
Chapter 14
Functional Morphology and Evolutionary
Diversity of Vibration Receptors in Insects

Reinhard Lakes-Harlan and Johannes Strauß

Abstract Vibratory signals of biotic and abiotic origin occur commonly in the
environment of all living organisms. Many species deliberately produce such
signals for communication purposes. Thus, it is not only useful but also advan-
tageous and/or necessary to be able to detect and process vibratory signals with
appropriate receptor organs. Mechanoreception is suggested to be evolutionarily
ancient among animals (Kung 2005; Thurm 2001). Given the long evolutionary
history, such receptors have very different anatomical structures and corresponding
physiological properties. Responding to mechanical stress is a basic property of
cells, even outside the nervous system. In the nervous system, specialized sensory
cells and organs register mechanosensory signals and impart the information to
higher centers. Structural and molecular adaptations in various mechanoreceptors
can push these systems to a sensitivity at or near to the physical limits, e.g., with
respect to the noise–stimuli relation. Here, we will deal with the vibratory receptor
systems of insects, with a focus on the specialized scolopidial sensory organs from
molecular mechanisms to systems analysis.

14.1 Anatomical Diversity of Sensilla

In insects, some vibration receptor types are located at the external surface or
embedded in the cuticle, like campaniform sensilla, hair sensilla, or hairplates
(Fig. 14.1). Other receptors are internal sensilla, like scolopidial sensilla or
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Fig. 14.1 Different mechanoreceptive sense organs of insects. a, b Scanning electron
microscopic photos of campaniform sensilla a and hair sensilla, b of the appendages of Decticus
verrucivorus (Orthoptera). c, d Transmission electron microscopic photos of scolopidial sensilla.
c Longitudinal section of a scolopidium in the prosternal organ of Homotrixa alleni (Diptera).
Note the dendrite (d) running in the lumen of the scolopale (sc). ca cap, cd ciliary dilation, scn
nucleus of the scolopale cell. d Cross section of scolopidia in Phormia regina (Diptera). Scales
a 10 lm, b 50 lm, c 2 lm, and d 1 lm (Unpublished data)
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multipolar/multidendritic sensilla. Among these types, the scolopidial sensilla are
particularly sensitive to vibrational stimuli. However, a classification and dis-
crimination between the different mechanical processes, like cell expansion,
stretching of organs, touch, substrate vibration, and airborne sound, is sometimes
difficult, and adequate stimuli may overlap in a given type of sensilla. In the
following, different types of sensilla are briefly reviewed with respect to their
properties for mechanoreception of vibration.

14.1.1 Campaniform Sensilla

Campaniform sensilla (CS) are a type of external sensilla that is embedded in the
cuticle. From the outside, the sensilla are characterized by a shallow dome
(Fig. 14.1). Often, the anatomical structure is also indicative of the direction of
stimulus perception. The campaniform sensilla react to mechanical stress in the
cuticle—the stimuli can originate either from the animal’s own movements
(proprioception) or from external sources (substrate vibration). CS are located at
different positions on the body segments and on appendages, such as the wings or
halteres, where mechanical deformations can be detected (Keil 1997). CS can
occur as single sensilla, or they can be arranged in groups. CS of the legs have
been found to possess minimum acceleration thresholds at frequencies of 50 Hz
and lower (Kühne 1982). Stimuli with such frequencies were responded to with a
phase-lock of the action potentials. The upper cutoff frequency is some hundred
hertz. The CS of legs typically have an axonal projection that is ramified in the
lateral part of the corresponding ganglion (Schmitz et al. 1991; Merritt and
Murphey 1992; Mücke and Lakes-Harlan 1995) (see also Fig. 14.6). CS occurring
dorsally at the proximal tibia are involved in feedback loops of leg movement in
many insects (Burrows and Pflüger 1988; Zill et al. 2011). The spatial location of
the CS relative to vibration-receptive organs, like the subgenual organ, raises the
question of whether CS responses might also be integrated in the neuronal
vibratory network for filtering or modulation of information.

14.1.2 Hair Sensilla

Hair sensilla (HS) come in various anatomical shapes of the hair shaft (and were
consequently differently named) and with different physiological functions
(Fig. 14.1). Mechanosensory bristles can be found on all body parts. They are, just
as CS, usually constructed by four cells during development: a sensory neuron, a
sheath cell, a socket cell, and a hair shaft cell. The mechanosensory neuron has
ultrastructural specializations in its dendrite, like the tubular body (Keil 1997). The
tubular body is a massive complex of microtubules in the dendritic tip that is
involved in mechanotransduction. Destruction of the tubular body leads to a
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decrease in the receptor potential (Erler 1983). The interaction between stimuli,
structural elements, and ion channels is the subject of an ongoing analysis of
transduction mechanisms (Liang et al. 2011) (see also Sect. 14.2.2). Hair sensilla
typically react to touch stimuli. However, filiform hairs might also react to
vibrational stimuli, either direct or indirect. An example of indirect measurements
is a vibrating leaf that moves air particles above its surface, which in turn deflect
the filiform hairs of the insect. Parasitoid wasps might locate their vibration-
producing prey within the leaves by such a mechanism (Meyhöfer and Casas
1999). Hair sensilla (trichobotria) of water striders also serve as vibration receptors
(Goodwyn et al. 2009). Neuronal networks involving HS have been studied with
respect to touch perception (Burrows and Newland 1993). The central projections
of hair sensilla are somatotopically ordered in the lateral neuropile of the
respective ganglion (Mücke and Lakes-Harlan 1995) (see also Fig. 14.6) and
correlate with the receptive field of interneurons (Burrows and Newland 1993).

14.1.3 Multipolar Sensilla

In comparison with other sensilla in insects, least is known about function and
physiology of multipolar sensilla. In contrast to bipolar neurons, these sensilla
have multiple processes, which can cover much of the body surface (Grueber et al.
2002); in Drosophila, they are known as multidendritic (md) neurons. Multiden-
dritic neurons might react to a variety of stimuli: Subsets of md neurons might be
involved in proprioception (Grueber et al. 2002), whereas other subsets might
respond to temperature or nociception (Tracey et al. 2003). Multipolar sensilla of
locusts occur on different body positions and as joint receptors. They can react to
vibrational stimuli, but are relatively insensitive (Kühne 1982).

