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Foreword

Humans and chimpanzees share around 99.8 % of their evolutionary histories, and
nearly that much identity in the sequences of their genes, and yet most people are
happy to lock the one up behind bars, throw it bits of food and watch it have sex,
while protecting the other’s rights with an exhausting array of laws, and granting it
unique access to God’s goodwill.

The surprise and even disorientation this image elicits goes to the heart of why
comparative biology is fundamental to studying evolution and adaptation. Any two
species that share that much of their histories are bound to be similar in many
respects, as indeed humans and chimpanzees are. But we can also see in these two
lineages the magisterial workings of natural selection, which has sculpted them in
strikingly different ways since they parted company somewhere in Africa, perhaps
6–10 million years ago.

And that is the task that comparative methods must confront: how to separate
what is shared from what is newly evolved, because it is the twists and turns of the
latter that reveal how an evolving lineage has responded—and in most cases
adapted—to its circumstances when compared to another evolving lineage whose
circumstances differ. Remarkably, this simple truth has only become widely
appreciated among evolutionary biologists in the last 25 years or so, and even today
some recalcitrant troglodytes refuse to acknowledge it, or perhaps more charitably,
the word has yet not filtered as far as their caves, or in one or two cases I know of,
desert hideouts.

But happily, these people are an ever-shrinking minority whose eventual
extinction no one will record on a Red List, and comparative methods are now
widely used, having jumped from their historical origins in studying morphological
and behavioural evolution, to virology, biogeography, ecology, gene and genome
evolution, acoustics and perception, and to ever-finer analyses of the genetic basis
of variation in organismic traits. Anthropologists use it, as do sociologists, and
comparative methods have even been used to track down a deadly dentist who
infected his patients with HIV.

But touting the hegemony of comparative methods is to adopt a narrow view.
Their real power lies in combining information on the phylogenetic relationships
among a group of species with data on the traits and behaviours of those species.
Then, in combination with some hunches about the way evolution proceeds, hun-
ches that take the form of statistical models of evolution, comparative methods
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grant their users the power to reconstruct what the past was like, and then to test
competing ideas about how that past gave rise to the present. When used properly,
and with imagination, comparative methods make it possible to re-play the tape of
evolution under different scenarios, giving credence to some scenarios over the
others based on how well they explain the present.

It is to giving researchers the tools to do just this that László Zsolt Garamszegi’s
edited volume is devoted. It is a timely work as the past 10 years or so have
witnessed useful ferment in the field as ever more fine-grained, large and detailed
datasets and phylogenies become available, and statistically minded researchers
have responded with ever more flexible methods. Garamszegi has organized the
chapters so that readers are first prepared for and then gently eased into these
various approaches. Modern Phylogenetic Comparative Methods will also have an
Internet presence, allowing Garamszegi to keep users apprised of new develop-
ments and interpretations.

These are both useful strategies because different methods carry implicit con-
troversies concerning the ways that evolution is assumed to proceed and what its
patterns mean, and sometimes divide their followers. For instance, Brownian
motion is still the dominant null-model of most investigations of continuously
evolving traits, but where one camp adopts a catholic view, treating departures from
a Brownian background as a statistical problem with multiple possible evolutionary
causes, including varying rates of evolution and episodic bursts of change, others
adopt a more Calvinist tone, insisting on ‘stabilising selection’ or attraction to a
mysterious niche-optimum, as the cause—and their models admit no other view.

But these opposing views are—or should be—minor irritants in what is other-
wise a scientific field in rude health, and one that in many respects should become
the subject of young Ph.D. students in the philosophy of science. The old-guard
Feyerabend-esque naysayers who cling to the desperate belief that science is just
the province of who can shout loudest, and most effectively corrupt and coerce
others, all in pursuit of their favourite myths, should take stock of the field of
comparative biology: combative, and yes, often petty and self-serving, it has in
these past 25 years or produced a steady, even if sometimes stumbling, triumph
of the scientific method applied to this particular outpost of the field of evolution.

February 2014
Mark Pagel
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Preface

Many evolutionary biologists are concerned with the tremendous amount of
diversity of species, and their phenotypes, that we can currently observe in nature,
and one of the most challenging tasks is to find evolutionary explanations for such
interspecific differences. The philosophy of comparing attributes of different species
that have undergone different selection regimes has heavily dominated the way we
think about evolution since the days of Darwin. Subsequently, a vast number of
studies have interpreted inter-specific variations in species-specific traits in the light
of parallel variations in certain environmental or social factors.

However, a significant paradigm shift in the application of comparative methods
occurred in the 80s, mostly from the influential work of Felsenstein in 1985, when it
was recognized that patterns of inter-specific variations cannot be interpreted
without taking into account the underlying common descent of species that delin-
eates certain evolutionary constraints and also leads to similarity between species’
phenotypes. Statistically, the effect of phylogeny can be regarded as a confounding
factor that violates assumptions about non-independence of the unit of analysis, and
that potentially introduces spurious correlations across traits. The development
of the independent contrast method caused a flourish in the literature, in which most
comparative papers adopted the method as an efficient way to get rid of these
unwanted effects of phylogeny.

Modern phylogenetic methods go well beyond of this simple task of achieving a
simple statistical control for phylogeny. They rather treat the evolutionary history of
species as an interesting phenomenon on its own, that allows tracing character states
back through time along series of ancestral states. The real value of modern phy-
logenetic methods is, therefore, the capacity to examine biological diversity in the
light of the phylogeny, a perspective that opens up horizons for making inferences
about where, when, and how traits have changed over an evolutionary time scale.
The phylogenetic comparative framework by today has grown to address a large
number of fascinating questions about the correlated evolution of traits, phyloge-
netic signals in interspecific data, ancestral states, the mode of evolution, evolu-
tionary rates, alternative evolutionary mechanisms, speciation and diversification
and between-species interactions. Most of the methods are available for both dis-
crete (like mating system) and continuous (like body size) characters, and have
already started to spread into disciples other than evolutionary biology (e.g.,
anthropology, genomics, linguistics, law, and sociology). Furthermore, given that
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the phylogenetic comparative approach essentially offers a general framework for
studying hierarchically structured data of any kind, one must assume that the
exploitation of the underlying toolbox it provides has lagged behind its inherent
potential.

In the current state of evolutionary biology, when phylogenies and interspecific
data are accumulating at an enormous speed, it is becoming crucial that practi-
tioners are armed with a diversity of comparative methods that help them make
inferences from such data. However, overseeing these statistical tools becomes
particularly challenging because of the richness and mathematical complexity of the
relevant literature. In that situation, a secondary source, in which the primarily
literature is brought into the attention of the user community in a consumable way
may enhance the statistical integration of the discipline. This book has been
assembled under this motivation, and aims at providing descriptions about the most
recent phylogenetic methods for evolutionary biologist.

There are several other, very useful books on similar topics. Our book is not only
novel because it revolves around the most recent developments, but also because
this is an edited volume comprising contributions from several authors, each being
expert on his/her respective subfield. This extensive collaborative project may,
hence, offer a broad focus on a diverse array of topics and perspectives, which could
not be covered efficiently by a handful of specialized authors only. The contributors
to this book have been working in different fields of evolutionary biology for many
years, under the ultimate aim of solving important biological questions. While
fulfilling this enthralling mission we are often confronted with the task of broad-
ening existing approaches and exploring new advances in the comparative study of
diverse taxonomic systems and communities. In the light of this scientific back-
ground and our experiences obtained during teaching and in various statistical
courses, we felt that a textbook was needed to provide a broad overview in the field
of phylogeny-based evolutionary biology to our students and less experienced
colleagues. Therefore, we wanted to compile a wide range of different perspectives
and practices in the phylogenetic comparative method: from an introduction to the
topic, through the diversity of statistical designs that can powerfully incorporate
phylogenetic information, to more enhanced applications that offer studying evo-
lutionary mechanisms. We must note, however, that due to various constraints, we
were not able to review the entire literature that might be relevant. We hope that we
will be able to adjust for such a shortcoming in the future.

Another extra value we offer is the accompanying online resource (available at
http://www.mpcm-evolution.com), where we wish to post and permanently update
practical materials to help embed methods into practice. As Online Practical
Material (OPM), we will provide tutorials, example files and the underling statis-
tical scripts, with which the users will be able to apply the presented methods to
their own data and scientific questions. New approaches appear like mushrooms in
the forest, with some of them being implemented in practice at a rapid pace. It is
also becoming very common that more than one statistical approach is available for
the same evolutionary problem. Being able to select from alternative approaches
also allows researchers to gain better comprehension of biological diversity prevent
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in natural systems. Therefore, it is vital to keep these methodologies updated and
accessible for the broad user community, and the attributes of an online surface can
be fruitfully exploited in that direction.

Statistics is not without mathematics, and the derivation of certain formulas is
unavoidable for the appropriate argumentations. In this book, we constrain our-
selves to present only the key mathematical formulas that are necessary for
understanding the philosophy of different approaches. Doing so should make the
reasoning accessible to a broad readership. For those who are interested in the
mathematical details, we provide pointers to the primary literature. And for those
not interested in the mathematical details, do not fear. The equations herein should
be treated as resources if you decide to incorporate these methods into your
research.

The quality of this book in large part resides on inputs from several expert
reviewers, who provided valuable comments on earlier versions of chapter manu-
scripts during their review phase. Along that line, we are extremely grateful to
David Bapst, Roger Benson, Kierstin K. Catlett, Natalie Cooper, Thomas Currie,
Pierre de Villemereuil, Joe Felsenstein, Sive Finlay, Rob Freckleton, Jesualdo
Fuentes-Gonzalez, Alejandro Gonzalez-Voyer, Tatiana Giraud, Alan Grafen, Randi
Griffin, Jarrod Hadfield, Thomas Hansen, Lam Si Tung Ho, Elisabeth Housworth,
Antony Ives, Jason Kamilar, Tom Kraft, Oriol Lapiedra, Jessica Light, Graeme
Lloyd, Rafael Maia, Emilia Martins, Nick Matzke, Mark A. McPeek, Magdalena N.
Muchlinski, Shinichi Nakagawa, Chris Nasrallah, Charles L. Nunn, Christopher E.
Oufiero, Emmanuel Paradis, Sandrine Pavoine, Matt Pennell, Pedro Peres-Neto,
Samantha Price, Liam Revell, Aaron Sandel, Holger Schielzeth, William Shipley,
Graham Slater, Jeet Sukumaran, Matthew Symonds, Gavin Thomas, Chris Venditti,
Jamie Caroline Winternitz and Derrick Zwickl for their constructive assistance in
the evaluation process.

Although the list of authors appears male biased, this is completely uninten-
tional. Female scientists were also invited to write chapters, but regretfully they
could not make contribution due to various and completely understandable reasons.

Seville, Spain László Zsolt Garamszegi
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Chapter 1
An Introduction to the Phylogenetic
Comparative Method

Emmanuel Paradis

Abstract The phylogenetic comparative method (PCM) has an important place in
evolutionary biology. This chapter aims at giving an overview on some selected
topics. We first review briefly some important historical milestones including some
early contributions and the relationships of comparative methods with phyloge-
netics. Some fundamental points on statistical inference, adaptation, and causality
are then discussed. We also discuss briefly the application of the PCM to
anthropology and conclude with some perspectives on its future development and
applications.

1.1 Introduction

A comparison of apples and oranges occurs when two items or groups of items are
compared that cannot be practically compared. … However, apples are actually more
closely related to pears (both are rosaceae) than to oranges.

—Wikipedia1

The phylogenetic comparative method has undoubtedly been one of the most
important phenomena of evolutionary biology during the last few decades.
Comparative methods exist in many fields such as anthropology (Bock 1966), law
(Kiekbaev 2003), linguistics (Forster et al. 1998), and evolutionary biology
(Harvey and Pagel 1991). The concepts and uses of these different comparative
methods vary widely. Since the present book is specifically concerned with bio-
logical evolution, it is thus useful to define our subject.

E. Paradis (&)
Institut de Recherche pour le Développement, Montpellier, France
e-mail: emmanuel.paradis@ird.fr

1 http://en.wikipedia.org/wiki/Apples_and_oranges

L. Z. Garamszegi (ed.), Modern Phylogenetic Comparative Methods and Their
Application in Evolutionary Biology, DOI: 10.1007/978-3-662-43550-2_1,
� Springer-Verlag Berlin Heidelberg 2014
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We may define the comparative method as an analytical approach based on the
comparison of different objects with the aim to elucidate the mechanisms at the
origin of their diversity. From this, we can define the phylogenetic comparative
method as the analytical study of species, populations, and individuals in a his-
torical framework with the aim to elucidate the mechanisms at the origin of the
diversity of life.

It is important to note that the phylogenetic comparative method (PCM) is
distinct from but not independent of phylogenetics, the study and reconstruction of
the historical relationships among species. For instance, in linguistics or in
anthropology, the goal of the comparative method is the historical reconstruction
of spoken languages or of human cultures (e.g., Forster et al. 1998, with some
historical references therein; see Sect. 1.7 below).

The goal of this chapter is to give a general introduction to the PCM by
examining some topics. The next section presents the main historical milestones of
phylogenetics and the comparative method—since both have been tightly linked
through their history. The following sections give some essential elements on
statistical inference of evolutionary processes with comparative data. The last two
sections aim to put the PCM in a broader perspective by looking at its relationships
with anthropology and speculating about some of its current advances and its
future.

1.2 History of Phylogenetics and the Comparative Method

1.2.1 Early Developments

In the nineteenth century, trees were essential graphical tools for the development
of evolutionary ideas. Lamarck (1809) used a downward-growing tree to represent
the relationships among the main groups of animals with a caption indicating that
this ‘‘table displays the origin of the different animals.’’ History was central in
Lamarck’s argumentation: ‘‘A strong reason prevents us to identify the changes
that have successively diversified the animals as we know them today: we have
never witnessed these changes.’’ This could be taken as a manifesto of today’s
comparative method in evolutionary biology.

Cuvier was Lamarck’s great rival and strong opponent to the idea of evolution.
However, Cuvier acknowledged that species are more or less closely related so
that they can be classified in a hierarchical system and that different characters of
these species are relevant at different levels, especially through his gradual char-
acters (caractères gradués, Cuvier 1798). In spite of his backward ideas on fixism
(Laurent 1986), Cuvier had a profound impact on comparative anatomy through
the numerous illustrations and drawings included in his books—which could
appear in a modern textbook on evolution after updating the captions.

4 E. Paradis



It has been widely appreciated that Darwin (1859) used a phylogenetic tree as
the only figure in the Origin of Species. He also used comparative data to support
several of his points; for instance, ‘‘Genera which are polymorphic in one country
seem to be, with some few exceptions, polymorphic in other countries, and like-
wise, judging from Brachiopod shells, at former periods of time.’’ Thus, Darwin
characterized the patterns of diversity in space and in time and also used these
facts to infer the processes of diversification of species: ‘‘…the larger genera also
tend to break up into smaller genera. And thus, the forms of life throughout the
universe become divided into groups subordinate to groups.’’

The end of the nineteenth century has witnessed the wide acceptance of the
idea of evolution, particularly with the contributions of Haeckel, the father of
phylogenetics: ‘‘For the purpose of constructing a hypothetical genealogical tree
of the Radiolaria, as of all other organisms, three sources of information are open
to us, viz., palæontology, comparative ontogeny, and comparative anatomy.’’
(Haeckel 1887).

During the first half of the twentieth century, phylogenetics and biological
comparative studies have followed separate paths. The discovery of the physical
support of heredity (genes, chromosomes, and later DNA) led scientists to focus
their interest on the genetic mechanisms of evolution. Fisher (1930) certainly best
illustrates this change of paradigm where history was less important than previ-
ously thought: ‘‘For mutations to dominate the trend of evolution it is thus nec-
essary to postulate mutation rates immensely greater than those which are known
to occur…’’ For Fisher, mutations could not explain evolutionary novelties and we
should rather look at other evolutionary forces such as selection or population
structure to explain the diversity of life. At the same time, phylogenetics made
fundamental contributions to evolutionary thinking. Paleontologists integrated
phylogenetic ideas, mainly because of the historical nature of their data (Simpson
1944). Phylogenetic trees became the analytical tool of a school of systematists
(cladistics), leading to the first numerical treatments of phylogenies (see a his-
torical account in Felsenstein 2004).

1.2.2 Modern Developments

The late 1960s have witnessed some crucial turns. The development of statistical
methods to reconstruct phylogenies from genetic data was a major step accom-
plished by Cavalli-Sforza and Edwards (1967). Because the approach they
developed was statistical, it was possible to extend it to other kinds of data such as
continuous characters. This next step was achieved by Felsenstein (1973) who
proposed a method to calculate the likelihood of a tree for a set of continuous
traits. The significance of this work was not obvious until the same author pub-
lished a related method to calculate the phylogenetically independent contrasts
(PICs), a major difference being that the calculations under this new method could
be done with a hand calculator (Felsenstein 1985).

1 An Introduction to the Phylogenetic Comparative Method 5



Until the 1970s, comparative biology developed its statistical tools indepen-
dently of phylogenetic or historical ideas. Comparative data from n species used to
be analyzed with standard statistical methods, assuming that they were n inde-
pendent observations. This separation between comparative biology and the
historical dimension of biological evolution seems surprising when considering
that the idea of evolution, and particularly adaptation, was at the heart of most
comparative studies (Clutton-Brock and Harvey 1979).

The 1980s can be seen as the golden age of PCMs when a great variety of
methods were published (reviewed by Pagel and Harvey 1988). Two important
papers were published in the same year: Cheverud et al. (1985), who proposed an
approach based on auto-regression including the possibility to account for intra-
specific variation, and Felsenstein (1985), already cited. A few years later, Grafen
(1989), in a very rich and dense paper, proposed the use of generalized least
squares (GLS) to derive a method now widely known as the phylogenetic gen-
eralized least squares (PGLS). Gittleman and Kot (1990) further developed the use
of auto-correlation functions to assess phylogenetic signal in diverse settings,
including using taxonomic levels when a phylogeny is not available. Nevertheless,
the power of these methods to infer evolutionary models and parameters was not
yet fully acknowledged, and the view that phylogeny was a confounding effect in
comparative analyses still prevailed: ‘‘Confounding effects of phylogeny and other
variables may lurk behind any comparative relationship, and they must be
removed or controlled prior to considering adaptive arguments.’’ (Pagel and
Harvey 1988).

During the 1990s, the developments of the previous decade were confirmed and
strengthened. Lynch (1991) made a link between models of quantitative genetics
and phylogenetics. He developed a method to partition the variance of a trait into
an environmental and a phylogenetic component. Importantly, the same decom-
position can be done for the covariance between two traits, thus providing a formal
way to quantify the historical component of the link between two characters. New
methods were proposed for the analysis of discrete traits (Pagel 1994; Grafen and
Ridley 1997). In two important papers, Hansen and Martins (1996) and Martins
and Hansen (1997) showed how GLS can be used to address evolutionary ques-
tions beyond the basic Brownian motion model.

In the 2000s, some efforts were given to issues left temporarily aside such as
fitting more complicated models combining continuous and discrete traits (Paradis
and Claude 2002; Felsenstein 2005; Hadfield and Nakagawa 2010) or combining
interspecific and intraspecific data (Felsenstein 2008; Garamszegi and Møller
2010; Stone et al. 2011; see Chap. 7). At the end of the decade, three papers by
Revell (2009), Jombart et al. (2010), and Pavoine et al. (2010) defined a general
framework for multivariate statistical analyses in a phylogenetic context. The
concept of phylogenetic signal has also attracted significant interest with the aim
of clarifying previous ideas on phylogenetic confounding effect (Blomberg et al.
2003; Ollier et al. 2006; Pavoine et al. 2008; Münkemuller et al. 2012). At the
same time, PCMs have achieved maturity with some generalizations such as the
development of a Brownian model with variable parameters (O’Meara et al. 2006)
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or the use of sophisticated model-fitting techniques such as Monte Carlo Markov
chains (MCMC) to fit complicated models (Pagel et al. 2004; Pagel and Meade
2006; Hadfield and Nakagawa 2010).

Remarkable progress in phylogenetics also contributed to PCMs, particularly
with the publication of more and more phylogenies, some of them being complete
over a very large number of species (Bininda-Emonds et al. 2007; Smith et al.
2011; Jetz et al. 2012; see Chap. 3). Some methods have been developed to
combine different sources of phylogenetic information in order to build trees for
comparative analyses (Kuhn et al. 2011; Eastman et al. 2013; Thomas et al. 2013;
see Chap. 2).

Figure 1.1 gives the number of citations of two earlier papers over the years
together with another major contribution to the development of PCMs. After
almost three decades, the range of applications of PCMs has grown to reach all
branches of biological science: 6,533 citations of Felsenstein (1985) or Harvey and
Pagel (1991) are found in 771 periodical titles. The PCM, through the development
of a wide range of analytical tools, has contributed insights into many questions on
evolution and the diversity of life.

1.3 The Covariance Structure of Comparative Data

A central issue with comparative data is the non-independence of observations.
A similar problem is found in other fields such as geography (Cliff and Ord 1981),
climatology (Tiao et al. 1990), ecology (Legendre 1993), or medical research
(Houwing-Duistermaat et al. 1998).
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Fig. 1.1 The annual number of citations of three major contributions to the phylogenetic
comparative method (Source Web of Science)
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In a very general way, a data set can be arranged in a matrix where the rows are
the observations (individuals, populations, species, sequences, cells, etc.) and the
columns are variables (size, area, nucleotide sites, RNA transcription levels, etc.).
Data analyses seek for relationships among the columns of this matrix, and
common statistical methods assume that the rows are independent observations; in
other words, the values observed on a given row are not affected by the values at
others (Fig. 1.2).

To statistically handle non-independence of observations, a general approach is
to assume that two observations (rows), say i and j, are related through a
covariance parameter denoted as r2ij. This parameter specifies the strength of the
relation between the values of the same variable (column) observed for these two
observations. The way this parameter enters in the analyses depends on the method
used, the kinds of variables, and the question asked. The covariance parameters are
usually arranged in a symmetric matrix with the diagonal elements equal to the
variances and the off-diagonal elements being the covariances (see Chap. 5). This
matrix has n rows and n columns and so contains nðn� 1Þ=2 off-diagonal
elements.

There are many ways to define the values of r2ij: they may be all equal or not,
they may follow a specific distribution or may be related to another variable, they
may be fixed or estimated from the data, etc. For instance, with spatial data, it is
common to use a covariance function related to geographical distance.

Data matrix

Variables (Traits)

O
b

se
rv

at
io

n
s

Correlation and regression look at
relationships among variables (columns)

Non−independence:
correlation among

observations (rows)

Fig. 1.2 A general depiction of a data set
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In the case of comparative data from several species, it is possible to calculate a
priori the covariances among species traits if we know how these traits have
evolved. For instance, if we assume that a trait has evolved under a Brownian
motion (BM) model, these covariances can be calculated from the phylogenetic
tree linking these species without observing the trait itself. The PIC and PGLS
methods were directly derived from this assumption. Both methods are identical
though they are computationally very different (Blomberg et al. 2012). PGLSs
directly use the covariances by calculating a correlation matrix among observa-
tions, which is simply a covariance matrix scaled to have values between -1 and 1
(see Chap. 5).

1.4 Statistical Inference

The covariance matrix is at the core of most PCMs. Fortunately, it is possible to
calculate it for other models of trait evolution, in particular for the Ornstein–
Uhlenbeck (OU) model which is appropriate to model evolution of traits under
constraints (see Chaps. 13, 14 and 15). Using this and other models, it is thus
possible to relax the assumption underlying the BM model. This feature of PCMs
allows us to go beyond the paradigm that phylogeny is a confounding effect that
must simply be corrected (see Rohlf 2006).

We can illustrate this point with a small simulation exercise. Taking the phy-
logeny in Fig. 1.3, we simulate two independent traits that evolve according to
either a BM or an OU model. In this second model, the traits are constrained to
evolve toward an optimal value with a strength controlled by the parameter
denoted as a. The simulated traits were analyzed with two methods: a standard
regression (assuming the species are independent) and a regression using the PICs
calculated with the original phylogeny (which was thus assumed to be perfectly
known). Table 1.1 shows the estimated rejection rates for both methods. Since
both traits are independent, we expect these rates to be close to 5 %. The PIC-
based analyses gave the correct answer with the data simulated from a BM model
or from an OU model with a small value of a. On the other hand, for the large
values of a, the PIC-based analyses had a high type I error rate, whereas the
standard regression had a rejection rate close to 5 %.

Figure 1.4 shows the correlation matrices among the 20 leaves of the tree under
different models of trait evolution. These matrices would be used in PGLS
analyses (see Chap. 5). This shows clearly that an OU model with small a is close
to a Brownian motion one, whereas when a is large, the observations are expected
to be almost independent.

The critical point in a PCM-based analysis is to use the correct correlation
structure among observations. The more distant the assumed correlation structure
from the real one, the more biased the analysis will be. This property explains the
statement that ‘‘in a comparative analysis a wrong phylogeny is better than no
phylogeny at all’’ (Losos 1994; Martins 1996). Indeed, if the traits evolved on a
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Fig. 1.3 A simulated phylogeny with n ¼ 20

Table 1.1 Rejection rate of the test of correlation between two independent traits simulated on
the phylogeny in Fig. 1.3 using the model indicated in the table

Simulated model a Standard regression PIC regression

Brownian motion 0.396 0.051
Ornstein–Uhlenbeck 1 0.223 0.056

10 0.065 0.120
100 0.051 0.343

Simulations were replicated 10,000 times

Brownian motion

OU (α = 1)

Speciational model

OU (α = 10)

Independence

0 0.5 1

OU (α = 100)

Fig. 1.4 Correlation matrices among the 20 tips of the tree in Fig. 1.3. The speciational model is
one where change occurs only after a speciation event
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phylogeny and another phylogeny is used for data analysis, the latter will result in
a correlation structure closer to the correct one than assuming no correlation at all
(i.e., independence of observations).

From the point of view of data analysis, one problem often encountered in
published studies is that the phylogenetic correlation structure of the data is
usually not assessed. This certainly comes from the view traditionally defended by
most authors that only the phylogenetically controlled analyses are relevant. We
now know that this can lead to wrong inference. This seems relatively easy to fix
with tests of phylogenetic signal and model selection with information criteria
such as the AIC (see Chap. 5). Remarkably, when different correlation structures
are compared with real data, the Brownian motion model is rejected against more
complex models such as the OU one (Whitney et al. 2011; Lapiedra et al. 2013).

1.5 Inferring Adaptation

Perhaps because of its history, the comparative method is most often used to infer
adaptation. However, the scope and power of the PCM to reveal adaptation have
been criticized several times over the years (e.g., Leroi et al. 1994; Martins 2000;
Grandcolas et al. 2011). Such criticism is not really surprising: It has been dis-
cussed since a long time ago that characterizing the adaptative nature of a trait is a
complicated endeavor (Bock 1959). Even the characterization of adaptation in
viruses, which are far simpler than the organisms studied by most evolutionists,
appears to be an arduous task (Pepin et al. 2010). The use of traits such as ‘‘habitat
use’’ or ‘‘environment’’ with PCMs has been questioned because the analysis of
such variables in a phylogenetic framework is meaningless (Grandcolas et al.
2011). On the other hand, it is hard to not consider these variables in evolutionary
models since the assessment of the adaptive value of a trait cannot be separated
from extrinsic variables such as habitat, resources, or climate (Bock 2003; Losos
2011; Watt 2013).

Some recent developments in PCMs provide a solution to the limitations
underlined by the critiques cited above. As we have seen in the previous sections,
the PCM does not simply aim at correcting for phylogenetic dependence or
inferring repeated evolution of the same trait in different lineages, but rather to
provide tools to analyze comparative data in a historical framework, and this
includes fitting complex models of trait evolution that can handle various com-
plications of the study design. For instance, some methods make possible to
analyze several traits that evolve under different models: Bartoszek et al. (2012)
developed a multi-trait model where traits can evolve following different processes
of BM or OU.

One situation illustrated by Losos (2011) is the one of ‘‘incomplete conver-
gence.’’ Convergence toward similar phenotypes among distantly related species is
often viewed as evidence for adaptation. However, adaptive evolution can proceed
in different ways in different groups, and the patterns thus produced are likely to be
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masked or obscured by other variables (such as the taxonomical background).
Losos (2011) gives the example of the head shape of lizards which is mainly
related to phylogenetic relatedness; however, within distinct clades, some species
evolved independently toward herbivory and share some similarities, but the
convergence is incomplete as they retain their respective phylogenetic back-
ground. In this case, a standard comparative analysis will likely fail to characterize
the limited convergence among species affected by similar selective forces. On the
other hand, statistical methods in a historical framework, including models of trait
evolution, are helpful to characterize such patterns of adaptation. The use of these
and other recently developed models of trait evolution may help to solve this
‘‘paradox’’ of using non-heritable traits in comparative analyses.

1.6 Inferring Causality

Correlation is not causality, and PCMs do not escape this reality. In spite of the
importance of causality in evolutionary theory (see Watt 2013, for a recent view),
the application of PCMs is generally oblivious of this point. This has led to some
debate about the applicability of the PCM in order to identify evolutionary
mechanisms. The vast majority of publications do not elaborate much on corre-
lation and causality in their predictions: A simple linear correlation is usually
derived from the hypotheses under test.

In general statistical inference, the causal relationship between two variables
(say x and y) can be assessed if one of them can be controlled and then used as a
predictor in data analyses. With comparative data, x and y cannot be controlled:
They are evolving traits (or intrinsic variables) which are measured ‘‘on the spe-
cies’’ (or they are extrinsic variables, like habitat, which cannot generally be
controlled). Therefore, in the situation of a PCM with two variables, it is not
possible to determine which regression (x on y or y on x) best describes the data. In
other words, we cannot infer the causal relationship between these two variables.

When three or more uncontrolled variables are analyzed, it is possible to assess
alternative causal relationships among them with a method known as path analysis
(Freedman 2009). This method considers explicitly the causal relationships among
variables under alternative hypotheses. A causal relationship can be expressed as
‘‘the variation in y is caused by the variation in the value of x’’ and has the
statistical consequence that the regression of y on x is meaningful. Under a given
hypothesis of the causal relationships among variables, some regressions are
meaningful, while others are not. Using a procedure called the d-sep, it is possible
to test which hypothesis best describes the data (Shipley 2013). Santos and
Cannatella (2011) and von Hardenberg and Gonzalez-Voyer (2013) proposed to
extend the framework of path analysis to PCMs (see Chap. 8). In a traditional path
analysis, the regressions are done assuming independence of observations.
Therefore, it is straightforward to generalize this method to cases where the
observations are not independent, using tools such as (P)GLS.
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Causality in general, and in evolution in particular, is fundamental, but this is a
difficult concept to apply in practice. Hopefully, future applications of PCMs will
help to progress on this issue.

1.7 Phylogenetic Comparative Method and Anthropology

As mentioned above, the present book focuses on the uses of the comparative
method in evolutionary biology. One reason for this restriction is that other sci-
entists do not see the comparative approach in the same way than evolutionists do.
For instance, Bock (1966) described the comparative method as follows (italics as
original):

It should be recalled at the outset that the primary objective of users of the comparative
method is historical reconstruction. What history or whose history is by no means clear in
the nineteenth century literature, and this question has hardly been resolved in recent
controversy.

Thus, what anthropologists call ‘‘comparative method’’ seems close to what
evolutionists call ‘‘phylogenetics.’’ Mace and Pagel (1994) revisited this issue
by introducing a phylogenetic approach to anthropology directly inspired from
evolutionary biology. Considering the links between comparative biology and
phylogenetics, their message does not differ radically from the one formulated
28 years before by Bock.

In practice, the application of PCMs in anthropology differs substantially
compared to evolutionary biology. A remarkable difference is that with anthro-
pological data, the historical sequence of changes in traits (cultures, political
systems, etc.) is often recorded—at least more often than in biology. For instance,
Lindenfors et al. (2011) studied changes in political systems in the world between
1800 and 2008. Using several variables, they built a score ranging between -10
(total autocracy) and +10 (full democracy) and measured transitions among these
different scores. They showed that most political changes occurred from autocratic
systems (with a peak around -6) toward democratic ones (with a peak around +8).
However, one interesting point about this study is their comment with respect to
the historical dimension of the problem:

A reconstruction of democracy as a political system on a language phylogeny would
almost certainly indicate democracy as the ancestral state for large sections of the phy-
logeny. However, since we have exact information of all transitions, we know this not to
be true.

In biological terms, there is a trend (or directional evolution) from autocracy
toward democracy so that the second system is the most widespread today among
countries. If we ignore this historical trend, we would make wrong inference. Here
also, we see that using the wrong model of evolution can be misleading. Similar
situations can be found with evolutionary data; for instance, if a trend exists in the
evolution of a trait (say, increase in body size), then ancestral inference will likely
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be misleading if this trend is not taken into account (Grafen 1989). Anthropo-
logical data have other peculiarities, like the ubiquity of horizontal transfers
(Borgerhoff Mulder et al. 2006), so that a full comparison between cultural and
biological evolution would require a much longer discussion.

1.8 The Future of the Phylogenetic Comparative Method

The comparative method in biology has evolved through several centuries to reach
its present status. Today, PCMs have attained a level of maturity and sophistication
that the readers can appreciate in the chapters of this book. The directions of future
progress are certainly multiple.

We have seen the importance of the evolutionary models in statistical inference
with the PCM. Some researchers currently explore the possibility to analyze
complex models with several variables and an explicit formulation of the rela-
tionships among them. Hadjipantelis et al. (2013) analyzed an evolutionary model
of ‘‘function-valued traits’’ by combining dimensionality reduction and a ‘‘bag-
ging’’ (bootstrap aggregating) procedure. Complex relational models fitted with
structural equation models seem also a very promising approach for future com-
parative analyses (Chap. 8).

It has not been widely appreciated that some PCMs link a model of micro-
evolution (random evolution through genetic drift or stabilizing selection) with the
patterns of interspecific variation in a trait and thus with macroevolution. Further
works in this direction will likely lead to some interesting investigations on
evolutionary mechanisms.

During many decades, the fossil record has been considered as the only source
of information about evolutionary change. This paradigm has been broken by two
steps forward in evolutionary biology: phylogenetic methods which try to recon-
struct the past from the present and observations of real evolutionary changes over
recent years such as the spread of resistance alleles in pathogens. However, the
divorce between paleobiology and PCMs does not seem natural, and several
researchers try to reconcile them (Pennell and Harmon 2013). This task will surely
be very difficult but considering the many contributions of fossils to evolutionary
biology, this is worth the effort (Chap. 22).

A scientific discipline is sometimes judged by how it contributes to everyone’s
well-being. The PCM may well move very positively in this direction as com-
parative analyses could have concrete applications. Spreitzer et al. (2005) used
simple comparisons between different plant and alga species to create new
enzymes involved in photosynthesis by targeted mutations on ‘‘phylogenetic res-
idues.’’ The resulting enzyme is one with original characteristics, a kind of
‘‘phylogenetic chimaera.’’ Such an approach of ‘‘phylogenetic engineering’’ may
be promising to design new proteins or even new organisms based on predictions
from evolutionary phylogenetic models.
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Yan et al. (2012) used a phylogenetic analysis of a number of bacteria in order
to propose cocktails of probiotic bacteria to reduce pathogens in food. Their
approach is based on an investigation of a protein, MazF, which has an antimi-
crobial activity, and for which they propose an engineered variant. The phylogeny
of the studied bacteria was instrumental in designing this new protein. The com-
bination of molecular structure approaches with phylogenetic comparative anal-
yses seems a promising venue to develop a variety of new molecules with desired
properties.

Rich of its long history, the PCM seems to have a bright future both for
addressing fundamental questions and for delivering applications.
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Chapter 2
Working with the Tree of Life
in Comparative Studies: How to Build
and Tailor Phylogenies to Interspecific
Datasets

László Zsolt Garamszegi and Alejandro Gonzalez-Voyer

Abstract All comparative analyses rely on at least one phylogenetic hypothesis.
However, the reconstruction of the evolutionary history of species is not the pri-
mary aim of these studies. In fact, it is rarely the case that a well-resolved, fully
matching phylogeny is available for the interspecific trait data at hand. Therefore,
phylogenetic information usually needs to be combined across various sources that
often rely on different approaches and different markers for the phylogenetic
reconstruction. Building hypotheses about the evolutionary history of species is a
challenging task, as it requires knowledge about the underlying methodology and
an ability to flexibly manipulate data in diverse formats. Although most practi-
tioners are not experts in phylogenetics, the appropriate handling of phylogenetic
information is crucial for making evolutionary inferences in a comparative study,
because the results will be proportional to the underlying phylogeny. In this
chapter, we provide an overview on how to interpret and combine phylogenetic
information from different sources, and review the various tree-tailoring tech-
niques by touching upon issues that are crucial for the understanding of other
chapters in this book. We conclude that whichever method is used to generate
trees, the phylogenetic hypotheses will always include some uncertainty that
should be taken into account in a comparative study.
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2.1 Introduction

According to evolutionary theory, all organisms evolve from a single common
ancestor. Phylogenetic trees provide an elegant way to depict hypothesized
ancestor–descendant relationships among groups of extant, or in some cases
extinct, taxa, including all intermediate ancestors. In fact, the essence of all
comparative methods lies in the varying degrees of shared ancestry among species
that determine the expected similarity in phenotypes (Felsenstein 1985; Harvey
and Pagel 1991). Given that phylogenies provide the necessary information about
ancestor–descendant relationships, they are essential to any comparative analysis
and each of them requires at least one phylogenetic hypothesis to be taken into
account. Ultimately, the evolutionary conclusions will depend on the phylogeny
used in the study.

