
Chapter 17
Detecting Phenotypic Selection
by Approximate Bayesian Computation
in Phylogenetic Comparative Methods

Nobuyuki Kutsukake and Hideki Innan

Abstract This chapter discusses the fundamental structure and advantages of the
approximate Bayesian computation (ABC) algorithm in phylogenetic comparative
methods (PCMs). ABC estimates unknown parameters as follows: (1) simulated
data are generated under a suite of parameters randomly chosen from their prior
distributions; (2) the simulated data are compared with empirical data; (3)
parameters are accepted when the distance between the simulated and empirical
data is small; and (4) by repeating steps (1)–(3), posterior distributions of
parameters will be gained. Because ABC does not necessitate mathematical
expression or analytic solution of a likelihood function, ABC is particularly useful
when a maximum-likelihood (ML) estimation is difficult to conduct (a common
situation when testing complex evolutionary models and/or models with many
parameters in PCMs). As an application, we analysed trait evolution in which a
specific species exhibits an extraordinary trait value relative to others. The ABC
approach detected the occurrence of branch-specific directional selection and
estimated ancestral states of internal nodes. As computational power increases,
such likelihood-free approaches will become increasingly useful for PCMs, par-
ticularly for testing complex evolutionary models that deviate from the standard
models based on the Brownian motion.
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17.1 Background

Evolution is messy. Rates, direction, and mode of evolution vary through time and among
clades and characters, and this inconstancy itself will often be unpredictable and haphazard.
Phylogenetic methods that ignore this variation will often produce inaccurate and misleading
results. As a result, researchers must embrace statistical approaches that assess such variation
rather than assuming constancy (Losos 2011).

Phylogenetic comparative methods (PCMs) are powerful approaches to test
evolutionary models of speciation and trait evolution (Chap. 1). Although PCMs
have been widely used in evolutionary biology, it is always important to remember
that statistical inferences regarding evolutionary parameters are based on
assumptions and hypotheses. In studies of continuous traits, single-rate Brownian
motion (BM) has been commonly used as a model for character evolution. BM
represents a neutral evolution or evolution tracking a continuously fluctuating
optimum value and is a good approximation for describing a pattern of trait
divergence. However, this does not mean that the BM-like evolutionary mode can
always approximate the process of divergence well (Estes and Arnold 2007;
Gingerich 2009). It is natural to assume that the process comprises heterogeneous
evolutionary rates and modes; that is, they vary within lineages, among branches,
and within clades (Losos 2011). One approach to coping with this heterogeneity is
to test a multiple-rate BM model against a simple single-rate BM model.
Researchers can set a model with varying rates for each branch or for mono-
phyletic subgroups based on a priori biological hypothesis (O’Meara et al. 2006;
Thomas et al. 2006), or set a model without specifying a hypothesis (Venditti et al.
2011). Another approach includes scaling parameters on branch lengths or evo-
lutionary rates, and test models of punctuated, accelerating/decelerating, or early
burst evolution (Table 17.1; Blomberg et al. 2003; Pagel 1997, 1999; Harmon
et al. 2010). Additionally, the local occurrence of stabilising selection can be
modelled by using the Ornstein–Uhlenbeck (OU) process (Table 17.1; Chap. 15).
Parameters specific to each model (Table 17.1) are incorporated to calculate an
expected covariance among the traits of each species. The variance–covariance
matrix, a critical component of the likelihood function of PGLS (phylogenetic
generalised least squares), is used for estimating unknown parameters via a
maximum-likelihood (ML) estimation or a Bayesian approach. With these
approaches, it is currently possible to address a wide range of questions. However,
some methods are mathematically complex and not always transparent for general
users of PCMs. Moreover, traditional approaches may not be well enough estab-
lished to test complex evolutionary scenarios with many parameters because the
description of the variance–covariance matrix is not straightforward to gain. It is
preferable to have a flexible toolkit that allows for testing of such complex evo-
lutionary models.