14.1.4 Scolopidial Sensilla

Scolopidial sensilla or chordotonal organs in general have already been subject of
a detailed treatise (Field and Matheson 1998). Therefore, their basic features are
briefly summarized in the present review, and the focus here is on recent findings
of the transduction mechanisms and a discussion of the complexity of sensory
organs, their position, and evolution. Scolopidial sensilla are internal sensilla
homologous to external sensilla and are characterized by an electron-dense
structure, the ‘‘scolopale.’’ The scolopale is formed by actin filaments inside the
scolopale cell and surrounds an extracellular space into which the dendrite of
the sensory cells extends (Fig. 14.1). The dendrite terminates at an electron-dense
cap that is formed by an attachment cell (Fig. 14.1). Further characters of the
dendrite are a ciliary dilation and rootlets at its base in the cell body. The sensory
cell is surrounded by a glial cell. Such a unit with basically a sensory cell, a glial
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cell, a scolopale cell, and an attachment cell is termed a scolopidium. Based on
ultrastructural data, two basic types are distinguished. Type 1 scolopidia have cilia
with constant diameter and an extracellular cap. The proposed stimulus is an axial
extension, and these sensilla are probably most important for vibration perception.
Type 2 scolopidia have an enlarged distal segment in the cilium and an elongated
tube. They occur often in crustaceans, but have also been shown in the Johnston’s
organ of insects (for review see Moulins 1976). The cellular composition of
scolopidia varies between organs, as some scolopidia possess two sensory cells or
additional ligament cells. Within the insect body, the scolopidia are arranged as
single units, in small groups or in large, complex sensory organs. In the latter
cases, distinct groups of scolopidia, named scoloparia, can occur within the organ
complex and might have distinct physiological properties.

14.2 Scolopidial Organs

Scolopidial organs are located at different positions in the insect body. They are part
of the sensory complement in the basic bauplan of an insect’s segment (Fig. 14.2).
For example, in Drosophila larvae, most segments contain three scolopidial organs,
with a specific number of sensory units (Campos-Ortega and Hartenstein 1997;
Hertweck 1931). Besides Drosophila, the scolopidial organs have been mapped in
orthopteran body segments (Field and Matheson 1998; Meier et al. 1991), whereas
in many other insects, only exemplary scolopidial organs have been described. The
scolopidial organs are located within a specific segment or are connecting two
segments. The position determines the physiological function and sensitivity, but
the function may not be obvious on first sight. For example, it is possible that
substrate vibrations are perceived with body scolopidial organs, although the body
does not have direct contact with the substrate (see Sect. 14.2.3.4 on the prosternal
organ). Among the head appendages, the Johnston’s organ is well known as a
receiver of antennal motion in many insects. Within the insect legs, scolopidial
organs have typical positions (Fig. 14.2): in the proximal femur (femoral chordo-
tonal organ), in the proximal tibia (subgenual organ, complex tibial organ), and in
the distal tibia and tarsae (chordotonal organs with only a few scolopidia). In the
following sections, the development, mechanisms of transduction, as well as
functional morphology and physiology of chordotonal organs are reviewed in more
detail, with a focus on the scolopidial organs in the proximal tibia.

14.2.1 Development

For different types of sensilla, an underlying developmental sequence has been
identified for the cellular differentiation of chordotonal cells, CS, and HS
(microchaetes) of Drosophila (Lai and Orgogozo 2004). During that sequence, a
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sensory mother cell divides asymmetrically, and after further cell divisions, four to
five cells are generated. Thereby, two accessory cells (e.g., socket cell and shaft
cell) differentiate and one sensory neuron with glial or sheath cells. By differential
gene expression, the different types of receptor organs are generated. For example,
mutations in the cut gene transform a hair sensillum into a scolopidial sensillum
(Bodmer et al. 1987).

By contrast, the development of complex scolopidial organs is only partially
understood. For formation of sensory units in the relatively large femoral
chordotonal organ of Drosophila, the epidermal growth factor receptor promotes
continuous generation of sensory mother cells (zur Lage and Jarman 1999).
Complexity is not only a question of cell numbers, but also a question of distinct
subparts of an organ, as these subparts might have different physiological prop-
erties. The complex tibial organ (CTO) of some Ensifera consists of three parts
with different functions (see Sect. 14.2.3). The CTO develops during embryonic
development (Klose 1996; Lakes-Harlan and Strauß 2006; Meier and Reichert
1990), but at least in some species of Tettigoniidae, the sensory cells of the parts of
the CTO have different developmental origins (Fig. 14.3, unpublished results). The
cells of the subgenual organ (SGO) and the crista acustica homolog (CAH) arise
from sensory mother cells that proliferate at separate positions in the epidermal
cell layer. Later, during embryogenesis, the cells form the CTO together and
establish their specific central projections. Scolopidial sensory neurons grow their
axons during embryogenesis or metamorphosis to the CNS (Lakes-Harlan and
Pollack 1993; Lakes and Pollack 1990). These axons orientate along preformed

Fig. 14.2 Schematic overview of the location of scolopidial organs in the body segments and
legs. a In a typical segment, two to three nerves innervate scolopidial organs at two positions (in
Orthoptera, the pleural chordotonal organ (plCO) and the sternal chordotonal organ (sCO); in
Drosophila, the lateral chordotonal organ (lCO) and the ventral chordotonal organ (vCO). b In a
typical insect leg, the femoral chordotonal organ (FCO) might have different subparts; the
subgenual organ (SGO) is often accompanied by other scolopidial organs (see text), and
chordotonal organs are located in the distal tibia (tiCO) and tarsae (taCO). (Modified from
Campos-Ortega and Hartenstein 1997; Meier et al. 1991; Mücke 1991)
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pathways in the embryo; in cases where the pathway is missing, the axons arrest
their growth (Klose and Bentley 1989). For axonal guidance, the cell surface
molecule Fasciclin I, which is expressed by the sensory cells and the target neu-
ropiles in the CNS, could be important (Schäffer and Lakes-Harlan 2001). In the
holometabolic Diptera, complex scolopidial organs like the femoral chordotonal
organ (FCO) develop during metamorphosis. Interestingly, the axons of the FCO
extend to the CNS, but after mid-metamorphosis, the organ is retracted within the
femur and the axons are apparently shortened during this process (Lakes and
Pollack 1990). By contrast, in the moth Manduca sexta, sensory units of the FCO
are already present during larval stages (Kent et al. 1996). Vibration receptors are
fully functional after hatching, and the sensitivity to vibration stimuli does not
change during postembryonic development in tettigoniids and locusts (Rössler
et al. 2006).