Finding the true phylogenetic hypotheses from a large number of alternative
trees is a very complex task. As the number of considered species increases, the
number of potential phylogenetic resolutions also increases exponentially
(Fig. 2.1). For practicing comparative biologists, questions about phylogenetic
reconstruction are important to understand, because the constraints accumulated in
this process should be considered in the next level of analysis, when the evolu-
tionary inferences are being made. It is, therefore, necessary to have a good grasp
of how phylogenies are estimated, what the assumptions and the main differences
between the reconstruction methods are, and how the resulting trees can be tailored
to a comparative study.

In this chapter, we provide a general overview on these steps and highlight that
most reconstruction methods generate considerable uncertainty in the phylogenetic
hypothesis. First, we define the essential terminology (see also Glossary at the end
of the chapter), and then, we give a brief review of approaches that are most
commonly used for phylogenetic reconstructions. Second, from the practical
perspective, we explain how to obtain phylogenetic trees to match an interspecific
data frame at hand and provide a guide for performing the most important tree-
related exercises in a comparative study. Finally, we speculate about how the
treatment of phylogenies (and the associated uncertainties they embed) will
develop in the future. Although the issues that we present here might be obvious
for most experienced users of the comparative methodology, who may skip this
section, those who are new in this field may benefit from this discussion. There-
fore, we recommend that beginners consult this chapter before continuing with the
more advanced topics. Given that several primary resources are available that
exhaustively review the phylogenetic reconstruction methods (Durbin et al. 1998;
Ewens and Grant 2010; Hall 2004; Linder and Warnow 2006; Nei and Kumar
2000; Felsenstein 2004; Lemey et al. 2009; Page and Holmes 1998), here we only
aim to provide a gentle introduction to the topic from the perspective of the readers
of the book.

20 L. Z. Garamszegi and A. Gonzalez-Voyer



2.2 Terminology

2.2.1 Homology and Homoplasy: Convergence
and Divergence

Phylogenetic reconstruction methods are all based on the assumption that simi-
larities in the traits (either morphological or genetic) used to estimate ancestor–
descendant relationships are the result of homology, i.e., that they are similar
because they were inherited from a common ancestor1. Only homologous traits can
provide the necessary information about shared ancestry, in the form of shared
similarities between species, and independent evolutionary history, in the form of
differences between species the traits of interest. In the case of genetic sequences,
differences among sequences in nucleotides (or amino acids) at specific positions
are regarded as the result of divergence during the independent evolution following
the speciation event. In a similar fashion, when morphological traits are used, the
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1 see also Glossary at the end of the chapter

2 Working with the Tree of Life in Comparative Studies 21



differences in trait states are interpreted as resulting from independent evolution
and thus are relevant for the clarification of the evolutionary relationships among
species. Hence, homologous, gene sequences, or morphological characters pre-
senting fewer differences are assumed to belong to species with shorter divergence
times and thus more closely related than homologous traits with more differences.
Similar selective regimes along independent branches of the phylogeny can result
in both parallel and convergent evolution, which can in turn cause traits to present
higher similarity than expected by chance. Such traits show homoplasy, which is
not to be mistaken for homology. This is why phylogenetic reconstructions should
rely on neutral markers, which are not under selection, or at the very least not
strong or directional selection (Lemey et al. 2009; Page and Holmes 1998).

2.2.2 The Evolutionary History of Species as Reflected
by a Phylogenetic Tree

The phylogenetic relationships among species are usually described in a tree
format. The tree represents relationships among extant species at the tips (or
leaves), but phylogenies may also include strains, higher taxonomic units, or even
extinct taxa. In general, the taxa at the tips can also be termed operational taxo-
nomic units (OTUs). The putative ancestors of the tips are represented by nodes at
different levels (see Glossary for further definitions) that are connected to each
other with branches. The number of nodes between two species is proportional to
their evolutionary relationship, more closely related species are separated by fewer
nodes than more distantly related species.

If a phylogenetic tree is rooted, one node is identified as the root that represents
the most recent common ancestor of all the taxa, to which ultimately all other
nodes descend through the links of branches. A rooted tree provides information
about the sequence of evolutionary events that gave rise to the depicted rela-
tionships among the taxa, which allows defining ancestor–descendant relationships
between nodes (those closer to the root are ancestral to those closer to the tips of
the tree). On the contrary, unrooted trees do not provide information about
ancestor–descendant relationships thus are not of interest for comparative analy-
ses. Unrooted trees can lead to erroneous representations of expected similarity
among taxa because sequences that are adjacent on an unrooted tree need not be
evolutionarily closely related (Page and Holmes 1998).

Phylogenetic trees also generally include important information about the
lengths of individual branches that connect the intermediate nodes and/or terminal
tips and that can be used for inferences about evolutionary rates inherent to many
phylogenetic comparative approaches. Branch lengths can represent the time that
separates successive splits (divergence times) resulting in an ultrametric tree, or
the number of evolutionary changes occurring in a molecular marker (e.g.,
nucleotide substitution) resulting in an additive tree. An important property of
ultrametric trees is that all extant taxa have the same distance from the tip to the
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root of the tree, or in other words the same distance separates any pair of extant
taxa (but not extinct) in the tree when measured passing by the root (Page and
Holmes 1998). The difference between additive and ultrametric trees has important
consequences for comparative analyses (see Sect. 3.4). Therefore, users must be
careful about the evolutionary assumptions associated with the different types of
phylogenetic trees employed in comparative analyses.

2.2.3 Phylogenetic Uncertainty

Importantly, a phylogeny is only a hypothesis, thus it can always be replaced by a
new one and some degree of uncertainty is always associated with it. There are two
main types of phylogenetic uncertainty arising from the reconstruction itself.

First, there is uncertainty associated with the topology, i.e., with the degree to
which the phylogeny represents true relationships between taxa. Because specia-
tion events involve the splitting of one (ancestral) population into two incipient
species, fully resolved phylogenies are, in theory, expected to be fully bifurcating
(only two branches emerge from each node). Uncertainty in tree topology is, hence
often reflected by the presence of polytomies, in which more than two descendant
branches emerge from a single node. As the number of polytomies on a tree
increases, so does the number of equally likely alternative phylogenetic hypoth-
eses (one three-furcating phylogeny can be resolved in two ways). ‘‘Soft’’ poly-
tomies reflect lack of sufficient data to adequately resolve the order of speciation
events and thus the ancestor–descendant relationships on the tree. In that case,
more information for different marker traits would be necessary to be able to
resolve bifurcating relationships unambiguously. On the other hand, ‘‘hard’’
polytomies result from rapid or recent speciation events, when there has not been
sufficient time for evolutionary changes to accumulate in the marker traits, which
will then mask the order of the speciation events. Note that uncertainty in the tree
topology can not only be reflected by polytomies, but also by estimates of support
or robustness of the relationships among taxa (e.g., see bootstrapping or Bayesian
posterior support below).

Second, there is also uncertainty associated with the branch lengths either
reflecting time of divergence or the number of expected evolutionary changes.
However, inferences from nucleotide substitutions or other measures of evolu-
tionary change may sometimes be misleading because some events can be missed,
for example, due to reversions to a state present in an ancestral sequence. Fur-
thermore, the detected rate of evolutionary change in the phylogenetic marker can
be affected by certain taxon-specific characteristics, for example, differences in
body size, generation length, and metabolic rate, to name a few examples
(Bromham 2011; Santos 2012). Different transformations exist to obtain branch
lengths for a given topology (see Sect. 3.4).

How does uncertainty in the reconstruction of the phylogeny affect phyloge-
netic comparative analyses? Firstly, topological uncertainty can potentially
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influence the estimates of the regression slope in analyses of associations between
traits especially when the interspecific sample size is low. Inaccuracies in the
topology have a stronger effect when alternative phylogenies involve species that
are moved across the root (Blomberg et al. 2012). Changes closer to the tips, on the
other hand, are less drastic in their effects (Martins and Housworth 2002; Symonds
2002). Uncertainty in species relationships at the tips of the tree might have a more
important impact when assessing rates of phenotypic evolution, as topological
errors could artificially inflate the estimates of interest if putative sister taxa
present higher divergence than expected due to misplacement. Uncertainty in
branch lengths can become much more problematic in analyses of rates of phe-
notypic evolution or in analyses of rates of diversification, as differences in branch
lengths will directly affect parameter estimates.

There are several ways to incorporate phylogenetic uncertainty in comparative
analyses, and most of these are discussed in details in other chapters (e.g., Chaps.
10–12). A simple method for controlling for uncertainty in tree topology involves
repeating the analyses on each (or a subset of) alternative phylogenetic tree
(Donoghue and Ackerly 1996). Furthermore, in analyses of correlations between
traits or traits and environmental variables uncertainty in the branch lengths of the
phylogeny (but not in the topology!) can be controlled by using parameter
transformations (e.g., k, a, and q) and maximum-likelihood or restricted maxi-
mum-likelihood methods which estimate the maximum-likelihood value of the
parameter simultaneously with model fit (Martins and Hansen 1997; Pagel 1999;
Freckleton et al. 2002). In general, uncertainties in the phylogenetic hypotheses
can be effectively handled in the Bayesian (see Chap. 10) or in the Information
Theoretic (see Chap. 12) statistical framework.

2.3 Assembling Phylogenies

2.3.1 Which Traits Are Appropriate for Phylogenetic
Reconstruction?

For a trait to be used as a reliable phylogenetic marker, at least the following three
criteria should be met: (i) similarities in trait values should be due to inheritance
from a common ancestor, i.e., the trait should be homologous, (ii) the among-
species variance in the trait should result from divergent evolution, and (iii) within-
species variance is negligible compared to the among-species variance. The clas-
sical way of estimating relationships between species was to compare morpho-
logical characters (Linnaeus 1758), and taxonomy is still largely based on
phenotypic characters. However, the increasing availability of molecular sequences
and rapid development of a variety of analytical tools have led to the spread of
genetic markers for phylogenetic reconstruction. Molecular data have an additional
advantage over phenotypic characters, as they provide standard units comparable
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across all living taxa. Given the overwhelming importance of molecular markers, in
the rest of the discussion, we will limit ourselves to this focus with the note that
most of the reviewed methodology works for morphological characters as well (as
far as they fulfill the assumption of homology). We note, however, that although
molecular markers are increasingly used for phylogenetic reconstruction and have
virtually replaced morphological markers, this does not mean that phylogenetic
inferences from gene sequences are necessarily free of uncertainty and/or of the
problems posed by homoplasy.

2.3.1.1 Gene Trees Versus Species Trees

Different genetic mechanisms, such as gene duplications, genome reorganization,
recombination, lateral gene transfer, have led to the diversity we observe today. Of
all these sources of genetic variation, mutations (point mutations, insertions, and
deletions) are used to infer relationships among genes. For the phylogenetic
reconstruction to be reliable, the entire gene sequences being compared among
taxa must have the same history. Recombination events, for example, are con-
founding because the recombining segments are not comparable. Recent gene
duplication events leading to paralogous genes can also lead to unreliable phy-
logenetic reconstructions. Only the analysis of orthologous genes (homologous
genes in different taxa that have started to evolve independently since divergence)
provides information on the speciation events (Page and Holmes 1998). It is
therefore important to ensure, a priori, that the genes employed in a phylogenetic
analysis are orthologous to prevent flawed conclusions.

An important source of phylogenetic uncertainty is associated with the potential
discrepancy between gene trees and species trees. Comparative analyses assume
that the phylogeny represents the true and single evolutionary history of the
species (or taxa) being analyzed. However, although intricately linked, the evo-
lutionary history of genes can differ from that of the species, which leads to
incongruence between the phylogenetic tree recovered for the gene and the
unknown phylogenetic history of the species. Such differences can arise, for
example, due to hybridization, gene duplication, horizontal gene transfer, and
incomplete lineage sorting. The signatures that these processes leave on the gene
trees can be utilized as phylogenetic signal to recover population parameters,
evolutionary processes, and the species phylogeny itself (e.g., Nakhleh 2013; see
also Chap. 3 in this book). Different approaches exist for inference of species trees.
Some advocate the use of multiple genes (loci) concatenated into a single large
matrix (supermatrix approach; Roquet et al. 2013) that can potentially reduce the
effect of conflicting signal resulting from processes such as incomplete lineage
sorting. Alternatively, others advocate the use of gene trees, where phylogenies are
estimated independently for each locus and subsequently assembled into a large
supertree (see Chap. 3).
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2.3.1.2 Nuclear and Organelle DNA in Phylogenetic Reconstruction

An additional consideration for phylogenetic reconstruction is the choice of gen-
ome to be employed, as molecular phylogenies can be reconstructed using mito-
chondrial, chloroplast, or nuclear genes. Mitochondrial genes generally evolve
faster and accumulate more substitutions than nuclear genes for various reasons
(Galtier et al. 2009). For example, in Drosophila, mitochondrial genes have
4.5–9.0 times higher synonymous substitution rates (i.e., alterations in the nucle-
otide sequences do not affect the translated amino acid sequence) than average
nuclear genes (Moriyama and Powell 1997). The chloroplast genome of plants, in
contrast, presents a synonymous substitution rate which is on average 4 times
lower than that of nuclear genes (Wolfe et al. 1989). Because of their faster rate of
substitution, mitochondrial genes are generally more useful to resolve relationships
among recently diverged species than nuclear genes, as the former are more likely
to have accumulated the necessary substitutions. On the contrary, mitochondrial
genes may be less informative regarding relationships dating further back in time
because the phylogenetic signal is eroded. Such erosion of the signal results from
the fact that only four bases constitute molecular sequences. Hence, as substitu-
tions accumulate at a particular region of the gene, by mere chance, the probability
increases that the nucleotide will change back to the base it had in the past and thus
the difference with the ancestral sequence will be lost. This is referred to as
saturation, for which models of sequence evolution attempt to correct. Further-
more, the mode of inheritance of the different genomes is also important, as in
general the mitochondrial genome (and sometimes the chloroplast genome as well)
is inherited from the maternal ancestor while the paternal copy is lost. For plants,
where there is a higher frequency of hybridization, phylogenies reconstructed from
chloroplast sequences might reveal only part of the story, as hybridization events
would not be apparent. Given the differences in the rate of substitution between the
two genomes, branch lengths could potentially differ between phylogenies
reconstructed from organelle sequences compared with those reconstructed using
nuclear sequences. To avoid such problems, recent attempts prefer to use a
combination of genes from organelle and nuclear genomes.

2.3.2 From Nucleotide Sequences to Trees

2.3.2.1 Sequence Alignment

The first step of any phylogenetic reconstruction is to create a matrix containing
the information on the states of marker traits in each species. In the case of
phenotypic traits, the matrix will contain all traits aligned in columns with each
trait coded as present or absent, or with different categories defining trait states. In
the case of molecular data, the matrix is a sequence alignment, either involving
protein sequences or nucleotide sequences. Some analyses involve both sequence
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data and phenotypic traits. To obtain information on molecular sequences, one can
use publicly available sources in GenBank in combination with the efficient search
engines provided.

We must emphasize that obtaining sequence alignments is an error-prone
process, and possibly one of the most challenging parts of the phylogeny recon-
struction, as the raw GenBank data are unaligned and the processing of such data
sometimes requires subjective decisions. Errors in the sequence alignment will
carry through the entire process and be compounded, which can lead to incorrect
phylogenetic reconstructions (and subsequent inferences about evolutionary
mechanisms). Phylogenetic reconstruction methods are based on the assumption
that compared traits or sequences are homologous (Page and Holmes 1998), and
only correctly aligned sequences fulfill this assumption. A given sequence align-
ment is a hypothesis about homology of the nucleotides or amino acids and relies
on the assumption that the sequences of different taxa have evolved from a
common ancestral state. The aim of the sequence alignment is to position
sequences along the matrix in such a way that homologous sites along the
sequence are aligned in columns, as much as possible.

If two sequences have accumulated few substitutions, they will remain largely
similar and the alignment will be straightforward. However, as sequences diverge
and differences accumulate, it becomes increasingly difficult to make a sensible
alignment. For two amino acid sequences with sequence identity below 25 %,
finding a good alignment is highly challenging. Nucleotide sequences can be more
problematic to align than amino acid sequences, since two random sequences of
equal base composition will on average be 25 % identical merely due to chance.
Therefore, when working with nucleotide sequences from coding genes, it is
generally recommended to align such sequences at the amino acid level (Higgins
and Lemey 2009), once issues about insertions and deletions in the nucleotide
sequences are resolved (see below). Furthermore, some have advocated that
together with the sequence identifiers the alignments themselves be made public
when a new phylogenetic hypothesis is published.

Sequences do not always have the same length, thus gaps need to be inserted for
the appropriate alignment. Gaps may represent either a deletion of one or more
bases in a particular sequence, an insertion event—when one or more bases are
incorporated into a sequence—or a combination of insertion and deletion events
(insertion and deletion events are generally treated in the same manner). Repeats,
when one or few nucleotides or an entire protein domain are repeated once or
several times in sequence, can also cause problems. With short repeats inserted, it
becomes highly difficult or virtually impossible to determine the correct alignment.
Programs such as G-blocks (Castresana 2000) allow researchers to identify poorly
aligned or highly divergent sections of the alignment, in which case the prob-
lematic section can be deleted in order to minimize errors. Insertion of gaps in an
alignment is generally penalized (otherwise alignments with more gaps than
nucleotides could result), while gaps at the end of a sequence are not penalized (as
sequences might simply be missing sections at the end for various biological and
experimental reasons). In some phylogenetic reconstruction programs (e.g.,
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MrBayes Ronquist and Huelsenbeck 2003) gaps in the alignment are not infor-
mative, unless the user explicitly codes them as binary characters. Sequence data
and sequence alignments are generally saved in text files, and the most commonly
used formats are FASTA and NEXUS. A diversity of programs, many of them
freely available online, for sequence visualization, alignment, and editing exist
(e.g., MEGA, ClustalW, Mesquite, Seaview).

2.3.2.2 Models of Substitution

Assuming a proper alignment of nucleotide (or amino acid) sequences, the next
step is to determine the best model of substitution, which provides a mathematical
expression for the evolutionary transitions between states of the sequence data
(e.g., through series of point mutations). Given that phylogenetic reconstructions
often involve processes that unfold over potentially very long periods of time, it is
simpler (and mathematically more tractable) to describe the models based on
instantaneous probabilities. Hence, the models allow estimating the probability of
observing any transition at a given point in time. Models may give different
weights to different evolutionary transitions, for example, if some transitions are
known to occur more frequently, these might be given a lower weight, and will
have a lower impact on the reconstructed phylogeny, than rare transitions. For
amino acids, substitution models are based on matrices that give different weights
to all the possible transitions between the different amino acids based on knowl-
edge about the frequency of transitions and similarity of biochemical properties
(Higgins and Lemey 2009). For nucleotides, models weigh transitions (changes
from a purine to a purine or from a pyrimidine to a pyrimidine) and transversions
(changes from purine to pyrimidine or vice versa) differently. Substitution models
also take base composition into account and estimate rate of molecular evolution.
Furthermore, it is also possible to discriminate between processes that underline
the occurrence of synonymous (i.e., not altering the composition of the translated
protein) and non-synonymous (i.e., altering the amino acid sequence) mutations,
and to correct for saturation. Models may be simple or complex, and the aim is to
find the model which best describes the evolution of the data employed for phy-
logenetic reconstruction while at the same time minimizing the number of
parameters that must be estimated. For the details of the particular models of
sequence evolution, we refer to the primary literature (Durbin et al. 1998; Ewens
and Grant 2010; Hall 2004; Linder and Warnow 2006; Nei and Kumar 2000).

Unfortunately, it is hard to decide a priory which model would be the most
appropriate for the data (e.g., different mechanisms may apply to different taxa and
markers), thus intuitively preferring one method over another might not be
straightforward. Some care is warranted here, because the model chosen can have
consequences for the outcome of tree reconstruction. Therefore, statistical methods
may be needed, in which all potential models considered for sequence evolution
are compared. Selecting from various models with different parameters is a model
selection problem that practicing phylogeneticists must solve at the start of data
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analysis based on some statistical means. This task is most commonly accom-
plished by comparing how different models incorporating particular scenarios for
sequence evolution fit the data. Such model comparison strategy either follows a
series of nested likelihood ratio tests or rely on Information Theoretic approaches
based on Akaike Information Criterion (AIC-IT), for which statistical programs
are largely available (e.g., ModelTest, Posada and Buckley 2004). Other approa-
ches have also been developed, e.g., the one that applies decision theory to select
models that minimize error in branch length estimation (Abdo et al. 2005; Minin
et al. 2003), but different Bayesian methods have also generated noticeable pop-
ularity in molecular systematics (Alfaro and Huelsenbeck 2006; Arima and
Tardella 2012). In some cases, different models can give similar results and issues
about the uncertainties that are mediated by different tree estimation methods
represent theoretical problems rather than manifest true concerns in practice.

2.3.2.3 Tree Reconstruction Methods

Once a substitution model has been chosen for the aligned sequences, several
approaches are available for phylogenetic reconstruction (Fig. 2.2). We briefly
review the most commonly adopted methods (Durbin et al. 1998; Ewens and Grant
2010; Hall 2004; Linder and Warnow 2006; Nei and Kumar 2000) and pinpoint
how they contribute to our uncertainty about the evolutionary history of species.
We name some computer programs that can perform such reconstructions. For
practitioners interested in working with these approaches in the R statistical
environment (R Development Core Team 2007), we recommend Paradis (2011).

Maximum Parsimony

Maximum parsimony is the method that relies on the fewest assumptions. It aims
at finding the tree that involves the minimum number of evolutionary transitions in
the marker trait. For example, imagine that we want to reconstruct the phyloge-
netic relationships between birds, rodents, and primates based on the presence of
hair assuming a hairless ancestor. The most parsimonious phylogeny would yield
that rodents are more closely related to primates than birds. This is because such a
phylogeny would require only one evolutionary change (gain of hair in the
common ancestor of primates and rodents), while a grouping of birds and primates
together would necessitate two changes (gain of hair in two independent lineages).

Statistically, parsimony can be considered as a nonparametric method, it
requires no parameters and does not estimate branch lengths (as the others below).
Although it may appear simple, finding the most parsimonious resolution may be
computer intensive for large number of species and long nucleotide sequences.
Furthermore, it has received criticism, e.g., because the assumption about parsi-
mony may be violated when evolution occurs at a rapid pace.
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Distance Methods

Several tree reconstruction approaches are distance methods that focus on the pair-
wise dissimilarities in nucleotide sequence between species. Such comparison of
the genetic information across pairs of species results in a symmetric
N 9 N matrix (N is the number of species), wherein each value defines the sim-
ilarity/difference between two species based on a certain metric that considers a
model of sequence evolution (as detailed above).

Once a distance matrix has been defined based on a given model of evolution, it
can be used to describe the hierarchical (i.e., tree-shaped) associations among
species, in which closely related species have higher similarity indexes than dis-
tantly related species. The difficulty is that one distance matrix mathematically
defines more than one tree (whereas one tree defines only a single distance matrix),
thus certain algorithms and evaluation methods are needed to find the most
appropriate tree for a given matrix. These methods generally follow one of the two
main strategies: either they aim at aggregating the most closely related species or
splitting the most distantly related ones.
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Fig. 2.2 Phylogenetic resolutions of 15 primate-infecting plasmodium (malaria) species, as
revealed by the analysis of 18S rDNA sequences by different phylogeny estimation methods. The
underlying data obtained form the GenBank and correspond to Leclerc et al. (2004)
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The most commonly used distance method is the neighbor-joining method
(Saitou and Nei 1987), which aims at splitting the most distant observations by
minimizing distances between the nearest neighbors (bottom–up clustering). The
algorithm first builds a tree by connecting two randomly chosen species in a node
and the remaining species in another node, then estimates total branch length. The
combination of neighbors that results in the smallest length is retained and they are
then removed from the distance matrix, which is then updated accordingly. This
procedure is repeated until the tree becomes dichotomous. Further extensions to
this basic method exist, which differ with respect to how they re-calculate the
elements of the distance matrix after a split is retained. The advantage of the
neighbor-joining method is that it is fast relative to other methods (e.g., maximum
parsimony and maximum likelihood). However, it only gives a single tree as a
result (i.e., does not incorporate uncertainty), which often depends on the model of
evolution considered.

Another distance method is the minimum evolution method, which is based on
an agglomerative process (Rzhetsky and Nei 1992). It assesses all possible
topologies for a given distance matrix, and accepts the one that results in the
smallest value for the sum of all branch lengths. The most common formula that
can be used to estimate the sum of branch lengths from the distance matrix is based
on ordinary least squares (OLS), which penalizes more for getting a long-branch
wrong than for getting a short-branch wrong. Other methods also exist, and they
differ in how they weight such differences. Given that the number of possible
topologies dramatically increases with the number of species, it might be labor
intensive for large datasets.

Maximum Likelihood

This approach is based on the estimation of a likelihood function that describes
how a given tree is fitted to the observed sequence data. It considers an explicit
model for character state evolution and a proposed phylogenetic tree with branch
lengths. The degree to which a phylogeny explains the observed sequence data can
be calculated as a likelihood, i.e., the conditional probability of the data
(sequences) given the hypothesis (as defined by the evolutionary model and tree)
considered. Finding the tree with the highest likelihood will tell us which phylo-
genetic hypothesis has the highest probability of producing the present-day
sequences under the considered probabilistic model of sequence evolution. Max-
imum likelihood is known as a robust method, but evaluating likelihood surface
can often require considerable time. Recently developed methods now allow for
very rapid resolution of phylogenetic estimation even for datasets involving a large
number of species, e.g., RAxML (Stamatakis 2006) or GARLI (Zwickl 2006).
Importantly, likelihoods obtained for different trees are always conditional on an
explicit model of evolution, which can be regarded either as a weakness or
strength.
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Bayesian Approaches

Bayesian methods for phylogenetic inference (Pagel et al. 2004b; Huelsenbeck
et al. 2001) follow the Bayesian theorem to derive the posterior probability of a
tree given the sequence data, as a function of the likelihood of the data given the
tree and a prior belief in the general validity of the phylogenetic hypothesis (see
more details on the Bayesian philosophy in Chap. 10). The posterior probability
distribution of trees can be obtained via a Markov Chain Monte Carlo (MCMC)
process, which proposes and evaluates a certain phylogenetic hypothesis along
each state of the chain. These trees are obtained by the alteration of topologies,
branch lengths or parameters of sequence evolution. A Metropolis–Hastings
algorithm (Metropolis et al. 1953; Hastings 1970) is used to evaluate newly pro-
posed trees, which will be accepted with a probability that is proportional to the
ratio of their likelihood to that of the previous trees in the chain. If the chain is
allowed to run enough along the universe of potential trees, the sampling will
accumulate trees based on their likelihood. Then, the pool of sampled trees will
form the posterior density of trees (i.e., the posterior density of topologies, branch
lengths, and parameters of the model of evolution) in proportion to their frequency
of occurrence. The resulting Markov sample will consist of thousands or millions
of trees, with each of them being represented according to how they fit the genetic
data. Therefore, in contrast to other methods that provide a single tree as solution,
the Bayesian approach has the capacity to capture the uncertainty in the phylo-
genetic hypothesis in the form of the distribution of similarly likely trees. The
often-emphasized shortcoming of this method is that it requires prior information
on the topologies, branch lengths, and other parameters of the model of substi-
tution, which is often challenging.

2.3.2.4 Tree Evaluation

Tree reconstruction from molecular data does not result in an unambiguous
translation, but each resulting tree can be described by a certain degree of
uncertainty that underlies the derived branching pattern. Different methods are
known that quantitatively test the reliability of an inferred tree, and these provide
support values for the topology (not the branch length!) of the tree that are pre-
sented at the nodes of the phylogeny. These values assess the confidence of the
particular nodes with lower values, suggesting higher uncertainty associated with
the node.

Bootstrapping methods can be generally applied to most phylogenetic estima-
tion strategies (such as the neighbor-joining, minimum evolution, and maximum-
likelihood methods). The bootstrap approach implements a resampling iteration, in
which from m number of aligned sequences consisting of n number of nucleotides,
n number of nucleotides are chosen randomly with replacement until constituting a
new set of m sequences. Then based on this bootstrap sample, the tree is recon-
structed by using exactly the same reconstruction method as was used for the
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original alignments, and the topology of the two trees is compared. In this com-
parison, each node on the original tree that is identical with the analog node of the
bootstrap tree receives a score of 1, while differing nodes are scored as 0. This
procedure is repeated several hundred or thousand times, through which the
probability of exact matches between the nodes of the bootstrap and that of the
original tree (i.e., the percentage of times of scores 1) is recorded. These bootstrap
values can be used for making inferences about the reliability of the original tree,
with values above 95 % or higher, suggesting reliable topology.

Trees obtained through a Bayesian process, which already provides a pool of a
large number of trees in the posterior sample can be summarized by Bayesian
posterior support values. These are simply the proportion of trees in the posterior
sample in which the node/clade is present.

2.3.3 Supertrees

Recent days’ practice rarely requires the above exercise with nucleotide sequen-
ces. Instead, practitioners can rely on publically available supertrees that sum-
marize the accumulated phylogenetic information for large taxonomic groups,
such as mammals or birds (Ahlquist 1990), in an electronic format (e.g., Arnold
et al. 2010; Jetz et al. 2012a; Bininda-Emonds et al. 2007). Supertrees offer a huge
practical benefit for users, as they can ideally upload the list of species then obtain
a fully matching phylogenetic tree in one click. Uncertainties about the phylo-
genetic hypothesis can be stored in series of trees representing alternative reso-
lutions and branch lengths that can be taken forward to the next level of analysis.
However, the creation of supertrees has its own caveats, and these should be taken
into account when these resources are exploited. More details about the recon-
struction and the use of supertrees can be found in Chap. 3 in this book.

2.3.4 The Classical Way of Assembling Trees by Hand

Historically, and for completeness, we need to mention that before the spread of
nucleotide sequences and supertrees, the common practice for obtaining phylog-
enies was based on a tailoring exercise that was accomplished by hand. Practi-
tioners of this method accumulated big piles of hard copies of papers that
presented phylogenetic information for their taxon of interest (e.g., fishes, birds,
and mammals). Then for a particular comparative study, they went through this
collection and looked for phylogenetic information for the species in the given
dataset. To combine this information, a backbone phylogeny of families or other
higher taxonomic groups (e.g., by using large tapestry trees like Sibley and Ahl-
quist 1990) was created, on which each species was subsequently added if
appropriate resolutions were available in the phylogenetic literature. When
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judgments about phylogenetic associations were based on different studies using
different methods and/or markers, the combination of branch lengths across
sources was impossible. Given that the whole process was done by hand, in most
cases handling a large number of alternative phylogenies was impractical and
cognitively challenging. Although this tailoring exercise has lost its importance, it
may be still useful when the effect of alternative resolutions of a particular species
or clade is investigated.

2.4 Manipulating Phylogenies for Comparative Analyses

In the course of a comparative study, the investigator is typically required to work
directly with the phylogenetic tree (or trees) before entering it into a statistical
model. Although we cannot be exhaustive, below we highlight the most common
tasks that emerge in an average phylogenetic comparative project. In Table 2.1, we
list the most common tree manipulation exercises, for which we also provide
working examples relying on the R statistical environment (R Development Core
Team 2007) in the Online Practical Material (hereafter OPM, available at http://
www.mpcm-evolution.com). For a more comprehensive list of software for phy-
logenetic reconstruction and manipulation, see http://evolution.genetics.
washington.edu/phylip/software.

The first step of a comparative analysis is to import the phylogenetic tree. As
different packages can be used for tree manipulation (and analysis), it is now
inevitable to work with tree formats that are generally readable in various plat-
forms. The most common tree formats that can be flexibly exported and imported
are the Newick or NEXUS formats, which define the branching patterns (topology
and branch lengths) by using a standard text code (see Chap. 4). These codes also
allow importing multiple trees with additional information, such as bootstrap or
Bayesian support of nodes or character state probabilities, for example, from
ancestral state reconstruction. Given the increasing popularity of phylogenetic
generalized least squares (PGLS) methods that relies on the expected vari-
ance-covariance matrix of species (see Chap. 5 for more details), it has also become
common to transfer phylogenetic information in the form of a variance-covariance
matrix.

The second step of any analysis is to ensure the taxa represented in the phy-
logenetic tree match the species in the database. It is very rarely the case that all
species in the database will be present in the tree and vice versa, and sometimes a
few annoying typos can cause incompatibilities. Moreover, some approaches even
require the list of species to be in the same order as on the phylogenetic tree (or in
the corresponding variance-covariance matrix). These tasks may seem simple and
obvious, but our experience is that, if not done automatically by the program or if
an error message does not appear, most students fail to check the correspondence
between the interspecific data and phylogeny. Entering unmatched data and tree
into the analysis may result in a situation where a random phylogenetic tree is used
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in the comparative tests, thus the essence of the entire study may have been lost.
Therefore, we recommend students to incorporate as standard practice the com-
parison of species lists in the database and on the phylogeny prior running the
analyses.

Once a tree is imported and matched with the list of species, it might be of
interest to verify how the phylogeny looks. We note that the graphical represen-
tation of phylogenies is the most comprehensible way for a human observer to
interpret the phylogenetic associations between species (note that none of the
phylogenetic approaches use the trees as we do), thus it is important to visualize
trees to check for potential errors and also to derive evolutionary inferences. We
present some basic tree visualization methods in the OPM. Chapter 4 gives an
extensive list of solutions for generating more enhanced graphical representations
of the phylogeny and results of some comparative analyses that can be used for
biological interpretations. Notably, character states of both extant species and
ancestral nodes, bootstrap support or Bayesian posterior probabilities, geographic
projections, and other components of the comparative results can also be plotted
on the phylogenies that further enhance interpretations.

The user may sometimes want to modify the branch lengths of the tree either to
fit a particular evolutionary model requiring specific branch lengths, or to obtain an
ultrametric tree from an additive tree. The latter task is quite important as most
comparative analyses assume that the tree is ultrametric, as the majority of analyses
deal with evolution of phenotypic traits of extant species with the underlying
assumption is that the time available for phenotypic evolution is the same for all
taxa. However, additive trees will violate this assumption, and in some programs, it
is still possible to run models with trees that conflict the assumption about ul-
trametricity without any warning (e.g., the commonly used trees with unit branch
length are not ultrametric). Additive trees can be used when the taxon sampling
times differ, and these are expected to in turn impact the evolution of the trait(s) of
interest, for example, when dealing with viruses, or if the investigator has some a
priori assumption that the molecular rate of evolution of the genes used to recon-
struct the phylogeny directly impacts on the rate of phenotypic evolution (of course
by avoiding circularity). It is always preferable to employ trees that have been
calibrated to reflect time based on information such as fossils and geological events,
however if such trees are not available an option is to use nonparametric rate
smoothing (Sanderson 1997) to transform the tree. Other methods also exist to
transform branch lengths of a given tree or to estimate branch lengths for a given
topology. A common transformation is to simply apply unit length to all branches,
i.e., equal branch lengths. Grafen (1989) proposed another transformation that
involves first assigning a height to each node of the tree of one less than the number
of species below the node, then branch lengths are the difference between the height
of the upper and lower nodes, resulting in an ultrametric tree. Other methods
transform branch lengths of a tree based on specific models of trait evolution such
as Brownian motion (Freckleton et al. 2002; Pagel 1999), the Ornstein–Uhlenbeck
processes (Hansen 1997; Martins and Hansen 1997), or different rates of evolution
toward the root than toward the tips of the tree (Grafen 1989; Pagel 1999), to name a
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few. Users must be aware of the evolutionary assumptions associated with branch
length transformations, whether these fit the traits and model they are studying and
ensure that they do not violate assumptions of the comparative methods they wish
to employ.

Another frequently applied exercise with phylogenetic trees is the resolution of
polytomies, as some comparative methods require fully bifurcating trees. One way
to handle such a situation is to rearrange the polytomy into an aleatory set of
bifurcations separated by zero-length branches. The resolution, in practice, is
virtually the same as the polytomy, as the distance between taxa will remain the
same, but additional nodes (putative ancestors) are added to the tree to resolve the
order of splitting events randomly. Importantly, polytomies represent uncertainties
about the topology, thus all possible alternative resolutions that can be produced
by random dichotomization should ideally evaluated in the comparative models to
test their effects on the results. A specific (extreme) case of polytomy is when all
species are connected into a single node (root) with the same branch length. Such
star phylogeny can also be used for fitting evolutionary models leading to results
that will be equivalent with what could be obtained without controlling for phy-
logeny (the benefit of fitting a model with a star phylogeny is that this model will
have the same number of estimated parameters than the model relying on the true
phylogeny, and this property can be exploited for model comparison).

If a species is not present on the tree, but the investigator has information, either
from taxonomy or other phylogenetic reconstructions, about the possible place-
ment of the species it can be added to the tree. If its phylogenetic relations are fully
known, the new species can be added onto the tree with complete bifurcation, but
if there is uncertainty about the exact resolution, it can be lumped within a
polytomy. Similarly, if phylogenetic information is accumulating, one can also
update the tree by moving specific branches (without adding new tips). Once an
alternative resolution is acquired, it might be warranted to run sensitivity analyses
to determine the influence of tip additions or branch movements on the results.