A simulation-based likelihood approach using an approximate Bayesian com-
putation (ABC) (Bokma 2010; Slater et al. 2012; Kutsukake and Innan 2013) may
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be one solution. This approach is useful when analytic expressions of likelihood
and the ML estimator cannot be gained. In this chapter, we aim (1) to explain the
basic structure, method, and caveats of ABC, (2) review the application of ABC to
PCMs, (3) provide a protocol for the ABC approach, (4) provide an example using
ABC, and (5) discuss the future direction of the ABC approach.

17.2 Approximate Bayesian Computation

The ABC framework was originally developed in population genetics (Tavare
et al. 1997) and gradually introduced to the disciplines of ecology and evolutionary
biology (Beaumont 2010; Bertorelle et al. 2010; Csillery et al. 2010). The major
advantage of ABC is that parameter estimation can be performed even when the
likelihood of the data cannot be computed, most often due to data complexity. The
fundamental structure of ABC is as follows: let x be the observed data and assume
an evolutionary model with the parameters g, which we aim to estimate. g could be
a vector with multiple parameters.

(1) Determine the prior distributions of all parameters g in x.
(2) For each parameter, generate a random value from the prior distribution. A

random set of the parameters at the ith simulation is denoted by g0i.
(3) Simulate data xi

0 using g0i:
(4) Accept g0i if xi

0 is identical to the observed data x.
(5) Go to (2) until a large number of accepted g0 values have been accumulated.

In most cases, the simulation will rarely produce xi
0 that is completely identical

to the observed data x. To solve this problem, instead of using the full data set,
ABC usually employs summary statistics (denoted by s, which usually comprises
several types of summary statistics, i.e., s = [S1, S2, … Sn]) and use s(x) and s(xi

0)
instead of x and xi

0. Even when summary statistics are used, it may be rare to gain

Table 17.1 Examples of parameters used in previous studies of PCMs

Model Parameters Biological meaning

Scaling branch length ka Phylogenetic signal
da Temporal rate change
ja Gradual versus punctuational evolution

ACDC gb The overall rate of acceleration (AC) or deceleration (DC)
Early burst rc The pattern of rate change through time
OU (whole phylogeny) db A restraint parameter in the OU transformation
OU ad Strength of stabilising selection
a Pagel (1997, 1999)
b Blomberg et al. (2003)
c Harmon et al. (2010)
d Hansen (1997), Butler and King (2004)
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an s(xi
0) value that is exactly the same as s(x). In such a case, we can set a certain

range of tolerance. One simple algorithm, a rejection sampling, uses the following
relaxed criterion:

ð40ÞAccept g0i when qðsðxÞ�sðx0iÞÞ\e;

where e is a tolerance and q(�) is a function for calculating a distance between
s(x) and s(xi

0), representing their similarity. By setting a tolerance, the efficiency of
parameter acceptance will dramatically increase in comparison with (4). In addi-
tion to this simple rejection sampling algorithm, more sophisticated methods have
been proposed to improve data-acceptance efficiency, such as importance sampling
or ABC–MCMC (Markov chain Monte Carlo; see Marjoram et al. 2003 and
Majoram and Tavare 2006 for details).

17.3 Caveats of ABC

Although Sect. 17.2 provided the fundamental structure of ABCs, several general
caveats remain that users should be aware of. Because of space limitations, we will
briefly discuss three core points, summary statistic sufficiency, estimation
robustness, and model selection, although other general caveats of Bayesian
computation apply (see Gelman et al. 2013).

First, the number and choice of summary statistics is critical in ABC (see
Beaumont et al. 2002; Csillery et al. 2010; Leuenberger and Wegmann 2010 for
details). The use of summary statistics reduces the dimensionality and complexity of
the data (Tavare et al. 1997). Accordingly, if researchers use too few summary
statistics, too much information is discarded, resulting in a low resolution of the
parameter estimation. However, if too many summary statistics are used, the accep-
tance rate will be so low that it will be computationally intensive. Researchers must
examine the performance of their chosen summary statistics before applying ABC to
real data, such as by conducting power tests with artificially generated data.