14.2.2 Mechanotransduction

Transduction of mechanical stimuli is a multistep process ranging from mechanical
force acting on the receptors to neuronal activity of sensory neurons (French 1992).
The first step is a mechanical coupling between the stimulus, e.g., a substrate

Fig. 14.3 Model of the developmental sequence of the complex tibial organ of M. elongata
(Ensifera). The model is based on sequential preparations of embryonic stages (indicated by
percentages of developmental time to larval hatching) with immunolabeling of the sensory cells.
The cells of the subgenual organ (SGO) and the crista acustica homolog (CAH) have different
developmental origins (sense organ precursor cells) and form together the complex sensory
organ, including the intermediate organ (IO). (Based on unpublished data)
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vibration, and the receptor structure. Such a structure could be the cuticle trans-
mitting the external force. Consequently, embedded sensilla, the campaniform
sensilla, can measure compression or strain of the cuticle that leads to activation of
the receptor. In the case of the internal scolopidial sensilla, a longitudinal stretch of
the dendrite is likely to be the adequate stimulus. The micromechanics of vibration
inside a leg or other body parts are rarely investigated (see Sect. 14.2.3 for some
discussion), although they might be decisive for the physiological function of the
scolopidial organs. Subcellular structures in the scolopidial units, like a ciliary
dilation in the dendrite of the sensory neuron, may also be important as suggested by
mutant studies (reviewed in Field and Matheson 1998). The next steps in mecha-
notransduction are the opening of ion channels and changes in the membrane
potential. In recent years, the molecular physiology of sensory transduction was
pushed forward especially in the model system of the antennal Johnston’s organ of
Drosophila (Kernan 2007; Lu et al. 2009). The Johnston’s organ consists of several
hundred scolopidial units and is mainly an auditory and gravitation receptor.

Behavioral screens for flies defective in mechanotransduction identified can-
didate molecules for transduction gating, including ion channels of the transient
receptor potential (TRP) ion channel family. TRP channels are cation channels
with six transmembrane domains and cytoplasmic N- and C-terminals found in
different sense organs; TRP channels can be classified into seven distinct groups
based upon sequence similarities and structural characteristics (Christensen and
Corey 2007; Matsuura et al. 2009).

Three TRP channels have been identified as candidates for the gating channel in
mechanosensory cells: ‘‘No mechanoreceptor potential C’’ (NompC), ‘‘Inactive’’
(Iav), and ‘‘Nanchung’’ (Nan). These channels are specifically located in subcel-
lular structures important for mechanotransduction: Iav and Nan are localized in
the proximal cilia of chordotonal neurons (Gong et al. 2004); NompC is localized
in the distal cilia of scolopidial neurons and the tubular body of campaniform
sensilla (Lee et al. 2010; Liang et al. 2011; Keil 2012). Nan and Iav are expressed
in most sensory neurons in the Drosophila Johnston’s organ. These channels form
heterodimers, and Nan is dependent on Iav for proper localization within the
scolopidia (Gong et al. 2004). If Iav is deleted, the neuronal response to acoustic
stimuli is abolished. It was discussed whether the Nan-Iav dimers may be
mechanically activated by ciliary deflections or have a function in signal control
downstream of the transducing channel, as disruption of Nan-Iav increases the
active amplification in the hearing organ (Göpfert et al. 2006). While the majority
of the Johnston’s organ sensory neurons express NompC (Lee et al. 2010), only the
neurons mediating hearing require it functionally for generating a regular neural
response (Effertz et al. 2011). NompC includes an ankyrin spring of 29 ankyrin
repeats (Howard and Bechstein 2004) and has been shown to be directly opened by
mechanical stimuli (Yan et al. 2013). It may form the gating spring in campani-
form sensilla (Liang et al. 2013) though not the gating channel in auditory neurons
(Lehnert et al. 2013). The definite contribution of the respective molecules to
mechanotransduction in Drosophila hearing is so far unresolved (Lehnert et al.
2013; Gong et al. 2013; Matsuo and Kamikouchi 2013). Given this functional
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specialization between Johnston’s organ neurons, the functional conservation or
similarity of TRP channels in sensory organs for substrate vibrations like the
subgenual organ or femoral chordotonal organ will be relevant to explore.

Related to the identity of the gating, channel is the question for the mechanism
of channel opening ultimately causing mechanotransduction. According to a
membrane force model, direct opening could result from transfer of forces on the
neuron’s cell membrane and a pull on the ion channel, opening the pore (Chalfie
2009; Christensen and Corey 2007). Indirect tether models in general assume that
force is transferred to specific molecules/proteins which are linked to the ion
channel and activate it by induction of a conformational change. Such molecules
could be linked to the intracellular cytoskeleton or extracellular matrix molecules
or a combination thereof (Chalfie 2009; Christensen and Corey 2007). In scolo-
pidia of Johnston’s organ of Drosophila, opening of the gating channel is sup-
posedly direct and via gating springs (Albert et al. 2007). The short latencies in
chordotonal organs in the submillisecond range support the hypothesis of a direct
activation process (Albert et al. 2007).

In mechanoreceptors, the sheath cells produce a high concentration of potas-
sium in the surrounding of the dendritic cilium compared to hemolymph (French
1988; McIver 1985). In scolopidial units, the scolopale space is filled by an
endolymph with high potassium concentration, but low calcium concentration
(Todi et al. 2004). The receptor potential of mechanoreceptors is proportionally
graded to the stimulus intensity (French 1988). The primary sensory neurons are
supposed to generate action potentials at the beginning of the axon. In the sco-
lopidia of an orthopteran hearing organ, small non-propagating spikes are pas-
sively conducted back into the soma and the dendrites (Hill 1983).