Owing to the recent spread of phylogenetic simulations (see Chap. 13), it is
becoming more and more routine to work with simulated trees, which can be
created with a relative ease even under different evolutionary scenarios. For
example, the investigator might wish to contrast the comparative results obtained
from the original tree with those that correspond to a tree that was simulated under
certain evolutionary conditions, or to a large number of randomly simulated trees
that serve as a null hypothesis. Moreover, simulated trees are frequently used in
simulation studies that test for the performance of particular comparative
approaches (e.g., Revell and Reynolds 2012; de Villemereuil et al. 2012; FitzJohn
et al. 2009b; Ives et al. 2007).
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2.5 Discussion

2.5.1 Importance of Incorporating Phylogenetic Uncertainty
in Comparative Analyses

A key issue that repeatedly emerged in this chapter is that all phylogenetic
reconstructions inescapably involve some uncertainty, which is manifested as
alternative hypotheses about the topology of the tree and branch lengths. This
uncertainty is inevitable, because we are attempting to reconstruct processes
having occurred in the very distant past, for which data are hardly available (see
Chap. 22). The reconstruction of the evolutionary ancestor–descendent relation-
ships among taxa based on any trait is a complex task that involves several steps
(as we reviewed above), each of them encompassing uncertainty in the result.

The reconstruction methods assume that similarities are the result of shared
ancestry, but evolutionary processes can deviate from the assumed patterns of
inheritance. For example, horizontal gene transfer or hybridization can lead to
contradictory phylogenetic signals. Furthermore, rapid speciation can result in
incomplete lineage sorting, where ancestral polymorphisms are not fully resolved
prior to second speciation events. Another source of uncertainty is associated with
the extent to which the morphological or genetic marker trait represents the his-
torical process of diversification of species. Uncertainties also arise due to the
alignment, missing data, differences between models of substitution and the
parameterization of the models. Finally, uncertainty in the branch lengths can also
arise during estimation of divergence times. It is important to be aware of the
different types of uncertainty and that it can be due to a diversity of processes. Rather
than ignoring it, we advocate that a straightforward scientific approach should
attempt as much as possible to incorporate this uncertainty into comparative anal-
yses and assess its effects on the results. Ultimately, our understanding about how
nature operates based on any estimation process from empirical data is unavoidably
loaded with certain degree of uncertainty, which biologists should appreciate.

2.5.2 Future Directions

2.5.2.1 Increasing Amount of Information

The exponential increase in the availability of sequence information in public
databases (e.g., GenBank has sequences for nearly 260,000 described species;
Benson et al. 2011) as well as the number of different species for which a complete
genome sequence becomes available are likely to have an important impact on both
phylogenetic reconstruction and comparative biology. Along this progress, one
challenge will be to determine which genes are most reliable to reflect the evolu-
tionary history of species. Suitable markers are generally expected to improve the
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‘‘signal-to-noise’’ ratio, i.e., the amount of true phylogenetic information with
respect to the embedded uncertainty. Fast-evolving genes will be good candidates
to reconstruct recent events, while conserved markers will be more useful for deep
relationships (but see Kälersjö et al. 1999). Therefore, the combination of markers
of the two types may be fruitfully exploited for phylogenetic reconstructions.
Ideally, markers should present low variation in copy number across taxa in order to
also be of use to estimate within-species variation (Wu et al. 2013).

An important characteristic is universality, especially when attempting to
reconstruct relationships among very distant taxa. The use of universal markers
will likely play an important role in defining relationships at the root of the ‘‘tree of
life’’ (Burleigh et al. 2011; Desluc et al. 2005). The growing consensus in deep
phylogenetic relationships will allow creating a backbone constraint tree to define
monophyletic groups for the reconstruction of megaphylogenies. Different
approaches for the reconstruction of such megaphylogenies have already been
proposed (Jetz et al. 2012b; Roquet et al. 2013; Thomas et al. 2013; Bininda-
Emonds et al. 1999), and we expect that in the future it will become increasingly
common for comparative biologists to employ such methods to reconstruct phy-
logenies specifically tailored to suit their needs. The reconstruction of megaphy-
logenies based either on supermatrices or supertrees will also be of interest in that
it may generate standard phylogenies that can be used in different studies. How-
ever, availability of such standard trees should not lead to a biased perception of
certainty in the reconstruction.

2.5.2.2 Improving Comparative Methodologies

How can phylogenetic comparative methods incorporate uncertainty in the phy-
logenetic reconstruction? Bayesian methods present a convenient means of incor-
porating both uncertainty in the phylogeny as well as uncertainty in parameter
estimates in a single analysis (Huelsenbeck et al. 2001). Methods are currently
available allowing researchers to undertake analyses using, for example, a sub-
sample of phylogenies from the posterior distribution of trees from a reconstruction
using Bayesian methods (Amcoff et al. 2013; Gonzalez-Voyer et al. 2008; Pagel
and Meade 2006; Santos-Gally et al. 2013; Pagel et al. 2004a; de Villemereuil et al.
2012). An alternative, yet unexplored, approach based on Information Theory and
model comparison is presented in Chap. 12 of this book. Different alternative
methods have also been developed to incorporate uncertainty due to incompletely
sampled phylogenies in analyses of rate of diversification and trait-dependent
speciation or extinction (FitzJohn et al. 2009a; Morlon et al. 2011).

In the current state of the art, empirical studies are needed to determine the
influence of phylogenetic uncertainty on comparative results in relation to various
evolutionary questions. The importance of the consideration of phylogenetic
uncertainty in comparative studies is well founded on theoretical bases, but we
lack empirical data on how much alternative phylogenies can affect the compar-
ative findings in general. In addition, simulation studies will no doubt play an
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important role in determining to what extent phylogenetic uncertainty can influ-
ence the results of comparative analyses and whether certain methods are more
vulnerable to uncertainty in the topology or branch lengths. Such a simulation may
target questions regarding the importance of uncertainties accumulated in certain
nodes or branches of the phylogenetic tree (see Blomberg et al. 2012; Martins and
Housworth 2002; Symonds 2002 for example).

2.5.2.3 Evolutionary Processes Not Represented in a Tree

Although phylogenetic trees provide useful and simple means of representing the
evolutionary history of a group of taxa, a phylogenetic tree does not represent
evolutionary processes that deviate from the assumption of homology but still
contribute to the diversification of species. In particular, horizontal inheritance of
traits disrupts the tree-shaped representation of evolutionary processes that can
only cope with vertical events. Mechanisms that play an important role in gen-
erating genetic variability across populations and breeds such as gene flow and
very recent fluctuations in population size can have profound effects on genetic
diversity of populations and expected similarities, which will bias estimates of
phylogenies (Kalinowski 2009). Cultural evolution is another example, in which
horizontal transmission of information plays an important role in shaping the
interspecific variance of phenotypes. Accordingly, the evolutionary history of
populations or breeds does not necessarily follow the hierarchical, bifurcating
structure of phylogenetic trees, but relationships between taxa may be better
described by networks that allow incorporating horizontal processes of transmis-
sion (i.e., reticulation). Developments of comparative analyses that can account for
such a network structure delineate a fascinating research direction (Stone et al.
2011). The increasing availability of next generation sequencing applied to sample
genome-wide polymorphisms across many populations will likely provide the
necessary marker traits for methods that can reconstruct both horizontal and
vertical events. The challenge will lie in developing the methods to adequately
represent the evolutionary histories.

Glossary

Additive tree/
phylogeny

A phylogeny is termed additive when the tips are not
all equidistant from the root. In an additive phylogeny
branch lengths represent the number of expected sub-
stitutions, therefore differences among taxa in the rate
of molecular evolution will lead to differences in
branch lengths.

Branch A continuous line that connects two nodes or a node to
a tip in the phylogeny.
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Branch length Represents the ‘‘distance’’ between the two nodes or
the node and tip connected by the branch. The ‘‘dis-
tance’’ can be measured in number of evolutionary
transitions (if the phylogeny is reconstructed using
maximum parsimony methods), number of expected
substitutions, which is an estimate of the rate of
molecular evolution, or divergence times.

Gene duplication When a second copy of an existing gene emerges
within a single genome. Gene duplication is a major
mechanism by which new genetic material is
generated.

Homology Shared similarity between taxa that is due to inheri-
tance from a common ancestor.

Homoplasy Similarity between taxa that results from convergent
evolution, for example due to similar selection
pressures.

Horizontal gene
transfer

The transfer of genetic material between individuals of
different species, and which is not the result of inher-
itance from a common ancestor.

Hybridization Mating between individuals of two distinct species of
plants or animals resulting in viable offspring.

Incomplete lineage
sorting

Occurs when coalescence times of alleles are within the
time span of speciation events or shorter. Incomplete
lineage sorting results in gene genealogies that are not
concordant with the species phylogeny.

Nodes Represent the putative ancestors of the taxa represented
in the phylogeny.

Orthologous genes Genes originating from a common ancestor (i.e.
homologous genes) that have undergone independent
evolution following a speciation event.

Parallel or convergent
evolution

Evolution of phenotypes or sequences under similar
selective regimes leading to higher similarities than
would be expected based on the degree of shared
ancestry.

Paralogous genes Genes originating from a duplication event recent
enough to reveal their common ancestry.

Polytomy When more than two branches originate from a single
node in the phylogeny. Polytomies reflect uncertainty
in the timing of speciation events, either because of
lack of sufficient data to determine the order of events
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with confidence (so called ‘‘soft polytomies’’) or
because the speciation events were so rapid there was
insufficient time for the necessary substitutions to dis-
criminate between the timings of the speciation events
to accumulate (so called ‘‘hard polytomies’’).

Root Represents the most recent common ancestor of all the
tips (taxa) in the phylogeny. All branches of the phy-
logeny lead to the root and the root connects all nodes.

Saturation Occurs when two aligned, presumably orthologous,
sequences have accumulated such an elevated number
of repeated substitutions that these provide a poor
estimate of their time of divergence. Saturation occurs
because there is a higher probability of reverse muta-
tions (changes to a nucleotide present in the past) as
time of divergence increases and hence apparent dif-
ferences between orthologous sequences become lower
than expected based on the time of divergence.

Substitution rate Also referred to as molecular evolution rate, it is the
rate at which organisms accumulate genetic differences
over time, it is usually calculated as the number of
substitutions per site per unit time. Non-synonymous
and synonymous substitutions can be discriminated
depending on whether changes in the nucleotide
sequence affect the translated amino acide sequences or
not, respectively.

Tips Also called leaves (following the tree analogy for
phylogenies) they are the taxa whose relationships are
being estimated with the phylogeny

Ultrametric tree/
phylogeny

A phylogeny is termed ultrametric when all the tips are
equidistant from the root. In other words the distance
between any two species in the tree is the same as long
as the path crosses the root of the tree. In ultrametric
trees the branch lengths usually represent divergence
times. Ultrametric trees can also be estimated under the
assumption of a constant rate of substitution that is the
same for all taxa, also called a molecular clock.
However, recent studies with diverse species have
called into question the molecular clock showing that
the rate of molecular evolution varies among even
closely related species and is correlated with species-
specific traits and even environmental variables.
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Chapter 3
An Introduction to Supertree Construction
(and Partitioned Phylogenetic Analyses)
with a View Toward the Distinction
Between Gene Trees and Species Trees

Olaf R. P. Bininda-Emonds

Abstract The dominant approach to the analysis of phylogenomic data is the
concatenation of the individual gene data sets into a giant supermatrix that is ana-
lyzed en masse. Nevertheless, there remain compelling arguments for a partitioned
approach in which individual partitions (usually genes) are instead analyzed sepa-
rately and the resulting trees are combined to yield the final phylogeny. For instance,
it has been argued that this supertree framework, which remains controversial, can
better account for natural evolutionary processes like horizontal gene transfer and
incomplete lineage sorting that can cause the gene trees, although accurate for the
evolutionary history of the genes, to differ from the species tree. In this chapter,
I review the different methods of supertree construction (broadly defined), including
newer model-based methods based on a multispecies coalescent model. In so doing,
I elaborate on some of their strengths and weaknesses relative to one another as well
as provide a rough guide to performing a supertree analysis before addressing
criticisms of the supertree approach in general. In the end, however, rather than
dogmatically advocating supertree construction and partitioned analyses in general,
I instead argue that a combined, ‘‘global congruence’’ approach in which data sets
are analyzed under both a supermatrix (unpartitioned) and supertree (partitioned)
framework represents the best strategy in our attempts to uncover the Tree of Life.

3.1 Introduction

A comparatively recent, but nevertheless fundamental insight within the field of
comparative biology was the realization that it could only be done properly within a
phylogenetic context (Felsenstein 1985b; see also Chap. 1), thereby disentangling
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the similarity between species that arises via natural selection and convergent
evolution versus that from their shared evolutionary history (‘‘phylogenetic iner-
tia’’; sensu Harvey and Pagel 1991). Applying this form of phylogenetic correction
thereby also acts as a statistical ‘‘fix’’ for any effects from other unmeasured
variables. More recently, the use of well-resolved phylogenetic trees have helped to
provide valuable insights into speciation and extinction rates (including their cor-
relates and variation between and within groups), models of trait evolution, and
community phylogenetics, among other fields. The key to performing all such
analyses, naturally, is a reliable estimate of the phylogenetic history of the focal
taxa, where great strides have been made within the last 25 years due in large part to
the molecular revolution.

Despite many claims to the contrary, molecular phylogenetics has generally not
uprooted our picture of the Tree of Life (Hillis 1987; Asher and Müller 2012) and
many taxa have escaped the molecular revolution fairly unscathed (e.g., mammals
or insects as a group). Furthermore, support for many phylogenetic hypotheses
supposedly rooted on molecular data can also be found from morphological data.
For instance, the molecular hypothesis that whales nest within even-toed ungulates
rather than form the sister group to it was actually proposed at least as early as
Beddard (1900) based on anatomical evidence (although admittedly largely ignored
since then). Moreover, a recent study (Lee and Camens 2009) showed that many
morphological data sets also contain substantial HIDDEN SUPPORT (see Box 3.1 for this
and all other glossary entries as indicated in small caps) for otherwise conflicting
molecular hypotheses of mammal phylogenetic relationships. Nevertheless, what
the molecular revolution has unquestioningly provided is a plentiful, universal data
source (i.e., DNA sequence data) that is becoming increasingly easy to tap into.
Indeed, the advent and cost-effectiveness of next-generation sequencing means that
DNA sequence data are often no longer limiting for phylogenetic purposes and are
arguably becoming computationally, rather than financially prohibitive! A clear
example here is the 1KITE project (http://www.1kite.org), with its goal of obtaining
the entire transcriptomes of 1000 insect species covering all known orders, an
amount of sequence data that would have been unthinkable a decade ago.

Box 3.1 List of abbreviations

HGT Horizontal gene transfer
ILS Incomplete lineage sorting
MLC Multilocus coalescent model
MRP Matrix representation with parsimony
OG Outgroup
STK Supertree Tool Kit
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Accordingly, methodological discussions in molecular phylogenetics have long
since shifted from issues of data quantity (e.g., if a limited number of taxa or
characters is more detrimental with respect to accuracy; Graybeal 1998) to the best
way to analyze the sequence data that are now so abundant. In this regard, the de
facto standard is the total evidence or supermatrix approach, in which all the
sequence data are concatenated into a single matrix and analyzed en masse.
Proponents of this approach have championed it using both philosophical and
methodological arguments. In the former case, the principle of ‘‘total evidence’’ is
invoked in that the method uses all available data (sensu Kluge 1989). (Theoret-
ically, nonsequence data that can also be accommodated in a matrix format (e.g.,
morphological characters) can also be included in the analysis; however, this is the
exception rather than the rule.) In the latter case, simultaneous analysis facilitates
the phenomenon of SIGNAL ENHANCEMENT (sensu de Queiroz et al. 1995)/HIDDEN
SUPPORT (sensu Gatesy et al. 1999), whereby the concatenated data set might
present a novel solution compared to the individual data partitions through the
combination of the latter and effective upweighting of their consistent secondary
signals. Importantly, analytical possibilities within a supermatrix framework have
also kept pace, with analyses of over 50,000 taxa under a likelihood framework
now being possible (e.g., Smith et al. 2011), including the possibility to apply
separate models of evolution for each individual partition, even for disparate data
types (e.g., DNA, amino-acid, and morphological data) (Stamatakis in press),
thereby assuring a more optimal analysis of each data type or partition.

However, even within the possibilities offered by individual Bremer support
analyses for each partition (partitioned Bremer support; Baker and DeSalle 1997)
to visualize conflict among the different data partitions, the supermatrix approach
tends to neglect that different genes often have different evolutionary histories and
ones that can differ from that of the species. This fundamental gene tree/species
tree conflict has been recognized since at least Maddison (1997) and derives from
two main causes. The first problem is that individual genes essentially represent a
statistical sample of the entire population (i.e., the genome) and so are subject to
normal sampling artifacts. Thus, small genes might not possess a sufficient sample
size in terms of the number of base pairs they contain to provide an accurate or
well-resolved solution. Compounding this problem is that because DNA consists
of only four nucleotides, it is subject to convergent evolution that typically con-
founds phylogenetic analyses as either SATURATION and/or LONG-BRANCH ATTRACTION

(see Bergsten 2005) for fast-evolving genes along long branches. By contrast,
extremely short branches, as are typically found in adaptive radiations, are also
problematic because of the insufficient time to generate substitutions that provide
evidence of the order of speciation events. Indeed, because such substitutions are
more likely to derive from fast-evolving sites because of the short-time interval,
this evidence is also more likely to disappear with time through subsequent sub-
stitutions at the same site and saturation.

Together, the above issues represent the normal, stochastic variation associated
with any population estimate, possibly confounded by biases in the method of
phylogeny reconstruction (e.g., long-branch attraction). A second, less appreciated
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problem is that the evolutionary history of a gene can truly differ from that of the
species due to any number of natural processes such as horizontal gene transfer
(HGT), recombination or incomplete lineage sorting (ILS, also known as deep
coalescence; see Fig. 3.1). Although these phenomena were believed originally to
be relatively rare and/or confined to otherwise difficult taxa like microbes, there is
a growing realization that both HGT and ILS might indeed be both more common
and widespread than we had thought previously. Indeed, given the right set of
evolutionary conditions (e.g., rapidity of speciation events), the number of gene
trees that conflict with the species tree can outnumber the number that agree with
it, even for species trees containing as few as five species (Degnan and Rosenberg
2006). Both phenomena are also particularly insidious because they imply that our
gene trees are accurate even though they misrepresent the species tree! Again,
recent, rapid speciation events are particularly problematic, especially when they
occur sequentially (Rosenberg 2013) and in large populations with low rates of
genetic drift because the speciation rate exceeds the coalescent rates of the dif-
ferent genes in this so-called anomaly zone (Degnan and Rosenberg 2006), thereby
facilitating ILS (Steel and Rodrigo 2008; Edwards 2009). Even more worrisome is
that the misleading effects of both HGT and ILS do not necessarily disappear with
time. In the case of ILS, because the daughter species arising from the speciation
event represent the common ancestors of future higher-level clades (e.g., the
‘‘orders’’ within mammals), a misleading species tree from the past can translate
into a misleading ordinal tree in the future (see Fig. 3.1c).

As something of an aside, the same artifacts can potentially arise in the absence
of ILS through the process of speciation itself, which can create paraphyletic
daughter species. A classic example is the origin of the polar bear (Ursus mari-
timus). Although recent studies based on nDNA markers now indicate it to be an
ancient lineage forming the sister group to brown bears (Ursus arctos) (Hailer
et al. 2012; Miller et al. 2012), it was believed until very recently that this species,
based on studies of mtDNA, arose from isolated populations of brown bear from
the Admiralty and Baranof Islands of the Alexander Archipelago of southeastern

(a) (b)

(c)

Fig. 3.1 The traditional representation of incomplete lineage sorting (ILS). a The species tree is
represented by the outline and contains a gene tree (thin lines). In this case, the gene tree conflicts
with the species tree and gives a wrong estimate of it (b). This problem will not disappear with
time given that the terminal taxa of (b) comprise the common ancestors of those in (c). ILS is
more prevalent during rapid speciation in large populations, when the time to coalescence for the
gene tree is less than that for speciation
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Alaska about 150,000 years ago (e.g., Lindqvist et al. 2010). Were the latter
scenario indeed true (which is undoubtedly generally the case for many other
species), then some individuals/populations of brown bear are more closely related
to polar bears than to other members of their own species, which, depending on the
pattern of future speciation and extinction in the brown-bear lineage, could give
rise to ILD-like knock-on effects.

As such, there have been recent attempts to move away from a pure supermatrix
approach to ones that can potentially better accommodate such instances of ‘‘gene-
tree heterogeneity’’ (sensu Edwards 2009) by focusing on the gene tree as the
fundamental unit of analysis rather than individual nucleotides or amino acids. In so
doing, it is recognized that although gene trees and species trees are closely related
evolutionarily, they nevertheless derive from distinct evolutionary processes (Liu
et al. 2010). In essence, these arguments are merely the latest thoughts in a long-
standing debate as to whether it is more desirable to automatically combine data or
to perform some form of partitioned analysis (see Chippindale and Wiens 1994).

Against this backdrop, the goal of this chapter is to outline and describe two
such frameworks for partitioned analyses: the now ‘‘traditional’’ supertree
approach and the more recent multilocus coalescent (MLC) model that explicitly
builds on coalescent and population genetic theory to derive a species tree from a
set of potentially conflicting gene trees. Both approaches are united in having their
analytical focus at the level of a set of input trees and, although this was never
advanced originally as a justification for traditional supertrees, thereby possess the
potential to account for any gene-tree heterogeneity. More controversially, both for
expediency and because of the unquestionably strong parallels between the two
frameworks, I will refer to them collectively as ‘‘supertrees’’.

This chapter is structured as follows. First, I initially provide a short historical
perspective of the supertree framework before providing a summary of both tra-
ditional supertree methods and the newer methods based on the MLC model (both
summarized in Table 3.1). In so doing, I hope to show the similarities between
these two ‘‘classes’’ of methods as well as to point out that MLC-based methods
are not the only supertree methods to include an explicit evolutionary model.
Second, I briefly address previous criticisms of the supertree framework, espe-
cially in relation to the supermatrix framework. However, here and throughout,
apart from general comparisons to the supertree framework, I will largely refrain
from discussing details of the mechanics of a supermatrix analysis given the
overwhelming prevalence of (and therefore likely familiarity with) this technique.
An excellent summary of general phylogenetic tree building, which forms the
backbone of the supermatrix framework (as well as the derivation of individual
gene trees), is also provided in Chap. 2 of the volume. Finally, I provide a rough
guide as to how to perform a supertree/partitioned data analysis. Given the vast
array of supertree methods available, this guide is purposely agnostic in the sense
that it does not advocate any one method, but concentrates instead on the various
issues that must be considered at each step in the process.
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3.2 The Supertree Framework

Supertrees are essentially as old as systematics itself, where our vision of the Tree
of Life as a whole was essentially patched together from many smaller subtrees,
often using a form of taxonomic substitution. In this, the terminal taxa in a higher-
level tree were simply substituted for the nested tree showing the relationships
within that taxon. Thus, for a tree of the vertebrate classes, the taxon Mammalia
could be replaced by an ordinal-level tree of this group, for example, and so on.
Although this technique is still in use today to provide us with some picture of the
Tree of Life as a whole, it is distinctly limited in that it requires us to choose some
‘‘best’’ tree at each level and so make a subjective judgment among the many,
possibly conflicting options.

A more objective foundation for supertrees essentially dates to 1986, when the
mathematician Allan Gordon proposed a generalization of the well-known strict
consensus method that could be applied to a set of trees that differed in the
terminal taxa they contained (Gordon 1986). For various largely methodological
reasons, the solution was largely unworkable and/or ignored (see Bininda-Emonds
2004b), and it was only in 1992 that the next breakthrough was achieved by Baum
(1992) and Ragan (1992), who independently described the method now known as
matrix representation with parsimony (MRP). Building on the one-to-one corre-
spondence between a tree and its binary equivalent in matrix form (‘‘MATRIX REP-

RESENTATION’’; Ponstein 1966) (see Fig. 3.2), Baum and Ragan each hit upon the
idea of concatenating the individual matrix representations of a set of source trees

Fig. 3.2 Matrix representation of a set of three gene trees. Using additive binary coding, the
nodes of any given gene tree can be represented in matrix format in turn. For a focal node,
terminal taxa that are descended from that node receive 1, taxa that are not but are present on the
gene tree receive 0, and all other taxa receive? (e.g., character 2 which represents node 2). To root
the analysis, a fictitious outgroup (OG) comprising all 0s is added to the base of each gene tree. If
a distinction is made between rooted and unrooted gene trees, the OG can also receives? for
unrooted source trees (character 5; see Bininda-Emonds et al. 2005). For any single tree, there is a
one-to-one correspondence between it and its matrix representation. To derive the supertree that
best fits to the set of gene trees, the entire matrix is then analyzed using any desired optimization
criterion (typically parsimony) after which the OG is subsequently removed
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into a single (super)matrix and then analyzing the latter with parsimony to derive a
‘‘supertree’’. The potential of the method was quickly realized by Purvis (1995a),
who combined numerous estimates of primate phylogeny taken from the literature
to derive the first, complete species-level evolutionary tree for the group based on
an objective, robust methodology. From there, the field exploded, both in terms of
the supertrees themselves that were being generated as well as the supertree
methods used to obtain them. A now highly outdated list on both counts can be
found in Bininda-Emonds (2004a) and many new trees and methods have been
developed since then. It nevertheless remains that MRP is by far and away the
most popular of the supertree methods.

3.2.1 Traditional Supertrees

With the growing number of methods (see Table 3.1), supertrees are becoming
increasingly difficult to summarize meaningfully as a group as well as to categorize
with respect to their methodologies. The supertree framework has historically been
seen as a generalization of that for consensus trees, which requires identical taxon
sets among the source trees. However, the analogy only holds so far in that most
supertree methods do not have clear consensus equivalents (including MRP) and
many popular consensus methods did not have a corresponding supertree one until
comparatively recently (e.g., majority-rule supertrees; Cotton andWilkinson 2007).
In the end, perhaps, a supertree is now best summarized as the summary tree
derived from a set of source trees that need not have identical taxon sets. Under this
definition, supertrees remain a generalization of consensus trees, but can extend
beyond this as well. An alternative, but not mutually exclusive, interpretation is that
the summary tree obtained from a supertree analysis represents the ‘‘best fit’’ to the
set of source trees according to some objective function (Thorley and Wilkinson
2003; Bruen and Bryant 2008). In most cases (including MRP), this objective
function is unknown, but some supertree methods have been developed explicitly
with an objective function in mind, including majority-rule (minimizes partition
metric; Cotton and Wilkinson 2007) and maximum-likelihood supertrees (mini-
mizes error function among source trees; Steel and Rodrigo 2008) as well as
MINCUTSUPERTREE (minimizes sum of triplet distances; Wilkinson et al. 2004).

A clear subcategory of supertrees are those that, like MRP, rely on an explicit
intermediate step of building a matrix of pseudo-characters, with each pseudo-
character representing a node on a particular source tree. In a sense, the combined
matrix functions as a table of the bipartition frequencies among the set of source
trees, where a bipartition splits an unrooted tree into two taxon sets (e.g., for the
bipartition AB|CD, removing a branch on the tree will result in two subtrees, one
with taxa A and B and the other with taxa C and D). The matrix can then be
analyzed using any preferred optimization criterion. Although parsimony remains
by far the method of choice here (as in MRP), other suggested methods include
compatibility (Ross and Rodrigo 2004), flipping (Chen et al. 2003), Bayesian
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inference of the bipartition frequencies (Ronquist et al. 2004), or, most recently,
maximum likelihood with a two-state/parsimony character model (Nguyen et al.
2012). A variant on these methods is the average consensus method (Lapointe and
Cucumel 1997), whereby the matrix to be analyzed consists of the sum of the path-
length distances between all pairs of taxa among a set of gene trees, with some
estimate of these distances for pairs of taxa that do not co-occur on any single tree
(Lapointe and Levasseur 2004).

A long-standing critique of traditional supertree methods is that, although
arguably reasonably accurate empirically and in simulation, most are not based on
any explicit model of biological evolution (Liu et al. 2010) and so are better
classed as nonparametric methods (Liu et al. 2009a) and/or the properties of most
remain uncharacterized (see Wilkinson et al. 2004). Indeed, MRP represents the
poster child that has attracted the most attention in this regard. Despite its long-
standing popularity and use, the objective function of MRP remains unknown and
the little that is known about its properties is worrisome. For example, it was
known almost from the outset that MRP, like many other supertree methods, gives
more weight to larger source trees (i.e., is not ‘‘sizeless’’; Purvis 1995b; Wilkinson
et al. 2004) (although it actually favors larger subtrees rather than trees as a whole;
see Bininda-Emonds and Bryant 1998); other potentially undesirable properties are
summarized in Wilkinson et al. (2004). Nevertheless, the fact that MRP shows
reasonable accuracy in practice and can even outperform equivalent supermatrix
analyses in simulation (Bininda-Emonds and Sanderson 2001) show that its defi-
ciencies are either not that severe and/or only arise in extreme cases.

That being said, a few supertree methods have been designed explicitly to fulfill
some properties identified by Steel et al. (2000) and Wilkinson et al. (2004) as
being desirable when combining trees (‘‘desiderata’’; sensu Wilkinson et al. 2004).
In some ways, this can be viewed as part of the objective function of these
methods. For instance, MINCUTSUPERTREE (Semple and Steel 2000) and its deriv-
ative modified MINCUTSUPERTREE (Page 2002) output supertrees that can be found
in POLYNOMIAL TIME, preserve nestings and binary trees found among all source
trees, display all input trees if the latter are compatible, and are independent of the
input order of the trees (Semple and Steel 2000). However, by preserving nestings,
rather than clades, among the sets of source trees (Semple and Steel 2000), the
MINCUTSUPERTREE tends to resemble the Adams consensus (Adams 1972, 1986) of
the source trees, meaning that the result cannot always be interpreted phyloge-
netically. For instance, MINCUTSUPERTREE will only preserve the nesting infor-
mation that A and B are a part of a larger cluster ABCD, without any statement as
to the relationship between A and B themselves. Thus, even if A and B form sister
taxa in the resulting supertree it cannot automatically be assumed that they do
indeed form a clade (because MINCUTSUPERTREE does not preserve clades).

Other examples of supertree methods designed to meet certain properties a
priori are PhySIC (Ranwez et al. 2007) and PhySIC_IST (Scornavacca et al. 2008),
which ensure that the resulting supertree displays all relationships that are induced
by and are not contradicted by the set of source trees, either alone or in combi-
nation. The latter method builds on the former by removing highly conflicting
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source trees in the hopes of obtaining a better resolved supertree. Together, both
methods are perhaps a direct answer to methods like MRP, which theoretically can
output relationships that are contradicted by every source tree (see Bininda-
Emonds and Bryant 1998) although this appears to be extremely rare in practice
(Bininda-Emonds 2003).

3.2.2 Multilocus Coalescent ‘‘Supertrees’’

A more recent advance toward supertree methods based on evolutionarily sound
models—and on the potential distinction between gene trees and the species tree in
particular—is the MLC model, which builds theoretically on Rannala and Yang’s
(2003) characterization of the likelihood function of the species tree under a
multispecies coalescent via two probability distributions (Liu et al. 2009a). The
first, f DjGð Þ, describes the probability of deriving a particular gene tree (G) given
a set of sequence data (D) and represents the same likelihood function used rou-
tinely in molecular phylogenetics. The second, f GjSð Þ, describes the probability of
observing a gene tree given a particular species tree (S) and derives from the
multispecies coalescent. Essentially, for a species tree with well-defined clades
separated by long branches (i.e., divergence times), the majority of gene trees will
resemble the species tree and gene-tree heterogeneity will be low. However, when
the species tree contains one or more regions with short branch lengths, the
probability for gene-tree heterogeneity in these anomaly zones increases and many
more, different gene trees are expected.

Practical implementations of the MLC model, however, are more indirectly
related to these probability distributions. Indeed, at least one procedure has been
termed as a ‘‘maximum pseudo-likelihood approach’’ by its authors (Liu et al.
2010). Given a set of gene trees (essentially component f DjGð Þ from above), one
form of the MLC model derives a distance matrix between all pairs of terminal
taxa based on their coalescent events across the set of gene trees. For any given
cell, the distance value is given either by (1) the minimum number of ranks (nodes)
across the set of gene trees until the taxa share a common ancestor/coalesce
(GLASS distance; Mossel and Roch 2007), (2) the average number of ranks until
they do so (STAR distance; Liu et al. 2009b) or (3) the average coalescence time
(STEAC distance; Liu et al. 2009b). Thus, whereas the first two distances only
account for topological information within the gene trees (and are therefore only
‘‘partially parametric’’; Song et al. 2012: 14943), the last can incorporate branch-
length information directly when it is present. Finally, the distance matrix is
analyzed via a distance method like NJ to derive the species tree (component
f GjSð Þ from above). By contrast, a second implementation of the MLC model,
MP-EST (Liu et al. 2010) derives the frequencies of all triplets of taxa from the set
of gene trees (together with path-length information) to obtain the topology and
branch lengths of the species tree in a pseudo-likelihood framework, again rep-
resenting a ‘‘partially parametric’’ method. Both sets of methods appear to perform
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well under conditions of gene-tree heterogeneity where equivalent supermatrix
analyses become statistically inconsistent (Wu et al. 2013).

Although it has not been recognized to date, the two implementations of the
MLC model have clear connections to existing traditional supertree methods. For
example, the distance-based MLC methods bear strong resemblances with the
average consensus supertree method in that both explicitly incorporate branch-
length information from the gene trees, even if only indirectly in the form of ranks.
Likewise, MP-EST shows similarities with quartet puzzling (Strimmer and von
Haeseler 1996) or quartet supertrees (Piaggio-Talice et al. 2004), albeit with MP-
EST requiring rooted gene trees (and hence using triplets) instead of the unrooted
framework (and thus quartets) employed by the latter two methods. (Quartet
puzzling also proceeds directly from the DNA sequence data without explicit
regard to gene trees. However, it could be modified from this supermatrix format
to work in a gene-tree context.) More generally, the explicit use of an underlying
biological model also characterizes the gene-tree parsimony method (Cotton and
Page 2004), which has been recognized as a supertree method and uses reconciled
trees (Goodman et al. 1979; Page 1994) to account for possible discrepancies
between the gene trees and the species tree as a result of processes including HGT
and gene duplication and loss.

Nevertheless, by being explicitly couched within a coalescent framework and
building on the likelihood function of Rannala and Yang (2003), the MLC methods
differ from most other supertree methods in being based on explicit biological
models and phenomena. For instance, the MLC model assumes, among other things
(see Liu et al. 2009a), constant population sizes through time, random mating, no
gene flow, and no HGT, and thus the predominance of ILS as the cause of gene-tree
heterogeneity. Although many of these assumptions are unrealistic, the MLC
methods are apparently robust to minor rates of HGT and could, in theory, be easily
expanded to account for both this and gene flow (Liu et al. 2009a).

MLC-based methods also possess a distinct advantage in that they are very fast
compared to most other supertree methods (except for polynomial-time methods
like MINCUTSUPERTREE) once the input trees have been calculated. As shown by Liu
et al. (2010), runtimes are on the order of seconds for problem sizes of 80 gene trees
each comprising 20 taxa, both for STAR-based analyses as well as those using ML-
EST, albeit with the latter being demonstrably slower. The speed accrues either from
the use of NJ as an optimization criterion or the pseudo-likelihood framework
compared to the NP-COMPLETE algorithms (e.g., parsimony or likelihood) typically
used by traditional supertree methods. However, even in the latter case, tremendous
speed gains have been achieved by implementing supertrees in a divide-and-con-
quer framework, in which the supertrees represent more of a search strategy than the
end product of the analysis (see Bininda-Emonds 2010). Here, the general idea is to
take a large, computational demanding problem (e.g., a large multigene data set of
thousands of taxa) and to break it down into many smaller, overlapping data sets that
are more tractable because of their small size. The resulting trees from the latter data
sets are then combined as a supertree, which can then be further resolved on the basis
of the entire data set (Roshan et al. 2004). This general strategy, which also underlies
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quartet puzzling, has most recently been implemented in SuperFine (Swenson et al.
2012), a so-called meta-method designed to boost the speed of existing supertree
methods like MRP. Indeed, the method does appear to deliver more optimal su-
pertrees in a reduced amount of time compared to nonboosted analyses (Swenson
et al. 2012; Nguyen et al. 2012), but still at best only on a par in terms of speed and
accuracy with equivalent supermatrix analyses (Swenson et al. 2012; Nguyen et al.
2012). In this, the problem with the divide-and-conquer approach appears to lie with
the final resolving step, which is based on the full data set and is therefore subject to
the same size-based tractability problems (Bininda-Emonds 2010).

3.2.3 Accounting for Vertical Taxonomic Overlap

A feature shared by all the above methods is that they essentially only account for
horizontal overlap among the gene trees (i.e., among the terminal taxa). As such, the
terminal taxa must all occur at the same taxonomic level (e.g., species in the case of
gene trees) or minimally cannot be nested within one another. Thus, the case where
a source tree possessed the terminal taxon Mammalia and another possessed Homo
sapiens would result in a supertree where these two taxa would, at best, be sister
groups, despite the latter clearly nesting within the former. Recalling to some degree
the process of taxonomic substitution characterizing informal supertree methods,
MULTILEVELSUPERTREE (Berry et al. 2013) is able to simultaneously account for both
horizontal and vertical overlap among the source trees, the latter representing the
nested, higher-level relationships implicit among the set of source trees. Moreover,
the program is also able to infer the latter from information among the source trees
themselves, such that it is not necessary to provide a reference taxonomy providing
the nested sets of relationships. Although MULTILEVELSUPERTREE would appear to be
of use when combining source trees out of the literature, this traditional use of
supertrees is rapidly falling by the wayside and it is not clear if its ability to also
accommodate vertical overlap will provide any benefit for gene trees based on DNA
sequence data, which normally all have species as terminal taxa.