The second point concerns estimation robustness and computational efficiency
determined by the level of tolerance e. If tolerance is not sufficiently small,
parameter estimation will be rough (Beaumont 2010), while too severe tolerance is
not practical because computational efficiency will be too low. Therefore,
researchers are required to set an adequate level of tolerance in ABC, meaning that
a certain amount of subjectivity and uncertainty remains in parameter estimation.
To address this problem, post hoc correction approaches have been proposed to
increase the accuracy of parameter estimation, such as post-sampling regression
adjustment using general linear model (ABC–GLM; Leuenberger and Wegmann
2010).

Third, simple model selection cannot be used in the framework of ABC. This
difficulty stems from the fact that likelihoods are not calculated, and data accep-
tance in each model depends on summary statistics and tolerance (Beaumont 2010;
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Csillery et al. 2010; Robert et al. 2011). Although this can be problematic in the
case of comparing un-nested models, model selection based on posterior distri-
butions is relatively straightforward when models are nested (explained below).

17.4 Application of ABC to PCMs

Three PCM studies have used ABC for analysing trait evolution (Table 17.2; see
Rabosky (2009) for an analysis of clade diversification using ABC). These studies
aimed to test evolutionary models that are difficult or not straightforward to handle
in the traditional framework of PCMs.

The first PCM study using ABC was performed by Bokma (2010). This study
aimed to separate the effects of parameters of cladogenetic evolution and of
anagenetic evolution on trait disparity. There are wide variations in trait disparity
among clades, and understanding the ecological and evolutionary causes of this
phenomenon has been a central interest in macroevolutionary studies. It is likely
that a trait disparity is positively correlated with a parameter of anagenetic evo-
lution (i.e. rate parameter of BM). Additionally, the number of speciation events
may be positively correlated with the trait disparity because the interval between
speciation events should be smaller in larger clades, automatically resulting in
larger trait variance (Ricklefs 2004, 2006; Purvis 2004). Thus, the effects of
anagenetic and cladogenetic evolution on trait disparity are confounded and dif-
ficult to separate. To solve this problem, Bokma (2010) applied ABC to trait
disparity in passerine data (originally used in Ricklefs 2004) to investigate the
relative importance of those parameters with respect to anagenetic evolution,
cladogenetic evolution, and their combination. Bokma (2010) conducted a simu-
lation using a model comprising two free parameters (anagenetic and cladogenetic
parameters) and estimated those parameters using phenotypic variance as sum-
mary statistics. They found that gradual anagenetic change was more important
than a combination of anagenetic and cladogenetic evolution in terms of
explaining the phenotypic divergence observed in this group.

In another study, Slater et al. (2012) used a mixture of Markov-chain Monte
Carlo (MCMC) and ABC to infer the speciation/extinction rates and parameters of
trait evolution in an incompletely sampled phylogeny. This study was motivated
by a common problem in PCM studies: it is usually difficult to perform complete
sampling of a phylogeny and collect trait data from all species. Data incom-
pleteness could reduce the accuracy of statistical inference of evolutionary
parameters and the power to test models. Nevertheless, ABC can handle such
incomplete data relatively well because data are transformed into summary sta-
tistics so that it is not always necessary to sample all data (as long as collected data
are unbiased and represent each clade). Using this unique characteristic of ABC,
Slater et al. (2012) developed a new framework with which to test evolutionary
models using incomplete data. First, speciation and extinction parameters were
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estimated from known data by MCMC. They conducted simulations to generate a
phylogeny under a birth/death process using sampled parameter values. Next,
using ABC, they simulated trait evolution according to BM rates on the generated
phylogeny using the rate parameter(s) of BM and sampled the trait value at the
root. Finally, summary statistics (mean and variance) calculated from the simu-
lated trait data were compared with those calculated from the real data of each
clade. This study applied this algorithm to test the difference in BM rate param-
eters of the body size between pinnipeds and terrestrial carnivores. This study was
interested in estimating two to three parameters, namely the trait value at the root,
and one or two rate parameters assigned to those two groups. Given that a model
with one rate parameter is nested within a model with two rate parameters, this
study used a posterior probability to select the two models. The ABC approach
revealed that, contrary to expectation, rate parameters did not differ between the
two groups.