14.2.3 Functional Morphology and Physiology

Scolopidial organs differ largely in their functional morphology. Here, we focus on
those found within the legs, and especially in the proximal tibia, that have been
investigated for several insect taxa, with another example of a vibration-sensitive
organ in the thorax of an insect.

14.2.3.1 Femoral Chordotonal Organ

The femoral chordotonal organ (FCO) is probably present in all insects, and in
many species, it is a large mechanosensory organ with up to hundreds of sensory
units (Debaisieux 1938). It is located dorso-proximally in the femur and attaches
via a cuticular apodeme at the femur–tibia joint (Fig. 14.2). While the FCO is in
general a proprioceptive organ involved in sensory feedback loops required for
limb coordination, it is also a vibration receptor in some insects. The functional
specialization may be associated with structural subdivision. For example, in
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orthoptera and stick insects, two distinct scoloparia are found, whereby the locust
FCO and Carausius FCO contain heterodynal type I scolopidia with two sensory
neurons each (Füller and Ernst 1973; Matheson and Field 1990). In the locust, the
FCO of the middle leg contains 42 sensory neurons in the distal scoloparium and
several hundred relatively small sensory neurons in the proximal scoloparium
(Field and Pflüger 1989). Physiological investigations in the locust showed a
functional distinction between the two groups: The distal scoloparium mediates the
postural resistance reflex, while the proximal group does not affect this reflex
(Field and Pflüger 1989). The latter group was suggested to be a functional
receiver of vibrational stimuli between 50 and 300 Hz, as it responds to vibrations
with displacements of 4-lm amplitude (Field and Pflüger 1989). Similarly, in the
stick insect Carausius morosus, a proprioceptive function could be ascribed to the
ventral scoloparium in the resistance reflex, leaving open the role of the larger
dorsal scoloparium (Kittmann and Schmitz 1992). In the stick insect Cuniculina
impigra, a high number of sensory neurons in the FCO were proven to be vi-
brosensitive (Sauer and Stein 1999; Stein and Sauer 1999), but a localization of the
structural correlate was not given. A distinction into two scoloparia is also clearly
present in crickets (Nishino 2000) and bush crickets (Theophilidis 1986), although
in some species, the separation into two scoloparia may not be complete (Math-
eson and Field 1990).

In the green lacewing Chrysoperla (Neuroptera), the femoral chordotonal organ
contains up to 26 scolopidia and it is vibroceptive with a maximum sensitivity at
about 1 kHz with a threshold between 0.1 and 1 ms-2 (Devetak and Amon 1997).
In some insects, the number of scolopidia can be as low as 12, e.g., in the stink
bug, Nezara viridula (Michel et al. 1982). The number of sensory cells, however,
is not size related, as in the small Drosophila melanogaster, the FCO has three
subunits with 14–32 scolopidia each (Shanbhag et al. 1992). The FCO of D.
melanogaster also reacts to low-frequency vibrational stimuli (Lakes-Harlan and
Lefevre 2012). Together with a rather insensitive tibial scolopidial organ
(Schneider 1950), the FCO might be an important source for vibration perception,
as Diptera do not possess a subgenual organ (see below). The vibratory function of
the FCO is further indicated by the central projection because parts of the dipteran
FCO axons project in the mVAC (Merritt and Murphey 1992; see Sect. 14.2.4).

14.2.3.2 Scolopidial Organs in the Proximal Tibia

In many insect taxa, scolopidial organs are found in the proximal tibia; known
exceptions are the Diptera and Coleoptera. The most widely distributed organ is the
so-called subgenual organ (SGO), by which scolopidial sensilla are named
according to their location just distally of the femur–tibia joint (Fig. 14.4). How-
ever, in a number of species, additional scolopidial organs in the proximal tibia are
documented: a distal organ (in Caelifera and Blattodea: Friedrich 1929), an inter-
mediate organ and a crista acustica or its atympanate homolog (in Ensifera), a
Nebenorgan (Blattodea and Mantophasmatodea), and an accessory organ (in
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Mantodea, Blattodea, and others: Strauß and Lakes-Harlan 2013). In contrast to the
SGO, the specific functions and the evolutionary relations of the other organs are so
far largely unknown.

The best-known vibration receiver is the subgenual organ, which has been
studied in detail in a number of insect taxa and was documented in most Pterygota.
It is not connected to leg joints and detects external stimuli transferred to the leg.
The SGO is considered to be the most sensitive vibration receptor in insects (Cokl
and Virant-Doberlet 2003). All subgenual organs contain type 1 scolopidia with a
single sensory neuron per scolopidium (Field and Matheson 1998), but the

Fig. 14.4 Photoplate of scolopidial sense organs of in the proximal tibia of different insects. a–c,
Midleg of M. elongata (Ensifera; photos courtesy of Jan Häusler, unpublished). a View from
proximal end into an opened tibia to visualize the localization of the subgenual organ (SGO).
Anterior is to the left; staining with Janus Green. b Frontal view of a nerve backfill of the SGO
with distinguishable cell bodies and dendrites. c Frontal view of the crista acustica homolog
(CAH). d–f, Lateral view of the SGO and further scolopidial sense organs in different orthopteran
species (unpublished). d Schistocerca gregaria (Caelifera), e Hierodula membranacea
(Mantodea), and f Stenopelmatus spec. (Ensifera). at attachment of the SGO; cb cell bodies of
sensory neurons; cu cuticle; de dendrites; DO distal organ; hc hemolymph channel; SGO
subgenual organ. Scale 100 lm