3.3 Criticisms of Supertrees

Even when couched within the context of explicitly accommodating gene-tree
heterogeneity, the supertree framework has been highly criticized and remains
controversial (e.g., see the exchange between Gatesy and Springer (2013) and Wu
et al. (2013) for MLC-based methods). The primary areas of criticism include
(1) the potential for duplication of data between the source partitions, (2) the
black-box nature of most supertree methods and MRP in particular, and (3) the fact
that the methods are a form of meta-analysis and thus one step removed from the
primary character data.
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Data duplication does indeed represent a potential problem area within a su-
pertree framework as was elegantly shown by Gatesy et al. (2002) for the supertree
analysis of mammalian families by Liu et al. (2001). For instance, the same genes
(if not the same sequences) are often used for separate phylogenetic analyses, often
in combination with other genes. A cogent example here is cytochrome b, which
represents by far the most widely sampled gene for mammals to date and one that
is often used for phylogenetic analyses within the group. As such, it often com-
prises part of the data set underlying different phylogenetic trees for mammals,
meaning that these trees are nonindependent of one another. Thus, constructing a
supertree for mammals by simply collecting and combining all published trees for
the group means that cytochrome b would have an unduly greater influence on the
end result compared to other genes and sources of character data.

Indeed, many early supertree studies ran afoul of this problem before it was so
forcefully pointed out by Gatesy et al. (2002). Fortunately, data duplication is a
largely historical problem that can be mitigated today by more careful selection of
the source trees and/or by complicated weighting schemes designed to address it
(e.g., Nyakatura and Bininda-Emonds 2012). More generally, this criticism is
largely obsolete when supertrees are used in an explicit gene-tree framework,
where each gene tree is present only once within the data set. Even so, it should be
remembered that even the subdivision of the genome into individual genes is to
some extent subjective, with our concept of ‘‘genes’’ having become increasingly
blurred with increased knowledge of the tremendous degree of complexity
underlying the genome (e.g., via recombination, exon shuffling, HGT, and alter-
native splicing, among other processes). Instead, of note here are newly developed
methods like PARTITIONFINDER (Lanfear et al. 2012), which use data-driven,
information-theoretic metrics to more objectively reveal partitions within a data
set (within the bounds of a set of a priori user-defined partitions). However, it
remains to be seen how well these partitions match up with those expected under a
gene-tree heterogeneity scenario largely driven by ILS (i.e., classic gene trees).
The finding that individual genes are composed of several partitions (e.g.,
according to codon position in protein-coding genes or stems vs. loops in rDNA
genes) would not be problematic, but instead serve to improve our estimate of the
individual gene trees. By contrast, the sharing of partitions across genes might
force us to rethink our notion of gene trees entirely.

The remaining two criticisms of supertrees are to some degree linked and
mirror that of Liu et al. (2010) in claiming that traditional supertree methods do
not resolve conflict among the source trees with respect to explicit evolutionary
events (Gatesy and Springer 2004). However, this is no longer the case and several
supertree methods, such as gene-tree parsimony and the MLC-based methods, now
exist that fulfill this criterion. It is important to remember, however, that the
supermatrix and supertree methods do operate at different hierarchical levels
(DNA sequence data vs. gene trees, respectively; Bininda-Emonds 2004c) such
that each will be accommodating different sets of evolutionary events (e.g.,
character-state transformations vs. HGT or ILS, respectively). Moreover, through
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their focus at the level of the gene tree, only methods like gene-tree parsimony and
the MLC-based methods have the potential to account for processes like ILS,
which, when frequent enough, have been demonstrated in simulation to impact on
the accuracy of supermatrix methods to the point of them being statistically
inconsistent (Wu et al. 2013).

3.4 A Primer to Supertree Construction

The following represents a rough guide to the process of creating a supertree and is
also illustrated in Fig. 3.3. It takes its form both from my own experiences and
from their formalization and extension in the excellent Supertree Tool Kit (STK)
of Davis and Hill (2010). Given the huge variety of supertree methods and choices
available, the guide is not intended to be either exhaustive or dogmatic. Other,
often unnamed, variations on this framework are conceivable and should be
explored and not excluded a priori. A simple, worked example to be used as a
jumping-off point can be found in the OPM.

3.4.1 Step 1: Obtaining the Source Trees

Much of the previous discussion has centered on the concept of gene trees, with
the implication that they have been obtained directly via phylogenetic analysis of
primary molecular sequence data by the researcher. These data can derive either
from de novo sequences generated by the researcher and/or from online resources
such as GenBank. Indeed, in the latter case, numerous phylogenetic pipelines now
exist (see Bininda-Emonds 2011) for the express purpose of mining GenBank and
other similar resources for homologous sequence data.

However, gene trees represent only one source of data potentially available
under a supertree framework. Because the raw data of a supertree analysis is a
phylogenetic tree, any statement of phylogenetic relationship that can be expressed
as a bifurcating tree can be included in the analysis. It was this very principle that
underlay the earliest empirical supertree studies in which source trees were mined
from the literature and either encoded directly in matrix format or as nexus-
formatted tree statements for later processing. The online archiving of phyloge-
netic trees through resources like TreeBASE (www.treebase.org; Sanderson et al.
1994) merely represents the modern and more convenient extension of the tradi-
tional paper-based sifting of the literature. Although the inclusion of literature data
is quickly falling out of favor in the era of molecular phylogenetics, it remains that
it provides access to more of the global phylogenetic database and data that would
be otherwise difficult to include in a supermatrix framework. The latter includes
not only older molecular data such as DNA–DNA hybridization or isozymes,
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but also morphology and evidence from rare genomic changes (Rokas and Holland
2000), the signals of both of which threaten to be swamped by the much more
numerous molecular sequence data. Thus, in some respects, a supertree framework
can better accommodate the principle of total evidence (i.e., using as much data as
possible) than can a supermatrix framework (Bininda-Emonds et al. 2003). That
being said, the inclusion of literature data does harbor particular difficulties that are
addressed in the next step of the process.

Fig. 3.3 Flow diagram illustrating the general framework of a supertree analysis. Particularly
crucial is the middle, filtering step, which acts as a measure of quality control for the source trees
derived from any or all of the literature, online databases, or primary character data. Thereafter,
any supertree method of choice can be applied to the filtered set of source trees. Adapted from
Bininda-Emonds et al. (2004) and Davis and Hill (2010)
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3.4.2 Step 2: Filtering the Source Trees for Data-Quality
Assurance

This crucial step was inspired initially by the paper of Gatesy et al. (2002), who
elegantly documented several weaknesses with respect to data quality in several
previously published empirical supertree studies (see above). Although Gatesy
et al. (2002) took extended aim at the supertree framework in general, it remains
that their paper is essentially about quality assurance in phylogenetic analysis in
general and not for any method or framework in particular.

That being said, a supertree framework, especially one that incorporates liter-
ature data can present special problems in this regard, again because of the dis-
connect between the primary character data and the source trees that provide the
raw data for the supertree analysis. Because the latter are often mute with respect
to the former, a greater potential for the duplication at the level of the primary
character data exists within a supertree framework (see above). However, as
pointed out above, careful diligence, perhaps in combination with complicated
weighting schemes to account for any data duplication, will often be sufficient to
ameliorate this potential problem. Within a pure gene-tree framework, this prob-
lem is unlikely to occur or, at least, will have the same impact as on the equivalent
supermatrix studies that could be performed on the fundamental data set. The issue
of data quality, and which source trees to actually include in the analysis, is more
thorny with arguably no correct answer. Whereas some investigators will be
comfortable including taxonomies as source trees (ignoring the fact that it might
be based in part on data also used in other source trees and so represent a case of
data duplication), others will reject this possibility categorically. As with any
scientific study, it is important in such cases to be open and to make the data
available for other researchers to replicate the study under their preferred set of
conditions. A sensitivity analysis can also be envisaged, whereby source trees of
arguably lower quality are either downweighted or removed from the analysis to
ascertain what their impact on the supertree topology is.

In a subsequent step, it is important to ensure consistency among the taxonomic
labels among the set of source trees, especially for those methods that only account
for horizontal overlap among the terminal taxa. Although MULTILEVELSUPERTREE,
by also accounting for vertical overlap among the source trees, can avoid problems
of nested taxa, a check for taxonomic consistency is necessary here as well to
ensure that the same taxa are not present as different synonyms (e.g., Mammalia
vs. just ‘‘mammals’’) in different source trees. The issue of taxonomic consistency
was first raised by Bininda-Emonds et al. (2004), who also present different,
general solutions to the overall problem, which can be implemented either through
synonoTree.pl (Bininda-Emonds et al. 2004) or the STK (Davis and Hill 2010).
Finally, although this general problem will be more rare in a pure gene-tree
context, it can also be relevant here (e.g., GenBank often indexes sequence
information separately for a species and its subspecies).
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A final check, and one that is neatly implemented in the STK, is to assess the
degree of taxonomic overlap among the set of source trees. Minimally, a supertree
analysis requires that each source tree overlaps with at least one other by two
terminal taxa. (This requirement is loosened through the vertical overlap recog-
nized by MULTILEVELSUPERTREE.) Where such overlap does not occur, the resulting
supertree should be completely unresolved (within the bounds of the optimization
criterion used) because the taxa from one nonoverlapping group can cluster equally
optimally with those from another group. This problem is easily ameliorated by
either removing nonoverlapping source trees (or running separate supertree anal-
yses for nonoverlapping sets of trees) or by including a ‘‘seed tree’’ (sensu Bininda-
Emonds and Sanderson 2001) that contains most if not all the taxa among the set of
source trees and so provides a scaffold for the analysis. The seed tree is often
derived from a taxonomy, with the poor resolution of such entities meaning that the
seed tree provides minimal clustering information of its own. The impact of the
seed tree, the use of which is controversial, can be minimized further by down-
weighting it within the analysis compared to the other primary source trees.

3.4.3 Step 3: Obtaining the Supertree

This represents the most obvious and direct of the four steps in performing a
supertree analysis. However, as the previous Sect. 3.2 makes clear, the sheer and
still growing variety of supertree methods (see also Table 3.1) can make the
selection of the final method difficult. MRP remains by far the method of choice;
however, this seems to obtain more for historical considerations rather than the
method being demonstrably superior to any alternatives. Therefore, perhaps
merely for reasons of comparability with other supertree studies, an MRP analysis
is to be recommended. Nevertheless, other methods should also be explored, either
because of their arguably better accuracy and/or because of their more desirable
properties or objective functions.

It is in this third step where weighting is employed, not only to account for
potential data duplication, but also for potential differences in the robustness/
quality of the different source trees. (Early attempts to employ weighting to
counteract the apparent size bias of MRP (Ronquist 1996) were ultimately
unsuccessful because MRP does not favor larger source trees per se, but over-
lapping parts of those source trees (Bininda-Emonds and Bryant 1998), making
any weighting scheme impossible to implement with large numbers of source trees
with different degrees of overlap among them.) A simple solution here is to simply
replicate entire source trees proportional to some measure of their inferred quality.

When weighting for source-tree ‘‘quality’’, however, it is important to recognize
that phylogenetic relationships within any given tree can also differ in support,
with some clades being comparatively better supported than others. In a default
supertree analysis, where only the topology of the source trees is used, this
information is completely lost, an early criticism of the supertree framework as a
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meta-analysis (e.g., Gatesy and Springer 2004; but see above). A simple solution
in this regard for matrix representation-based methods at least is to weight each
pseudo-character by the inferred support for the node in the source tree that it
encodes [e.g., according to its nonparametric bootstrap frequency (Felsenstein
1985a) or Bremer support (Bremer 1988)]. Indeed, although this form of weighting
still cannot account for hidden support among the primary data partitions, simu-
lation studies have shown that doing so improves the accuracy of MRP supertrees,
often to the point where the supertree analysis slightly outperforms an equivalent
supermatrix analysis (Bininda-Emonds and Sanderson 2001). Important here,
however, is to ensure that the weighting schemes are comparable among the source
trees (e.g., not a combination of bootstrap frequencies and Bremer support values);
however, this should not be a problem for gene trees generated de novo from
public databases like GenBank. For other supertree methods where there is no
direct connection with the individual clades on a given tree, some form of clade
duplication proportional to inferred support can also be envisaged.

Finally, it is important to realize that because all supertree methods ignore the
data underlying the source trees, this third step essentially delivers a tree topology
only. With the possible exception of the average consensus method, any branch
lengths on the supertree are either essentially meaningless (e.g., MINCUTSUPERTREE
or gene-tree parsimony) or cannot be interpreted phylogenetically (e.g., matrix
representation methods). This is especially important to realize for MRP super-
trees, where the natural temptation is to interpret the resulting branch lengths in
terms of the number of synapomorphies supporting that branch. Although the MRP
supertree is indeed derived from a parsimony analysis, there is no connection with
the original data such that one cannot talk about shared derived characters per se.
Instead, meaningful branch lengths for the supertrees have to be obtained by
mapping the primary character data a posteriori onto the topology of the supertree
(e.g., Song et al. 2012), possibly in combination with calibration data to obtain real
divergence-time estimates (e.g., Nyakatura and Bininda-Emonds 2012).

3.4.4 Step 4: Assessing Support Within the Supertree

As pointed out by Purvis (1995b), the use of the nonparametric bootstrap to sum-
marize the nodal support within a supertree was invalid because the inherent non-
independence of the additive binary coding (Farris et al. 1970) underlying matrix
representation violates a key assumption of the bootstrap. Although this is correct,
the real problem with the application of this and any other character-based support
method (e.g., Bremer support) is that all fail to account for the fact that the raw data
of a supertree analysis are the source trees and not the character data underlying
them or even the pseudo-characters derived from them via matrix representation.

Although their development was somewhat delayed and nowhere near as well
explored as the creation of new supertree methods, several supertree-specific
support measures now exist. One class contains methods that are analogous to the
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nonparametric bootstrap for character data (Felsenstein 1985a), except that the
source trees are instead resampled with replacement. This procedure has been
implemented in the software package CLANN (Creevey and McInerney 2005), but
obviously only applies to the supertree methods available within it. An imple-
mentation of this method, multilocus bootstrapping, is also available for MLC-
based supertree methods (Liu et al. 2010). A variation on this basic scheme,
stratified bootstrapping, builds the supertree in each replicate from a randomly
chosen tree from the bootstrap profile of each gene tree (Burleigh et al. 2006).
Although this point has not been examined, stratified bootstrapping might be able
to account in a limited fashion for hidden support within the raw character data as
far as it is expressed among the trees in the individual bootstrap profiles.

As with the normal bootstrap, a clear disadvantage of this method in general is its
high computational load in that n replicates of the supertree analysis are essentially
being performed. Although these searches can be simplified to save time (e.g.,
performing no branch swapping like in PAUP*’s (Swofford 2002) faststep bootstrap
search), this solution invokes other problems because the individual bootstrap trees
will not be as optimal, thereby potentially biasing the overall bootstrap frequencies
in some unknown manner. Another potential problem with a supertree bootstrap
analysis is that some bootstrap replicates might contain nonoverlapping sets of trees
and/or might not contain the full taxon set present across all source trees, with this
probability increasing as the degree of overlap among the set of source trees
decreases. Again, such bootstrap replicates will obtain a completely unresolved
supertree, thereby artificially decreasing the overall bootstrap frequencies.
Although this scenario is also possible for an equivalent supermatrix analysis (i.e.,
character partitions that do not overlap with respect to their taxa), it is less likely
given the larger number of characters compared to source trees (e.g., 10 partially
nonoverlapping source trees might be obtained from 10,000 base pairs worth of
sequence data). A potential solution here might be to include a seed tree in each
bootstrap replicate, should one be present in the global analysis, to again provide a
scaffold ensuring sufficient taxonomic overlap and complete taxon coverage.

Importantly, these supertree bootstrap methods not only provide an estimate of
the differential support among the nodes within the supertree, but the profile of
bootstrap supertrees is also useful for comparative analyses. Given that the results
of the latter are dependent on the accuracy of the underlying phylogenetic tree,
accounting for uncertainty/error in the latter is desirable such that the recent trend
has been to perform comparative tests on a distribution of trees rather than on a
single point estimate of the phylogeny (e.g., Arnold et al. 2010; Jetz et al. 2012;
see also Chaps. 10–12). Typically, this distribution is obtained from a Markov
chain Bayesian framework; however, there seems to be no reason why a profile of
bootstrap trees cannot fulfill the same purpose.

A second class of support measures comprises those that directly quantify the
degree of conflict between the supertree and the set of source trees. Examples here
include the QS index (Bininda-Emonds 2003) and V (Wilkinson et al. 2005).
Compared to the bootstrap, these methods are extremely rapid because both the
supertree and the set of source trees have already been computed. Nevertheless, an
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inherent difficulty of the method is how to define support versus conflict in the case
of missing taxa between the supertree and source tree (Bininda-Emonds 2003). For
example, do source trees that contain either taxon A or taxon B, but not both,
support or contradict a sister-group relationship between A and B specified by the
supertree, or are they uninformative? Both the QS index and V take different
approaches to this problem and it is unclear which, if either, is better.

Finally, although supertree methods like PhySIC and PhySIC_IST guarantee
that no node on the supertree is contradicted by any of the source trees (Ranwez
et al. 2007; Scornavacca et al. 2008), assessing the nodal support on these
supertrees using either of the two classes of methods above is arguably still rec-
ommended. Key is that both PhySIC and PhySIC_IST do not assure that all source
trees directly support a given supertree node, such that while all nodes are not
contradicted, some might enjoy more absolute support than others.

3.5 Conclusions

As mentioned in the Introduction (Sect. 3.1), the molecular revolution has argu-
ably been more revolutionary in terms of the massive amounts of phylogenetic
data it has provided rather than in the novel hypotheses of phylogenetic rela-
tionships it has produced. The latter stability also extends to the gene tree/species
tree dichotomy that forms the basis of this chapter, where the reality is that most
phylogenetic methods and analytical frameworks seem to be pointing in the same
general direction. Thus, the reassuring trend we see is one of growing congruence
rather than increasing conflict. Problem areas do remain (e.g., the root of the
placental mammals; Teeling and Hedges 2013), but have long been recognized as
such, even within any single framework.

Nevertheless, as I have argued in the past (Bininda-Emonds 2004c), a supertree
framework—including the MLC model—remains a valid and desirable comple-
ment (not alternative) to a pure concatenation-based supermatrix framework, which
remains the de facto standard of (molecular) phylogenetics. This point has also been
admitted to some extent by even the most vocal critics of supertrees, who minimally
see the methodological need for supertrees in piecing together the entire Tree of
Life (Gatesy and Springer 2004) and/or do not object to the supertree framework in
general (Murphy et al. 2012). More generally, by focusing on different levels of the
phylogenetic data set—gene trees versus individual nucleotides, respectively—
both the supertree and supermatrix frameworks place slightly different analytical
emphases on the same base data set and the use of both approaches in parallel
potentially balances out their respective strengths and weaknesses. For example,
whereas only a supermatrix framework can account for hidden support, supertrees
are better able to account for gene-tree heterogeneity. Given these different foci,
analyzing a data set using both frameworks (i.e., essentially parallel partitioned vs.
unpartitioned analyses) will therefore provide us with greater confidence in those
areas where their results are congruent and greater insight into the causes of any
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incongruence where they are not, an approach in agreement with the global-con-
gruence framework of Lapointe et al. (1999). In this way, we will also be better able
to establish the frequency of ILS among different taxonomic groups as well as its
potential for leading supermatrix-based analyses astray. Moreover, the potential to
expand the MLCmodel in particular to incorporate processes of gene flow and HGT
(Liu et al. 2009a) should provide even greater information regarding their fre-
quency and their effects on speciation and phylogenetic history.
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Glossary

Hidden support
(AKA signal
enhancement)

The phenomenon whereby consistent secondary signals
among a set of data partitions can overrule their con-
flicting primary signals to yield a novel solution not to be
found among any of the individual data sets. As a sim-
plified example, take the case of two separate gene data
sets, each with an aligned length of 1000 nucleotides. In
the first data set, 60 % of the positions support a sister-
group relationship between A and B (primary signal),
whereas 40 % support the clustering of B and C (sec-
ondary signal). In the second data set, 60 % support A and
C, whereas 40 % support B and C.
Separate analyses of each data set will yield conflicting
results (AB vs. AC); however, when the data sets are
combined, each of these solutions is now only supported
by 30 % of the data. By contrast, the secondary signals
supporting BC are now present among 40 % of the
combined data and now form the primary signal. In other
words, each separate data set possessed hidden support for
BC that could combine and determine the overall solution
upon the concatenation of the data sets. Because supertree
analyses work with trees as their primary data source,
these secondary signals in the raw character data are
normally invisible and cannot be accounted for.

Long-branch
attraction

An artifact in the phylogenetic analysis of DNA sequence
data that was first exposed by Felsenstein (1978) and is a
result of SATURATION in such data. Felsenstein observed
that taxa at the ends of very long branches that themselves
were separated by a short intervening branch often clus-
tered to form sister taxa in a maximum parsimony anal-
ysis. Optimization criteria that used an explicit model of
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evolution like maximum likelihood were more immune to
this problem.
This artifactual attraction of the long branches arises
because the taxa are characterized by high rates of
molecular evolution (as indicated by the long branches)
and concomitant large number of shared convergent
changes that, through their high number, are falsely
interpreted as evidence for shared common ancestry. It is
now known that long-branch attraction is a general
problem (i.e., it can affect nonmolecular data, although is
far less likely to do so) and can occur even if the branches
occur on distant parts of the tree (see Bergsten 2005).

Matrix
representation

A long-standing mathematical principle (Ponstein 1966)
showing that there is a one-to-one correspondence
between a tree (a ‘‘directed acyclic graph’’) and its
encoding as a binary matrix. Whereas additive binary
coding (Farris et al. 1970) of the tree will derive the
matrix, the tree can be recreated from the matrix via
analysis of the latter using virtually any optimization
criterion (see Fig. 3.2).

NP-complete A class of nondeterministic polynomial (NP) time meth-
ods for which no efficient solution is known and for which
the running time increases tremendously with the size of
the problem. As such, heuristic rather than exact algo-
rithms must be used beyond a certain problem size,
meaning that there is no guarantee that the optimal solu-
tion has been found. In phylogenetics, classic examples of
NP-complete algorithms include maximum parsimony
and maximum likelihood.

Polynomial time Polynomial time algorithms are said to be ‘‘fast’’ in the
sense that they have an efficient solution that scales
‘‘reasonably’’ with the size of the problem. A cogent
example here is neighbor joining (NJ), the running time of
which scales no worse than the cube of the number of taxa
(i.e., O(n3)). This is in stark contrast to the NP-COMPLETE

maximum parsimony and maximum-likelihood methods,
where the running times scale super-exponentially with
respect to the problem size.

Saturation A phenomenon attributed primarily to DNA sequence data
and which arises because of the limited character state
space for such data (i.e., the four nucleotides A, C, G, and
T). As such, the potential for homoplasy in the form of
either convergence or back mutation is high (e.g., two
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completely random DNA sequences are expected to be
25 % similar). Saturation, however, can also occur, but is
less likely, for both amino-acid and morphological char-
acter data.
In practice, saturation is visualized by the degree of
divergence between two sequences leveling off or pla-
teauing with time since their divergence because faster
evolving sites have experienced multiple substitutions
(‘‘multiple hits’’) with the increased potential for homo-
plastic similarity. Another method is to examine for
deviations from an expected transition: transversion ratio
of 1:2 in neutral/silent sites, given the faster rate of evo-
lution for transitions compared to transversions and,
again, greater opportunity for multiple hits.
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Chapter 4
Graphical Methods for Visualizing
Comparative Data on Phylogenies

Liam J. Revell

Abstract Phylogenies have emerged as central in evolutionary biology over the
past three decades or more, and an extraordinary expansion in the breadth and
sophistication of phylogenetic comparative methods has played a large role in this
growth. In this chapter, I focus on a somewhat neglected area: the use of graphical
methods to simultaneously represent comparative data and trees. As this research
area is theoretically very broad, I have concentrated on new methods developed by
me, or techniques devised by others and implemented by me as part of my R
phylogenetics package, phytools. I describe a variety of methods in this chapter,
including approaches that can be used to map reconstructed discrete or continuous
character evolution on trees; techniques for projecting phylogenetic trees into
morphospace; and methods for visualizing phylogenies in the context of a global
or regional geographic map. In this chapter, my intention is not merely to show-
case new methods that I have developed. Rather, I have also dedicated consid-
erable attention to detailing the algorithms and computational techniques required
for these approaches with the hope that this chapter will become a resource or
jumping-off point for researchers interested in building new, more advanced
approaches and methods in this area.

4.1 Introduction

No one would seriously dispute the contention that a well-designed and infor-
mative figure can replace at least a thousand words, if not more, in a contemporary
scientific publication. Visualization can also play an integral role in the pre-
liminary analysis of new data and in generating new hypotheses which can be
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explored with more rigorous tests. However, effective graphical methods for new
types of data and analysis in phylogenetic comparative biology may also require
some creative new method development for visualization (e.g., Sidlauskas 2008;
Revell 2013). In this chapter, I’m going to describe and illustrate several new
approaches—devised by myself or others and implemented in my R package,
phytools (Revell 2012)—for visualizing comparative data on phylogenies. Spe-
cifically, I’ll focus on visualization methods that can simultaneously show the
phylogenetic tree and a set of comparative data for discrete and continuously
valued phenotypic traits.

Large evolutionary changes take place over thousands of generations to mil-
lions of years. In many cases, phylogenetic comparative biology—the theory and
practice of drawing evolutionary inferences from phylogenies and comparative
data for phenotypic characters—represents our best or only recourse for studying
evolution on these vast timescales (Felsenstein 1985, 1988; Harvey and Pagel
1991; Mahler et al. 2010; Nunn 2011). Phylogenetic comparative methods have
advanced considerably in recent years (e.g., Butler and King 2004; O’Meara et al.
2006; Bokma 2008; Fitzjohn 2010; Eastman et al. 2011; Felsenstein 2012; Revell
et al. 2012; Beaulieu et al. 2013; Revell 2014; reviewed in Glor 2010; O’Meara
2012; Pennell and Harmon 2013). Many of the chapters of this book exemplify
these great strides. However, in some cases, these new methods and new types of
data for comparative biology also present us with new challenges in visualization.
Specifically, the most efficient, visually appealing, and informative way to
simultaneously represent phylogenetic and phenotypic information in a single plot
is not always clear.

Since a simple plot of the phylogeny forms the basis for several of the visu-
alization methods that I’ll describe in this chapter, I’m going to begin (in Sect. 4.2,
below) by detailing the general algorithm that can be used to draw two common
types of tree plots. In subsequent sections, I’ll focus my attention more specifically
on the challenges of simultaneously visualizing phylogenetic relationships and
trait data for phenotypic characters. In Sect. 4.3, I’ll concentrate on discrete
character methods. I’ll describe the comparative method called stochastic char-
acter mapping (Nielsen 2002; Huelsenbeck et al. 2003; Bollback 2006) and
illustrate how a single stochastic map can be plotted on the branches and nodes of
a phylogeny (Sect. 4.3.1). Next, I’ll detail and illustrate two different approaches
for aggregating the results of many stochastic mappings (Sects. 4.3.2 and 4.3.3;
Revell 2013). Then, in Sect. 4.4, I’ll move on to several different methods that
have been developed for continuously valued phenotypic traits. The first and
second methods (described in Sects. 4.4.1 and 4.4.2) involve some kind of pro-
jection of the phylogeny into a space that is either fully or partially defined by our
phenotypic trait data in two or three dimensions (e.g., Sidlauskas 2008; Evans et al.
2009). The third method (described in Sect. 4.4.3) involves directly mapping the
reconstructed evolution of a continuous trait onto the branches of a plotted tree. I
also show how we can combine both types of plots to create a ‘‘phylogenetic
scatterplot matrix’’ suitable for multidimensional continuous trait data. In
Sect. 4.5, I’ll describe a few additional new approaches, including the projection
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of a tree onto a geographic map, and the combination of discrete and continuous
character methods into a single plot. In Sect. 4.6, I’ll give a brief introduction to
the technical matter of programming phylogeny plotting methods in R (R Core
Team 2013). Finally, in Sect. 4.7, I’ll try to provide some concluding thoughts on
the challenges of visualizing phylogenetic and comparative data, the ‘‘paper par-
adigm’’ (Rosindell and Harmon 2012), and some possible future developments of
this field.

Before I begin, I should emphasize again that this chapter is not intended as a
comprehensive survey of phylogenetic visualization methods, nor even of visu-
alization methods for phylogenetic comparative biology. Rather, I have focused
specifically on methods that I have worked on in some way. By providing detail on
these methods, rather than a superficial survey of all approaches, I hope to inspire
readers of this chapter to think about novel techniques that are suitable for their
(idiosyncratic or general) problem or data. Hopefully, the content of this chapter
can become a starting point for additional methodological innovation and dis-
covery by other researchers.

Although all the methods of this chapter are implemented in my phytools R
package, plotting methods in phytools make extensive use of R base graphics
(R Core Team 2013), as well as some other packages such as scatterplot3d (Ligges
and Mächler 2003), maps (Becker et al. 2013), plotrix (Lemon 2006), and rgl
(Adler and Murdoch 2013). In addition, phytools depends internally on ape
(Paradis et al. 2004) and phangorn (Schliep 2011) for their extensive suite of
functions for reading, writing, manipulating, and analyzing phylogenetic trees.

4.2 The General Problem of Drawing Trees

In this section, I’ll briefly describe the basic general algorithm for taking a tree
stored in computer memory (or, hypothetically, in your own memory) and drawing
that tree onto a piece of paper or a plotting object in R. Since there are already
many different tools for tree drawing available, this section will primarily appeal to
researchers interested in programming new visualization methods for phylogenies
(or understanding how existing methods are programmed). Readers that are not
interested in such things can probably skip this section. Here, I’m going to focus
on the general algorithms for tree plotting, which would apply equally to any
programming language or development environment; however, in Sect. 4.6,
toward the end of this chapter, I’m going to go on to provide some specific code in
R to replicate one of these algorithms. Here, I’m going to concentrate on two
different types of trees that are also among the easiest to draw: square and circular
phylograms with intermediate node placement (Felsenstein 2004). Examples of
these two tree-plotting methods are illustrated in Fig. 4.1a and b, respectively. I
have to presume that these algorithms have previously been independently dis-
covered by anyone who has ever programmed a tree-plotting function; however,
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I’m not aware (and I could be wrong, of course) of them having been written
down—at least not in the phylogeny literature.

Figure 4.1a shows a stochastic, pure-birth tree (i.e., a ‘‘Yule tree’’) plotted as a
rightward square phylogram with intermediate node placement (Felsenstein 2004).
Rightward refers to the orientation of edges (when taken as vectors leading from
parent to daughter); phylogram just means that the plotted edges are proportional
in length to the branches of the tree; and intermediate node placement refers to the
(in this case) vertical position of ancestral nodes—in other words, we have posi-
tioned them vertically intermediately between the uppermost and lowermost
daughter nodes. Note that although the algorithm is described specifically for a
rightward orientation (in other words a phylogeny that ‘‘grows’’ from left to right
on our page; Felsenstein 2004), changing to a leftward orientation, or an upward or
downward orientation, simply requires that we change the sign of x, or flip x and y,
or do first one and then the other.

To create a graph in this style, the first step (step 1) is assigning vertical
positions to all of the tips in the tree. To do this, we first have to sort the tips into
what I’m going to refer to as cladewise order (Paradis 2012). This just means that
tips in a clade are adjacent to each other in the ordering. In the case of Fig. 4.1, this
means that A, B, C, D, E, F, G, H, I, J, K, L; B, C, D, E, F, G, H, A, I, J, K, L; or E,
F, G, H, B, C, D, A, I, J, K, L are all valid cladewise orderings of the twelve taxa in
our tree. (There are also many other valid orderings.)

If this ordering seems like it could be complicated to obtain, then it might be
helpful to note that a left-to-right (or right-to-left) reading of the tip labels in a
Newick style tree is guaranteed to produce tip labels in cladewise order. For
example, the Newick strings below:
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Fig. 4.1 a A square phylogram representing a simulated random tree. b A circular phylogram
showing the empirical phylogeny of Centrarchidae [from Near et al. (2005)]
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((A:0.78,(((B:0.39,C:0.39):0.04,D:0.43):0.28,(((E:0.29,F:0.29):0.01,G:0.3):0.12,
H:0.42):0.29):0.08):0.22,(((I:0.42,J:0.42):0.12,K:0.54):0.39,L:0.92):0.08);,
(((((B:0.39,C:0.39):0.04,D:0.43):0.28,(((E:0.29,F:0.29):0.01,G:0.3):0.12,H:0.42):
0.29):0.08,A:0.78):0.22,(((I:0.42,J:0.42):0.12,K:0.54):0.39,L:0.92):0.08);, and
((((((E:0.29,F:0.29):0.01,G:0.3):0.12,H:0.42):0.29,((B:0.39,C:0.39):0.04,D:0.43):
0.28):0.08,A:0.78):0.22,(((I:0.42,J:0.42):0.12,K:0.54):0.39,L:0.92):0.08);

are all valid representations of the tree in Fig. 4.1a, and thus, all contain tip labels
(read left to right or right to left) in a cladewise ordering. Newick tree format is the
most widely used way to record phylogenies in plain text. Newick format uses
parentheses, commas, and colons to represent hierarchical and sister relationships,
and branch lengths, respectively (Archie et al. 1986). For more information about
the Newick format, readers should refer to Felsenstein (2004).

Having ordered the tips in this way, we can now go ahead and assign each tip a
vertical position evenly spaced from 1 through n for n tips (step 2). This step is
shown in Fig. 4.2a. (We could have just as well assigned values from n through 1,
�n=2 through n=2, 100 through 100 9 n, or 0.1 through 0.1 9 n, etc., so long as
we are prepared to resize the vertical axis of our plotting area accordingly.)

Now, we conduct a post-order traversal of the tree. This means we descend
from the tips to the root of the tree passing through each daughter node before its
parent. At each node, we can assign a vertical position to the node (and its
preceding edge) that is intermediate between the two daughters (step 3). This step
is illustrated in Fig. 4.2b, in which the horizontal dashed line indicating the ver-
tical position of each internal node is labeled with a list of the tips descended from
that node. If there are more than two daughters, in other words, if the node contains
a multifurcation, we compute the average of the lowermost and the uppermost
daughters (Felsenstein 2004). Having done this for all internal nodes, we are now
in possession of the vertical position of all plotted edges in the tree.

The next step (step 4) is to compute the horizontal starting and ending points of
each branch in the tree. To do this, we start at the root and use a pre-order tree
traversal, which means that we traverse each parent node before its daughters. As
we traverse the tree up from the root, we compute the starting horizontal position
of an edge as the sum of all preceding branch lengths in the path from the root to
the parent (starting) node of that edge. The ending point of the same edge is merely
this value plus the branch length of the current edge. The points computed in this
step are shown in Fig. 4.2c. Now, we have the vertical positions (from step 3) and
the starting and ending points of each branch in the tree. When we plot the
horizontal lines that connect these points, we’ve plotted all the branches in our
phylogeny in their correct horizontal and vertical positions. This step is shown in
Fig. 4.2d.

To add the relationships between species and clades (step 5), in other words, the
vertical lines in our plot of Fig. 4.1a, we start by taking each internal node in the
tree including the root. We go to its height on the horizontal axis, and we draw a
vertical line connecting the uppermost and lowermost vertical positions of its two
or more daughters. This step is illustrated in Fig. 4.2e. Having ordered the tip taxa
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Fig. 4.2 An illustration of the algorithm for drawing a rightward square phylogram with
intermediate node placement using the simulated tree of Fig. 4.1a. a Order the tips of the tree in
‘‘cladewise’’ order. b Conduct a post-order traversal of the tree and compute the vertical position
of internal edges as the average of the highest and lowest daughter edges. The vertical positions
of terminal and internal edges of the tree are shown as horizontal dashed lines in panels (a) and
(b). c Conduct a pre-order tree traversal and record the height above the root of the starting and
ending points of each edge. d Draw edges. e Plot the relationships between edges by going to
each internal node and adding a vertical line connecting the highest and lowest daughter edges.
f Add tip labels at the end of each terminal edge
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by clade before assigning their vertical positions in step 2, we’ve guaranteed that
our tree is ‘‘untangled’’; in other words, no vertical lines cross any of our hori-
zontally drawn edges. Finally, to include labels (step 6), we merely add text to our
plot for taxa 1 through n at each of the 1 through n vertical positions we assigned
in step 2, in this case using the horizontal positions of the end of each terminal
edge, computed in step 4. This final step is illustrated in Fig. 4.2f.

