
A Three-Dimensional Paradigm
for Conceptually Scoped Language
Technology

Jeroen van Grondelle and Christina Unger

Abstract Language technology is used increasingly for providing speech- and
text-based interfaces to existing applications and services. However, a number
of characteristics of today’s language technology make it hard to be adopted by
non-linguistically skilled developers. In this chapter, we propose a paradigm that
conceptually scopes the coverage of the language technology that is adopted into
existing applications. It is backed by a three-dimensional approach to modular-
ization of resources that decouples the domains, tasks and languages that need
to be supported. We present an implementation of this paradigm based on the
ontology-lexicon format lemon and Grammatical Framework (GF), and show how
the proposed modularity facilitates low impact adoption, through sharing and reuse
of technology components and lexical resources on the web.

Key Words Conceptual scoping • Grammar generation • Modularity • Natural
language interfaces • Ontology-lexica

1 Introduction

Natural language plays an increasingly important role as interface to existing
services and data. Social networks, for instance, present updates and newsfeeds as
natural language content, virtual assistants support users by allowing them to query
different sources of information and to manipulate them using speech dialogs (Zue
and Glass 2000; Kaljurand and Alumäe 2012) and business applications allow
domain experts to customize the services by creating rules or manage complex
configurations using natural language-based interfaces (Spreeuwenberg and Healy
2010; Spreeuwenberg et al. 2012). The development of language technology that has

J. van Grondelle (�)
Be Informed, Apeldoorn, The Netherlands
e-mail: j.vangrondelle@beinformed.com

C. Unger
CITEC, Bielefeld University, Bielefeld, Germany
e-mail: cunger@cit-ec.uni-bielefeld.de

© Springer-Verlag Berlin Heidelberg 2014
P. Buitelaar, P. Cimiano (eds.), Towards the Multilingual Semantic Web,
DOI 10.1007/978-3-662-43585-4__5

67

mailto:j.vangrondelle@beinformed.com
mailto:cunger@cit-ec.uni-bielefeld.de


68 J. van Grondelle and C. Unger

to support these new application scenarios, however, so far has built on objectives
and requirements that widely differ from those imposed by their role as interfacing
technology, and the consequences still hinder an easy adoption in such scenarios.
This can be demonstrated along three main points.

First, an objective of language technology often has been to process unrestricted
language. On the one hand, this involves challenges that can be tackled very
differently when interfacing with an application. In an unrestricted setting, for
example, natural language expressions are highly ambiguous, while in the context
of a particular application, they usually have a single, very specific meaning. That
is, the application introduces a context that can be exploited for disambiguation.
On the other hand, there is a mismatch between the very general, usually surface-
oriented meaning representations created in an unrestricted setting and the demand
of aligning language with data and services in the context of a particular application.
Again, the interpretation of natural language expressions can be restricted and
guided by the underlying application, as it inherently introduces a scope that
determines the language fragment that is relevant and meaningful when interfacing
with it.

Second, language technology tools and techniques have mainly been developed
and used by linguistically trained people. Choosing from the range of available
approaches and tools and implementing the selected technology in a specific
application require linguistic expertise typically not found in the companies that
develop applications that a language interface is adopted into. Therefore, the
adoption is costly and requires high upfront investments.

And third, language technology tools often trade precision for additional cover-
age, while for companies adopting those tools, high precision as well as reliability
and predictability become critical, as any misinterpretation can lead to immediate
errors in the invocation or execution of the underlying service.

To support the adoption of language technology into existing services and
applications by companies with little or no linguistic expertise, we propose a new
architecture for language technology that

• Is conceptually scoped in the sense that it uses the application’s conceptualization
to scope language technology and as a consequence limits and tailors all
interpreted and generated language to the specific application it is meant to
interface with

• Modularizes the creation and use of resources by clearly separating three
dimensions: domains, tasks, and languages

This shifts the mainstream paradigm of unscoped, monolithic, and therefore
costly language technology to a new, strongly modular and inexpensive way of
creating and exploiting natural language resources.



A Three-Dimensional Paradigm for Conceptually Scoped LanguageTechnology 69

2 A Three-Dimensional Paradigm for Conceptually Scoped
Language Technology

To address the challenges described above, we propose the following three prin-
ciples for guiding the development of conceptually scoped, modular language
technology.