14 Functional Morphology and Evolutionary Diversity 287



organization of the subgenual organ is of notable diversity (Fig. 14.5): it is club
shaped in some Hymenoptera species and in termites (Howse 1964), whereas in
other Hymenoptera, the organ hangs in the hemolymph cavity (Vilhelmsen et al.
2001, 2008). In orthopteroid insects, the SGO is often sail shaped and suspended in
the hemolymph (Lin et al. 1995; Schnorbus 1971). In this case, the cap and
accessory cells span the hemolymph channel (Fig. 14.4); in other cases, the SGO is
more like a ‘‘mass’’ of cells (Nishino and Field 2003). In Lepidoptera, it is dif-
fusely organized and apparently the scolopidia are distally unattached (Howse
1968). In Hemiptera, like N. viridula or a species of Membracidae, Stictocephala
bisonia, scolopidial cells are attached to a ligament stretching along the tibia from
proximal to distal (Michel et al. 1982, Roye unpublished). This anatomy of sco-
lopidial cells might even raise the question of whether those cells in Hemiptera and
Neuroptera should actually be named subgenual cells. In other insects, scolopidial
units adjacent to the SGO that extend into the longitudinal axis of the tibia are
named intermediate organ or distal organ (see below). Further anatomical, phys-
iological, and developmental studies are needed to clarify whether the differences
are purely nomenclatorial or based on the possibly convergent evolution of tibial
sense organs. The subgenual organ can be innervated by two different leg nerves.
In orthopteroid insects, the sensory nerve 5B1 innervates one part of the subgenual
organ and another part is innervated by a branch of the mixed leg nerve 5B2. In the
tettigoniid Mecopoda elongata, the nerve 5B2 innervates the posterior portion of
the subgenual organ and contains more axons of the subgenual scolopidia than the
sensory nerve innervating the complex tibial organ.

The numbers of scolopidia in the SGO vary largely between species. In the
stink bug N. viridula (Heteroptera), it consists of just two scolopidia (Michel et al.
1982), and in the neuropteran Chrysoperla carnea, it consists of three scolopidia
(Devetak and Amon 1997), and many orthopteroid species have 20–80 scolopidia
(Rössler 1992; Schnorbus 1971). For adult tobacco hornworm moths, M. sexta,
about 30 neurons are found in the SGO (Kent and Griffin 1990). A large variance
occurs within Hymenoptera: The SGO of ants contains 10–40 scolopidia (Howse
1964; Menzel and Tautz 1994), that of the honeybee Apis mellifera around 40
scolopidia (Kilpinen and Storm 1997), and in parasitoid wasps, females of certain
species can have 300–400 SGO scolopidia (Vilhelmsen et al. 2008). The func-
tional relevance of the SGO structure and cell numbers has only been discussed for
the parasitoid wasps (see Sect. 14.2.4).

The subgenual organ reacts to substrate vibration, but in cockroaches is so
sensitive to mechanical stimuli that it might react to airborne stimuli despite lack
of tympana (Shaw 1994). For physiological characterization of substrate vibration,
an important parameter is the threshold: the lowest displacement or acceleration
stimulus that elicits a neuronal response. For the cockroach Periplaneta ameri-
cana, displacements of 0.22–5 nm at a frequency of 1.57 kHz can be detected by
subgenual receptors (Shaw 1994). Similar values have been found in the green
lacewing, which corresponds to an acceleration threshold of 0.02 m/s2 (Devetak
and Amon 1997). The vibroceptors in N. viridula are tuned to different frequencies
but share minimal thresholds around 0.01 m/s2 (Cokl 1983). The cricket Gryllus
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Fig. 14.5 Schematic overview of the sensory arrangement of scolopidial organs in the proximal
tibia of different taxa. Drawn are sensory cell bodies with their dendrites and their attachment
(stippled). Compare the overall similarities in Orthoptera (a–d), and in orthoptera-related groups
(e–f), to more distantly related taxa (h–k). Note the large differences within the Hymenoptera (h:
ant, i: parasitic wasp) that are probably caused by specialized functional adaptations. Drawings
are based on the following: a Schistocerca gregaria (Lin et al. 1995), b Troglophilus neglectus
(Jeram et al. 1995), c Comicus calcaris (Strauß and Lakes-Harlan 2010), d Hemideina femorata
(Nishino and Field 2003), e Karoophasma biedouwense (Eberhard et al. 2010), f Sipyloidea
sipylus (Strauß and Lakes-Harlan 2013), g Hierodula membranacea (unpublished), h Camponotus
ligniperda (Menzel and Tautz 1994) and Apis mellifica (Schön 1911), i Orussus abietinus
(Vilhelmsen et al. 2001), j C. carnea (Devetak and Pabst 1994), and k N. viridula (Michel et al.
1982) and S. bisonia (Roye, unpublished). AO accessory organ, CAH crista acustica homolog, DO
distal organ, IO intermediate organ, NO Nebenorgan, and SGO subgenual organ. Anterior is to
the left, proximal to the top. Drawn not to scale; cell numbers are represented, but not exactly
depicted
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bimaculatus has been found to be highly sensitive: The threshold of midleg sub-
genual receptors was at only 0.0018 m/s2 at frequencies from 700 to 1,000 Hz
(Dambach 1972). This sensitivity is not seen throughout the Ensifera, as the tree
weta has a threshold of 0.015 m/s2 for vibrational signals at 1 kHz (McVean and
Field 1996). Subgenual thresholds in both locusts and bush crickets range between
0.01 and 1 m/s2 with little species-specific variation (Kühne 1982).Whereas in
crickets, the midleg reacts most sensitively to vibrational stimuli (Dambach 1972),
in C. carnea, the metathoracic hindlegs were most sensitive (Devetak and Amon
1997). In Mantodea, the vibration sensitivity has been tested with respect to
functional adaptations of the leg pairs. The foreleg is adapted for prey capture and
typically held in the position known for mantis without contact to the substrate; the
other legs are used for standing and foraging and are in contact with the substrate.
However, no major functional adaptation could be found: The sensory organs in
the three legs are highly similar, and furthermore, the legs do not have different
physiological sensitivities (unpublished results). The characteristic frequency
(CF), defined as the frequency with the lowest threshold, is in crickets around
700–1,000 Hz in the midlegs and 400–500 Hz in the hindlegs (Dambach 1972). In
the midlegs of various species of bush crickets, the CFs range from 500 to
1,500 Hz (Kühne 1982). Tuning curves as well as intensity response curves vary
between recorded neurons, suggesting that vibratory stimuli can be precisely
fractioned and coded in the SGO. Even the few SGO neurons in Nezara may
discriminate different frequencies (Cokl 1983). A major difficulty with the inter-
pretation of some physiological data is that they cannot be unequivocally ascribed
to the subgenual organ. Extracellular recordings could contain responses from
unidentified elements; in intracellular recordings, SGO neurons were identified via
(an assumed) physiology and by their probable central projection. Only in a very
few cases has the peripheral cell body been labeled and its position unequivocally
identified (see Fig. 14.6, recording and labeling by A. Stumpner, Göttingen).