Testing multi-BM models is also possible in the traditional framework of PCMs
(O’Meara et al. 2006; Thomas et al. 2006), but it requires the assumption of
complete sampling. Slater et al. (2012) demonstrated that ABC handles this
technical problem quite well and stated that their method is applicable to other
existing evolutionary models, thereby providing an important first step in testing
complex evolutionary models by ABC. This method was implemented in the
software MECCA (Modeling Evolution of Continuous Characters using ABC)

Third, our recent study (Kutsukake and Innan 2013) used ABC under an evo-
lutionary model with heterogeneous evolutionary modes and rates within a phy-
logeny (assuming that the phylogeny is known). Although this algorithm is
designed to model wide ranges of trait evolution, one useful application is to detect
directional selection occurring locally within the phylogeny. In molecular evolu-
tion studies, there is a popular approach to measure branch-specific directional
selection (e.g. dN/dS or Ka/Ks) (Li 1997; Yang 2006). Motivated by this approach,
our model was designed to incorporate branch-specific selection parameters and

Table 17.2 Summary of three PCM studies using ABC

Study Parameters Reason for using
ABC

Summary
statistics

Empirical example

Bokma
(2010)

Anagenetic and
cladogenetic
evolution
parameters

No analytical
solution for an
evolutionary
model

Phenotypic
variance

Parameter estimation of
phenotypic variance
in passerine birds

Slater et al.
(2012)

Speciation rate,
extinction rate,
ancestral state,
BM rate

Incompletely
sampled
phylogeny and
trait data

Mean and
variance
for terminal
lineages

Comparison of
terrestrial carnivores
and pinnipeds

Kutsukake
and
Innan
(2013)

See Table 17.3 for
details

Branch-specific
directional
selection

Direct (and
full)
likelihood

Detection of directional
selection in human
brain size
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allowed statistical testing and measurement of the intensity of selection. We
considered the BM model (with slight modifications) to be a null neutral model.
This simplest model can be extended by adding as many branch-specific selection
parameters as desired for setting an alternative.

Using this framework, Kutsukake and Innan (2013) showed a simple example
analysis of data on brain volume among four species of great apes. In total, three
parameters were involved: the trait value at the most recent common ancestor, the
background evolutionary rate, and the strength of directional selection at the
human lineage (the method will be explained later). It was shown that the trait
evolution on the branch reaching to humans significantly deviated from the BM
mode, exhibiting strong evidence of branch-specific directional selection.

Although only a few PCM studies have used ABC thus far, ABC has a great
potential to be applied to a wide range of problems and settings. Since phenotypic
evolution consists of a process in which trait values increase or decrease, listing all
parameters making up this process should be sufficient to build any complex
evolutionary models. Of PCM studies using ABC, only our model is flexible
enough to be applied to various evolutionary processes at any time point; these can
be deviate from the simple BM process and include various modes and intensities
of selection on different branches. Another strength is that our framework employs
direct likelihood as a summary statistic, by which it is possible to avoid the
problem of which and how many summary statistics should be used in ABC (see
Sect. 17.3). Furthermore, intraspecific variation, a factor that has been overlooked
but is known to affect to parameter estimation in PCMs (Garamszegi and Møller
2010; Chap. 7), and uncertainty in phylogeny can be taken into account (see below
and Table 17.3). Below, we describe the model and algorithm of our approach in
detail.

17.5 ABC Algorithm in Kutsukake and Innan (2013)

We herein explain the algorithm of Kutsukake and Innan (2013) in more details
(see also Fig. 17.1a for a simplified structure of this algorithm; an example pro-
gram written in the C language in shown in the Online Practical Material, http://
www.mpcm-evolution.com).