2.1 Scoping Natural Language Through a Conceptualization

We propose that the scope of the natural language fragment that is to be supported,
for instance, through interpretation, generation or translation, should be determined
by a conceptualization. Such a conceptualization typically defines the individu-
als, classes, properties and relations that will be expressed in natural language,
independent of the particular representation formalism used, and it should follow
from the application or service that language is supposed to interface with. As
a result, conceptual scoping grounds any supported natural language utterance
in the underlying conceptualization and ensures it to be meaningful within that
conceptualization (e.g. as advocated by Gatius and Rodríguez 1996 and Nirenburg
and Raskin 2004).

This improves on the mainstream paradigm, where conceptualization and
attached language technology are often developed independently from each other
and where it is therefore hard to ensure that the conceptual and the linguistic scopes
of an application are aligned, especially if the conceptualization changes over time.

2.2 Automatically Generating Resources from Declarative
Lexical Information

The supported conceptualization has its own lexical aspects, which conventionally
have been captured in formalisms that are highly dependent on the type of language
technology used. In contrast, by building on a declarative format for specifying
lexical information, those lexical aspects can be captured in a technology-neutral
way. Technology-specific artefacts, such as grammars, can then be generated by
means of a mapping from the declarative lexical representation to the technology-
specific formalism.

We therefore propose the pipeline in Fig. 1, starting from a conceptualization that
is enriched with a declarative specification of the lexical information associated with
the given concepts (Reymonet et al. 2007; Montiel-Ponsoda et al. 2008; McCrae
et al. 2012; Wróblewska et al. 2012). The resulting lexical representations are
input to an automatic mapping to a language technology-specific resource, such
as grammars, phrase tables, or semantic annotations.



70 J. van Grondelle and C. Unger

Fig. 1 Pipeline from conceptualization and lexical information to specific resources

By automatically generating resources from an intermediate declarative lexical
level, the investment into the lexical resources is protected, and consistency across
the technology-specific resources is guaranteed. Furthermore, the developers of the
lexical resources do not need to have expertise in language technology implemen-
tations, such as specific grammar formalisms. This lowers the investment required
for natural language-based applications and furthermore removes the dependency
on particular third-party tools. Also, when using declarative lexical formalisms,
developers are less likely to make implicit choices concerning particular linguistic
theories, which would hamper the reuse of the resources when adopting new
technologies that do not agree with these choices.

2.3 Decoupling Domain and Task Aspects

Conventionally, a lot of emphasis has been on domain aspects (Martins and
de Almeida Falbo 2008). But when providing natural language support in an
application, the type of tasks supported by that application typically also has
linguistic implications in terms of the natural language fragment that needs to
be supported. For instance, the task of customer service dialog introduces its
own words and sentence structures, independent of the domain. Similarly, task-
specific linguistic aspects exist for tasks such as validation of domain ontologies,
documentation, etc.

In order to allow for a reuse of task aspects across different domains, we
propose the model depicted in Fig. 2 to decompose the scope introduced by
the underlying applications that language technology interfaces with into three
dimensions: the domain of the application, specified by some conceptualization; the
task that the application offers, such as verbalizing domain data for explanation or
documentation purposes or providing online services that include transactions and
web forms in terms of the domain; and the languages in which the natural language
capabilities are offered. The language fragment supported by an application is now
defined by a subspace of the resulting cube, involving one or more domains together
with one or more tasks and spanning one or more languages.

This orthogonal modularization of domain and task aspects supports spec-
ification of the conceptualization and lexical information per dimension, that



A Three-Dimensional Paradigm for Conceptually Scoped LanguageTechnology 71

Fig. 2 Three-dimensional model for conceptually scoped language technology

is specifying domains independent from tasks and vice versa. The dimensions can
then be freely combined by choosing the particular domains, tasks and languages
supported for a specific application. This not only allows for the reuse of already
existing conceptualizations, such as adding new tasks to an existing domain or
reusing task conceptualizations across different domains, but steadily increases the
return on investment, since the more of these building blocks already exist, the easier
and faster it is to plug them together to build new applications.

