes a particular subject group, and A, B are the two possible values of one indepen-
dent variable. We created Diff variables from each performance dependent variable.
And the statistic results show that the orders of the independent variables have no
significant influences on the dependent variables as shown in Table 13 (all the p-
values obtained are greater than 0.05).

Table 13. The effect of the orders of methods and experimental objects

Orders Dependent variables EXP.1 EXP.2
Methods Completeness No(0.937)a No(0.394)

Understandability No(0.394)a No(0.699)a
Experimental objects Completeness No(0.818)a No(0.515)

Understandability No(0.515) No(0.687)
a Result obtained with the Mann-Whitney non-parametric test

 Evaluating the BPCRAR Method: A Collaborative Method for Business Process 101

Finally, a qualitative analysis was performed to analyze the answers to the open-
questions in the questionnaire. Most of the subjects confirmed that BPCRAR
promoted the discussions by clarifying the DoL and getting people more involved.
However, 2 Facilitators indicated that the “Create abstraction” was heavy workload,
and 1 Modeler indicated that it was not easy to remember and follow the instructions
in “Dialogue Game”. The participants suggested that BPCRAR might be more user-
friendly if appropriate tools could be adopted to fulfill the tasks like role assignment,
story recording and annotation, and group negotiation. Last but not least, participants
suggested that more detailed guidelines and typical examples should be provided to
facilitate the execution effectively and efficiently.

4.3.2 Summary of Results
For perception-based measurement, the analysis indicates that all the null hypotheses
(H10-H90) are rejected. Namely, BPCRAR is perceived useful, easy to learn, and easy
to use in requirements acquisition and refining from the viewpoint of tellers, facilita-
tors and modelers respectively. However, the relatively high standard deviations
existed in the Table 8 indicate that a few participants have different opinions. With
regard to PEOL, the mean of tellers’ feedbacks on PEOL4 (Dialogue game) and the
mean of facilitators’ feedbacks on PEOL1 (Group storytelling) are 4.54 and 4.63 re-
spectively, which are relatively low. This implicates that more detailed guidelines and
examples should be provided in these activities, which complied with the feedback
got from the answers to the open-questions. With regard to PEOU, the mean of facili-
tators’ feedbacks on PEOU2 (Create abstraction) and the mean of modelers’ feed-
backs on PEOU4 (Dialogue game) are 4.54 and 4.13 respectively, which is relatively
low. It suggests that computer-aided functions should be provided to improve the
effectiveness and reduce the workload of these activities.

For performance-based measurement, the results of experiments indicate that all
the null hypotheses (H100-H110) are rejected. Namely, BPCRAR produces require-
ments more completely and understandably than JAD. In addition, the results from
each experiment (as shown in Table 11) indicate that BPCRAR is superior to JAD in
terms of minimum, maximum and average. Furthermore, the means of two perfor-
mance indicators of BPCRAR are greater than 3 (the neutral score), which indicates
that the results are superior to the average level. Meanwhile, the standard deviation of
BPCRAR in each experiment is smaller than that of JAD, which indicates that
BPCRAR is more stable in terms of DOC and DOU.

The discussion above indicates that BPCRAR could be considered a promising me-
thod for collaborative requirements acquisition and refining.

5 Threats to Validity

The main threats to the internal validity come from: learning effects, subjects' expe-
riences, information exchange among groups, and understandability of the training
documents. The differences of learning effects were alleviated by ensuring that each
participant applied both method to different experimental objects, and all the possible
order combinations were considered. And the effects of the orders of the methods and
the experimental objects were evaluated by statistical tests and the results proved its

102 H. Lai, R. Peng, and Y. Ni

validation. Subjects' experiences may influence the execution of the experiments. To
alleviate this threat, the pre-questionnaire was introduced to guide the subjects' as-
signment. Besides, we conducted sufficient training for both methods. To minimize
the information exchange among groups, each group had a separate room to perform
the task. But EXP.1 and EXP.2 took place on two different weeks. It is difficult to
guarantee no information exchange happened. In order to alleviate this situation, at
least to some extent, the participants were asked to return all the material at the end of
each experiment. Finally, understanding biases of the training material were alleviated
by clearing up all the misunderstandings in the experiment session.

The main threats to the external validity are: using students as subjects, and the
objects’ selection criteria. In our study, the students are acceptable as subjects since
nobody has previous experience with any method. To balance the abilities of each
group, the pre-questionnaire was conducted and used as the evidence of grouping.
The experiments objects “online train tickets booking” and “online course enrollment
in university” are selected because both of them are familiar to the undergraduates
and have similar sizes and complexity. In future, conducting the experiments in indus-
trial should be highlighted.

The main threats to the construct validity are: measures that are applied in the
quantitative analysis and the reliability of the questionnaire. Measures adopted in the
quantitative analysis are those commonly employed in empirical RE experiments
[22]. The reliability of the questionnaire is tested by the Cronbach test. Questions
related to PU, PEOL, and PEOU obtained a Cronbach’s alpha values that are all high-
er than the acceptable minimum (0.70) [20]. One limitation of our experiment is that
lack of the investigation on other factors (e.g., traceability, verification, accuracy)
may influence the method adoption in practice. Another limitation is the lack of use of
Technology Acceptance Model (TAM) [30]. In our study, the questionnaire items in
“perceived of usefulness of BPCRAR” and “perceived of ease of use of BPCRAR”
dimensions mainly based on measurement of each activity in BPCRAR and not based
on TAM. Since TAM is one of the most widely applied theoretical model to
study user acceptance and usage behavior of emerging information technologies, and
it has received extensive empirical support through validations and replications, we
plan to design questionnaire according to TAM in the future replicated experiment.

The main threat to the conclusion validity is the validity of the statistical tests ap-
plied. This was alleviated by applying the most common tests that are employed in the
empirical software engineering [20]. However, more replications are preferred to
confirm these results.

6 Conclusion and Future Work

This paper presents a controlled experiment to evaluate BPCRAR. The completeness
and understandability are evaluated in comparison to JAD and the statistic results
show that BPCRAR is superior to JAD in both aspects. Meanwhile, the PU, PEOL,
and PEOU of BPCRAR are evaluated from the viewpoint of different roles by ques-
tionnaire. The statistic results show that stakeholders recognize its usefulness, ease to
learn, and ease to use. According to the validity analysis, more experimentation
should be performed to confirm the results.

 Evaluating the BPCRAR Method: A Collaborative Method for Business Process 103

As future work, we plan to replicate the experiment by considering subjects with
different levels of experiences in RE (e.g. industrial practitioners) and objects in other
business domains. In addition, implementing the collaborative RE tool based on the
Mediawiki and its extensions to support the method is our next step.

Acknowledgements. The research was supported by the National Natural Science
Foundation of China under Grant No. 61170026, the National High Technology Re-
search and Development Program of China (863 Program) under Grant No.
2013AA12A206, and the Chongqing Key Lab. of Electronic Commerce & Supply
Chain System Special Fund (2012ECSC0210).

References

1. Konaté, J., Sahraoui, A.E.K., Kolfschoten, G.L.: Collaborative Requirements Elicitation:
A Process-Centred Approach. Group Decision and Negotiation 1-31 (2013)

2. de Oliveira, M., Viana, D., Conte, T., Vieira, S., Marczak, S.: Evaluating the REMO-EKD
technique: A technique for the elicitation of software requirements based on EKD organi-
zational models. In: 2013 IEEE Third International Workshop on Empirical Requirements
Engineering, pp. 9–16. IEEE (2013)

3. Grady, J.O.: System requirements analysis. Academic Press (2010)
4. Sutcliffe, A.: User-centred requirements engineering. Springer (2002)
5. Boulila, N., Hoffmann, A., Herrmann, A.: Using Storytelling to record requirements:

Elements for an effective requirements elicitation approach. In: Proceedings of the 2011
Fourth International Workshop on Multimedia and Enjoyable Requirements Engineering,
pp. 9–16 (2011)

6. Lai, H., Peng, R., Ni, Y.: GDS4RE Report. Technical report,
http://www.pengronggroup.org/gds4rereport20140120.pdf

7. Zowghi, D., Coulin, C.: Requirements elicitation: A survey of techniques, approaches, and
tools. In: Engineering and Managing Software Requirements, pp. 19–46. Springer (2005)

8. Boehm, B.W., Ross, R.: Theory-W software project management principles and examples.
IEEE Transactions on Software Engineering 15(7), 902–916 (1989)

9. Boehm, B., Gr, U., Nbacher, P., Briggs, R.O.: EasyWinWin: A groupware-supported
methodology for requirements negotiation, pp. 720–721 (2001)

10. Geisser, M., Hildenbrand, T.: A method for collaborative requirements elicitation and
decision-supported requirements analysis. In: Geisser, M., Hildenbrand, T. (eds.)
Advanced Software Engineering: Expanding the Frontiers of Software Technology. IFIP,
vol. 219, pp. 108–122. Springer, Boston (2006)

11. Laporti, V., Borges, M.R.S., Braganholo, V.: Athena: A collaborative approach to re-
quirements elicitation. Comput. Ind. 60(6), 367–380 (2009)

12. Peng, R., Lai, H.: DRE-specific Wikis for Distributed Requirements Engineering: A
Review. In: Proceedings of the 2012 19th Asia-Pacific Software Engineering Conference,
pp. 116–126 (2012)

13. Seyff, N., Graf, F., Maiden, N.: End-user requirements blogging with iRequire. In: 2010
ACM/IEEE 32nd International Conference on Software Engineering, vol. 2, pp. 285–288.
IEEE (2010)

104 H. Lai, R. Peng, and Y. Ni

14. Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.: Enhancing stakeholder profiles to
improve recommendations in online requirements elicitation. In: Proceedings of the 17th
IEEE International Conference on Requirements Engineering, pp. 37–46 (2009)

15. Lim, S.L., Quercia, D., Finkelstein, A.: StakeSource: harnessing the power of crowdsourc-
ing and social networks in stakeholder analysis. In: Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering, Cape Town, South Africa, pp. 239–242.
ACM (2010)

16. Ravenscroft, A., McAlister, S.: Designing interaction as a dialogue game: Linking social
and conceptual dimensions of the learning process. In: Interactions in Online Education:
Implications for Theory and Practice, pp. 73–90 (2006)

17. Pentland, B.T., Feldman, M.S.: Narrative networks: Patterns of technology and organiza-
tion. Organization Science 18(5), 781–795 (2007)

18. Henderson-Sellers, B., Edwards, J.M.: The object-oriented systems life cycle. Commun.
Acm. 33(9), 142–159 (1990)

19. Kuutti, K.: Activity theory as a potential framework for human-computer interaction re-
search. In: Context and Consciousness: Activity Theory and Human-Computer Interaction,
pp. 17–44 (1996)

20. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Experimenta-
tion in software engineering. Springer (2012)

21. Costain, G., McKenna, B.: Experiencing the Elicitation of User Requirements and Record-
ing Them in Use Case Diagrams through Role-Play. Journal of Information Systems Edu-
cation 22(4), 367–380 (2011)

22. Emam, K., Madhavji, N.H.: An instrument for measuring the success of the requirements
engineering process in information systems development, vol. 1, pp. 201–240. Springer,
Netherlands (1996)

23. den Hengst, M., Dean, D.L., Kolfschoten, G., Chakrapani, A.: Assessing the quality of
collaborative processes, vol. 1, p. 16b (2006)

24. Hu, P.J., Chau, P.Y., Sheng, O.R.L., Tam, K.Y.: Examining the technology acceptance
model using physician acceptance of telemedicine technology. J. Manage. Inform.
Syst. 16(2), 91–112 (1999)

25. Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual modeling
techniques. Requirements Engineering 9(4), 248–260 (2004)

26. Briand, L.C., Labiche, Y., Di Penta, M., Yan-Bondoc, H.: An experimental investigation
of formality in UML-based development. Ieee. T. Software Eng. 31(10), 833–849 (2005)

27. Dag, I.K., Sjøberg, A.B., Arisholm, E., Dybå, T.: Challenges and recommendations when
increasing the realism of controlled software engineering experiments. In: Conradi, R.,
Wang, A.I. (eds.) ESERNET 2001. LNCS, vol. 2765, pp. 24–38. Springer, Heidelberg
(2003)

28. Duggan, E., Thachenkary, C.: Higher Quality Requirements: Supporting Joint Application
Development with the Nominal Group Technique. Information Technology and Manage-
ment 4(4), 391–408 (2003)

29. Dyb Aa, T., Kampenes, V.B., Sj, O., Berg, D.I.K.: A systematic review of statistical power
in software engineering experiments. Inform. Software Tech. 48(8), 745–755 (2006)

30. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of informa-
tion technology. Mis. Quart. 319-340 (1989)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 105–119, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Modeling and Specifying Parametric Adaptation
Mechanism for Self-Adaptive Systems*

Zhuoqun Yang1 and Zhi Jin2

1 Institute of Mathematics, Academy of Math. and Syst. Sci., Chinese Academy of Sciences
Haidian Dstr., Beijing 100190, P.R. China

zhuoqun.y@gmail.com
2 Key Laboratory of High Confidence Software Technologies (MoE), Peking University

Haidian Dstr., Beijing 100871, P.R. China
zhijin@pku.edu.cn

Abstract. Self-adaptive system (SAS) is capable of adjusting its behavior to
cope with changes in the deployed environment. Parametric adaptation is an
important fashion for achieving adaptation. Context can be defined as the reifi-
cation of the environment. It may influence the decisions on how to adjust the
system behavior. Thus, how to incorporate context into the parametric adapta-
tion mechanism becomes a challenging issue. This paper provides solutions to
this issue from a requirements engineering perspective. We develop the goal-
oriented requirements model for SASs and build the context model for the envi-
ronment, and then integrate these two models via defined relations. Adaptation
goal model is derived by refining the adaptation goal with adaptation tasks
which are underpinned by MAPE loop. Finally, we show how to utilize the spe-
cifications to design parametric adaptation algorithms. Our approach is illu-
strated with an example from the intelligent transportation application.

Keywords: requirements model, context model, parametric adaptation, specifi-
cation, adaptation algorithm.

1 Introduction

Self-adaptive system (SAS) is a novel computing paradigm in which the software is
capable of adjusting its behavior in response to meaningful changes in the environ-
ment and itself [1]. The ability of adaptation is characterized by self-* properties,
including self-healing, self-configuration, self-optimizing and self-protecting [2].
Innovative technologies and methodologies inspired by these characteristics have
already created avenues for many promising applications, such as intelligent transpor-
tation, mobile computing, ambient intelligence, ubiquitous computing, etc.

Software-intensive systems are systems in which software interacts with other
software, systems, devices, sensors and with people intensively. Such environmental

* This research is supported by the National Natural Science Foundation of China under Grant

Nos. 61232015 and 91318301.

106 Z. Yang and Z. Jin

entities may be inherently changeable, which makes self-adaptiveness become an
essential feature. Context can be defined as the reification of the environment [3] that
is whatever provides as a surrounding of a system at a time. Context is essential for
the deployment of self-adaptive systems. It provides a manageable and computable
description of the environment. As the environment is changeable, the context is unst-
able and ever changing and the system is desired to perform different behaviors for
interacting with different contexts. Therefore, engineers need to build effective adap-
tation mechanisms to deal with context changes caused by the environmental changes.

Requirements Engineering (RE) for self-adaptive systems primarily aims to identi-
fy adaptive requirements, specify adaptation logic and build adaptation mechanisms
[4]. Conducting context analysis at the requirements phase will be worthwhile at the
design and development phases, because context may influence the decisions about
what to build and how to build them.

Recently, RE community have made great strides in providing methodologies and
technologies for building adaptation mechanisms of SASs [5]. [6] proposed FLAGS
by extending the KAOS model with fuzzy goals and provided adaptation countermea-
sures when the goal is dissatisfied. [7] investigated requirements for adaptation mod-
els that specify the analysis, decision-making, and planning of adaptation as part of a
feedback loop. Requirements-aware approaches [8, 9] considered requirements of
self-adaptive systems as run-time entities that can be monitored and reasoned over to
diagnose violations. [10] proposed RELAX, a formal requirements specification lan-
guage, to specify the behavior of dynamically adaptive systems. [11] introduced threat
modeling to identify context uncertainty with RELAX specification. [12] proposed an
autonomic architecture to allow adaptive systems to achieve structural adaptation.

However, specifying adaptation mechanism while considering context changes is
lacking in investigation, especially for the parametric adaptation. This issue is impor-
tant because parametric adaptation is another adaptation type except for structural
adaptation [13] and engineers can design more reasonable adaptation logic and adap-
tation mechanisms via explicitly specifying how to achieve parametric adaptation.

This paper focuses on modeling and specifying parametric adaptation mechanisms
for SASs. Firstly, we introduce the conceptual model consisting of the entities in the
system and the environment, and define new model elements and then describes how
to build the requirements model for the SAS and develop the context model for the
environment. The adaptation goal model is derived by incorporating context into the
requirements model and refining the adaptation goal with adaptation mechanisms
consisting of adaptation tasks that are underpinned with control loop. We adopt and
extend the specification grammar of Tropos [14] to specify the adaptation mechan-
isms. Then we design the parametric adaptation algorithms of control loop tasks from
the specifications. The approach is illustrated with an example from the intelligent
transportation applications.

The rest of the paper is organized as follows. Section 2 introduces the goal-oriented
modeling method, followed by the approach overview in Section 3. Section 4 de-
scribes how to build adaptation goal model, followed by the specifications and algo-
rithms in Section 5. Section 6 discusses the proposed approach, followed by related
work in Section 7. Section 8 concludes the paper and describes the future work.

 Modeling and Specifying Parametric Adaptation Mechanism 107

2 Goal-Oriented Requirements Modeling

Goal model and the goal-oriented analysis have been widely used in RE literature to
present the rationale of both humans and systems. A goal model describes the stake-
holder’s needs and expectations for the target system.

Figure 1 presents a simple KAOS model [15]. The goals model stakeholders’ in-
tentions while the tasks model the functional requirements that can be used to achieve
the goals. Goals can be refined through AND/OR decompositions into sub-goals or
can be achieved by sub-tasks. For AND decomposition (e.g.,), the parent
goal will be satisfied when all its sub-elements are achieved, while for OR decompo-
sition (e.g.,), the parent goal can be satisfied by achieving at least one
of its sub-elements. OR-decompositions incorporate and provide sets of alternatives
which can be chosen flexibly to meet goals. Softgoals model the NFRs, which have
no clear-cut criteria for their satisfaction and can be used to evaluate different choices
of alternative tasks. Tasks can contribute to softgoals through the help or hurt contri-
bution relation.

Fig. 1. An Example of Goal Model

3 Approach Overview

This section presents the mechanism underpinning our modeling and analysis ap-
proach, describes the processes to achieve adaptation and briefs the motivating exam-
ple that is used to illustrate the model and specification.

3.1 Framework

Figure 2 depicts the framework of our approach, which is composed of three basic
layers: Problem Layer, Model Layer and Adaptation Layer.

Fig. 2. Framework for Modeling and Specifying

108 Z. Yang and Z. Jin

The Problem Layer consists of the self-adaptive system itself and its operational
environment. A SAS can interact with the environment through some shared pheno-
mena (denoted by the overlap part) where the system captures kinds of computable
contexts provided in the environment.

The Adaptation Layer is built with the MAPE-K control loop [4]. The delta-
arrows refer to the control flow. In the Monitor process, the autonomic manager uses
some sensors to monitor the context variables from the deployed environment which
refers to the related context in the shared phenomena. The monitored data are deli-
vered to the Analyze process. The manager detects whether there are requirements
deviations and delivers the results to the Plan process. Autonomic manager makes
adaptation decisions and re-detect the requirements. If the deviated requirements are
held again, the Execute process implements the new configuration through some
actuators.

The Model Layer consists of the adaptation goal model (AGM), the context model
(CM) and the adaptation specifications. An AGM is a requirements model derived by
incorporating the M-A-P-E processes into the traditional goal model of the system.
The context model describes the explicit inner structures of the operational environ-
ment of the system. The adaptation specifications are derived by specifying the M-A-
P-E tasks of the autonomic manager according to well-formed grammar.

3.2 Overall Processes

Figure 3 presents the processes of modeling and specifying the adaptation mechanism
for self-adaptive systems.

Fig. 3. Processes of Modeling and Specifying Adaptation Mechanism

In the modeling process, we first identify and model the requirements of the target
system, and identify and model the related context from the shared phenomena. Then,
the relationship between the requirements model and the context model will be built.
According to the relationship, we identify which requirements should be held through
the adaptation mechanism if deviations appear. The adaptation requirements are re-
fined with new tasks that need to be operated to achieve the adaptation.

In the specifying process, we specify the newly included tasks with well-formed
grammar and derive the adaptation algorithms to achieve these tasks.

3.3 Motivating Example

Intelligent Transportation Systems are advanced applications which aim to provide
innovative services relating to different modes of transport and traffic management.
Highway-Rail Crossing Control System is a fundamental concern [16].

 Modeling and Specifying Parametric Adaptation Mechanism 109

Fig. 4. The Train Dispatch System

We take the Train Dispatch System (TDS) as the motivating example, which is
presented in Figure 4. Rails are built across a highway for freight trains’ passing
across. At the crossing, gates are built on both sides of the highway for blocking the
vehicle when a train is coming. However, when vehicle flow on the highway gets
increased, if the train dispatch time interval is a certain constant, it may cause the
traffic jam. To deal with this problem and prevent the overcrossing, the system needs
the adaptation ability of adjusting the dispatch time interval at runtime. Thus, the
objective of TDS is determining the appropriate dispatch time interval according to
vehicle flow on the highway. To illustrate what the expected traffic situations are, we
assume that the system should achieve two requirements, which are described in Ta-
ble 1. These two requirements can function as Awareness Requirements (AwReq) [8].

Table 1. Awareness Requirements

AwReq Meaning
AwReq 1 More than 50% of the vehicles can pass through the entire

highway within 400sec.
AwReq 2 The amount of vehicles on the highway is always under 300.

For the convenience of illustrating the approach, we use some named symbols to

denote variables or parameters. Table 2 presents the symbols and their meanings.

Table 2. Symbol Meaning

Symbol Meaning
V Velocity of a vehicle on the highway
tdispatch Dispatch time interval
p Percentage of vehicles whose pass through time is under 400sec
n Number of vehicles on the highway

4 Modeling Requirements and Context

In this section, we first provide the conceptual model of our approach, and then de-
scribe how to derive the adaptation goal model.

Train

Train

Gate

Gate

Train Dispatch
Control System

Deliver data

Monitor

Monitor

Deliver data

Control

Control

Highway
Railway

110 Z. Yang and Z. Jin

4.1 Conceptual Model

Figure 4 presents the conceptual model of our approach. The entities in the white
rectangle are adopted from the KAOS method, while the entities in the dark are newly
defined. We provide their definition as follows.
Definition 1 (Atomic Context). An atomic context is a quantified context that
doesn’t consist of any sub-contexts.
Definition 2 (Composed Context). A composed context refers to the context consists
of some sub-contexts, which can be either composed context or atomic context.
Definition 3 (Adaptation Task). An adaptation task refers to the task that should be
done to achieve adaptation goal.
Definition 4 (Adaptation Goal). An adaptation goal refers to the goal that is related
to adaptation requirements and should be refined with adaptation tasks.

Fig. 5. Conceptual Model

According to the conceptual model we define the adaptation goal model as a triple: , , . refers to the requirements model of a self-adaptive
system, which can be defined as a septuple: , , , , , , . … is a set of ordinary goals. … is a set of adaptation
goals. … is a set of ordinary tasks. … is a set of adapta-
tion tasks. … is a set of softgoals. : is the De-
composition relation and , . : is the Contribution rela-
tion and , . Context model is defined as , , , where … is a set of composed contexts; … is a set of atomic contexts; : is the Consists-
of relation. : refers to the atomic context support the adaptation with
the contextual values.

4.2 Modeling Requirements and Context

The partial requirements model of Train Dispatch System is presented in Figure 6.
The root goal is Prevent traffic jam while dispatching train (), which can be satisfied
by achieving its two sub-tasks: Dispatch train with time interval of tdispatch (t1) and
Determine tdispatch to maintain p>50% and n<300 (t2). t2 is built to achieve the aware-
ness requirements which are described in Table 1.

Requirements
Model Entity

+name: String

Task

Goal

Softgoal

Contribution

0..*

1..*

Help Hurt

Decomposition

AND OR

Environment
+description: String

0..1

Composed
Context

0..*

Atomic Context

+name: String
+description: String

1

1..*

1..*

support

1..*

consists of
consists of

Ordinary Goal

Adaptation Goal

Ordinary Task

Adaptation Task

1..*1..*

Monitor

Analyze

Plan

Execute

1..*

1..*

 Modeling and Specifying Parametric Adaptation Mechanism 111

Fig. 6. Partial Requirements Model of Train Dispatch System

Actually, there are many contexts that can be elicited from the operational envi-
ronment of an Intelligent Transportation System, such as weather, vehicle flow, ve-
locity, etc. However, we only concern the context which may influence the awareness
requirements and the determination of the train dispatch time interval. Figure 7
presents the context model of the motivating example. The composed context is Con-
texts related to vehicle on the highway (cc), which consists of three atomic contexts,
including Number of vehicle enter the highway every minute (NE) (ac1), Number of
vehicle leave the highway every minute (NL) (ac2), Velocity (V) of the vehicle on the
highway (ac3). The atomic contexts can be directly gauged by sensors, e.g., camera.

Fig. 7. Context Model of Train Dispatch System

4.3 Deriving Adaptation Goal Model

Due to the atomic contexts support the determination of tdispatch, t2 is transformed into
an adaptation goal (Ag) with Support relation from ac1, ac2 and ac3 (Figure8).

Fig. 8. Transform Ordinary Task into Adaptation Goal

The adaptation goal is refined with adaptation tasks that can represent the M-A-P-E
processes. Accordingly, we add four adaptation tasks to the goal model. The adapta-
tion goal model (AGM) after refinement is depicted in Figure 9.

Fig. 9. Refine the Adaptation Goal with Adaptation Tasks

112 Z. Yang and Z. Jin

The number of vehicle on the highway (n) at k minute can be derived with | | , where refers to the th minute

The percentage of vehicles whose pass through time is under 400sec (p) at k
minute can be computed with , where Length of the highway400

5 Specifying Adaptation Mechanism

5.1 Specification Grammar

To specify the model elements, we adopt the specification grammar of Tropos and
extend the entity with atomic context, which is depicted in Figure 10.

AGM specifications focus on three kinds of model elements, including goal, task
and atomic context. Attribute refers to the parameters or variables related to the entity.
Attribute-type can be Numeric, Boolean or Class. Numeric attributes depict the va-
riables or constants. Boolean attributes represent verification results with 0 or 1. Class
attributes refer to the agents used to monitor the entity.

Initialization and fulfillment refer to the activating and terminating process of a
goal or a task. Condition-type consists of PreCondition, TriggerCondition and Post-
Condition. The description of each condition is provided in Table 3.

Table 3. Description of Initializaiton and Fulfillment Conditions

Condition Refer to
Initialization PreCondition Parent entity is dissatisfied.
Initialization TriggerCondition Parent entity is activated.
Initialization PostCondition Related parametric values are set to void.
Fulfillment PreCondition Required parametric values are received.
Fulfillment TriggerCondition Tasks are completed.
Fulfillment PostCondition Properties are held or parametric values are delivered.

Invariant refers to the property that should be held all the time while variant refers

to the property that can swing sometimes. The formulas in the specifications are de-
rived with first-order linear temporal logic. The syntax is given by: | | , … , | , … , | | | | | X | F | G | U | · | ·

A term t can be a variable x, a constant c or a function f of a number of terms. A
formula Φ is either a term, a predicate of a number of terms, a Boolean operation, a
timed operation or a quantifiers operation. XΦ refers to Φ holds in the next state of the
system. FΦ means Φ eventually holds in some future state. GΦ means Φ holds in all
states of the system. Φ1 U Φ2 refers to Φ1 holds until Φ2 holds.

 Modeling and Specifying Parametric Adaptation Mechanism 113

Fig. 10. Adaptation Goal Model Specification Grammar

5.2 Specifying Adaptation Control Loop

Figure 11 depicts the specification of adaptation task M. The attributes of task M con-
sist of Numeric attributes NE, NL, V and a Class attribute Camera that has the structure
of {select, NE, NL, V}. It has no input, while the outputs are the monitored values of
NE, NL and V. The Initialization PreCondition is the disfulfillment of parent goal Ag
and the Initialization TriggerCondition is the activation of Ag. The Initialization
PostCondition is setting the values of numeric variable void. The Fulfillment PreCon-
dition is that some instances of camera class are selected as sensors. The Fulfillment
TriggerCondition is achieving the related monitored value. The Fulfillment PostCon-
diation is outputting the numeric values.

Fig. 11. Specification of Adaptation Task: M Fig. 12. Specification of Adaptation Task: A

/*Elements*/
entity := goal | task | atomic context
goal := goal-type mode name [attributes] [invariant] [variant] [initialization] [fulfillment]
task := task-type name From goal.name input output [attributes] [initialization] [fulfillment]
atomic context := name Support goal.name [attribute] violation
goal-type := Ordinary Goal | Adaptive Goal
mode := achieve | maintain
task-type := Ordinary Task | Monitor | Analyze | Plan | Execute
input := Input name
output := Output name

/*Attributes*/
attribute := Attribute attribute+
attribute := attribute-type : name
attribute-type := Numeric | Boolean | Class

/*Invariant, Variant, Initialization, Fulfillment*/
invariant := Invariant invar-property+
invar-property := Constraint formula
variant := Variant var-property+
var-property := Possibility formula
initialization := Initialization conditional-type formula
fulfillment := Fulfillment conditional-type formula
condition-type := PreCondition | TriggerCondition | PostCondition

Monitor M: Gauge NE,NL and V with Sensors
From Adaptation Goal

Ag: Determine tdispatch to maintain p>50% and n<300
Attribute

Numeric NE, NL, V

Class Camera {select, NE, NL, V}
Input atomic contexts
Output values of NE, NL, V

Initialization PreCondition
Initialization TriggerCondition
Initialization PostConditionset . NE, NL, V
Fulfillment PreCondition .
Fulfillment TriggerCondition . NE, NL, V

Fulfillment PostCondition NE, NL, V

Analyze A: Verify whether p>50% and n<300 are satisfied

From Adaptive Goal

Ag: Determine tdispatch to maintain p>50% and n<300
Attribute

Numeric NE, NL, V, tdispatch

Boolean sat

Input NE, NL, V, tdispatch

Output sat

Initialization PreCondition
Initialization TriggerCondition
Initialization PostCondition set
Fulfillment PreCondition NE, NL, V, tdispatch

Fulfillment TriggerCondition NE, NL, V, 50%
NE, NL, V, 300

Fulfillment PostCondition

114 Z. Yang and Z. Jin

Figure 12 provides the specification of adaptation task A. It contains four numeric
attributes where NE, NL, V are the output of task M and tdispatich is the current dispatch
time interval. In addition, the Boolean attribute sat is used to represent the satisfaction
of the verified awareness requirements. When a violation is detected, sat is assigned
to 0, otherwise, it is assigned to 1. The Initialization Postcondition is setting the value
of sat to void. The Fulfillment PreCondition is inputting the values of numeric
attributes of previous task M. The Fulfillment TriggerCondition is conducting the
verification of awareness requirements. The PostCondition is outputting the value
of sat.

Figure 13 describes the specification of adaptation task P. It contains the Numeric
attributes and Boolean attribute of task A while refers to the new determined
dispatch time interval. The Initialization PostCondititon is setting the new parametric
value with current parametric value. The Fulfillment PreCondition is inputting the
values of sat, NE, NL, V and tdispatch. The Fulfillment TriggerCondition is the process of
decision making. The Fulfillment PostCondition is outputting the value of .

Fig. 13. Specification of Adaptation Task: P Fig. 14. Specification of Adaptation Task: E

Figure 14 presents the specification of adaptation task E. It contains two Numeric
attributes: the configuration dispatch time interval tdispatch and newly determined pa-
rametric time interval . The initialization PostCondition is setting the confi-
guration of time interval void. The Fulfillment PreCondition is inputting the new
parametric value of dispatch time interval. The Fulfillment TriggerCondition is as-
signing the value to the configuration, while the Fulfillment PostCondition is achiev-
ing the invariant of adaptation goal Ag.

5.3 Specification-Based Adaptation Algorithms

According to the specifications of adaptation tasks, we can derive corresponding algo-
rithms by integrating with these specifications. This section provides the algorithms
of adaptation tasks. The texts in bold in the algorithms are adopted from segments of
the specifications. These algorithms present how to use the specifications and can be
generally utilized to design parametric adaptation code for any SASs whose adapta-
tion mechanism is modeled and specified with our approach.

Plan P: Decide tdispatch to hold p>50% and n<300
From Adaptive Goal

Ag: Determine tdispatch to maintain p>50% and n<300
Attribute

Numeric NE, NL, V, tdispatch,
Boolean sat

Input sat, NE, NL, V, tdispatch
Output
Initialization PreCondition
Initialization TriggerCondition
Initialization PostCondition set
Fulfillment PreCondition , NE, NL, V,
Fulfillment TriggerCondition 1 ∆;, NE, NL, V 50%

, NE, NL, V 300;return
Fulfillment PostCondition

Execute E: Refoncigure tdispatch

From Adaptive Goal

Ag: Determine tdispatch to maintain p>50% and n<300
Attribute

Numeric ,
Input

Output
Initialization PreCondition
Initialization TriggerCondition
Initialization PostCondition
Fulfillment PreCondition
Fulfillment TriggerCondition

Fulfillment PostConditionF , NE, NL, V 50% , NE, NL, V 300

 Modeling and Specifying Parametric Adaptation Mechanism 115

Monitoring Atomic Contexts. Algorithm 1 is designed for monitoring atomic con-
texts. The monitored variables (line 3) and monitoring agents (line 4) are already
defined in the specifications of task M. The structure of agents (line 5 and 6) is de-
fined based on the Class attribute in the specification of task M. Before monitoring,
the system should select instances of the monitoring agent (line 7). After monitoring,
the monitored value gauged by agent instances should be sent to the following analyz-
ing process (line 8 and 9).

