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Abstract The growth of multilingual web content and increasing international-
ization portends the need for cross-language query processing. We offer ML-
OntoES (a MultiLingual Ontology-based Extraction System) as a solution for
narrow-domain/data-rich applications. Based on language-independent extraction
ontologies (Embley et al., Conceptual modeling foundations for a web of knowl-
edge. In: Embley D, Thalheim B (eds) Handbook of conceptual modeling: theory,
practice, and research challenges. Springer, Heidelberg, Germany, pp 477–516,
2011a), ML-OntoES enables semantic search over domain-specific, semistructured
information. Key ideas of ML-OntoES include: (1) monolingual semantic indexing
and query interpretation with extraction ontologies and (2) conceptual-level cross-
language translation. A prototype implementation, along with experimental work
showing good extraction accuracy in multiple languages, demonstrates the viability
of the ML-OntoES approach of using multilingual extraction ontologies for cross-
language query processing.
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1 Introduction

An ideal cross-language query system would allow users to pose queries and receive
answers in their own language when executing queries against foreign-language
source documents. A user U , for example, who speaks only English, may wish to
enquire about nearby restaurants while visiting Japan. Using an iPhone, U may wish
to pose a query to find a “BBQ restaurant with typical prices < $40.” Figure 1 shows
an interface with the query in a type-in text field, the English version of the answers
retrieved, and a “see further information button” to tap on to obtain more details such
as hours of operation, payment method, and rating. Figure 2 gives actual answers
retrieved from the web for this sample query (all in Japanese, of course), and this is
the challenge—to query the Japanese in Fig. 2 with the English in Fig. 1.

Fig. 1 English query over
Japanese data with results in
English
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店店店 名名名 住住住 所所所 ルルルンンンャャャジジジ 予予予 算算算
新肉屋 梅田1-10-19 焼肉 2000
肉屋 梅田1-11-29 焼肉 3000
美味肉 梅田2-30-22 焼肉 1500
焼肉屋 梅田3-19-28 焼肉 3000
焼き焼き 梅田2-18-26 焼肉 1000

Fig. 2 Results extracted from Japanese web pages

Queries like the English-Japanese BBQ restaurant query call for CLIR
(Cross-Language Information Retrieval) (Olive et al. 2011; Peters et al. 2012).
Interest in CLIR and related technologies is growing, and international initiatives
are helping mature the field.1 A typical approach to CLIR consists of query
translation followed by monolingual retrieval and retranslation of results. Our
approach to CLIR, which we describe in detail in Sect. 2, differs substantially:
rather than translate a query at the language level, we first interpret it with respect
to a conceptualization with both query and conceptualization in the same language;
we then translate the query to an identical conceptualization in the target language,
and having previously semantically annotated target documents with respect to
the target-language conceptualization, we then retrieve results and reverse the
conceptual translation to return final results in the language of the query.

The approach we take is not entirely unprecedented; several other types of
systems use an “interlingua” to mediate processing of content between two or more
languages. Since the days of symbolic pivot-based machine translation (Mahesh
1996), ontologies of various sorts have served in crosslinguistic applications
including information extraction (Declerck et al. 2010; Aggarwal et al. 2013).
Recently, ontology localization (Tijerino 2010) has become viable in boosting
lexical content for translation. Some support translation via mappings between
language-specific ontologies (Fu et al. 2012). Others, with the advent of statistical
methods in natural language processing, use hybrid approaches in translating
extraction-ontology content (Montiel-Ponsoda et al. 2011).

Because our approach is symbolic and ontology based and implements first-order
(but not higher-order) logic for inference, the concerns raised by Hirst (this volume)
could be relevant. We note, however, that the technologies for our system at present
originate from the conceptual-modeling and data-extraction communities rather
than from natural language processing and computational linguistics, though we
foresee being able to orient our work more toward the nexus of all of these areas. In
particular, our ontologies do not model the lexicon; they model conceptual relations,
with relevant grounding in lexical entries, and the assertions they represent are
more “data”-like than “information”-like and thus do not suffer as severely from
the issues Hirst raises (this volume). In addition, since creating a domain ontology

1See, for example, http://www.clef-initiative.eu.

http://www.clef-initiative.eu
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is within the purview of end users, they can either develop a writer-centered view
of the data (i.e., more directly modeling the document type) or a reader-centered
view (i.e., more oriented to which concepts are of most use to them). To avoid the
grand pitfalls in Hirst’s warning (this volume), we concentrate on data-rich, narrow-
domain applications known a priori and consider our knowledge sources useful,
if imperfect, artifacts. Furthermore, we adopt a multifaceted engineering approach
for cross-language mappings, and while recognizing the equivalency problem, we
allow for various types of correspondence beyond one-to-one mappings (Embley
et al. 2011c).