The importance of separating domain and task conceptualizations has also been
noted, for example, by Guarino (1997) and Mizoguchi et al. (1995).

3 Proof of Concept in the Context of the Multilingual
Semantic Web

As a proof of concept of the three-dimensional paradigm proposed, we implement a
dialog-oriented natural language interface based on these principles, using a stack of
technologies suitable in the context of the multilingual Semantic Web, and show that
it supports typical scenarios in the incremental adoption of language technology.

3.1 Implementation

For capturing conceptualizations and lexicalizations, we build on existing Seman-
tic Web standards, in particular Web Ontology Language (OWL) and Resource
Description Framework (RDF). Since these standards by their very nature enable
linking and sharing of data, this supports the reuse of modules and facilitates an
ecosystem of language technology resources, as discussed in Sect. 4.



72 J. van Grondelle and C. Unger

Fig. 3 Grammar modularity. Arrows indicate grammar inheritance

The domain conceptualization is captured as an ontology in the standard
ontology format OWL (McGuinness and van Harmelen 2004). In order to be
able to associate linguistic information with concepts in an ontology, the lexical
component is implemented using lemon (McCrae et al. 2012), a model for the
declarative specification of multilingual ontology-lexica in RDF. It allows lexical
data to be published, shared and interlinked on the web and thus fits very well
with our approach’s strong emphasis on modularity. Furthermore, it is independent
of a particular linguistic theory or grammar formalism. In the following, we use
Grammatical Framework (Ranta 2011) as target grammar formalism, benefiting
from its inherent modularity and its support for more than 30 languages, which
allows for very fast and effortless porting across those supported languages.

The instantiation of the pipeline from conceptualization and lexicalization to a
specific grammar thus starts from an OWL ontology; then requires the creation (or
reuse) of an ontology-lexicon for the target languages, specifying lexicalization of
the ontology elements in those particular languages; and then relies on the automatic
generation of multilingual grammars from that lexicon.

In order to percolate modularity up to the grammar level, we implement
application grammars as being composed of three modules, as depicted in Fig. 3:
a domain- and task-independent core grammar, an automatically generated domain
grammar and an accompanying task grammar.

The core grammar comprises domain- and task-independent expressions, espe-
cially closed class expressions such as determiners, pronouns, auxiliary verbs,
coordination expressions and negation. It is created manually and can be reused
for every domain and task. It provides an independent basis on which both domain
and task grammars build, therefore acting as a decoupler between them.

The domain grammar extends the core with expressions that are automatically
generated from a given ontology-lexicon, following the pipeline in Fig. 1. The task
grammar, on the other hand, extends the core with task-relevant expressions. As
of now it is created manually, but carrying over the grammar generation pipeline
from the domain to the task dimension and thereby also allowing for the automatic
generation of task grammars constitute future work (see Sect. 5). The fact that
domain and task grammars are constructed independently from each other, together
with the fact that they share the core grammar as their basis, allows for a free and
smooth combination of any domain with any task.



A Three-Dimensional Paradigm for Conceptually Scoped LanguageTechnology 73

The application grammar finally combines core, domain and task grammars
and furthermore allows for application-specific extensions or fine-tuning. The final
application grammar is used for the specific purpose of the application, which
possibly interfaces it with additional modules such as a reasoner, a query engine
or a user interface.

3.2 Typical Adoption Scenarios

In the following, we illustrate typical adoption scenarios, in particular decoupling
domain and task aspects, incorporating new domains and tasks and adding further
languages. The mentioned resources can be accessed at http://purl.org/3dlt/home.

3.2.1 Decoupling Domain and Task Aspects

We start by building an application grammar for customer service dialog in the flight
travel domain in English. That is, given a conceptualization of flight travel, we want
to construct a grammar that captures utterances such as the following ones:

• Show me all flights from Boston to Detroit.
• Which airlines fly to San Francisco?
• I want to travel to New York tomorrow.
• When do you want to depart?
• Do you need a hotel in New York?