A necessary data set for applying this algorithm is the same as those for other
studies. First, trait data are required for each species. Intraspecific variation can also
be incorporated by setting a distribution of the trait. Any kind of distribution can be
handled, from a regular quantitative trait that likely follows a simple normal distri-
bution to a trait with a discrete distribution. The phylogeny w (topology and branch
length s) of the species is also needed and is assumed to be known (this assumption
could be relaxed as phylogenetic uncertainty can be taken into account in the algo-
rithm; see Table 17.3). K represents all other parameters involved. At minimum, may
comprise the trait value of the most recent common ancestor (h0) and evolutionary
rate l. The evolutionary rate, the number of evolutionary events (i.e. mutation and
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Table 17.3 Main parameters used in a simulation-based likelihood approach by Kutsukake and
Innan (2013)

Parameter Biological meaning Notes

Known parameters
w Species tree (topology and branch

lengths)
When topology and/or branch

length includes uncertainty,
it is possible to consider
those uncertainties by using
a randomly chosen
topology and/or a set of
random values for branch
length in each simulation

si Length of the ith branch on the
tree in a given unit (e.g. time
or genetic distance)

n Number of nodes
X ¼ fX1;X2;X3; . . .Xng Observed nodal data (e.g. mean) This setting assumes data

contain no measurement
errors. Measurement errors
can be incorporated by
considering that r contains
both intraspecific variation
and measurement errors, or
by setting a new parameter
set to represent
measurement error. Internal
nodes such as fossil data
can also be used

r ¼ fr1;r2;r3; . . .rng Observed nodal data on
intraspecific variation
(standard deviation or other
parameters)

A parameter set of
interests ðKÞ

h0 Phenotype of the MRCA
l Evolutionary rate (the number

of a phenotypic change) per
time unit (e.g. a million years,
a generation) and genetic
distances

lþ and l� for increasing or
decreasing a trait value. It is
possible to assume different
evolutionary rates for each
branch i by setting lþi ; l

�
i

Other factors
/ Changes in phenotypic values

caused by a single event of
evolution; this parameter
can be set arbitrarily

/þ; /� for different effects for
increasing or decreasing
trait value. For example, it
is possible to model a larger
evolutionary effect
increasing a trait than one
decreasing a trait by setting
/þ[/�. In the case that
the evolutionary effect
differs among branches, a
different value (/þi ; /�i )
can be used

(continued)
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fixation), is denoted by li at branch i, whose length is si. Thus, the expected
number of evolutionary events increasing and/or decreasing the trait value is lisi.
The effect of each evolutionary event on the trait is denoted by /, which should
follow a certain distribution. By setting branch-specific lisi, it is possible to model
the density distribution of the phenotypic change for each branch and to test wide
ranges of evolutionary models such as branch- or clade-specific directional
selection (see below) or the OU process (see Kutsukake and Innan 2013 for
details). This setting enables researchers to treat those models and a null model
(neutral evolution) as nested models, allowing one to avoid the complicated
problem of model selection in ABCs (see Sect. 17.3).

Under this framework, it is possible to apply the ABC algorithm along
the following four steps. The steps correspond to the general ABC procedure in
Sect. 17.2.

Step 1 Determine the prior distribution of each parameter. An advantage of
Bayesian statistics is that it enables the setting of informative (i.e. strong)
prior distributions based on prior biological knowledge.

Step 2 Choose a random value for each parameter from the prior distribution.
Parameters used in the simulation (K0) are randomly chosen from their
prior distributions.

Step 3 Let trait values evolve by simulation. Simulation of the trait evolution of
phylogeny w is conducted using K0. As a result, simulated values H of
traits of n species are gained.