For circular phylograms, such as the phylogeny of centrarchid fishes from Near
et al. (2005) shown in Fig. 4.1b, we conduct steps 1 through 4, just as described
above for rightward square phylograms. Then, however, we translate our node
heights (above the root, two for each edge) and vertical edge positions to the
coordinate system of our circular plot using the formulae xi ¼ ri � cosðYiÞ and
yi ¼ ri � sinðYiÞ, where ri (radius) is the set of heights above the root for edge i and
Yi is its vertical position in the square tree. We connect each parent and daughter
subtending edge i using a radial line from ðx1;i; y1;iÞ to ðx2;i; y2;iÞ. Then, at each
internal node, j, we draw an arc of radius rj spanning the lowermost to the
uppermost daughter edges of j. Finally, we plot our 1 through n labels at the end of
each terminal edge. Normally, we would angle the labels using the same angle as
the terminal edge, but then flip the orientation of the label by 180� for labels
plotted between 90� and 270� from horizontal (e.g., see Fig. 4.1b). Circular or fan-
style plots provide the advantage of allowing larger phylogenies to be represented
in the same plotting area (e.g., Edwards et al. 2010), sometimes even with readable
tip labels; however, they create the disadvantage that because time since the root is
represented by radial distance from the origin (rather than horizontal distance),
contemporaneous nodes and tips are a little bit more difficult to identify.

4.3 Discrete Character Methods

4.3.1 Mapping a Single Discrete Character on the Tree

The first plotting method for comparative data that I am going to describe is the
relatively simple approach of visualizing the reconstructed history of a discretely
valued character trait obtained from a phylogenetic method called stochastic
character mapping (Nielsen 2002; Huelsenbeck et al. 2003). Stochastic mapping is
a procedure in which we randomly sample possible character histories for a dis-
crete trait such that the probability of sampling any specific history varies in direct
relation to its posterior probability under our model of trait evolution (generally, a
continuous-time discrete-state Markov chain), given our tree and data. Stochastic
character mapping is described in more detail by Nielsen (2002), Huelsenbeck
et al. (2003), and Bollback (2006).

Briefly, to generate a single stochastic character map on the tree, we first sample
a joint reconstruction of our discrete character across all the nodes of the tree
conditioned on an instantaneous transition matrix between states, Q, and our
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discrete character data, x. (Where Q comes from we will leave aside for the
moment.) These states are sampled from their joint posterior probability distri-
bution following Bollback (2006). Next, we simulate changes along the edges of
the tree using a rejection procedure. We obtain the waiting times for changes
between states by drawing randomly from an exponential distribution with rate
�Qii, given initial state i. If the time is shorter than the total branch length of the
current edge, we simulate another change, and then another, and so on, until we
reach the end of the branch. At each change, we determine the new state by

picking a state at random with probability PrðjÞ ¼ Qij

.Pn;j 6¼i
j¼1 Qij, for any derived

state j. Here, n is the total number of different states for our discrete character. If
the starting and ending states for the branch match our stochastic joint sampled
node states, we have successfully simulated a stochastic history for that branch. If
not, then we reject our simulation and repeat it until we have sampled a history
with starting and ending states that agree with our stochastically sampled states for
the nodes subtending that branch. Stochastic mapping is implemented in phytools
(Revell 2012).

There are two different procedures that we can use to obtain our continuous-
time discrete-state Markov chain transition matrix, Q. We can sample Q using
Bayesian MCMC, which I’ll refer to as the full hierarchical Bayesian approach; or
we can fix Q at its most likely value, which I’m going to call an empirical
Bayesian approach (e.g., Yang 2006). The latter is unbiased, but has the problem
that variables (such as the number of transitions between states) that are estimated
from a posterior sample of stochastically mapped trees in which Q is set to its most
likely value will tend to have variance that is slightly too low. Conversely,
parameter estimates that we obtain from the full hierarchical Bayesian approach, in
which Q and the stochastic histories are sampled from their joint posterior prob-
ability distribution, should generally have the correct variance; however, this
approach depends on the somewhat difficult task of specifying a reasonable prior
probability density for Q.

When we’ve figured out the best approach for our tree and data, and then
generated one or multiple stochastic maps, we can easily plot the stochastic char-
acter maps on a tree using different colors to map different character states through
time. This is accomplished by computing the fraction of time spent in each state
along each plotted edge in the tree. Having done this, we can then plot each state
using a different colored line segment. For the lines connecting branches that share
a common ancestor (i.e., the vertical or curved lines in Figs. 4.1a and b, respec-
tively), we merely plot this line using the color of the last state on the preceding
edge. (We could equally well use the initial state for any daughter edge, since under
a continuous-time character evolution model, it is theoretically impossible that the
character changes state exactly at a node.) Figure 4.3 shows an example circular
tree for Greater Antillean anole species from Mahler et al. (2010) with a mapped
discrete character ‘‘ecomorph’’—the famous convergent ecological and morpho-
logical habitat specialists found in the Anolis lizard fauna of the Caribbean (Losos
2009). (The pie charts at internal nodes are not part of the stochastic map and will be
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explained in Sect. 4.3.2, below.) To generate this stochastic map, I assumed a single
substitution rate between all pairs of states, and then I fixed this rate to its most
likely (i.e., maximum likelihood) value (Pagel 1994), making this an example of
empirical Bayesian stochastic mapping (outlined above).

4.3.2 Aggregating Stochastic Maps: Node Posterior
Probabilities

One of the difficulties that is inherent in visualizing the results of stochastic
mapping using a plot like that of Fig. 4.3 is that plotting only one stochastic
character map can create the misleading impression of certainty in the discrete
character history. In fact, this plotted history is just one stochastic realization of
many plausible histories, sampled in direct proportion to its Bayesian (or empirical
Bayesian) posterior probability. Stochastic character mapping needs to be per-
formed repeatedly (say, 100 or 1,000 times) to obtain a representative sample from
the posterior distribution of plausible histories for our character; however, this
creates the difficulty of having to somehow visualize in aggregate the results from
many maps. If the character has changed state only once or a few times in the
history of our tree, then the variability among stochastic reconstructions will
generally be relatively small. In this case, any single stochastic map will be quite
similar to the average map, and consequently, there may be no need to aggregate
our visualization across maps. However, in cases when the character changes state
more often, ancestral states at internal nodes and changes along branches will tend
to vary much more among stochastically sampled reconstructions. In this case, it
could be useful to employ a visualization technique that can incorporate infor-
mation about this uncertainty.

One way to aggregate the results of many stochastic character histories is to
simply compute the posterior probability that each node is in each state repre-
sented in our dataset. To do this, we just go through every branch of the tree and
find the end state of that branch. The relative frequency of each character state for
the ending state of each branch (except the root) is our estimate of the posterior
probability that the corresponding daughter node is in that state. For the root node,
we just pick one of the two daughter edges for each stochastic map simulation and
compute the relative frequency that the starting state for that edge is in each state.
It does not matter which one, because (again) it is theoretically impossible that the
character changes state exactly at the root node in a continuous-time model.

To map these states on the tree, we can first plot our tree (or our tree with a
representative stochastic character map) as normal. Then, having stored the hori-
zontal and vertical positions of all internal nodes in memory, we can overlay the
posterior probability that the node is in each state as a pie diagram plotted at each
internal node of the tree using the same colors as were used in the mapping. The pie
charts overlain on the graph of Fig. 4.3 show an example of this type of visualization.
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4.3.3 Aggregating Stochastic Maps: Branch Posterior
Density Mapping

If our discrete character is a binary (i.e., two-state) character, then we have a
further option for plotting that does not completely dispose of the information in
our stochastic maps about where along branches our character changes state.
Instead, we can map the posterior probabilities of our binary discrete character
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Fig. 4.3 Stochastic character mapping of the multistate discrete character ‘‘ecomorph’’ on the
tree of Greater Antillean Anolis lizard ecomorph species. Any single map is a stochastic history
sampled from the posterior distribution of histories in proportion to its probability. The pie charts
at internal nodes show the posterior probabilities aggregated across 100 stochastically mapped
character histories using the empirical Bayesian method and a single-rate (i.e., ‘‘equal rates’’)
character evolution model. Ecomorphs are named for the microhabitat in which they are most
often found, as follows: CG crown-giant, GB grass-bush, TC trunk-crown, TG trunk-ground,
Tr trunk, Tw twig
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continuously along the branches and nodes of our phylogeny (Revell 2013).
Figure 4.4a gives an illustration of the method using data for the feeding modes of
biting vs. suction feeding in elopomorph eels (Collar et al. in revision).

To create this plot, I first finely segmented each branch of the maximum clade
credibility tree from a Bayesian phylogeny inference posterior sample of 1,000
phylogenies. Then I went through all the stochastic character maps and asked
whether each corresponding segment was in state 0 or state 1. I tallied the relative
frequency of each segment being entirely in state 0 or 1, and for the instances in
which the state changed within a segment, I computed a weighted tally with the
weights being set equal to the fraction of time spent in each state for that segment.
Having computed the posterior probability as a (near) continuous function of
branch position, I then generated a color map and plotted the edges of the tree
colored by this map. This method is implemented in phytools (Revell 2012, 2013).

We can use a similar approach to visualize the sampling variance across sto-
chastic character maps in our posterior sample. For a binary character, this vari-
ance is equal to pð1� pÞ, where p is the computed posterior probability that the
character is in state 1 (vs. state 0). If the character changes frequently on the tree,
this will result in substantial variability in stochastic character histories. By con-
trast, if the character changes only once or a small number of times in the tree, then
all stochastic maps will tend to be similar, and there will be much less variability
among stochastic maps in the posterior sample. In Fig. 4.4b, I’ve created a plot
showing the same phylogeny as in Fig. 4.4a with variability among stochastic
reconstructions mapped along the branches in grayscale (from white being highly
uncertain to black being highly certain). Note that the general pattern is that nodes
and edges deep in the tree are uncertain, whereas nodes and edges close to the tips
have low variance among maps. Although nodes and edges at the tips of the tree
will always tend to have low variance, particularly as we get closer and closer to
the tip states (which are known), as a general rule, deeper nodes and edges will be
more uncertain if the character state changes frequently—and less so if it changes
rarely.

Discerning readers may notice that no additional information is contained in
Fig. 4.4b relative to Fig. 4.4a since any branch with a posterior probability of state
1 (biting) that is close to 0.0 or 1.0 will have low uncertainty (black), whereas any
branch with intermediate posterior probability of being in state 1 will have high
uncertainty (white). This is indeed correct. In fact, Figs. 4.4a and b are just dif-
ferent visualization of the same data, so it would be at the authors’ discretion
which is more appropriate to their study. It’s interesting to consider that the
conditions under which we can map the uncertainty of the posterior density from
stochastic mapping on a tree are broader than the conditions in which we can map
the posterior density itself. Specifically, it’s technically challenging to map the
posterior density for more than two (or perhaps three, see Revell 2013) stochas-
tically mapped character states on the tree, whereas the difficulty of mapping the
uncertainty among maps is not influenced by the number of states for our trait.
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4.4 Continuous Character Methods

4.4.1 The Traitgram

One of the simplest approaches for visualizing continuous trait data on a tree is
projection of the tree into a two-dimensional space defined by time and the con-
tinuous trait of interest. This has been called a ‘‘traitgram’’ (e.g., Ackerly 2009;
Evans et al. 2009), and an example from simulated data is given in Fig. 4.5a.

The procedure to create a traitgram in this style is as follows. First, we estimate
the ancestral states for our phenotypic trait at all the nodes of the tree (Schluter
et al. 1997). Next, we compute for each node the height of the node above the root
of the tree using a pre-order tree traversal. Then, we plot all nodes and tips with a
vertical position determined by their known or estimated trait values and a hori-
zontal position determined by the height above the root for that node or tip.
Finally, we connect all parent and daughter nodes by edges. In this type of
visualization, it’s important to keep in mind only the horizontal dimension of edge
length contains information about branching times in the tree.
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Fig. 4.4 Phylogeny of elopomorph eels from Collar et al. (in revision). a Posterior density of
feeding mode ‘‘biting’’ versus ‘‘suction feeding’’ mapped on the tree from 100 stochastic
character maps. b Variance among maps for feeding mode. Black indicates low variance (high
certainty in the reconstructed trait value), whereas white indicates high variance
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Usually, we label terminal nodes using the names of the corresponding tip
species in the tree. If a number of tips have similar values on the phenotypic trait
axis, then this can create a messy plot in which labels overlap and are unreadable.
In the example of Fig. 4.5a, I used numerical optimization to space the tip labels
using a cost function that penalizes both label overlap and distance from the
vertical position of the tip node. (We can specify arbitrary costs for each—
depending on whether we find label overlap or label vertical displacement more
undesirable.)

It is also possible create a three-dimensional traitgram. In this case, the vertical
dimension (for example) might be time, whereas the remaining two dimensions
show observed or reconstructed trait values for two continuously valued traits.
Figure 4.5b shows a static image of a three-dimensional traitgram plotted with
time on the vertical axis. Although this is a fixed plot, phytools can also create a
three-dimensional plotting object that can be spun or animated using the R
package rgl (Adler and Murdoch 2013).

Finally, the traitgram algorithm can be used to create a visualization capturing
uncertainty in ancestral character estimation. In this case, we can use the Hessian
matrix or the formulae of Rohlf (2001) to compute the standard error and 95 %
confidence interval around ancestral state estimates. Having done this, we can plot
95 % confidence limits around ancestral states (and edges in the traitgram) using a
continuous color or transparency gradient, such as that illustrated in Fig. 4.5c.

4.4.2 Projection of a Tree Into Morphospace

Another common visualization method is a complete projection of the tree into a
two- or three-dimensional morphospace. This visualization is commonly referred
to as a ‘‘phylomorphospace’’ plot (e.g., Rohlf 2002; Sidlauskas 2008).
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Fig. 4.5 a Hypothetical ‘‘traitgram’’ (projection of the tree into a space defined by time and the
continuous trait) for a simulated, 26-taxon tree. b Simulated three-dimensional traitgram (two
phenotypic trait axes plus time). c The traitgram from Fig. 4.5a, with 95 % confidence limits
around ancestral values shown by increasing transparency in the plotted lines
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To create a phylomorphospace visualization, we first need to estimate the
ancestral states for all internal nodes in the tree including the root (Schluter et al.
1997). Then, we plot all the estimated states at nodes and the observed states at the
tips into our bivariate space. Finally, we connect all parent to daughter nodes with
edges and add labels if desired. A visualization of a phylomorphospace plot in two
dimensions is given in Fig. 4.6. This figure shows a projection of the phylogeny of
greater Antillean ecomorph species of anoles into a two-dimensional principal
component morphospace defined by relative limb lengths on the horizontal (PC1)
and overall size on the vertical (PC2). Overlain on the projection is a single
stochastic map of the evolution of ecomorph on the tree of anoles—the same
stochastic map, in fact, as in Fig. 4.3. (See Sect. 4.3.1 for more detail on stochastic
character mapping.) The phylogeny and data are from Mahler et al. (2010).

One unfortunate attribute of phylomorphospace visualizations of this type is that
all information about time since the root is thrown away during plotting. Recently,
some authors (Miller et al. 2013) developed an approach to try and show this
information on a phylomorphospace plot using a color gradient that changes con-
tinuously from the root to the tips of the tree. Figure 4.7 shows a tree (in panel a)

−1.5 −1.0 −0.5 0.0 0.5

−
0.

5
0.

0
0.

5
1.

0

PC1 (limb length)

P
C

2 
(s

iz
e)

CG
GB
TC
TG
Tr
Tw

Fig. 4.6 Phylomorphospace (projection of the tree into morphospace) for two principal
component axes from 82 species of Greater Antillean Anolis lizards. ‘‘Ecomorph’’ class (i.e.,
ecomorphological habitat specialist) from one stochastic map is projected onto the phylomor-
phospace. Ecomorphs are as in Fig. 4.3
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and an example phylomorphospace plotted in this style (Fig. 4.7b), with the tem-
poral dimension retained via a continuous color gradient from the root of the tree
(red) toward the tips (blue).

4.4.3 Continuous Character Mapping on the Tree

A final method for continuous character visualization uses the same technique as
was described for a posterior density plot from a set of stochastic map trees;
however, in this case, we estimate the ancestral states for internal nodes using ML
and then interpolate the states along the branches of the tree using Eq. (2) from
Felsenstein (1985). Having done this, we are prepared to map our continuous trait
on the tree using a continuous color gradient. This method is implemented in
phytools (Revell 2012, 2013; also see Verbruggen 2008). An example of this
continuous trait mapping is given in Fig. 4.8 using log-transformed body size
(snout-to-vent length, or SVL) in Greater Antillean Anolis lizards (Mahler et al.
2010). Using the phytools package, it is also possible to combine methods a and b
of this section to visualize trait evolution for more than two characters in a single
graph. For instance, Fig. 4.9 shows a four-trait multivariate phylogenetic scatter-
plot matrix for simulated data. The diagonal consists of continuous character maps
for each ith trait, whereas the i, jth off-diagonal cell shows a bivariate projection of
the tree into morphospace for traits i and j. For both Figs. 4.8 and 4.9, the specific
color scheme is arbitrary, and a different color palette can easily be specified by
the user (if, for instance, a more color-blind-sensitive color scheme is desired).
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Fig. 4.7 a Stochastic phylogeny with time since the root overlain as a color gradient.
b Simulated phylomorphospace with the color gradient retained (following Miller et al. 2013)
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4.5 Additional Methods

In Sects. 4.3 and 4.4, I illustrated some different visualization techniques for
discrete and continuous character data; however, it is also relatively straightfor-
ward to combine some of these techniques into a single plot. I already showed an
example of this in Fig. 4.6, which gives a phylomorphospace with an overlain
discrete character stochastic mapping.

As these approaches thus far only extend in minor ways the visualizations
already shown, I won’t dwell extensively on specific methodology; however, by
way of illustration, Fig. 4.10a shows a stochastically mapped discrete character
overlain on a continuous character traitgram, while Fig. 4.10b shows a bivariate
projection of the tree into morphospace with a posterior density from stochastic
mapping overlain. This type of plotting method is especially useful in exploratory
data analysis for datasets in which (for instance) the state of discrete character is
hypothesized to influence the rate of evolution in a continuous character (e.g., in
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Fig. 4.8 Body size mapped using a continuous color gradient on a phylogeny of 82 Caribbean
anole species from Mahler et al. (2010)
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the simulated data of Fig. 4.10a), or in which the state of a discrete character
influences the evolutionary correlation between traits (e.g., Fig. 4.10b).

Finally, trees can also be projected onto a geographic map. For instance,
Fig. 4.11a shows a simulated phylogenetic tree in which the tips of the tree point
to different geographic localities (perhaps the center of a hypothetical species
range or the type locality for the species) on a world map. All the nodes on the tree
have been rotated using a ‘‘greedy’’ optimization method to minimize line
crossing. The method merely climbs up the tree using a pre-order (root-to-tip)
traversal, rotates each node, and accepts the rotation if it reduces the objective
function—which is the difference in rank order between the left-to-right order of
the tip labels and the west-to-east ordering on the map. Figure 4.12b shows a
different type of direct projection of the tree onto a map; however, in this case, it is

Fig. 4.9 Simulated four-trait phylogenetic scatterplot matrix. Each diagonal element is a
continuous character projection on the tree in which red branches indicate small values for the
phenotypic trait and blue branches large values, whereas off-diagonals are phylomorphospaces
for each i, jth pair of traits

4 Graphical Methods for Visualizing Comparative Data 93



important to keep in mind that the locations of the internal nodes in this projection
are not equivalent to ancestral range reconstructions (which may be possible to
obtain using different methods outside the scope of this chapter, e.g., Ree and
Smith 2008).

4.6 Programming Phylogeny Visualization Methods in R

4.6.1 The Structure of a ‘‘phylo’’ Object

The first and most useful thing to understand when developing a plotting method
for phylogenies in R is the basic structure of a phylogeny in memory. Phylogenies
are stored in R as an object of type list with the class attribute set to ‘‘phylo’’.
Thus, we say that a phylogeny is stored as an object of class ‘‘phylo’’. A list in R
consists of a set of objects that can be the same or different in type. For instance, a
list could consist of a matrix, a vector of real numbers, and a character string. In
this case, the ‘‘phylo’’ object, tree, consists of the following four elements and one
or more attributes. We can denote the elements of a list using double square
brackets (i.e., [[]]) or the dollar sign ($):
tree$edge: edge is a matrix of dimensions e 9 2 in which e is the number of edges
in the tree. For a fully bifurcating tree, e ¼ 2n� 2, for n total taxa in the tree. This is
just the number of tips (n) plus the number of internal nodes (n� 1) minus 1, since
every tip or internal node (except for the root) is preceded by an edge. The matrix
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Fig. 4.10 a Traitgram on a simulated tree with a stochastic character map overlain. The
continuous character data were simulated with a high rate of evolution on the red branches of the
tree and a low rate on the blue branches. b Phylomorphospace with a posterior density map from
100 stochastic character maps overlain. Data were simulated with a high evolutionary correlation
on the blue branches of the tree
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tree$edge contains the starting and ending indices (i.e., node number) of every edge
in the tree. These indices are given in the boxed numbers of the example five-taxon
tree of Fig. 4.12. By convention, indices 1 through n are assigned to the tip nodes in
the tree, whereas indices nþ 1 through mþ nþ 1 (for m internal nodes) are
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Fig. 4.11 Two different projections of a phylogeny onto a geographic map. a A projection in
which the tips of the tree are connected to locations on the map via dotted lines. The nodes of the
tree were rotated using a ‘‘greedy’’ optimization method to minimize line crossing. b A ‘‘direct’’
projection of the phylogeny onto the tree. Note that nodes should not be interpreted as
reconstructed ancestral areas in this visualization

4 Graphical Methods for Visualizing Comparative Data 95



assigned to the internal nodes of the tree. For the tree in Fig. 4.12, an example
ordering of tree$edge is as follows:

tree$Nnode: Nnode is an integer giving the total number of internal nodes in the
tree, including the root.

tree$tip.label: tip.label is a vector containing all the tip labels for the tips of the
tree. The order of tree$tip.label is the index order for the nodes. For instance, for
the tree in Fig. 4.12, this is merely as follows:

tree$edge.length: edge.length is a vector containing the lengths of all the edges of
the tree in the order of the rows of tree$edge. In Fig. 4.12, this vector is as follows:

Finally, the ‘‘phylo’’ object has at least one attribute, its class. This is just a
string which tells R how to treat the object in certain custom functions built to deal
with objects of this type. In this case, the attribute is simply:
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Fig. 4.12 Five-taxon
phylogeny with node
numbers
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Special types of ‘‘phylo’’ objects can have additional elements or attributes.

4.6.2 Plotting a Simple Phylogram

The next thing that I’ll illustrate is how to use the algorithm of Sect. 4.2 to plot a
simple, right-facing phylogram. Whereas in Sect. 4.2 I focused on a general algo-
rithm that applies theoretically to any programming language or development
environment, here I’ll give specific R code. Obviously, packages like the R phy-
logenetics libraries ape and phytools already contain numerous functions for drawing
trees; however, a basic understanding of how trees are plotted in R may be useful to
investigators interested in developing totally new approaches for visualization.

The code I give below depends on the R packages ape and phytools. That
means that it uses functions internally that belong to those R function libraries. To
start, we should load those packages:

The first step is to figure out how many tips we have in the tree and then reorder
the tree so that the edges of tree$edge are ‘‘cladewise’’—that is, edges in the same
clade are next to each other in the matrix:

Next, we want to compute the vertical position of all the edges in our rightward-
facing tree. To do this, we assign our cladewise-ordered tip heights 1 through n and
then compute the heights for all internal edges via one post-order tree traversal:

Then, we compute the starting and ending points of each edge on the tree. This
can be done for a tree in cladewise order using the phytools function nodeHeights:
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The matrix X has dimensions equal to tree$edge, and every element of X cor-
responds to the height above the root of the corresponding element of tree$edge.

Now, we are ready to open a new plotting object. Here, we crudely size the
horizontal (x) dimension of our plotting area to be 10 % larger than the total length
of our tree—to allow space for labels. In ‘‘real’’ tree-plotting functions, we would
use a more sophisticated algorithm for this to ensure that enough (but not too
much) space was allocated for plotting labels:

Next, we can plot all the horizontal lines in our tree. This is easy because for
each edge, the x-axis coordinates correspond to a row of X. The single y-coordinate
can be found by matching the endpoint of the edge (i.e., cw$edge[i,2] for the ith
edge) with the vector y:

Then, we add the vertical lines that show the relationships between taxa. Only
internal nodes have vertical lines, so we just go through the indices used for
internal nodes. Each time, we find the element of X and the coordinates from y that
correspond with the target edge, and plot the following:

Finally, we can plot tip labels. This is easy. The vertical position is the position
we assigned at the beginning of the exercise; the horizontal position is the cor-
responding node height of the terminal node for that tip:

Try it!

4.6.3 Plotting a Simple Projection of the Tree Into
Morphospace (Phylomorphospace)

In Sect. 4.4.2, I described a method to project a phylogenetic tree into a two-
dimensional morphospace (i.e., a phylomorphospace plot). What follows is a bit
more detail on how to program this visualization method in R, which, as the reader
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will see, is even simpler than plotting a phylogram. This function again uses ape
and phytools. Since phytools is dependent on ape, simply loading phytools should
be sufficient:

First, let’s calculate how many tips we have and then estimate ancestral states
for all internal nodes. The latter is accomplished using the phytools function
fastAnc:

Now, let us plot the tips and nodes of our tree. For better ease of visualization,
let’s plot internal nodes with a slightly smaller symbol than tips:

Then, add the lines connecting parent and daughter nodes in morphospace.

Finally, let’s label all terminal nodes:

4.7 Conclusions and Future Directions

Phylogenetic comparative methods have become central to evolutionary biology
over the past thirty or so years (Miles and Dunham 1993; Freckleton et al. 2002;
Losos 2011; Baum and Smith 2013) and have even begun to infiltrate other bio-
logical and non-biological disciplines, such as genomics, biological anthropology,
and linguistics (e.g., Thornton and Desalle 2000; Atkinson and Gray 2005; Nunn
2011). Many chapters of this book discuss innovative new approaches for data
analysis in comparative biology. However, an important—but sometimes over-
looked—first and last step in data analysis is often visualization. First, because
plotting trees and comparative data can alert us to deviations or errors in our data
and perhaps suggest methods of study that might be useful for our data or question.
For instance, in a continuous character mapping on the tree, a color gradient along
an edge of the tree that suggested that a lineage changed from the highest observed
value of the trait to the lowest (or vice versa) might inspire us to cross-check the
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phenotypic trait value in our dataset, or the position of a potentially ‘‘rogue’’
lineage in the tree. Last, because presenting persuasive and informative figures can
be an important tool in conveying relevant information about our study system,
question, and results.

Potential methods for visualizing phylogenies and comparative data are limited
only by the scope of our imaginations (e.g., Rosindell and Harmon 2012). In this
article, I have concentrated on relatively simple methods implemented in one way
or another in the phytools R package (Revell 2012). Some of these were originally
devised by me, but others were devised by others and implemented by me (e.g.,
Rohlf 2002; Sidlauskas 2008; Evans et al. 2009; Miller et al. 2013). Other methods
still were devised in a slightly different form by others and adapted by me for R and
the phytools package (e.g., Verbruggen 2008). The list of methods described in this
chapter is not comprehensive; however, it does sample from a broad swath of
approaches for visualization in phylogenetic comparative biology across discrete
and continuous character data types. I have not discussed visualization methods that
use the tree but no phenotypic trait data for comparative analysis (for instance,
lineage-through-time plots; Pybus and Harvey 2000; Harmon et al. 2003). A review
of these methods could be the topic of a separate article or book chapter.

One major limitation of the approaches described in this chapter is that they are
constrained to the ‘‘paper paradigm’’ (Rosindell and Harmon 2012). That is, they
are designed to be printed on a piece of paper. The printed page (or at least an
electronic version thereof) continues to be the primary mode of communication in
the sciences. However, this medium imposes severe limits on the size and scope of
visualizations of comparative data and phylogenies. Phylogenetic datasets can now
contain thousands or perhaps even tens of thousands of tips (e.g., Bininda-Emonds
et al. 2007; Smith et al. 2009). Most of the methods of this chapter would be
ineffective at conveying useful information about phylogenetic comparative data
for phylogenies of this size. Future method development in phylogenetic com-
parative biology should look to move beyond the paper paradigm for solutions in
visualizing large phylogenies and multivariable phenotypic datasets.

Phylogenetic comparative biology has grown over the past thirty or so years to
assume a central position in evolutionary study (Miles and Dunham 1993; Losos
2011). Along with it have come new challenges in visualizing comparative data on
trees. In this chapter, I have discussed a number of novel or newly implemented
visualization methods for comparative data and phylogenies. In the future, new
approaches must address the challenge of very large phylogenies (e.g., Rosindell
and Harmon 2012) and increasingly multivariate phenotypic trait data of modern
phylogenetic studies.
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Chapter 5
A Primer on Phylogenetic Generalised
Least Squares

Matthew R. E. Symonds and Simon P. Blomberg

Abstract Phylogenetic generalised least squares (PGLS) is one of the most
commonly employed phylogenetic comparative methods. The technique, a mod-
ification of generalised least squares, uses knowledge of phylogenetic relationships
to produce an estimate of expected covariance in cross-species data. Closely
related species are assumed to have more similar traits because of their shared
ancestry and hence produce more similar residuals from the least squares
regression line. By taking into account the expected covariance structure of these
residuals, modified slope and intercept estimates are generated that can account for
interspecific autocorrelation due to phylogeny. Here, we provide a basic concep-
tual background to PGLS, for those unfamiliar with the approach. We describe the
requirements for a PGLS analysis and highlight the packages that can be used to
implement the method. We show how phylogeny is used to calculate the expected
covariance structure in the data and how this is applied to the generalised least
squares regression equation. We demonstrate how PGLS can incorporate infor-
mation about phylogenetic signal, the extent to which closely related species truly
are similar, and how it controls for this signal appropriately, thereby negating
concerns about unnecessarily ‘correcting’ for phylogeny. In addition to discussing
the appropriate way to present the results of PGLS analyses, we highlight some
common misconceptions about the approach and commonly encountered problems
with the method. These include misunderstandings about what phylogenetic signal
refers to in the context of PGLS (residuals errors, not the traits themselves), and
issues associated with unknown or uncertain phylogeny.
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5.1 Introduction

5.1.1 The Background to PGLS

The 1980s saw a rise in appreciation of the need to take phylogeny into account
when conducting analyses of trait correlations across species (Ridley 1983; Fel-
senstein 1985; Huey 1987; Harvey and Pagel 1991; for an entertaining overview
see Losos 2011). Because of shared evolutionary history, species do not provide
independent data points for analysis, thereby violating one of the fundamental
assumptions of most statistical tests (Chap. 1). With appreciation of this problem
came the impetus to develop statistical methods for analysing comparative data
while taking phylogeny into account. Of these, phylogenetic generalised least
squares (PGLS) is one of the primary methods employed.

PGLS (also called ‘phylogenetic regression’ or ‘phylogenetic general linear
models’) was a method initially formulated by Grafen (1989) and subsequently
developed by Martins and Hansen (1997), Pagel (1997, 1999) and Rohlf (2001).
Initially, biologists were slow to incorporate phylogenetic comparative methods in
their research, perhaps because methodological papers plunge quickly into
mathematical formulae and statistical terminology. This chapter is intended for
those without a strong statistical background as an introduction to PGLS. We
explain how PGLS incorporates information about phylogeny and the strength of
the phylogenetic signal: the extent to which closely related species resemble each
other. We will provide advice on how to conduct analyses, and present results, and
also point out areas where those new to the methods might get stuck.

5.1.2 What Kind of Analyses are PGLS Used for?

The most common type of analyses where PGLS are employed are those which
seek to establish the nature of the evolutionary association between two or more
biological traits—for example, the relationship between body mass and life span
(Promislow and Harvey 1990). By ‘evolutionary association’, we mean evidence
that traits are associated over evolutionary time. Although PGLS is frequently used
to examine the association between a pair of traits, it can also handle multiple
predictor variables. However, PGLS has a wider range of applications, including
ancestral state estimation, assessment of mode of evolution, and identification of
directionality of evolution among traits.

Analyses of coevolution among traits typically involve the estimation of
regression estimates. For PGLS, the dependent (response) variable is usually a
continuous variable. The predictor variable(s) may also be continuous, but PGLS
can deal with pseudo-continuous ordinal data and binary discrete data. Multi-state
discrete variables with non-ordinal properties (e.g. diet: insectivorous, herbivo-
rous, piscivorous, etc.) can be dealt within a PGLS framework if they are recoded
as separate binary characters (e.g. piscivory: no (0) or yes (1)).
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Hypothesis testing with PGLS is not appropriate for analyses with a discrete
character as the response variable. Separate methods exist for dealing with discrete
response variables including the concentrated changes test (Maddison 1990),
pairwise comparisons (Maddison 2000), Pagel’s (1994) likelihood method, and
phylogenetic logistic regression (Ives and Garland 2010). Chapter 9 reviews some
of these approaches.

5.1.3 PGLS and Independent Contrasts

When PGLS was first described by Grafen (1989), he described the method as a
generalisation of Felsenstein’s (1985) independent contrasts approach. At their
heart, the two approaches have the same recognition of the problem of statistical
non-independence of species data points as a result of shared ancestry. Indepen-
dent contrasts resolves this problem by recognising that the differences (‘con-
trasts’) between closely related species or clades do provide independent data
points for analyses, because they represent the outcome of independent evolu-
tionary pathways (see Box 5.1 for details). PGLS likewise identifies from phy-
logeny the amount of expected correlation between species based on their shared
evolutionary history, and weights for this in the generalised least squares regres-
sion calculation. Although couched in slightly different ways, ultimately, the
results of PGLS, in their raw form, are the same as those derived from independent
contrasts (Grafen 1989; Garland and Ives 2000; Rohlf 2001; Blomberg et al.
2012).

Box 5.1 Independent Contrasts

The most popular method for phylogenetic comparative analysis of contin-
uous data has, until recently, been independent contrasts (Felsenstein 1985).
The logic behind this approach is that although raw species data do not
provide independent observations for analysis, differences (‘contrasts’)
between closely related species or clades are indeed independent, because
they represent the outcome of independent evolutionary pathways. By
regressing the independent contrasts of one variable against the independent
contrasts of another, one can estimate a regression coefficient that accounts
for phylogenetic relatedness among species. Contrasts between species (or
clades) are calculated downwards through the tree, with the independent
variable (X) typically assigned a positive value. For the tree we discuss in
this chapter (see Fig. 5.2) with 5 species, 4 independent contrasts are pro-
duced (denoted as d1, d2, d3, and d4 below).
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X  1.02 1.06 0.96 0.92 0.89
Y  1.38 1.41 1.36 1.22 1.13

11 1 1

1 (1.5) 1(1.5)

1(1.75)

3

d1 d2

d3

d4

N1 N2

N3
Trait values at nodes:

X Y
N1 1.04 1.395
N2 0.94 1.29
N3 0.99 1.3425

For d1 and d2, the calculation of the raw contrast values is relatively
straightforward (it is just the difference between the species trait values).
Calculation of the contrast values for d3 requires estimation of trait values
for the nodes N1 and N2. These can be estimated as the means of the
daughter species weighted by the daughter branch lengths to reflect amount
of time over which divergence has occurred (in our example, the daughter
branch lengths are the same length, so the weighted means are the same as
the raw means). In order to reflect uncertainty with these estimates, the
branch lengths leading to these ancestral nodes are modified by lengthening
them by an amount equal to (daughter branch length 1 9 daughter branch
length 2)/(daughter branch length 1 + daughter branch length 2). These
modified branch lengths are shown in the brackets after the raw branch
lengths on the figure. The trait values for node N3 can likewise be estimated
as the phylogenetically weighted mean of the estimated trait values at nodes
N1 and N2, and the raw contrast d4 subsequently calculated. As before, the
branch length between the base of tree and N3 must be lengthened using the
formula above, using the (modified) daughter branch lengths. While the raw
contrast values are now statistically independent, they do not conform to
another statistical requirement of having been drawn from a normal distri-
bution with the same expected variance. Hence, they must be standardised
by dividing by their standard deviation: the square root of the sum of the
branch lengths leading to the two taxa in the contrast (remembering to use
the modified branch lengths for internal branches in the tree). For our
example, the four contrasts can now be calculated:
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Contrast Raw contrasts Standard deviation Standardised contrasts

X Y X Y

d1 0.04 0.03
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ð Þ

p
¼

ffiffiffi
2

p
0.028 0.021

d2 0.04 0.14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ð Þ

p
¼

ffiffiffi
2

p
0.028 0.099

d3 0.1 0.105
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5þ 1:5ð Þ

p
¼

ffiffiffi
3

p
0.058 0.061

d4 0.1 0.2125
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 1:75ð Þ

p
¼

ffiffiffiffiffiffiffiffiffi
4:75

p
0.046 0.098

These standardised contrasts can now be plotted in a normal bivariate
scatterplot.
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Note that for the independent contrasts, the regression line must be forced
through the origin (i.e. have a zero intercept) (Garland et al. 1992). To
understand why, consider that for species A, the predicted value of Y (YA) is

YA ¼ b0 þ b1XA

where b0 is the intercept and b1 is the slope value. Likewise, for species B

YB ¼ b0 þ b1XB

For the contrast YA- YB, therefore,

YA � YB ¼ b0 þ b1XAð Þ� b0 þ b1XBð Þ ¼ b0 þ b1XA � b0 � b1XB

Notice that the intercept b0 terms cancel out in this equation and therefore
are removed from the calculation of the regression of the contrasts:
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YA � YB ¼ b1XA � b1XB ¼ b1 XA � XBð Þ
where XA- XB is the contrast in X. For our example, the regression coeffi-
cient for the standardised contrasts of Y on X is 1.616.