What distinguishes our approach is the narrow, domain-specific, user-definable
nature of our ontologies and their construction, as well as the role of these ontologies
at the center of a larger infrastructure (Embley et al. 2011c). Our ontologies tend to
be less elaborate than others and hence less rich in the types of context required
for successful treatment by statistical translation methods. Our work is situated in
the space of linguistically grounded, end-user-developed ontologies that incorporate
various lexical resources and mappings at various levels of conceptualization.

These semantic conceptualization requirements limit our approach to applica-
tions that are easily conceptualizable—those that are data-rich and narrow in scope.
Although limited, the applications are significant and practically important covering
areas such as service finding like the restaurant example illustrated in Figs. 1
and 2, retail purchasing while shopping abroad, information seeking while traveling
and sightseeing, and multicultural topical research such as family history where
ancestors have immigrated to a country with a different language.

We call our cross-language query engine ML-OntoES (MultiLingual Ontology
Extraction System) and describe its architecture in Sect. 2. Like search engines,
ML-OntoES assumes the existence of an indexed document collection. Indexes
for ML-OntoES, however, are not just for keywords but are also for recognized
semantic concepts. Extraction ontologies (Embley et al. 2011a), which we describe
in Sect. 2.1, allow ML-OntoES to semantically index a document collection with
respect to an ontological conceptualization. Extraction ontologies also allow ML-
OntoES to interpret queries with respect to an ontological conceptualization, as we
describe in Sect. 2.2. ML-OntoES matches conceptualized queries with the concep-
tualized semantic index to retrieve results. When the query language differs from the
document-collection language, ML-OntoES invokes a conceptual-level translation
as we explain in Sect. 2.3. In order for ML-OntoES to work well, semantic
recognition accuracy must be high and extraction-ontology construction costs must
be low; we address these issues in Sect. 3. In Sect. 4, we conclude by summarizing
the principles and practicalities required to make ML-OntoES work successfully.

2 ML-OntoES Architecture

Figure 3 sketches the architecture of ML-OntoES by giving a retail-sales example
in which ML-OntoES processes a French query against a collection of Korean car
advertisements. Before query processing begins, ML-OntoES applies its Korean
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Fig. 3 Cross-language query processing

extraction ontology to Korean source pages to create a semantic index. Once
semantic indexes have been built, query processing can begin: as Fig. 3 illustrates,
ML-OntoES (1) applies a French car-ad extraction ontology to the query to recog-
nize and conceptualize the query’s semantic constraints and to remove semantic-
constraint words from query, leaving and thus identifying the keywords; (2) maps
the French conceptualization and keywords to the Korean conceptualization and
keywords (note that the conceptualizations are structurally one to one, allowing for
identical select-project-join processing); (3) matches the Korean conceptualization
and keywords with the previously constructed semantic and keyword indexes; (4)
maps the resulting Korean conceptualizations and keywords back into French; and
(5) displays the results. As Fig. 3 shows, query processing of a Korean query Q

over the French repository, français, is symmetrical.

2.1 ML-OntoES Extraction Ontologies

An extraction ontology (see Figs. 4 and 5) is a 5-tuple (O , R, C , I , L):

O W Object sets—one-place predicates whose instance values are either all lexical,
denoted by named dashed-border rectangles in Fig. 4, or all nonlexical, denoted
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ChildNrChild

DaughterSon

Spouse

MarriageDate

Residence

DeathDate

BirthDate

Name Person

Fig. 4 Ontological conceptualization for assertion extraction

by solid-border rectangles (e.g., BirthDate is lexical with values such as “June 7,
1949” and Person is nonlexical with object-identifier values)

R W Relationship sets—n-place predicates, n � 2, represented by lines connecting
object-set rectangles (e.g., Person–Name in Fig. 4) and also by black-triangle
aggregation symbols connecting holonyms (e.g., modèleFinition in Fig. 3) to
meronyms (e.g., modèle and finition)