Step 4 Calculate the likelihood by comparing simulated data with the real data
and determine whether that parameter set is accepted or rejected. Each
simulated value hi is compared with the real value Xi. By comparing
n species, a joint probability (full likelihood) PrðXjHÞ ¼
PrðX1; X2; X3; . . .;Xnjh1; h2; h3; . . .; hnÞ will be calculated. In the case
that this probability is computationally very difficult to gain, a composite

Table 17.3 (continued)

Parameter Biological meaning Notes

si ¼ f ðl; sÞ or
f ðl; s; . . .Þ

Number of fixed mutations that
increase (sþi ) or decrease (s�i )
the phenotypic value at
a certain branch i

A random integer from a
Poisson distribution with
mean lþi si (or l�i si) in the
case of BM evolution. If
one wants to test more
complex evolutionary rate
in which the evolutionary
rate is a function of the
branch length or time from
root, such as accelerating or
decelerating evolutionary
rate, additional parameters
can be used in this function

H ¼ fh1; h2; h3; . . .hng Simulated data of n descendent
species
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likelihood Pr XjHð Þ ¼
Qn

i¼1
PrðXijhiÞ may be used as an approximate proxy,

which should work fairly well as long as the sampled species are rea-
sonably diverged. Here, one important advantage in our framework is that
the choice of summary statistics is avoided. Although previous studies
have used means or variance as summary statistics (Table 17.2), this study
employed a more straightforward method by using the direct likelihood
instead of a summary statistic. The use of likelihood as a summary sta-
tistics may not be common in standard ABC, where data are usually
represented by a set of summary statistics and likelihood cannot be ana-
lytically computed. Note that we can compute the likelihood of the
observed data given a ‘‘simulated data set’’. In our framework, given a
parameter set, a single run of random simulation provides a simulated data
set representing a single realisation of the random process. Then, the
likelihood is computed given this simulated data set. This is different from
the standard ML estimation that requires the likelihood given a parameter

(a)

(b)

Fig. 17.1 a An illustrative
example of the ABC
approach. A trait simulation
can be conducted based on a
parameter set ðKÞ on a
phylogeny with a discrete
timescale. The number of
simulation rounds is shown in
parenthesis. A number (x) of
simulations were conducted
until enough samples were
collected to infer posterior
distribution. b The trait value
can be simulated by the
BM-like evolutionary mode
(a lower branch) or
directional selection to
increase trait value (an upper
branch). Vertical axis
indicates a trait value, and
white arrows indicate
direction of trait evolution for
each branch, with its length
corresponding to the number
of evolutionary events
increasing or decreasing trait
values
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set. Intraspecific variation in the trait data can be considered by using the
probability density function when calculating PrðXijhiÞ, the probability of
gaining X given h. Thus, by assuming a certain distribution of intraspecific
variation, we can evaluate the similarity between the simulated and real
data using the likelihood. As a consequence, our algorithm can avoid the
common problem of choosing appropriate summary statistics.

Using Pr XjHð Þ, acceptance of K0 can be determined. As described above,
there are several methods of judgment (Marjoram et al. 2003; Majoram
and Tavare 2006); the researchers determine which method will be used.
However, we caution users on choosing the acceptance threshold. A strict
threshold increases the precision of parameter estimation, but if it is too
strict, the computational load may be too large. A reasonable choice is
desired so as to gain posterior distributions within a realistic computation
time (see Sect. 17.3).

Step 5 Obtain posterior distributions of the parameters and assess the importance
of each parameter. Repeat Steps (2)–(4) until a sufficient number of
parameters is accepted. This usually requires intensive iterative compu-
tation, particularly when there are many parameters. Posterior distributions
and credible intervals can be used to judge whether each parameter is
different from a specific value (e.g. a value expected under a null model)
and to accordingly test which evolutionary models are supported.

17.6 Detecting Branch-Specific Directional Selection

In this ABC approach, it is possible to let phenotypic traits evolve via directional
selection only in certain branches (Fig. 17.1b). There are various ways to model
such local occurrence of directional selection. Kutsukake and Innan (2013)
introduced a simple model in which the direction and intensity of selection is
parameterised by a single parameter, k. That is, it is assumed that if selection
favours the increase in a trait at a branch with sl, the expected numbers to increase
and decrease the trait are given by ksl and sl=k, respectively. When k equals 1,
the result is the same as neutral evolution, as the numbers of evolutionary events
increasing and decreasing the trait value are identical on average.