Analyzing Requirements Violations. Analyzing algorithm is used for detecting
whether awareness requirements are violated. Before verification, Fulfillment Pre-
Condition of adaptation task A should be checked (line 3). If the Fulfillment PreCon-
dition is true, the awareness requirements are verified with the monitored values and
the current system parametric configuration (line 3 to 5). When requirements are sa-
tisfied, the Boolean attribute is assigned to 1 (line 6 and 7). Otherwise, the Boolean
attribute is assigned to 0 (line 8). Thereafter, the Boolean is delivered to the next
process (line 9). If the Fulfillment PreCondition is not satisfied, the monitoring agents
should redo the monitoring task (line 11)

116 Z. Yang and Z. Jin

Deciding New Parametric Values. Algorithm 3 is designed for determining how to
adjust system parameters to maintain the awareness requirements. If the Fulfillment
PreCondition is true (line 3) and the awareness requirements are still satisfied (line 4),
no decision needs to be made. Monitoring agent should continuously monitor the
atomic context (line 5). If awareness requirements are violated, current values of pa-
rameters should be adjusted and iterative verification should be performed to check
whether the adjusted value is appropriate (line 6 to 9). Then new parametric values
are delivered to the executing process (line 10). If the Fulfillment PreCondition is
false, the analyzing process needs to be redone for capturing the value of sat (line 12).

Executing Parametric Configuration. Executing algorithm focuses on carrying out
the parametric reconfiguration. If the Fulfillment PreCondition is true, the parametric
values of the system configuration are assigned to the adjusted parametric values (line
3 to 5). If the Fulfillment PreCondition is not true, the planning task should be redone
for deriving the adjusted values (line 6).

 Modeling and Specifying Parametric Adaptation Mechanism 117

6 Discussion

By integrating the requirements model and the context model, the modeling
method can clearly define the relationships between the requirements and the context
(environment). With our modeling method, each awareness requirement of a
self-adaptive system is transformed into an adaptation goal that can be further refined
into adaptation tasks underpinned by the MAPE-K control loop.

The specification grammar is designed for describing model elements. It contains
both static aspects including name, attribute, invariant, etc. and dynamic aspects in-
cluding input, output, initialization conditions and fulfillment conditions. With these
explicit descriptions, engineers can design more reasonable adaptation logic.

Adaptation algorithms are derived from corresponding segments of the specifica-
tions. The derivation method can be utilized to any self-adaptive systems that are
modeled and specified with our method. It shows how the specifications can be used
to build the adaptation mechanisms and presents how the adaptation tasks incorporate
with each other.

7 Related Work

Modeling Adaptation Mechanisms. [6] extended the KAOS model with fuzzy goals
and provided adaptation countermeasures when the goal is dissatisfied. [7] investi-
gated requirements for adaptation models that specify the analysis, decision-making,
and planning of adaptation as part of a feedback loop. To monitor requirements, [8]
argued that requirements for self-adaptive systems should be run-time entities that can
be reasoned over in order to understand the extent to which they are being satisfied.
[9] proposed a way to elicit and formalize the awareness requirement. [17] proposed
adaptation mechanisms for repairing deviations caused by unsatisfied domain as-
sumptions. [18] introduced how to monitor and diagnose requirements violations
based on reasoning over the KAOS model. Compared with these works, this paper
proposed the adaptation mechanism by building the adaptation goal model in an in-
cremental way. The MAPE-based adaptation processes are considered as additional
tasks that are used to refine and transform the initial requirements model.

Specifying Adaptation Mechanisms. [6] specified the fuzzy goal by using fuzzy
linear temporal logic. [10] proposed RELAX to specify the adaptation behavior of
dynamically adaptive systems when. [19] introduced an approach to formally specify-
ing adaptation requirements and used this logic to specify three commonly used adap-
tation semantics. [20] presented goal-oriented specifications of adaptation semantics.
Different from them, our specification can not only describe the model elements
themselves, but also connect each element together with six conditions (Table 3). We
also investigated how these specifications can be utilized by engineers. To this end,
we introduced the corresponding pseudo code of the adaptation tasks to illustrate the
use of the specifications. Thus, for different adaptation scenarios, engineers may just
modify the algorithm code according to the specifications of the system.

118 Z. Yang and Z. Jin

Modeling Context. [11] leveraged the threat model to identify context uncertainty
with RELAX specification and integrated the context model with the requirements
model. [21] proposed a goal-oriented RE modeling and reasoning framework for sys-
tems operating in varying contexts, introduced contextual goal models to relate goals
and contexts, presented context analysis to refine contexts and identify ways to verify
them. [22] used contexts to model domain variability in goal models and discussed
the modeling of contexts, the specification of their effects on system goals and the
analysis of goal models with contextual variability. Inspired by these works, we went
a step further by incorporating the context model into the adaptation mechanism.

8 Conclusion

This paper aims to model and specify parametric adaptation mechanisms for self-
adaptive systems. We modeled both the requirements and the context, introduced the
adaptation goal model, refined the adaptation with MAPE loop as adaptation tasks,
specified the adaptation tasks with well-formed grammar, and derived parametric
adaptation algorithms from the specifications.

The principles of modeling can serve as general guidance for requirements engi-
neers to clearly identify and model requirements and context for self-adaptive sys-
tems. Modeling MAPE loop as adaptation tasks of adaptation goal provides an access
to visual modeling and specifying control loops in the requirements model. The speci-
fications can be generally adopted to describe the parametric adaptation mechanism.
Furthermore, the adaptation algorithms are derived from corresponding segments of
the specifications of M-A-P-E tasks. The algorithms present the use of the specifica-
tion of the adaptation mechanism. In conclusion, the derived models, specifications
and algorithms can be utilized to achieve the parametric adaptation in self-adaptive
systems and help engineers better understand how to design the parametric adaptation
mechanisms and how to achieve the parametric adaptation.

Our future work continuously focuses on investigating incorporating the context
into the requirements model for achieving the parametric adaptation. In addition, we
will explore how to apply these parametric adaptation mechanisms and adaptation
algorithms to some real applications. We also intend to provide innovative adaptation
mechanisms by integrating the parametric adaptation with the structural adaptation.

References

1. Cheng, B.H.C., et al.: Software Engineering for Self-Adaptive Systems: A Research
Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-
Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

2. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst. 2, 1–42 (2009)

3. Andrea, A.F., Savigni, A.: A Framework for Requirements Engineering for Context-Aware
Services. In: 1st International Workshop From Software Requirements to Architectures (2001)

4. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller,
H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops. In:
Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineer-
ing for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

 Modeling and Specifying Parametric Adaptation Mechanism 119

5. Yang, Z., Li, Z., Jin, Z., Chen, Y.: A Systematic Literature Review of Requirements Mod-
eling and Analysis for Self-adaptive Systems. In: Salinesi, C., van de Weerd, I. (eds.)
REFSQ 2014. LNCS, vol. 8396, pp. 55–71. Springer, Heidelberg (2014)

6. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-Driven Adaptation.
In: 18th IEEE International Conference on Requirements Engineering, pp. 125–134 (2010)

7. Vogel, T., Giese, H.: Requirements and assessment of languages and frameworks for
adaptation models. In: Kienzle, J. (ed.) MODELS 2011 Workshops. LNCS, vol. 7167,
pp. 167–182. Springer, Heidelberg (2012)

8. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.: Requirements-Aware Sys-
tems: A Research Agenda for RE for Self-adaptive Systems. In: 18th IEEE International
Conference on Requirements Engineering, pp. 95–103 (2010)

9. Souza, V.E.S., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness require-
ments for adaptive systems. In: 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pp. 60–69 (2011)

10. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: Incorporating
Uncertainty into the Specification of Self-Adaptive Systems. In: 17th IEEE International
Conference on Requirements Engineering, pp. 79–88 (2009)

11. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: Goal-Based Modeling Approach
to Develop Requirements of an Adaptive System with Environmental Uncertainty. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer,
Heidelberg (2009)

12. Yiqiao, W., Mylopoulos, J.: Self-Repair through Reconfiguration: A Requirements Engi-
neering Approach. In: 24th IEEE/ACM International Conference on Automated Software
Engineerin, pp. 257–268 (2009)

13. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Composing Adaptive
Software. Computer 37, 56–64 (2004)

14. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
analyzing early requirements in Tropos. Requir. Eng. 9, 132–150 (2004)

15. Dardenne, A., Lamsweerde, A.V., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20, 3–50 (1993)

16. Bell, C.A., Hunter, K.M.: Low Volume Highway-rail Grade Crossing Treatments for the
Oregon High Speed Rail Corridor, technical report, Transportation Research Institute,
Oregon State University (1997)

17. Feather, M.S., Fickas, S., van Lamsweerde, A., Ponsard, C.: Reconciling system require-
ments and runtime behavior. In: 9th International Workshop on Software Specification and
Design, pp. 50–59 (1998)

18. Wang, Y., Mcilraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing software
requirements. Automated Software Engg. 16, 3–35 (2009)

19. Zhang, J., Cheng, B.H.C.: Using temporal logic to specify adaptive program semantics.
Journal of Systems and Software 79, 1361–1369 (2006)

20. Brown, G., Cheng, B.H.C., Goldsby, H., Zhang, J.: Goal-oriented specification of
adaptation requirements engineering in adaptive systems. In: 1st International Workshop
on Self-Adaptation and Self-Managing Systems, pp. 23–29 (2006)

21. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements
modeling and analysis. Requir. Eng. 15, 439–458 (2010)

22. Lapouchnian, A., Mylopoulos, J.: Modeling Domain Variability in Requirements
Engineering with Contexts. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F.,
de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 115–130. Springer, Heidelberg
(2009)

Evaluating Presentation of Requirements

Documents: Results of an Experiment

Yu-Cheng Tu, Ewan Tempero, and Clark Thomborson

Department of Computer Science, University of Auckland, Auckland, New Zealand

Abstract. There are diverse stakeholders for requirements documents
in many development environments, and yet these requirements docu-
ments should be presented in such a way that all stakeholders will be
able to engage them successfully. In order to produce effective require-
ments documents, analysts need guidance when developing new docu-
ments. They also need a convenient and accurate way to evaluate the
effectiveness of existing documents. We have been exploring whether our
three-factor measurement of document “transparency” would be useful
in these ways. Our experimental results, presented in this article, sup-
port the hypothesis that transparency can be usefully characterised by
accessibility, understandability, and relevance.

1 Introduction

There are many stakeholders for requirements documents, meaning presenting
these documents in such a way that all will be able to engage them success-
fully is a challenge. We have been exploring how the concept of “transparency”
can be used to evaluate the effectiveness of documents (or any artefacts) for a
given set of stakeholders. We have developed a definition of transparency, and
identified specific properties of a document that support or interfere with its
transparency. We are now evaluating how well these ideas help assess the effec-
tiveness of document. We have performed an experiment to answer two main
questions — whether the general concept of transparency is useful for evaluat-
ing the effectiveness of documents, and whether our particular characterisation
of transparency is useful. The first question has been answered in other discus-
sions [1,2]1. We present the results regarding the second question in this paper.

Our experiment compared two requirements documents that presented func-
tional requirements to 10 software developers and 48 university students of com-
puter science or software engineering. According to our definition (discussed in
section 2.3), one of the documents was more transparent than the other. Our
overall goal of the experiment was to determine which document was more effec-
tive. Our overall results (the first question above, and discussed in more detail in
section 2.4) provided support that the document we had assessed as being more
transparent was also the more effective. We also asked participants to comment
on properties of transparency that we had identified, and more generally on what

1 These are available from http://goo.gl/sWgW2Q

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 120–134, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://goo.gl/sWgW2Q

Evaluating Presentation of Requirements Documents 121

they found helped or hindered engaging with the documents. It is the responses
to these questions that we discuss in this paper.

The remainder of the paper is organised as follows. In the next section, we
discuss the background and related work. In particular, we discuss issues with
communication as they relate to documentation, and provide more details on
our view of transparency. In section 3, we present the methodology used in our
experiment, including detailing aspects of the requirements documents examined
by the participants. Section 4 presents the results of the experiment. Finally
section 5 presents our conclusions and discusses future work.

2 Background and Related Work

2.1 Communication through Documents

One challenge in requirements engineering is poor communication between users
and developers. According to Bubenko [3], problems in communication are due
to users not fully understanding the implications of the requirements presented
to them by developers. Bubenko further says that current modelling methods
for recording requirements are difficult for users to understand. He also says
that developers have problems in analysing and determining the quality of a
requirements specification. Similarly, Al-Rawas and Easterbrook [4] say that it
is difficult to resolve misunderstanding of requirements between stakeholders
using documentation, which is a one-way communication channel. One reason
for misunderstanding is the unfamiliarity of the notations used to model re-
quirements. Another reason is the use of terminology to communicate technical
matters where one party cannot understand [5].

Poor communication can be a consequence of the presentation of requirements
which in turn affects users’ ability in comprehending requirements. For example,
formal notations are useful for verifying the completeness of requirements, but
they are often difficult for non-expert stakeholders to understand. Bubenko [3]
mentions in the methodology challenges in requirements engineering that users
often sign-off requirements specifications without fully understanding them.

We are interested in understanding how to evaluate presentation of require-
ments that affect communication in requirements engineering. Much focus in
requirements engineering is on formal and semi-formal requirements specifica-
tions, however, Bubenko mentions that one of the challenges is “to improve user
– developer communication, much more than to expand the use of formal meth-
ods”. Although the challenge of improving user – developer communication was
raised almost 20 years ago, there seems to be little advice on the effect of differ-
ent requirements presentations on user – developer communication. If we better
understand how requirements presentation affected users and developers, then
we will be able to produce more effective requirements documents with fewer
communication problems.

122 Y.-C. Tu, E. Tempero, and C. Thomborson

2.2 Documentation in Requirements Engineering

In software engineering, documents are used as a medium to communicate in-
formation, ideas or feedback about a software system to stakeholders. Forward
and Lethbridge [6] say that “documentation is an important tool for communi-
cation and should always serve a purpose”. Likewise, requirements documents
such as requirements specifications are also important to successful requirements
engineering.

A requirements specification is a basis of communication among all stakehold-
ers [7]. It is being used through the software life cycle, from systems procure-
ment, development, and to implementation of a software system [3]. According
to SWEBOK [8], requirements documentation is one key to the success of any
requirements process. To be successful, requirements are examined by stake-
holders to ensure that software engineers have defined the right system. The
requirements for a software system should be understandable and usable by ex-
perts and non-expert stakeholders. Therefore, it is important that requirements
notations and processes are appropriate for different stakeholders [9].

However, it is not easy to produce effective requirements documents for
all stakeholders. According to Al-Rawas and Easterbrook [4], requirements doc-
uments are “poor substitute for interpersonal communication”. This is mainly
due to the fact that there are many stakeholders for requirements documents
and they usually prefer using different notations. Not every stakeholder will be
familiar with different notations. Al-Rawas and Easterbrook discover in their
interviews with various software developers that 86% of their participants said
their customers need additional explanation to understand the notations used
for the requirements. They also discover that developer’s time is wasted in inter-
preting raw natural language requirements where a diagram or a formal notation
could be used to represent the requirements. Similarly, one challenge faced in
requirements validation is the review of requirements documentation as stake-
holders cannot review the document thoroughly and sign-off due to time
pressure [10].

The effectiveness of requirements documents in helping stakeholders achieving
their goals can be affected by different factors. For example, according to Davis
et al. [11], there are 24 qualities of a quality software requirements specifica-
tion (SRS). A quality SRS “contributes to successful, cost-effective creation of
software that solves real user needs”. Example qualities include unambiguous,
complete, and correct information. Similarly, an SRS document can be evaluated
with indicators such as size, readability, depth and text structure [8]. However,
current research focuses on methodology and notations used for representing re-
quirements [9]. There seems to be little advice as to how to evaluate how effective
a document is, other than to have potential stakeholders to try to use it, and
little advice as to how to create a document that stakeholders will be able to
successfully engage with. We believe that the concept of transparency can help
with both goals, and we discuss this concept in the next section.

Evaluating Presentation of Requirements Documents 123

2.3 Transparency in Software Engineering

The term “transparency” in many areas has the notion of information being
visible or open to those with a stake in that information. This concept is impor-
tant, especially, to organisations as it has effects on the success, reputation, and
credibility of organisations [12]. Transparency can also be one of the criteria for
evaluating the effectiveness of public participation because it enables the public
to see the outcome of such participation [13,14]. In business ethics, transparency
is an ethical principle which aims to enhance public acceptance as well as to
demonstrate fairness of organisations in decision-making [15].

Similarly, transparency refers to the visibility of a product or a development
process to stakeholders. Stakeholders can evaluate a software system or to make
decisions based on the visible information. This term is used in many areas of
software engineering [2]. These areas include information privacy [16,17], com-
puter ethics [18,19,20], and agile development [21,22,23]. However, the different
uses appear inconsistent and there is no clear definition.

Based on our literature review [2], we define transparency in software engi-
neering as the degree to which stakeholders can answer their questions by using
the information they obtain about a software system during its life cycle. In this
definition, stakeholders refer to anyone involved in the development of a soft-
ware system. Example stakeholders are software developers, project managers,
clients, and end users.

While our definition explains what transparency means, it does not provide
an easy means to establish what transparency there is. To this end, we have
identified three characteristics that apply to transparency: to answer stakehold-
ers’ questions, information needs to be accessible, understandable, and relevant.
Accessibility concerns the ability of stakeholders in obtaining information. We
define accessibility as the degree to which stakeholders can obtain information
that they believe is likely to answer their questions easily.

To decide if the information answers their questions, stakeholders must un-
derstand the meaning of the information. This characteristic of transparency,
understandability, we define as the degree to which the information obtained by
stakeholders can be comprehended with prior knowledge.

Relevance is concerned with how well stakeholders can answer their questions
using the information. Relevance is defined as the degree to which the information
obtained by stakeholders answers their questions.

As noted in the introduction, we performed the experiment to help answer
the questions as to whether our overall definition of transparency is useful, and
whether the characteristics we have identified help determine transparency as
we have defined it. In this paper we present the results relating to the second
question. First, we summarise the results of the first question.

2.4 Usefulness of Transparency

Our experiment presented two documents that we had assessed as having different
levels of transparency to participants, and asked questions relating to participants’

124 Y.-C. Tu, E. Tempero, and C. Thomborson

ability to engagewith them. Section 3 provides an overviewof the experimental de-
sign and the materials. Regarding our first question, the usefulness of the concept
of transparency, indicated that the document we evaluated as having better trans-
parency was also the document that our participants were better able to engage
with them. Participants spent less time and were able to answer more questions
correctly with the document that we evaluated to be more transparent. Partici-
pants who used the more transparent document were also more confident about
their answers. Full details of these results, their analysis and discussion, are avail-
able in discussions by Tu et al. [1,2] (see footnote 1).

3 Methodology

3.1 Experimental Design

The main research questions for this paper are:

1. Are the properties of accessibility, understandability, and relevance useful to
reasoning about transparency?
This question directly addresses our main goal of determining whether these
characteristics are useful to establishing transparency.

2. What elements in requirements documents affect participants’ ability in un-
derstanding requirements?
This question helps us determine whether we have missed anything that may
be relevant to determining the transparency of documents.

The experiment involves the use of two different types of requirements docu-
ments and a questionnaire (see footnote 1). The first requirements document is
an actual requirements document (ReqSpec) which describes an integration of an
accommodation management system and an identity management system for a
particular organisation. The second document is a use case model (UCM), which
we created using the information from the ReqSpec document. A questionnaire
is also constructed for participants to answer questions about the documents.

The ReqSpec document was originally the requirements document for a sys-
tem that has been implemented. The only modifications we have made are to
anonymise it. It is written in natural language and in free text format. It does
not follow any specific formats or standards.

The UCM document is created by extracting information from the ReqSpec
document. We chose the use case model as the second requirements document
type because it is used to capture functional requirements of a software sys-
tem [24]. To construct use cases for our experiment, we follow the template
guidelines by Anda et al. [25]. The template guidelines include a template for
describing an actor and a template for describing a use case. Information is ex-
tracted from the ReqSpec document with minimal changes to the original text.
All use cases are based on the original text of the ReqSpec document.

The questionnaire for our experiment contains 23 questions for participants
from software industry and 26 questions in total for student participants. Some

Evaluating Presentation of Requirements Documents 125

of the questions are optional. The questionnaire is divided into three sections:
Demographics, Part 1. Reviewing Functionality of a Software System, and Part 2.
Overview of the Software Document. In the Demographics section, participants
are asked to answer questions about themselves such as their roles in a software
project, their degree and major.

The purpose of Part 1 is to help us to compare the effectiveness of the two
requirements documents. In this section each of the participants are given one
of the two documents described above and asked to answer questions based on
the information provided in the document. They are also asked to write down
problems if they could not answer the question rather than leave it blank. This
section contains eight questions in total. The first question asks participants to
write down the type of requirements documents that they receive at the start
of the experimental session. Participants are then asked to record the time they
start answering this section. The questions are organised in the order of ease in
locating answers in the ReqSpec document. All questions, except for one, have
specific answers found in the ReqSpec document and the UCM document. The
last question asks participants to record the time when they finish answering this
section of the questionnaire. There was a 40-minute time limit to this section.

In Part 2, we ask participants nine questions about their opinions on the
requirements documents. We ask participants questions relating to the three at-
tributes of transparency. These attributes are not explicitly stated in the ques-
tions, but rather are described in general terms.

Experimental Hypotheses. Our assessment of transparency suggests that
the UCM document is better than the ReqSpec document [2]. On the basis of
our assessment, we have the following hypotheses:

1. Accessibility

– H0 : There is no difference between the accessibility of UCM document
and the accessibility of ReqSpec document.

– Ha : UCM document has better accessibility than ReqSpec document.

2. Relevance

– H0 : There is no difference between the understandability of UCM doc-
ument and the understandability of ReqSpec document.

– Ha : UCM document has better understandability than ReqSpec docu-
ment.

3. Understandability

– H0 : There is no difference between the relevance of UCM document and
the relevance of ReqSpec document.

– Ha : UCM document has better relevance than ReqSpec document.

3.2 Execution

We used convenience sampling for selecting potential participants in our exper-
iment. Our experiment was a between-subject design in which each participant

126 Y.-C. Tu, E. Tempero, and C. Thomborson

was subject to only one treatment. Each participant read only one type of the
requirements documents, either a ReqSpec document or a UCM document.

Participants’ main tasks were to answer the questionnaire and to read the
requirements documents given to them at the beginning of the experimental
session. Participants were not required to read everything provided in the doc-
uments. They need to read only the parts that they think could help them to
answer questions in Part 1 of the questionnaire.

Participants in our experiment could choose to participate either in-person
or on-line. For the in-person experiment, the researcher handed participants the
materials in printed copies. The researcher was present at all times during the
experiment session to answer any questions. For the on-line experiment, the
questionnaire was self-administered. Participants received the materials in PDF
format as well a link to the web-based questionnaire via email. Participants
completed the web-based questionnaire on their own.

4 Results

The responses were transcribed into spreadsheets. To perform statistical analysis,
Likert scale responses were transformed into numerical values. For example,
Likert items such as “Very poor, Poor, Satisfactory, Good, and Very Good” were
transformed into 1, 2, 3, 4, and 5 respectively. We used the transformed values
in parametric statistical tests such as t-tests, which according to Norman [26],
could be used for Likert data without “coming to the wrong conclusion”.

We labelled the comments made by participants in the questionnaire with
codes. The codes were based on our definition of transparency as well as any
interesting points that arose in the comments. We then identified themes from
the codes and grouped the codes according to themes. Coding enabled us to
identify any common patterns relating to transparency from the experiment.

4.1 Demographics

We recruited 10 software practitioners and 48 university students. There were
29 participants for each type of document. Of the 10 industry participants, four
people have zero to four years of experience and six have five to nine years of
experience working in the software industry. All industry participants reported
that they held the role as developers in a software project at the time of the
experiment. Some participants were also architects or requirements engineers.

47 student participants came from the University of Auckland. Of the 48
student participants, there were 21 graduate students and 27 undergraduate
students. Of the 27 undergraduate students, 16 were specialising in Software
Engineering. All of the undergraduate student participants were in their second
year of study or above at the time of the experiment.

4.2 Transparency of Requirements Documents

Accessibility. In question P2Q5a (see footnote 1), we ask our participants
about the accessibility of the requirements documents. We ask them how helpful

Evaluating Presentation of Requirements Documents 127

Fig. 1. Participants’ assessments on how well the ReqSpec document and the UCM
document were in helping participants to identify the desired information to answer
questions in Part 1 (Accessibility)

the given document is to identify the information that they might need to answer
questions in Part 1. Figure 1 shows participants’ assessment of how well the doc-
uments were in helping participants to identify information. 10/29 participants
using the ReqSpec document rated it good or very good whereas 21/29 partici-
pants using the UCM document rated it good or very good. Some participants
also commented on how the documents helped them to identify information. For
example, one of the comments from participants using the UCM document is
“Contents & Use case diagram helped to identify the sections”.

The mean values for the two treatments are 3.03 and 3.90 with standard
deviations of 0.94 and 0.77 for the ReqSpec document and the UCM document
respectively. The mean values suggest that the ReqSpec document and the UCM
document were more than satisfactory for our participants on average.

To test whether the difference is statistically significant, we perform an
independent-samples t-test. The t-test (t = −3.81, df = 56) indicates that the
difference is statistically significant (0.000) at the 0.05 level of significance. The
mean difference is −0.86, and the 95% confidence interval of the difference is
−1.32 and −0.41. Further, Cohen’s effect size value (d = 1.01) suggests a high
practical significance.

The analysis shows that there is a difference in the accessibility of informa-
tion using different requirements documents. Since the UCM document mean is
greater than the ReqSpec document mean, the UCM document is better than
the ReqSpec document in terms of helping participants to identify the desired
information.

Understandability. In P2Q5c, we ask participants how helpful they think that
the documents are to understand information and how well they think that they
have understood the information in the documents. Figure 2 shows participants’
assessments on the ReqSpec document and the UCM document in helping them
to understand the functionality of the software system.

More than 60% of our participants reported that both documents were good
or very good in helping them to understand the functionality of the software
system. Two out of the 58 participants reported that the documents were poor.

128 Y.-C. Tu, E. Tempero, and C. Thomborson

Fig. 2. Participants’ assessments of the helpfulness of the ReqSpec document and the
UCM document to understand the functionality of the software system (Understand-
ability)

Fig. 3. Participants’ self-assessments on how well they have understood the information
provided in the ReqSpec document and the UCM document (Understandability)

The mean values for treatment ReqSpec and treatment UCM are 3.62 and
4.00 with standard deviations 0.62 and 0.80 respectively. The t-test gives some
evidence against the existence of no difference between the means (p = 0.049).
The t-value is −2.01 with 56 degrees of freedom. The mean difference is −0.38,
and the 95% confidence interval of the difference is −0.76 and −0.002. Moreover,
Cohen’s effect value (d = 0.53) suggests a moderate practical significance. Since
the mean for the UCM document is greater than the mean for the ReqSpec
document, the UCM document is more helpful than the ReqSpec document in
participants’ understanding of the functionality of the software system.

In P2Q6a, we ask a similar question about how well participants think that
they have understood the information provided in the documents. As shown
in Figure 3, more than half of the 58 participants reported that they have a
good or very good understanding of the documents. No participants who used
the UCM document reported that they understood the information poorly. Four
participants who used the ReqSpec document reported that they understood the
information poorly.

The means are 3.52 and 3.83 with standard deviations 0.83 and 0.60 for treat-
ment ReqSpec and treatment UCM respectively. The t-test shows a two-tailed
p-value of 0.109 which suggests that there is no significant difference at the
0.05 level of significance (t = −1.63, df = 51.09, mean difference = −0.31, 95%

Evaluating Presentation of Requirements Documents 129

Table 1. Number of participants who either went through different parts of the re-
quirements document to answer P1Q6 or not (Relevance)

ReqSpec UCM Total

Yes 20 11 31
No 9 18 27

Total 29 29 58

confidence interval of difference = −0.69, 0.07). Cohen’s effect value is 0.43 which
suggests a low to moderate practical significance.

The statistical analysis shows that there is some evidence against the null hy-
pothesis. The UCM document seems better than the ReqSpec document for the
understandability of functional requirements. However, the statistical analysis
for P2Q6a shows no significant difference in the understandability of informa-
tion using the ReqSpec document and the UCM document by our participants.
The mean values from P2Q5c and P2Q6a indicate that both documents were
more than satisfactory in helping participants to understand information.

Relevance. In Part 2 of the questionnaire, we ask two questions about the rele-
vance of information. We first ask participants in P2Q4 whether they have to go
through different parts of the requirements documents in order to answer P1Q6.
P2Q4 enables us to evaluate the sufficiency of the information at a particular
location to answer the questions. If the information is insufficient, participants
are likely to try and look for another location in the document.

Table 1 shows the number of participants who either went through different
parts of the document or not. It appears that there were more participants who
went through different parts of the ReqSpec document than participants who
went through the UCM document to answer P1Q6. The observed proportion of
yes to no for participants using the ReqSpec document is 0.69:0.31, whereas the
proportion of yes to no for participants using the UCM document is 0.38:0.62.We
compare the two proportions by using Fisher’s exact test. The null hypothesis
for the test is that there is no difference between the two proportions. We get
a two-tailed p-value of 0.03 which is significant at the 0.05 level. Therefore, we
reject the null hypothesis. This supports the existence of a difference between
participants using different documents to answer P1Q6. In addition, the Phi
coefficient of association (φ = −0.31) suggests a weak negative association.

We also ask participants in P2Q5b to rate how helpful they think that the
documents are to read only the relevant information to answer questions in Part
1. Figure 4 shows the distribution of participants’ assessments on the require-
ments documents in P2Q5b. Participants using the ReqSpec document seem to
have varied opinions about the document. Approximately 80% of participants
using the UCM document reported the UCM document was good or very good
in reading relevant information.

The means for the responses by participants using the ReqSpec document
and participants using the UCM document are 2.97 and 3.76 with standard

130 Y.-C. Tu, E. Tempero, and C. Thomborson

Fig. 4. Participants’ assessments on how well the ReqSpec document and the UCM
document were in helping participants to read only the relevant information that they
needed to answer each question in Part 1 (Relevance)

deviations of 1.12 and 0.95 respectively. We find that the two-tailed p-value is
0.005 from the t-test which is less than the 0.05 level of significance (t = −2.91,
df = 56, mean difference = −0.79, 95% confidence interval = −1.34, −0.25).
Hence, we reject the null hypothesis. This indicates that there is a significant
difference in the relevance of information in the ReqSpec document and the UCM
document. Furthermore, Cohen’s effect value (d = 0.76) suggests a moderate to
high practical significance.

The analysis shows that the UCM document provides more relevant infor-
mation than the ReqSpec document. Fewer participants who used the UCM
document went through different parts of the document than participants who
used the ReqSpec document. Participants who used the UCM document tended
to be more satisfied with the relevant information than participants who used
the ReqSpec document.

4.3 Elements that Affect Transparency of Requirements Documents

Accessibility. We find several themes that affect the accessibility of require-
ments documents. We find that the organisations of the ReqSpec document and
the UCM document have positive and negative effects on the accessibility of in-
formation. For example, participants found the use case diagram, the document
structure, and the table of contents in the UCM document helpful in locating
information. On the other hand, participants using the ReqSpec document com-
mented that headings and sections of the document needed to be improved. An
index and an appendix could be included in the ReqSpec document to improve
participants’ locating information.

Another theme that arises is the format of the document. 55 participants
were given physical copies of the ReqSpec document and the UCM document in
the experiment. Participants were required to find information in the document
manually, which in turn could take more effort than searching for information
electronically. A few of our participants made that observation. One participant
also commented that his or her “ability to manually search text has diminished”
because he or she became used to finding information on a computer. This

Evaluating Presentation of Requirements Documents 131

suggests that information in electronic format could help to improve accessibility
of information.

We also find different factors that hinder participants in locating information
within the ReqSpec document or the UCM document. For example, partici-
pants using the ReqSpec document found similar information was distributed
throughout the document, and as a result they were confused when trying to
locate specific information. Some participants using the ReqSpec document also
commented that the table of contents was not helpful for finding information
or that the navigation of the document was not easy. Similarly, one participant
using the UCM document mentioned that he or she needed to “... refer back and
forth...”

Among the comments made by participants using the ReqSpec document,
there is a common theme regarding time. Out of all 58 participants, five par-
ticipants who used the ReqSpec document noted that they could not locate the
information after spending 10 minutes or a long time on each question of Part
1 of the questionnaire. However, we did not find any participants who used the
UCM document commenting that they spent more than 10 minutes on each ques-
tion. Similarly, at least 10 of the 29 participants using the ReqSpec document
mentioned that they needed to look through the document to answer questions
whereas no participants using the UCM document made that comment.

Understandability. We identify two main themes that are related to the un-
derstandability. The first is related to how the ReqSpec document and the UCM
document affect the understandability of information. Participants who used the
UCM document said, the use case diagram was useful in helping them to under-
stand the functionality of the system. However, a few of the participants who
used the UCM document suggested that the use case diagram was insufficient.
More diagrams such as workflow diagrams could improve understanding of the
system’s functionality. Participants using the ReqSpec document also suggested
including use case diagrams as well as diagrams such as sequence diagrams in the
document to help readers understand the system. Similarly, participants using
the ReqSpec document and participants using the UCM document suggested
that using pictures or illustrations helps in understanding.