C W Constraints—closed formulas, as implied by the notation (e.g., 8x.Person
.x/ ) 9Šy.Person-BirthDate.x; y///—one of the many functional constraints
denoted by the arrowhead on the range side of the Person-BirthDate relationship
set; 8x.Child.x/ ) Person.x//—a hypernym/hyponym constraint denoted by
the triangle, which may optionally also specify mutual exclusion among its
hyponym sets by a “C” symbol (e.g., mutual exclusion of Son and Daughter
in Fig. 4) or specify that the hypernym set is a union of its hyponym sets (“[”)
or both (“]”) to form a partition among its hyponyms)

I W Inference rules—logic rules specified over predicates (e.g., Person–Gender(x,
‘Female’) :- Daughter.x/)

L W Linguistic groundings—text recognizers for populating object and relation-
ship sets and collections of interrelated object and relationship sets (e.g.,
recognizers for Name and BirthDate in Fig. 5)

The conceptual foundation for an extraction ontology is a restricted fragment
of first-order logic, but its most distinguishing feature is its linguistic grounding,2

which turns an ontological specification into an extraction ontology. Each object
set has a data frame (Embley 1980), which is an abstract data type augmented
with linguistic recognizers that specify textual patterns for recognizing instance

2Similar to the linguistic grounding discussed in Buitelaar et al. (2009), but different in its details.
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Name
external representation: \b{FirstName}\s{LastName}\b
external representation: \b{FirstName}\s[A-Z]\w+\b
...

BirthDate
external representation: \b1[6-9]\d\d\b

left context: b\.\s
right context: [.,]
context keywords: \bborn\b(\sin\b)?|...

...
input method: DateStringToJulianDate
output method: JulianDateToDateString
operator methods:

LessThan(p1: BirthDate, p2:BirthDate) returns (Boolean)
external representation: (before|earlier than|<)\s{p2} ...

...

Fig. 5 Sample recognizers for linguistically grounding the ontology in Fig. 4

Fig. 6 An excerpt from p. 419 of The Ely Ancestry

values, context keywords, applicable operators, and operator parameters. The data
frame for BirthDate in Fig. 5 illustrates recognizers for both instance values
and operator applicability. Although any kind of textual pattern recognizer is
possible, our current implementation supports only regular expressions or combi-
nations of regular expressions and dictionaries. Relationship sets may also have
data-frame recognizers. Recognizers for larger ontological components are also
possible—Ontology Snippets, as we call them.

We explain how the linguistic recognizers work by showing how they apply to
an OCRed excerpt from the The Ely Ancestry (Beach et al. 1902) in Fig. 6.
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• Lexical object-set recognizers identify lexical instances in terms of external
representations, context, exclusions, and dictionaries. One of the possibly many
external representations for BirthDate in Fig. 5 is “\b1[6–9]\d\d\b”, repre-
senting years between 1600 and 1999, with an immediate left context of
“b\.\s”, an immediate right context of “[.,]”, and context keywords that include
“\bborn\b(\sin)?”, which may appear close to but not necessarily immediately
adjacent to the birth year. Note that these regular-expression patterns match
all the birth years in Fig. 6. The external representations for Name in Fig. 5
illustrate the use of dictionaries and mixed dictionaries and regular expressions.
A name in curly braces within a regular expression references a named reg-
ular expression (e.g., “{FirstName}” references a dictionary of given names:
“Aaron|Abdul|Abbey|. . . ”). An input method converts a recognized string into
an appropriate internal representation—for example, a Julian-date representation
in Fig. 5, and an output method converts an internal representation to a standard
format for display to a user. Applicable operator methods are particularly useful
for constraints in queries like “List Mary Ely’s children born before 1840” where
parameter p1 comes from an extracted value and p2 follows “before”.

• Nonlexical object-set recognizers identify nonlexical objects through object
existence rules, which identify text such as proper nouns, that designate the
existence of objects. The object existence rule “{Name}” for the nonlexical
object set Person, for example, references the regular expressions in the Name
object set, and when a name is recognized, ML-OntoES generates a Person object
and associates it with the recognized name.

• Relationship-set recognizers identify phrases that relate objects. For example, the
regular expression “^\d{1,2}\.\s{Person},\sb\.\s{BirthDate}[.,]” for the Person–
BirthDate relationship set relates Maria Jennings to 1838 and William Gerard to
1840—two of the Person–BirthDate relationships that appear in Fig. 6.

• Ontology-snippet recognizers identify text patterns that provide instances for
groups of object and relationship sets. Recognizers for ontology snippets consist
of regular expressions with capture groups and predicate mappings.