The model using k is not the only universal way to model directional selection.
Other types of directional selection can be flexibly modelled by setting new
parameters. For example, directional selection in one direction can co-occur with
constant occurrence of neutral evolution, including evolution in the opposite
direction. In such cases, researchers can set a new parameter, and evolutionary
events increasing a trait value can be multiplied by that parameter while those
decreasing the trait value will be untouched. In other cases, consistent directional
selection of a trait may start to operate from a certain intermediate point of a
branch because of alterations in a fitness landscape by environmental changes. In
such cases, researchers can create a model in which a trait value evolves neutrally
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until the intermediate point of the branch, and the evolutionary rate is multiplied
by a parameter of directional selection in the rest of the branch.

Given that there are several ways to model directional selection and to represent
the relative intensity of selection, it is useful to quantify the expected change in the
trait value for each branch, which is denoted by Dsel. In the case of using k, the
Dselvalue can be calculated by lþi sik � l�i si=k (Kutsukake and Innan 2013). To
test the presence of directional selection, the posterior distribution of Dsel can be
compared to zero or to a maximum value of the trait change under a pure neutral
model (denoted by Dnull in Kutsukake and Innan 2013). The advantage of using
Dsel is that it can cancels out the confounding relationship between l and k (or
other parameters for directional selection); that is, k is inversely correlated with l
because those two parameters compensate for each other to let a phenotypic value
increase (or decrease) towards a certain value. In other words, a low evolutionary
rate must necessitate strong directional selection, whereas weak directional
selection may be sufficient when evolutionary rate is large. In such a situation, the
most meaningful quantity should be Dsel rather than l or k.

17.7 Application to Weevil Rostrum Demonstrating
Branch-Specific Direction Selection

We analysed weevil rostrum evolution to show how our framework can be applied
to a complex model of trait evolution with branch-specific directional selection
(see OPM). Toju and Sota (2006) studied interspecific variation in the rostrum, an
organ used to excavate host plant fruits to lay eggs inside, among seven species of
weevils. They investigated two nearly isolated subpopulations of one of those
species, Curculio camelliae. Interestingly, their interpopulation comparison
between the subpopulations showed a positive correlation between the thickness of
the camellia fruit walls and the weevil rostrum length, suggesting that an arms race
occurred between those two traits. Toju and Sota (2006) applied PGLS (Chaps. 5
and 6) and showed significant effects of two scaling parameters, j and d (Pagel
1999). The significant effects of these parameters indicate punctuated evolution
and the large effect of a short branch. They also estimated the ancestral states by
the ML approach (Schulter et al. 1997). As a result, the rostrum length of the
common ancestor (an internal node C in Fig. 17.2a) between C. camelliae and its
sister species (C. species on C. sasanqua) was estimated at 8.12, an approximately
intermediate value of their descendent species (Fig. 17.2a). This estimated value
suggests that the rostrum length should have increased in C. camelliae but
decreased in its sister species.

Note that these results reflect BM-based models, in which a uniform rate of
evolution was applied to the entire tree, and directional selection on the lineage of
C. camelliae was not specifically incorporated. Therefore, the estimated ancestral
states of C. camelliae may have been overestimated. We re-analysed the data
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reported by Toju and Sota (2006) and tested the model showing that branch-
specific directional evolution has increased the rostrum length in the lineage
leading to C. camelliae. In the ABC, we conducted trait simulation by setting three
parameters: the ancestral value, background (neutral) evolutionary rate, and
intensity of directional selection k. We assumed a Gaussian distribution of rostrum
length and calculated the probability for the ith species by considering intraspecific
variation r as follows:

Pr Xijhið Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffi
2pr2

i

p exp �ðhi � XiÞ2

2r2
i

" #

: ð17:1Þ

We accepted data by the criterion that the probability of acceptance is pro-
portional to a direct likelihood (Kutsukake and Innan 2013). Using this equation,
we can avoid the common problem of the tolerance (see Sect. 17.3).