The domain conceptualization is modelled as an OWL ontology that was built in
the context of the PortDial project,1 based on terms used in a corresponding Airline
Travel Information System (ATIS) domain grammar (PortDial Consortium 2013). It
is organized around the concept of a trip, which consists of flights, hotel stays and
car rentals. Flights in turn are composed of flight legs and are connected to their
arrival and departure as well as the operating airline. As an example, Fig. 4 shows

Fig. 4 Conceptualization of flights with their departure city and operating airline

1https://sites.google.com/site/portdial2/.

http://purl.org/3dlt/home
https://sites.google.com/site/portdial2/


74 J. van Grondelle and C. Unger

Fig. 5 Lexical patterns for the nouns “flight” and “city” as well as the verbs “to depart from” and
“to operate”

a small part of the ontology, capturing flights, the city of their departure and their
operating airline.

Connected to the ontology is an ontology-lexicon that specifies how the classes,
properties and individuals are verbalized in a specific language. The classes
Flight and City, for example, are expressed in English using the nouns
“flight” and “city”, while Departure is an auxiliary construct that a user
would probably not address directly. The latter also holds for both the properties
flightDeparture and city: On their own, they are not relevant to the user,
but what is relevant is their composition, connecting flights to the city of their
departure. The property chain flightDeparture ı city can be verbalized as
the verb chunk “to depart from” and the verb “to leave” or as the noun chunk “flight
from”. A natural verbalization of the property airline is by means of the verb
“to operate”. Examples for lexical patterns specifying those verbalizations are listed
in Fig. 5, using a catalogue of lemon design patterns (McCrae and Unger 2014)
that was created in order to relieve lexicon engineers from the need to understand
and write RDF as well as to support them in the construction of lexical entries.
All patterns specify a canonical form (possibly together with additional inflectional
forms) as well as a reference to the particular ontology concept they denote. The
verb patterns moreover give a mapping from semantic to syntactic arguments: In
the case of “to operate”, the subject of the denoted property (a flight) corresponds to
the direct object in the syntactic structure, and the object of the denoted property (an
airline) corresponds to the syntactic subject, like in “Pan Am operates flight 27B-6”,
while in the case of “to depart” the subject of the denoted property chain (a flight)
corresponds to the syntactic subject, and the object of the denoted property chain
(a city) corresponds to a prepositional object in the syntactic structure, marked with
the preposition “from”.

In a similar way, the lexicon specifies alternative verbalizations of the same con-
cepts, such as “to leave from” or “flight from”, as well as all relevant verbalizations
of other ontology concepts. In exactly the same way, lexicalizations of instances can
be given, for example, verbalizing the individualBoston by its name “Boston” and
the individual John_F_Kennedy_International_Airport as “JFK”.



A Three-Dimensional Paradigm for Conceptually Scoped LanguageTechnology 75

Once an ontology-lexicon is constructed, it is used for the automatic genera-
tion of a domain grammar. For this, we build on lemongrass,2 a Python script
for mapping lemon lexica to different grammar formats, including Grammatical
Framework (GF). GF distinguishes abstract and concrete syntax. The abstract syntax
is a type-theoretical framework for specifying abstract concepts in a language-
independent manner. These concepts are usually semantic ones, which makes it
possible to, for example, use the abstract syntax to represent ontologies (Angelov
and Enache 2012). A concrete syntax is a mapping from abstract syntax concepts
to linearizations of those concepts in a particular language. Based on the concepts
in the ontology, lemongrass constructs an abstract syntax, and from the morphosyn-
tactic information specified in the lexicon, lemongrass instantiates templates for
constructing a corresponding concrete syntax. The result is a domain grammar that,
together with the domain-independent expressions from the core grammar, captures
phrases like “all flights to Boston” and “the flight is operated by an airline which
serves JFK”.

Since the domain conceptualization does not cover any task-relevant concepts,
neither the lexicon nor the resulting grammar comprises expressions specific for
customer service dialogs. Providing such expressions is the job of the task grammar,
for example, specifying constructions for requesting and offering information, as
well as dialog constructions such as greetings and expressions for agreement or
disagreement, possibly taking into account parameters like formal vs. informal
speech.