The second theme is related to different factors that hinder participants’ un-
derstanding of the information. A few of our participants commented that they
needed more time to understand the information presented, particularly in the
ReqSpec document. Similarly, the terminology and abbreviations used in the
ReqSpec document and the UCM document were not easy for two of our partic-
ipants. Another factor that hindered the participants’ understanding of informa-
tion is the confusing nature of the information in the ReqSpec document. Of the
58 participants, 4 participants commented that the information was confusing.

Relevance. We find three main themes that affect how relevant receivers thought
the information was to answer the questions. 26 participants commented that
they could not answer questions sufficiently using the requirements documents.

132 Y.-C. Tu, E. Tempero, and C. Thomborson

Participants commented on problems such as missing detailed information in the
documents. Participants also commented on the information in the documents
being unclear which also affected their ability in understanding information.

The second theme that we find is related to participants having too much
information which might affect the time that they spend on answering their
questions. Several participants using the ReqSpec document reported that there
was too much text to read in the document. There were also two participants us-
ing the UCM document who reported that the use cases were long. Furthermore,
there were concerns about over-documentation and long documents which could
cause participants to spend too much time on documenting or reading irrelevant
information.

Another theme is related to the problem of finding relevant information by our
participants. This theme comes mainly from the responses made by participants
to P1Q7. There was no clear or specific information in either document to answer
P1Q7. 23 participants commented that they could not find the information at
the expected location to answer P1Q7. For example, one of the participants
who used the ReqSpec document reported that he or she “looked in section 3
page 27 because contents suggested data requirements but did not find relevant
information.” Similarly, a participant who used the UCM document answered
P1Q7 with the comment: “... not seen relevant information on page 17. Neither
for the Use Case Diagram on page 4.” Based on such comments, we find that
the information presented in the documents could be irrelevant for answering
questions.

4.4 Limitations

This experiment is limited with respect to generalisation of the results to other
types of requirements documents. The experiment only compares two types of
requirements documents for presenting functional requirements of a software
system. The results might be different if the questions for the requirements
documents were different. For example, the UCM document could be less relevant
to participants than the ReqSpec document if we asked questions relating to
non-functional requirements of the software system.

This experiment is also limited to the type of participants we recruited. For the
purpose of the experiment, we limited our participants to software developers and
university students who have some experience using different software artefacts.
The results might be different if non-expert stakeholders were involved in the
experiment. Non-expert stakeholders such as clients might be unfamiliar with
notations or language used in the requirements documents. They might also
engage with the documents differently to expert stakeholders.

There are also threats to validity of this experiment. For example, the ques-
tionnaire might favour the UCM document. The questions might contain key-
words that only appeared in the UCM document. To mitigate this threat, we
first created the UCM document using the information provided in the ReqSpec
document. We then created the questions based on the ReqSpec document. Full
details of the threats and mitigations are available in other discussions [1,2].

Evaluating Presentation of Requirements Documents 133

Although there are limitations in our experiment, we have made progress
towards answering our research questions. We have collected evidence to sup-
port our hypotheses about the usefulness of accessibility, understandability, and
relevance to characterise transparency. We present our conclusions and discuss
future work in the following section.

5 Conclusions

From the first part of our experiment we knew that the UCM document was
to be the more effective document. In the second part of the experiment which
we reported on here, we are interested in establishing why. The results of the
experiment suggest that our characterisation of transparency with the proper-
ties of accessibility, understandability, and relevance provides a useful means to
determine the transparency of requirements documents. We are able to identify
the differences in the presentation of requirements documents with the three
properties of transparency. In the experiment, we find that the UCM document
is better than the ReqSpec document in terms of accessibility and relevance.
We find that both documents are more than satisfactory for our participants to
understand information about the functional requirements of a software system.

We also discover different elements in the requirements documents that have
affected our participants’ ability in understanding requirements. Elements such
as document organisations, table of contents, and diagrams have both positive
and negative effects on the transparency of information in requirements docu-
ments.

The results of the experiment give us confidence to continue investigating the
concept of transparency, that it is a fruitful area for future research in soft-
ware engineering. In this paper, we demonstrate the evaluation of two types of
requirements documents with software developers and university students. As
future work, we can apply the three properties of transparency to compare other
types of documents as well as diagramming notations with different types of
stakeholders.

References

1. Tu, Y., Tempero, E., Thomborson, C.: Evaluating transparency of requirements
documents (March 2014) (unpublished manuscript)

2. Tu, Y.: Transparency in Software Engineering. PhD thesis, University of Auckland,
New Zealand, Thesis under examination (2013)

3. Bubenko, J.A.: Challenges in requirements engineering. In: Second IEEE Interna-
tional Symposium on Requirements Engineering (1995)

4. Al-Rawas, A., Easterbrook, S.: Communication problems in requirements engineer-
ing: A field study. In: Professional Awareness in Software Engineering (1996)

5. Saiedian, H., Dale, R.: Requirements engineering: Making the connection between
the software developer and customer. Inform. Software Tech. 42(6) (2000)

6. Forward, A., Lethbridge, T.C.: The relevance of software documentation, tools and
technologies: A survey. In: ACM Symposium on Document Engineering (2002)

134 Y.-C. Tu, E. Tempero, and C. Thomborson

7. Leffingwell, D., Widrig, D.: Managing Software Requirements: A Unified Approach.
Addison-Wesley Professional (2000)

8. Abran, A., Bourque, P.: SWEBOK: Guide to the Software Engineering Body of
Knowledge. IEEE Computer Society (2004)

9. Cheng, B.H.C., Atlee, J.M.: Current and future research directions in requirements
engineering. In: Lyytinen, K., Loucopoulos, P., Mylopoulos, J., Robinson, B. (eds.)
Design Requirements Engineering. LNBIP, vol. 14, pp. 11–43. Springer, Heidelberg
(2009)

10. Hansen, S., Berente, N., Lyytinen, K.: Requirements in the 21st century: Current
practice and emerging trends. In: Lyytinen, K., Loucopoulos, P., Mylopoulos, J.,
Robinson, B. (eds.) Design Requirements Engineering. LNBIP, vol. 14, pp. 44–87.
Springer, Heidelberg (2009)

11. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A., Theofanos, M.: Identifying
and measuring quality in a software requirements specification. In: IEEE First
International Software Metrics Symposium (1993)

12. Oliver, R.: What is transparency?. McGraw-Hill (2004)
13. Bickerstaff, K., Tolley, R., Walker, G.: Transport planning and participation: The

rhetoric and realities of public involvement. J. Transp. Geogr. 10(1) (2002)
14. Rowe, G., Frewer, L.: Public participation methods: A framework for evaluation.

Science, Technology, & Human Values 25(1) (2000)
15. Vaccaro, A., Madsen, P.: Transparency in business and society: Introduction to the

special issue. Ethics and Information Technology 11(2), 101–103 (2009)
16. Clarke, R.: Internet privacy concerns confirm the case for intervention. Communi-

cations of the ACM 42(2) (February 1999)
17. Awad, N., Krishnan, M.: The personalization privacy paradox: An empirical eval-

uation of information transparency and the willingness to be profiled online for
personalization. MIS Quarterly 30(1) (2006)

18. Santana, A., Wood, D.: Transparency and social responsibility issues for wikipedia.
Ethics and Information Technology 11 (2009)

19. Fleischmann, K., Wallace, W.: A covenant with transparency: Opening the black
box of models. Communications of the ACM 48(5) (May 2005)

20. Fleischmann, K., Wallace, W.: Ensuring transparency in computational modeling.
Communications of the ACM 52(3) (March 2009)

21. Ingalls, P., Frever, T.: Growing an agile culture from value seeds. In: Agile Con-
ference, AGILE 2009 (August 2009)

22. Bird, C.: Top 10 tips for better agile. Information Professional 2(6) (2005)
23. Schwaber, K., Sutherland, J.: The scrum guide (July 2012),

http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf

24. Fowler, M.: UML distilled: A brief guide to the standard object modeling language.
Addison-Wesley Professional (2004)

25. Anda, B., Sjøberg, D., Jørgensen,M.: Quality and understandability of use case mod-
els. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 402–428.
Springer, Heidelberg (2001)

26. Norman, G.: Likert scales, levels of measurement and the “laws” of statistics. Ad-
vances in Health Sciences Education 15(5) (2010)

http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf

Impact Analysis of Granularity Levels
on Feature Location Technique

Chakkrit Tantithamthavorn, Akinori Ihara, Hideaki Hata, and Kenichi Matsumoto

Software Engineering Laboratory,
Graduate School of Information Science,

Nara Institute of Science and Technology, Japan
{chakkrit-t,akinori-i,hata,matumoto}@is.naist.jp

http://www.se-naist.jp

Abstract. Due to the increasing of software requirements and software features,
modern software systems continue to grow in size and complexity. Locating
source code entities that required to implement a feature in millions lines of code
is labor and cost intensive for developers. To this end, several studies have pro-
posed the use of Information Retrieval (IR) to rank source code entities based on
their textual similarity to an issue report. The ranked source code entities could be
at a class or function granularity level. Source code entities at the class-level are
usually large in size and might contain a lot of functions that are not implemented
for the feature. Hence, we conjecture that the class-level feature location tech-
nique requires more effort than function-level feature location technique. In this
paper, we investigate the impact of granularity levels on a feature location tech-
nique. We also presented a new evaluation method using effort-based evaluation.
The results indicated that function-level feature location technique outperforms
class-level feature location technique. Moreover, function-level feature location
technique also required 7 times less effort than class-level feature location tech-
nique to localize the first relevant source code entity. Therefore, we conclude that
feature location technique at the function-level of program elements is effective
in practice.

Keywords: Feature Location, Granularity Level, Effort-Based Evaluation.

1 Introduction

In modern software development, software systems continue to grow in size and com-
plexity due to the increasing of software requirements. The early version of the Eclipse
Platform project1, which was released in May 2001, consists of 283,229 lines of code,
while the latest version released in January 2014, consists of 2,674,685 lines of code. In
thirteen years, the size of the Eclipse Platform project has grown almost 10 folds. This
explosive growth of software size has increased more rapidly than the ability of human
to maintain them. As a result, identifying where and how a feature is implemented in the
source code based on a given requirement in order to implement new features, enhance
existing features, or fix bugs is painstaking and time-consuming for developers.

1 http://www.ohloh.net/p/eclipse

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 135–149, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www.se-naist.jp
http://www.ohloh.net/p/eclipse

136 C. Tantithamthavorn et al.

To help developers locate the implementation of a given feature quickly, software en-
gineering research has paid attention to the creation of fully automated feature location
techniques. These techniques suggest the source code entities where a feature request
will most likely be modified based on the description of the feature request. Current
research uses Information Retrieval (IR) models to locate source code entities that are
textually similar to a given feature request. These source code entities can be at various
levels of granularity in the program elements e.g., the class or file level [1,2], and the
function or method level [3,4].

Prior work reports that developers need to investigate most of the non-related func-
tions in a class file, if the class is suggested to be modified based on a given feature
request [5]. Dit et al. also stated that the more fine-grained the program elements lo-
cated by a technique, the more specific and accurate the technique is [6]. Thus, this
paper conjectures that feature location technique at the function-level is effective in
practice.

In this paper, we investigate the impact of granularity levels in program element
on a feature location technique. We compare the results of feature location techniques
at the class-level and the function-level. We use the Vector Space Model (VSM) as a
baseline model for feature location technique. We evaluate the techniques on 1,968 issue
reports based on three large open-source software projects. In particular, we explore the
following research questions:

RQ1: Does function-level feature location technique outperform class-level feature lo-
cation technique?

Function-level feature location technique outperforms class-level feature location
technique.

RQ2: How much effort does function-level feature location technique actually save over
class-level feature location technique?

Function-level feature location technique requires 7 times less effort than class-level
feature location technique to localize the first relevant source code entity.

Without a strong understanding of which granularity levels of feature location tech-
nique is practical for developers, the impact of feature location technique will be min-
imal, software quality assurance resources may not be properly allocated and software
releases may be delivered late and over-budget.

2 Background and Motivation

In this section, we first present the motivation behind our research hypothesis. First,
we discuss some of the common findings from previous studies. We then use an issue
report from Eclipse project as a typical example and discuss the implication from our
observation. Finally, we discuss the challenges of our study.

2.1 Common Findings

While feature location technique research at the class-level and the function-level has
been well-studied so far, we raise a question that need to be investigated whether

Impact Analysis of Granularity Levels on Feature Location Technique 137

function-level feature location technique is more practical than class-level feature loca-
tion technique. We discuss some common findings to support our research hypothesis
as follows:

Long Documents are Not Suitable for Feature Location Technique. Previous re-
search reported that the Vector Space Model (VSM) is the best generic IR model for
feature location technique [1]. However, VSM is far from perfect because this model
prefers small documents during ranking [2,7,8,9]. Source code entities at the class-level
is often a long document, which decreases the similarity value of VSM. Zhou et al.,
[2] pointed out that long documents are poorly represented in the characterization of
VSM because most of a given class commonly contains words that are not relevant to
the issue report i.e., noise. An implication is that function-level feature location tech-
nique may be able to locate source code entities more accurate than class-level feature
location technique.

Class-Level Feature Location Requires a Large Amount of Extra Effort to Locate
the Implementation of Features. Class-level feature location technique often leaves
developers with a large amount of extra effort needed to examine all instructions in
a class until a function is located, which is not practical for developers. Hata et al.,
[5] noticed that developers need to investigate most of the non-related functions in a
class file, if the class file is suggested to be modified. Giger et al., [10] also noticed
that narrowing down the location of source code entities can save manual inspection
steps. Dit et al., [6] also stated that the more fine-grained the program elements located
by a technique, the more specific and accurate the technique is. An implication is that
a function-level feature location technique could save human effort needed to locate
source code entities that implemented the feature.

Traditional Evaluation Techniques are Not Appropriate for Granularity Level
Comparison. Hata et al., [5] reported that the function sizes are nearly 10 times smaller
than the class sizes. Since Arisholm et al. reported that the cost of such quality assur-
ance activities on a source code is roughly proportional to the size of the source code
entity [11], the effort required to read top k ranked classes and top k ranked functions are
different. Therefore, traditional evaluation metrics cannot be used for a fair comparison
at different granularities. An implication is that a new evaluation technique considering
effort required to read top ranked entities are desirable to study the impact of granularity
level in the program element on feature location technique.

2.2 Observation

We use an already-fixed issue report in Eclipse Platform’s project as a typical exam-
ple (see Figure 1). This issue report has ID 1370882 and was reported on April 17,
2006 for Eclipse v3.2 under Ant component. It says that there is a bug of StringIndex-
OutOfBoundsException in the function AntLaunchDelegate.appendProperty() when a
developer tried to launch an Ant script.

2 https://bugs.eclipse.org/bugs/show_bug.cgi?id=137088

https://bugs.eclipse.org/bugs/show_bug.cgi?id=137088

138 C. Tantithamthavorn et al.

Issue ID: 137088

Product Platform
Comp. Ant Ver 3.2

Summary: StringIndexOutOfBoundsException in
AntLaunchDelegate.appendProperty()

Description: Im getting the following crash when
I try to launch an Ant script and one of my user
properties is an empty string.

For example, AntLaunchDelegate.appendProperty(...,
”myName”, ””)

Here’s the offending line of code...

if (value.charAt(value.length() - 1)
== class.separatorChar) {
commandLine.append(

class.separatorChar);
}

Related class file: ant/org.eclipse.ant.ui/Ant Tools
Support/org/eclipse/ant/internal/ui/launchConfigurations/
AntLaunchDelegate.java

private void appendProperty(...) {
commandLine.append(" \"-D"); //$NON-NLS-1$
commandLine.append(name);
commandLine.append(’=’);
commandLine.append(value);

- if (value.charAt(value.length() - 1)
== class.separatorChar) {

+ if (value.length() > 0 &&
value.charAt(value.length() - 1)
== class.separatorChar) {

commandLine.append(class.separatorChar);
}
commandLine.append("\""); //$NON-NLS-1$

}
private void appendTaskAndTypes(...) {}
private AntRunner configureAntRunner(....){}
private StringBuffer generateCommandLine(...){}
private StringBuffer generateVMArguments(...){}
protected IBreakpoint[] getBreakpoints(...){}
private String getSWTLibraryLocation(){}
private void handleException(...){}
public void launch(...){}
private void runInSameVM(...){}
private void runInSeparateVM(...){}
private void setDefaultVM(...){}
private void setProcessAttributes(...){}
private String stripUnescapedQuotes(...){}

Fig. 1. The issue report ID #137088 in Eclipse project and one changed line of their related class

To identify the corresponding class file, we look into a snippet of commit logs3

related to this issue. We found that there is only one class file (i.e., AntLaunchDele-
gate.java) that is changed to fix this issue. Without comments and headers, the size of
the class file is 619 lines of code. We also found that there is only one changed line i.e.,
the if statement in the function appendProperty() (see Figure 1). We can imply from this
observation that even if class-level feature location technique can successfully identify
the relevant class file, it requires a huge amount of effort to locate the specific loca-
tion of the source code that implement this feature. The observation of this example is
consistent with previous findings [5,10].

2.3 Challenges

Lack of Availability of Baseline Datasets. Current research has built their ground-
truth datasets at only one granularity level. This did not allow us to investigate the
comparative results at different granularity levels. To get around this problem, we built
a collection of 1,968 issue reports from three large open source software projects of
the Eclipse software. These issue reports were linked to actual relevant classes and
functions based on a given issue report.

3 We used the command “git show -U0 f89a9e717db328f421432a7890b58bd656adc242” to
identify changed files.

Impact Analysis of Granularity Levels on Feature Location Technique 139

Lack of Practical Grounding with Current Evaluation Methods. Current research
often evaluates their approach using common IR evaluation metrics such as top-k ac-
curacy, precision and recall. However, these metrics only focus on the performance of
ranking models without considering the human effort to read the top-k suggested source
code entities. These metrics also do not provide a practical comparison because they ig-
nore the different sizes of classes and functions. To tackle this challenge, we introduce a
new evaluation metric which take into consideration effort. We assume that developers
will inspect all the returned suggested source code entities. Therefore, we represent the
term “effort” with lines of code (LOC). This allowed us to compare the performance at
different granularity levels.

3 Study Design

We first present the studied projects that we used in our experiment. Second, we pro-
vide data preparation procedure. Third, we present the workflow of feature location
technique using the Vector Space Model (VSM). Finally, we present the effort-based
evaluation.

3.1 Studied Projects

In this study, we study three large open source software projects under Eclipse Platform,
Eclipse PDE, and Eclipse JDT. All subject systems were written in Java. There are two
reasons to choose these three projects. First, these projects are large, active and real-
world systems, which allow us to perform a realistic evaluation of our model under their
testing system. Second, each software project carefully maintains issue tracking system
and source code version control repositories, which allow us to build our ground-truth
datasets to evaluate our approach. Table 1 describes the statistics summary of dataset in
more details.

Table 1. Statistics summary of studied projects

Project Name Study Period Issues # of classes # of functions # LOC

Eclipse Platform May 2, 2001 - Dec 31, 2012 744 1,758 7,121 165,404

Eclipse PDE June 5, 2001 - Dec 31, 2012 756 4,979 26,339 271,002

Eclipse JDT May 24, 2001 - Dec 31, 2012 468 4,222 49,486 1,076,985

Total 1,968 10,959 82,946 1,513,391

140 C. Tantithamthavorn et al.

3.2 Data Preparation Procedure

We first obtain the source code information from version control system (VCS) and the
issue report information from the issue tracking system. We then create the ground-truth
dataset to test the studied projects.

Source Code Information. Generally, most of popular version control systems such
as Git or Subversion keep track of source code entities only in class-level. Obtaining
source code information at the function-level from existing large software project is
challenging. We have to keep track source code histories at the function-level form an
entire software project. To do this, it is a painstaking and time-consuming activity. In
this study, we used Historage [12] – a fine-grained version control system (VCS), which
allow us to analyze source code histories at the function and class-levels from an entire
software project.

Issue Report Information. We obtain issue report information from the Eclipse issue
tracking system4. We select only already-fixed issue reports which labeled as “FIXED”.
We also exclude issue reports where we could not establish a link to the source code
entities.

Creating the Ground-Truth Data. We identify changes from commit logs using the
SZZ algorithm [13]. This algorithm parses the commit log messages from the source
code repository Historage, looking for messages such as “Fixed issue #137088” or sim-
ilar variations. If found, the algorithm establishes a link between all the source code
entities in the commit transaction with the identified issue report ID. The result is a set
of links between issue reports and source code entities, which we use to evaluate our
approach under test.

3.3 Workflow of Feature Location Technique Using the Vector Space Model

This section provides a brief overview of the workflow for IR-based feature location
technique using the Vector Space Model (VSM). First, we perform data preprocessing
on the source code and issue reports. Second, we perform indexing. When a new issue
report is received, we treat the issue report as a query and source code entities as a doc-
ument corpus. Third, we calculate the degree of relevancy using VSM to find the most
relevant source code entities based on textual features. Fourth, and Finally, we return
the top k search results to the developers. We describe the details of this processing in
the following steps.

Step 1: Data Preprocessing. This step extracts semantic words from source code en-
tities and issue reports. For each source code entity, we perform data preprocessing on
both the class and function-levels. We remove all punctuation signs and digits. We then

4 https://bugs.eclipse.org/bugs/

https://bugs.eclipse.org/bugs/

Impact Analysis of Granularity Levels on Feature Location Technique 141

split all words into tokens and normalize them by transforming them to lower case. For
multiple-word identifiers such as GetInitialValue(), we do not separate them into single
words. The study by Sinha et al. [14] claimed that “Doing any pre-processing of the
code to split identifiers into words did not yield benefits.” We also do not perform any
stemming process retaining the original meaning. The experiment by Hill et al. [15]
concludes that “Stemming has relatively little effect.” Finally, we remove common En-
glish words (e.g. a, an, the) and general programming language words (e.g. int, double,
char)

Step 2: Indexing. In this step, weights calculated from similarity scores represent the
importance of individual words. In this study, we use t f .id f weighting, a combination
of the frequency of the index term occurrences in a document (the term frequency, or
t f) and the frequency of index term occurrences over the entire collection of documents
(inverse document frequency, or id f). The id f aims to give high weights to terms that
occur in very few documents. Among many variations of weights, the logarithm variant
was used because it can lead to better performance [16,7]. A typical formula for t f and
id f is shown in Equation 1.

t f (t, d) = log(ftd) + 1, id f (t) = log(
N

1 + nt
) (1)

where t represents an index term, d represents a particular document, ftd is the number
of term t occurrences in document d, N is the total number of documents, and nt is
the number of documents in which term t occurs. Finally, each term weight wt∈d in the

document vector
−→
Vd and its norm |−→Vd| is calculated as follows:

wt∈d = t ftd × id ft =
(
log(ftd) + 1

) × log
(N
nt

)
(2)

|−→Vd| =
√
∑

t∈d

(
(
log(ftd) + 1

) × log
(N
nt

))
(3)

Likewise, we also obtain the vector of term weights for the query
−→
Vq and its norm

|−→Vq|.

Step 3: Similarity Function. In this step, we calculate the degree of similarity between
an issue report and source code entities using cosine similarity as shown in Equation
4. With this equation, source code entities with the highest scores are considered as the
most similar to a given issue report.

S imilarityFunction(q, d) =

−→
Vq • −→Vd

|−→Vq||−→Vd|
(4)

142 C. Tantithamthavorn et al.

Step 4: Retrieval & Ranking. Suggested source code entities are retrieved by the
model. Such a model assigns a relevant score to each source code entity that is textually
similar to an issue report. This score is then used to order the entities, and a devel-
oper can select the entities with the highest score to implement new features, enhance
existing features, or fix bugs.

3.4 Effort-Based Evaluation

We used source lines of code (LOC) as a proxy to measure the effort required to inspect
a code. Arisholm et al., [11] pointed out that the cost of such quality assurance activities
on a source code is roughly proportional to the size of the source code entity. This
metric represent “effort size” with lines of code (LOC). After the classes and functions
are ranked, we take all the top classes and functions whose the cumulative sum of LOC
is less than or equal to a window.

Class 3
Function C

Function F

...
Rank3

Function E

Function F

...

Rank5

Rank6

Function E

Function F

...

Rank5

Rank6

Class 3
Function C

Function F

...
Rank3

LOC required
to review
suspicious
entities

Related

Non-Related

Function A

Function B

Function C

Function D

Ranked results for
an issue report at

the function level

Class 1

Class 2

Function A

Function D

Function B

Function E

Ranked results for
an issue report at
the class level

Rank1

Rank2

Rank3

Rank4

Rank1

Rank2

LOC threshold

0 LOC

}
Fig. 2. Overview of effort-based evaluation

Figure 2 shows an example of suggested source code entities at the function and
class levels based on a given issue report. These entities are ranked by their relevant
scores calculated from Equation 4, so the entities most likely related to an issue report
are at the top. A dark gray label refers to an entity related to an issue report, while a
light grey label refers to a entity which is not related to an issue report. We determine a
baseline LOC threshold as the effort available for review. This LOC threshold allows us
to measure the performance at different granularity levels for a fair comparison, which
is appropriate for a granularity level comparison study.

Impact Analysis of Granularity Levels on Feature Location Technique 143

4 Results

4.1 Performance

RQ1: Does function-level feature location technique outperform class-level feature
location technique?

Analysis Method. To answer RQ1, we performed two experiments. First, we used the
LOC-based performance to assess the performance of feature location technique at the
function and class levels. In the evaluation, for each issue report, we first obtained the
rank of relevant functions and classes by calculation from Equation 4. We then checked
the ranks of these locations from the search results. We performed this evaluation for all
issue reports and calculated the percentage of successfully localized issue reports. For
the comparison, we set the LOC threshold size ranging from 500 to 5,000 LOC with the
idea that 5,000 is a reasonable number of LOC for a developer to search through before
growing impatient and resorting to other means of feature location technique.

Second, we performed paired-statistical tests to measure the performance improve-
ments brought by function-level feature location technique. In the paired-statistical
tests, two chosen approaches must have the same number of data points. We formu-
lated a one-tailed null hypothesis and the related alternative hypothesis as follows:

H01: There is no statistical difference in terms of accuracy between function-level
feature location technique and class-level feature location technique.

Ha1: The LOC-based performance of function-level feature location technique is
greater than the LOC-based performance of class-level feature location technique.

We used the Wilcoxon Signed-Rank test to reject the null hypotheses H01 using the
1% confident level (i.e., p − value < 0.01).

Evaluation Metric. To assess the performance, we define a metric called the LOC-
based performance designed to measure the performance of feature location technique
by taking into consideration effort. This metric will measure the percentage of success-
fully localized issue reports. We consider an issue report to be successfully localized if
at least one suggested entity in the baseline ground-truth dataset was returned below a
baseline LOC threshold. If none of the suggested entities was returned, the issue report
cannot be localized. We denote the number of issue reports as NC if the issue report
is successfully localized, or NIC if the issue report is not successfully localized. The
following formula computes the percentage of issue reports for which are successfully
localized:

LOC-based Performance =
NC

NC + NIC
(5)

To illustration, suppose that source code is selected for inspection using a feature
location technique that orders source code entities (e.g., classes or functions) in terms
of their similarity measure. Then, if an inspection budget allows inspection of 5,000
LOC of the source code, the higher the number of successfully localized issue reports,
the better the technique is.

144 C. Tantithamthavorn et al.

●

●

●

●
●

●
●

●
● ● ●

LOC

LO
C

−b
as

ed
 P

er
fo

rm
na

ce
 (

%
)

0

10

20

30

40

50

60

70

80
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Eclipse Platform

● Method
File

●

●

●

●
●

●
●

●
●

● ●

LOC

LO
C

−b
as

ed
 P

er
fo

rm
na

ce
 (

%
)

0

10

20

30

40

50

60

70

80

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

● Method
File

Eclipse PDE

●

●

●

●
●

● ●
●

● ● ●

LOC

LO
C

−b
as

ed
 P

er
fo

rm
na

ce
 (

%
)

0

10

20

30

40

50

60

70

80

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

● Method
File

Eclipse JDT

Fig. 3. The performance of function-level feature location technique compared to class-level fea-
ture location technique using LOC-based performance

Results. Figure 3 shows the performance of function-level feature location technique
compared to class-level feature location technique using LOC-based performance. The
x-axis denotes the total LOC to be examined. The y-axis represents the LOC-based
performance values. For every studied project, we used a comparative size at 1,000 LOC
threshold. It is apparent from this figure that function-level feature location technique
correctly identifies the location of source code entities for a larger number of issue
reports than class-level feature location technique. For the Eclipse Platform project,
function-level feature location technique can successfully identify 49.86%, while class-
level feature location technique can identify 40.45% of the issue reports. For the Eclipse
PDE project, function-level feature location technique can identify 39.81%, while class-
level feature location technique can identify 31.87% of the issue reports. For the Eclipse
JDT project, function-level feature location technique can identify 26.07%, while class-
level feature location technique can identify 17.74% of the issue reports. Furthermore,
we also have statistical significant evidence to reject the null hypothesis H01. The p-
values for all studied systems are below the standard significant value, p−value < 0.01.

Summary. For these three studied projects, we can confidently conclude that function-
level feature location technique is significantly achieves better performance than class-
level feature location technique.

4.2 Efficiency

RQ2: How much effort does function-level feature location technique actually save
over class-level feature location technique?

Analysis Method. To answer RQ2, we consider efficiency in two dimensions: (1) ef-
fort required to find the first relevant source code entity; and (2) effort required to find
80% of the relevant source code entities. We performed this experiment for all issue
reports and represented the results by box-plots of the distribution of LOC that needed
to be examined. Intuitively, the less effort required to review, the more efficient the
technique is.

Impact Analysis of Granularity Levels on Feature Location Technique 145

Then, we assess whether the differences in the amount of LOC to be reviewed to
find the first relevant source code entity and 80% of the relevant source code entities
are statistically significant between function-level feature location technique and class-
level feature location technique. To select an appropriate statistical test, we use the
Shapiro-Wilk test to analyze the distributions of our data points. We observe that these
distributions do not follow a normal distribution. Thus, we use a nonparametric test, i.e.,
Wilcoxon-Mann-Whitney test, to test our null hypotheses to answer RQ2. We reject
the null hypotheses H02, H03 using the 1% confident level (i.e., p − value < 0.01). We
formulate one-tailed null hypotheses and the related alternative hypotheses as follows:

H02: There is no statistical difference in terms of the amount of LOC to be reviewed
to find the first relevant source code entity between function-level feature location tech-
nique and class-level feature location technique.

Ha2: The amount of LOC to be reviewed to find the first relevant source code en-
tity of function-level feature location technique is less than class-level feature location
technique.

H03: There is no statistical difference in terms of the amount of LOC to review
to find 80% of the relevant source code entities between function-level feature location
technique and class-level feature location technique.

Ha3: The amount of LOC to be reviewed to find 80% of the relevant source code
entities of function-level feature location technique is less than class-level feature loca-
tion technique.

Result
(1) Effort Required to Find The First Relevant Source Code Entity. For each studied
project, as shown in Figure 4, we plotted a quartile box plot to show the distribution of
the amount of LOC that must be reviewed to identify the first relevant source code en-
tities. The x-axis represents the level of granularity, either function-level or class-level.
The y-axis represents the total LOC to be examined. From this figure, it is apparent that,
function-level feature location technique required less effort than class-level feature lo-
cation technique to identify the first feature request location. For the Eclipse Platform,
function-level feature location technique required 113 LOC (median), while class-level
feature location technique required 906 LOC (median) to find the first feature request
location. This means function-level feature location technique requires less effort than
class-level feature location technique to find the first feature request location. For the
Eclipse PDE, function-level feature location technique requires 154 LOC, while class-
level feature location technique requires 861 LOC to find the first feature request loca-
tion. For the Eclipse JDT, function-level feature location technique requires 248 LOC,
while class-level feature location technique requires 1,839 LOC to find the first feature
request location.

These results indicate that for these projects, function-level feature location tech-
nique required less effort than class-level feature location technique to find the first
relevant source code entity. Interestingly, for those issue reports with function-level
feature location technique, the maximum LOC to identify the first relevant source code
entity ranged from 1,633 LOC to 2,026 LOC, while the maximum LOC for class-level
feature location technique ranged from 10,789 LOC to 51,775 LOC. These results help

146 C. Tantithamthavorn et al.

●

●
●●●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

Function Class

0
10

00
20

00
30

00
40

00
50

00

Eclipse Platform

LO
C

●

●●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Function Class

0
10

00
20

00
30

00
40

00
50

00

Eclipse PDE

LO
C

●

●

Function Class

0
10

00
20

00
30

00
40

00
50

00

Eclipse JDT

LO
C

Fig. 4. Distribution of LOC that need to be examined to identify the first relevant source code
entity

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

Function Class

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Eclipse Platform

LO
C

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

Function Class

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Eclipse PDE

LO
C

Function Class

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Eclipse JDT

LO
C

Fig. 5. Distribution of LOC that need to be examined to localized 80% of relevant source code
entities

us confirm that function-level feature location technique required less effort than class-
level feature location technique to find the first relevant source code entity. We also
found that the difference in terms of the amount of LOC to be reviewed to find the first
relevant source code entity are statistically significant (p − value < 0.01) to reject the
null hypothesis H02.