In practice, however, most statistical packages for PGLS have an advantage
over those that employ independent contrasts, because they do not automatically
rely on the assumption that closely related species will necessarily be similar
because of their shared phylogenetic history. In their most basic formulation, both
methods assume that continuous traits evolve according to a random walk process,
i.e. Brownian motion, such that the change in the value of a trait over a given
period of time is given by a random number drawn from a normal distribution with
a given standard deviation and mean of 0 (i.e. the value is equally likely to go up
or down). Under this model, species that share a more recent common ancestor
should have more similar trait values than more distantly related species because
their traits have had less time to diverge (see Fig. 5.1).

However, there are many situations in which traits are evolutionarily labile,
where closely related species are not necessarily more similar (Blomberg et al.
2003). Criticism that phylogenetic comparative methods might ‘over-correct’ for
phylogeny when applied in such circumstances has been levelled for some years
(e.g. Westoby et al. 1995; Björklund 1997; Rheindt et al. 2004; see also Chap. 14).
In some circumstances, therefore, a traditional non-phylogenetically controlled
analysis might be statistically more appropriate, not least if phylogenies are in
extreme error (Abouheif 1998; Symonds 2002; Blomberg et al. 2012). Proposed
solutions include presenting the results of both non-phylogenetic and phylogenetic
analyses, but this does not resolve the issue of which analysis to base inference on,
and it is unclear how one should proceed should the analyses produce conflicting
results (see Freckleton 2009; and ‘Misconceptions, problems, and pitfalls’ later).
Additionally, this still presents results based on two very contrasting scenar-
ios—one which assumes no phylogenetic effect on the data and the other which
assumes a strong effect. In many cases, the true effect of phylogeny is interme-
diate, in which case, both types of analysis would be invalid.

This problem can be overcome with PGLS, because it allows one to incorporate
information on the extent of phylogenetic signal in the data (see ‘Incorporating
phylogenetic signal into PGLS’ later). If there is no phylogenetic signal in the data,
then PGLS will return estimates identical to an ordinary least squares regression
analysis. If phylogenetic signal is intermediate, then PGLS can correct for phy-
logeny to the appropriate degree. While independent contrasts can also be adapted
to deal with this issue (as in fact Felsenstein explicitly flagged in his original 1985
paper), in practice, the statistical packages which calculate independent contrasts
do not automatically do so and therefore assume that the phylogeny does
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accurately describe the error structure in the data (i.e. the way species values
deviate from least squares regression line—closely related species having similar
errors).

PGLS and independent contrasts also present their output in slightly different
ways. PGLS calculates an intercept value in the regression equation, whereas
independent contrasts force the intercept through the origin (see Box 5.1 and
Garland et al. 1992) and the intercept must be subsequently deduced by noting that
the line goes through the phylogenetic mean (the estimated ancestral value for the
response variable at the root of the phylogeny). Plots of independent contrasts also
differ from plots of PGLS (which present the actual species values, rather than
contrasts: see ‘How to present a PGLS analysis’ below). That said, contrast plots
can be very informative for detecting outlier clades that are strongly influencing
regression estimates.

5.2 Requirements for a PGLS Analysis

The two requirements for a PGLS analyses are a set of comparative species data
and a phylogeny for those species. Chapters 2 and 3 provide greater discussion on
preparing phylogenies for comparative analysis, but we provide here a quick
reminder. The phylogeny may be produced de novo from phylogenetic analysis of
DNA sequence data, for example. Alternatively, it may be taken from an already
published source and pruned to the relevant species, or augmented as a composite

Fig. 5.1 a Three-species
phylogeny and b illustration
of possible phenotypic
divergence over time (i.e.
evolutionary history) in those
three species by a Brownian
motion model of evolution.
Note how the traits gradually
diverge such that, typically,
species B is most similar to
C. Figure reproduced from
Revell et al. (2008) with
permission of Liam Revell
and Oxford University Press
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phylogeny using other sources. The phylogeny should ideally include branch
lengths and be fully resolved. If not fully resolved, then some determination must
be made as to whether the polytomies (when more than two species descend from
a node) represent known or unknown phylogeny (i.e. the true evolutionary pro-
cess—in which case, we call them ‘hard’ polytomies—or just uncertainty about
the true pattern of relationships—‘soft’ polytomies). We shall discuss later (in
Misconceptions, problems, and pitfalls) methods for dealing with polytomies in
PGLS.

It may be that no branch length information is available for the phylogeny, in
which case, one may either set all branch lengths as equal (Purvis et al. 1994), or
use an algorithm such as that used by Grafen (1989) where the depth of each node
in the tree is related to the number of daughter species derived from that node (see
also Pagel 1992, for an alternative approach). Once compiled, the phylogeny
should be formatted so that it can be read by the computer package being used for
analysis. Typically, this will be a Nexus file with the stored tree presented in that
file in Newick format (Maddison et al. 1997). Trees can be saved in this format by
most phylogenetic analysis and tree manipulation packages.

There are several computing packages that perform PGLS: COMPARE (Mar-
tins 2004) is an online interface that will conduct PGLS and other functions
including independent contrasts, but users should note that COMPARE is no
longer being supported or updated. BayesTraits (Pagel and Meade 2013) imple-
ments PGLS through its package Continuous (Pagel 1997; Pagel 1999). Finally,
several packages within the R statistical framework can derive PGLS estimations
very quickly and efficiently, including ape (Paradis et al. 2004), picante (Kembel
et al. 2010), caper (Orme et al. 2012), phytools (Revell 2012), nlme (Pinheiro et al.
2013), and phyreg (Grafen 2014).

5.3 Calculation of PGLS

5.3.1 Calculation of Parameter Estimates

The simplest way to think of PGLS is as a weighted regression. In a standard
regression, each independent data point contributes equally to the estimation of the
regression line. By contrast, PGLS ‘downweights’ points that derive from species
with shared phylogenetic history. These PGLS calculations are automatically done
using the appropriate statistical package (see above). Nevertheless, some knowl-
edge of the basic approach involved in this statistical method may be informative.
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In an ordinary least squares (OLS) regression model, the relationship of a
response variable Y to a predictor variable X1 can be given using the regression
equation:

Y ¼ b0 þ b1X1 þ e ð5:1Þ

where b0 is the intercept value of the regression equation, b1 is the parameter
estimate (the slope value) for the predictor, and e is the residual error (i.e. for a
given point, how far it falls off the regression line). Of course, there may also be
other predictor variables in the model—X2, X3, etc., with associated regression
slope estimates (b2, b3, etc.), but for simplicity, we shall focus on the simplest
version of linear regression.

To illustrate our discussion, we use a simple example (Fig. 5.2). Fiddler crabs
of the genus Uca are well known for their enlarged claws, which are used in
competition between males for access to females (Crane 1975). As a sexually
selected trait, we might expect these claws to show positive allometry (i.e. the
parameter estimate b1 of the regression of log(claw size) on log(body size) should
be greater than 1; see Rosenberg (2002) for discussion of fiddler crab claw
allometry, and Bonduriansky (2007) for explanation and analysis of the idea more
generally). To test this idea, we collated data on body size (carapace breadth) and
claw size (propodus length) for five species from Crane (1975). We also obtained a
phylogenetic topology for the group (Rosenberg 2001).

For a simple regression with one predictor (X), the slope of the regression line
b1 is given by

b1 ¼
Pn

i¼1 Xi � �Xð Þ Yi � �Yð ÞPn
i¼1 Xi � �Xð Þ Xi � �Xð Þ ð5:2Þ

where n is the sample size, Xi is the ith value of X (up to the last value Xn), and �X
represents the mean value of X (0.97). Likewise for Yi and �Y (1.30). The intercept
b0 then simply follows:

b0 ¼ �Y � b1�X ð5:3Þ

For our fiddler crab data, the OLS estimate of the allometric equation is
log(propodus length) = -0.229 + 1.577 9 log(carapace breadth), with the b1
term appearing to support the idea of positive allometry in claw length. The
parameter estimates b0, b1, b2, and so on (collectively denoted as the vector b) are
the values which minimise the residual variation from the least squares regression
line.

For generalised least squares, we need to consider an additional element of the
regression equation, in the form of the variance–covariance matrix, which repre-
sents the expected covariance structure of the residuals from the regression
equation (see Appendix A for a more technical description of the mathematical
formulation involved). In the case of OLS, the implicit assumption is that there is
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no covariance between residuals (i.e. all species are independent of each other, and
residuals from closely related species are not more similar on average than
residuals from distantly related species). This (n 9 n) variance–covariance matrix
is denoted as C, and for five species under the assumption of no phylogenetic
effects on the residuals, it looks like:

C ¼

r2e 0 0 0 0
0 r2e 0 0 0
0 0 r2e 0 0
0 0 0 r2e 0
0 0 0 0 r2e

2
66664

3
77775

The first row and first column represent values from comparisons with the first
species (in our case Uca chlorophthalmus, see Fig. 5.2), the second row and
column with Uca crassipes, and so on. Hence, the diagonal elements (the line of
values from top left to bottom right) represent the variance of the residuals, while
the other off-diagonal elements equal zero, meaning there is no covariation among
the residuals. When this variance–covariance structure is assumed, the results of
GLS are the same as those of OLS (the contribution of C to the regression cal-
culation essentially drops out).

Recall that the key statistical issue with cross-species analyses is that species
data points are non-independent because of their shared phylogenetic history.
Consequently, the errors may also be non-independent or autocorrelated (residuals

Fig. 5.2 Phylogeny of five Uca fiddler crab species, with morphometric data. Numbers on the
phylogeny represent branch lengths
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from closely related species may be similar). Hence, there will be covariation in
residuals, which we must account for in our variance–covariance matrix, C.

Estimation of the expected covariance structure was a key insight by Felsen-
stein (1973) that Grafen (1989) used in his phylogenetic regression. Like all good
insights, it is elegantly simple: the expected covariance will be related to the
amount of shared evolutionary history between the species. Hence, the diagonal
elements (i.e. the variance elements) of the matrix are the total length of branches
from the root of the tree to the tips. This will be the same for each cell if the
phylogeny is ultrametric (i.e. all tips are the same distance from the root of
the phylogeny), as it is in the case of our example (distance = 3, see Fig. 5.2). The
off-diagonal covariance elements represent the total shared branch length of the
evolutionary history of the two species being compared. Hence, for U. chlor-
ophthalmus and U. crassipes, we see that each species has independent (non-
shared) branch lengths of 1. Conversely, the two species share 2 branch lengths in
their evolutionary history back to the root of the tree. Consequently, the value
entered into column 1–row 2 (and column 2–row 1) of the matrix is 2. We can
repeat this for all the other species comparisons (e.g. U. sindensis and U. argil-
licola do not share any evolutionary history, so their expected covariance is 0) and
produce the new expected variance–covariance matrix:

Cphyl ¼

3 2 1 1 0
2 3 1 1 0
1 1 3 2 0
1 1 2 3 0
0 0 0 0 3

2
66664

3
77775

When this new version of C is applied to the GLS calculation (see Appendix A),
we eventually end with the PGLS solution: log(propodus length) = -

0.276 + 1.616 9 log(carapace breadth). Note, as we said earlier, that the regression
slope coefficient is the same here as derived from independent contrasts (see Box
5.1). In this case, our final PGLS regression is not so different from the OLS
regression, but there can easily be circumstances where this is not the case. We can
plot and compare the two regression slopes for our data (Fig. 5.3).

5.3.2 Hypothesis Testing and Goodness of Fit

After calculating the intercept and slopes using GLS, it is common to ask questions
about the magnitude of these quantities. In particular, we may be interested in
whether the intercept and/or slopes are significantly different from zero. A Wald
t-test can be conducted for each parameter in the model simply by dividing the
parameter estimate by its associated standard error (i.e. the square root of the
estimated variance of the parameter) and then comparing the result to a standard
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t distribution, using the residual degrees of freedom from the model, to calculate a
P value. To test the null hypothesis that b1 = 0, the t statistic will therefore be

t ¼ b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var b1ð Þ

p ð5:4Þ

Calculation of the degrees of freedom can be non-trivial. In particular, the
residual degrees of freedom may need to be reduced if there are soft polytomies in
the tree (Purvis and Garland 1993; see also below). F tests for multiple variables
can be similarly designed. An alternative test is the likelihood ratio chi-squared
test, which has the advantage that it depends only on the likelihood of a general
model (which includes the parameter) compared to a restricted model without the
parameter of interest. Popular software (such as nlme for R) will carry out all of
these procedures.

In OLS regression, it is often useful to consider how much of the total variance
is explained by the model using the coefficient of variation (R2). Unfortunately, the
OLS definition of R2 does not carry over easily into GLS. Several definitions of
‘pseudo R2’ have been proposed (Menard 2000), but none of them are correct in all
situations. It is therefore important to bear this issue in mind when using R2 for
PGLS regressions. Indeed, some authors prefer not to report R2 statistics at all (e.g.
Bates 2000; Lumley 2009).

A more important issue is the estimation of effect sizes and associated confi-
dence intervals from GLS models. The parameter estimates of slopes (for con-
tinuous predictors) and the intercept and differences between means (for
categorical predictors) are the most important results of the analyses. Confidence
intervals for parameters can be constructed in the usual way by multiplying the
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Fig. 5.3 Comparison of OLS (solid) and PGLS (dashed) regression lines for the fiddler crab
claw allometry data
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standard deviation of the parameter estimate by 1.96 to derive the 95 % confidence
interval, if the sample is large (roughly[30 residual degrees of freedom), or by
relating to the t distribution if the sample is smaller.

5.4 Phylogenetic Signal

5.4.1 Phylogenetic Signal and Pagel’s k

Up to now, we have assumed that the expected phylogenetic variance–covariance
matrix accurately describes the error structure of the data. In other words, we
assume the phylogeny is accurate (but see ‘Misconceptions, problems, and pitfalls’
later) and that species trait values have evolved via a Brownian motion model of
gradual evolution, with the amount of evolutionary change along a branch being
proportional to the branch length. However, if the phylogeny or evolutionary
model is not accurate and there is in reality less or no phylogenetic covariance in
the residuals (the OLS expectation), then using the phylogeny as estimated may be
inappropriate. What we need is a way of determining the extent of phylogenetic
autocorrelation in the data. This can be achieved by estimating phylogenetic
signal.

Phylogenetic signal is the extent to which trait values are statistically related to
phylogeny. In other words, phylogenetic signal indicates the extent to which
closely related species tend to resemble each other (Blomberg et al. 2003). Esti-
mation of phylogenetic signal can provide some insight into how particular traits
have evolved. Thus, traits exhibiting strong phylogenetic signal (e.g. body size and
morphology; Freckleton et al. 2002) have most likely evolved by gradual changes
over time (e.g. a Brownian motion model of evolution). Alternatively, traits with
no phylogenetic signal (e.g. many social behaviours, Blomberg et al. 2003) may
either be extremely labile (they change around very much) on the time scale of
phylogeny or conversely extremely stable (they do not change at all) (Revell et al.
2008).

Our interest here lies in the application of phylogenetic signal to PGLS, so we
will not provide extensive discussion of the biological significance of phylogenetic
signal. For interested readers, we recommend two excellent papers on the subject
of phylogenetic signal (Revell et al. 2008; Kamilar and Cooper 2013).

We shall concentrate on one of the most commonly used quantitative measures
of phylogenetic signal: Pagel’s k (Pagel 1997, 1999), because this measure can be
directly implemented in PGLS calculations. However, there are numerous other
measures of phylogenetic signal that can be employed dependent on the statistical
framework and the model of evolution assumed. Each, in some way, measures the
extent to which common descent of species describes the pattern of traits across
species. Examples include Moran’s I (Gittleman and Kot 1990), Abouheif’s
test for serial independence (Abouheif 1999), Grafen’s q (Grafen 1989), the
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Ornstein-Uhlenbeck model parameter a (Martins and Hansen 1997), Hansen’s
phylogenetic half-time (Hansen 1997), Blomberg et al.’s K (Blomberg et al.
2003), Ives and Garland’s ‘a’ and ‘d’ (Chap. 9), and Fritz and Purvis’s D metric
(Fritz and Purvis 2010). Some of these are compatible with the PGLS framework
(e.g. Grafen’s q). For more detailed reviews, see Blomberg and Garland (2002),
Münkemüller et al. (2012), and Chaps. 9, 11 and 14.

We have already introduced the expected variance–covariance matrix, Cphyl,
that is calculated based on the phylogenetic relationships of the species in the
analysis (see above). This is the expected covariance structure, but what is the
actual covariance structure? We can estimate this for a single trait or, as is the case
for PGLS, the residual errors (an important distinction as we shall see later). To get
one of the individual off-diagonal elements, the covariance (cov) for a pair of
species (i and j) and a given trait (X) is the product of the deviation of each species
from the mean of the trait:

cov Xi;Xj

� �
¼ Xi � �Xð Þ Xj � �X

� �

For our fiddler crab X values (log carapace breadth), the observed matrix is

Cobs ¼

0:0025 0:0045 �0:0005 �0:0025 �0:0040
0:0045 0:0081 �0:0009 �0:0045 �0:0072
�0:0005 �0:0009 0:0001 0:0005 0:0008
�0:0025 �0:0045 0:0005 0:0025 0:0040
�0:0040 �0:0072 0:0008 0:0040 0:0064

2
66664

3
77775

We might ask which is the better ‘fit’ to this Cobs matrix, Cphyl, or Cnon-phyl? It
is also possible that there is intermediate phylogenetic signal in the data. Might this
be a more likely scenario? We can establish this by estimating k, which is a
multiplier of the off-diagonal elements of the expected variance–covariance
matrix. If k is less than 1, this has the effect of shortening the internal branches and
extending the terminal branches of the tree (see Fig. 5.4). At its extremes, k = 0
sets the off-diagonal elements to zero producing the non-phylogenetic covariance
matrix, whereas k = 1 is identical to the expected phylogenetic covariance matrix
under a Brownian motion model of evolution. Values greater than 1 are not valid
because the off-diagonal values in the covariance matrix cannot exceed the
diagonals in GLS (species cannot be more similar to other species than they are to
themselves).

k is not calculated through the GLS formula itself. Rather, its value is estimated
through maximum likelihood estimation. A k value of 0 is consistent with no
phylogenetic signal in the trait, whereas a value of 1 is consistent with strong
phylogenetic signal. Intermediate values of k indicate intermediate phylogenetic
signal. Many of the R packages cited earlier can estimate k for individual traits. In
the case of our example, the maximum likelihood value of k for carapace breadth
is 1, and for claw length, it is 0.888.
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There is no clear-cut interpretation of whether intermediate values of k indicate
‘weak’ or ‘strong’ phylogenetic signal because it depends on the likelihood profile
of k for the specific data set (Kamilar and Cooper 2013). However, one can use
likelihood ratio (LR) tests and calculate P values to assess whether the estimated
maximum likelihood value of k differs significantly from 0 or 1. As a brief aside,
some authors (e.g. Pinheiro and Bates 2000) have pointed out that such likelihood
ratio tests where the null value cannot exceed a certain value (such as less than 0 or
more than 1) will be inherently conservative. Note that simulation studies have
demonstrated that the significance of k is also very sensitive to the number of
species, and k may perform poorly as a measure of phylogenetic signal at small
sample sizes (Münkemüller et al. 2012).

It is worth pointing out that Pagel (1997, 1999) developed two other measures,
related to k, that are also branch length modifiers and are calculated through
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Fig. 5.4 Pagel’s branch length transformations applied to the Uca fiddler crab phylogeny under
different values of k, d, and j. The k = 1, d = 1, and j = 1 phylogenies are identical to Fig. 5.2.
Note that k = 0 phylogeny is the same evolutionary assumption as used by traditional OLS
regression (each species has independently evolved and shares no phylogenetic history)
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maximum likelihood estimation. The first of these, d, is a power transformation of
the summed branch lengths from the root to the tips of the tree, and the second, j,
is a power transformation of the individual branch lengths themselves. As with k,
both can be used to infer something about the evolutionary process. d is a measure
of whether trait evolution has sped up (d[ 1) or slowed down (d\ 1) over
evolutionary time. j is a measure of mode of evolution, with j = 0 depicting
evolutionary change that is independent of branch length—indicating a punctuated
model of evolution. Figure 5.4 illustrates the effect of different values of these
parameters. As with k, both d and j can also be applied to PGLS calculation (see
below), although they are not as commonly utilised as k in that context.

5.4.2 Incorporating Phylogenetic Signal into PGLS

One of the principal advantages of PGLS is that one can control for the amount of
phylogenetic signal in the data by altering the properties of the variance–covari-
ance matrix C. In the case of independent contrasts, the usual assumption is that
the phylogeny accurately describes the error structure of the data. PGLS, however,
can account for intermediate levels of phylogenetic signal. With Pagel’s k, one
simply multiplies the off-diagonal elements of C by k and uses this new version of
the matrix Ck in the PGLS calculation. Note that the lambda multiplier can also be
used to generate the modified phylogeny for use in an independent contrasts
analysis, with identical results.

It is key to recognise that, in PGLS, k applies to the residual errors from the
regression model, not the strength of signal in the response variable or predictor
variables. Consequently, the k values for the PGLS regression may vary from
those for the individual traits themselves (see ‘Misconceptions, problems, and
pitfalls’ below). This is actually demonstrated by our example: the maximum
likelihood estimate of k for the regression is 0, as opposed to the individual trait
values of 1 and 0.888. Thus, even though there is strong phylogenetic signal in our
individual traits, there is no signal when claw length is regressed against body
width, and the actual phylogenetic regression estimates will be identical to the
ordinary least squares regression estimates (b0 = -0.229, b1 = 1.577). Note that
this only applies if your phylogeny is ultrametric (all tips being the same distance
from the root of the tree).

5.5 How to Present a PGLS Analysis

One advantage of PGLS is that, for the graphical presentation of relationships, one
can simply plot the species data points on the relevant axes as you would do for a
standard regression plot (see Fig. 5.3). The main difference is that the plot should
include the PGLS regression line, rather than the standard OLS regression line.
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When it comes to the presentation of the statistical analysis itself, again the
presentation does not differ from what you would do with a standard regression
analysis—present the PGLS estimates and standard errors, and, if appropriate, r, t,
or F values and associated P values. The one key difference is that it is usual to
present the estimate (such as k) of the phylogenetic signal associated with the
regression, along with its confidence intervals, as this provides an indication to the
reader as to the extent that phylogeny is affecting the error structure of the data
(remember that this is the signal associated with residual errors, not the individual
variables).

Finally, because there is increasing appreciation of statistical approaches that
are not based on frequentist thinking (i.e. traditional null-hypothesis significance
testing with P values) (Garamszegi et al. 2009), it should be noted that PGLS is
compatible with other methods of statistical inference, such as information-theo-
retic (e.g. using Akaike’s Information Criterion) or Bayesian approaches (see
Chaps. 10 and 12).

5.6 Misconceptions, Problems, and Pitfalls

As with any statistical technique, problems may arise with PGLS in practice,
primarily due to violations of basic assumptions of the method. There are also
several general misconceptions about phylogenetic comparative methods that
apply to PGLS. For readers interested in these issues, we recommend Freckleton’s
(2009) review of the ‘seven deadly sins of comparative analysis’. Many of these
concern basic statistical assumptions, and these will be covered in the next chapter.
Here, though, we address several other common practical issues.

5.6.1 Reporting Both PGLS and OLS

It is not necessary to report both PGLS and OLS (i.e. phylogenetically and non-
phylogenetically controlled analyses). Unless your aim is specifically to compare
the results of the two analyses (and perhaps infer the effects of phylogeny on the
relationship between traits), then it is not necessary or desirable to carry out both
types of analysis. The tendency to use both sets of results stemmed from concerns
about the appropriateness of accounting for phylogeny in certain analyses, and
perhaps a desire to ‘cover one’s bases’ in the consequent interpretation. However,
as we have seen, PGLS can explicitly take into account phylogenetic signal and
hence control for it appropriately. If there is no signal in the residual structure (as
we saw with our fiddler crab example), then the results of PGLS will be the same
as OLS. By contrast, if there is phylogenetic signal, then PGLS will control for it,
and a raw-data analysis would be statistically flawed in any event.
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5.6.2 The Assumptions of the Evolutionary Model

The version of PGLS we have presented here stems from perhaps the simplest
evolutionary model, the Brownian motion model (see earlier), as described by
Felsenstein (1985). However, as Felsenstein (1985, p. 13) himself commented
‘there are certainly many reasons for being skeptical (sic) of its validity’. Of
course, in the absence of other knowledge, this is perhaps a reasonable starting
point. However, there are other implementations of PGLS that invoke alternative
evolutionary models, such as the Ornstein–Uhlenbeck model, where there is semi-
random walk evolution with a tendency towards trait optima reflecting different
selective regimes (see Chaps. 14 and 15; Martins and Hansen 1997; Butler and
King 2004; Hansen et al. 2008). Part III of this book examines alternative evo-
lutionary models in detail.

5.6.3 Phylogenetic Signal in the Context of PGLS

Phylogenetic signal for traits should not be used as justification for using (or not
using) PGLS. As we discussed earlier, when one has a measure of phylogenetic
signal for a trait, it is possible to use likelihood ratio tests to examine whether the
observed value of signal differs significantly from 0 or 1. It has become quite
common to argue that if one of the traits being investigated does not display any
significant phylogenetic signal, then it is unnecessary to perform a phylogeneti-
cally controlled analysis (see Revell 2010 for further discussion of this issue).
However, with PGLS, the assumptions regarding phylogenetic non-independence
concerns the residual errors of the regression model, not the individual traits
themselves. As our fiddler crab example demonstrates, it is quite possible to have
strong phylogenetic signal in the traits when examined individually but not in the
residual errors (and the converse is also true).

5.6.4 Dealing with Phylogenetic Inaccuracy and Uncertainty

With any phylogenetic comparative method, a fundamental assumption is that the
phylogeny being used as the basis for analysis is accurate and known without error
(Harvey and Pagel 1991, p. 121). Clearly, it is highly unlikely that this will be the
case, and therefore, one should bear in mind that any phylogenetic comparative
analysis is naturally contingent on the particular phylogeny being used. Fortu-
nately, simulation studies have generally found that independent contrasts and
PGLS are fairly robust to errors in both phylogenetic topology and branch lengths
(Díaz-Uriarte and Garland 1998; Symonds 2002; Martins and Housworth 2002;
Stone 2011). However, there are several points surrounding the issue of phylo-
genetic uncertainty that bear consideration.
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First, any phylogenetic information is better than none at all (Symonds 2002). It
may be that there is not a convenient single phylogeny available, in which case
inference can still be based on composite trees (i.e. when phylogenetic information
from several trees is fitted together), or from supertrees (Chap. 3; Bininda-Emonds
2004). Alternatively, practitioners may attempt to produce a phylogeny themselves
using published DNA sequence data (e.g. from GenBank.) There are a number of
phylogenetic packages available that enable use of this approach relatively quickly
(e.g. phyloGenerator: Pearse and Purvis 2013). In the complete absence of any
phylogenetic information or means to construct a phylogeny, the taxonomic
information may suffice (indeed the original version of PGLS as described by
Grafen 1989 was based around a taxonomic ‘phylogeny’).

Second, sometimes, there are multiple phylogenetic hypotheses for the study
species, in which case the approach advocated by Harvey (1991) of conducting
analyses over multiple phylogenies can be employed. For example, Symonds and
Elgar (2002) demonstrated how estimation of the metabolic scaling coefficient in
mammals differs depending on which of 32 phylogenies was used as the basis for
analysis. Often, phylogenetic analysis itself presents hundreds of most probable
trees, and it is possible to carry out PGLS using each of these phylogenetic
hypotheses. De Villemereuil et al. (2012) have developed one such approach and
demonstrated that by generating regression estimates across a range of candidate
trees, one improves estimation of the model parameters and associated confidence
intervals. Such an approach can be combined with multimodel inference (see
Chap. 12). De Villemereuil et al. (2012) argue that this approach is superior to
basing analysis on a single consensus tree.

Finally, one must often deal with polytomies where more than 2 branches
descend from a node. These polytomies may be an actual representation of the true
evolutionary branching process, or simply a lack of knowledge of that process
(so-called hard and soft polytomies, respectively, Purvis and Garland 1993).
Although the original formulation of PGLS (Grafen 1989) explicitly allowed for
phylogenetic uncertainty in the form of polytomies, there have been ongoing
issues associated with polytomies in PGLS analyses (see discussion in Rohlf
2001), including the loss of degrees of freedom in the statistical analysis. Some
packages (e.g. COMPARE, Martins 2004) do not permit polytomies at all. There
are three principal recommendations for dealing with polytomies in a PGLS
framework. One (usually argued in the case of ‘hard’ polytomies) is to arbitrarily
resolve the polytomies into a fully resolved bifurcating phylogeny, but to assign
zero or minimal branch length (say 0.0001) to the resolved internal branches
(Felsenstein 1985). The second, more appropriate for soft polytomies, is to carry
out analyses on all (or at least many) possible resolutions of the phylogenetic tree
in a manner analogous to the methods above for comparing across multiple
phylogenies, using the Grafen (1989) algorithm to assign branch lengths (see
Chap. 12). The third is simply to reduce the degrees of freedom by making
them equal to 1 for soft polytomies (Purvis and Garland 1993). A final approach,
based on generalised estimating equations, has also been proposed by Paradis and
Claude (2002).
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5.6.5 Dealing with Intraspecific Variation

In this chapter, we have considered only variation between species and therefore
used species average values as our data points. Indeed, the majority of published
phylogenetic comparative analyses ignore variation within species, despite its
potential impact on results (see meta-analysis by Garamszegi and Møller 2010).
There are methods (Chap. 7; Ives et al. 2007; Revell and Reynolds 2012) for
dealing with intraspecific variation and measurement error in the PGLS framework
that have been implemented in some computer packages. In short, while obtaining
detailed information on intraspecific variation might not be possible for some
comparative analyses, it is recommended that it be taken into account when it is
possible to do so.
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A.1 Appendix

A.1.1 Further Mathematical Details of the Calculation of OLS
and PGLS Using Our Worked Example

An alternative way of expressing the ordinary least squares regression formula that
is quicker and more effective for analysis with more than one predictor is using
matrix algebra. Here, the equation to obtain regression estimates is given as

b ¼ X0Xð Þ�1
X0y

In this case, b is the vector consisting of the parameter estimates (b0, b1, and so
on if more than one predictor variable). X is a matrix consisting of n rows and
(m + 1) columns (m is the number of predictor variables), where the first column
represents a constant (given the value 1 on each row), and the subsequent columns
are the X values for each predictor variable. In the matrix formulation, the term X0

denotes the ‘transpose’ of X—simply put, the rows become columns, and the
columns become rows.

X ¼

1 1:02
1 1:06
1 0:96
1 0:92
1 0:89

2
66664

3
77775

X0 ¼ 1 1 1 1 1
1:02 1:06 0:96 0:92 0:89

� �
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When multiplied together, these become X0X, calculated as follows:

X0X ¼ 5 4:85
4:85 4:724

� �

Here, the value in row i, column j of X0X equals the sum total of row i elements
of X0 multiplied by their respective column j elements of X. So for example, row 2,
column 2 of X0X is (1.02 9 1.02) + (1.06 9 1.06) + (0.96 9 0.96)+ (0.92 9

0.92) + (0.89 9 0.89) = 4.724.
Finally, the suffix -1 applied to X0X indicates the ‘inverse’ matrix. The way the

inverse matrix is calculated is somewhat complex but it is the matrix that when
multiplied by it original form (X0X) produces a matrix with 1s in the diagonal
elements, and 0s in the off-diagonals (this is known as the identity matrix—see
below).

ðX0XÞ�1 ¼ 48:21 �49:49
�49:49 51:02

� �

y is the vector of n rows, containing the values of Y.

y ¼

1:38
1:41
1:36
1:22
1:13

2
66664

3
77775

As with X0X, for the X0y vector, the row i value is the overall total of each of
the row i elements of X0 multiplied by their respective counterparts in the column
of y (i.e. row 2 = (1.02 9 1.38) + (1.06 9 1.41) + (0.96 9 1.36) + (0.92
9 1.22) + (0.89 9 1.13) = 6.336.

X0y ¼ 6:5
6:336

� �

Hence, when ðX0XÞ�1is then multiplied by X0y, we get the OLS solution for b

b ¼ ð48:21� 6:5Þ þ ð�49:49� 6:336Þ
ð�49:49� 6:5Þ þ ð51:02� 6:336Þ

� �
¼ �0:229

1:577

� �

where the first value (-0.229) is the intercept (b0) and the second value is the slope
estimate (b1).

For generalised least squares, an additional element is added to the regression
equation, in the form of the variance–covariance matrix, which represents the
expected covariance structure of the residuals from the regression equation. In the
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case of OLS regression, the assumption is that there is no covariance between
residuals (i.e. all species are independent of each other, and residuals from closely
related species are not more similar on average than residuals from distantly
related species). This (n 9 n) variance–covariance matrix is denoted as C, and the
regression equation becomes

b ¼ X0C�1X
� ��1

X0C�1y

Under the assumption that there is no covariance among the residuals and they
are normally distributed, with mean = 0 and standard deviation re, then

C ¼

r2e 0 0 0 0
0 r2e 0 0 0
0 0 r2e 0 0
0 0 0 r2e 0
0 0 0 0 r2e

2
66664

3
77775

The diagonal elements (the line of values from top left to bottom right)
therefore represent the variance of the residuals, while the other off-diagonal
elements = 0, meaning there is no covariation among the residuals. The inverse of
this matrix, C�1, has essentially the same properties (all the off-diagonal elements
remain as 0) except the diagonal elements now equal 1=r2e . When this variance–
covariance structure is assumed, the results of GLS are the same as those of OLS
(the C part of the regression equation essentially drops out). On the other hand, if
the variances are not equal, then you have a standard weighted least squares
regression.

For phylogenetic generalised least squares, our expected variance–covariance
matrix is Cphyl (see main text), and its inverse

Cphyl ¼

3 2 1 1 0

2 3 1 1 0

1 1 3 2 0

1 1 2 3 0

0 0 0 0 3

2
6666664

3
7777775

C�1
phyl ¼

0:619 �0:381 �0:048 �0:048 0

�0:381 0:619 �0:048 �0:048 0

�0:048 �0:048 0:619 �0:381 0

�0:048 �0:048 �0:381 0:619 0

0 0 0 0 0:333

2
6666664

3
7777775

Taking apart the components of the GLS regression equation, we first calculate
the product X0C�1whose row i and column j values are the total of the ith row of
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X0 multiplied by the jth column of C�1. So, for example, row 2, column 3 of
X0C�1 is (1.02 9 -0.048) + (1.06 9 -0.048) + (0.96 9 0.619) + (0.92 9 -
0.381) + (0.89 9 0) = 0.144

X0C�1 ¼
1 1 1 1 1

1:02 1:06 0:96 0:92 0:89

� �
�

0:619 �0:381 �0:048 �0:048 0

�0:381 0:619 �0:048 �0:048 0

�0:048 �0:048 0:619 �0:381 0

�0:048 �0:048 �0:381 0:619 0

0 0 0 0 0:333

2
6666664

3
7777775

¼
0:142 0:142 0:142 0:142 0:333

0:137 0:177 0:144 0:104 0:296

� �

In similar fashion X0C�1Xis therefore

X0C�1X ¼ 0:142 0:142 0:142 0:142 0:333
0:137 0:177 0:144 0:104 0:296

� �
�

1 1:02
1 1:06
1 0:96
1 0:92
1 0:89

2
66664

3
77775

¼ 0:901 0:859
0:859 0:825

� �

The inverse of which is

ðX0C�1XÞ�1 ¼ 130:141 �135:389
�135:389 142:060

� �

The second component of theGLS regression equationX0C�1y follows likewise as

X0C�1y ¼ 0:142 0:142 0:142 0:142 0:142
0:137 0:177 0:144 0:104 0:296

� �
�

1:38
1:41
1:36
1:22
1:13

2
66664

3
77775
¼ 1:139

1:097

� �

where, for example, the first row value (1.139) = (0.142 9 1.38) +
(0.142 9 1.41) + (0.142 9 1.36) + (0.142 9 1.22) + (0.142 9 1.13).

Finally, we can combine our two products to obtain the PGLS solution for b.

bPGLS ¼ X0C�1X
� ��1

X0C�1y ¼ 130:141 �135:389
�135:389 142:060

� �
� 1:139

1:097

� �

¼ �0:276
1:616

� �

where b0 = -0.276 and b1 = 1.616.
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Chapter 6
Statistical Issues and Assumptions
of Phylogenetic Generalized Least
Squares

Roger Mundry

Abstract Using phylogenetic generalized least squares (PGLS) means to fit a
linear regression aiming to investigate the impact of one or several predictor
variables on a single response variable while controlling for potential phylogenetic
signal in the response (and, hence, non-independence of the residuals). The key
difference between PGLS and standard (multiple) regression is that PGLS allows
us to control for residuals being potentially non-independent due to the phyloge-
netic history of the taxa investigated. While the assumptions of PGLS regarding
the underlying processes of evolution and the correlation of the predictor and
response variables with the phylogeny have received considerable attention, much
less focus has been put on the checks of model reliability and stability commonly
used in case of standard general linear models. However, several of these checks
could be similarly applied in the context of PGLS as well. Here, I describe how
such checks of model stability and reliability could be applied in the context of a
PGLS and what could be done in case they reveal potential problems. Besides
treating general questions regarding the conceptual and technical validity of the
model, I consider issues regarding the sample size, collinearity among the pre-
dictors, the distribution of the predictors and the residuals, model stability, and
drawing inference based on P-values. Finally, I emphasize the need for reporting
checks of assumptions (and their results) in publications.