The final application grammar is then composed of the core grammar, an
automatically generated domain grammar for the flight travel domain, and a (for
now manually constructed) task grammar for user service dialogs. Combining these
three grammar modules, the covered language fragment includes utterances like
“give me all flights to Boston” and “which airlines operate flights from Boston to
Denver”.

3.2.2 Porting to a New Domain

Porting the above dialog application to another domain requires a conceptualization
of that new domain, together with lexical information from which a new domain
grammar can be generated. Depending on the size and complexity, lexicon creation
can be very labour intensive and thus would greatly benefit from semi-automatic
methods (Walter et al. 2013) and an ecosystem of resources as described in Sect. 4.
Because of the independence of grammar modules, core and task grammars remain
unchanged.

We illustrate the domain porting by an example from the business processes
domain, centered around activities and their preconditions and postconditions (van
Grondelle and Gülpers 2011). Figure 6 shows an instantiation for the particular case

2https://bitbucket.org/chru/lemongrass.

https://bitbucket.org/chru/lemongrass


76 J. van Grondelle and C. Unger

Fig. 6 Conceptualization of activities and their preconditions and postconditions, where open
circle marks precondition relations and filled circle marks postcondition relations

Fig. 7 Definition of the precondition relation requires available, based on the general
precondition property requires and the class Available

of housing benefit requests, where relevant activities are, for instance, assessing
a request, planning a meeting, or publishing a decision. Preconditions of such activ-
ities comprise the availability of some document or a scheduled appointment, while
postconditions include the creation of a document, for example, a confirmation or
rejection letter.

In the ontology, both preconditions and postconditions are modelled as object
properties, with creates and schedules as subproperties of the postcondition
property and requires as subproperty of the precondition property. States like
available and scheduled are modelled as classes. The composed precondi-
tion relations requires available and requires scheduled are then
defined as properties with a range comprising individuals from the union of, for
example, Document and Available. An example of such a definition is given
in Fig. 7.

Similar to the flight travel domain, a corresponding ontology-lexicon spec-
ifies how the classes, relations and instances are verbalized. The precondition
requires, for example, can straightforwardly be expressed using the verb “to
require”, as in the following example:

• The assessment of the request requires that the customer visit is scheduled.

An example of a lexicon pattern for this verbalization as well as one for the class
Available is given in Fig. 8.

Coupling the housing benefit domain grammar with the customer service dialog
task used above then allows for the generation of questions and requests such



A Three-Dimensional Paradigm for Conceptually Scoped LanguageTechnology 77

Fig. 8 Lexical patterns for the verb “requires” as well as the intersective adjectives “available”
and “unavailable”, where Available�1 denotes the complement class of Available

as “Which documents are required for assessing the request?” and “We need the
confirmation letter.”

3.2.3 Incorporating New Tasks

Analogously to replacing one domain by another, we can also replace one task by
another. For instance, for the purpose of creating explanatory texts, a task grammar
could contain constructions for combining fact verbalizations using “because”,
“therefore”, “but” and other conjunctions, as well as expressions for putting
emphasis on particular aspects. Combining such a documentation task grammar
with the housing benefit domain grammar can cover expressions such as the
following ones:

• Especially the customer visit is required.
• A confirmation letter was created. Therefore, the activity of assessing the request

is completed.

The new task can of course also be combined with the flight travel domain, covering
expressions such as the following ones:

• Especially JFK is served by most airlines.
• A flight from Los Angeles to San Francisco takes 1 h. Therefore, there is no meal.

3.2.4 Adding Further Languages

Extending an application to other languages requires porting both the lexicalizations
and the lexicon-to-grammar mapping.

First, the domain lexicon needs to be ported to the target language. This process
can exploit automatic methods for ontology lexicalization (Walter et al. 2013), label
translation methods (Mejía et al. 2009; McCrae et al. 2011) and linguistic resources
such as BabelNet (Navigli and Ponzetto 2012). Figure 9 shows Dutch versions of
the flight travel lexicalizations given in Fig. 5. Since Dutch is very close to English,
the lexicalizations only differ in their form and in the specification of gender in the
case of nouns.