Impact Analysis of Granularity Levels on Feature Location Technique 147

(2) Effort Required to Find 80% of The Relevant Source Code Entities. Figure
5 shows the distributions of the amount of LOC that needed review to localize 80%
of the relevant source code entities. The x-axis represents the level of granularity, ei-
ther function-level or class-level. The y-axis represents the total LOC to be examined.
For the Eclipse Platform, function-level feature location technique required 1,309 LOC
(median) to find 80% of the relevant source code entities, while class-level feature loca-
tion technique required 2,744 LOC (median). For the Eclipse PDE, function-level fea-
ture location technique required 1,522 LOC and class-level feature location technique
required 3,132 LOC to find 80% of the relevant source code entities. For the Eclipse
JDT, function-level feature location technique required 2,354 LOC and class-level fea-
ture location technique required 17,176 LOC to find 80% of the relevant source code en-
tities. We also found that the difference in terms of the amount of LOC to review to find
80% of the relevant source code entities are statistically significant (p − value < 0.01)
to reject the null hypothesis H03.

Summary. The results indicate for these projects, function-level feature location tech-
nique required 7 times less effort than class-level feature location technique to localize
the first relevant source code entity and 4.4 times less effort to localize 80% of the rele-
vant source code entities. We can conclude that function-level feature location technique
can effectively save human effort in identifying relevant source code entities.

5 Threats to Validity

The Main Threats to Internal Validity lies in our truth data collection technique,
which relies on the SZZ algorithm [13]. Although the SZZ algorithm is a commonly
used technique for linking feature request reports to source code entities, Bird et al.
reported that there is a linking bias in identifying feature requests with revision logs
and feature request reports [17]. Recently, Nguyen et al. has been proposed a novel
linking algorithm [18], which may alleviate this threat.
Threats to External Validity. These are concerned with the generalization of our find-
ings. In this paper, we used three large open source software under the Eclipse Project
to conduct our case study. All these projects were written in Java. Although these are
large real-world software projects, our results may not generalize to other open source
or commercial software projects, especially in other programing languages.
Threats to Construct Validity. The main threat refers to the effort-based evaluation.
In our comparative study between function-level and class-level feature location tech-
nique, we used effort-based evaluation. However, the effort used here (LOC) may not
reflect actual efforts. As a first approximation, it seems acceptable to represent the term
effort using LOC because developers may consider much more complex relations or
other deep dependencies. In future research, we may need to consider complexity and
dependency metrics.

6 Conclusions and Future Works

In this research, we addressed the question of practical feature location technique. We
investigated whether function-level feature location technique is more practical than

148 C. Tantithamthavorn et al.

class-level feature location technique by conducting a large-scale empirical study to
compare the results of IR-based feature location technique at class and function levels.
Our main findings are.

– For the same amount of inspection effort, function-level feature location technique
outperforms class-level feature location technique. Especially at lower levels of
inspection effort, function-level feature location technique correctly identifies the
relevant source code entities for a larger number of issue reports than class-level
feature location technique.

– Function-level feature location technique required 7 times less effort than class-
level feature location technique to localize the first relevant source code entity. We
also found that Function-level feature location technique required 4.4 times less
effort than class-level feature location technique to find 80% of the relevant source
code entities. These results indicate that function-level feature location technique
can help developers locate a larger percentage of issue reports with less inspection
efforts.

From these results, we conclude that feature location technique at the function-level
of program elements is effective in practice. Using function-level feature location tech-
nique should help developers reduce the level of inspection effort needed to find feature
requests, increase the number of relevant source code entities, and improve the overall
handling of feature location technique.

Based on this study, future research will focus on empirical studies of actual efforts,
and conduct experiments to confirm the results and functions with other open-source
and commercial software projects, and other programing languages.

Acknowledgement. We would like to thank the anonymous reviewers for their very
constructive feedback on early drafts of this work. This research is conducted as part
of Grant-in-Aid for Young Scientists (B), 25730045, Grant-in-Aid for Young Scientists
(Start-up), 25880015, and for Exploratory Research 2554002 by Japan Society for the
Promotion of Science (JSPS).

References

1. Canfora, G., Cimitile, A., Garcia, F., Piattini, M., Visaggio, C.A.: Evaluating performances
of pair designing in industry. Journal of Systems and Software 80(8), 1317–1327 (2007)

2. Zhou, J., Zhang, H., Lo, D.: Where Should the Bugs Be Fixed? In: Proceedings of the 34th
International Conference on Software Engineering (ICSE 2012), pp. 14–24 (2012)

3. Lukins, S.K., Kraft, N.A., Etzkorn, L.H.: Bug Localization Using Latent Dirichlet Alloca-
tion. Information and Software Technology 52(9), 972–990 (2010)

4. Wang, S., Khomh, F., Zou, Y.: Improving Bug Localization using Correlations in Crash Re-
ports. In: Proceedings of the 10th Working Conference on Mining Software Repositories,
MSR 2013 (2013)

5. Hata, H., Mizuno, O., Kikuno, T.: Bug Prediction Based on Fine-Grained Module Histories.
In: Proceedings of the 34th International Conference on Software Engineering (ICSE 2012),
pp. 200–210 (June 2012)

Impact Analysis of Granularity Levels on Feature Location Technique 149

6. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature Location in Source Code: A
Taxonomy and Survey. Journal of Software: Evolution and Process 25(1), 53–95 (2013)

7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. c.
Cambridge Unviersity Press, New York (2008)

8. Tantithamthavorn, C., Teekavanich, R., Ihara, A., Matsumoto, K.: Mining A Change History
to Quickly Identify Bug Locations: A Case Study of the Eclipse Project. In: Proceedings
of the 2013 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW 2013), pp. 108–113 (2013)

9. Tantithamthavorn, C., Ihara, A., Matsumoto, K.: Using Co-change Histories to Improve Bug
Localization Performance. In: Proceedings of the 14th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Com-
puting (SNPD 2013), pp. 543–548 (July 2013)

10. Giger, E., D’Ambros, M., Pinzger, M., Gall, H.C.: Method-Level Bug Prediction. In: Pro-
ceedings of the ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2012), pp. 171–180 (2012)

11. Arisholm, E., Briand, L.C., Johannessen, E.B.: A Systematic and Comprehensive Investi-
gation of Methods to Build and Evaluate Fault Prediction Models. Journal of Systems and
Software 83(1), 2–17 (2010)

12. Hata, H., Mizuno, O., Kikuno, T.: Historage: Fine-grained Version Control System for Java.
In: Proceedings of the 12th International Workshop on Principles of Software Evolution
(IWPSE 2011), pp. 96–100 (2011)

13. Zimmermann, T., Zeller, A.: When Do Changes Induce Fixes? ACM SIGSOFT Software
Engineering Notes 30(4), 1–5 (2005)

14. Sinha, V.S., Mani, S., Mukherjee, D.: Is Text Search an Effective Approach for Fault Local-
ization: A Practitioners Perspective. In: Proceedings of the 3rd Annual Conference on Sys-
tems, Programming, and Applications: Software for Humanity (SPLASH 2012), pp. 159–170
(2012)

15. Hill, E.: On the Use of Stemming for Concern Location and Bug Localization in Java. In:
Proceedings of the 12th International Working Conference on Source Code Analysis and
Manipulation (SCAM 2012), pp. 184–193 (2012)

16. Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in Practice.
Addison-Wesley (2010)

17. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., Devanbu, P.: Fair and
Balanced? Bias in Bug-Fix Datasets Categories and Subject Descriptors. In: Proceedings of
the the 7th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE 2009), pp. 121–130
(2009)

18. Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Nguyen, T.N.: Multi-Layered Approach for Re-
covering Links Between Bug Reports and Fixes. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering (FSE 2012), pp. 1–11
(2012)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 150–164, 2014.
© Springer-Verlag Berlin Heidelberg 2014

A Pair-Oriented Requirements Engineering Approach
for Analysing Multi-lingual Requirements

Massila Kamalrudin1, *, Safiah Sidek1, Norsaremah Salleh2,
 John Hosking3, and John Grundy4

1 Innovative Software System & Services Group, Universiti Teknikal Malaysia Melaka,
Melaka, Malaysia

(massila,safiahsidek)@utem.edu.my
2 Department of Computer Science, International Islamic University Malaysia, 50728

Kuala Lumpur, Malaysia
norsaremah@iium.edu.my

3 College of Engineering & Computer Science, Australian National University, Canberra, ACT
0200, Australia

john.hosking@anu.edu.au
4 Centre for Computing and Engineering Software Systems, Swinburne,

University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
jgrundy@swin.edu.au

Abstract. Requirements written in multiple languages can lead to error-
proneness, inconsistency and incorrectness. In a Malaysian setting, software
engineers are exposed to both Malay and English requirements. This can be a
challenging task for them especially when capturing and analyzing require-
ments. Further, they face difficulties to model requirements using semi-formal
or formal models. This paper introduces a new approach, Pair-Oriented Re-
quirements Engineering (PORE) that uses an Essential Use Case (EUC) model
to capture and analyze multi-lingual requirements. This approach is intended to
assist practitioners in developing correct and consistent requirements as well as
developing teamwork skills. Two quasi-experiment studies involving 80 partic-
ipants in the first study and 38 participants in a subsequent study were con-
ducted to evaluate the effectiveness of this approach with respect to correctness
and time spent in capturing multi-lingual requirements. It was found that
PORE improves accuracy and hence helps users perform better in developing
high quality requirements models.

Keywords: Pair-Oriented, Analysing Requirements, Multi-lingual requirements.

1 Introduction

Multi-lingual communication is common in countries that have a mother-tongue other
than the pervasive English language. In Malaysia, whose primary language is the Ma-
lay language, “code-switching” between English and Malay has become a common

* Corresponding Author.

 A Pair-Oriented Requirements Engineering Approach 151

practice of communication [1]. Code-switching has also become a common practice in
the Malaysian IT industry. Considering that the Malay language is the official language
of Malaysia, this language is commonly used in the government IT sector, especially in
writing the requirements of a system, and when eliciting or capturing requirements
from clients or stakeholders who are not fluent in English. Meanwhile, the English
language is commonly used in the business IT sector. This situation leads to a plethora
of multi-lingual requirements – those expressed in both Malay and English languages,
or a mixture of both [1]. Working with multi-lingual requirements, software engineers
need to be proficient in both languages to be able to capture quality requirements that
meet the needs of the stakeholders.

There are a wide variety of methods for modelling and analysing software re-
quirements. These include goal-oriented, viewpoint-oriented, agent-oriented and ob-
ject-oriented approaches [2-4]. Although the benefits of these methods are widely
recognised, software engineers need a high level of understanding and skill to be able
to capture and analyse requirements. As such, besides dealing with multi-lingual is-
sues, software engineers also face difficulties to handling various tools for analysing
requirements used in the IT industry.

Considering the use of both Malay and English language in the Malaysian IT in-
dustry, students of software engineering in the Malaysian institutions of higher educa-
tion are exposed to multi-lingual requirements. These students need to be familiar
with IT terms and scenarios in both languages so that when they enter the IT industry,
they will be able to function effectively in this environment. Further, it has been
reported that many students have trouble in capturing requirements using semi-formal
or formal models such as UML, tabular models, algebra or mathematics [5].

Motivated by these issues, we propose a new approach for requirements capture
and analysis, Pair-oriented Requirements Engineering (PORE). We expect this ap-
proach to be suitable for novice users who in this case face two main issues in soft-
ware development. The first issue relates to knowledge and skills of the various
methods to analyse requirements, and the second issue relates to the analysis of multi-
language requirements. The PORE approach builds on our earlier work to support the
development and analysis of multi-lingual requirements using the EUC modelling
approach [1]. In our earlier work, we have developed a new toolset for developing
and evaluating EUCs in the English language 0,0 only. In that body of work, we
adopted the EUCs approach due to its simplicity and understandability by stake-
holders, findings that were supported by our evaluations. As a result, we were keen to
investigate whether the advantages we had observed with EUCs could be extended to
multi-lingual requirements, namely requirements in English and Malay language

In this paper, we introduce our new Pair-Oriented Requirements Engineering
(PORE) approach using the Essential Use Cases (EUCs) modeling approach to cap-
ture and analyse multi-lingual requirements. Considering students as novice practitio-
ners (software engineers), we investigated its application with two cohorts of students,
each cohort taking one of two software engineering related courses, Requirements
Engineering and Software Testing, at the Universiti Teknikal Malaysia Melaka, a
public university in Malaysia. Specifically, we were interested to investigate whether
a pair analysis approach using EUCs leads to better results in comparison to individ-
ual analysis undertaken by students. The focus of this study is to investigate the

152 M. Kamalrudin et al.

outcome of working as a pair rather than how the students work together. Therefore,
our key research question is:

“Do students working in pairs perform better than students working individually
in analysing multi-lingual requirements using an Essential Use Case modelling
approach?”
In this paper, we report the outcomes of the two experiments to determine the ef-

fectiveness of the PORE method for capturing and analysing multi-lingual require-
ments. In each experiment, the time taken and the accuracy (score) of the students’
EUCs analysis of requirements expressed in both Malay and English languages are
evaluated. Based on the correlation between time taken and the correctness of both
languages, the results of this research indicate a positive result when PORE is used.

2 Background and Motivation

2.1 Essential Use Cases (EUCs)

The EUC approach is defined by its creators, Constantine and Lockwood, as a “struc-
tured narrative, expressed in a language of the application domain and of users,
comprising a simplified, generalized, abstract, technology free and independent de-
scription of one task or interaction that is complete, meaningful, and well-defined
from the point of view of users in some role or roles in relation to a system and that
embodies the purpose or intentions underlying the interaction” [6]. An EUC takes the
form of a dialogue between the user and the system. The aim is to support better
communication between developers and stakeholders via a technology-free model and
to assist better requirements capture. This is achieved by allowing only specific detail
that is relevant to the intended design to be captured [7].

Fig. 1. Example of Natural Language Requirements and Essential Use Case model [10][8]

An EUC description is generally shorter and simpler than other requirements de-
scriptions as it only comprises the essential steps (core requirements) of intrinsic user
interest. It comprises user intentions and system responsibilities to document the us-
er/system interaction without the need to describe a user interface in detail. The ab-
stractions used, abstract interactions are more focused towards the steps of the use
case rather than narrating the use case as a whole. The essential interactions between

 A Pair-Oriented Requirements Engineering Approach 153

user and system are organised into an interaction sequence, the EUC. Figure 1 shows
an example of natural language requirements (left hand side) and an EUC (right hand
side) capturing these requirements (adapted from [8]). A set of essential interactions
(highlighted), are extracted from the requirements. From each of these, a specific key
phrase (the essential requirement of the target system it captures), called an abstract
interaction, is abstracted and shown in the Essential Use case on the right as user in-
tentions (left column) and system responsibilities (right column).

2.2 EUC Tool Support

We have developed a range of tools to support the use of EUCs. MaramaAI supports
automatic extraction of EUCs from textual requirements, together with the compari-
son of those EUCs against the best practice EUC patterns [9] . It also supports
generation of user interface models and prototypes to assist communication with
stakeholders [10] and was extended to include support for multi-lingual requirements
[1]. More recently, we developed a web-based tool, MEReq, which supports multi-
lingual requirements capture and EUCs extraction [11] with consistency management
between the multi-lingual requirements and models. For the purpose of the study pre-
sented here, the two tools described above were not used since the focus of this study
is to investigate the effect of pair work on requirements capture and analysis in a mul-
ti-lingual context using EUCs.

2.3 Pair Analysis and PORE

In pair-programming, two developers sit together to work on the same code using a
single computer [12],[13]. There are two roles used in pair programming: the “Driv-
er” who types the code and the “Navigator” who observes the activity of the driver
[14]. Motivated by the popularity and success of pair programming, we adapted the
pairing concept to the capture and analysis of multi-lingual requirements. Essentially,
the concept of driver and navigator can be used for effective requirements capture and
analysis, when both users are actively communicating and discussing the task given.
Thus in PORE, the same pairing approach is applied with, two roles identified: the
“Codifier’ who captures and analyses the requirements as EUCs and the “Navigator”
who observes and checks the capture and analysis activities of the codifier.

2.4 PORE and EUCs

We considered the adoption of PORE combined with the use of EUCs for require-
ments analysis. Our postulation was that the accessibility of EUCs and the quality
enhancements provided by pairing would result in improved quality of analyzing and
capturing multi-lingual requirements, as exhibited by measures, such as the correct-
ness of analysis and the time spent by users to complete the task.

154 M. Kamalrudin et al.

3 Related Work

There has been much research examining pairing in the software development process
that shows significant benefits to the development process and output. The most
common is pair-programming. Silliti et al. [15] investigated the effects of pair-
programming on developers’ attention and productivity by looking at the influences
of pair programming on their code writing style and their interaction with the devel-
opment machine. They found that pair-programming allows the developers to stay
more focussed and spend a longer time on task and switch less often between tools.
However, more data is needed to support these preliminary findings.

There has been some research on pair-designing. Canfora et al. [16] implemented
pair-programming in the design phase in an industry setting by having two designers
work together on the same task, at the same time and on the same machine. They
provided textual requirements and used the use cases and class diagram as analysis
and design documents for the experiments. They found that pair-designing improved
the quality but it increased the time required to complete the task [16]. Further ex-
periments including qualitative study are in need to ensure the accuracy of the
findings.

Bellini et al. [12], also conducted an experiment and its replica in both Italian and
Spanish academic settings to understand the capability of pair-designing in diffusing
and enforcing design knowledge when a system design is evolved. They used formal-
ised system design documentation in UML including textual system requirements
specification, use cases and class diagram. They found that pair-designing helps to
increase the diffusion of the knowledge among the project team as well as providing a
good level of predictability on the enforcement of knowledge compared to the tradi-
tional designing setting [12]. However, a similar experiment in industry and applica-
tion of this approach to more complex systems is needed.

Albakry and Kamalrudin [5] implemented pair-analysis by adapting pair-
programming to the requirements analysis process in an academic setting. They con-
ducted a preliminary study to compare the outcomes of pair and single participants by
evaluating the performance and correctness of the answers as well as the students’
satisfaction and confidence [5]. Their findings were positive but require more experi-
ments with larger groups of participants for further confirmation. Additionally, a bet-
ter way to pair the students for analysis work by considering the differences of course
background and culture is needed.

In summary, prior work demonstrates the benefits of pairing in software develop-
ment. However, there has been a limited work on pairing in requirements engineering.
No research using pairing to solve multi-lingual requirements and the Essential Use
Cases as a semi-formalised way to capture requirements has been documented.

4 Research Methodology

This study was conducted to investigate the effect of pairing on the correctness and
time spent of novice users working on analysing multi-lingual requirements using

 A Pair-Oriented Requirements Engineering Approach 155

EUCs. In this study, students are considered as novice users. As such, throughout
this paper, the term students will be used to refer to novice users. The formulation of
hypothesis, the sample, the instruments and the study procedure used in this study are
described below. To address the objective of this study, a quasi-experimental study
has been employed and the research design is as shown in Figure 3.

Fig. 2. Research Design

Using our PORE approach we had students capture and analyse multi-lingual re-
quirements in both Malay and English languages. EUCs are used to model the cap-
tured requirements as they have proven to be useful to capture and analyse multi-
lingual requirements [1]. In this respect, the effectiveness of PORE with EUCs was
measured based on the correctness of the students’ EUC models (score out of 6) and
the time they took to capture and analyse the multi-lingual requirements. Hence, stu-
dents’ scores and time spent were our dependent variables, and pairing and solo ap-
proaches the independent variable. The following two hypotheses were used:

H1: There will be a significant difference in correctness between paired and solo

students when analyzing multi-lingual requirements using an Essential Use Case
modeling approach.

H2: There will be a significant difference in time spent between paired and solo
students when analyzing multi-lingual requirements using an Essential Use Case
modeling approach.

To test the reliability of our results, the quasi experiment was performed on two

different cohorts. Both studies were conducted at UTeM, a Malaysian public universi-
ty, but at a different time frame. The first study was done during semester II,
2011/2012, while the second was conducted during semester I, 2012/2013.

A different sample of participants was selected for the two studies: the first study
involved 80 participants from a Requirements Engineering course, comprising 75
Malaysian students and 5 international students. Due to the structure of the study
group, they were divided into two study sections: 40 participants per section, allowing
each section to be assigned to one treatment of the independent variable. The replica
study involved 38 students from a Software Testing course, comprising 36 Malaysian
students and 2 international students. The structure of this study group divided the
cohort into 2 sections, 28 participants in one and 10 participants in the second.

156 M. Kamalrudin et al.

All of the participants in the two studies were proficient in both languages. The
Malaysian students’ level of English language proficiency was approximately equal
across the cohort as all of them had achieved between Band 3 and Band 4 in the Ma-
laysian English Language Entrance Examination (MUET), a national English lan-
guage examination undertaken by Malaysian students. For the international students,
they had achieved at least Band 6.5 for IELTS (International English Language Test-
ing System) upon entrance to the university.

The instruments of the study were the two different scenarios, one in English and
the other in Malay. To avoid bias, the two scenarios are for different tasks. However,
the requirements are of a similar level of complexity as both requirements have an
equivalent level of abstraction of the abstract interactions (see the Appendix). The
level of language used for both requirements has also been verified to have similar
level. The similarity in the level of complexity of the two tasks and language has
been verified by an expert in requirements who is proficient in both languages.

Participants were required to capture and analyze requirements manually, using
two different sets of simple requirements: one in English language and the other in
Malay language. They were instructed to attempt the task manually rather than using
any of the EUC support tools we had developed. This is because our main concern
was to assess whether they have an understanding of capturing and analyzing re-
quirements manually using the EUC concept, without the assistance of any tools. This
is crucial, as the participants should have a strong understanding of the modeling
concept in “pen and paper” rather than being dependent on any specific tool. We also
wanted them to be familiar with the manual PORE approach before starting to use the
supporting tools. We will explore their experiences using MEReq in a subsequent
study.

4.1 Study Procedures

At the start of the academic semesters for each of the two studies, one of the authors
provided the subjects with an overview of the experiment (including the pairing
concept) in one of the course lectures. Prior to the conduct of the experiments, partic-
ipants were given three similar exercises in both languages. This allows the partici-
pants to gain familiarity with working with EUCs and pair work.

During the experiment, two scenarios were given (refer to appendix) to the partici-
pants: reserving a vehicle (with requirements expressed in the Malay language) and
Getting Cash (expressed in English). We asked them to capture these requirements in
Malay and English EUCs respectively (i.e. Malay EUC model for Malay requirements
and English EUC model for English requirements). The participants had to model
requirements in EUCs by extracting the correct essential requirements and then model
the right sequencing and responsibilities in the EUCs. The need to model both English
and Malay requirements simulated the “code-switching” typical in Malay multi-
lingual settings. Participants were given 60 minutes to complete the task.

 A Pair-Oriented Requirements Engineering Approach 157

5 Results

5.1 Study 1

A total of 80 students participated in our study. Subjects were final year Computer
Science students enrolled in a Requirements Engineering course at UTeM. Partici-
pants were divided into two study groups consisting of 40 subjects per group. 40 par-
ticipants attempted the tasks individually, while the other 40 participants attempted
the tasks in pairs, resulting in 20 pair works. In this study, the international students
were instructed to work in pairs with the Malay speakers. Table 1 shows the results of
applying a bivariate Pearson correlation test to measure the association between
scores and the time spent by both pair and solo students. Results show the strongest
correlations between Malay and English scores (r(60) = 0.59, p = .000).

Table 1. Correlation (Scores and Time Spent) (N=60)

 EScore ETime MScore MTime

EScore
ETime .222* 1
MScore .590** .078 1
MTime .233* .347** .211 1

 *. Correlation is significant at the 0.05 level (1-tailed)
**. Correlation is significant at the 0.01 level (1-tailed)

Table 2. Descriptive Statistic (Solo and Pair)

 N Mean SD
EScore
(range: 0 to 6)

Solo 40 2.23 1.143
Pair 20 3.10 1.252

Total 60 2.52 1.242

ETime
(range:0 to 60)

Solo 40 10.83 4.494
Pair 20 12.95 6.083

Total 60 11.53 5.127

MScore
(range: 0 to 6)

Solo 40 2.88 .992
Pair 20 3.55 1.276

Total 60 3.10 1.130

MTime
(range:0 to 60)

Solo 40 10.10 3.761
Pair 20 11.30 5.686

Total 60 10.50 4.482

Hypothesis Testing

Table 2 shows the sample size, values for mean scores and standard deviations for each
group. The mean scores for the pair group are greater than the solo group. In terms of
the time spent, on average solo students spent less time than paired students in both
types of requirements. Hypothesis H1 and H2 were tested using an independent sample

158 M. Kamalrudin et al.

t-test. This test is appropriate to be used when investigating the difference between two
unrelated groups on approximately normal dependent variables [23]. In our case the
two groups are pair and solo, while our dependent variables are students’ scores. The
results from the Levene test indicate that the assumption of homogeneity of variances
of each variable was not violated (i.e. F=0.142, p = 0.708 for Escore; F= 2.301,
p=0.135 for ETime; F=3.266, p=0.076 for MScore; F=3.388; p=0.071 for MTime).
Hence we assume that the variances of scores in the two groups are equal.

The t-test results (see Table 3) showed that paired groups were significantly differ-
ent from solo participants on English based scores (p = 0.009). Inspection of the two
group means indicates that the average score for English-based requirements for
paired groups (3.10) is significantly higher than the scores for solo students (2.23).
The difference between the means is 0.87 point on a 6-point test. Similarly the pair
group outperformed the solo group for Malay based requirements task. Thus, based
on our data we found strong support for the alternate hypothesis for H1 i.e. that there
is a significant different in correctness between pair and solo students. Our results
showed that the pair group performed better than the solo group.

In terms of the time spent, although the pair group in general tended to spend more
time during the exercise, we could not find a statistically significant difference be-
tween the groups. The time taken by pair group in completing the exercise did not
differ significantly from the solo group (p = 0.13 for English requirements; p = 0.33
for Malay requirements). Hence the null hypothesis for H2 was supported. Increasing
sample size for future studies will help to increase the statistical power value, hence
would give us more discrimination.

Table 3. Comparison of Pair and Solo Group on Scores and Time Spent (N1 = 40 solo N2=20
pairs)

 t-test for Equality of Means
t df Sig. Mean difference

EScore -2.71 58 0.009 -0.875
ETime -1.53 58 0.131 -2.125
MScore -2.26 58 0.028 -0.675
MTime -0.98 58 0.332 -1.200

5.2 Study 2: Replication

A total of 38 students participated in the replicated study. Subjects were final year
Computer Science students enrolled in a Software Testing course in Universiti Tek-
nikal Malaysia Melaka (UTeM) and they did not participate in the earlier study. The
participants had enough experience and knowledge in requirements engineering and
EUC modeling specifically as they had already taken requirements engineering and
software engineering subjects before. As in the first study, the research is organised in
two Sections of the course. Twenty eight (28) participants in Section 1 were required
to solve the task in solo, while 10 participants in Section 2 worked in pairs, resulting
in 5 paired works. In this study, international students were instructed to work in pairs
since Malay is not their primary language.

 A Pair-Oriented Requirements Engineering Approach 159

Table 4 shows results from applying a bivariate Pearson correlation test to measure
the association between scores and the time spent by both pair and solo students. Re-
sults show positive and significant correlation between the time spent for the Malay
and English requirements. (r(38) = 0.32, p = .001).

Hypothesis Testing

Table 5 shows the sample size, values for mean scores and standard deviations for
each group. Our data shows that mean scores for pair groups are greater than the solo
groups for both Malay and English requirements. In terms of time spent, on average
solo groups spent less time than paired students for Malay requirements. However, for
English requirements, the paired groups spent less time than solo students. We think
that this is due to a few subjects in the paired group being international students. They
needed more time for discussion with their partner who was a native Malay speaker.

Table 4. Correlations between Scores and Time Spent (N=38)

 EScore ETime MScore MTime
EScore 1
ETime .174 1
MScore -.093 .133 1
MTime .147 .323* .089 1

*. Correlation is significant at the 0.05 level (2-tailed)

Table 5. Descriptive Statistic (Solo and Pair)

 N Mean SD
EScore

(range: 0 to 6)
Solo 28 1.64 0.911
Pair 10 1.80 0.919
Total 38 1.68 0.904

ETime
(range:0 to 60)

Solo 28 14.07 5.741
Pair 10 13.60 4.575
Total 38 13.95 5.402

MScore
(range: 0 to 6)

Solo 28 2.50 0.577
Pair 10 3.60 0.843
Total 38 2.79 0.811

MTime
(range:0 to 60)

Solo 28 14.89 5.705
Pair 10 18.50 11.816
Total 38 15.84 7.765

Table 6. Comparison of Pair and Solo Group on Scores and Time Spent (N1= 28 solo, N2=10
pairs)

 t-test for Equality of Means
t df Sig. Mean

difference
EScore -.467 36 0.643 -0.157
ETime -.260 36 0.816 0.471
MScore -1.747 36 0.000 -1.100
MTime -1.271 36 0.212 -3.607

160 M. Kamalrudin et al.

The hypothesis was also tested using an independent sample t-test and the Levene
test. The Levene test indicates that the assumption of homogeneity of variances of
each variable was not violated (i.e. F=0.38, p = 0.847 for Escore; F= 0.26, p=0.613
for ETime; F=2.015, p=0.164 for MScore; F=1.423; p=0.241 for MTime). Hence we
assume that the variances of scores in two groups are equal.

The t-test results (see Table 6) showed that there were no significant differences in
correctness between paired students and solo students (ρ = 0.643) for English re-
quirements. Similarly, there were no significant differences on the time taken to solve
the requirements in English (ρ =0.816). However, for the Malay requirements, we
found that there is a significant difference in correctness between paired and solo
students (ρ = 0.00), thus supporting our hypothesis. However, we could not find a
statistically significant difference between paired and solo students in terms of the
time spent to solve a task written in Malay. Based on these results, we found evidence
that pairing work has benefited students when analysing Malay requirements. This
was consistent with the results from our previous study.

6 Discussions

Based on the results presented in the previous section, we found evidence that PORE
is able to help novice users perform better in requirements engineering in captured
requirements quality score. This was particularly useful when analysing requirements
written in the Malay language. However, our results showed only partial support for
users working in pairs on English requirements having improved captured require-
ments quality scores. In terms of the time spent, we found that there was no evidence
to differentiate the time taken to solve the task between pair and solo group for both
languages. The aggregation of the hypothesis testing results of each study is presented
in Table 7.

Table 7. Summary of Findings

Study

Supported Hypothesis - pair group outperform solo? (YES/NO)

H1: Correctness (scores) H2: Time Spent
Malay English Malay English

Study 1 YES YES NO NO
Study 2 YES NO NO NO

There are some uncontrolled variables that may have affected the validity of these

experimental results. One of these was the language that is the mother tongue of our
subjects. In this study, most of our subjects were Malay native speakers and only a
few were international students who came from other countries, such as China and the
Middle East. The ability of these students to comprehend and analyse requirements
written in Malay may be limited as compared to requirements written in English.
Other uncontrollable variable that may affect the findings of this study are the level of
knowledge of each individual, their cultural background and personality.

 A Pair-Oriented Requirements Engineering Approach 161

There is also a possibility that the level of difficulty or complexity of the task may
have influenced the results and students may have spent more time working on the
more difficult requirements set. We believe that further work is needed in order to
investigate the impact that task complexity has upon PORE’s effectiveness.In terms
of the time taken to analyse English requirements, we found from both studies that the
pair group spent a little longer than the solo group; however the results were not sta-
tistically significant. We speculate that there is be a greater amount of communication
and discussion among paired group when compared to solo group but that this discus-
sion leads to a solution as quickly as with individuals and with some evidence that
this is typically a better solution. This is because two heads can have different under-
standing, thus they might suggest different ideas and solutions exploring the solution
space more efficiently. Similar findings appear for both groups of students working
on Malay requirements. We suggest future work should include a larger sample size
to confirm or refute current findings.

7 Conclusions and Future Work

We have described our newly developed requirements engineering method called
PORE. PORE is used together with the Essential Use Case model (EUC) to analyse
multi-lingual requirements (i.e. those using English and Malay language). In this paper,
we presented a study and its replication analysing a set of multi-lingual requirements
using undergraduate students as subjects. The results obtained partially support our
proposition that novice users exhibit better performance in term of correctness and
time spent in analyzing multi-lingual requirements when working in pairs. We found
that in both studies, the pair group outperformed the solo group for the Malay-based
requirements task. For the English-based requirements, we found such supporting
evidence in Study 1 only. Our results showed that there was no significant difference in
terms of the time spent to analyze the tasks between pair and solo groups. We
speculate that task complexity might play a role in influencing this result. We also
anticipate that the study will give different findings if users are asked to extract an
EUC model in a different language from the provided requirements language.

For future work, we plan to conduct more replications of our study with a larger
number of students in Requirements Engineering and Software Engineering. We also
plan to explore this approach with other modeling languages such as UML use case,
sequence and class diagrams and then compare them with our findings. We also plan to
use other languages to support our proposition that PORE is able to improve the
quality of requirements models in analysing requirements in a multi-lingual context.
We also intend to explore PORE usage in industry to identify the benefits of
implementing this method in analysing requirements in real business activity. However,
practitioners are more experienced as they have had professional training. Hence, we
will use more complex requirements for this study. Finally, we plan to embark on a
PORE study using our developed support tools, such as MEReq [1], contrasting it with
the study reported here which has focused on a paper-based capture and analysis of
multi-lingual requirements.

162 M. Kamalrudin et al.

Acknowledgments. This research is funded by the Ministry of Higher Education
Malaysia (MOHE), Universiti Teknikal Malaysia Melaka (UTeM) and Swinburne
University of Technology. We also would like to acknowledge Pn. Nor Haslinda Is-
mail for allowing us to conduct the experiments in her class.