6.1 Introduction

The method of phylogenetic generalized least squares (PGLS) is an extension of
the general linear model. The general linear model, in turn, is a unified framework
allowing us to analyze the impact of one or several predictor variables on a single
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quantitative and continuous response (e.g., Quinn and Keough 2002). In fact, it is
nothing else than the classical multiple regression. Categorical predictors (‘fac-
tors’) can be easily included into multiple regression using (usually dummy)
coding, interactions can be modeled by including products of predictors into the
model, and nonlinear effects are usually included by including transformed pre-
dictors (in addition to or instead of the untransformed ones) into the model (for
more details about how the effects of factors, interactions, and nonlinear effects can
be modeled, see below and, e.g., Cohen and Cohen 1983; Aiken and West 1991).
Hence, the general linear model encompasses multiple regression, ANOVA,
ANCOVA, and the t-tests.

A crucial assumption of the general linear model is independence of the
residuals. This assumption is likely to be violated when the cases in the data set
(see Glossary for a definition of some of the terms used here) represent different
taxa (e.g., species) which share larger or smaller fractions of their evolutionary
history (Felsenstein 1985). Obviously, taxa sharing a larger fraction of their
evolutionary history (i.e., having a more recent common ancestor) are likely to be
more similar to one another (even after considering the effects of various potential
predictors) leading to non-independent residuals.

The method of PGLS (Grafen 1989) has been developed to cope with such
phylogenetically driven non-independent residuals. PGLS is an extension of the
general linear model, allowing us to account for the phylogenetic history and, by
this means, controlling for potential non-independence of the data and leading to
independent residuals. The properties and assumptions of PGLS with regard to the
assumed evolutionary process and its consequences for the character states of the
taxa investigated have received quite some attention. For instance, different
models of character evolution (e.g., Brownian motion, Ornstein–Uhlenbeck;
Felsenstein 1985, 1988; Hansen 1997; Pagel 1999; Chaps. 5 and 15) can be
assumed, or different branch-length scaling parameters (e.g., lambda, kappa, delta;
Pagel 1999; Chap. 5) can be chosen, and the particular choices obviously can have
crucial implications for the results of the analysis (e.g., Díaz-Uriarte and Garland
1996, 1998; Martins et al. 2002). Similarly, the details of the estimation process
can have clear impacts on the reliability of the results (e.g., Revell 2010), as could
heterogeneities of the underlying process across the clade investigated (Garland
and Ives 2000), heterogeneous sampling (Freckleton and Jetz 2009; Cooper et al.
2010), and errors in the phylogenetic tree (e.g., Díaz-Uriarte and Garland 1998),
and these issues (to mention just a few) need to be carefully addressed when using
PGLS. Here, I focus on issues and assumptions of PGLS that arise from its
similarity with multiple regression. First of all, a PGLS makes assumptions about
the distribution of the residuals that are largely identical to those of multiple
regression. Furthermore, a model’s reliability depends on the distribution(s) of the
predictor(s), their number in relation to the sample size, as well as absence of
strong collinearity and influential cases. A violation of the assumptions about the
residuals or model instability can severely affect the conclusions drawn, and hence,
it is of crucial importance that these are thoroughly checked and an assessment is
made about how much the models can be trusted.
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In the following, I shall treat the statistical assumptions of PGLS and also
questions regarding model validity, stability, and reliability. I shall begin with
questions regarding the conceptual and technical validity of the model and sub-
sequently consider issues related to the number and distribution of the predictors
and interrelations among them (i.e., issues that could be dealt with before the
model is fitted). Following that, I shall consider assumptions about the residuals
and questions related to model stability (i.e., issues that can be dealt with only after
the model was fitted). Finally, I shall briefly touch on questions related to drawing
inference based on significance testing and also give recommendations regarding
the reporting of the analysis. Most sections have complementary parts in the
Online Practical Material (http://www.mpcm-evolution.com) where I show how the
respective checks can be conducted in R (Core Team 2013).

It must be stated here that the majority of the issues I consider are not spe-
cifically linked to a particular statistical approach (i.e., whether inference is drawn
based on information theory, null-hypothesis significance testing or in a Bayesian
framework; the exception is the section about drawing inference using null-
hypothesis significance testing). Instead, they are generic in the sense that
regardless of which particular statistical philosophy one follows, one should
consider them. In this context, it might be worth noting that the issues I consider
are also not specific to phylogenetic analyses but generic to general linear models.
In fact, what I present here are the issues I regularly consider when fitting linear
models (such as standard multiple regressions, generalized linear models, or linear
mixed models). I also want to emphasize that most of the issues I consider here are
not really ‘assumptions’ of PGLS (or linear models in general) in the sense that a
model requires them to be fulfilled (as is the case with assumptions about the
residuals). In fact, linear models do not rely on assumptions such as absence of
influential cases or collinearity or a certain sample size in relation to the number of
cases. However, the confidence one can have in the conclusions drawn from a
model might crucially depend on what investigations about, for instance, model
stability reveal.

A crucial assumption of all statistical analyses is that the data are correct and
complete and for predictors that they are measured without error. A special issue in
the context of phylogenetic data is that data availability could vary systematically
with species traits (see Garamszegi and Møller 2012). I take it for granted here that
the data are correct and complete and that missing data occur at random. Fur-
thermore, I want to emphasize that I am solely focusing on the statistical issues
related to the use of PGLS and not assumptions regarding the validity of the entire
approach, for instance, assumptions about the particular model of evolution (e.g.,
Brownian motion or Ornstein–Uhlenbeck; Chaps. 5 and 15), the parameter used to
model phylogenetic signal in the residuals (e.g., lambda or kappa; see Revell 2010;
Chap. 5), and the correctness of the phylogeny used. These ‘phylogenetic’
assumptions have been treated in quite some detail elsewhere (see above and also
Harvey and Pagel 1991 or Nunn 2011, and for possible approaches to deal with
uncertainty in the phylogeny or the model of evolution, see, e.g., Chap. 12).
However, to my knowledge, with the exception of the distribution of the residuals
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(Freckleton 2009), statistical issues like model stability which have relevance for a
PGLS as in any other general linear model have received less attention so far.

6.2 Model Development

This section deals with the general outline of the model. In fact, before any model
can be fitted, it is required to think about which particular terms should be included
and how these should enter the model. In fact, fitting a model crucially requires
considering whether the model makes any sense at all or, in other words, whether
it is appropriate for the question considered. This is what this section is about.
Specifically, it briefly touches the question which predictors at all and also whether
interactions and/or nonlinear terms (or interactions involving nonlinear terms)
should be considered. I also briefly consider some technical questions regarding
model validity that particularly come into play when interactions and/or nonlinear
terms are included.

6.2.1 Conceptual Validity of the Model

The first issue to be considered is which predictors should be included in the
model. I sometimes have the impression that many researchers believe that this
question is not really an issue anymore since ‘model selection’ provides a simple
and automated approach telling which predictors are important or not. However, it
must be clearly stated that model selection and significance testing are two
approaches to statistical inference that are not conformable (e.g., Burnham and
Anderson 2002; Mundry 2011), and once model selection has been applied, sig-
nificance tests are meaningless. Hence, whenever inference should be based on
null-hypothesis significance testing (i.e., P-values), decisions about which pre-
dictors are to be included in the model have to be based on scientific reasoning and
cannot be substituted by an automated model selection approach. Moreover, also
the proponents of model selection clearly emphasize the need of a careful
development of the models to be fitted (e.g., Burnham and Anderson 2002). Of
course, decisions about which particular predictors to be considered or controlled
for are highly specific to each individual investigation. Nevertheless, I am con-
vinced that many considerations are straightforward in this context. For instance, it
seems obvious that any investigation of the impact of whichever predictors on
longevity or brain size must control for body size. I am convinced that every
researcher can easily come up with other such examples in her or his own research
area.
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Pretty much the same applies to decisions about which interactions to be
considered in a model.1 Again, such decisions must be made based on reasoning
and cannot be solved using technical solutions such as ‘exploratory data analysis’
at least when inference should be based on P-values. The reason for this is the
exact same as for individual predictors. Hence, decisions about which interactions
are to be included into a model must be made prior to any analysis and based on
reasoning, and they should completely disregard the actual data at hand. As for
individual predictors, such decisions are highly specific to the individual study, but
again, common sense seems to potentially provide a lot in this context, too. For
instance, when one wants to investigate the impact of environmental complexity
(e.g., biodiversity) on (relative) brain size, one might need to consider the inter-
action between environmental complexity and diet as a predictor, simply because
folivorous species (that potentially could eat pretty much everything that is
‘green’) might face much less difficulties in finding food than frugivorous or
carnivorous species (which presumably are more specialized in their dietary
needs), and this difference might be particularly pronounced in complex envi-
ronments with high species richness.

The same line of reasoning applies to nonlinear terms. Most commonly non-
linear terms are included as squared terms allowing for an optimum regarding the
impact of a covariate on the response (in the sense that one allows for the response
to show particularly large (or small) values at intermediate values of the covariate).
The details of reasoning about which covariates should be considered to poten-
tially have nonlinear effects are, of course, again very specific to the particular
investigation. However, as before, common sense and reasoning can presumably
reveal clear hints about which covariates should be considered to be included as
nonlinear terms. For instance, in a study of the impact of group size (the predictor)
on brain size (the response) within a certain clade (e.g., genus or family), one
might hypothesize that intermediate group sizes lead to particularly large relative
brain sizes, because small groups are socially not very complex by definition and
large groups could be socially not very complex because of being anonymous.

A final issue to be considered here is that adding terms to the model potentially
conflicts with the size of the data set which might impose limitations on model
complexity (see below). However, my personal preference when being in such a
conflict is to give priority to the ‘right’ model, which means to potentially have
more terms than desired in the model. The simple reason is that from a model
which is known to be wrong, for instance, because a potentially important con-
founder or a likely interaction is neglected, potentially not much can be learned
(actually, such a model would violate the assumption of independent residuals; see
below). I also quite frequently had the impression that a neglected confounder,
interaction, etc., can lead to an inflated error variance making tests actually

1 Having an interaction between two predictors in a model means to allow for a situation where
the impact of one of the two on the response is dependent on the value or state of the other and
vice versa. Interactions can involve two or more covariates, two or more factors, and any mixture
of covariates and factors.
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conservative, and this effect can be stronger than the reduction in power and model
stability coming along with including an additional term to the model.

6.2.2 Technical Validity of the Model

Whenever an interaction and/or nonlinear (e.g., squared) term is in a model, this
necessitates the terms encompassed by them to be in the model as well. Practically,
this means that when a two-way interaction is in a model, then the two terms
interacting (the ‘main effects’) must be in the model as well (e.g., Aiken and West
1991). Correspondingly, when a model comprises a three-way interaction, the
model must also comprise all three two-way interactions encompassed by the
three-way interaction and also the respective three main effects. Similarly, when a
squared covariate is in a model, this must comprise also the respective unsquared
covariate. If these requirements are not fulfilled, the model is actually meaningless,
and the results revealed for the respective interaction or squared term have no
interpretation. It might seem trivial to state this, but among published papers, one
finds a surprisingly large proportion being unclear about this point.

6.2.3 Scaling and Centering of the Predictors

A question frequently arising is whether covariates should be z-transformed to a
mean of zero and a standard deviation of one (note that a z-transformation is always
done after a potential other transformation of a covariate; see below). Strictly
spoken, a z-transformation is never really required, but it might make interpretation
easier quite frequently. First of all, the coefficients obtained for covariates being z-
transformed represent the average change in the response per standard deviation of
the covariate, and hence, they are directly comparable between all covariates,
regardless of what they present and on which scale they were measured (Aiken and
West 1991). Hence, getting comparable coefficients is one of the main reasons for
z-transforming covariates. The other main reason for z-transforming covariates is to
enhance model interpretability in case of models including interactions and/or
nonlinear (usually squared) terms (Schielzeth 2010). The reason is that when an
interaction between two covariates is in a model, then the coefficients derived for
the respective main effects indicate their effect at the respective other covariate
having a value of zero. Many covariates, however, never have a value of zero in
nature (e.g., brain size, body size, life span). As an example, if an interaction
between the effects of brain size and life span on a response is in a model, the
estimated coefficients would be response = c0 + c1 9 brain size + c2 9 life
span + c3 9 brain size 9 life span. The coefficient c1 then represents the effect of
brain size on the response for life span being zero—not a very meaningful quantity.

136 R. Mundry



If brain size and life span are z-transformed (meaning that their average is zero), the
coefficients c1 and c2 have a much more reasonable interpretation; that is, they
indicate the effect of the two covariates at the average of the respective other
covariate. Pretty much the same logic applies whenever nonlinear terms are in a
model. For the same reasons, one could also consider centering manually dummy
coded factors to a mean of zero (see Schielzeth 2010 for a more in-depth account on
these considerations). A final reason to z-transform covariates and scale dummy
coded factors is to easier create plots of the modeled effects of individual predictors
on the response (because ignoring all other terms in the model when plotting the
particular effect implies assuming them to be at their average).

However, besides these many advantages of z-transforming all covariates (and
potentially also to center all dummy coded factors), it has the disadvantage that
coefficients reported for different data sets are not comparable anymore since the
standard deviation of any particular covariate will vary between data sets and
studies (and a coefficient obtained for a z-transformed covariate indicates the
change of the response per standard deviation of the covariate). As a consequence,
one should routinely report the original standard deviations of the covariates being
z-transformed (and also their means; Schielzeth 2010).

6.3 Statistical Reliability of the Model

This section deals with preparatory steps potentially taken to avoid certain prob-
lems as well as assumptions about the residuals and questions regarding model
stability. If these reveal problems, the validity of the conclusions might be ques-
tionable for solely statistical reasons.

6.3.1 Things to be Checked Before the Model Is Fitted

A couple of issues can (and should) be dealt with prior to fitting any model. These
refer to the number of predictors in relation to the number of cases, the distribution
of the predictors, and absence of strong collinearity.

6.3.1.1 Number of Predictors and Sample Size

Maybe the first and simplest to check is the number of cases (i.e., sample size, N) in
relation to the number of predictors (k).2 In fact, for standard linear models other

2 Note that ‘number of predictors’ should actually be labeled ‘number of estimated terms’
(meaning that a factor would be counted as the number of its levels minus 1, interactions and
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than PGLS, it is well established that the sample size should considerably exceed the
number of predictors. If this is not the case, the power of the analysis decreases
(potentially considerably), and the results are likely to suffer from instability (i.e.,
slight changes in the data may lead to drastic changes in the results). However, no
simple universally accepted and applicable rule for what would be an appropriate
ratio of sample size to the number of predictors does exist (see Field (2005) for
recommendations regarding multiple regression). This makes sense, though, since
any consideration of sample size needs to take into account expected (or minimum
detectable) effect sizes and the power desired (e.g., Cohen 1988; Gelman and Hill
2007). Since expected and minimum effect sizes to be detected are rarely available
(if at all in phylogenetic and many other analyses), I tend to use a very simple rule
which is that the number of cases should be roughly and at least 10 times the number
of estimated terms (including the intercept and, e.g., lambda in case of a PGLS).
Surely, this rule is extremely crude and overly simplistic, and whenever possible,
one should replace it by something more appropriate (ideally a power analysis based
on simulations of the expected or minimum effect size to be detected, conducted
using phylogenetic data as close as possible to the ones eventually to be analyzed).
At the same time, though, the ten-cases-per-estimated-term rule is simple, allows for
a rapid exclusion of model–data combinations that do not make much sense at all
(e.g., 5 predictors and 10 cases), and is better than nothing.

If the number of predictors is too large (identified by whichever rule), one needs
to reduce them. At least three options do exist in such a case: (1) exclude pre-
dictors based on reasoning about which are the least likely to be of relevance for
the response under question; (2) conduct a principal component or factor analysis
and use the derived (principal component or factor) scores rather than the original
covariates (for more about principal component and factor analysis, see, e.g.,
Budaev 2010, and for phylogenetic principal components analysis see Revell 2009
and Polly et al. 2013); and (3) exclude predictors based on collinearity (i.e., the
variance inflation factors revealed for them; see section about collinearity). In the
context of phylogenetic analyses, where the number of available taxa might be
limited, one will at occasions be confronted with a situation where the model
seems to be too complex for the size of the available data set. It is hard to give
general recommendations about what can be done in such a situation. However, as
stated above, I tend to give priority to the ‘right’ model (with regard to the
predictors included) over one that is oversimplified only to meet an assumed limit
of model complexity. After all, the model used needs to be appropriate with regard
to the hypotheses to be addressed and the variables to be controlled for. However,
a model being too complex might appear unstable (see below). On the other hand,
though, a model with two or three predictors might still reveal reasonable results
for surprisingly small data sets (with, e.g., just some 15 cases).

(Footnote 2 continued)
squared terms need to be considered, and in the context of a PGLS a parameter like lambda needs
to be counted as well).
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6.3.1.2 Distribution of Quantitative Predictors (Covariates)

Presumably, the far majority of phylogenetic data sets comprise at least one
‘covariate,’ i.e., a quantitative predictor such as average group size, body size,
brain size, or longevity. Perhaps surprisingly, a PGLS (like a general linear model)
does not make any explicit or direct assumptions about the distribution of such
covariates (Quinn and Keough 2002; Field 2005). Nevertheless, it is good practice
to generally inspect the distribution of each covariate (using, e.g., a histogram or
qq-plot; see below) before fitting the model. Besides the fact that such an
inspection can reveal typos, it can give hints to potentially ‘problematic’ (i.e.,
influential) cases (see below). Such problematic cases are more likely to arise with
skewed covariates (Quinn and Keough 2002; Field 2005). For instance, when a
covariate is right-skewed (see Glossary), then the values at the upper (right) end of
its distribution are likely to have more influence on the model than those in the
middle or at the lower end (simply because there are fewer large than small values;
Quinn and Keough 2002). As a consequence, one routinely should check the
distributions of covariates and try to transform those that are skewed, trying to
achieve a roughly symmetrical distribution (e.g., roughly normal or uniform).
Most commonly, a log- or square root transformation can be used for this purpose.
The log-transformation is ‘stronger’ and requires all values to be positive, and the
square root transformation requires all values to be nonnegative (see also Fig. 6.1
and Box 6.1). One needs to keep in mind, though, that a PGLS ultimately does not
make any particular assumption about the distribution of a covariate, and hence,
even if a covariate is quite skewed, it might be that a model with the original,
untransformed, covariate is more appropriate. However, most usually, it is a good
idea to transform skewed covariates right away.

Box 6.1 log-transform or other model?

I quite frequently encountered the belief that rather than transforming a
predictor (and/or a response), one should run a modified (i.e., ‘nonlinear’)
model. While this is frequently required when the assumed function linking
the response with the predictors is more complex (e.g., sigmoidal), there are
many situations where a simple transformation of the predictor (e.g., the log
or square root) seems to be the by far easiest and also a fully appropriate
solution (Quinn and Keough 2002). This is frequently the case because of the
‘logarithmicity’ of life. What I mean by this is that the relevance and per-
ception of variables in biological systems are frequently (perhaps usually)
logarithmic. For instance, the exact same evolutionary change in body mass
of, say, 10 kg would be probably considered ‘huge’ in case of a mouse or
bird, ‘minor’ in case of an antelope, and ‘negligible’ in case of an elephant.
Correspondingly, one would expect traits that covary with body mass to be
affected by the relative and not the absolute change in body mass. Such an
expectation can be easily accounted for by taking the logarithm and not the
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absolute value of body mass as a predictor into the model. Practically, after
log-transforming a variable, two species that differ by the same relative
value differ by the same quantity in the transformed variable. For instance,
the difference in log-transformed weights being 100 and 10 would be the
same as that between weights being 1,000 and 100. By the way, the base of
the logarithm (e.g., 2, 10 or e) does not matter, but probably the natural
logarithm (base e) is most commonly used.

6.3.1.3 Categorical Predictors (Factors)

Categorical predictors (i.e., predictors representing a quality, such as herbivorous,
frugivorous, or carnivorous) are usually (and by default) entered into PGLS
models by dummy coding them, and after this, factors are modeled as any ‘normal’
(i.e., quantitative) predictor (Cohen and Cohen 1983; Aiken and West 1991). As is
obvious, dummy coded categorical predictors do not have the property of having a
‘distribution’ of a particular shape (e.g., normal of uniform). Nevertheless, it is
important to inspect the frequency ‘distribution’ of a factor with particular focus
on the frequencies of the rarer levels. Specifically, none of the levels should be too
rare. From a more statistical perspective, cases of rare levels are likely to be
unduly influential as compared to cases of more common levels. But also common
sense tells that rare levels are unlikely to reveal much reasonable information.
Assume, for instance, a study of male song complexity as a function of male
investment in the brood in songbirds. Such a study might need to control for
factors like whether the species is a cooperative breeder or whether females and
males engage in duets (both partners regularly singing a structured song pattern
simultaneously). However, both cooperative breeding and duetting species might
be very rare in the data set (say, each is represented by less than five species). As a
consequence, it might be a better idea to drop those species from the data rather
than including two additional factors into the model. The argument for doing so
would be that from such small numbers of species, not much can be learned about
the respective factors anyways.

When several factors are relevant for the model, it can also be important to
check how many times the combinations of their levels do occur in the data set
(particularly when their interactions should be included). Here, pretty much the
same logic as for the frequency distribution of the levels of a single factor applies:
If a combination of levels of two or more factors is very rare (using the above
example: if there were, e.g., only two species being cooperative breeders and
duetting), then such cases are particularly likely to be relatively influential. This
becomes even more of an issue when the interaction between the two factors
should be included (and one should keep in mind that including the interaction
between two factors is only possible and makes sense when all combinations of all
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their levels occur at least twice in the data3). However, such rare levels or com-
binations of levels of factors might mainly compromise model stability with regard
to the factors themselves but not much for the effects of other predictors. An
investigation of model stability (see below) will reveal whether this is the case.

6.3.1.4 Collinearity

Absence of strong collinearity (a.k.a., ‘multicollinearity‘) among the predictors is
an important requirement for the validity of the results of linear models (Quinn and
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Fig. 6.1 Illustration of the effects of transformations. The original variable a is moderately right-
skewed with a minimum considerably larger than zero. Neither a square root b nor a log-
transformation c is very effective in removing the skew. However, a standardization of the
variable to a minimum of zero and a subsequent square root transformation remove the skew very
effectively d

3 For estimating the effect of an interaction reasonably well, more cases per combination of the
levels of the factors would be needed.
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Keough 2002; Field 2005). ‘Absence of collinearity among predictors’ basically
means that they are not redundant or, in other words, that each of them provides
information which is not given by the others (or combinations of them). The
simplest case of collinearity is just two predictors being pretty correlated. How-
ever, absence of any large (absolute) correlations between the predictors does not
rule out collinearity. For instance, one might think of a model which includes the
average number of males and females per social group (of the taxa considered) and
sex ratio or total group size. The latter two predictors are derived from the former
two and, hence, do not provide any additional information. As a consequence, any
set of predictors comprising three of the variables mentioned would be highly
collinear. Finally, collinearity can also arise from the number of predictors being
too large.

The consequences of collinearity are simple. First, conclusions about the impact
of individual predictors being collinear with others get (potentially very) unreliable
and uncertain (Quinn and Keough 2002; Field 2005; Zuur et al. 2010). This
manifests in increased standard errors of parameter estimates (and consequently
larger confidence intervals), and particularly, non-significance (i.e., P[ 0.05) can
be largely a consequence of collinearity rather than being indicative of absence of
an effect. Second, a model suffering from collinearity is likely to be (potentially
very) unstable, meaning that small changes in the data can lead to (potentially
drastic) changes in the parameter estimates obtained for the collinear predictors
(see Freckleton (2011) for an in-depth treatment of the effects of collinearity).

A simple mean to detect collinearity is inspection of so-called variance inflation
factors (VIF; Quinn and Keough 2002; Field 2005). These are based on the fol-
lowing principle: For each predictor, one model is fitted, taking the particular
predictor as the response and the others as the predictors (note that this means that
one gets one VIF value for each of the predictors; note also that a response variable
is not needed in this context). Then, the R2 of the respective model is calculated
and this, in turn, is used to derive the VIF, as VIF = 1/(1-R2) (see Fox and
Monette 1992 for how factors with more than two levels are treated in this con-
text). As is obvious, when the R2 gets large, the denominator of the equation
approaches zero, and hence, the VIF gets large, too. An ‘ideal’ VIF, i.e., one
indicating no collinearity whatsoever at all, has a value of one, and the larger the
VIF the worse. For the question of what is a too large VIF, no simple answer does
exist. Occasionally, one sees the rule that a value of ten or larger is clearly
indicative of a problem (Quinn and Keough 2002; Field 2005) but also much
smaller thresholds of three or two have been suggested as being indicative of
potential collinearity issues (Zuur et al. 2010).

Unfortunately, collinearity is likely to arise in phylogenetic analyses since
many of the commonly used predictors are most likely to scale allometrically (i.e.,
correlate with body size), leading to potentially conflicting needs of controlling for
body size and avoiding collinearity. In case clear collinearity is detected, one could
consider the simple omission of one or several of the predictors associated with a
large VIF (based on the reasoning that they anyway do not provide much infor-
mation in addition to that provided by the other predictors, but see Freckleton
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2011). An alternative is to combine predictors (Freckleton 2011) using, for
instance, a principal component or factor analysis and use the derived (principal
component or factor) scores rather than the original covariates (e.g., Quinn and
Keough 2002; for more about principal component or factor analysis, see Budaev
2010). Another option is to try to include more and/or other taxa in the data set,
selecting them such that collinearity among the predictors in the phylogeny is
minimized, an approach basically being a modification of the method of ‘phylo-
genetic targeting’ (Arnold and Nunn 2010) applying another criterion.

However, some level of collinearity will frequently be unavoidable in phylo-
genetic data sets and the question arises of what to do when this is the case. First of
all, it is worth noting that collinearity affects estimation of the effects of predictors
being collinear with one another but not that of others. Hence, if predictors merely
in the model to control for their effects are collinear to one another but the key ‘test
predictors’ (see below) are not collinear with others, collinearity might be less of a
reason to worry. Secondly, even a larger VIF associated with one of the test
predictors is not necessarily ‘deadly.’ This is particularly the case when there is
reasonable variation in the predictor at given values of the other(s) it is collinear
with, meaning that their independent effects can still be assessed with some cer-
tainty. However, estimation would still be more precise when there was no col-
linearity (Fig. 6.2; see also Freckleton 2011). If one is uncertain about whether
collinearity affects conclusions (having VIF values between, say, two and ten), one
should assess model stability. This could be done by comparing results from a
model with all the predictors included with those obtained from additional models
excluding one or several of the collinear predictors and checking whether this has
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Fig. 6.2 Two collinear predictors that each show reasonable variation at a given value of the
respective other predictor (a). When sampling predictor 1 from a uniform distribution with a
minimum of 0 and a maximum of 10, and predictor 2 as the value of predictor 1 plus a value
sampled from a uniform distribution with a minimum of 0 and a maximum of 4 (with a total
N = 100), the average variance inflation factor for both of them (across 1,000 simulation) was
7.40. When simulating a response by adding a value from a standard normal distribution
(mean = 0, sd = 1) to predictor 1, it appeared that the effects of the two predictors could still be
assessed quite reliably ((b); median, quartiles, and percentiles 2.5 and 97.5 % of 1,000 simulated
data sets). However, when predictor 2 was simulated independently of predictor 1, the average
variance inflation factor dropped to 1.01 and the variance in the estimate for predictor 1 decreased
(c). The simulation was based on non-phylogenetic data and a standard linear model
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larger consequences for the conclusions drawn. If this is the case, it basically
reflects insufficient knowledge and an inability to tease apart the effects of the
collinear predictors.

As mentioned earlier, one can use VIF values to exclude predictors in case their
number is too large in relation to the number of cases (see above). The procedure is
simple: One fits models one after the other and iteratively excludes the predictor
with the largest VIF.

6.3.2 Things to be Checked After the Model was Fitted

After the model structure being clarified and having completed the initial checks of
the data, one finally can fit the model. Once this is done, one needs to worry about
two further issues, namely the distribution of the residuals and absence of influ-
ential cases.

6.3.2.1 Distribution of the Residuals (And the Response)

Since the PGLS is, in essence, a general linear model (i.e., a multiple regression)
accounting for non-independence of the residuals arising from a phylogenetic
history, it has the same assumptions about the distribution of the residuals as a
standard general linear model (Freckleton 2009). In particular, these are normality
and homogeneity of the residuals.

Normality of the Residuals

Normality of the residuals4 is a somewhat pretty critical assumption, although, to
my knowledge, the consequences of its violation have rarely been systematically
investigated in the framework of a PGLS. Taking the general linear model as a
reference, it appears that the consequences of violations of this assumption depend
on the particular pattern of the violation and also the sample size. For instance,
when the sample size is larger and the residuals are somewhat symmetrically
distributed, type I and type II error rates are not that strongly affected (see, e.g.,
Zuur et al. 2010 and references therein), and for PGLS, Grafen and Ridley (1996)
showed that it performed reasonably well even when the response was actually
binary (however, one should better consider approaches specifically developed for
binary responses; see Ives and Garland 2010; Chap. 9). However, skewed

4 Note that residuals of a PGLS are actually multivariate normal (Freckleton et al. 2011), which
has implications for practical checks of their distribution; see the Online Practical Material
(http://www.mpcm-evolution.com) for more.
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distributions of the residuals and particularly residual distributions comprising one
or a few outliers are a reason to worry (and these usually lead to a reduction of
power). Hence, one should routinely inspect the distribution of the residuals. Most
usually, one will employ visual checks of the assumption, namely a qq-plot (and
potentially also a simple histogram). If these reveal residuals to be skewed, one
should consider transformations of the predictor(s) and/or the response (see also
next section). In case the residuals appear to comprise outliers, one should first
check whether these result from coding errors, and if this is not given, one should
ask oneself whether there are any predictors missing (e.g., data usually arising
from both sexes but occasionally from only females or males). When there appears
a missing predictor, one should consider including it into the model or dropping
rare levels in case it being a factor (see above). Note that an outlier in the residuals
might also give hint to an evolutionary singularity (Nunn 2011; Chap. 21).

A frequently asked question is whether one should use formal checks of the
distribution of residuals (e.g., test for normality). However, a P-value is always a
function of (at least) two properties of the data: the effect size (here, the deviation
from normality) and the sample size. Practically, this means that the P-value alone
does not provide a simple criterion for rejection (or not) of the assumption that the
residuals are normally distributed but can only be interpreted in conjunction with
the sample size. Hence, eyeballing a qq-plot (or a histogram) is usually considered
the most reliable and valuable tool for assessing whether the residuals are roughly
normally distributed (e.g., Quinn and Keough; Zuur et al. 2010).

Homogeneity of the Residuals

The other, and presumably more critical, assumption about the residuals is that
they are homogeneous (a.k.a. ‘homoskedastic’). This means that the variation in
the residuals should be the same, regardless of the particular constellation of
values of the predictors. Not much is known about consequences of violations of
this assumption (i.e., ‘heteroskedasticity‘) in the framework of a PGLS. However,
the consequences of heterogeneous residuals are probably not such that they
simply lead to increased type I or type II error rates. For instance, for the inde-
pendent-samples t-test (which is a special case of the general linear model), het-
eroskedasticity can lead to clearly increased type I and type II error rates,
depending on whether residual variance correlates positively or negatively with
sample size (e.g., Ramsey 1980). As a consequence, one should be quite vary
regarding violations of this assumption.

A check of this assumption is pretty straightforward, and again, one usually
employs a visual check (Quinn and Keough 2002; see also above). What one
usually does is plotting the residuals of the model (on the y-axis) against its fitted
values (on the x-axis), and what one wants to see here is nothing (i.e., no pattern in
the cloud of points). More specifically, what should be discernible from this plot is
simply no pattern whatsoever at all; that is, the residuals should show the same
pattern of scatter around zero over the entire range of the fitted values. Figure 6.3
shows an example of homogeneous residuals (a) and also two common patterns of
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the assumption being violated (b, c). In certain cases of heteroskedasticity (i.e.,
when the residual variance is positively or negatively correlated with the fitted
value), a transformation of the response might alleviate the issue (Fig. 6.3). The
question might arise as to how such plots usually look like when the assumption of
homogeneous residuals is not violated. In the Online Practical Material (http://
www.mpcm-evolution.com) I show how experience regarding the issue can be
rapidly gained.

A potential cause of heterogeneous residuals is a misspecified model. For
instance, when a covariate has a nonlinear effect on the response which is not
accounted for by the model, then this might become obvious from a plot of
residuals against fitted values (Fig. 6.4). Heterogeneous residuals could also arise
when the pattern of impact of the predictor on the response is not homogeneous
over the entire phylogeny (Rohlf 2006) or when an important main effect or
interaction is missing. Obviously, the results of a model with such unmodelled
structure in the residuals can be pretty misleading. Hence, one should try to
include the missing terms (or revise the taxa investigated in case the effects of a
predictor being heterogeneous across the phylogeny). However, such an a poste-
riori change in the model structure might need to be accounted for when it comes
to inference (since a hypothesis being generated based on inspection of some data
and then tested using the same data will lead to biased standard errors, confidence
intervals, and P-values; Chatfield 1995).
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Fig. 6.3 Illustration of the assumption of homogeneous residuals and deviations from it. When
the residuals are homogeneous, no relation between residual variance and the fitted value is
discernible (a). The probably most common violation of the assumption of homoskedasticity
reveals a residual variance being positively correlated with the fitted value (b). In such a case, a
log- or square root transformation of the response might alleviate the issue. Quite frequently, one
also sees a pattern where the residual variance is large at intermediate fitted values and small at
small and large fitted values (c). Such a pattern can occur as a consequence of bottom and ceiling
effects in the response and/or when one or several predictors show many intermediate and few
small and large values. When the response is bounded between zero and one, the arcsine of the
square root-transformed response may (or may not) alleviate the issue; otherwise, a careful
selection of the taxa included in the model may help. In case of such a pattern, one should also be
particularly worried about influential cases
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6.3.2.2 Absence of Influential Cases

Another issue that can only be evaluated once the model was fitted is absence of
influential cases. Absence of influential cases means that there are no data points
that are particularly influential for the results of the model, meaning that the results
do not largely differ depending on whether or not the particular cases are or are not
in the data. The influence of a particular data point on the results can be inves-
tigated from various perspectives, and which of them is relevant depends on the
focus of the analysis. In case of a PGLS where inference about particular effects is
usually crucial for the results, the estimates of the effects (and perhaps their
standard errors) will usually be in the focus of considerations of model stability.

In the framework of a standard general linear model or generalized linear
model, model stability is usually investigated by simply removing cases one at a
time and checking how much the model changes, whereby ‘model change’ is
usually investigated in terms of estimated coefficients and fitted values (‘dfbetas’
and ‘dffits,’ respectively; Field 2005). For the assessment of whether any particular
case is considered too influential (in the sense of questioning the results of the
model), no simple cutoffs do exist, and even if it were possible to unambiguously
identify influential cases, the question of what to do with such piece of information
is not easy to be answered. Assume, for instance, a situation where an analysis of a
data set with 100 taxa revealed an estimate for the effect of a certain covariate
being 1. Dropping taxa one by one from the data set revealed that for 99 of the taxa
removed, the estimate under consideration had values between 0.9 and 1.1, but
when removing the remainder taxon, the estimate obtained was -0.2. What would
one conclude from such a result? It is tempting to conclude that 99 out of 100 data
sets revealed an estimate within a small range (0.9–1.1) indicating a stable result.
However, it is more the opposite which is true here. In fact, this particular outcome
also implies that the actual estimate revealed crucially depends on a single taxon
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Fig. 6.4 Example of a misspecified model leading to a clear pattern in the residuals. Here, the
predictor has a nonlinear effect on the response not being accounted for by the model (straight
line in a). As a consequence, the residuals are large for small and large fitted values and small for
intermediate fitted values (b)
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being in the data set or not (in the sense that if it is not included, the results are
totally different). But what would then consider to be ‘truth’? Obviously, there is
no simple answer to these questions and the probably most sensitive one can do is
to ask oneself why the particular taxon being found to be so influential is so
different from the others? A simple (and not the most implausible explanation) is
the existence of an error (of coding, a typo, etc.), but potentially, it is also due to a
variable missing in the model or an evolutionary singularity (Nunn 2011; Chap. 21
). In fact, the taxon might crucially differ from all others in the data, for instance,
by being the only cooperative breeder among the species (to use the example from
above). In such a case, one would probably conclude that the story might be
different for cooperative breeders and exclude them from the analysis because of
poor coverage of this factor by the data at hand (but note that such operations
should not be required when the appropriate model is properly specified in advance
and when factors and covariates are properly investigated in advance; see above).

6.4 Drawing Conclusions

The final step after the model was developed and fitted and decided to be reliable
and stable is to draw conclusions from the results. This penultimate section deals
with some issues coming along with this step.

6.4.1 Full-Null Model Comparison

A very frequently neglected issue in the context of the interpretation of more
complex models (i.e., models with more than a single predictor) is multiple testing.
In fact, as shown by Forstmeier and Schielzeth (2011), each individual term in a
model has a five percent chance of revealing significance in the absence of any
effects. As a consequence, models with more than a single predictor have an
increased chance of at least one of them revealing erroneous significance. A simple
means to protect from this increased probability of false positives is to conduct a
full-null model comparison. The rationale behind this is as follows: The full model
is simply the model fitted, and the null model is a model comprising only the
intercept (but see below). Comparing the two gives an overall P-value for the
impact of the predictors as a whole (which accounts for the number of predictors),
and if this reveals significance, one can conclude that among the set of predictors
being in the model, there is at least one having a significant impact on the
response.5 The P-values obtained for the individual predictors are then considered

5 Note that this requires the model to be fitted using maximum likelihood; see the Online
Practical Material (http://www.mpcm-evolution.com) for more details.
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in a fashion similar to post hoc comparisons; that is, they are considered significant
only if the full-null model comparison revealed significance.