Second, the lexicon-to-grammar mapping and the core grammar module needs
to be ported to the target language. The involved effort strongly depends on the



78 J. van Grondelle and C. Unger

Fig. 9 Dutch lexical patterns for flight travel concepts

grammar formalism and the multilingual resources available in that formalism. In
the case of our implementation using GF, porting a grammar to another language
is almost trivial for all languages for which GF provides resource grammars, that
is, implementations of low-level morphosyntactic operations. This is the case for
about 30 languages from a variety of language families. Mapping the core grammar
module to Dutch and German required about ten lines of GF code each, and
extending lemongrass with templates for additional concrete syntaxes for those
languages required a similarly low amount of effort.

The grammar constructed from the Dutch flight travel lexicon, together with the
Dutch core and task grammar modules, then covers utterances such as the following
ones:

• Toon alle vluchten vanaf Detroit naar Boston.
• Welke luchtvaartmaatschappijen vliegen naar San Francisco?
• Ik wil morgen naar New York reizen.

4 An Ecosystem for Language Technology

The architecture presented is extremely modular, both in terms of technologies and
resources. This provides new ways of sharing and marketing language technology,
as granular components can be developed independently and can then be shared,
reused and composed into language technology-based solutions, thereby facilitating
an ecosystem of cooperating language technology producers and consumers.

In addition to language resources like declarative lexical resources for domains
and tasks, a number of different kinds of components could be shared:

• Generic domain and task conceptualizations
• Technologies to mine and extend lexical resources



A Three-Dimensional Paradigm for Conceptually Scoped LanguageTechnology 79

• Technology mappings from declarative lexical resources to technology-specific
formalisms, such as different grammar formalisms, phrase tables, semantic
annotations (Davis et al. 2011), etc.

Being able to reuse technology and lexical resources at a granular level provides
nonlinguistically trained developers with a low impact adoption path of language
technologies into existing applications and solutions. Initial support for natural
language can be added at low cost, as default lexical and grammar resources are
available for reuse, as are tools to create and enrich those resources. Optimization
and customization can then be performed as expertise grows.

The open standards of the Semantic Web provide a very suitable way to
implement such an ecosystem, as it supports the publishing and sharing of resources
and services on the web, based on Semantic Web formalisms and tools. Examples
are the Linguistic Linked Data (Chiarcos et al. 2012) cloud,3 which forms a growing
ecosystem of interlinked language resources such as dictionaries and lexica, and the
Language Grid (Murakami et al. 2014) which offers an architecture for sharing and
composing language services.

A different way to exploit the modularity of the resources is creating extensible,
novel end-user services, as shown in Fig. 10. Imagine a virtual assistant, presumably
on a smartphone, that could easily be extended by app developers with new
capabilities and that allows consumers to create their own personal virtual assistant
supporting services of interest to them and, as a consequence, covering exactly the
range of dialog needed for those selected services. The architecture we presented
in this chapter could be the basis of a software development kit that allows app

Fig. 10 A virtual assistant as natural language interface to applications

3http://linguistics.okfn.org/resources/llod/.

http://linguistics.okfn.org/resources/llod/


80 J. van Grondelle and C. Unger

developers to associate their apps with domain and task conceptualizations and
lexicalizations to allow for instance the phone’s standard virtual assistant to disclose
the app’s services using voice dialog. For instance, a weather app could come with a
conceptualization and lexicalization of the weather domain, allowing the consumer
to query the phone’s virtual assistant for the weather situation, possibly using a
standard vocabulary for querying.

5 Conclusion and Future Work

In order to support the adoption of language technology into existing services
and applications, especially by companies with little or no linguistic expertise, we
proposed a new paradigm for the creation and use of language technology resources.
Starting from a conceptualization that scopes the supported language fragment
to exactly those expressions and constructions relevant for the application in
question, we exploited declarative lexical information for specifying verbalizations
of concepts. On both levels, conceptual and lexical, we clearly separated domain
and task aspects. Further, lexical representations served as input for the automatic
generation of language technology resources, thereby removing both the need for
expertise in specific formats and the dependence on particular implementations of
them.

As proof of concept, we provided an implementation based on Semantic
Web standards, creating GF grammars from lemon lexicalizations attached to an
underlying OWL conceptualization of a domain, showing that it supports typical
adoption scenarios.