References

1. Kamalrudin, M., Grundy, J., Hosking, J.: Supporting requirements modelling in the Malay
language using essential use cases. In: 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pp. 153–156. IEEE (2012)

2. Regev, G., Wegmann, A.: Where do goals come from: The underlying principles of goal-
oriented requirements engineering. In: Proceedings of the 13th IEEE International Confe-
rence on Requirements Engineering, pp. 353–362. IEEE (2005)

3. Goedicke, M., Herrmann, T.: A case for viewpoints and documents. In: Paech, B., Martell,
C. (eds.) Monterey Workshop 2007. LNCS, vol. 5320, pp. 62–84. Springer, Heidelberg
(2008)

4. Chen, Z., Ghose, A.: Web agents for requirements consistency management. In: Proceedings
of the IEEE/WIC International Conference on Web Intelligence, WI 2003, pp. 710–713.
IEEE (2003)

5. Albakry, K., Kamalrudin, M.: Pair analysis of requirements in software engineering educa-
tion. In: 2011 5th Malaysian Conference in Software Engineering (MySEC), pp. 43–47.
IEEE (2011)

6. Constantine, L.L., Lockwood, L.A.: Software for use: A practical guide to the models and
methods of usage-centered design. Pearson Education (1999)

7. Biddle, R., Noble, J., Tempero, E.: Essential use cases and responsibility in object-oriented
development. In: Australian Computer Science Communications, vol. 24(1), pp. 7–16.
Australian Computer Society, Inc., Chicago (2002)

8. Constantine, L.L., Lockwood, L.A.: Structure and style in use cases for user interface
design. Object Modeling and User Interface Design, 245–280 (2001)

9. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using essential
use case interaction patterns. In: Proceedings of the 33rd International Conference on
Software Engineering, pp. 531–540. ACM (2011)

10. Kamalrudin, M., Grundy, J.: Generating essential user interface prototypes to validate
requirements. In: Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pp. 564–567. IEEE Computer Society (2011)

11. Kamalrudin, M., Grundy, J.: MaramaAI: Tool support for capturing requirement and
checking the inconsistency. In: 21st Australian Software Engineering Conference. IEEE
Computer society, Auckland (2010)

12. Bellini, E., Canfora, G., García, F., Piattini, M., Visaggio, C.A.: Pair designing as practice
for enforcing and diffusing design knowledge. Journal of Software Maintenance and Evo-
lution: Research and Practice 17(6), 401–423

13. Braught, G., Eby, L.M., Wahls, T.: The effects of pair-programming on individual
programming skill. ACM SIGCSE Bulletin 40(1), 200–204 (2008)

14. Gehringer, E.F.: A pair-programming experiment in a non-programming course. In: Com-
panion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 187–190. ACM (2003)

 A Pair-Oriented Requirements Engineering Approach 163

15. Sillitti, A., Succi, G., Vlasenko, J.: Understanding the impact of pair programming on
developers attention: A case study on a large industrial experimentation. In: 2012 34th
International Conference on Software Engineering (ICSE), pp. 1094–1101. IEEE (2012)

16. Canfora, G., Cimitile, A., Garcia, F., Piattini, M., Visaggio, C.A.: Evaluating performances
of pair designing in industry. Journal of Systems and Software 80(8), 1317–1327 (2007)

8 Appendix: Requirements Used

Malay requirements:

1. “Use Case” bermula apabila pengguna menyatakan hasrat utk membuat tempahan
untuk menyewa kereta.

2. Sistem bertanyakan tempat untuk mengambil dan menghantar tempahan besertakan
tarikh dan masa untuk mengambil tempahan. Pengguna menyatakan tempat dan
tarikh yang dikehendaki.

3. Sistem bertanyakan jenis kenderaan yang dikehendaki oleh pengguna. Pengguna
menyatakan jenis kenderaan yang dikehendaki.

4. Sistem memaparkan semua kenderaan yang sesuai dengan tempat untuk mengam-
bil kenderaan berdasarkan tarikh dan masa yang dikehendaki. Sekiranya, pengguna
mengkehendaki maklumat lanjut tentang kenderaan yang spesifik, sistem mema-
parkan maklumat tersebut kepada pengguna.

5. Sekiranya pengguna memilih sebuah kenderaan untuk tempahan, sistem pun
meminta maklumat untuk mengenalpasti pengguna (nama penuh, nombor telefon,
alamat emel, alamat untuk kenalpasti,dll). Pengguna memberi maklumat yang
dikehendaki.

6. Sistem memaparkan maklumat untuk keselamatan (cthnya,perlindungan kebinas-
san,insuran kemalangan peribadi) dan bertanyakan samada pengguna menerima
atau menolak setiap produk. Pengguna menyatakan pilihannya.

7. Sekiranya, pengguna menyatakan hasratnya untuk “menerima tempahan”, sistem
akan memberitahu pengguna bahawa tempahannya sudah selesai dan memaparkan
pengesahan tempahan kepada pengguna. “Use case” ini tamat apabila pengesahan
tempahan telah ditunjukan kepada pengguna.

User Intention System Responsibility

1. membuat pilihan
 2. memberi pilihan
 2. memaparkan maklumat
 4. meminta pengesahan
5. memberi maklumat

 6. mengesahkan tempahan

Fig. 3. The EUC Requirements model in the Malay language

164 M. Kamalrudin et al.

English requirements:

1. The use case begin when the Client insert an ATM card. The system reads and va-
lidates the information on the card.

2. System prompts for pin. The client enters PIN. The system validates the PIN.
3. System asks which operation the client wishes to perform. Client selects “Cash withdraw-

al.”
4. System request amounts. Client enters amount.
5. System request type. Client selects account type (checking, saving, credits)
6. The system communicates with the ATM network to validate account ID, PIN and availa-

bility of the amount requested.
7. The system asks the client whether he or she wants receipt. This step is performed only if

there is paper left to print the receipt.
8. System asks the client to withdraw the card. Client withdraws card. (This is security meas-

ure to ensure that clients do not leave their cards in the machine.)
9. System dispenses the requested amount of cash.

10. System prints receipt.
11. Client receives cash
12. The use case ends.

User Intention System Responsibility
1. Identify self
 2.verify identity
 3.offer choices
4.choose
 5.Dispense Cash
6. Take Cash

Fig. 4. The EUC Requirements model in English language

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 165–179, 2014.
© Springer-Verlag Berlin Heidelberg 2014

An Empirical Cognitive Model of the Development
of Shared Understanding of Requirements

Jim Buchan

SERL, School of Computer & Mathematical Sciences, Auckland University of Technology,
Private Bag 92006, Auckland 1142, New Zealand

jim.buchan@aut.ac.nz

Abstract. It is well documented that customers and software development
teams need to share and refine understanding of the requirements throughout
the software development lifecycle. The development of this shared understand-
ing is complex and error-prone however. Techniques and tools to support the
development of a shared understanding of requirements (SUR) should be based
on a clear conceptualization of the phenomenon, with a basis on relevant theory
and analysis of observed practice. This study contributes to this with a detailed
conceptualization of SUR development as sequence of group-level state transi-
tions based on specializing the Team Mental Model construct. Furthermore it
proposes a novel group-level cognitive model as the main result of an analysis
of data collected from the observation of an Agile software development team
over a period of several months. The initial high-level application of the model
shows it has promise for providing new insights into supporting SUR development.

Keywords: Requirements understanding. Distributed cognition, Team Mental
Model, shared cognition.

1 Introduction

There is a clear need for customers and software development teams to share and
refine understanding of the client’s requirements. Although activities related to this
are most intense in the early phase of requirements discovery and validation, they
continue throughout the software development lifecycle. Inadequate shared under-
standing of these requirements, or breakdowns in sharing this understanding from
miscommunications and misunderstandings, can have a very high impact on require-
ments quality, project costs, development productivity, and application quality [1].

In software development, the development of shared understanding of require-
ments is most closely associated with Requirements Engineering (RE) activities. In
[2], Sutcliffe describes RE as about “doing the right thing”, as opposed to “doing
things right” (the domain of software engineering). He points out that there is little
value to a client in expertly implementing a software solution that does not address
the right application domain problem. The challenge of RE is how to effectively and
efficiently develop a consistent view of what the “right thing” is. In [3], Bubenko

166 J. Buchan

emphasizes the importance of the interactions between the system production team
with organizational actors (clients) to understand their “visions, intentions, and activi-
ties regarding their need for computer support.” Development of high quality shared
understanding of these needs and requirements will (iteratively) lead to a high quality
solution design. It will provide solid foundation for reasoning and negotiating with
clients about the characteristics of the desired system to be implemented.

In practice this is an inherently complex and challenging process, relying on a
complex network of interactions and information flows. It involves people with di-
vergent backgrounds and world-views, as well as the manipulation of a multitude of
artifacts [4]. A consequence of this is that development of this shared understanding
of the stakeholder requirements and the requirements of the goal software solution is
often very time consuming, difficult to monitor, and prone to misunderstandings and
miscommunications [4]. Some of the barriers and enablers related to the development
of shared understanding of stakeholder requirements have been reported in our earlier
work, confirming its complexity and challenge [5].

Given that (1) the development of a shared understanding of requirements (SUR) is
a major aim of RE, (2) it is an enduring challenge and error-prone, due to its inherent
complexity, and (3) it has a high impact on RE quality (and subsequent project suc-
cess), there is a clear case for continuing empirical research in this area in order to
understand the problems to address. Taking the lead from [6], in which it is observed
that not enough research effort has been put into “advancing a theoretical or empirical
understanding” of RE activities in practice and why they are so challenging, this pa-
per advances a theory of SUR development in the context of RE based on an empiri-
cal study of practice. The aim is to deepen understanding of the practitioner’s problem
so that the challenges of SUR development can be explained. This provides a defend-
able basis for deciding on how to address them. In addition, such an empirically in-
formed theory provides a foundation for evaluating existing and new techniques and
tools.

This paper takes a cognitive view of SUR and develops an empirical model of the
cognitive activities involved in the development of SUR. Reframing the challenges of
SUR development from the perspective of this cognitive framework provides a me-
chanism for applying principles from cognition theory to SUR development. Analyz-
ing the empirical cognitive model using theories of cognition provides a cognitive
explanation of the challenges (and enablers) of SUR development. Application of
cognitive principles leads to new (cognitively-based) strategies for addressing these
challenges. This paper reports the development of the empirical cognitive model of
SUR evolution that is based on the analysis of field data gathered from an extended,
non-participatory observational case study of a team developing software in a com-
mercial setting. The application of principles from cognition theory to this new cogni-
tive model is introduced in this paper, but the detailed analysis and implications are to
be reported in a future publication.

The next section introduces the notion of SUR as a (dynamic) state of shared cog-
nition with group-level properties appropriated from the Team Mental Model con-
struct. This idea is extended in section 3 to develop a high-level cognitive view of
SUR development that identifies two phases of cognition: monitoring for gaps in

 An Empirical Cognitive Model of the Development of Shared Understanding 167

SUR, and addressing any gaps uncovered. This perspective shapes the subsequent
data collection and the content and interaction analyses of the field data, which are
described in section 4. The detailed model of the cognitive activities involved in SUR
development that emerges from the data analyses is described and discussed in sec-
tion 5. The conclusion and future work are presented in section 6.

2 SUR as Requirements-Focused Team Mental Models

In order to know what data to collect and how to analyze this data to understand the
challenges of SUR development, the SUR construct needs to be clearly defined. The
idea of a “shared” understanding implies that the understanding is inherently a group-
level property, since it cannot be a property of an individual alone, but it is an ambi-
guous and contentious term. What cognitive structure is it that is shared between the
individuals in a state of shared understanding? What is it that changes when shared
understanding evolves? What does “shared” mean in this cognitive context? Identic-
al? Consistent? Overlapping? Compatible? Following the lead of [7], who argue for
the importance of being explicit about the meaning of “shared understanding” being
adopted in related research, this section provides a working definition of the SUR
construct before applying it to develop a high level model of SUR development in the
next section.

A well-established construct from studies of team work is the Team Mental Model
(TMM) [8], a form of shared cognition. In literature the TMM construct emerged to
help understand how teams work in complex, dynamic and uncertain contexts. Empir-
ical studies of team work have shown that high levels of convergence of team mem-
bers’ mental models are causally linked to high levels of team performance. The same
goal and contextual characteristics apply to the study of collaborative software devel-
opment. It is therefore reasonable to view SUR as a specialized form of TMM, with a
requirements focus. Taking this view, a state of SUR (at some point in time) is attri-
buted with the same properties as a TMM and so, adapting the description in [8], can
be conceptualized in the following way.
(1) SUR is viewed as structured mental representations of knowledge and under-

standing about relevant aspects of requirements, that are similar in each team
member [9].

(2) SUR is considered an enabler of a team’s effectiveness by providing a mecha-
nism for team members to be on the same page in the sense of describing, pre-
dicting and explaining requirements in a similar way [9].

(3) SUR is conceptualized as emerging states of the team with group-level properties
shaped by the cognitive contribution of team members, but more than an aggre-
gation of their individual requirements understanding [10].

(4) The content of SUR is shared knowledge structures that include declarative
(what), procedural (how) and strategic (why) knowledge about requirements [9].

(5) The property of “sharedness” in SUR is conceptualized as cognitive similarity
and is the degree to which team members’ understanding of requirements are
similar in the sense of having some common or overlapping (but not identical)
knowledge structures that are consistent [11].

168 J. Buchan

(6) SUR has the property of “accuracy”, which refers to how closely the SUR aligns
with the “true state of the world” [12].

The notion of a snapshot of SUR at some point in time as a state of shared cognition
(similar mental models) with the specific group-level properties of content, “share-
dness” and accuracy provides a useful conceptualization of the SUR construct. The
question now is how is new SUR created? What is the mechanism that results in the
team developing successively higher levels of useful shared understanding of the
stakeholders’ requirements? With the view of SUR as a state (set of properties) of the
group at some point in time, it is natural to consider the emergence and development of
shared understanding of requirements as a dynamic move through a sequence of states
in “shared requirements understanding” space. Taking this view, a group’s shared un-
derstanding of a requirement changes from one state to another as the group work
jointly on improving and sharing this understanding. This idea is discussed in the next
section to provide a high-level framework of SUR development that shapes the subse-
quent fieldwork and data analysis to develop a more detailed empirical model.

3 SUR Development as Dynamic State Transitions

Figure 1 presents model of SUR development based on the notion of SUR evolving in
time from one state of SUR to another. Framing SUR development in this way high-
lights the notion of a gap between the two states of SUR and suggests that a mechan-
ism is needed to address this gap. This identifies two main high-level activities in
SUR development: (1) the collaborative uncovering of a gap (i.e. a level of insuffi-
ciency) in SUR, and (2) collaboratively addressing this gap to achieve a new state of
SUR. The constant uncertainty in sufficiency of shared understanding discussed in
literature is depicted by a constant gap in the current state of shared understanding
and some idealized (unknowable) optimal state of shared understanding, where all
necessary, sufficient understanding is shared and accurate for the tasks in hand at that
point in time. Uncovering a gap in SUR is conceptualized as collaboratively design-
ing a new goal state of SUR that highlights the shortcomings of the current state of
SUR. Addressing this gap in SUR involves undertaking appropriate activities to
achieve this new goal state. The model shows that the team may end up in a state of
SUR (at time T2) with different properties to the envisioned goal state. The degree of
change of SUR may vary depending on the time frame (T1 to T2).

In this specialized TMM model, the properties of a state of SUR that may change
from one state to the next include: (1) content, such as the relevant application domain
knowledge structures and level of detail that is similar across team members, (2) the
level of consistency of the content between team members (“sharedness”), (3) the
accuracy of the content (it’s consistency with structure in the world). In this view, a
gap in SUR could be relevant knowledge about a requirement that is: missing, lacks
sufficient detail, is not adequately shared between team members, is inconsistent be-
tween team member, or is an error (inconsistent with the world).

 An Empirical Cognit

Fig. 1. SUR

The model also captures
ing from one state to the n
new shared understanding
for the tasks at hand.

The model incorporates
“what they don’t know they
a known gap in their shared
collaborative effort to conv
about a requirement.

In this model, ideal deve
tions where the imagined g
state 2 (at time T2) are co
would be sufficient and nec

Framing the developmen
new insights into potential
SUR and improving RE. Th
ities observed in the case stu
(1) Creating sufficient opp

ing of a requirement. U
pen frequently as part o

ive Model of the Development of Shared Understanding

R development as group-level state transitions

the idea that the actual change in understanding transiti
ext may be useful to the team or not, in the sense that
of a requirement in state2 may end up being unimport

the notion of the constant pressure of the team to unco
y don’t know” about the requirements and transform it i
d understanding. Then to address this gap through furt
verge on a new negotiated state of shared understand

elopment of shared understanding would be a set of tran
goal state, the idealized optimal state and the actual n
ongruent, and the effort to develop shared understand
cessary to transition to (ideal) state2.
nt of SUR in the perspective of this model provides so
l high-level strategies for supporting the development
hese are listed below together with (in italics) related ac
udy team.
portunities to check for gaps in current shared understa
Using an Agile RE process where these opportunities h
of the way work is done without unacceptable extra cost

169

ion-
the

tant

over
into
ther
ding

nsi-
new
ding

ome
t of

ctiv-

and-
hap-
t.

170 J. Buchan

(2) Using appropriate strategies for transforming unknown gaps (don’t know what
they don’t know about a requirement) into known gaps (know what they don’t
know about a requirement). Uncovering assumptions, insufficient detail or miss-
ing knowledge about a requirement. Verifying representations of shared knowl-
edge about a requirement against the real-world context of that requirement. De-
scribing, explaining and predicting aspects of requirements in a collaborative
team context.

(3) Applying techniques that promote the alignment of the imagined goal state of
shared understanding with the idealised actual optimal states. Taking time to ana-
lyse options in framing a requirement, switching views of a requirement between
problem and solution space, maintaining “memory” of previous shared under-
standing negotiations and outcomes.

(4) Minimising wasteful effort that results in new shared understanding about a re-
quirement that is not used in the design and implementation of that requirement.
Identifying and focusing on understanding the significant knowledge about a re-
quirement and its context for the task at hand (and not wasting time on refining
and sharing unimportant knowledge about a requirement).

(5) Utilising techniques that effectively and efficiently recover from gaps in shared
understanding (i.e. evolve to the next known optimal state). Collaborative knowl-
edge creation, knowledge seeking and knowledge filtering related to a require-
ment. Discussing multiple perspectives on a requirement to converge on a nego-
tiated common understanding of a requirement. Observing or measuring real-
world phenomena related to a requirement.

In summary, the model in Figure 1 provides a high-level view of the mechanism of
the development of SUR as a collaborative effort firstly to uncover gaps in SUR and
then to recover from these gaps. In this TMM perspective states of SUR are distin-
guished by having different group-level properties of content, “sharedness” and accu-
racy, and gaps in SUR can be thought of as inadequacies in these for the tasks at hand.
The TMM view of SUR suggests that collaborative activities such describing, ex-
plaining, and predicting aspects of requirements may uncover gaps in SUR and, by
addressing these, create a new state of SUR. Finally the model suggests some high-
level strategies for supporting the development of SUR, supported by observation of
practitioners at work.

These initial insights are used to analyze the data gathered from the in-depth case
study by focusing on identifying patterns of interaction during collaborative RE activ-
ities that involve uncovering a gap in SUR and recovering from this gap. The context
of the case study, the research approach and the data collection and analyses, are dis-
cussed in the next section.

4 The Research Approach

The high-level aim of this study is to gain an understanding of how shared require-
ments understanding emerges, develops and is maintained in the context of a team
undertaking collaborative software development, with a view to suggesting strategies

 An Empirical Cognitive Model of the Development of Shared Understanding 171

for supporting its development. The research approach is to develop a detailed local
account of the phenomenon by observing a team as they collaboratively develop
software. This is achieved by analyzing step-by-step how such shared understanding
develops from an initial lack of shared understanding to successively clearer shared
understanding, as well as how misunderstandings are collaboratively uncovered and
recovered from. The level of analysis is the team, as part of a distributed cognitive
system. This is grounded in the TMM conceptualization as well as arguments put
forward in [13] for a new science of Group Cognition, in the notion of a functional
system as the computational engine of Distributed Cognition described in [14], and in
the emergence of collective intelligence presented in [15]. The development of the
cognitive model presented is based on thematic content [16] and interaction analyses
[17] of the data. This approach is similar to that taken by Stahl ([18]) in his analyses
of online data of teams solving mathematics problems where he emphasizes the cen-
trality of team members’ interactions to the development of group cognition.

4.1 The Case Study Organisation

A non-participative in-depth case study methodology was adopted [19] with data
collected by the author over a 5-month period in a single case organization. The single
case study research methodology is appropriate to the research aim of developing an
in-depth understanding of the collaborative work of practitioners in their place of
work, and all the complexity this involves [20]. The organization is in the Finan-
cial/Insurance sector and of the five organizations invited to participate, they were
selected based on their large in-house software development program, their use of
Agile methods, and their willingness to participate. The study involved observation of
an in-house development team collaboratively developing software for both in-house
and external clients using a customized Agile process. The project involved the im-
provement of existing systems and the implementation in sites geographically spread
throughout New Zealand. Ethics approval for the research was granted and partici-
pants voluntarily signed consents to participate and be recorded, prior to the start of
the study. Participants had the option of opting out of the study at any time during the
study, although this situation did not arise.

The core team consisted of three business analysts (BA), two legacy system devel-
opers, a Java developer, two testers, a project manager (PM), and two Product Owners
(PO). The POs had their own managerial jobs in addition to being POs for this project
and did not sit in the team’s work area. They were generally available for relevant
meetings, however. The PM acted as a team mentor and liaised with higher manage-
ment and other development teams doing related work, as well as doing some long-
term resource and roadmap planning. Two subject matter experts (SMEs) from
customer services and an architect were closely associated with the project, but not
full-time, and did not sit in the team’s work area. The SMEs were a source of re-
quirements (from customers) and elaborated stories, described process constraints and
argued for prioritization of certain requirements. The architect was often consulted
(or stepped in) to provide advice regarding system and design constraints, business
processes and explain historical decisions related to these. The architect had the

172 J. Buchan

authority to veto a user story or and its proposed implementation design. Other SMEs
and managers were involved regularly (for example the National Sales manager, the
Communications manager,) and others as-needed. There was no Scrum Master role
identified, although one of the BAs had the role of Sprint Coordinator and often acted
as Scrum Master. The experience level of the team members in using Agile practices
varied from novice to expert, and some training in the implementation of Agile ideas
was provided during the period of observation. In addition while I was there, the team
had three afternoons set aside to discuss how to make Agile work for them in this
project.

The development process followed a customized Agile process using a Scrum
framework with 4-week sprints, daily stand-up Scrum meetings, sprint planning meet-
ings, sprint reviews and retrospectives. Before each Sprint there were sprint planning
meetings to elaborate, prioritize and estimate requirements. Planning poker was used
to negotiate effort estimations of user stories. Scrum meetings were typically between
5 and 10 minutes and anyone could attend them, although only the core team and
project stakeholders could speak. They kept track of who is talking by passing a ball
around and generally postponed any lengthy discussions of problems identified until
after the Scrum meeting.

User stories were the main representation of requirements and these were generally
written on physical cards in the common “As a…I want…so that…” structure. The
user stories were duplicated on an Excel spreadsheet, although included more detail
than on the cards. Some team members also duplicated the user story cards in Jira. A
story board was at the front of the work area, visible to the core development team
members at all times. Scrum meetings took place in front of this board. The board had
columns representing the development workflow during a sprint. Other information
on the story board included: the sprint goal, a delivery roadmap, a vision statement,
the definition of “done”, and a sprint burn-down chart. The story board was persona-
lized with a theme selected by the team and on the board team members were
represented by pictorial avatars related to that theme. Acceptance tests were designed
and run by the two testers who worked closely with the developers and BAs.
Maintenance and support of implemented features were handed over to a separate
department.

4.2 Data Collection

During the field work the author was stationed at a desk in the team’s main work area
and attended many of the team meetings, but did not participate in discussions. Field-
work was interleaved with some data analysis and other academic duties outside the
organization. Typically the fieldwork was between 10 and 30 hours per week depend-
ing on the researcher’s other duties. The software development lifecycle observed in
the study included pre-project work with some team members still involved in an
earlier project, pre-sprint activities, and three full sprints of four weeks each. The data
were collected in the form of extensive field notes (meeting details, observations and
ideas), as well as photographs and electronic recordings (audio and some video) of
many of the formal and informal meetings and the work area. The field notes, media

 An Empirical Cognitive Model of the Development of Shared Understanding 173

files, and documents were cross-indexed so that all the data related to any specific
meeting, meeting type, date, team role, or location could easily be identified. The
audio and video recording were kept unobtrusive by discreetly using an iPad as the
recording device. Important artifacts were collected or photographed. Around 100
hours of audio and video were collected and a subset of these was transcribed for
further analysis. Meetings observed and recorded included meetings for story prioriti-
zation, story elaboration, story estimation, management updates, inter-team updates,
sprint planning, roadmap planning, organizational strategic planning, retrospectives,
process understanding, team problem solving, as well as daily standup meetings, re-
trospectives and informal ad hoc meetings. Occasionally participants were inter-
viewed briefly after a meeting to clarify observed behavior, provide background
information or clarify the meaning of unfamiliar language. The results of the inter-
views were generally noted in the field notes and occasionally recorded, typically for
longer interviews.

4.3 Data Selection and Analysis

During the fieldwork episodes observed that were significant with respect to the de-
velopment of shared requirements understanding were noted in the field notes. This
typically included episodes in meetings where collaborative sense-making of re-
quirements was significant: the collaborative understanding of a requirement was the
focus of sustained effort; a gap in the shared understanding of a requirement was un-
covered; the shared understanding of a requirement changed significantly; the shared
understanding of a requirement was socialized to a wider group; the interactions with
each other and artifacts were particularly rich. The media data (audio and in some
cases video) associated with the meetings containing these significant episodes were
then selected for further analysis based on a judgment of their significance. Other
meetings and episodes were also selected for further analysis based on the aims of:
good coverage of meeting types, temporal coverage of the full lifecycle of specific
user stories, coverage of phases of sprints (e.g. start and end) and coverage of role
involvement.

A selection of recorded audio and video episodes (16 hours of audio and 1 hour of
videos) was selected for transcription and these transcriptions were imported in to an
analytical tool, NVivo. Their inclusion for transcription and subsequent analysis was
based on the high-level framework of analysis in Figure 1, with the aim of including
examples of uncovering different types of gaps in shared understanding of require-
ments and addressing these gaps, in a variety of collaborative contexts. For a specific
identified episode the entire meeting containing the episode was transcribed to ensure
sufficient context for interpreting interactions and content meaning. For example, a
user story related to providing a feature to synchronize the billing cycles of a custom-
er for different products purchased at staggered times was particularly challenging,
and all meetings in which the shared understanding of this user story gained the
team’s attention were transcribed. Studying the changes to the shared understanding
of this user story and the interactions involved in these changes provided a rich data-
set on a micro- and macro-level involving many team roles, artifacts, meeting types

174 J. Buchan

and types of collaborative cognition. The transcriptions of meetings involved tran-
scribing dialog, identifying speakers consistently (from 2 to 12 speakers in any one
meeting) and time-stamping significant episodes.

In order to understand the “content” property of a state of SUR and changes to this
SUR content, a content analysis of the relevant data was performed, based on the
inductive approach described in [16]. The data used includes the transcription of the
episode dialog, as well as any related artifacts (e.g. story cards, spreadsheets, photo-
graphs of material developed on a white board, photographs of the story board, or
videos of the episode). The aim of the content analysis was to develop a representa-
tion of the team’s shared knowledge structure about a requirement (the SUR content)
at that point in time. A concept map [21] was selected as a suitable representation
since it depicts significant concepts and their relationships in a network structure.
Following the method described in [16] the transcripts of the episodes were coded and
categorized (using NVivo) to identify significant concepts and their relationships
related to a requirement. This content analysis has a quite a restricted aim and inclu-
sion of the “latent content” (e.g. silence, laughing, body language, tone) was consi-
dered unnecessary. The concept map was constructed with the aid of a software tool
CMapTools [22]. The concept map developed was crosschecked against other shared
artifacts representing shared understanding of that requirement at that time, and any
appropriate additions or modifications to the knowledge structure represented in the
concept map were made. The same exercise was repeated using data from an episode
at a later time and the differences in the concept maps analyzed to identify the
changes in content of the two states of SUR. Lack of space precludes presenting ex-
amples of the concept maps and their analysis. The technique shows good promise as
a method of depicting a snapshot of the content of a state of SUR. The concept map
also proved useful as a (dynamic) representation of the application domain knowledge
relevant to a specific requirement. It is also interesting to note that the knowledge
structure representing a state of SUR includes technical and process knowledge as
well as application domain knowledge.

In order to develop the collaborative cognitive model of the development of SUR
principles from interaction analysis [17] and content analysis [16] were used. Analy-
sis of the data followed paths of both inductive and deductive reasoning as described
in [16]. The framework presented in Figure 1 was used as a starting point to provide
two general categories of cognitive activity, namely uncovering a gap (in SUR) and
addressing that gap. This was used deductively to gather and code content according
to these high-level categories. An inductive approach was taken with the interaction
analysis. The interaction analysis is concerned with both the enactment and the con-
tent of the interactive dialog and how development of SUR is achieved through this
participant interaction. The interactions, as sequences of actions and speech,
were coded, grouped, categorized and abstracted to develop the cognitive model de-
picted in Figure 2. Twenty-nine types of cognitive interaction were initially identified
and coded using NVivo, grouped into the two general categories of uncovering and
addressing a gap in SUR, as previously discussed. (These include, for example, pro-
posing, questioning, persuading, reinforcing, explaining, describing, comparing, ab-
stracting, testing and deciding). These interaction code were grouped and categorized

 An Empirical Cognit

to provide a smaller subset
nitive tasks and decisions p
researcher crosschecked pa
The empirical cognitive m
section, and a brief overview

5 An Empirical C

Fig. 2. An e

The model depicted in
group-level cognitive tasks
action identified from anal
sodes and RE activities. It
terms of describing the cog
addressing any uncovered g

ive Model of the Development of Shared Understanding

of key categories that were then abstracted to the key c
presented in Figure 2 and described in section 5. Anot
arts of this coding and abstraction process from the d

model of the development of SUR is presented in the n
w is given.

ognitive Model of SUR Development

empirical cognitive model of SUR development

Figure 2 presents a high-level conceptual model of
involved in refining SUR. It is based on patterns of in

lysis of the collected data across many collaborative e
follows the form of the state-change model in Figure 1
gnitive tasks involved in monitoring for gaps in SUR
gaps.

175

cog-
ther

data.
next

the
nter-
epi-
1 in
and

176 J. Buchan

5.1 Collaborative Cognitive Tasks

The significant high-level cognitive tasks identified are: (1) establishment of the
team’s attention on some aspect of the shared understanding of a requirement; (2)
the presentation (oral or visual) of some representation of the requirement within the
horizon of observation of the group; (3) the group checking for some shortcomings in
the current shared understanding of a requirement (a gap) (if the need for a check is
agreed on); (4) deeper analysis of the nature of the gap and how to address it (if it is
agreed there is a gap) (5) negotiation of new shared understanding of the requirement
(if the group decides this is possible, worth the effort, and time is available); (6) inte-
gration of the new shared understanding of the requirement (if the negotiation of un-
derstanding converges to a sufficient level).

Cognitive activities (1) to (4) are associated with monitoring and identifying in-
adequacies in understanding. This is predicated on finding inconsistencies between
two or more shared representations of understanding. These inconsistencies may be
differences in different team members’ mental representations, identified when they
are articulated publicly (i.e. a consistent understanding is not shared). Or it may be
inconsistencies between some representations of knowledge, or observation of the
world that is shared publicly. Also, there may be a gap in the sense that an informa-
tion need is identified. This can be viewed as inconsistency between the current state
of shared understanding (where the information gap exists) and an imagined state of
shared understanding in which the new information is integrated and shared.

Cognitive activities (5) and (6) are associated more closely with recovering from a
gap in understanding, such as a misunderstanding. It should be noted that this distinc-
tion is fuzzy in the sense that negotiation of new understanding may result in gaps
being uncovered and vice versa. Cognitively the distinction is clearer, however. The
negotiation of new shared understanding may be a simple correction of a mistake to a
lengthy collaborative exploration of alternative meanings and sense-making of the
application domain problem.

While there are overlaps in the activities identified in the model and the sequencing
was often iterative, there are common dependencies between activities. For example
establishment of the team’s attention on current shared understanding occurs before
the detection of any shortcomings that need to be addressed, which itself precedes
negotiation of new understanding and convergence on a new interpretation of a re-
quirement. In addition, integration of new shared understanding with the existing
shared understanding in the wider project context is generally dependent on sharing
and agreement on some new or deeper understanding of a requirement. If the team
decides (rightly or wrongly) that a requirement is not worth attention at that moment,
then the other cognitive activities shown in Figure 2 will not occur. Similarly a short-
coming in shared understanding may NOT be detected (rightly or not), halting further
consideration of that requirement. If, during exploration of alternative interpretations,
an information need is detected that is not immediately available, then further explo-
ration, negotiation and integration may be postponed until this new information is
obtained and shared.

 An Empirical Cognitive Model of the Development of Shared Understanding 177

Each aspect of the depicted model may have varying levels of effort and formalism
during different episodes of shared understanding refinement. For example, it may be
a very quick and “intuitive” decision that a specific requirement needs attention (or
not) or has a deficiency (or not). Or it may be the result of considerable cognitive
effort and extended interaction. Exploration of alternative interpretations and sense-
making may be rapid, based on the accepted intuition of experts in the team at the
time, or it may involve extensive modelling and analysis, possibly with information
sought from outside the immediate group at a later time. It may be that coordinated
attention is established quickly because it expected by the group in a particular meet-
ing, or that it takes considerable cognitive effort to coordinate attention because the
participants have separate agendas.