An important, but rarely addressed question is what are the mechanical forces
and parameters driving the physiological reaction of the vibration receptors. It has
been suggested that the SGO acts like an accelerometer (Schnorbus 1971). In the
honeybee, it has been possible to document the vibrations of the SGO itself.
Substrate vibrations are transferred to the hemolymph, and the sensory organ is
actually oscillating with the hemolymph rather than in the hemolymph (Kilpinen
and Storm 1997). Thus, the subgenual organ’s oscillations are matched with the
hemolymph oscillations and model calculations show that it behaves as an over-
damped system (Storm and Kilpinen 1998).The model suggests that the sensory
cells of the SGO are displacement sensitive. Velocity threshold curves of SGO
neurons from Nezara run in parallel with equal acceleration values below best
frequency and in parallel with equal displacement lines above the best frequency
(Cokl 1983). In addition, the SGO of honeybees was shown to have stimulus-
direction-specific responses (Rohrseitz and Kilpinen 1997). These results indicate
that careful control of the stimulus application is important and that further
research is needed to understand the micromechanics of vibration perception in the
SGO and other scolopidial sense organs. Interestingly, the structure of the SGO of
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Fig. 14.6 Schematic overview of typical central axonal projections of mechanoceptive sensory
fibers. The projections are outlined in a generalized segmental hemiganglion. The median ventral
association center (mVAC) is outlined, to indicate which fibers project into this internal
neuropile. a, b The femoral chordotonal (FCO) can have different central projections: a Fibers of
the dorsal scoloparium of crickets (Nishino 2000) or the proximal part in locusts (Field and
Pflüger 1989) project into the mVAC; b Other fibers of the FCO have a more lateral projection.
c Projection of the midleg CTO of Stenopelmatus (Strauß and Lakes-Harlan 2008b). d Projection
of single fiber originating in the SGO. This neuron has been recorded from and it has been stained
completely with neurobiotin, thereby confirming unequivocally its origin in the SGO of
Ancistrura nigrovittata, Ensifera (courtesy of Dr. Stumpner, Göttingen, unpublished). e Central
projection of campaniform sensilla from the leg of locusts. f Central projection of hair sensilla on
leg parts, which are somatotopically ordered within the neuropile (two positions are indicated by
the two arborization areas). Drawings generalized after (Pflüger et al. 1988 for the ganglion
outline) [a, b after (Nishino 2000), c after (Strauß and Lakes-Harlan 2008b), e after (Hustert et al.
1981) and f after (Mücke and Lakes-Harlan 1995)]
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aqueous larvae and land-living adults of Plecoptera is rather similar (Wittig 1955),
although different mechanical forces might act on the legs.

In many taxa, the subgenual organ is not the only scolopidial organ in the
proximal tibia, although vibration perception can obviously be well achieved with
the SGO alone (Fig. 14.5). Thus, questions arise about the function and the evo-
lution of the other sensory organs. As an example, this can be studied in the
Ensifera, which possess the so-called complex tibial organ (CTO). Within the
foreleg of Tettigoniidae, this organ complex is associated with sound-propagating
structures and can perceive vibratory stimuli as well as acoustic stimuli. The CTO
comprises the subgenual organ, an intermediate organ, and a crista acustica (in
tympanate legs). The crista acustica is a conspicuous feature of the CTO due to its
more or less linear arrangement of sensory cells, which correlates with physio-
logical response properties of the auditory receptors (review: Stumpner and von
Helversen 2001). Recently, such a tripartite CTO has also been described in at-
ympanate Ensifera (Strauß and Lakes-Harlan 2008a, b), including a structure
homologous to the crista acustica. The distinct parts of the CTO have common-
alities, but also differences: The parts have different attachments, partly different
adequate stimuli and different developmental origin. The scolopidia of the SGO
are orientated circularly within the leg and clearly separated from the other two
parts. The scolopidia of the intermediate organ point toward an attachment fixed at
the dorsal tibia. The scolopidia of the crista acustica homolog (CAH) point toward
a supporting structure that extends in the longitudinal axis of the leg. The inter-
mediate organ and the CAH are probably vibration receivers, but physiological
details are so far unknown. The different dendritic attachment in comparison with
that of the SGO might indicate perception of other physiological parameter. For
example, the CAH might not vibrate with the hemolymph as the SGO (see above).
Thereby, other parameters, like different waveforms or different oscillation planes,
might be perceived by the CAH. Biophysical measurements of the oscillations of
the CAH will hopefully resolve the physiological properties. Interestingly, the
CAH is present not only in deaf ensiferans, but also in the atympanate legs of
hearing Tettigoniidae. Thus, it is likely that the organ complex has an important
function in the sensory world of Ensifera. Generally, it might be more than a
coincidence that the CTO has been formed in the proximal tibia. The position just
distally of the femur–tibial joint seems to be well suited for perception of vibratory
signals, due to filter properties of the leg (Cokl personal communication). Con-
sequently, also other taxa have distinct scolopidial organs in the proximal tibia
besides the SGO (Fig. 14.5): In Caelifera and Mantophasmatodea, a distal organ
has been described (Eberhard et al. 2010; Lin et al. 1995). The Mantophasmatodea
have a pronounced vibrational communication with species-specific signals (Eb-
erhard and Picker 2008). The vibrational sensitivity of the leg nerves reaches
thresholds of 0.01–0.001 m/s2 within a frequency range from 600 to 1,200 Hz
(Eberhard et al. 2010). The precise origin of this physiological response is not
known, although the SGO is likely to be the most sensitive vibration receptor.
Phasmatodea possess an elaborated distal organ besides the SGO (Strauß and
Lakes-Harlan 2013).
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Another organ in the proximal tibia is the accessory organ, which has only a
few sensory units attached to the dorsal cuticle. It is present in mantids as well as
in some orthopterans in close association with the other parts of the sensory
complex. The function of the organ is unknown; it might contribute to the infor-
mation processing of relevant vibratory signals.