A limitation to be addressed in future work is that in the given implementation,
task grammars were still constructed manually. This mirrors the fact that the
conceptualizations and lexica already present on the web so far mainly focus
on domains, whereas the task that is supported is often implicitly assumed to
be querying. Conceptualization of other tasks as well as multilingual lexical
information for verbalizing them are still widely lacking. We therefore aim at a
general conceptualization of different tasks and, if necessary, an extension of the
lemon model for task verbalizations.

Furthermore, we plan to explore how the proposed paradigm can be applied
to other areas of language technology, for example, generating phrase tables for
machine translation, possibly building on the same Semantic Web standards for
conceptualizations and lexicalizations.

This will lift the proposed three-dimensional architecture to its full potential,
enabling the reuse of multilingual lexical resources for domains and tasks across
the web and allowing the application of these resources in a wide range of language
technologies, moving towards an ecosystem for language technology.



A Three-Dimensional Paradigm for Conceptually Scoped LanguageTechnology 81

Acknowledgements This work was partially funded in the EU projects PortDial (FP7-296170),
Monnet (FP7-248458) and MOLTO (FP7-247914). We also want to thank the organizers of the
Dagstuhl seminar, where many of the ideas in this chapter took form, especially Philipp Cimiano
for numerous invaluable discussions. We are also indebted to Aarne Ranta, Jouri Fledderman and
Frank Smit.

References

Angelov, K., & Enache, R. (2012). Typeful ontologies with direct multilingual verbalization. In M.
Rosner & N. E. Fuchs (Eds.), Controlled natural language. Lecture Notes in Computer Science
(Vol. 7175, pp. 1–20). New York: Springer.

Chiarcos, C., Nordhoff, S., & Hellmann, S. (Eds.). (2012). Linked data in linguistics: Representing
and connecting language data and language metadata. New York: Springer.

Davis, B., Badra, F., Buitelaar, P., Wunner, T., & Handschuh, S. (2011). Squeezing lemon with
GATE. In Proceedings of the 2nd International Workshop on the Multilingual Semantic Web
(MSW 2011), Workshop at the 10th International Semantic Web Conference (ISWC 2011).

Gatius, M., & Rodríguez, H. (1996). A domain-restricted task-guided natural language interface
generator. In Proceedings of the Second Edition of the Workshop Flexible Query Answering
Systems (FQAS’96).

Guarino, N. (1997). Understanding, building and using ontologies. International Journal of
Human-Computer Studies, 46(2–3), 293–310.

Kaljurand, K., & Alumäe, T. (2012). Controlled natural language in speech recognition based user
interfaces. In Controlled natural language. Lecture Notes in Computer Science (Vol. 7427,
pp. 79–94). New York: Springer.

Martins, A. F., & de Almeida Falbo, R. (2008). Models for representing task ontologies. In F.
Freitas, H. Stuckenschmidt, S. Pinto, A. Malucelli, & O. Corcho (Eds.), Proceedings of the 3rd
Workshop on Ontologies and Their Applications (WONTO 2008).

McCrae, J., de Cea, G. A., Buitelaar, P., Cimiano, P., Declerck, T., Gómez-Pérez, A., et al. (2012).
Interchanging lexical resources on the Semantic Web. Language Resources and Evaluation,
46(4), 701–719.

McCrae, J., Espinoza, M., Montiel-Ponsoda, E., Aguado-de Cea, G., & Cimiano, P. (2011).
Combining statistical and semantic approaches to the translation of ontologies and taxonomies.
In Proceedings of the Fifth Workshop on Syntax, Structure and Semantics in Statistical
Translation (SSST-5) (pp. 116–125).

McCrae, J., & Unger, C. (2014). Design patterns for engineering the ontology-lexicon interface. In
P. Buitelaar & P. Cimiano (Eds.), Towards the multilingual semantic web: Principles, methods
and applications. Heidelberg: Springer. doi:10.1007/978-3-662-43585-4.

McGuinness, D., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C
Recommendation, 10, 2004–03. http://www.w3.org/TR/owl-features/

Mejía, M. E., Montiel-Ponsoda, E., & Gómez-Pérez, A. (2009). Ontology localization. In
Proceedings of the Fifth International Conference on Knowledge Capture (K-CAP 2009)
(pp. 33–40).