5.2 Group Decision Points

There are a number of decision points throughout this model where continued effort
on sharing understanding of a particular requirement may be diverted, perhaps with an
agreed plan to come back to it in the future.

The model captures the observed situations where:
(1) The team does not detect a gap in shared understanding during the collaborative

episode, even though there is a gap. This may be because the specific aspect of
the requirement that has a gap is not given attention, or that the deficiency in
shared understanding is not uncovered even after some effort checking for a gap.

(2) The team recognises a gap in shared understanding of a requirement, but defers
effort in closing this gap to the future. This may be because the gap is out of
scope, unimportant at this point in time, or they have run out of time in the meet-
ing.

(3) A gap is detected and effort is made to close the gap by negotiating a new shared
interpretation, however agreement cannot be reached during the collaborative
episode. This may be due to non-convergence of views and unwillingness to
compromise, or it is recognised that it will require an effort too long for the time
available in the meeting and so it is postponed.

(4) A gap is detected and effort is made to close the gap by negotiating a new shared
interpretation, however information needed to interpret the requirement at the
level of detail is not at hand

The model in Figure 2 provides a framework to analyze the potential barriers and
enablers of the development of shared understanding from a cognitive perspective.
For example, what are the barriers and enabler of establishing the group’s attention?
With the assumption that attention is a limited cognitive resource and so attention to
the shared understanding of a particular requirement is competing with other stimuli,
it is important to understand how to minimize the effects of stimuli other than those
directing attention related to the requirement in question. Principles from cognition
theory also provide explanations for the coordination and propagation of attention in a
group that could be useful [15].

This brief explanation and discussion of the empirical cognitive model developed
shows its potential for further analysis using principles from cognition theory.

178 J. Buchan

6 Conclusion and Future Work

This paper proposes a novel framework for studying the development of shared un-
derstanding of requirements as state changes in requirements-focused Team Mental
Models. This, together with ideas from other related cognitive theories, is then used to
inform the analysis of field data gathered from an extended, non-participatory obser-
vational case study of a team developing software in a commercial setting. This the-
matic interaction analysis results in a new model of the group-level cognitive tasks
that contribute to the collaborative development of shared understanding of require-
ments. The model is discussed briefly and some new insights into the development of
SUR are touched on. A more detailed description of the tasks depicted in the model
and their implications for practitioners and researchers will be the subject of a follow-
up paper. This will include identifying barriers and enablers of shared understanding
of requirements development in light of this mode.

The next stage in the research is to analyze the cognitive model of Figure 2 using
Hutchins’ Distributed Cognition framework [14] to understand the “how and why” of
the framework. Building on the work of [23] this will involve the application of cog-
nitive principles to the model using a modified DiCoT framework as described in
[24]. The results of this will then be used to explain the barriers and enablers of SUR
development and suggest strategies for better supporting it.

References

1. Kamata, M.I., Tamai, T.: How Does Requirements Quality Relate to Project Success or
Failure? Presented at the 15th IEEE International Requirements Engineering Conference
RE 2007 (2007)

2. Sutcliffe, A.: User-Centred Requirements Engineering. Springer, London (2002)
3. Bubenko, J.A.: Challenges in requirements engineering. In: Proceedings of the Second

IEEE International Symposium on Presented at the Requirements Engineering (1995)
4. Sadraei, E., Aurum, A., Beydoun, G., Paech, B.: A field study of the requirements engi-

neering practice in Australian software industry. Requirements Eng. (2007)
5. Buchan, J., Ekadharmawan, C.H., MacDonell, S.G.: Insights into Domain Knowledge Shar-

ing in Software Development Practice in SMEs. Presented at the APSEC 2009: Proceedings
of the 2009 16th Asia-Pacific Software Engineering Conference (December 2009)

6. Hansen, S., Berente, N., Lyytinen, K.: Requirements in the 21st Century: Current Practice
and Emerging Trends, 1–44 (2008)

7. Cannon-Bowers, J.A., Salas, E.: Reflection on shared cognition. Journal of Organizational
Behavior 22, 195–202 (2007)

8. Mohammed, S., Ferzandi, L., Hamilton, K.: Metaphor No More: A 15-Year Review of the
Team Mental Model Construct. Journal of Management 36, 876–910 (2010)

9. Rouse, W.B., Cannon-Bowers, J.A., Salas, E.: The role of mental models in team perfor-
mance in complex systems. IEEE Transactions on Systems, Man and Cybernetics 22,
1296–1308 (1992)

10. Klimoski, R., Mohammed, S.: Team Mental Model: Construct or Metaphor? Journal of
Management 20, 403–437 (1994)

 An Empirical Cognitive Model of the Development of Shared Understanding 179

11. Cannon-Bowers, J.A., Salas, E., Converse, S.A.: Shared mental models in expert team
decision making. In: Castellan, J. (ed.) Current Issues in Individual and Group Decision
Making (1993)

12. Edwards, B.D., Day, E.A., Arthur, W.J., Bell, S.T.: Relationships Among Team Ability
Composition, Team Mental Models, and Team Performance. Journal of Applied Psycholo-
gy 91, 727–736 (2006)

13. Stahl, G.: Group cognition. The MIT Press, Cambridge (2006)
14. Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)
15. Heylighen, F., Heath, M., Van, F.: The Emergence of Distributed Cognition: A conceptual

framework. Presented at the Collective Intentionality IV (2004)
16. Elo, S., Kyngäs, H.: The qualitative content analysis process. Journal of Advanced Nursing 62,

107–115 (2008)
17. Jordan, B., Henderson, A.: Interaction analysis: Foundations and practice. The Journal of

the Learning Sciences 4, 39–103 (1995)
18. Stahl, G.: How to Study Group Cognition. In: Puntambekar, S., Erkens, G., Hmelo-Silver,

C. (eds.) Computer-Supported Collaborative Learning Series, pp. 107–130. Springer
(2011)

19. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14, 131–164 (2008)

20. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thousand Oaks
(2003)

21. Cañas, A.J., Carff, R., Hill, G., Carvalho, M., Arguedas, M., Eskridge, T.C., et al.: Concept
Maps: Integrating Knowledge and Information Visualization. Knowledge and Information
Visualization, 205-219 (2005)

22. Cañas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Gómez, G., et al.: Cmaptools: A Know-
ledge Modeling and Sharing Environment. Paper presented at the First International. Con-
ference on Concept Mapping Pamplona, Spain (2004)

23. Sharp, H., Robinson, H.: A Distributed Cognition Account of Mature XP Teams. In:
Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 1–10.
Springer, Heidelberg (2006)

24. Blandford, A., Furniss, D.: DiCoT: A Methodology for Applying Distributed Cognition to
the Design of Teamworking Systems. In: Gilroy, S.W., Harrison, M.D. (eds.) DSV-IS
2005. LNCS, vol. 3941, pp. 26–38. Springer, Heidelberg (2006)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 180–194, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Evaluating the Cognitive Effectiveness of the Visual
Syntax of Feature Diagrams

Mazin Saeed, Faisal Saleh, Sadiq Al-Insaif, and Mohamed El-Attar

King Fahd University of Petroleum and Minerals,
P.O. Box 5066, Dhahran 31261, Kingdom of Saudi Arabia

{Mazin,melattar}@kfupm.edu.sa, faisal86@me.com,
sadiq.alinsaif@gmail.com

Abstract. [Context and Motivation] Feature models are widely used in
the Software Product Line (SPL) domain to capture and communicate the
commonality and variability of features in a product line. Feature models con-
tain feature diagrams that graphically depict features in a hierarchical form.
[Problem/Question] Many research works have been devoted to enriching the
visual syntax of feature diagrams to extend its expressiveness to capture addi-
tional types of semantics, however, there is a lack of research that evaluates the
visual perception of feature models by its readers. Models serve a dual purpose:
to brainstorm and communicate. A very sophisticated yet unreadable model is
arguably useless. To date, there has not been a scientific evaluation of the cog-
nitive effectiveness of the visual syntax of feature diagrams. [Principle Ideas]
This paper presents a scientific evaluation of the cognitive effectiveness of fea-
ture diagrams. The evaluation approach is based on theory and empirical evi-
dence mainly from the cognitive science field. [Contribution] The evaluation
reveals drawbacks in the visual notation of feature diagrams. The paper con-
cludes with some recommendations for improvement to remedy the identified
flaws.

Keywords: Feature Models, Visual Syntax Evaluation, Software Product Lines.

1 Introduction

Software product line engineering is concerned with all development aspects for pro-
ducing a set of related products that share more commonalities than variations [1].
Software product lines are emerging as an effective development paradigm that
enables flexible response and mass customization [22]. Mass customization is about
“producing goods and services to meet individual customer’s needs with near mass
production efficiency”, according to [26]. Mass customization is a critical factor for
development success as traditional mass production lines no longer suffice market
needs [22]. Software product line engineering enables mass customization in mass
production development environments [1].

 Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams 181

Feature models are commonly used to document features in a software product
line at different levels of abstractions. A feature model consists of one or more
feature diagrams, composition rules, issues and decisions, and a system feature cata-
logue [11]. Features in a feature diagram are represented hierarchically with different
relationships amongst features. Feature diagrams provide a visual summary of the
features in a software product line. The visual language of feature diagrams was
first introduced by Kang et al. in 1990 [11]. Similar to other diagrams, the core
purpose of a feature diagram is to convey the mental model of a modeler to a reader
of the model. If the reader of a model misreads or misinterprets it, then the intrinsic
goal of the modeling exercise has failed. A misread or misinterpreted feature
diagram can lead to the development of end products that do not possess the correct
set of features as intended by its stakeholders. Since the introduction of feature dia-
grams in 1990, many research works have been devoted to enriching the visual
syntax of feature models to extend its expressiveness to capture additional
semantics and operations. While such stream of research provides valuable contribu-
tions to the field of software product line modeling, it is arguably equally as
important to investigate the visual perception of the visual syntax by its
readers. However, there lacks research that evaluate the cognitive effectiveness of
feature diagrams. Cognitive effectiveness for software engineering notations is de-
fined as “the speed, ease and accuracy with which a representation can be processed
by the human mind” [15]. The most outstanding reason for neglecting this stream of
research is the lack of a theoretical basis to conduct notation evaluations scientifically
[14].

In 2009, Moody [14] documented nine principles for evaluating and designing
cognitively effective notations in what is considered the seminal paper in the area of
cognitive effectiveness evaluation in the software engineering field. The nine prin-
ciples were compiled and collated from theory and empirical evidence mainly from
the cognitive science field, amongst other fields. The nine principles focus on the
visual perception of notations rather than their coverage of semantic constructs. In this
paper, we introduce a new stream of research in the area of feature modeling by pre-
senting the evaluation results of feature diagrams using the nine principles of cogni-
tively effective notations as defined in [14]; a critical aspect of feature diagram
modeling that has thus far been overlooked.

The remainder of this paper is organized as follows: Section 2 presents a
brief background on feature diagrams. Section 3 provides the theoretical basis
for evaluating the visual syntax of feature diagrams. Section 3 also presents the evalu-
ation results of the feature diagram notation. Suggestions for improvements to
the feature diagrams notation are presented in Section 4. A discussion of related
works is presented in Section 5. Finally, Section 6 concludes and suggests future
work.

182 M. Saeed et al.

2 Feature Diagrams Background

This section provides a brief background on feature diagrams. Due to the absence of a
formal standard for feature diagrams, a review of the literature was required to identi-
fy the most state-of-the-art and canonical notational constructs. The evaluation pre-
sented in this paper is based on this derived set of notational constructs.

Feature diagrams made its first appearance in the literature as part of the Feature
Oriented Domain Analysis (FODA) [11]. The original form of feature diagrams is
shown in Figure 1.

Phone

Screen Speaker Camera

High
Definition

Standard
Screen

Figure Legends

And AlternativeOptional Mandatory

Fig. 1. The original FODA Feature Diagram

The notational set for feature diagrams has since been extended in many research

works [1, 2, 4, 5, 6, 10, 12, 24] with the intention to increase the semantics covered by
feature diagrams. Table 1 presents the notational set of feature diagrams and a brief
definition of each symbol’s semantics. Table 1 also shows the literature references
where each symbol was first introduced. An example feature diagram that shows the
entire notational set considered in this paper is shown in Figure 2. To the best of the
authors’ knowledge, the notational set described below is the most state-of-the-art and
canonical notational constructs for feature diagrams.

 Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams 183

Table 1. Feature diagrams semantics and symbols legend

Semantic Symbol Explanation Ref.

Root or
Concept

Symbolizes the software product line. [12]

Feature

Descendent / child node of the root. [12]

Mandatory

Feature should be implemented whenever
its parent is selected in the product

[4]

Optional

Feature could be optionally implemented
whenever its parent is selected in the
product.

[11]

And

Children feature could be selected when
its parent feature is selected in the prod-
uct.

[11]

alternative

Exactly only one of the children could be
selected when parent feature is selected in
the product.

[11]

Or

One or more of the children could be se-
lected when parent feature is selected in
the product.

[4]

Require

If feature A requires feature B, the inclu-
sion of A implies the inclusion of B.

[10]

Exclude

If feature A excludes feature B, both fea-
tures cannot be part of the same product.

[10]

Feature
cardinality

[n,m]
Defines number of instances of features
that could be part of the product.

[6]

Group
cardinality

<n,m>
Limiting the number of child features
which could be part of the product when
their parent is selected.

[6]

Attribute

An extension to a features to accommo-
date extra information

[2]

Dead Feature

Feature which can’t be part of the product
due to modeling anomaly.

[1]

Refer feature
Special symbol for decomposing feature
to sub-tree of features.

[5]

Generaliza-
tion

Relationship between two features in
which one of them is a generalization for
the other.

[12]

Implementa-
tion

Relationship between two features in
which one of them is an implementation
for the other.

[12]

184 M. Saeed et al.

Fig. 2. The feature diagram notations & semantics considered in this paper

3 Evaluation of Feature Diagrams using the Principles for
Cognitively Effective Visual Notations

This section provides the theoretical basis for evaluating the visual syntax of feature
diagrams. Also in this section we present the results of evaluating the cognitive effec-
tiveness of the visual syntax of feature diagrams. The evaluation is based on nine
evidence-based principles that provide a theoretical basis for designing and evaluating
a visual syntax. The nine principles defined in “Physics of Notation” [14] are: Semiot-
ic Clarity, Perceptual Discriminability, Semantic Transparency, Complexity Man-
agement, Cognitive Integration, Visual Expressiveness, Dual Coding, Graphic
Economy and Cognitive Fit (see Figure 3). Each subsection begins by explaining the
principles (outlined in Figure 3) followed by the analysis of Feature Diagram using
the specified principle.

 Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams 185

Semiotic Clarity
Section 3.1

Dual Coding
Section 3.6

Perceptual
Discriminability

Section 3.3

Visual
Expressiveness

Section 3.2

Graphic
Economy

Section 3.8 Semantic
Transparency
Section 3.5Complexity

Management
Section 3.4

Cognitive Fit
Section 3.9

Cognitive
Integration
Section 3.7

Fig. 3. The nine principles for cognitively effective visual notations

Evaluating the cognitive effectiveness of a visual notation requires the considera-
tion of two “spaces”: the problem space and the graphic space. The problem space is
defined as the semantics that is supposed to be represented by a notation. This paper
focuses on the cognitive effectiveness of feature diagrams. Formal semantics of a
visual language is typically defined in its metamodel or a standardization document.
However, for feature diagrams, no such metamodel or standardization document is
available. Therefore, determining the problem space for feature diagrams can only be
achieved by conducting a literature survey of feature diagrams in order to determine
the relative semantics. For this task, we consulted a recently published comprehensive
literature review (in 2010) on the analysis of feature models 20 years after their inven-
tion [1]. To the best knowledge of the authors, there are no newer publications in the
literature that present new and canonical notations for feature diagrams. The graphic
space or the “The Visual Alphabet” is the set of all potential graphical encodings
(visual variables). According to [14, 15, 16], there are eight fundamental visual va-
riables that can be used to encode semantics graphically. The eight visual variables
are: shape, brightness, size, orientation, color, texture, horizontal and vertical posi-
tions. Notation designers can use combinations of these variables to create an infinite
number of graphical symbols. As a prelude to evaluating the symbols, it is required to
determine the visual variables used by each symbol and the values of each visual
variable used. The third space that is conceptualized by the “Physics of Notations”
[14] is the Solution Space. The solution space is concerned with choosing the most
cognitively effective set of symbols produced out of the endless combinations from
the graphic space. The solution space is considered for suggesting improvements to
the suboptimal design aspects of feature diagrams (Section 4).

3.1 Semiotic Clarity

As shown in Figure 1, the principle of Semiotic Clarity is at the center of the nine
principles for cognitively effective notations, which is an indication of its primacy.
The principle states that a visual language should have a one-to-one mapping between
its symbols and the constructs they represent. One or more of the following anomalies
are possible if a notation does not have the desired a one-to-one mapping:

186 M. Saeed et al.

• Symbol Redundancy (synography) – multiple symbols can be used to represent one
construct.

• Symbol Overload (homography) – multiple constructs are represented by one sym-
bol.

• Symbol deficit – no symbol exists to represent a particular construct.
• Symbol excess – a symbol that does not represent any construct.

Symbol Redundancy (synography)
Symbol redundancy can lead to confusion as although choices are available to mod-
elers, there is no basis for judgment. Symbol redundancy increases the burden on
diagram readers as it requires them to memorize all the different symbols that can be
used to represent one construct. Consequently, symbol redundancy increases the
learning curve required to effectively use feature diagrams. However, feature dia-
grams do not contain such anomaly.

Symbol Overload (homography)
Only one case of symbol overload exists in feature diagrams. The box symbol is used
to represent 2 different constructs: root and feature. However, the same shape is used
in dead feature, attribute and referring feature with slight differences which can ne-
gatively affect Perceptual Discriminability (see section 3.3). Symbol overload is per-
haps the most dangerous of the four anomalies as it directly leads to confusion since
there is no means to visually determine the semantic that is conveyed by a particular
symbol [14].

Symbol Deficit and Symbol Excess
No symbol excess has been identified in the notational set of feature diagrams as each
symbol represents at most one semantic construct. The only case of symbol deficit is
concerned with the specification of feature and group cardinalities. Cardinality is only
conveyed via textual annotation. Which is discouraged by principle of Dual Coding
(see section 3.6).

3.2 Visual Expressiveness

The principle of Visual Expressiveness for a notation is concerned with the number of
visual variables used and the ranges of values used in each variable. The larger the
number of visual variables a notation uses and the wider the ranges of values used in
each variable, the more visually expressive the notation becomes. Feature diagrams
only use two visual variables: shape and brightness (see Table 2). With respect to the
shape variable, feature diagrams use three values; rectangles, tree-tops and lines. With
respect to brightness, feature diagrams use three levels: white, black and grey for
shape fills. For edges, there is solid and two types of dotted lines. Further details of
feature diagrams’ use of the graphic space is presented in Table 2. Overall, the visual
syntax of feature diagrams makes very limited use of the graphic space and hence
cannot be considered visually expressive.

 Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams 187

Table 2. Visual expressiveness of the feature diagrams notation

Alphabet Usage

Shape
3 levels which are 5 rectangles (boxes), 3 for tree-tops
(and/or/alternative), 7 lines (mandatory, optional, generalization, im-
plementation, require, exclude and attribute line).

Brightness Low, high and medium, also dashed edges with two levels of dashes.

3.3 Perceptual Discriminability

The principle of Perceptual Discriminability refers to the ease by which symbols from
one notational set can be differentiated from each other. This principle requires the
language designers to increase the visual distance [14] between symbols within a
notational set. Visual distance is increased by utilizing a large number of visual va-
riables and utilizing a wider range of values for each variable. Larger visual distance
between symbols allows them to be easily differentiated from each other. In this anal-
ysis we highlight symbols that are similar and thus have low levels of perceptual dis-
criminability. Here similarity is determined by the shape variable since it has the
greatest influence on cognition by humans [14]. Based on the findings from Section
3.2, three shape categories are identified: boxes, tree-tops and lines. A discussion of
the perceptual discriminability of symbols within each shape category is presented
below:

Boxes
This shape includes the Root, feature, dead feature, refer feature and attribute con-
structs. The brightness visual variable is the predominant variable used to distinguish
symbols that use box shapes. The root and feature constructs are visually identical.
Dead features are distinguishable by a grey color filling, while the attribute can be
differentiated by a dotted border. The refer feature is distinguishable by a small
“play-button” symbol inside the rectangle.

Tree-tops
This shape includes the and, or, and alternative decompositions. The or and alterna-
tive decomposition symbols can be differentiated by their brightness. The or and al-
ternative decomposition symbols have black and white fillings, respectively. The and
decomposition symbol can be differentiated by the absence of an upwards arc.

Lines
This shape includes the mandatory, optional, generalization, implementation, require,
exclude and attribute line edges. The generalization and attribute symbols are iden-
tical while the implementation symbol is differentiated by coarse line brightness. The
require and exclude symbols are very similar. The require symbol has one arrowhead
at one end, while the exclude symbol has two arrow heads at both its ends. The man-
datory and optional edges can be distinguished from each by their brightness. The
mandatory and optional edges have black and white fillings, respectively.

188 M. Saeed et al.

It can be concluded that the visual syntax of feature diagrams overall suffers from low
levels of perceptual discriminability.

3.4 Complexity Management

The principle of Complexity Management is described as “the ability of a visual nota-
tion to represent information without overloading the human mind” [14]. The pres-
ence of mechanisms that support the handling of complexity is essential for visual
notations. High levels of complexity can severely limit model comprehension espe-
cially amongst novices. Complexity can be dealt with through modularization and
hierarchical structuring. Modularity is a common practice to break down complexity
by dividing large components into smaller ones. The notation of feature diagrams
offers no mechanisms for complexity management via modularization. Hierarchal
structuring manages complexity by providing representations of different levels of
details and abstraction. Feature diagrams manage complexity by decomposing fea-
tures into sub-features using the refers notation (hierarchal structuring).

3.5 Semantic Transparency

The principle of Semantic Transparency suggests the use of visual representations
whose appearance is highly suggestive of their meaning. Using semantically transpa-
rent symbols reduces the cognitive load because they have built-in mnemonics: their
meaning can be either perceived directly or easily learnt [9]. The visual syntax of
feature diagrams cannot be considered as semantically transparent. Users of feature
diagrams are required to memorize the semantics of the symbols prior to reading or
creating feature diagrams as they cannot infer the meanings of symbols simply by
viewing them.

3.6 Dual Coding

According to Dual Coding theory [20], using a combination of text and graphics to-
gether makes information presentation more obvious than using either on their own.
Graphical and textual information are encoded in separate systems in working memo-
ry. Consequently, referential connections between the two systems in working memo-
ry are strengthened. It needs to be emphasized that text should not replace graphics
and it certainly should not be used as the only means to differentiate between graphi-
cal symbols (textual differentiation). Text should be used to complement graphics as a
form of redundant encoding [9, 21].

Feature diagrams make no use of text as a form of redundant encoding. However,
text has been combined with symbols in [1] for the require, exclude and extend edges.
While [24] showed the same dual coding for the require and extend edges. This use of
dual coding however is not consistent amongst the feature diagram modeling litera-
ture and hence were not considered in this evaluation.

 Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams 189

3.7 Cognitive Integration

The principle of Cognitive Integration refers to the ease of which a notation allows its
reader to integrate different information from different diagrams. This is especially
important when different diagrams are used to represent a system, which is often the
case. There are two aspects of cognitive integration: conceptual and perceptual inte-
gration. Conceptual integration allows a reader to assemble a coherent mental repre-
sentation of the system as a whole from separate diagrams. Perceptual integration is
concerned with features in a notation that allow its reader to effectively navigate from
one diagram to the next. Navigation in this sense requires a notation to have features
that provide information about orientation, route choice, route monitoring and desti-
nation recognition.

Feature diagrams do not offer any such mechanisms that support either type of
cognitive integration. In [23], the authors presented a mechanism that allows the inte-
gration of feature diagrams with other UML diagrams. However, the approach is
based on a model transformation technique that maps metaclasses of a proposed me-
tamodel for feature diagrams with metaclasses of UML diagrams. This means that the
approach is based on the metaclasses (semantics) of feature diagrams rather than di-
rectly based on its visual notation.

3.8 Graphic Economy

The Graphic Economy principle refers the number of graphical symbols in a notation.
A large number of symbols in a notation reduce its cognitive effectiveness. The litera-
ture has identified an upper limit of around six categories for the human ability to
discriminate between perceptually distinct categories [13]. Although the number of
symbols in feature diagrams is far greater than six, the number of perceptually distinct
symbols was determined to be only 3: boxes, tree-tops and lines (see Section 3.3). It is
advised to leverage the extra room identified from the assessment based on the Graph-
ic Economy principle to resolve other issues in the notation, such as symbol overload
(see Section 3.1). However, caution needs to be exercised when introducing new per-
ceptually distinct symbols by utilizing the shape variable. As mentioned before, shape
is the most influential visual variable. Studies have shown that humans recognize
different shapes as constructs that have categorically different meanings [15]. For
feature diagrams, the semantic constructs of a root, feature, dead feature, attribute
and referring feature, are not categorically different. They are all types of features.
Therefore, it will be ill advised to use different shapes to represent these different
semantics. Not to be deterred by this limitation, perceptual discriminability can be
increased via using additional visual variables, such as color, texture and size, and
textual encoding as a form of redundant encoding.

3.9 Cognitive Fit

The principle of Cognitive Fit suggests the use different visual dialects for different
tasks and audiences. Some dialects can be made complex and suitable for advanced

190 M. Saeed et al.

users while other dialects can be simplified and made suitable for novices. However,
feature diagrams have only one dialect, which is the case with most Software Engi-
neering notations. Such drawback is referred to as “monolingualism” [14].

4 Recommendations and Suggestions

The results of the notation evaluation indicate a number of suboptimal design aspects
in the visual syntax of feature diagrams, thus reducing its cognitive effectiveness. In
this section we suggest some enhancements based on deficiencies identified in Sec-
tion 3. A summary of the suggested improvements is presented in Table 3.

Symbol overload and perceptual discriminability are an outstanding issue in the
notation of feature diagrams. Visual distance is increased in similar notations that
categorized under boxes, tree-tops and edges. We suggest a new symbol for feature
and group cardinality instead of only using textual annotation, these symbols will
remove ambiguity and increase the cognitive effectiveness.

Table 3. Suggestions made to feature diagram notations

Semantic Symbol. Suggested Justification

Root

Slightly changing the shape to in-
crease the visual distance between the
root and features

Feature

Change the color of the box accord-
ing to its status if it’s either mandato-
ry or optional

Mandatory

Distance is increased by making
mandatory colored red and optional
with dark yellow. Mandatory is fur-
ther distinguished by its strict sym-
bols filled inside the circle

Optional

And

Edges are colored to match the fea-
ture “mandatory – optional” status

alternative

Arc is colored dark yellow to match
the “optionality” behavior. Edges are
colored to match feature status (not
necessary dark yellow)

Or

Arc sector is filled with dark yellow
to indicate its optionality behavior
found in optional and alternative.
Edges are colored to match feature
status (not necessary dark yellow)

 Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams 191

Table 3. (Continued)

Semantic Symbol. Suggested Justification

Require

Visual distance between require and
exclude is increased by making re-
quire colored green and exclude blue,
colors varies to avoid possible confu-
sion with others edges of mandatory,
optional, etc.

Exclude

Feature
cardinality

[n,m] [m,n] [m,n]

Feature cardinality symbol, colors
and shape are made to match feature
mandatory or optional status intro-
duced earlier

Group
cardinality

<n,m> <m,n><m,n>

Group cardinality is differentiated by
adding darker background on the
effected features

Attribute of
feature Att. Attribute is changed to note symbol

Dead Fea-
ture

Dead

Dead feature brightness now is low,
additionally the skull symbol is intro-
duced

Refer fea-
ture

Refer

Blue color of refer, underlined text
and symbols are inspired by hyper-
links vogue

Generalization

End arrow is changed by increasing
the arrowhead to increase the visual
distance between the generalization
and implementation

Implementa-
tion

End arrow is changed, by decreasing
the arrowhead to increase visual
distance between generalization and
implementations. Also the dash line is
changed to increase visual distance

5 Related Work

Shortly after the publication of Moody’s seminal paper [14], the area of visual nota-
tion evaluation has been increasingly gaining attention in the research community. In
this exertion; an initial evaluation of visual syntax of the goal-oriented modeling lan-
guage i* has been presented in [16]. Based on the principles defined in [14], the au-
thors of [16] highlighted a number of shortcomings in the visual syntax of i*. In their
ensuing work, the authors suggested various improvements to improve the semantic
transparency of the i* visual syntax. John Thomas et al. also used the principles to

192 M. Saeed et al.

design and improve cognitively effective business decision models [25]. A general
evaluation of the UML (Unified Modeling Language) [19] suite of diagrams was
presented in [17]. The study reveals that the design of the visual syntax of UML dia-
grams is not cognitively effective due to a lack of attention to visual aspects. Class
diagrams in particular have been singled out as having the worst visual representation
amongst UML diagrams [17]. The authors suggested general improvements that are
applicable to all diagrams in UML. An evaluation of the visual syntax of the BPMN
(Business Process Modeling Notation) [18] modeling language is presented in [8].
The notation of BPMN is expected to be understood by all stakeholders, however, the
results of the evaluation revealed several shortcomings that hamper its comprehension
by a subset of its stakeholders. The authors provided suggestions to improve the cog-
nitive effectiveness of BPMN. In [7], the visual notation of use case maps [3] was
evaluated. The evaluation shed light on several common weaknesses. The authors
provided suggestions for improvements [7]. To the best of the authors’ knowledge, no
evaluation of the visual syntax of feature diagrams based on Moody’s principles was
presented.

6 Conclusion and Future Work

The cognitive effectiveness of Software Engineering notations has long been a neg-
lected area of research. The notation of feature diagrams is no exception. This paper
presented a scientific evaluation of the visual syntax of feature diagrams. The evalua-
tion revealed a number of suboptimal design aspects in the visual syntax of feature
diagrams. A set of improvements were suggested that can potentially overcome these
design drawbacks and improve the overall cognitive effectiveness of feature dia-
grams. The improvements were conjured based on the same principles used to assess
the visual syntax.

The effectiveness of the improvements suggested in Section 4 is highly subjective
unless empirical evidence can be provided. Therefore, future work can be directed
towards conducting an empirical evaluation of the new notation to validate its cogni-
tive effectiveness. In the experiment, the current notation will be used as a benchmark
to compare against the new notation. Once empirical evidence becomes available,
future work can be directed towards providing automation support for the new nota-
tion. Automation support will greatly aid its adoption by potential users. Many neces-
sary research works have been conducted that evaluates visual notations in Software
Engineering. However, many more notations remain to be assessed. The improve-
ments suggested in the literature with respect to various Software Engineering
notations lack empirical evidence. Empirical validation of these improvements will
increase the confidence to apply and standardize changes to existing notations.

Acknowledgements. The authors would like to thank the Deanship of Scientific Re-
search (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) for fund-
ing this research.

 Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams 193

References

1. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated Analysis of Feature Models 20
Years Later: A Literature Review. Information Systems 35(6), 615–636 (2010)

2. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Models.
In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

3. Buhr, R.J.A., Casselman, R.S.O.: Use Case Maps for Object-Oriented Systems. Prentice
Hall, Upper Saddle River (1996)

4. Czarnecki, K., Eisenecker, U.W.: Components and Generative Programming. In: Nierstrasz, O.,
Lemoine, M. (eds.) ESEC/FSE 1999. LNCS, vol. 1687, pp. 2–19. Springer, Heidelberg (1999)

5. Czarnecki, K., Helsen, S.: Feature-Based Survey of Model Transformation Approaches.
IBM 45(3), 621–645 (2006)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing Cardinality-Based Feature Models
and their Specialization. Software Process: Improvement and Practice 10(1), 7–29 (2005)

7. Genon, N., Amyot, D., Heymans, P.: Analysing the Cognitive Effectiveness of the UCM
Visual Notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS, vol. 6598,
pp. 221–240. Springer, Heidelberg (2011)

8. Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness of the BPMN
2.0 Visual Notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 377–396. Springer, Heidelberg (2011)

9. Goonetilleke, R.S., Shih, H.M., On, H.K., Fritsch, J.: Effects of Training and Representation-
al Characteristics in Icon Design. International Journal of Human-Computer Studies 55(5),
741–760 (2001)

10. Griss, M.L., Favaro, J., d’Alessandro, M.: Integrating Feature Modeling with the RSEB.
In: Proceedings of the Fifth International Conference on Software Reuse, pp. 76–85. IEEE
(1998)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study (1990)

12. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE
Software 19(4), 58–65 (2002)

13. Miller, G.A.: The Magical Number Seven, plus or Minus Two: Some Limits on Our
Capacity for Processing Information. Psychological Review 63(2), 81–97 (1956)

14. Moody, D.: The ‘Physics’ of Notations: Toward a Scientific Basis for Constructing Visual
Notations in Software Engineering. IEEE Transactions on Software Engineering 35(6),
756–779 (2009)

15. Moody, D.L., Heymans, P., Matulevičius, R.: Visual Syntax Does Matter: Improving the
Cognitive Effectiveness of the I* Visual Notation. Requirements Engineering 15(2),
141–75 (2010)

16. Moody, D.L., Heymans, P., Matulevičius, R.: Improving the Effectiveness of Visual
Representations in Requirements Engineering: An Evaluation of I* Visual Syntax. IEEE,
171–180 (2009)

17. Moody, D., van Hillegersberg, J.: Evaluating the Visual Syntax of UML: An Analysis of
the Cognitive Effectiveness of the UML Family of Diagrams. In: Gašević, D., Lämmel, R.,
Van Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 16–34. Springer, Heidelberg (2009)

18. OMG. Business Process Model and Notation (BPMN) Specification 2.0 V0.9.15. Object
Management Group, Inc. (2009)

19. OMG. Unified Modeling Language, Version 2.4.1. Object Management Group, Inc. (2012)

194 M. Saeed et al.

20. Paivio, A.: Mental Representations: A Dual Coding Approach. Oxford University Press
(1990)

21. Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Program-
ming. Communications of the ACM 38(6), 33–44 (1995)

22. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering Foundations,
Principles, and Techniques. Springer, New York (2005)

23. Possompès, T., Dony, C., Huchard, M., Tibermacine, C.: Design of a UML profile for
feature diagrams and its tooling implementation. In: Proceedings of the 23 International
Conference on Software Engineering & Knowledge Engineering, pp. 693–698 (2011)

24. Schobbens, P., Heymans, P., Trigaux, J.-C.: Feature Diagrams: A Survey and a Formal
Semantics. In: 14th IEEE International Conference on Requirements Engineering,
pp. 139–148. IEEE (2006)

25. Thomas, J.C., Diament, J., Martino, J., Bellamy, R.K.E.: Using the ‘Physics’ of Notations
to Analyze a Visual Representation of Business Decision Modeling. In: 2012 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 41–44. IEEE
(2012)

26. Tseng, M.M., Jiao, J.: Mass Customization. In: Handbook of Industrial Engineering.
John Wiley & Sons, Inc. (2001)

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 195–209, 2014.
© Springer-Verlag Berlin Heidelberg 2014

The Role of Requirements Engineering Practices in Agile
Development: An Empirical Study

Xinyu Wang1, Liping Zhao2, Ye Wang3, and Jie Sun4

1 College of Computer Science, Zhejiang University, China
wangxinyu@zju.edu.cn

2 School of Computer Science, The University of Manchester, Manchester, U.K.
liping.zhao@manchester.ac.uk

3 School of Computer Science and Information Engineering, Zhejiang Gongshang University,
China

yewang@zjgsu.edu.cn
4 Ningbo Institute of Technology, Zhejiang University, China

jiangbin@zju.edu.cn

Abstract. Requirements Engineering (RE) plays a fundamental role in all sorts
of software development processes. Recently, agile software development has
been growing in popularity. However, in contrast to the extensive research of
RE in traditional software development, the role of RE in agile development has
not yet been studied in depth. In this paper, we present a survey with three re-
search questions to explore the treatment of RE in the practical agile develop-
ment by investigating eight agile groups from four software development
organizations. To answer the three research questions, we targeted at 108 partic-
ipants with rich agile experiences and designed a questionnaire to collect their
answers. Our survey shows that agile RE practices play a crucial role in agile
development and they are an important prerequisite for projects’ success though
many agile methods advocate coding without waiting for formal requirements
and design specifications.

Keywords: requirements engineering, agile software development, scrum, sur-
vey, requirements analysis.

1 Introduction

In recent years, agile software development grows in popularity as it tackles a lot of
software development problems in dynamic contexts, such as Scrum [1], XP [2] and
so on. The RE process runs through the whole agile development process [3]. Many
RE practices have been proposed particularly for agile development [4][5]; however,
little literature studies the role of agile RE practices and the attention paid to agile RE
in practice from the empirical perspective.

In order to move a step towards understanding the role of RE practices in agile de-
velopment, we conducted an empirical study to explore and explicate the RE process
during a project in the context of agile software development. To ensure rigor, we
designed this study by strictly following the survey process proposed in [6]. We have

196 X. Wang et al.

set out to answer the following research questions (RQs) through the survey in eight
agile groups.

RQ1: Is agile RE performed as important as what agile practitioners thought?
RQ2: Which type of requirements (i.e. FRs and NFRs) are agile practitioners more

concerned with?
RQ3: At each RE stage, what methods and tools do agile practitioners often use?
For RQ1, we attempt to investigate whether agile RE is performed different from

what agile practitioners expected and what consequences it brings. RQ2 investigates
if non-functional requirements (NFRs) are treated as important as functional require-
ments (FRs) in agile development. Finally, RQ3 aims to investigate what methods and
tools agile practitioners usually use for requirements elicitation, requirements repre-
sentation and documentation, and requirement management. In a word, RQ1 studies
the overall role of agile RE played in agile development. RQ2 studies agile RE from
the problem aspect whereas RQ3 studies agile RE practices from the solution aspect.

In the following sections, we will present the whole process of the survey and the
conclusion we have obtained.

2 Research Method

2.1 Survey Design

Sampling. Before conducting a survey, we need to choose a relevant survey popula-
tion. According to [7], “a prerequisite to sample selection is to define the target popu-
lation as narrowly as possible”. In this survey, therefore, the target population should
be those who have participated or are participating in agile projects. In order to make
the survey results as precise as possible, we selected agile practitioners from four
different kinds of software development organizations which have established colla-
borations with the authors.

The four organizations that we chose have their own typical characteristics. The
first company (C1) is the worldwide leader in networking that transforms how people
connect, communicate and collaborate. It provides various kinds of products and ser-
vices such as borderless networks, data center and virtualization, VOIP phones and
gate-way systems, video conferencing and so on. The second company (C2) is a soft-
ware development firm that specializes in information processing and management. It
provides services to financial and health organizations worldwide. The third company
(C3) is a multinational corporation that designs, develops and manufactures flash
memory storage solutions and software. The fourth company (C4) is a software out-
sourcing company in China. It develops a large amount of services systems and pro-
vides different kinds of services for its customers around the world. We selected the
survey sample from the software developers who either have been involved or are
involved in agile projects.

According to the ability of the interviewer to gain access to the study subjects, we
chose four agile groups (G1, G2, G3, G4) from C1, one group (G5) from C2, two
groups (G6&G7) from C3 and one group (G8) from C4. The total number of partici-
pants from these groups is 108. Table 1 presents the detailed information of these
eight groups is listed in whereas table 2 explains the primary role that the survey par-
ticipants had in the studied projects.

 The Role of Requirements Engineering Practices in Agile Development 197

Table 1. Participant and project details. Project duration is in week

Group
ID

Group
Members

Agile
Method

Project
Description

Domain Project
Dura-
tion

No. of
Iteration

G1 Master x 1
BA x 1
Dev x 2
QA x 1

Scrum Web Confe-
rence Sys-
tem Devel-
opment

Network 40 20

G2 Master x 1
BA x 1
Dev x 3
QA x 2

Scrum Online
Training
System De-
velopment

Network 28 14

G3 PO x 1
Designer x
1
Dev x 3
QA x 2

Scrum Survey Re-
port System
development

Network 36 12

G4 PO x 1
Dev x 3
QA x 2

Scrum Integration
of Client
Support
Systems

Network 26 13

G5 Master x 1
BA x 2
Designer x
1
Dev x 6
QA x 4

Scrum Fund man-
agement
system
reengineer-
ing

Finance 96 24

G6 Coach x 1
Designer x
1
Dev x 8
QA x 5

XP SQL Data-
base Devel-
opment

Database 24 12

G7 Coach x 1
BA x 1
Designer x
2 Dev x 14
QA x 9

XP Flash Opti-
mization

Memory
Storage

24 8

G8 Master x 1
BA x 3
Designer x
1
Dev x 13
QA x 9

Scrum Barreled
Water Or-
dering Man-
agement
System De-
velopment

E-
commerce

15 5

198 X. Wang et al.

Survey Types Selection. There are many types of surveys, such as written survey,
face-to-face survey, phone survey and mixed mode survey. Our survey is a mixed
mode survey, which consists of two parts, including both face-to-face survey and
written survey.

First, we had a face-to-face interview with agile coaches (Scrum Masters or XP
Coaches), POs and BAs of each agile project on the development process of each
project, specifically on the RE process. Then we sent our electronic questionnaire to
all participants for their responses. The reason why we chose these two survey modes
is that it would take a lot of time to face-to-face interview and impossible to let all
group members involve in the interview. Another reason is that not all group mem-
bers know well about the RE process. Therefore, it is not necessary to let all of them
involve in the first-part interview.

Table 2. Participants summary in the survey

Participants’ primary role No. of participants
Agile Coach 6
Designer 6
BA 8
PO 2
Developer 52
QA 34
Total Number of Participants 108

2.2 Survey Instrument Development

At a fundamental level, one challenge in developing survey instrument is to design a
coherent set of questions. As said by Fowler [8], “a good question is one that produc-
es answers that are reliable and valid measures of something we want to describe”.

In order to design an applicable questionnaire, we followed a set of three steps as
proposed in [9]:

1) Compose a preliminary questionnaire which is relevant to the aforementioned
three RQs,

2) Do a pilot interview to agile coaches, POs and BAs of each group and ask
them to validate the questionnaire,

3) Implement changes in the questionnaire based on their feedback.
The questionnaire consists of both open-ended questions and close-ended ques-

tions. Open-ended questions allows the participants to freely present what they think
about the RE practices in agile development, whereas close-ended questions require
the respondent to choose from among a given set of responses, such as those provided
by Likert scales. Compared to open-ended questions, close-ended questions are

 The Role of Requirements Engineering Practices in Agile Development 199

easiest for participants to answer and for researchers to analyze the data. Therefore, in
order to save participants’ time, close-ended questions account for more than 50% in
our questionnaire.

2.3 Survey Execution

Face-to-Face Interview. We conducted open interviews with agile coaches, POs and
BAs from the eight groups.

First, we asked agile coaches to give us a general introduction to their development
process and then directly asked them what kind of problems they have encountered in
their projects. Each interview session was between 1 hour and 2 hours. This interview
provided an overview for us to understand how each project executed and what kind
of role agile RE played at each stage.

Second, we asked BAs to describe agile RE process in their projects and what kind
of problems they have encountered during agile RE. As some POs were also respon-
sible for requirements analysis, we also interview POs in this round interview. We use
an umbrella name “Requirements Analyst (RA)” for both BAs and POs. The inter-
view questions focused on the participants’ experiences of working with agile RE
practices and in particular around their roles on agile projects. For example, we asked
about the challenges RAs faced in projects and the strategies they used to overcome
them. The answers varied with the individual participants. This process usually took
30 to 60 minutes.

Throughout each interview session, the interviewer took handwritten notes. These
notes helped us to discover questions from what interviewees stated.

Finally, the interviewer and the interviewee walked through the questionnaire
which served to guide the second-part survey.

Written Survey. The questionnaire was composed of four parts, each of which cor-
responds to a research question except the first part. The first part aims to investigate
the background of the participant including his/her role in the agile project, project
size, agile method and so on. Answers in this part have been summarized in Table 1
and Table 2.

The second part, corresponding to RQ1, consists of four questions: the first ques-
tion discussed the importance of agile RE that each participant considered whereas
the second question discussed the actual effort paid by the participants with respect to
the RE practices of agile projects. The third and fourth question investigated the prob-
lems or difficulties that different groups have encountered. The third part corresponds
to RQ2 and discusses the degree of participants’ concern on different types of re-
quirements in different agile development phases. The last part corresponds to RQ3
and includes questions related to the agile RE methods and tools. Questions in the last
part can be categorized into four classes: requirements elicitation, requirements repre-
sentation and documentation, requirements analysis and requirements management.
The final questionnaire is shown in Table 3. Some questions have multiple options.

200 X. Wang et al.

3 Results

Table 3. Questions in the survey. Questions specific for RAs are marked as *

Questions
RQ1: Is agile RE performed as important as what agile practitioners thought?

Q1: How important do you think agile RE is?
Q2: How many RAs are there in your project?
Q3: What’s the percentage of delayed iterations in your project?
Q4: Which development activity(s) usually causes difficulties in your project?

RQ2: Which type of requirements (i.e. FRs and NFRs) are agile practitioners more
concerned with?
Q5: Which type of requirement costs more effort in your project?
Q6: How much attention is paid to FRs in the following development activities –
project planning, requirements analysis, design, coding, and testing? Please sort the
five activities from the most to the least.
Q7: How much attention is paid to NFRs (e.g. performance, security, reliability, etc)
in the following development activities – project planning, requirements analysis,
design, coding, and testing? Please sort the five activities from the most to the least.
Q8: Are customers satisfied with the quality of the system your group developed?

RQ3: At each RE stage, what methods and tools do agile practitioners often use?
Q9: How often do you communicate with customers to discuss requirements?*
Q10: What type of method do you use to elicit requirements? *
Q11: Why do you choose the above method(s) to elicit requirements?*
Q12: Do you use any tools to elicit requirements? What are they?*
Q13: What type of methods do you use to describe requirements? *
Q14: Do you use any tools to document requirements? What are they? *
Q15: What method do you use to find any inconsistency, incorrectness or incomplete-
ness in the requirements you captured from the customer? *
Q16: Do you pay a lot of attention to the dependency among requirements, such as
the dependency between two FRs or between NFRs? If yes, how do you maintain
these dependencies? *
Q17: What method do you use to manage requirements changes? *
Q18: Why do you choose the above method to manage requirements changes? *
Q19: Do you use any tools to manage requirements? What are they? *

3.1 RQ1: Is Agile RE Performed as Important as What Agile Practitioners
Thought?

According to the 108 responses, we obtained the answer for Q1 as shown in Figure 1.
More than 90% participants considered RE important, amongst which 85.19% consi-
dered it very important. None of the participants denied its importance. Therefore in
most agile practitioners’ minds, agile RE is undoubtedly crucial for the success of
their projects despite their role.

To investigate how many efforts have been devoted in agile RE practices, we de-
signed Q2 and Figure 2 shows the result of this question in groups. All of G1, G2, G3,
G4, G6 and G7 had one RA, whereas G5 assigned two RAs and G8 assigned three.
Noted that for G3, G4, G6 and G7, they didn’t particularly assign one person to do the

 The Role of Requirements Engineering Practices in Agile Development 201

RA job; instead, their coach plays the role of RA. The percentage of RAs in total
number was from 3.7% to 20%. Most groups severely cut the resources for agile RE
for the purpose of cost saving. In the face-to-face interview, we learned that all agile
coaches preferred to assign more resources to coding and testing though they have
encountered many problems during requirements analysis. We can see that most agile
RE does not get due attention as it was thought before.

Fig. 1. The importance of RE in agile practitioners’ minds

Fig. 2. The number of people assigned to RE in agile projects

In order to obtain the delay rate of each group, we designed Q3 and the results are
shown as Fig. 3. Of all the eight groups, G6, G7 and G8 have much higher delay rates
which respectively are 50%, 41.67% and 40%, follow by G3, G4 and G5 whose delay
rates respectively are 19.44%, 21.43% and 25%. G1 and G2 have the lowest delay
rates which respectively are 5% and 7.69%.

Fig. 3. The delay rate of each group

202 X. Wang et al.

Figure 4 shows the reasons that cause delays in the previous question. In all the
five development activities, requirements analysis is considered by 78 participants as
the most crucial factor that causes delays, followed by the factor of project planning
as preferred by 42 participates. The other three development activities only receive
small amounts of blame: 16 participants ascribe delays to the testing stags; 13 partici-
pants ascribe delays to design; 7 participants ascribe delays to coding.

Fig. 4. The delay rate of each group

3.2 RQ2: What Type of Requirements Are Agile Practitioners More
Concerned With?

We categorized requirements into two major categories: FRs and NFRs. We found
that the majority of groups (75%) treated FRs more important than NFRs in the con-
text of agile development, whereas only 25% of groups treated them as equally im-
portant, as shown in Figure 5.

We observed that the attention paid to FRs varies in both development activities
(i.e. project planning, requirements analysis, design, coding and testing) and groups.
The participants listed five activities in an order of most to least attention that have
been paid to FRs, which is shown in Table 4. Most groups assessed efforts in terms of
function points (FPs) of system requirements; as a result, they paid most attention to
FRs at the beginning of the project, i.e. at the stage of project planning. There is no
doubt that almost all groups put “Requirements Analysis” in the first or second place
as the aim of this activity is to analyze FRs. Table 4 tells us that every group paid less
attention to FRs when coding and testing.

Fig. 5. NFRs compared to FRs

 The Role of Requirements Engineering Practices in Agile Development 203

Table 4. The degree of attention paid to FRs in terms of development phases and groups

Group ID Attention paid to FRs in the order of development phases
G1 Project Planning, Requirements Analysis, Testing, Design, Coding
G2 Requirements analysis, Design, Project Planning, Coding & Testing
G3 Requirements Analysis, Testing, Design, Project Planning, Coding
G4 Project Planning, Requirements Analysis, Testing, Design, Coding
G5 Requirements analysis, Project Planning, Design, Testing, Coding
G6 Project Planning, Requirements Analysis, Design, Testing, Coding
G7 Project Planning, Requirements Analysis, Design, Coding, Testing
G8 Project Planning, Requirements Analysis, Design, Coding, Testing

For NFRs, the degree of attention is significantly different from what was obtained

for FRs. Table 5 shows the result. For example, they paid more attention to NFRs
when designing and testing than that they paid to FRs. Most groups didn’t consider
NFRs at the beginning of their projects as their customers only concerned FRs; in-
stead, these groups started to deal with NFRs from the stage of design. Testing is the
only way to evaluate whether the system meets NFRs, therefore, it is also necessary to
pay a lot of attention to NFRs during testing.

Table 5. The degree of attention paid to NFRs in terms of development phases and groups

Group ID Attention paid to NFRs in the order of development phases
G1 Requirements Analysis, Testing, Design, Coding, Project Planning
G2 Project Planning, Design, Testing, Requirements analysis, Coding

G3 Requirements Analysis, Testing, Design, Coding, Project Planning
G4 Project Planning, Requirements Analysis, Design, Coding, Testing
G5 Design, Requirements analysis, Project Planning, Coding, Testing

G6 Design, Requirements Analysis, Testing, Coding, Project Planning
G7 Testing, Requirements Analysis, Project Planning, Design, Coding
G8 Design, Coding, Testing, Project Planning, Requirements Analysis

To obtain the customer satisfaction of system quality, we designed Q8. The results

are as follows: Customers of G1, G3 and G4 are highly satisfied with their system
quality; Customers of G5, G6 and G7 are satisfied with their system quality; finally
customers of G2 and G8 are dissatisfied with their system quality.

3.3 RQ3: What Methods and Tools Do Agile Practitioners Often Use?

Questions for RQ3 are only left particularly for RAs to answer, so as to conduct an in-
depth investigation on RE practices including both methods and tools.

Requirements Elicitation. In agile groups, 45.45% of RAs discussed requirements
with customers once a week, 20.37% twice a week, 16.67% communicated with
customers once they needed (more frequent than once a week) and only 9.09% com-
municated with their customers every day (see Figure 6).

204 X. Wang et al.

Fig. 6. The frequency of requirements elicitation from customers

We also investigated the common methods that were used by RAs to elicit re-
quirements and the reason why RAs preferred those methods. From Figure 7, inter-
view and user story were the most frequently used methods (More than 90% RAs
used them). As interview is as means of face-to-face communication with customers,
RAs found it “quite simple and efficient to capture requirements from customers”.
Compared to other methods, interview is more efficient and direct; moreover, it is
easy to use for most RAs. Since most customers cannot define their requirements
correctly, RAs adopted user story to “refine vague requirements into more precise
and detailed ones”.

Fig. 7. The requirements elicitation methods used by RAs

In many RE surveys, modeling was usually mentioned by RE practitioners to elicit
requirements, such as business process modeling [10], goal modeling [11]. In our
survey, modeling was the second frequently used method for requirements elicitation.
72.73% of RAs preferred to use models as “models can show their ideas easily and
quickly”.

 The Role of Requirements Engineering Practices in Agile Development 205

Face-to-face survey [12] and prototyping [13] were also preferred by a lot of RAs
due to the ability that they can “enable in-depth understanding between stakehold-
ers”. Brainstorming was popular in agile groups as it can “involve as many stakehold-
ers as possible to participate in the requirements discussion and clarification”. As G5
aimed to reengineer a legacy system, analyzing existing documents was the most
important way to retrieve requirements.

Compared to the aforementioned approaches, knowledge acquisition methods [14]
such as protocol analysis, laddering, card sorting and inventing requirements were
less often used by RAs. The reason is that only a few RAs are familiar with these
methods.

Based on the above methods, three types of tools were often used by RAs: 1) Mi-
crosoft Word and Excel were used for interviewing, user story authoring and survey;
2) Visual [15], Enterprise Architect [16] and other UML modeling tools were used
when RAs wanted to build models; 3) Balsamiq Mockup [17] and Photoshop [18]
were used for prototyping.

Requirements Representation and Documentation. According to our interview to
the RAs, we summarized six frequently used methods for representing and document-
ing requirements. The usage percentage of each method is shown in Figure 8.

Fig. 8. The requirements representation methods used by RAs

This figure reveals that both use case and user story are the most preferred me-
thods. This is not surprising because these two methods are very well known due to
their prominent comprehensibility, decomposability and interactivity. Additionally,
function point and process model are also frequently used for specific intensions. For
example, function point is capable of expressing system internal functions; process
model is a necessity for describing the requirements of process-intensive systems.
Sometimes, role card and organization model are also used as the peripheral support
for requirements representation and documentation.

To facilitate the representation and documentation of requirements, tools are com-
monly leveraged. The most popular ones are Microsoft Word and ScrumWorks [19].
Others such as Wikipage [20], Testlink [21], Microsoft Excel and Microsoft Visio are
also utilized by some QAs as auxiliary tools.

206 X. Wang et al.

Requirements Analysis. Another responsibility of RAs is to discover and handle
inconsistent, incorrect and incomplete requirements (i.e. requirements defects) cap-
tured from customers. According to the responses from RAs, there are several ways
helping them to discover requirements defects.

For example, the common method they used is comparison. They designed a set of
scenarios and then compared the process flows of these scenarios to check the incon-
sistency and incompleteness between requirements. Another way is to confirm the
existing requirements with customers and experts. Generally, customers are more
sensitive to requirements incorrectness than BAs as they are more familiar with the
business. However, some requirements defects cannot be discovered at the stage of
requirements analysis. In some cases, RAs asked developers and QAs for their helps
to find out these defects.

Requirements Management. In agile software development, the changes of re-
quirements and the dependencies between requirements are so frequent that they need
to be maintained and managed.

Requirement changes are usually managed by several ways in agile groups. For
example, BAs from G5 managed changes through highlighting them in the require-
ment documentations and also maintained documentation versions through SVN [22].
In doing so, they make requirements easy to trace and the whole process more time-
saving. The BA from G8 managed changes through building a change table, which
consisted of details and effects of requirement changes, project risks, solution plans.
All of these items would be confirmed by relevant stakeholders. Other project groups
employed some requirements management tools to assist to manage changes, such as
JIRA [23], Rally [24] and ScrumWorks [19].

In addition to requirement changes, it is crucial to identify and manage the depen-
dencies between requirements, as the dependencies between requirements determine
the order to implement different functionalities. According to the questionnaire, most
groups take actions to handle requirement dependencies except G2. Both G1 and G8
mentioned that they tried to decrease the dependencies between requirements through
coupling business-relevant requirements together. G3, G4 and G5 marked the depen-
dencies through requirements prioritization. G6 and G7 managed the dependencies
through building a two dimensional matrix, whose column and row were both
requirements.

4 Discussion and Threats

4.1 Discussion of Results

Little literature studies agile RE practices. Our study looked at agile RE practitioners
from three different aspects and revealed a few findings as below:

1. With respect to the overall project management aspect, we observed that the im-
portance of agile RE practices deviated from what agile practitioners thought in
their minds. Although the majority of agile groups acknowledged the importance
of RE in agile development, very few resources were allocated to capture and ana-
lyze customers’ requirements, which results in constant requirement changes from

 The Role of Requirements Engineering Practices in Agile Development 207

customers. Correlating to the interview with agile coaches from each group, we
found that project delays usually occurred in G6, G7 and G8 and their agile coach-
es admitted that the vague, incomplete and ambiguous requirements were the major
reason for the project delays, whereas in other groups, project delays were less
common. It is interesting to find that the proportion of the number of RAs in these
groups was between 14% and 20% while the proportion in G6, G7 and G8 was un-
der 10%. This study suggests that agile practitioners should carefully leverage the
time cost and labor cost of RE in their projects.

2. With respect to the problem aspect, the study found that most agile practitioners
were more concerned with FRs than NFRs. Only a few part of them treated FRs
and NFRs equally. The major reason was that customers usually cannot give an ac-
curate definition of NFRs. They didn’t know how they expected the system to be
performed. They cannot tell agile developers where they did not satisfied until they
started to use the system. As a result, agile practitioners didn’t treat NFRs seriously
in the first couples of iterations. It is interesting to notice that FRs got more atten-
tion at the stage of project planning and requirements analysis whereas NFRs were
just the opposite, i.e. at the stage of design and testing. However, the quality of sys-
tems developed by those groups that didn’t pay much attention to NFRs at the
stage of requirements analysis was not satisfying. The quality issues were hurriedly
fixed in the last several iterations according to the feedback from customers. This
finding suggests that agile practitioners should not ignore NFRs analysis at the be-
ginning of their projects.

3. With respect to the solution aspect, we observed that in agile practices, most RAs
discussed requirements with customers very often, about 80% of RAs got in touch
with their customers at least once a week, 100% at least twice a week. Two reasons
led to this situation: 1) In each iteration, new requirements need to be implemented
and it is necessary to confirm new requirements with customers before implemen-
tation; 2) RAs wanted to capture requirement changes as early as possible in order
to reduce the total cost brought by project changes. Interview, user story, modeling
and prototyping are the most widely used requirements elicitation methods, whe-
reas user story and use cases are the most widely used requirements representation
methods. We also observed that both customers and RAs preferred to use natural-
language-based methods to describe requirements due to the fact that such methods
are simple and intuitive. Yet, these methods will generate a large number of docu-
ments which make them difficult to manage. This finding suggests that agile RE
practices should promote requirements management tools in order to manage a
large set of requirements, prioritizations and the dependencies between require-
ments.

4.2 Threats to Validity

We evaluated the possible threats to validity of the results we have obtained from the
empirical study.

First, the level of agile practitioners’ experience is one possible threat which may
affect the results. We believe this threat to validity is small as we selected experienced

208 X. Wang et al.

agile practitioners from different agile groups. All these agile practitioners have parti-
cipated in at least one agile project. Second, we acknowledge the possible risks that
answering all questions may be time-consuming for the participants. In order to save
their time, we substituted a lot of close-ended questions for open-ended questions.
However, we admit that there is another threat as we were noticed that close-ended
questions may restrict the scope of answers to those questions. Besides, the list of
questions we present is not comprehensive, which needs improvement in the future.

5 Conclusions

Our study reveals that RE practices play a crucial role in agile development. Although
many agile methods advocate coding without waiting for formal requirements and
design specifications, RE is still an important prerequisite for the success of projects.
The value of the work presented in this paper is the identification of a set of following
findings about RE practices for agile practitioners.

Lack of concern on RE in practice. Many project delays were caused by insuffi-
cient communication with customers or shortage of RE resources. The role of agile
RE practices has been acknowledged by most agile practitioners, nevertheless, they
didn’t make an even resource allocation due to the project cost. Therefore, it is rec-
ommended that agile groups should carefully leverage the resources assigned to RE
and the costs.

Lack of concern on NFRs. Agile practitioners should pay more attention to NFRs at
the beginning of the project, rather than leave them to design or coding. We suggest
them to adopt some methods such as NFR framework for NFRs analysis.

Preference for agile RE practices. In agile RE practices, the participants identified
that interviewing and user story are the most important requirements elicitation prac-
tices whereas user story and use case are the most widely used requirements represen-
tation practices. In order to rapidly capture requirement changes from customers, it is
important to intensively communicate with customers. Although agile RE differs from
traditional RE in that it takes an iterative discovery approach, many traditional RE
practices are still applicable in agile development such as use case, modeling and
prototyping and so on.

Acknowledgements. This work has been supported by the National Natural Science
Foundation of China under Grant No. 61103032. We also would like to thank those
who participated in our study and gave us a lot of valuable feedbacks.

References

1. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR
(2001)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (1999)

 The Role of Requirements Engineering Practices in Agile Development 209

3. Paetsch, F., Eberlein, A., Maurer, F.: Requirements Engineering and Agile Software
Development. In: 12th IEEE International Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises, pp. 308–313. IEEE Press, New York (2003)

4. Cao, L., Ramesh, B.: Agile Requirements Engineering Practices: An Empirical Study.
IEEE Software, 60–67 (January/February 2008)

5. Ramesh, B., Cao, L.: Agile Requirements Engineering Practices and Challenges: An
Empirical Study. Information Systems Journal 20, 449–480 (2010)

6. Glasow, P.: Fundamentals of Survey Research Methodology (2005),
http://www33.homepage.villanova.edu/edward.fierros/pdf/
Glasow.pdf

7. Salant, P., Dillman, D.A.: How to Conduct Your Own Survey. John Wiley and Sons
(1994)

8. Fowler, J., Floyd, J.: Improving Survey Questions: Design and evaluation. Sage Publications
(1995)

9. Racheva, Z., Daneva, M., Sikkel, K., Wieringa, R., Herrmann, A.: Do we Know Enough
about Requirements Prioritization in Agile Projects: Insights from a Case Study. In: 18th
International Requirements Engineering Conferences, pp. 147–156. ACM Press, New
York (2010)

10. Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Modeling. In:
van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management.
LNCS, vol. 1806, pp. 30–49. Springer, Heidelberg (2000)

11. Rolland, C., Souveyet, C., Achour, C.B.: Guiding Goal Modeling Using Scenarios. IEEE
Transactions on Software Engineering 24, 1055–1071 (1998)

12. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A Roadmap. In: 4th Interna-
tional Conferences on Software Engineering, pp. 35–46. ACM Press, New York (2000)

13. Davis, A.: Operational Prototyping: A New Development Approach. IEEE Software 9,
70–78 (1992)

14. Shaw, M., Gaines, B.: Requirements Acquisition. Software Engineering Journal 11, 149–165
(1996)

15. Visual Paradigm: Visual Paradigm for UML (2013),
http://www.visual-paradigm.com/

16. Sparx Systems: Enterprise Architects (2013),
http://www.sparxsystems.cn/products/ea/

17. Balsamiq. Balsamiq Mockups (2013),
http://balsamiq.com/products/mockups/

18. Adobe Systems: Adobe Photoshop (2013),
http://www.adobe.com/cn/products/photoshop.html

19. CollabNet: ScrumWorks Pro (2013),
http://www.collab.net/downloads/scrumworks

20. Wiki Books. Wiki Page (2013), http://en.wikibooks.org/wiki/Wikipage
21. Syncro Soft.: TestLink (2013), http://testlink.org/
22. Apache.: Subversion (2013), http://subversion.apache.org/
23. Atlassian.: Jira (2013), https://www.atlassian.com/zh/software/jira
24. Rally Software: Rally (2013), http://www.rallydev.com/

Support Method to Elicit Accessibility

Requirements

Junko Shirogane

Tokyo Woman’s Christian University, Japan
junko@lab.twcu.ac.jp

Abstract. Various accessibility guidelines have been developed to meet
the increased demand for accessible software, but due to the numerous el-
ements within these guidelines, applying all elements to target software is
burdensome and expensive. Additionally, whether all the elements should
be applied depends on the software’s purpose and target end users, who
do not often clearly recognize difficulties. Moreover, accessibility require-
ments elicited in the late software development phase cannot always
be applied. To ensure that these requirements are implemented prop-
erly, they must be elicited in the early software development phase by
considering end users’ conscious and unconscious characteristics. Here a
method to elicit accessibility requirements in the early software develop-
ment phase is proposed. Specifically, end users complete checklists, which
are designed to determine disabilities with respect to guidelines. Then
guideline elements are prioritized and applied to the target software as
specified by the accessibility requirements.

Keywords: requirements elicitation, accessibility requirements, acces-
sibility guideline.

1 Introduction

Accessibility requirements for software have been increasing. For examples, Sec-
tion 508 [1] in the United States and JIS X 8341 [2] in Japan have been imple-
mented. Accessibility means that various people, including the challenged and
elderly people, can use software and websites easily. User interfaces are espe-
cially important because people directly interact with them. Most software uses
GUIs (Graphical User Interfaces), which people operate visually, but people with
visual limitations have difficulty and require specific support tools and devices.
Thus, software must be developed considering the end users’ characteristics (e.g.,
disabilities, age, etc.) to design accessible software and the proper support tools.

Many guidelines have been developed to realize accessibility (e.g., Web Con-
tent Accessibility Guidelines 2.0 (WCAG 2.0) [3] and JIS X 8341-3). In addition,
companies and organizations have developed their own accessibility guidelines
where problematic situations and their resolutions are described in detail. Con-
sequently, the vast number of elements in guidelines is an issue. When guidelines
are applied to software, the applicability of each element must be confirmed.

D. Zowghi and Z. Jin (Eds.): APRES 2014, CCIS 432, pp. 210–223, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Support Method to Elicit Accessibility Requirements 211

This confirmation process is necessary for general use software, but not all soft-
ware is intended for general use (e.g., for institutional use). In these cases, some
elements are not required based on the software’s purpose and the end users’
characteristics.

In addition, some guideline elements can be applied in the late software devel-
opment phase, whereas some cannot. To resolve these problems, it is necessary
to elicit accessibility requirements in the early development phase and determine
which elements within the guidelines to apply.