To effectively recognize semantic object and relationship instances in text, we
must often tune extraction ontologies to the view of the text provided by its author
(e.g., tune Figs. 4 and 5 to the author’s view in Fig. 6). An author’s view, however,
may differ in its organization and content from the view we wish to have as we
query the extracted information. We can obtain the view we want (e.g., Fig. 7) by
using the inference-rule component of ML-OntoES.

In our prototype implementation, we use the Jena reasoner (http://jena.apache.
org) over RDF triples to specify inference rules. Since ML-OntoES is fundamentally
specified as a set of n-ary predicates (n � 1), the Jena reasoner immediately applies.
Moreover, its results are also n-ary predicates, which lets us conveniently augment
an ML-OntoES ontology. We can, for example, have the rules

target:Person(x) :- source:Person(x)
target:Person–Gender(x,‘Male’) :- source:Son(x)
target:Father(x) :- target:Person–Child(x,y),target:Person–Gender(x,‘Male’)

http://jena.apache.org
http://jena.apache.org
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MarriagePlace

Gender

MarriageDate

DeathPlaceBirthPlace DeathDateBirthDate

Name Person

SpouseGivenName Surname Child

Fig. 7 Target ontology of desired biographical assertions

which, respectively, specify that persons in a source ontology (e.g., Fig. 4) become
persons in the target ontology (e.g., Fig. 7), that sons are male, and that persons
who have a child and are male are fathers. Furthermore, the Jena reasoner defines a
set of built-in predicates that is extensible, and we can create extensions to specify
predicates that, for example, can split a name such as “William Gerard Lathrop”
into two given names and a surname and that can infer the surname of the children
for the culture in which The Ely Ancestry was written as the surname of the father.
Inferred object and relationship sets may have data-frame recognizers, thus making
inferred assertions directly queryable.

In addition to inferring assertions, ML-OntoES also has the ability to reason
over the stated and implied assertions to do entity resolution. In our prototype
implementation, we use the Duke entity resolver (http://code.google.com/p/duke)
and generate OWL same-as relationships when, for example, Duke discovers that
of the three “Mary Ely”s in Fig. 6, only the first and third are the same.

2.2 ML-OntoES Monolingual Query Processing

Before query processing begins, ML-OntoES preprocesses a document collection
and creates a keyword index and a semantic index. In our prototype implementation,
ML-OntoES creates its keyword index with Lucene (http://lucene.apache.org)
and its semantic index with extraction ontologies. ML-OntoES applies extraction
ontologies to text documents to find instance values in the documents with respect
to the object and relationship sets in the ontology as explained in Sect. 2.1 and
illustrated for Korean in Fig. 3. ML-OntoES returns its semantic index as RDF
triples.

http://code.google.com/p/duke
http://lucene.apache.org
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Assuming a known context—an identified extraction ontology—ML-OntoES
first distinguishes between semantic and keyword text in the query and pro-
cesses semantics through the semantic index and keywords through the keyword
index. ML-OntoES then combines the results and subsequently ranks and displays
retrieved documents, for example, as suggested by Fig. 1, allowing users to click on
results to view original documents from which information was extracted and, in
the case of inferred results, to also see the reasoning chains.

For the French query in Fig. 3, the data-frame recognizers in the French car-
ad extraction ontology recognize “Honda” and “moins de 8000” and convert them
to the constraints marque D “Honda” and prix < 8000e. For monolingual query
processing, ML-OntoES generates a SPARQL query from these constraints that not
only finds cars that satisfy the constraints in its semantic index but also retrieves
information about references to its cached copies of the web pages from which ML-
OntoES extracted the information—thus making the semantic index an actual index
into its known web pages.

Assuming that users wish to have as many of the semantic constraints
satisfied as possible and knowing that users may query for constraints not
specified in source documents, ML-OntoES generates conjunctive queries
and allows SPARQL constraint satisfaction to be optional. Then, for acyclic
conceptualizations (e.g., the application ontologies in Fig. 3), ML-OntoES
generates queries in a straightforward way: join over edges in the ontologies
that connect identified nodes, and filter conjunctively on identified conditions. For
the query in Fig. 3, for example, ML-OntoES produces the SPARQL equivalent
of �marque;prix�marqueD0Honda0^prix<8000.auto–marque �� auto–prix/.3 For cycles,
ML-OntoES identifies all possible paths in the conceptual-model graph that cover
identified object and relationship sets and then either acknowledges the ambiguity
and returns answers for all paths or discovers that the query explicitly identifies one
or more of the paths and returns answers only for these paths.