14.2.3.3 Tarsal Chordotonal Organs

Scolopidial organs can be found in different parts of tarsi of many insects (Mücke
1991; Goodwyn et al. 2009; Wiese 1972). The function of these scolopidial organs
has been addressed in water striders, which detect water surface waves for prey
location. The respective sensors of water vibrations are located in the tarsi, as
cutting of the entire tarsi abolished the orientation of the animal (Murphey 1971).
In Aquarius paludum, three scoloparia occur in the tarsi. Each scoloparium con-
tains 2–3 scolopidia and is orientated in different directions, which might be seen
as sensory adaptation to perception of complex water wave vibrations (Goodwyn
et al. 2009). In the backswimmer Notonecta glauca, the tarsal chordotonal organ
enables localization of the wave-producing prey (Wiese 1972). The tarsal
chordotonal organ is located in the distal tarsomere and consists of two scoloparia
(proximal and distal) with three and five sensory neurons, respectively. The sen-
sory units respond in the behaviorally relevant frequency intensity range (Wiese
1972). However, not all tarsal chordotonal organs might serve as vibration
receivers: In C. carnea, a sensitive vibration response was lacking (Devetak and
Amon 1997), and in Mantophasmatodea, the destruction of the tarsal chordotonal
organ did not change the vibration sensitivity (Eberhard et al. 2010).

14.2.3.4 Prosternal Chordotonal Organ

The prosternal chordotonal organ of Diptera is interesting for several aspects. This
organ presents an example of a sense organ that is not immediately obvious for
substrate vibration perception. The prosternal chordotonal organ is located in the
prothorax, directly behind the head. It attaches to a neck membrane and has therefore
been proposed to monitor head movements (Preuss and Hengstenberg 1992).
However, it could be shown that the organ reacts sensitively to high-frequency
vibrations not found in movements of the head or during flight (Lakes-Harlan et al.
1999; Stölting et al. 2007). The organ might therefore be able to pick up substrate
vibrations. This finding is furthermore in accordance with the hypothesis that the
prosternal organ was modified during evolution into a hearing organ (Lakes-Harlan
and Heller 1992; Lakes-Harlan et al. 1999; Robert et al. 1992). The evolutionary
scenario implicates that the animals first perceived vibratory signals and that mod-
ifications in the sound-propagating structures (enlargement of a tracheal chamber
and thinning of tympanal membranes) resulted in the capacity to perceive airborne
sound.
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The physiology of the prosternal organ is also interesting with respect to
unknown vibratory sense organs in other insects. For example, Membracidae have
been shown to communicate with vibratory signals and to react very sensitively to
vibratory stimuli (Cocroft 1996; Cocroft and McNett 2006). The vibratory stimuli
might be sensed by the SGO, but perhaps also with scolopidial organs at other
body locations. Many Membracidae have a spectacular morphology with protu-
berances and extensions of the body surface. These structures have been shown to
vibrate in response to substrate vibration, whereby the maxima and minima of
vibrations follow a complex system (Cocroft et al. 2000). If an internal scolopidial
organ were located near the maximum of such vibrations, this organ could pick up
the substrate vibrations, similar to the prosternal organ. Future experiments will
certainly unravel the behaviorally relevant sensory organs.

14.2.4 Neural Networks and Neuroethology

The central projections of the sensory fibers are the first level in the neural networks
processing vibrational information. Probably in order to facilitate efficient neuronal
processing, these central projections are usually ordered within the central nervous
system by type of the sensory neuron and/or by position of the sensory cell body
(Fig. 14.6). Consequently, the central projection of the sensory neuron may be
indicative of its function. In each segmental ganglion of insects, a neuropile area,
the median ventral association center (mVAC), is known for processing of vibra-
tory, auditory, and proprioceptive information (Pflüger et al. 1988). The projection
into this neuropile may also be indicative of a vibration-receptive function of its
sensory cells.

As described above, the FCO often contains two distinct parts (scoloparia) and
these parts also have different projections in the corresponding ganglion. In locusts,
the proximal part has a dense projection close to the midline within the mVAC and
the distal part has a rather loose projection, not merging with that of the proximal
scoloparium (Field and Pflüger 1989; Mücke and Lakes-Harlan 1995). In crickets
and in wetas, neurons of dorsal parts of the FCO project into the mVAC (Fig. 14.6;
Nishino 2000, 2003). In these species, even a more detailed order in the central
projection of small groups of neurons could be shown. Furthermore, distinct central
projections also correlate with different physiological properties (Matheson 1992).
In the Diptera, the FCO projects into the mVAC as well (Merritt and Murphey
1992). Given that the mVAC is often the first-order neuropile involved in vibration
processing, the projection in Diptera could indicate that at least parts of the FCO
play a role in sensing vibrations. The sensory neurons of the prosternal chordotonal
organ of Diptera project among other areas into the mVAC of all three thoracic
neuromeres, in both atympanate and tympanate Diptera (Stölting et al. 2007;
Stumpner et al. 2006).

On the other hand, the sensory cells of the vibrosensitive SGO do not project
completely in the mVAC. The central projection of the SGO has unequivocally
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been documented in orthopterans either by labeling a complete single cell during
recording (Stumpner 1996) or by careful anterograde backfills (Nishino and Field
2003). The fibers of the tettigoniid SGO might project into the mVAC, but not
close to the midline (Fig. 14.6; Stumpner 1996). Axons with a bifurcating mor-
phology project anteriorly in the mVAC, whereas subparts of the SGO also have
posterior projecting fibers that do not reach the mVAC, but establish an ordered
projection outside the mVAC (Nishino and Field 2003). The complex tibial organs
of the atympanate Ensifera also have a projection within the mVAC, but so far it
has not been unequivocally resolved whether the cells of the CAH project into the
neuropile (Fig. 14.6; Strauß and Lakes-Harlan 2008a, b). Nevertheless, in the
different atympanate Ensifera analyzed so far, the distinct overall projections in the
taxon-specific anatomies of the mVAC are likely to originate at least partly in the
CAH (Strauß and Lakes-Harlan 2008a, b, 2010). The accessory chordotonal organ
in wetas also projects into the mVAC (Nishino and Field 2003). A CO that does
not project in the mVAC is the proprioceptive tarsal CO in locusts (Mücke and
Lakes-Harlan 1995). It will be interesting to study the central projection of the
tarsal CO in the water strider, which is supposed to register water vibrations
(Goodwyn et al. 2009).