Moreover, it is possible that the accessibility requirements are not appropri-
ately elicited. Because end users are often unable to recognize difficulties when
using software, they cannot identify current disabilities. Hence, accessibility re-
quirements should be elicited while considering these people.

In this research, we propose a method to analyze end users’ characteristics
and elicit accessibility requirements in the early development phase. Concretely,
checklists are used to analyze the operational situations and problems of end
users. Based on this analysis, guideline elements are elicited as accessibility re-
quirements with priorities. The proposed method can elicit end users’ accessi-
bility requirements directly and appropriately, and implement the all required
accessibility requirements while simultaneously reducing costs and burden on
software developers.

This paper is organized as follows. Section 2 describes related works, while the
features of the proposed method is described in section 3. Section 4 shows the
support strategies to challenged users. Section 5 provides a detailed description
of this proposed method. Section 6 describes the simulation of this proposed
method, and section 7 concludes our paper.

2 Related Works

Requirements can be classified into functional and non-functional requirements.
Functional requirements describe how to process inputs, while non-functional
requirements define attributes that software should satisfy (e.g., security, reli-
ability, usability, etc.). There are various types of non-functional requirements,
and accessibility requirements are non-functional requirements. Strategies of elic-
iting non-functional requirements differ from the types. Although many studies
have examined security requirements (a type of non-functional requirements)
[4][5], few have focused on accessibility requirements.

Baguma et al. have proposed a method to integrate accessibility requirements
with functional requirements [6]. Functional requirements and non-functional
requirements, including accessibility requirements, have been analyzed by User
Centered Design (UCD) techniques [7]. In this analysis, user group profiles, per-
sonas, and scenarios are documented. User group profiles are characteristics of
users. Personas are concrete examples of typical users, while scenarios describe
how personas use the products. Then, accessibility requirements (AR) graphs
are described using the Non-Functional Requirements (NFR) goal graphs ap-
proach [8]. Finally, use case diagrams, including accessibility requirements, are

212 J. Shirogane

described. Because this method describes accessibility requirements and func-
tional requirements in the same diagrams, their relationships can be clarified.
However, this approach does not consider the priorities of accessibility require-
ments.

AccessOnto is an ontology-based tool kit for accessibility requirements [9] that
provides a repository of accessibility guidelines and a specification language to
describe accessibility requirements in user requirements documents. Items re-
lated to user interfaces, such as user agents, languages, guidelines, checkpoints,
and user characteristics, are defined. Although AccessOnto easily describes re-
quirements specifications, including accessibility requirements, accessibility re-
quirements are not elicited.

Minon et al. have proposed a method to integrate accessibility requirements
into a user interface development method [10]. Accessibility requirements, which
are elicited using accessibility guidelines and standards, such as WCAG [3] and
ISO 9241-171:2008 [11], are described as task models of UsiXML (USer Inter-
face eXtensible Markup Language) [12] of UIDL (User Interface Description
Language) [13]. The task models are transformed into an Abstract User Inter-
face (AUI) model of UsiXML that includes accessibility requirements. Because
this method has high affinity with UIDL, accessibility requirements are eas-
ily integrated into user interface development methods. However, accessibility
requirements are elicited using existing accessibility guidelines and standards.
Because situations and levels of disabilities vary by end user, costs and burdens
hinder software development. Thus, it is necessary to prioritize requirements
after eliciting them from end users.

3 Features of the Proposed Method

Elicitation of Accessibility Requirements in the Early Software
Development Phase

Regardless of their importance, some requirements elicited in the late software
development phase cannot be realized. Although accessibility requirements to
change color and font size using GUIs may be reasonable, preparing specific
functions and support tools may not. Thus, it is necessary to elicit specific ac-
cessibility requirements in the early software development phase.

We assume that this proposed method is used in the requirements elicita-
tion phase, which is part of the early software development phase. Hence, all
requirements should be implementable.

Realization of Software Based on Detailed End Users’ Characteristics

Because situations and levels of disabilities vary from person to person, the
requirements differ. Software must be developed based on end users’ situations
and levels of disabilities.

In the proposed method, the situations and levels of disabilities are analyzed
in detail. Then the accessibility requirements are prioritized, allowing software
to be more appropriately developed for end users.

Support Method to Elicit Accessibility Requirements 213

Reduction of Costs and Burdens

Eliciting requirements in the late software development phase causes iterations
and the development returns to the early phase. In addition, applying accessi-
bility guidelines requires software developers to confirm the numerous elements
in the guidelines, which is expensive and burdensome.

In this proposed method, accessibility requirements can be elicited in the early
software development phase. Because end users’ characteristics are analyzed in
detail, the scope of accessibility requirements can be tailored to the end users.
These features can reduce the cost of burden on software developers.

4 Support Strategies to Challenged People

Many guidelines have been developed to make software accessible, but each per-
son has a different level and situation of disability. When challenged people use
software, they often use specific support tools, devices, and functions, which cor-
respond to their situation. The availability of these tools and functions may be
included in accessibility requirements.

4.1 Disabilities

Typical support strategies depend on the type of disability. Below are typical
disabilities and their support strategies.

Blind Users. This is one kind of visual impairment in which people have com-
pletely lost their eyesight. Part of blind users can feel light, but cannot identify
anything with their eyes.

Two types of basic support exist for blind users. One is that all contents should
be described with text that is compatible with screen readers and braille displays.
Screen readers are software to read texts on display, while braille displays convert
texts into braille. Most blind people use screen readers. The other is that all
contents should be operated with a keyboard. Blind users cannot identify where
controls (e.g., links or buttons) are on display, so it is difficult to use a mouse.

Users with Weak Eyesight. Weak eyesight is another kind of visual impair-
ment. In this disability, eyesight is barely corrected even if users wear glasses or
contact lenses. Users can roughly identify things with their eyes, but their vision
becomes inaccurate beyond a certain level.

There are two basic supports for users with weak eyesight. One is that small
text and icons should not be used. These users can identify large texts and icons.
The other is a function to adjust text size. Because the level of eyesight weakness
varies by user, the text size must be adjustable to suit individual needs.

214 J. Shirogane

Users with Color-Vision Impairments. Color-vision is a third type of visual
impairment. In this disability, users misidentify some colors (e.g., red, green, and
blue). For example, users with this disability often have difficulty distinguishing
between red and green.

There are two types of basic support. One is that contents should not be
represented solely by color. For example, a description like “something is rep-
resented with red” should not be used. The other is a function to adjust the
colors. Because color limitations differ according to the user, the color must be
adjustable to suit individual needs.

Users with Hearing Impairments. In this disability, users have difficulty
or cannot hear voices or sounds. For these users, the basic support is that all
contents of software should be represented as text that they can read with their
eyes.

Physically Disabled Users. In this disability, users have limited control of
their hands, arms, and/or fingers. These users often use various support tools
and devices, such as a software keyboard or a track ball. Basic support is that
the software must be compatible with these support tools and devices.

Elderly Users. Although elderly users are not considered as challenged users,
they have similar difficulties with challenged users by aging. Thus, it is possible
to support elderly users with similar strategies for challenged users.

4.2 Accessibility Guidelines

Accessibility guidelines include detailed descriptions and resolutions of common
difficulties of challenged users. In the guidelines, each element describes a specific
issue or its resolution. Elements often include implementation. Because many
guidelines have been developed (e.g., WCAG 2.0 [3] and JIS X 8341-3 [2]), ele-
ments must be prioritized.

5 Elicitation of Accessibility Requirements

In the proposed method, accessibility guidelines are prepared by initially em-
ploying checklists to analyze end users’ characteristics. Associations between the
questions in these checklists and elements in guidelines are specified. Then based
on the end users’ responses, the levels and situations of difficulties are analyzed,
and the strength of relevance between difficulties of end users and guideline
elements are calculated as numerical values. Finally, the necessary guideline ele-
ments are extracted and prioritized as accessibility requirements. Figure 1 shows
the architecture of the proposed method.

Support Method to Elicit Accessibility Requirements 215

Answering data

Basic checklists

Prepara�on of checklists

Associa�on of
guideline and checklist

Guideline elements
to be applied

Guideline
elements

Assignment of values

Response

End usersSo�ware
Developers

Proposed method

Problem checklists

Basic checklists
(Customized)

Problem checklists
(Customized)

Elicita�on of
guideline elements

Checklists

Fig. 1. Architecture of the proposed method

5.1 Preparation of Checklists and Accessibility Guidelines

Checklists. There are two types of checklists: basic and problem. Table 1 shows
an example of a basic checklist.

Table 1. Example of basic checklists

No. Question Selections for response

Situations of disabilities and abilities

A-1 What is your eyesight? Over 1.0 Over 0.3 and
under 1.0

Under 0.3 None

A-2 Can you use braille? No Hardly Almost can Can

Usages of support tools and devices

B-1 Do you use a screen reader? No Sometimes Often Always
B-2 Do you use a braille display? No Sometimes Often Always
B-3 Do you use a voice input system? No Sometimes Often Always
B-4 Do you use software to adjust

view size?
No Sometimes Often Always

Basic checklists include questions about the following:

– Situations of end users’ disabilities
– Computer environments and configurations that end users use
– Support tools and devices that end users use, etc.

216 J. Shirogane

Table 2. Example of problem checklists

No. Question Selections of response

Problems of current usages

1 Do you have any problems using computers? Yes -> to 2. No

2 What kinds of problems do
you experience?

Difficult to
watch display
-> to 3.

Difficult to
hear voices
and sounds ->
to 4.

Difficult to
operate key-
boards and
mouse -> to 5.

Other -
> 6.

3 Please response the following questions about difficulties of watching dis-
plays.

X-1 Font size configura-
tions of the display

Too big Just right small Too
small

X-1-1 If you responded “a little small” or “too small”, please indicate the display
size, resolution, and font size that you normally use.

X-2 Color usages Excellent Good Poor Very
poor

X-2-1 If you responded “poor” or “very poor”, please indicate the background and
foreground colors that you feel difficult to watch.

X-3 Vision of display Very clear Clear Slightly blurry Blurry

Problem checklists include questions about current usage problems. Table 2
shows an example of problem checklists.

Questions of checklists are associated to guideline elements, and there are vari-
ous accessibility guidelines by governments, companies, and organizations. Addi-
tionally, important guideline elements may be different from software character-
istics. Thus, templates for these checklists based on the policies of governments,
companies, and organizations as well as currently realized support tools and de-
vices were prepared. Because the actual templates can be customized, elements
of various guidelines can be associated to checklist questions, and checklists can
reflect the intended software characteristics.

Table 3. Examples of accessibility guideline elements

No. Guideline element

Usages of support tools and devices

1-1 All operations must performed by a keyboard.

1-2 All contents must be able to be read by a screen reader.

1-3 All contents must be able to be shown by a braille display.

1-4 Software to adjust view size must be available.

Color usages

2-1 Contents must not be denoted solely by only colors.

2-2 Brightness contrasts of background and foreground colors must be sufficient.

2-3 System configurations must be applicable (e.g., color and font).

Support Method to Elicit Accessibility Requirements 217

Accessibility Guidelines. In the proposed method, elements in the guidelines
are elicited as accessibility requirements. Thus, the checklists and accessibility
guidelines must be associated. We prepared our checklists based on the existing
guidelines, such as WCAG 2.0 [3] and JIS X 8341-3 [2]. Table 3 shows examples
of the guideline elements. If necessary, extra elements can be added.

5.2 Association of Guideline Elements and Checklist Questions

Questions in a checklist are associated with specific guideline elements. The as-
sociation strength is identified as “Strong”, “Medium”, “Weak”, and “None”.
The results indicate how each element should be realized during software devel-
opment.

Table 4 shows an example of associations between checklist questions and
guideline elements. Table 5 also shows an example of the association strengths.

The question numbers (e.g., “A-1” and “X-1”) are from Tables 1 and 2, while
the element numbers (e.g., “1-1” and “2-1”) are from Table 3. Both the associ-
ations and association strengths can be customized.

Table 4. Example of associations between questions and elements

No. Situations of disabilities

Basic checklists

A-1 Determination of blind and levels of weak eyesight
A-2 Determination of braille display usages
B-1 Determination of blind, weak eyesight
B-2 Determination of blind, weak eyesight

Problem checklists

X-1 Determination of levels of weak eyesight
X-2 Determination of types and levels of color-impairments
X-3 Determination of levels of weak eyesight

Table 5. An example of strength of associations

A-1 A-2 B-1 B-2 B-3 B-4 X-1 X-2 X-3

1-1 Strong Strong Strong Strong Weak Medium Weak Weak Weak
1-2 Strong Strong Strong Weak Weak Medium Medium Weak Medium
1-3 Strong Strong Strong Weak Weak Medium Medium Strong Medium
1-4 Strong Strong Medium Medium Weak Strong Strong Weak Strong
2-1 Strong Weak Medium Weak Weak Medium Medium Strong Medium
2-2 Strong Weak Medium Weak Weak Medium Medium Strong Medium
2-3 Strong Weak Medium Weak Weak Strong Strong Strong Strong

218 J. Shirogane

5.3 Relevance of Assigned Values between Guideline Elements and
Users’ Responses

To analyze the situations and levels of users’ difficulties, the strength between
difficulties of end users and guideline elements must be calculated. Thus, the
numerical values are assigned to the users’ responses to checklists. Currently
each response is assigned a value from 0 to 3, where 0 indicates that the support
described by the question does not need to be considered, while 3 indicates
that the support must be fully considered. Table 6 shows examples of assigned
numerical values. The question numbers (e.g., “A-1” and “X-1”) are from Tables
1 and 2.

Table 6. Example of numerical value assignments

Numerical values for responses 0 1 2 3

Basic checklists

A-1 What is your eyesight? Over 1.0 Below 1.0 but
above 0.3

Under 0.1 None

A-2 Can you use braille? No Hardly Somewhat Can
B-1 Do you use a screen reader? No Sometimes Often Always
B-2 Do you use a braille display? No Sometimes Often Always
B-3 Do you use a voice input system? No Sometimes Often Always
B-4 Do you use software of adjusting

view size?
No Sometimes Often Always

Problem checklists

X-1 Font size on display Too big Just right Small Too small
X-2 Color usages Excellent Good Poor Very poor
X-3 Vision of display Very clear Clear Slightly Blurry Blurry

In addition, numerical values are assigned to the levels of strength in Table
5. These values are used to calculate the necessity of applying guideline ele-
ments to the target software. Currently, 0, 1, 2, and 3 are assigned as “Strong”,
“Medium”, “Weak”, and “None”, respectively. Table 7 shows the numerical value
assignments to Table 5.

5.4 Elicitation of Guideline Elements as Accessibility Requirements

Based on the numerical values in Tables 6 and 7, guideline elements to be applied
to the target software are specified and prioritized. The priorities are calculated
in three steps.

Step 1. Based on the association strengths between basic checklists and guide-
line elements, the importance of each guideline element (impBi−j,m−n) is calcu-
lated using the end users’ responses via formula (1). i− j indicates the number

Support Method to Elicit Accessibility Requirements 219

Table 7. Example of association strenghs

A-1 A-2 B-1 B-2 B-3 B-4 X-1 X-2 X-3

1-1 3 3 3 3 1 2 1 1 1
1-2 3 3 3 1 1 2 2 1 2
1-3 3 3 3 1 1 2 2 3 2
1-4 3 3 2 2 1 3 3 1 3
2-1 3 1 2 1 1 2 2 3 2
2-2 3 1 2 1 1 2 2 3 2
2-3 3 1 2 1 1 3 3 3 3

of a guideline element (e.g., “1-1” in Table 3), whereas m− n indicates the
number of a question (e.g., “A-1” in Table 1). Si−j,m−n indicates the value of
association strength between guideline element i− j and question m− n in the
basic checklists, and Rm−n indicates the value of users’ responses to the question
m− n.

impBi−j,m−n = Si−j,m−n ×Rm−n (1)

Step 2. Similar to Step 1, the importance of each guideline element
(impPi−j,p−q) is calculated using the end users’ responses via formula (2). p− q
indicates the number of a question (e.g., “X-1” in Table 2). Si−j,p−q indicates
the value of association strength between guideline element i − j and question
p−q in the problem checklists, while Rp−q indicates the value of users’ responses
to the question p− q.

impPi−j,p−q = Si−j,p−q ×Rp−q (2)

Step 3. Finally, the priority of guideline elements is calculated by integrating
the results of Step 1 and Step 2. Guideline elements with a higher priority can
be specified as accessibility requirements of the target software. The priority is
calculated using formula (3). priorityi−j indicates the priority value of a guide-
line element i− j. M −N and P −Q indicate the maximum question numbers
of basic and problem checklists, respectively.

priorityi−j =

M−N∑

m−n=A−1

impBi−j,m−n +

P−Q∑

p−q=X−1

impPi−j,p−q (3)

After the priority values are calculated, the specified guideline elements are
validated by generating prototypes. Previously, we have proposed methods to
generate GUI prototypes from scenarios [14][15]. Then end users validate the
methods to implement the guideline elements.

220 J. Shirogane

6 Simulation

A simulation was conducted to confirm whether the specified guideline elements
are valid as accessibility requirements. Below is a summary of the simulated
end user’s situation. Table 8 shows select responses to the checklist where the
question numbers (e.g., “A-1” and “X-1”) are from Tables 1 and 2.

Basic checklist
– Have weak eyesight
– Use zoom software
– Sometimes use screen readers

Problem checklist
– Sometimes difficultly recognizing the display colors

Table 8. Select responses of the simulated end user

Basic checklists

A-1 A-2 B-1 B-2 B-3 B-4

Response Under 0.3 No Sometimes No Sometimes Always
Value 2 0 1 0 1 3

problem checklists

X-1 X-2 X-3

Response Small Poor Slightly blurry
Value 2 2 2

Based on responses in Table 8, impBi−j,m−n and impPi−j,p−q are calculated
using formulas (1) and (2). Tables 9 and 10 show the results.

Table 9. Calculation of impBi−j,m−n

Guideline element Question No.
No. A-1 A-2 B-1 B-2 B-3 B-4

1-1 6 0 3 0 1 6
1-2 6 0 3 0 1 6
1-3 6 0 3 0 1 6
1-4 6 0 2 0 2 9
2-1 6 0 2 0 1 6
2-2 6 0 2 0 1 6
2-3 6 0 2 0 1 9

Support Method to Elicit Accessibility Requirements 221

Table 10. Calculation of impPi−j,p−q

Guideline element Question No.
No. X-1 X-2 X-3

1-1 2 2 2
1-2 4 2 4
1-3 4 2 4
1-4 6 2 6
2-1 4 6 4
2-2 4 6 4
2-3 6 6 6

Using the values in these tables, the priority values of the guideline elements
are calculated by formula (3). Figure 2 shows the priority values of the guideline
elements.

Using the values in these tables, the priority values of guideline elements
were calculated by the formula (3) in 5.4. Figure 2 shows the priority values of
guideline elements.

In this simulation, the average value of priority values of all guideline elements
were calculated. The average value was 28.71 and shown in Fig. 2. Guideline
elements were classified into two groups of higher and lower values than the
average value. According to this classification, the following guideline elements
have high priority values.

1-4: Software to adjust view size must be available.
2-1: Contents must not be denoted solely by colors.
2-2: Brightness contrasts of background and foreground colors must be suffi-

cient.
2-3: System configurations must be applicable (e.g., color and font).

According to the checklist responses, the simulated end user has weak eye-
sight, uses zoom software, and occasionally experiences difficulty recognizing the
display colors. Thus, the simulation specified appropriate guideline elements.

The following guideline elements have low priority values.

1-1: All operations must performed by a keyboard.
1-2: All contents must be able to be read by a screen reader.
1-3: All contents must be able to be shown by a braille display.

The simulated end user does not operate only by a keyboard and does not
use braille displays. Thus, the priority values of guideline elements 1-1 and 1-3
are appropriately calculated. Although the simulated end user occasionally used
a screen reader, the priority value of guideline element 1-2 is low due to the
end user’s response about the frequency of using a screen reader. The checklist
questions result in a subjective gauge. However to specify appropriately guideline
elements for the target software, the checklist questions must be improved so that

222 J. Shirogane

Fig. 2. Simulation results

end users’ responses provide an objective gauge. In addition, the validity of the
specified guidelines elements must be confirmed by end users.

However, according to this simulation results, almost all appropriate guideline
elements are specified. Thus, this proposed method can appropriately specify the
accessibility requirements.

7 Conclusion

In this paper, a method to elicit accessibility requirements is proposed by as-
sociating end users’ disability situations and guideline elements. The calculated
priority values are used to determine the priorities of the guideline elements.
Although it is difficult to apply all guideline elements to the target software,
the proposed method elicits the accessibility requirements in the early devel-
opment phase and allows software to be appropriately developed based on end
users’ characteristics, reducing the cost and burden of software development. In
addition, the appropriateness of the specified guideline elements is confirmed.

Future work includes:

– Confirming the numerical value appropriateness by simulating various end
users’ characteristics

– Designing checklist questions that objectively gauge end users’ responses
– Evaluating the proposed method with actual challenged users
– Addressing challenges associated with the implemented guideline elements

and automatically applying GUI prototypes

Support Method to Elicit Accessibility Requirements 223

References

1. Section 508: http://www.section508.gov/u
2. Japanese Industrial Standards Committee: Guidelines for older persons and per-

sons with disabilities-Information and communications equipment, software and
services-Part 3: Web content, JIS X 8341-3 (2010)

3. Web Content Accessibility Guidelines (WCAG) 2.0:
http://www.w3.org/TR/WCAG20/

4. Alexander, I.: Misuse Cases: Use Cases with Hostile Intent. IEEE Software 20(1)
(2003)

5. Beckers, K., Heisel, M., Cote, I., Goeke, L., Guler, S.: Structured Pattern-Based
Security Requirements Elicitation for Clouds. In: Proc. of 2013 Eighth International
Conference on Availability, Reliability and Security, ARES (2013)

6. Baguma, R., Stone, R.G., Lubega, J.T., van der Weide, T.P.: Integrating Accessi-
bility and Functional Requirements. In: Stephanidis, C. (ed.) UAHCI 2009, Part
III. LNCS, vol. 5616, pp. 635–644. Springer, Heidelberg (2009)

7. Henry, S.L.: Just Ask: Integrating Accessibility Throughout Design, Lulu. Com
(2007)

8. Cysneiros, L.M., Leite, J.C.S.P.: Nonfunctional Requirements: From Elicitation to
Conceptual Models. IEEE Transactions on Software Engineering 30(5) (2004)

9. Masuwa-Morgan,K.R.: IntroducingAccessOnto:Ontology forAccessibilityRequire-
ments Specification. In: Proc. of First International Workshop on using Ontologies
in Interactive Systems, ONTORACT 2008 (2008)

10. Minona, R., Morenob, L., Martinezb, P., Abascal, J.: An approach to the integra-
tion of accessibility requirements into a user interface development method. Science
of Computer Programming (April 29, 2013)

11. International Organization for Standardization: Ergonomics of human-system in-
teraction – Part 171: Guidance on software accessibility (ISO 9241-171: 2008)
(2008)

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez-Jaquero, V.:
USIXML:A language supportingmulti-path development of user interfaces. In:Proc.
of the 2004 International Conference on Engineering Human Computer Interaction
and Interactive Systems (2004)

13. Guerrero-Garcia, J., Gonzalez-Calleros, J.M., Vanderdonckt, J., Muoz-Arteaga, J.:
A Theoretical Survey of User Interface Description Languages: Preliminary Results.
In: Proc. of Web Congress, LA-WEB 2009, Latin American (2009)

14. Shirogane, J., Fukazawa, Y.: A Method of Scenario-based GUI Prototype Gener-
ation and its Evaluation. ACIS International Journal of Computer & Information
Science (IJCIS) 4(1) (2003)

15. Shirogane, J., Shibata, H., Iwata, H., Fukazawa, Y.: GUI Prototype Genera-
tion from Scenarios in the Requirements Elicitation Phase. In: Proc. of the 13th
IASTED International Conference on Software Engineering, SE 2014 (2014)

http://www.section508.gov/u
http://www.w3.org/TR/WCAG20/

Author Index

Al-Insaif, Sadiq 180
Aoyama, Mikio 60

Bano, Muneera 83
Buchan, Jim 165

El-Attar, Mohamed 180

Fukazawa, Yoshiaki 77

Gervasi, Vincenzo 31
Grundy, John 16, 150

Hata, Hideaki 135
Hirabayashi, Daisuke 77
Hosking, John 150

Ide, Masahiro 60
Ihara, Akinori 135
Ikram, Naveed 83

Jiang, Wei 45
Jin, Zhi 105

Kamalrudin, Massila 16, 150
Kikushima, Yasuhiro 60, 77
Kishida, Tomoko 60
Kobori, Takanobu 77

Lai, Han 90

Mairiza, Dewi 31
Matsumoto, Kenichi 135

Ni, Yuze 90

Okazaki, Yasuko 77

Park, Jaehong 1
Peng, Rong 90

Ruan, Haibin 45

Saeed, Mazin 180
Saleh, Faisal 180
Salleh, Norsaremah 150
Shintani, Katsutoshi 77
Shirogane, Junko 210
Sidek, Safiah 16, 150
Sun, Jie 195
Sun, Lianshan 1

Tantithamthavorn, Chakkrit 135
Tempero, Ewan 120
Thomborson, Clark 120
Tu, Yu-Cheng 120

Wang, Xinyu 195
Wang, Ye 195
Washizaki, Hironori 77

Yahya, Syazwani 16
Yang, Zhuoqun 105

Zhang, Li 45
Zhao, Liping 195
Zowghi, Didar 31

	Preface
	Organization
	Table of Contents
	A Process-Oriented Conceptual Frameworkon Non-Functional Requirements
	1 Introduction
	2 NFR in Software Development Process
	3 A Process-Oriented Conceptual Framework on NFR
	3.1 Framework Overview
	3.2 Formal Definition

	4 A Checklist for NFR Identification
	4.1 An Account Management Subsystem in eStore
	4.2 A Checklist for NFR Identification

	5 Methodological Implications
	6 Related Work
	7 Conclusion
	References

	Capturing Security Requirements Using Essential Use Cases (EUCs)
	1 Introduction
	2 Background
	3 Motivation
	4 Our Approach
	4.1 SecEUC Pattern Libraries
	4.2 Using Our Approach

	5 Tool Support and Usage Example
	5.1 SecMEReq : Prototype Tool
	5.2 Tool Architecture

	6 Evaluation
	6.1 Tool Usability
	6.2 Preliminary SecEUC Patterns Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References

	Utilizing TOPSIS: A Multi Criteria Decision Analysis Technique for Non-Functional Requirements Conflicts
	1 Introduction
	2 Study Background
	3 NFRs Conflict Decision Using TOPSIS
	4 Applying TOPSSIS: An Example
	5 Conclusion
	References

	Analysis of Economic Impact of Online Reviews: An Approach for Market-Driven Requirements Evolution
	1 Introduction
	2 User Opinion Mining
	2.1 Extracting User Opinions Using SRPA
	2.2 Pruning Noisy Opinion Words
	2.3 Pruning Noisy Features
	2.4 Recovering Expressions of User Opinions

	3 Econometric Opinion Analysis
	3.1 Categorizing Features
	3.2 Rating User Opinions
	3.3 Econometric Model-Based Requirements Analysis
	3.4 Generating Report

	4 Case Study
	4.1 Experiments for Mining User Opinions of KIS 2011
	4.2 Requirements Analysis for KIS 2011 Improvement

	5 Related Work
	6 Conclusions
	References

	An IT-Driven Business Requirements Engineering Methodology
	1 Introduction
	2 Background of Problems
	3 Problems
	3.1 Business Design Framework
	3.2 Conventional Methods of Business Requirements Engineering
	3.3 Desirable Method of Business Requirements Engineering
	3.4 Problem Structure in the Current Business Requirements
	3.5 Problems to be Solved by IT Driven Business Requirements

	4 Related Works
	5 Approach
	6 Business Requirements Engineering Methodology
	6.1 SMC (System Model Canvas)
	6.2 XBMC
	6.3 Architecture Conversion between BA and ITA
	6.4 Design Process of BA and ITA

	7 Application to a Business Case and Evaluation
	7.1 Outline of the Case
	7.2 Design of BA and ITA

	8 Evaluation
	9 Discussions
	10 Future Work
	11 Conclusion
	References

	Efficient Identification of Rationales by Stakeholder Relationship Analysis to Refine and Maintain GQM+Strategies Models
	1 Introduction
	2 Background
	2.1 GQM+Strategies
	2.2 Motivating Example

	3 Our Approach
	3.1 Context-Assumption-Matrix
	3.2 C/A Extraction Sheet
	3.3 Steps of Our Approach

	4 Discussion
	5 Conclusion and Future Work
	References

	Addressing the Challenges of Alignment of Requirements and Services: A Vision for User-Centered Method
	1 Introduction
	2 Background
	3 User-Centered Method of Alignment
	4 Alignment Method Instantiation
	5 Future Work
	References

	Evaluating the BPCRAR Method: A Collaborative Method for Business Process Oriented Requirements Acquisition and Refining
	1 Introduction
	2 Collaborative Requirements Elicitation
	3 Overview of BPCRAR
	4 The Controlled Experiment
	4.1 Experiment Design
	4.2 Experiment Implementation
	4.3 Experiment Results

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Modeling and Specifying Parametric Adaptation Mechanism for Self-Adaptive Systems*
	1 Introduction
	2 Goal-Oriented Requirements Modeling
	3 Approach Overview
	3.1 Framework
	3.2 Overall Processes
	3.3 Motivating Example

	4 Modeling Requirements and Context
	4.1 Conceptual Model
	4.2 Modeling Requirements and Context
	4.3 Deriving Adaptation Goal Model

	5 Specifying Adaptation Mechanism
	5.1 Specification Grammar
	5.2 Specifying Adaptation Control Loop
	5.3 Specification-Based Adaptation Algorithms

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Evaluating Presentation of RequirementsDocuments: Results of an Experiment
	1 Introduction
	2 Background and Related Work
	2.1 Communication through Documents
	2.2 Documentation in Requirements Engineering
	2.3 Transparency in Software Engineering
	2.4 Usefulness of Transparency

	3 Methodology
	3.1 Experimental Design
	3.2 Execution

	4 Results
	4.1 Demographics
	4.2 Transparency of Requirements Documents
	4.3 Elements that Affect Transparency of Requirements Documents
	4.4 Limitations

	5 Conclusions
	References

	Impact Analysis of Granularity Levelson Feature Location Technique
	1 Introduction
	2 Background and Motivation
	2.1 Common Findings
	2.2 Observation
	2.3 Challenges

	3 Study Design
	3.1 Studied Projects
	3.2 Data Preparation Procedure
	3.3 Workflow of Feature Location Technique Using the Vector Space Model
	3.4 Effort-Based Evaluation

	4 Results
	4.1 Performance
	4.2 Efficiency

	5 Threats to Validity
	6 Conclusions and Future Works
	References

	A Pair-Oriented Requirements Engineering Approach for Analysing Multi-lingual Requirements
	1 Introduction
	2 Background and Motivation
	2.1 Essential Use Cases (EUCs)
	2.2 EUC Tool Support
	2.3 Pair Analysis and PORE
	2.4 PORE and EUCs

	3 Related Work
	4 Research Methodology
	4.1 Study Procedures

	5 Results
	5.1 Study 1
	5.2 Study 2: Replication

	6 Discussions
	7 Conclusions and Future Work
	References

	An Empirical Cognitive Model of the Development of Shared Understanding of Requirements
	1 Introduction
	2 SUR as Requirements-Focused Team Mental Models
	3 SUR Development as Dynamic State Transitions
	4 The Research Approach
	4.1 The Case Study Organisation
	4.2 Data Collection
	4.3 Data Selection and Analysis

	5 An Empirical C ognitive Model of SUR Development
	5.1 Collaborative Cognitive Tasks
	5.2 Group Decision Points

	6 Conclusion and Future Work
	References

	Evaluating the Cognitive Effectiveness of the Visual Syntax of Feature Diagrams
	1 Introduction
	2 Feature Diagrams Background
	3 Evaluation of Feature Diagrams using the Principles for Cognitively Effective Visual Notations
	3.1 Semiotic Clarity
	3.2 Visual Expressiveness
	3.3 Perceptual Discriminability
	3.4 Complexity Management
	3.5 Semantic Transparency
	3.6 Dual Coding
	3.7 Cognitive Integration
	3.8 Graphic Economy
	3.9 Cognitive Fit

	4 Recommendations and Suggestions
	5 Related Work
	6 Conclusion and Future Work
	References

	The Role of Requirements Engineering Practices in Agile Development: An Empirical Study
	1 Introduction
	2 Research Method
	2.1 Survey Design
	2.2 Survey Instrument Development
	2.3 Survey Execution

	3 Results
	3.1 RQ1: Is Agile RE Performed as Important as What Agile Practitioners Thought?
	3.2 RQ2: What Type of Requirements Are Agile Practitioners More Concerned With?
	3.3 RQ3: What Methods and Tools Do Agile Practitioners Often Use?

	4 Discussion and Threats
	4.1 Discussion of Results
	4.2 Threats to Validity

	5 Conclusions
	References

	Support Method to Elicit AccessibilityRequirements
	1 Introduction
	2 Related Works
	3 Features of the Proposed Method
	4 Support Strategies to Challenged People
	4.1 Disabilities
	4.2 Accessibility Guidelines

	5 Elicitation of Accessibility Requirements
	5.1 Preparation of Checklists and Accessibility Guidelines
	5.2 Association of Guideline Elements and Checklist Questions
	5.3 Relevance of Assigned Values between Guideline Elements and Users’ Responses
	5.4 Elicitation of Guideline Elements as Accessibility Requirements

	6 Simulation
	7 Conclusion
	References

	Author Index