ML-OntoES processes free-form queries conjunctively. However, like standard
search engines, it also provides for advanced-search capabilities for queries that
involve disjunctions and negations. When a user requests the advanced-search
option for an application, ML-OntoES dynamically generates a form from the
application’s extraction ontology. The form provides for negations with a checkbox,
disjunctions with click-extended OR buttons, and comparators for all declared
comparison operations in the application’s data frames.

For keyword query processing to work well, it is necessary to remove stopwords
plus words and phrases intended to convey semantic constraints or result types.
Thus, ML-OntoES removes stopwords such as “de” and “en” and a phrase like
“moins de 8000”, which it recognizes as generating a semantic constraint. Semantic-
phrase removal prevents terms such as “moins” from matching irrelevant tokens
in documents. ML-OntoES also removes semantic phrases expressing equality
constraints such as “Marque égale Honda”, but for recognized equality constraints,

3By � and � , we mean projection and selection, respectively.
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it leaves the value word or phrase as a keyword. Thus, in our example, “Honda”
becomes a keyword. ML-OntoES also passes quoted phrases, such as «excellent
état», to Lucene to process as single-phrase keywords.

2.3 ML-OntoES Cross-Language Query Processing

Given a query Q in language L1 and an interpretation of Q with respect
to a conceptualization also in language L1, ML-OntoES maps Q from the
conceptualization in language L1 to a corresponding conceptualization in
language L2. Cross-language conceptualizations are structurally identical,
and therefore since the semantic concepts and constraints have a one-to-
one correspondence, the implied select-project-join operations for query
Q will be the same in both conceptualizations. Thus, for example, the
SPARQL equivalent of the French query �marque;prix�marqueD0Honda0^prix<8000

.auto–marque �� auto–prix/ becomes a SPARQL equivalent of the Korean query
π제조사,가격σ제조사=′혼다′∧가격<11700800 (자동차–

제조사��자동차–가격).

For narrow-domain, data-rich applications, we expect native-language extraction
ontologies for different languages/locales to be similar, but not necessarily identical.
Thus, when adding a new extraction ontology to ML-OntoES for a new language or
new localization of an existing language, we check structural consistency and make
adjustments as necessary to retain the structural one-to-one correspondence across
all ontologies. In Korean car ads, for example, mention of accidents is common.
Assuming the accident concept is not yet part of the existing conceptualizations, we
can either drop the concept from the Korean ontology (deeming it not essential) or
add it to all other ontologies for the application.

For keywords and instance values in semantic constraints, ML-OntoES uses
existing services for currency conversions, keyword translation, unit conversions,
and transliterations and uses existing language resources and pay-as-you-go con-
struction for lexicon and commentary translations4:

• Lexicons. Lexicon mappings substitute one word by another or one word by a
small number of others. For common concepts such as colors, corresponding
translations are available in cross-language dictionaries. Interestingly, these
mappings are not always one to one (e.g., “blue” in Korean is 파랑색 and 파란색
and 청색 ).

• Units and Measures. ISO standard conversion formulas for units and measures
are commonly available, and coding them is straightforward. In our implemen-

4Our mapping typology here resonates with that of León-Araúz and Faber (this volume), though
our lexical type inventory is not as finely articulated.
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tation, we use, for example, kilometers for mileage, integers for car years, Julian
calendar specifications for dates, and a 24-hour clock for time.

• Currency. Because services exist that directly convert amounts in one currency
to amounts in any other currency, mappings for currency conversions are direct
from one language/localization to another.

• Transliteration. Like direct conversion among currencies, transliteration map-
pings are direct from one language to another.

• Keywords. Since keywords can be any word or quoted phrase, we use a general
translation service.

• Commentary. Ontologies may contain free-form commentary to explain unfamil-
iar concepts, such as localized tipping protocols.

For answer values returned, we use the mappings to transform values and
keywords back into the original language. In Fig. 3, for example, ML-OntoES
maps the Korean car make 혼다 first into its language-agnostic equivalent and then
into the French “Honda”, and the currency converter converts the Korean Won
price 1,100만 원 into 7,826e and the twice-appearing keyword 혼다 via a general
translation service into “Honda (2)”.

Development and maintenance of ML-OntoES cross-language mappings agree
in spirit with the principles of Bosca et al. (this volume). Our methods and tools,
however, obviously vary somewhat.