The obtained posterior distributions favoured our model of branch-specific
directional selection over the null model based on neutral evolution. The posterior
distribution of k did not overlap with 1, the value indicating neutral evolution
(Fig. 17.2b). The ancestral value estimated by this branch-specific directional
selection model was much smaller than that estimated by ML estimator, not only
in the ancestor of C. camelliae but also in other internal nodal species (Fig. 17.2b).
These differences are obviously due to the incorporation of branch-specific
directional selection. This estimation supports the idea that a co-evolutionary arms
race promoted the evolution of an exaggerated trait.

Although an OU model can also be applied to the branch to the Japanese
species, we believe that applying directional selection is more suitable in this case
because there should be no adaptive optimum in an arms race, and phenotypic
shifts should be unidirectional.

17.8 Further Applications

An advantage of the ABC approach is that researchers can flexibly test compli-
cated evolutionary models even when their likelihood cannot be computed. This
advantage meets recent demands of PCMs as comparative approaches are cur-
rently applied to wide ranges of biological problems and complicated models.
Another advantage of ABC is that trait simulation provides a good opportunity to
critically consider each stage of an evolutionary event. Using simulations,
researchers can create models focusing on evolutionary processes, rather than
evolutionary patterns. However, user should be aware of the caveats of ABCs
(discussed in Sect. 17.3). Careful calibration of summary statistics, tolerance,
power analysis, and well-designed model settings are necessary. The ABC
approach itself is also rapidly developing, and we recommend that ABC users
follow the ongoing improvements and debates.
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Fig. 17.2 a Phylogeny and trait values (rostrum length; mean and 1 SE) of seven species of
weevils (C. camelliae were sampled in two locations: YKI and HSK). Phylogenetic relationship
of these species was estimated by mitochondrial COI gene sequences (Toju and Sota 2006). The
trait values indicated by white circles correspond to the estimated values of internal nodes A, B,
and C by Toju and Sota (2006). We tested an evolutionary model in which directional selection to
increase a trait value has occurred between internal nodes C of the ancestor of C. camelliae
(indicated by a thick line with an upward arrow). Simulations were performed by a discrete
timescale using a million years. b Posterior distributions of parameters and 95 % confidence
intervals based on 2,000 accepted parameter sets (ancestral value at internal nodes A, B, and C,
evolutionary rate, and selection) of our ABC analysis. We did not accept simulated data with a
negative trait value. Black inverted triangles indicate trait values estimated by Toju and Sota
(2006). In this analysis, / was set as an exponential distribution with a mean of 0.05 mm,
meaning that one evolutionary change results in a trait change whose magnitude is a random
value from an exponential distribution whose average is 0.05 mm. Prior distributions were set as
follows: MRCA * U(3.15, 9), evolutionary rate per a million year *U (0, 50), and
k * U (0.0001, 30), where U(�) indicates a uniform distribution
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We believe that ABC-based PCMs have many developmental possibilities and
can be applied to broad ranges of evolutionary questions and empirical data. As
our example showed, one can model branch-specific directional selection by set-
ting a specific value of the evolutionary rate (l; Table 17.3) at each branch. As an
extension of this directional selection model, an acceleration of selection pressure,
often witnessed during co-evolutionary arms races, can be also analysed. With
further modifications / (Table 17.3), one can model an evolutionary scenario in
which different species have a different degree of trait change stemming from one
evolutionary event. Such a situation is common in analyses of size traits or body
mass, in which the degree of trait change (e.g. an increase/decrease in body mass)
positively correlates with its species trait value (e.g. body mass). Furthermore,
changes in the evolutionary rate and mode in the middle of a branch, hybridisation,
and cultural evolution can also be flexibly incorporated in this framework.

Finally, we should note that our ABC approach may not fit to a ready-made
software or statistical library because flexibility is the most important advantage of
the ABC. It is ideal that each user writes programs for evolutionary models that the
given researcher would like to test (see OPM).
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