In contrast to the scolopidial sensilla, mechanosensitive hair sensilla have so-
matotopically ordered, often tufted-like projections mainly in the lateral neuropiles
of the respective ganglion (Fig. 14.6; Burrows and Newland 1993; Mücke and
Lakes-Harlan 1995). Campaniform sensilla often have a widely arborized pro-
jection in lateral neuropiles, as shown in locusts and flies (Fig. 14.6; Hustert et al.
1981; Merritt and Murphey 1992). Some of the CS may reach the median ventral
association center with single axonal branches. As mentioned above, external
sense organs (es) like sensory hairs can be transformed into chordotonal sensilla in
Drosophila embryos. Such transformed sensilla exhibit a variety of central pro-
jection anatomies ranging from those of es neurons to those of chordotonal neu-
rons (Merritt et al. 1993). Thus, the formation of a central projection is probably
controlled by a number of genes.

The mechanosensory neurons synapse onto vibratory interneurons that distribute
and compute the information in the CNS (Rössler et al. 2006). One of the first
features of such networks is probably the localization of the source of the stimuli.
Such directional discrimination is possible by calculation of the input from the
receptors of different legs (Virant-Doberlet et al. 2006). However, it has to be kept
in mind that the sensitivity of the different legs can be different (see above) and that
additional input from scolopidial organs in various parts of the body could con-
tribute to the networks. Biologically relevant answers of discrimination are given
by the behavior of the animal: ant lions that locate their prey in sandy pits (Devetak
1998); toktok beetles in the Namib Desert tap on the sand surface with their
abdomen and attract each other (unpublished observations). In other species, vi-
brotaxis might supplement phonotaxis. In crickets or tettigoniid, species-specific
vibratory signals can facilitate orientation in a complex 3D habitat, like bushes,
toward conspecifics (Latimer and Schatral 1983; Stiedl and Kalmring 1989; We-
idemann and Keuper 1987). Holometabolous caterpillars can detect and
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discriminate vibratory signals occurring on leaves with so far unidentified sense
organs (Guedes et al. 2012).These exemplary observations show the ability of
various species to locate vibrational stimuli.

14.2.5 Evolution

Vibration receptor organs have evolved in relation to selective pressures on
vibration perception, and some organs have later been further modified for per-
ception of airborne sound. The receptor organs have to match the distinct
parameters of vibratory signals relevant for reproduction and offspring. But can
receptor organ complexity be related to vibratory signaling or parameters of
vibratory signals, like frequency, displacement, and others?

Insects that possess a subgenual organ as a sensitive vibration receiver have
between two and several hundred sensory units. Orthoptera with elaborated
acoustic and vibratory communication signals have about 20–80 scolopidia in each
of the subgenual organs of their legs. So far, no correlation between cell number
and signal has been worked out for Orthoptera. However, it has been shown that
subgenual organs with few neurons are apparently sufficient to serve vibration
communication and may even discriminate different frequencies (Cokl 1983). The
subgenual organs of the neuropteran Chrysoperla contain only three scolopidia
(Devetak and Pabst 1994), and only two scolopidia are in the SGO of the bug
Nezara (Michel et al. 1982). Thus, from a strictly numerical perspective, a low
number of receptor units might be functionally sufficient. It can be asked what the
receptors in insects with more sensory neurons are used for, or whether they are
functionally redundant.

On the other hand, an example for sensory adaptation has been proposed in
some groups of parasitoid wasps. These female wasps tap on the substrate with
their antenna to evoke ‘‘echoes’’ of vibration by which they locate their hosts. This
behavior is termed vibrational sounding. Apparently, the receptor organ for the
echoes is the subgenual organ, which contains 300–400 scolopidia in 55 species of
Orussidae (Vilhelmsen et al. 2001) and five of 39 subfamilies of Ichneumonidae
(Broad and Quicke 2000). This enlargement of the subgenual organ correlates with
the vibrational behavior and ecological factors, like host size and substrate (Broad
and Quicke 2000). The co-organization of sounding and signal detection indicates
a coevolution between signal evocation and signal detection. The increase in
number of receptors may functionally improve the ability to detect the hidden
hosts. For specific taxa, phylogeny is helpful to infer the ancestral situation of a
sensory system. However, the Orussidae are a basal group (Vilhelmsen et al.
2001), and therefore, the enlarged subgenual organ may not be apomorphic in this
lineage.

The evolution of the tibial scolopidial organ in relation to vibrational signals
has also been discussed for Ensifera. While crickets and bush crickets mainly use
acoustic signaling (Bailey 1990), several taxa lack hearing organs but instead use

296 R. Lakes-Harlan and J. Strauß



vibrational signals by substrate drumming with hindlegs or abdomen (Field and
Bailey 1997; Gwynne 2004; Weissman 2001). In the ensiferan phylogeny, the
plesiomorphic situation seems to be the possession of a subgenual organ together
with an intermediate organ (which might be related to the distal organ or Ne-
benorgan in other taxa). Such neuroanatomical organization is present in a cave
cricket (Raphidophoridae: Jeram et al. 1995). Other taxa of atympanate Ensifera
(Stenopelmatidae, Schizodactylidae, and Gryllacrididae) possess a tripartite CTO
(Strauß and Lakes-Harlan 2008a, b, 2009, 2010) with receptor structures homol-
ogous to that in tettigoniids, but without adaptations to sound reception. Since the
serial organization in all three leg pairs is similar (e.g., the numbers of scolopidia),
it was presumed that the sensory organ structure represents the ancestral organi-
zation of hearing organs and therefore might have a vibroceptive function (Strauß
and Lakes-Harlan 2009). In this case, it can be argued that the detection of
vibration was the ancestral function of the subgenual organ, to which further
receptor structures were added with a presumptive function in analyzing intra-
specific signaling by substrate vibration. The additional receptor structures might
be necessary for detecting vibration parameters independent from hemolymph
oscillations that can be perceived by the SGO (see above for details).

The question of evolution of vibration receptors has rarely been analyzed in
detail. Hopefully, future studies will show which selective pressures acted on the
formation of scolopidial organs and what constraints influence the evolution of
these interesting sense organs.
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