3 Practicalities

How well ML-OntoES works in practice primarily depends on the accuracy of its
linguistic grounding, which, in turn, depends on the quality of its knowledge engi-
neering. For ML-OntoES to be successful, we must sufficiently increase semantic
recognition accuracy and sufficiently decrease engineering construction costs.

3.1 Recognition Accuracy

Cross-language query-processing accuracy depends on (1) extraction accuracy in
all languages when indexing the semantics in a document collection and (2)
cross-language query transformation so that nothing is lost or spuriously added.

To check extraction accuracy, we built French and Korean extraction ontologies
for car-ad and obituary applications. The combinations represent typological variety
across languages and document diversity in degree of semistructuredness. From 500
French car ads, 1,500 French obituaries, 430 Korean car ads, and 502 obituaries,
gathered from several different online sites, we randomly selected about 100 of each
of the four combinations to constitute validation and blind test sets (respectively, 20
and 80 of the 100) and used the rest for training (in the sense that we looked at many
of them as we built our ontologies).
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Table 1 Car ad within-language extraction results

Make (%) Model (%) Year (%) Price (%) Color (%) Mileage (%)

French Recall 87 76 96 89 82 98

Precision 65 67 90 95 47 92

Korean Recall 99 99 100 100 100 95

Precision 99 99 100 100 100 95

Table 2 Obituary within-language extraction results

Death Funeral
Title Name (%) Date (%) Date (%) Time (%) Place (%)

French Recall 76 % 42 80 69 43 38

Precision 99 % 63 88 70 30 83

Korean Recall N/A 97 97 50 50 100

Precision 97 97 100 100 67

Table 3 Cross-language query transformation results

Recall Precision

Car-ad queries � (%) � (%) � (%) � (%) � (%) � (%)

French-to-English 77 86 100 81 90 74

Korean-to-English 98 100 100 93 99 52

Tables 1 and 2 show the results. The car-ad domain is ontologically narrow,
and accordingly, our extraction ontologies perform quite well on this domain (as
we have come to expect (Embley et al. 2011a)). Precision and recall for Korean
car ads are high because these ads mostly have a regular structure, allowing our
Korean expert to quickly tune the extraction ontology. The French car ads are more
free-form, and so the results are lower. The obituary domain is much broader, and
extraction is more challenging—particularly for names and places. Even so, our
Korean expert was able to quickly tune the extraction ontology, and performance
for most concepts was remarkably high. French extraction was hampered by greater
variability and complex sentence structures. For example, there are only 187 names
in our Korean surname dictionary, compared with 228,429 in our French surname
dictionary, which partially explains the relatively high performance for Korean name
extraction.

To check cross-language query transformation accuracy, we asked students in
two senior-level database classes to generate car-ad queries which they felt an earlier
demo version of a free-form query processor should interpret correctly. The students
generated 137 syntactically unique queries, of which 113 were suitable for testing
ML-OntoES. To obtain Korean and French queries, we faithfully translated 50 of
these 113 into each language.

Table 3 shows the results of interpreting the queries in their respective languages
and transforming the internal representation of each query, as understood, into the
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internal representation of the query in English. In the table, � and � , respectively,
represent query selection (i.e., conditionals such as “Price < $12,000”) and query
projection (i.e., choice of results to include, e.g., the make and model of a car), and
� represents keywords. Since � and � translations are always correct, the less-than-
perfect � and � results come from inaccurate within-language query interpretation.
The lower recall and precision for French conditionals (�) points to a need for
better recognizers. More complete synonym sets for French ontological concepts
(�) would increase recall but may decrease precision. Expanded stopword lists in
French would remove spurious keywords (�) like “list” and “want”. Stopwords
in Korean make little sense because most of the standard English-like stopwords
are prefixes and suffixes and become part of glyphs. An attempt to remove them
after translation often fails because translations themselves are often poor; for
example, 인 , which in our query should translate as “which is”—both English
stopwords—instead was translated as “inn” (or “hotel”).

3.2 Construction Cost

The ML-OntoES architecture requires a substantial amount of information that
must be encoded, either by hand or through some automated means. The difficulty
of eliciting or otherwise acquiring such data from domain experts—Feigenbaum’s
“knowledge engineering bottleneck” (Feigenbaum 1984)—is a decades-old issue.