Mizoguchi, R., Tijerino, Y., & Ikeda, M. (1995). Task analysis interview based on task ontology.
Expert Systems with Applications, 9(1), 15–25.

Montiel-Ponsoda, E., Aguado de Cea, G., Gómez-Pérez, A., & Peters, W. (2008). Modelling
multilinguality in ontologies. In Proceedings of the 22nd International Conference on Com-
putational Linguistics (COLING) (pp. 67–70).

Murakami, Y., Lin, D., & Ishida, T. (2014). Service oriented architecture for interoperability
of multi-language services. In P. Buitelaar & P. Cimiano (Eds.), Towards the multilingual
semantic web: Principles, methods and applications. Heidelberg: Springer. doi:10.1007/978-
3-662-43585-4.

http://www.w3.org/TR/owl-features/


82 J. van Grondelle and C. Unger

Navigli, R., & Ponzetto, S. P. (2012). BabelNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artificial Intelligence, 193,
217–250.

Nirenburg, S., & Raskin, V. (2004). Ontological semantics. Cambridge: MIT Press.
PortDial Consortium. (2013). D2.1 Free Data Deliverable. https://sites.google.com/site/portdial2/

deliverables-publications/free-data-deliverable.
Ranta, A. (2011). Grammatical framework: Programming with multilingual grammars. Stanford:

CSLI Publications.
Reymonet, A., Thomas, J., & Aussenac-Gilles, N. (2007). Modelling ontological and terminologi-

cal resources in OWL DL. In Proceedings of the OntoLex07 Workshop at the 6th International
Semantic Web Conference (ISWC 2007).

Spreeuwenberg, S., & Healy, K. A. (2010). SBVR’s approach to controlled natural language. In
Proceedings of the Workshop on Controlled Natural Language (CNL 2009) (pp. 155–169).

Spreeuwenberg, S., van Grondelle, J., Heller, R., & Grijzen, G. (2012). Using CNL techniques and
pattern sentences to involve domain experts in modeling. In Proceedings of the Workshop on
Controlled Natural Language (CNL 2010) (pp. 175–193).

van Grondelle, J., & Gülpers, M. (2011). Specifying flexible business processes using pre and
post conditions. In Practice of enterprise modeling. Lecture Notes in Business Information
Processing (Vol. 92, pp. 38–51). Heidelberg: Springer.

Walter, S., Unger, C., & Cimiano, P. (2013). A corpus-based approach for the induction of
ontology lexica. In Proceedings of the 18th International Conference on Application of Natural
Language to Information Systems (NLDB 2013).

Wróblewska, A., Protaziuk, G., Bembenik, R., & Podsiadły-Marczykowska, T. (2012). LEXO: A
lexical layer for ontologies—design and building scenarios. Studia Informatica, 33(2B), 173–
186. http://studiainformatica.polsl.pl/index.php/SI/article/view/183.

Zue, V. W., & Glass, J. R. (2000). Conversational interfaces: Advances and challenges. IEEE
Special Issue on Spoken Language Processing, 88(8), 1166–1180.

https://sites.google.com/site/portdial2/deliverables-publications/free-data-deliverable
https://sites.google.com/site/portdial2/deliverables-publications/free-data-deliverable
http://studiainformatica.polsl.pl/index.php/SI/article/view/183

	A Three-Dimensional Paradigm for Conceptually Scoped Language Technology
	1 Introduction
	2 A Three-Dimensional Paradigm for Conceptually Scoped Language Technology
	2.1 Scoping Natural Language Through a Conceptualization
	2.2 Automatically Generating Resources from Declarative Lexical Information
	2.3 Decoupling Domain and Task Aspects

	3 Proof of Concept in the Context of the Multilingual Semantic Web
	3.1 Implementation
	3.2 Typical Adoption Scenarios
	3.2.1 Decoupling Domain and Task Aspects
	3.2.2 Porting to a New Domain
	3.2.3 Incorporating New Tasks
	3.2.4 Adding Further Languages


	4 An Ecosystem for Language Technology
	5 Conclusion and Future Work
	References