Our approach substantially mitigates, without completely solving, this problem:
our system uses narrow, domain-dependent ontologies that a typical user should
be able to specify. We have developed interactive tools for designing and populating
ontologies with the requisite types of knowledge, and we are investigating the use of
machine learning and linguistic analysis to reduce the cost of developing recognizers
for linguistically grounding ontologies. Furthermore, we advocate and practice re-
using to the degree possible already extant knowledge sources, and we resonate with
similar work being done by other researchers to leverage a wide variety of resources
in the boosting of ontology content for crosslinguistic extraction while minimizing
the cost (Fu et al. 2012), also convincingly advocated by Bond et al. (this volume).

We assume that end users knowledgeable in a particular domain can create
focused, narrow-in-scope ontologies that involve extraction of relevant content from
data-rich knowledge sources. In the context of crosslinguistic extraction, ontology
creators need to know the languages for which they are designing ontologies. Cre-
ation of the ontologies involves specifying concepts, relationships, constraints, and
lexical items useful for extraction. Three methods are available for ontology creation
and population: (1) programmers can hand-populate them by entering data directly
into the data structure; (2) experienced users can interact with the data structure via
our custom-designed ontology editor, a tool for specifying ontology content; or (3)
domain experts with limited experience can interact with a form-driven interface
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that guides the user through design decisions necessary to provide content. The
time and effort involved for developing an ontology typically involve one person’s
efforts over several days, perhaps at the most a week or two, less time if the user
has expertise in language, lexicons, and text processing techniques. As with any
knowledge engineering task, there is a point of diminishing returns in specifying
expert knowledge: more time and effort can be spent developing content to increase
performance but at the risk of experiencing the knowledge-engineering bottleneck.
A short but representative list of resource types we have used or are considering
using for ontology creation and population follows:

• Lexical databases: Several publicly available lexical resources—monolingual
and multilingual—provide comprehensive information on lexical semantic rela-
tions: synonymy, hypernymy, hyponymy, meronymy, word senses, and crosslin-
guistic mappings. Example resources include the WordNet (http://wordnet.
princeton.edu), the GlobalWordNet (http://www.globalwordnet.org), and the
BabelNet (http://lcl.uniroma1.it/babelnet).

• Lexicons: Specialized lists of narrow-domain words of interest are readily found
on the Web: gazetteers for place names, census indexes for person names, and
product name databases are some examples. For our evaluation work in Sect. 3.1,
we mined pull-down menus from http://paruvendu.fr which contains all French
automobile make/model combinations and mined tabs from http://www.encar.
com which lists Korean makes and models.

• Term banks: The computerization and subsequent web deployment of vast
terminology banks, such as TermiumPlus (http://www.termiumplus.gc.ca) and
EuroTerm (http://www.euroterm.org/test1/glossary), has put literally millions of
concepts and their single-word and multiword terms within easy reach of the
general public. In prior work, we have shown how to integrate terminological
resource content into our ontologies (Lonsdale et al. 2002).

• Transliteration services: When crosslinguistic mappings involve different char-
acter sets, services can perform character conversion. In our current implemen-
tation, we use a Hangul/Roman transliterator (http://sori.org/hangul/conv2kr.cgi)
for Korean to/from English. Unfortunately, no general transliteration resource
appears to be currently available.

• Translation services: LabelTranslator (http://www.neon-toolkit.org), for exam-
ple, provides translation (called by others “localization services”) for ontology
labels between three European languages. For general-purpose translation, ser-
vices based on statistical machine translation systems can be used; we currently
use Bing (http://api.microsofttranslator.com/V2/Http.svc/Translate) when more
direct methods are not readily available.

The crosslinguistic aspect of our system involves a star-based architecture similar
to notion in Dorr et al. (2006) that maps between languages at the conceptual-model
level (Embley et al. 2011c). At the center of the star is a language-agnostic pivot
that mediates between language-specific extraction ontologies. Since conceptual

http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://www.globalwordnet.org
http://lcl.uniroma1.it/babelnet
http://paruvendu.fr
http://www.encar.com
http://www.encar.com
http://www.termiumplus.gc.ca
http://www.euroterm.org/test1/glossary
http://sori.org/hangul/conv2kr.cgi
http://www.neon-toolkit.org
http://api.microsofttranslator.com/V2/Http.svc/Translate


170 D.W. Embley et al.

associations are routinely direct, this removes the necessity to translate between
languages and allows for recovering the mappings from the isomorphic ontological
content. Furthermore, the effort required to add another language to the system
only involves developing the relevant knowledge sources for the new language. The
complexity of adding a new language to the system is thus reduced from O.n2/ to
O.n/.

As ML-OntoES becomes more reliant on external resources, it also becomes
subject to what Hoekstra calls the “knowledge reengineering bottleneck” in the
context of the Semantic Web, with its four new challenges (Hoekstra 2010): (1) Our
system is data dependent since its effectiveness, robustness, and scalability depend
on the appropriateness and quantity of data we incorporate from elsewhere. (2) We
have limited control over the dirtiness of the data we process and over the coverage
of the resources we adopt. (3) ML-OntoES becomes subject to increased complexity
as disparate resources are integrated into the system. (4) As our system transitions
from small-scale systems to large-scale web applications, it assumes increased
importance. With the star-based architecture of the system and through careful
selection of relevant knowledge resources, we hope to be able to strike a pragmatic
balance among these issues, at least for data-rich, narrow-domain applications.

4 Conclusion

ML-OntoES processes cross-language, hybrid query and keyword-search requests
for narrow-domain, data-rich applications in accord with three principles:
(1) monolingual semantic indexing based on extraction ontologies, (2) monolingual
extraction-ontology-based semantic analysis of user queries, and (3) structurally
identical application ontologies to facilitate conceptual-level cross-language
mappings:

1. For query processing to work in reasonable time, semantic indexes must exist.
ML-OntoES creates semantic indexes by crawling web pages and documents on
the web with application-dependent, monolingual extraction ontologies. Then,
for each assertion found (as explained in Sect. 2.1), we can record the assertion’s
objects in their identified ontological object sets and its relationships among the
objects in its identified ontological relationship sets and associate the object and
the relationship pointers into a cached copy of the page or document.

2. When a user submits a query, it is best if the system already knows the context
in which the query is asked—that is, already knows which ontology or set of
ontologies, prepopulated with assertions, should be used to return an answer.
Otherwise, the system must search for an application ontology (or a set of
application ontologies) by applying candidate extraction ontologies to the query
and checking the coverage. Indexes over words and common conceptualizations
such as dates and currencies can speed up the process of locating appropriate
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ontologies for the query. Then, as explained in Sect. 2.2, ML-OntoES can
monolingually construct a query with respect to the structure of the ontology.

3. As noted in Sect. 2.3, since all language-and-locale versions of extraction
ontologies for a particular application are structurally identical, generated query
expressions have the same form in all versions, and only the instance values,
if any, need translation. ML-OntoES uses cross-language dictionaries for word
substitutions, standard conversion formulas for units and measures, online
currency converters for currency exchange, and transliteration services for name
conversions. Keyword and commentary translation are more difficult to translate
accurately. But rough approximations, as provided by online translators, are
often sufficient. For critical vertical applications where specialized keywords and
jargon words matter in hybrid queries, special application-dependent keyword
and keyword-phrase cross-language dictionaries can be developed as a supple-
ment for online translators. Likewise, when commentary is critical, such as for
business transactions and detailed instructions, careful translations would need
to be written, if they do not already exist.

Our prototype implementation demonstrates feasibility, but as a practical matter,
for ML-OntoES to be successful, extraction-ontology recognition accuracy must be
high (Sect. 3.1), and extraction-ontology construction costs must be low (Sect. 3.2).
Summarizing our discussion of these issues in Sect. 3, we point out that the
knowledge engineering required for car ads and obituaries returned reasonably
good precision and recall results for French and particularly good for Korean, and
that the time and effort required to develop the extraction ontologies, given the
lexical resources available to us, are within reason. This “knowledge-engineering
bottleneck” is, however, a drawback of ML-OntoES.

Because of this drawback, our current and expected future efforts for ML-
OntoES are focused on mitigating extraction-ontology construction costs. Focusing
on the vertical domain of historical documents and particularly family-history doc-
uments (Embley et al. 2011b), we are exploring ways to automate the construction
of extraction ontologies. For lists, which are commonly found in family-history
documents, we have been able to generate both regular-expression and HMM
recognizers that accurately extract genealogical assertions of interest and insert them
into ontological structures (Packer and Embley 2013). We are currently working
on automating the extraction of more general text patterns found in semistructured
documents and on combining a dependency parser with a semantic reasoner to
generate assertions that can be inserted into a target ontology. The domain of family
history is particularly in need of cross-language query processing, especially for
untrained users because many people have ancestors who have come from countries
with a language foreign to their own.
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