In this context, it might be helpful to distinguish between test predictors and
control predictors. This distinction can be helpful when not all predictors being in
the full model are of interest in the light of the hypotheses to be investigated, but
some are included only to control for their potential effects. Such predictors could
and should be kept in the null model to target the full-null model comparison at the
test predictors. For instance, assume an investigation of the impact of social and
environmental complexity on brain size. In such a case, body size will be only in
the model to control for the obviously trivial effect of body size on brain size.
Hence, one could and should keep body size in the null model since its effect is
trivial and taken for granted and not of any particular relevance for the hypotheses
to be investigated (except for that it needs to be controlled for). I want to
emphasize, though, that the entire exercise of the full-null model comparison is
only of relevance when one takes a frequentist’s perspective on inference, that is,
when one draws conclusions based on P-values.

6.4.2 Inference About Individual Terms

There are two final issues with regard to drawing inference based on P-values that
deserve attention here. The first concerns inference about factors with more than
two levels being represented by more than a single term in the model. As explained
above, factors are usually dummy coded, revealing one dummy variable for each
level of the factor except the reference level. Hence, a factor having, for instance,
three levels will appear in the model output with two terms. As a consequence, one
does not get an overall P-value for the effect of the factor, but two P-values, each
testing the difference between the respective dummy coded level and the reference
level. However, quite frequently, an overall P-value of the effect of the factor as a
whole will be desired (particularly since the actual P-values shown are pretty
much a random selection out of the possible ones since the reference category is
frequently just the one which is the alphanumerically first). Such a test can be
obtained using the same logic as for the full-null model comparison: A reduced
model lacking the factor but comprising all other terms present in the full model is
fitted and then compared with the full model using an F-test. If this test reveals
significance, the factor under consideration has a significant impact on the
response (see, e.g., Cohen and Cohen 1983 for details).

The other concerns inference of terms involved in interactions, for which
interpretation must be made in light of the interaction they are involved in.
Assume, for instance, a main effect involved in a two-way interaction: Its estimates
(and the P-value associated with it) are conditional on the particular value of the
other main effect it is interacting with. This can be seen when one considers the
model equation with regard to the effects of the two predictors (‘A’ and ‘B’)
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interacting with one another, namely response = c0 + c1 9 A + c2 9 B + -
c3 9 A 9 B. Since the effect of A on the response is represented by two terms in
the model, one of which (c3) modeling how its effect depends on the value of the
other, c1 models the effect of predictor A at predictor B having a value of zero
(which would be its average if B were a z-transformed covariate or the reference
category if B were a dummy coded factor). The same logic applies when it comes
to the interpretation of two-way interactions involved in a three-way interaction
and so on and also when it comes to the interpretation of linear effects involved in
nonlinear effects like squared terms. This limited (precisely conditional) inter-
pretation of terms involved in an interaction (or a nonlinear term) needs to be kept
in mind when interpreting the results (see Schielzeth 2010 for a detailed account
on the issue).

6.5 Transparency of the Analysis

A proper analysis requires a number of decisions. These include (but are not limited
to) decisions about which main effects, interactions, and nonlinear terms are to be
included in the model, potential transformations of predictors and/or the response,
and subsequent z-transformations of the covariates. Furthermore, conducting a
proper analysis means to conduct several checks of model validity and stability
which might reveal good or bad results or something in between. All these decisions
as well as the results of checks of model stability and validity are an integral and
important part of the analysis and should be reported in the respective paper. Finally,
also, the software used for the analysis should be mentioned (and in case of R being
used also the key functions and the packages (including the version number) that
provided them). Otherwise, the reader will be unable to judge the reliability of the
analysis and cannot know to what extend the results can be trusted (see also
Freckleton 2009). From my understanding, this means to (1) thoroughly outline the
reasoning that took place when the model was formulated; (2) clearly formulate the
model analyzed; (3) clearly describe the preparatory steps taken (e.g., variable
transformations); and (4) clearly describe the steps taken to evaluate the model’s
assumptions and stability and what they revealed. Nowadays, there is usually the
option to put extensive information into supplementary materials made available
online, and we should use this option! Only by providing fully transparent analyses,
we make our projects repeatable, and repeatability is at the core of science.

6.6 Concluding Remarks

What I have presented here are some of the steps that should be taken to verify the
statistical validity and reliability of a PGLS model. I focused on issues and
assumptions frequently checked for standard general linear models which begin
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with the formulation of a scientifically and logically adequate model and continue
with its technically valid implementation. At the core of the establishment of the
statistical validity and reliability of a model are issues regarding the number of
estimated terms in relation to the number of cases, the distribution(s) of the pre-
dictor(s), absence of collinearity and influential cases, and assumptions about the
residuals. Finally, drawing inference requires special care, and all the steps con-
ducted to verify the model need a proper documentation. What I presented here are
largely the steps taken to validate the reliability of a general linear model that I
more or less simply transferred to PGLS. However, besides the steps I considered
here, the validity of a PGLS model also most crucially depends on a variety of
issues specific to PGLS (see introduction) and these must not be neglected neither.

With this chapter, I hope to create more attention for evaluations of whether the
assumptions of a given model are fulfilled and to what extend a given model is
stable and reliable. Only, once the assumptions of a model and its stability have
been checked carefully, one can know how confident one can be about its results.

Acknowledgments First of all, I would like to thank László Zsolt Garamszegi for inviting me to
write this chapter. I also thank László Zsolt Garamszegi and two anonymous reviewers for very
helpful comments on an earlier draft of this chapter. I equally owe thanks to Charles L. Nunn for
initially leading my attention to the need for and rationale of phylogenetically corrected statistical
analyses. During the three AnthroTree workshops held in Amherst, MA, U.S.A., in 2010–2012
and supported by the NSF (BCS-0923791) and the National Evolutionary Synthesis Center (NSF
grant EF-0905606) I learnt a lot about the philosophy and practical implementation of phylo-
genetic approaches to statistical analyses, and I am very grateful to have had the opportunity to
attend them. This article was mainly written during a stay on the wonderful island of Læsø,
Denmark, and I owe warm thanks to the staff of the hotel Havnebakken for their hospitality that
made my stay very enjoyable and productive at the same time.

Glossary

Case Set of entries in the data referring to the same taxon;
represented by one row in the data set and corresponds
to one tip in the phylogeny.

Covariate Quantitative predictor variable.

Dummy coding Way of representing a factor in a linear model, by
turning it into a set of ‘quantitative’ variables. One level
of the factor is defined the ‘reference’ level (or refer-
ence category), and for each of the other levels a vari-
able is created which is one if the respective case in the
data set is of that level and zero otherwise. The estimate
derived for a dummy coded variable reveals the degree
by which the response in the coded level differs from
that of the reference level.
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Factor Qualitative (or categorical) predictor variable.

General linear
model

Unified approach to test the effect(s) of one or several
quantitative or categorical predictors on a single quan-
titative response; makes the assumptions of normally
and homogeneously distributed residuals; multiple
regression, ANOVA, ANCOVA, and the t-tests are all
just special cases of the general linear model.

Level Particular value of a factor (for instance, the factor ‘sex’
has the levels ‘female’ and ‘male’).

Predictor (variable) Variable for which its influence on the response vari-
able should be investigated or controlled for; can be a
factor or a covariate.

Response (variable) Variable being in the focus of the study and for which it
should be investigated how one or several predictors
influence it.

Right (left) skewed
distribution

Distribution with many small and few large values (a
left skewed distribution shows the opposite pattern).
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Chapter 7
Uncertainties Due to Within-Species
Variation in Comparative Studies:
Measurement Errors and Statistical
Weights

László Zsolt Garamszegi

Abstract Comparative studies investigating evolutionary questions are generally
concerned with interspecific variation of trait values, while variations observed
within species are inherently assumed to be unimportant. However, beside mea-
surement errors, several biological mechanisms (such as behaviors that flexibly
change within individuals, differences between sexes or other groups of individ-
uals, spatial, or temporal variations across populations of the same species) can
generate considerable variation in the focal characters at the within-species level.
Such within-species variations can raise uncertainties and biases in parameter
estimates, especially when the data are hierarchically structured along a phylog-
eny, thus they require appropriate statistical treatment. This chapter reviews
different analytical solutions that have been recently developed to account for the
unwanted effect of within-species variation. However, I will also emphasize that
within-species variation should not necessarily be regarded as a confounder, but in
some cases, it can be subject to evolutionary forces and delineate interesting
biological questions. The argumentation will be accompanied with a detailed
practical material that will help users adopt the methodology to the data at hand.

7.1 Introduction

Since the days of Darwin, questions about evolution have centered around the
forces of selection that have led to the extreme diversity in nature we observe
today. Current diversity across species is regarded as the result of a large-scale
natural experiment, in which their common ancestors had been placed in different
environments, and subsequently underwent different selection regimes that
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affected their anatomy, physiology, life history, and behavior (Doughty 1996).
Therefore, analyzing present-day patterns of interspecific variation enables making
inferences about selective mechanisms acting in the past. Accordingly, most
comparative studies rely on species as the unit of analysis, and species-specific
trait values are subsequently investigated on the branches of the phylogenetic tree.
By adopting this focus, most comparative studies inherently assume that species-
specific means are biologically meaningful and they can be estimated without
error.

In some cases, these assumptions are likely to be met. Take the example of
brain size evolution, for instance. Comparing mammals based on species-specific
means of relative brain size will probably reveal biologically meaningful com-
parisons and will allow making inferences about the evolution of cognitive
capacities. Every individual within a species has a similar brain size relative to its
body size when compared to the level of variation between species. Therefore,
obtaining data from Usain Bolt, Albert Einstein, or even from my five-year-old
daughter will equally represent the true human-specific value: each will have
systematically larger brain-to-body-size ratios than any randomly chosen indi-
vidual elephant or shrew. However, this assumption becomes less valid if, taking
another example, running speed is the trait of interest, which varies more within
species. I would bet with high confidence that Usain Bolt could beat an Asian
elephant in a race, but I would be extremely worried seeing the same animal
running after my daughter. How such variation occurring at the within-species
level can affect the phylogenetic findings based on species-specific means?

Historically, the importance of the consideration of within-species variation has
been dwarfed by another common assumption: the independence of interspecific
data. Species cannot be regarded as independent observations as their shared
common ancestry creates varying degrees of similarity between them in their
phenotypes; this is classically regarded as the principal confounding factor that can
bias interspecific patterns. The phylogenetic association of species, in fact,
establishes the essence of comparative studies. Accordingly, a plethora of statis-
tical approaches has been developed to handle such non-independence issues by
incorporating the phylogenetic history of species into the analysis. However, the
confounding effect of within-species variation remains somewhat neglected, and
only recent developments have discovered the significance of this issue in the
phylogenetic comparative context.

This chapter aims to bring these statistical developments into the focus of
practicing evolutionary biologists. First, I explain what kind of mechanisms can
shape variation within species. Next, I show how variation within subjects can
alter observed patterns at the between-subject level in both the non-phylogenetic
and phylogenetic contexts. Third, I examine how issues about within-species
variance and sample size can be dealt with at the different phases of research
(research design, diagnostics, core analysis, and interpretation). Following, in
addition to the historical development of methods, I review recently proposed
phylogenetic models that are able to account for within-species variation. This
comparison will highlight the fundamental differences in the theoretical
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foundations of these methods, their usefulness for different research designs and
data types, and their accessibility in statistical packages. In this section, I will also
point about the potential use of within-species variance to address interesting
questions rather than as annoying nuisance in analyses. The description of the
methods will be accompanied by illustrative biological examples, for which data
files and program scripts (mostly in R) are made available in the corresponding
Online Practical Material (hereafter OPM) at http://www.mpcm-evolution.com. As
a closing remark, I discuss how the increasing recognition of within-species var-
iation in phylogenetic comparative studies may lead to a departure from the
classical philosophy of focusing on species-specific trait values as being evolu-
tionarily relevant. Such a new direction may also open new horizons for the
development of statistical methods.

7.2 Sources of Within-Species Variation

There are several sources that can generate variation, or measurement error,
around the species-specific means. Although in a statistical sense, measurement
error refers to deviations of any kind that appear between an observed and a true
value, such variations can be at least of three types with different biological
meaning. Hereafter, I refer to measurement error in a statistical sense meaning all
types of within-species variation sensu lato.

First, instrument-related errors or observer effects can cause noise around the
mean value of a trait of interest. For example, each equipment or molecular assay
has a given precision that delineates a certain confidence range around each mea-
surement. Similarly, estimation outcomes may vary among observers, which also
raises an unwanted component of uncertainty when different people assess species-
specific means. These deviations cause measurement errors in a narrow sense, since
they are unlikely to be associated with the phylogeny and biology of the species at
hand, if all species are measured by exactly the same method (or as similar a
method as possible). Alternatively, as methods with no doubt vary, different
equipment, laboratory assays, and observers may be applied randomly to different
species (or at least arbitrarily across species, which is usually the case) to avoid
instrument- or observer-related error to raise biases that can affect the underlying
biological question. The errors that are introduced by such sources can be assessed
by calculating estimates of inter-observer or inter-instrument reliability based on
the repeated measure of the same subjects by different observers or via different
instrument/assay conditions (e.g., Caro et al. 1979; Reed et al. 2002).

The second type of variation refers to true biological differences at the within-
species level. Due to fluctuations in physiology or behavior, individuals of a given
species will vary in the expression of certain traits. Even the same individual can
demonstrate altering physiological states or produce different behavioral scores in
different times or contexts. Moreover, individuals of different age- and/or sex-
groups may have particular trait values. Such variation that appears at the within- or
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between-individual levels may have biological relevance and can result in non-
random fluctuations. For example, higher species-specific means can be associated
with higher between-individual variations (e.g., think about body-size variations in
mice and elephants), but patterns of within-species distributions may also vary due
to several biological reasons and non-independently of phylogeny (e.g., higher
variances are preserved in certain closely related taxa). Such non-random patterns
make within-species variation due to between- or within-individual variation dis-
tinct from instrumental errors and potentially necessitate different treatments.
Ideally, if variation at the between-individual level is considerable, several indi-
viduals within a species should be measured. This variation can be taken forward
into the next levels of analyses (e.g., diagnostics and phylogenetic models), and,
unlike in the case of instrument-related errors, should not be assumed as random.

Some type of variation may exist at a higher level. In addition to individuals,
populations of the same species can differ and thus can produce deviations around
the species-specific means. This is a more challenging problem than the between-
individual variation. Different populations may have their own phylogeographical
history, and migration between populations can play an additional role in shaping
diversity within species, raising challenges in determining the true species-specific
trait values (Felsenstein 2002; Ashton 2004). Therefore, to appropriately deal with
between-population differences, one may not only need to collect population-
specific trait data, but also take into account information about phylogeographical
history and gene flow acting at the between-population context (Stone et al. 2011).

Additional complications may appear if the above sources of errors are
simultaneously present and generate within-species variances in an additive or
more complex manner (i.e., a trait can only be estimated with a given uncertainty
due to instrumental errors, but at the same time, it also varies between individuals
and populations). Since different types of error have different biological meaning,
it might be desirable to treat them separately. Unfortunately, available correction
methods handle measurement errors in a broad sense, thus their analytical sepa-
ration remains currently impractical, and the researcher is left with needing a
careful research design and targeted data collection if s/he wishes to discriminate
between different types of measurement error in the comparative analysis.

Moreover, when measurement errors exist for more than one trait in the analysis,
the potential correlation between these errors can be another confounding issue. For
example, if the measurement of two traits relies on the same instrument or observer
for a certain group of species, while another set is used for another group of species,
there will be an unwanted correlation between measurement errors. Similarly, if
between-individual or between-population effects cause similar variations in dif-
ferent traits within species, this will also result in correlated measurement errors.
The statistical treatment of correlating measurement errors is achievable in some
phylogenetic methods (Ives et al. 2007; Hansen and Bartoszek 2012).

Statistical properties of within-species variation (i.e., how much dispersion
from the species-specific trait value exists within species due to within- or
between-individual differences of variations between populations) can be
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approached by different metrics that describe variations around the mean of a
sample. Given that terminologies and abbreviations are used in a somewhat
inconsistent manner, I highlight the most relevant definitions in Box 7.1.

Box 7.1 Metrics Describing Within-Species Variation and Sampling
Effort

Variance. It is a probability descriptor that measures how far numbers
within a sample are spread out. It is measured as the arithmetic mean of the
squared differences from the true population mean, thus within-species
variance is approached as the average of the squared differences of the
within-species data points from the known species-specific trait value:

r2 ¼ 1
ni

Xni

i¼1
ðxi � lÞ2

where ni is the within-species sample size (see below), xi is the individual- or
population-specific measure, and l is the species-specific value. However,
given that the true species–species trait value is unknown but is estimated
from the available sample of small number of within-species repeats (pop-
ulations or individuals), the above estimator introduces downward bias.
Hence, the following (so-called Bessel’s correction) formula should be used
to describe within-species variation:

s2 ¼ 1
ni � 1

Xni

i¼1
ðxi � �xÞ2

where �x is the arithmetic mean of the within-species data. Note that r2 and s2

signify variance depending on whether true species-specific values or
within-species mean is used for reference. The variance of a variable has
units of measurement that are the square of the units of the variable. It is
often impractical for interpretation, but most comparative approaches
accounting for within-species variation takes data on variation in a form of
s2. For conventional reasons, I present equations based on r2 by using the
appropriate subscripts to distinguish between within- and between-species
variances.

Standard deviation. It is another probability descriptor that measures the
dispersion of the distribution, but it is calculated as a square root of variance:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ni

Xni

i¼1
ðxi � lÞ2

r
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for known species-specific values, and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ni � 1

Xni

i¼1
ðxi � �xÞ2

r

for modest within-species samples. Note that although s2 is an unbiased
estimator of variance, s (so-called sample standard deviation) remains a
slightly biased estimator for standard deviation. This bias can be consider-
able for small samples (e.g., ni\10), but becomes less important at
increasing sample sizes. In spite of this, the sample standard deviation is the
most commonly used formula, but unbiased sample standard deviation
estimators for different distributions are also available.

Unlike for variance, the units of measurement for standard deviation are
meaningful on the same scale on which the variable itself was measured. For
this reason, interpreting variation within a set of data via standard deviation
is more straightforward than via variance. An important aspect of standard
deviation is that it is independent of sample size (unlike standard error) and
it remains the same at small and large samples.

Measurement (or observational) error. It is simply the difference between
a measured value of quantity and its true value. The term has theoretical
importance.

Standard error of the mean. It is not a descriptive statistics like standard
deviation or variance, but it estimates error bounds on a random sampling
process when the true population mean l is approached by the sample mean
�x. By definition, standard error is the standard deviation of the mean of the
within-species values and describes how accurately this mean estimate
captures the true species-specific value. Note that standard deviation of a
sample corresponds to the dispersion of the raw data points around their
mean. Another important difference between standard error and standard
deviation is that albeit they are measured on the same units (such as the
original variable), the former is dependent on sample size. This is because
repeated measurements reduces random measurement errors and make the
estimator more accurate, thus the mean of the within-species values will be
closer to the true species–species estimate as within-species sample size
increases. The standard error SE�x of the mean can be calculated as:

SE�x ¼
s
ffiffiffiffi
ni

p

The method by Ives et al. (2007) uses standard errors. In many cases, the
sampling variance is assumed to be the square of the standard errors of the
species-specific means (e.g., Hadfield and Nakagawa 2010; Hansen and
Bartoszek 2012). However, given that standard errors are sensitive to sample
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sizes, correction methods may be applied especially when sample sizes are
small and vary among species.

Coefficient of variation. It is a normalized measure of dispersion and
describes the spread of data as the standard deviation relative to the sample
mean:

cv ¼
r
l

or cv ¼
s

�x

(unbiased estimators for different distributions are available). While vari-
ances and standard deviations are interpretable along the scale of the original
variable, the coefficient of variation is interpretable independently of the
measurement units (i.e., dimensionless) and thus comparable across different
traits. This is not only important when comparing different traits, but may be
an issue when different species with different species-specific means are
contrasted, and larger trait values are accompanied by larger variance. As a
general benchmark, distributions with cv\ 1 can be interpreted to include
low variance, while those with cv[ 1 are considered to be loaded with high
variance.

Within-species sample size. The number of repeats available within
species (i.e., intraspecific sample size), denoted as ni for species i, and
distinguished from N, which is the number of species being compared (i.e.,
interspecific sample size). ni can signify the number of populations (or other
within-species groups) or the number of individuals that are sampled in a

species. Therefore, the total sample size in a comparative study is
PN

i¼1 ni,
which equates with ni*N if ni is the same for all species. Within-species
sample size is often used as an estimate of sampling effort, because species
with large ni can be considered as species that were studied with higher
intensity than species with low ni, thus they provide more precise estimates
for the species-specific trait values. Therefore, within-species sample size
can be used to adjust for heterogeneities in sampling effort through the use of
statistical weights in the models. Given that SE�x ¼ s=

ffiffiffiffi
ni

p
; 1=

ffiffiffiffi
ni

p
is an

important component of the standard error of the mean. For example, if
instrumental or between-observer error is constant across species, variation
in sample size can still generate differences in measurement error between
species. Accordingly, if measurement error data are not available, 1=

ffiffiffiffi
ni

p
can

be used as an approximation of standard errors (see examples in the text).
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7.3 The Statistical Consequences of Ignoring
Within-Species Variation

7.3.1 Effects Independent of Phylogeny

7.3.1.1 Increasing statistical noise and attenuation bias

The problem caused by within-subject variation is not unique to phylogenetic
comparative methods, but is a well-recognized issue in the statistical literature
(Fuller 1987; Bollen 1989; Buonaccorsi 2010). In general, measurement error can
introduce uncertainty in the estimates of true values even in very large samples. In
a univariate case, imprecise measurements (or true within-subject variation in a
broader sense) will increase the error range by which a single measurement
approximates the true mean of the sample and will thus decrease our confidence in
each datum (Chesher 1991; Manisha 2001). However, such effects act symmet-
rically on both sides of the distribution, thus measurement error raises random
noise but not systematic bias if the focus is to derive estimates for a single
variable. This may incur issues about statistical power when, for example, the
estimated mean of a sample is contrasted against a hypothetical mean via null-
hypothesis testing. Accordingly, in the case of large measurement error, we are
more likely to commit type II statistical errors (failing to reject a false null
hypothesis) than in the case of small or no measurement errors at the same sample
size.

On the other hand, when the relationship between two or more variables is of
interest, the presence of measurement error will not only affect precision and
statistical significance, but can have considerable influence on parameter esti-
mates, such as correlation or regression slopes (Judge et al. 1985; Fuller 1987;
Chesher 1991; Adolph and Hardin 2007). Standard regression and correlation
models assume that all variables have been measured correctly, or observed
without error (to be more precise, regression models apply these predictions to the
predictor but not to the response variables). When particular or all variables have
been measured with errors or exhibit variations within subjects, conventional
estimates of correlation coefficients (such as Pearson product-moment correla-
tions) will perform with a bias toward zero (i.e., will underestimate true param-
eters, Fig. 7.1a and b). In a regression problem, such downward bias will be
manifested in the underestimation of R2 and standardized regression coefficients if
within-subject variance exists within the response variable, and in the underesti-
mation of unstandardized regression estimates in the presence of error in the
predictor variables. The characteristics of this bias are even more complex in
nonlinear regressions. The downward bias introduced on parameter estimates by
within-subject (e.g., within-species) variability is known as attenuation bias and
calls for statistical approaches that can account for such a bias (e.g., measurement
error regression models, structural equation modeling, and unbiased estimators of
correlation coefficient).
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7.3.1.2 Within-Subject and Between-Subject Correlations

The aforementioned situations involve the confounding effects of within-subject
variances around the predictor and response that act independently of each other.
However, when multiple traits are examined, issues about covariances should also
be considered. That is, the apparent relationship between two traits with clustered
structure can actually have two components: the between-subject and the within-
subject components (Snijders and Bosker 1999, see also Fig. 7.2). The between-
subject correlation or regression arises from the relationship between the two
variables based on the subject- or group-specific (for us species-specific) mean
trait values. The within-subject correlation, however, refers to the associations that
appear at the within-subject levels (e.g., from between-individual or -population
correlations or regressions). The two components can have opposite direction with
effects that contradict each other (for example, in the within-species context,
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Fig. 7.1 The effect of measurement error and within-species sample size on the estimation of
regression slopes from simulations that incorporate different variance components. a The within-
and between-species variance of both the predictor and response variables are set to provide a
repeatability of 0.75 (see Sect 7.4.2.1. about repeatability). b The within- and between-species
variance of both the predictor and response variables are set to provide a repeatability of 0.40. c
and d same conditions as in b, but the data were analyzed by weighted least square regression that
relied on two different scenarios for within-species sample sizes. Dots represent species, solid
lines show the regression line (same in all cases) that was used to generate species-specific
means, dashed lines that are obtained by least square regressions (a and b: ordinary regression, c
and d: weighted regression) on the simulated data loaded with measurement error, red crosses in
a and b define error ranges around both variables that were considered during the simulation, the
size of the points in c and d are proportional to the corresponding within-species sample size
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small-sized individuals live longer than large individuals, while in the between-
species context, there is a positive relationship between body size and longevity,
such as in Fig. 7.2b). Moreover, the relationships within subjects can vary from
subject to subject, which is likely if these represent different species with different
ecology. This may be important in a comparative context, if for example, different
mechanisms shape between-population patterns in different species, while other
selection regimes operate and affect trait associations at the interspecific level. If
data are available at the within-subject level, mathematical and statistical solutions
are available to separate the within- and between-group components of correla-
tions or regressions (Kreft et al. 1995; Gelman and Hill 2007; Bolker et al. 2009;
van de Pol and Wright 2009).

7.3.1.3 Heterogeneity in Sampling Effort

An additional problem met when the unit of analysis (e.g., species) corresponds to
repeated measurements of smaller units (individuals, populations) is that due to
various constraints on the sampling procedure, different values will often be
represented with different within-subject sample sizes (ni). This will affect another
assumption of standard statistical methods, namely that the standard deviation of
the error term is constant over all values of the variables (Sokal and Rohlf 1995).
This would require each data point to provide equally precise information about
the deterministic part of total process variation, a condition that is likely violated if
data quality is a function of sampling effort, and subject-specific estimates from
small samples will be less reliable than estimates from large samples (Garamszegi
and Møller 2010). Such heterogeneity in data quality can be accounted for by
using statistical weights in the analyses (generally available for descriptive
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Fig. 7.2 Within-species (red dashed lines) and between-species (black solid lines) regressions
when considering two possible scenarios. a both within-species (i.e. as estimated from
regressions at the between-individual level) and between-species (i.e. as estimated from
regressions using species-specific trait values) regressions are positive, but they somewhat differ
in their slopes. b within-species regressions are negative while between-species are positive
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statistics of univariate distributions, correlations, and regressions) that give
emphasis to each data points according to the underlying sample size (Fig. 7.1c
and d).

7.3.2 Effects Evoked by Phylogenetic Associations

The common ancestry of species gives another twist to the story on measurement
errors. In addition to the power and attenuation issues detailed above, there are
other effects of within-species variation that are called forth only in light of the
specific hierarchical structure of the interspecific data. In particular, the above
errors interacting with the phylogeny can often enhance the chances of detecting a
spurious relationships between variables (Martins 1994; Purvis and Webster 1999;
Felsenstein 2004).

7.3.2.1 Mathematical Evidence

Such types of biases are well defined mathematically for the approach based on
phylogenetically independent contrasts, when uncontrolled within-species vari-
ances are differentially magnified during the standardization of contrasts (Ricklefs
and Starck 1996; Felsenstein 2008). The variance of the difference between two
species’ means depends on the branch length involved (determining phylogenetic
variation) and the measurement errors around these means (determining within-
species phenotypic variation). By definition, the contrasts are standardized by a
quantity proportional to the square root of their total standard deviation (Felsen-
stein 1985). Such standardization can have a strong influence for closely related
species (i.e., when the involved branch lengths are short) if the underlying within-
species sample sizes are low (i.e., when measurement errors are large), because the
contrasts are divided by far too small quantity. This artificial standardization can
produce outlier contrasts for all variables with considerable influence on the
estimated regression or correlation coefficients.

7.3.2.2 Simulation Results

Harmon and Losos (2005) presented a simulation study to demonstrate the effect
of uncontrolled within-species variation on type I error rates emerging in phylo-
genetic comparative studies based on independent contrasts. They generated
interspecific data for two variables with an expected covariance structure between
them for a modest number of species sharing a certain phylogenetic history. They
also simulated within-species sampling process around these means by considering
different scenarios for sample size in terms of the number of individuals and
measurement error. When there is no correlation between two variables, one may
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expect to find a statistically significant relationship between them only by chance
in 5 % of the simulated datasets. This type I error rate could be reproduced in the
non-phylogenetic context, i.e., when species-specific trait values were simulated
independently of each other and the units of analysis shared no historical asso-
ciations. However, the number of significant associations increased above the
chance levels in models based on independent contrasts without accounting sta-
tistically for within-species variation. At large within-species variation and small
sample sizes, type I error rate could increase up to 17 %. The error rates in the
phylogenetic simulations could be retained at the chance (5 %) level when most of
the variance occurred at the between-species level making intraspecific component
negligible and when within-species sampling relied on large sample sizes.
Importantly, increasing between-species sample size did not improve error rates,
but, in fact, produced spurious correlations at high measurement errors more
powerfully than simulations relying on fewer species. Felsenstein (2008) per-
formed similar simulations, in which he used slightly different sampling schemes
and found that a true null hypothesis was falsely rejected in about 20 % of the
cases when the data were analyzed by the standard contrast method that ignores
within-species variance.

If considerable within-species variation is left uncontrolled, parameter esti-
mates become biased when the data are analyzed not only by independent con-
trasts, but also when the approaches rely on phylogenetic generalized least squares
(PGLS). Ives et al. (2007) demonstrated the occurrence of such biases in various
evolutionary test situations. For example, they designed a univariate simulation
model to study the performance of ancestral state estimators at a given phylogeny
and trait value at the root of the tree and with pre-defined within- and between-
species variances. They considered an extreme measurement error scenario (being
more than two times larger than the standard deviation of the among-species
error), which provided evidence that, at a low within-species sample size, the
phylogenetic generalized least squares method disregarding within-species vari-
ances reveals biased estimates for parameters of evolutionary rate ðr2Þ and phy-
logenetic signal (K). This happens because, by ignoring the within-species
component of variation, variability in the data is erroneously attributed solely to
the between-species component, which results in the overestimation of the rate
parameter and in the underestimation of phylogenetic signal. However, ancestral
state estimation seems to be unaffected by the presence of measurement errors.

The influence of within-species variance has also been investigated in bi- or
multivariate evolutionary problems. In a correlation model, Ives et al. (2007)
showed that an estimator of r without accounting for measurement errors performs
with downward bias even when controlling for the phylogenetic association of
species. Similar patterns were found in a regression model, in which the estab-
lished slope parameter was underestimated with a conventional PGLS regression
approach when within-species variance was present in the data. Importantly, the
degree of this bias was independent of the interspecific sample size, but the
confidence intervals around the estimates were narrower when a larger number of
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species was involved. Therefore, echoing the results of Harmon and Losos (2005),
this indicates that large interspecific sample size when coupled with low intra-
specific sample size can accentuate biases with higher statistical power.

7.3.2.3 Empirical Evidence

A meta-analysis of almost two hundred comparative studies investigated empiri-
cally if heterogeneity in within-species sample size can have an effect on research
findings (Garamszegi and Møller 2010). It appears that in a ~20 % of studies, the
use of statistical weights that balance for heterogeneity provides remarkably dif-
ferent results from that of the non-weighted model. This rate is comparable to the
effect that a control for phylogenetic non-independence causes. Notably, the result
of weighting was particularly strong when there was large variation in sample sizes
among species, while homogenization had a minor effect when sample sizes were
more balanced among species.

The above studies unanimously suggest that recent issues about within-species
variance and sample size should not be taken as a false alarm, as there are situ-
ations when the variability of trait values within species can have a considerable
effect on the estimation of parameters with evolutionary importance. However,
most of the simulations were made under conditions in which extreme error
structures were created: i.e., within-species samples consisting of few individuals
and variances that are comparable with the between-species variances. Most of the
comparative studies in practice might meet with more relaxed conditions when
conventional phylogenetic methods can also perform with tolerable type I error
rate even by ignoring within-species components of variations. This does not mean
that the problem can be ignored, but highlights the importance of the consideration
of the measurement error issue at the level of study design and data diagnostics,
and its appropriate treatment at the analytical level if the data at hand require. Such
an empirical approach to within-species variance resembles the philosophy that is
similar to how we nowadays handle the confounding effects due to common
descent: we estimate the phylogenetic signal in the data first (more precisely in the
model residuals, see Chap. 5) and then obtain parameter estimates from the model
at the estimated signal value (Freckleton 2009).

7.3.3 Phylogenetic and Other Biological Confounders

So far, within-species variances and sample sizes were treated as if they were
fluctuating at random with respect to the biological question under testing.
However, there might be cases when properties of between-individual or between-
population distributions are shaped by evolutionary forces; thus, within-species
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sample sizes and/or variances are not necessarily independent of the phylogenetic
history of species or other biological predictors. For example, Garamszegi and
Møller (2011) claimed that within-species sample size (also contributing to
measurement errors via 1=

ffiffiffiffi
ni

p
, see Box 7.1) can vary along several species–

species characteristics that determines the probability of sampling of individuals.
This is because some species may occur at low abundance, display trap-shy
behaviors or have a life history that makes their sampling difficult, which would all
decrease their probabilities of being sampled. If such probabilities are determined
by certain phylogenetic or biological attributes of species, this will render within-
species sample sizes to be related to the same attributes. From the empirical part of
the argument (Garamszegi and Møller 2012), it was evident that sampling effort in
terms of within-species sample size was consistent across different studies on birds
using different sampling methods suggesting that available sample sizes are spe-
cies-specific attributes. Moreover, it was dependent on abundance, body mass, and
predator avoidance behavior implying that applicable sampling effort is deter-
mined by some biological properties of the species.

7.4 The Statistical Treatment of Within-Species Variation
in Phylogenetic Comparative Studies

The problems posed by within-species sampling variance can be considered in
each phase of research, from the design of studies to the interpretation of the
results. These steps will be discussed below.

7.4.1 Study Design: Balancing Sample Sizes

When designing a phylogenetic comparative study, the observer is usually
restricted to balance between the within-species and the between-species sample
sizes (Harmon and Losos 2005). A certain number of species is important to reach a
sufficient statistical power in the analyses, but also to make generalizable evolu-
tionary inferences. On the other hand, simulations (Harmon and Losos 2005; Ives
et al. 2007) show that low within-species sample size can bias parameter estimates
even when several species are included. Thus, sample size requirements at different
levels to deal with power and bias are often in conflict with each other. Therefore,
some efforts should be devoted to the appropriate within-species sampling, event at
the cost of decreasing between-species sample size. Ideally, these constraints can be
optimized in a pilot study, in which the variances at the between- and within-
species levels can be determined in a subsample of species. Such information can
subsequently guide the investigator when determining sample sizes, for which the
simulation results might serve some rules of thumb (Harmon and Losos 2005; Ives
et al. 2007; Felsenstein 2008). In general, when within-species variance appears
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negligible compared to the among-species variance in a pilot study, it may be a
convincing evidence for that sampling effort at the within-species level will be less
important on a wider scale. Hence, the researcher is safe to conclude that a few
estimates per species provide a reliable representation of the species-specific mean
trait values. However, when a considerable proportion of variance is at the within-
species level (see quantitative estimation in the next section), multiple measure-
ments are warranted for each species, and the within-species variance should be
taken forward into the comparative analyses.

Due to various biological reasons, some species are easier to sample than
others. Therefore, it is unrealistic to obtain the same within-species sample size in
every species, which sets up additional challenges for study design. Shall we
devote more research effort to sample less accessible species at the cost of low-
ering the sample size for a large number of more common species? Finding an
answer to such questions can be a complex task and may require considerations
about the biological problem and the phylogeny at hand. Some pilot studies as well
as phylogenetic targeting (see Arnold and Nunn 2010) may also be of help to
optimize research effort.

7.4.2 Diagnostics

7.4.2.1 Repeatability

For a comparative study of species-specific means to be meaningful, these means
are required not to be confounded by measurement errors, and if this assumption is
fulfilled, within-species variance could be omitted in the analyses. Although, most
comparative analyses apply this omission, the potentially confounding effect of
measurement error is rarely considered in practice (and even in theory). If species-
specific values cannot be estimated without errors, within-species variances (or
other components of errors) need to be incorporated in the phylogenetic models. In
this case, the researcher needs to invest a substantial effort in collecting a suffi-
ciently large sample for each species that would allow to capture trait variations
therein and to obtain good estimates for species means (or other statistics). To
make decisions about such investments and about the subsequent analytical
strategy, it might be useful to have a glance about different components of the
variance prior to the phylogenetic analyses. If based on the measurement of dif-
ferent individuals or populations, multiple data are available for, at least, a subset
of species (e.g., from a pilot study), the ratio between the within-species and
between-species components of variances can be assessed by calculating
repeatability.

Repeatability is the intraclass correlation coefficient that can be derived from
different variance components, mathematically as the proportion of the between-
subject variance relative to the total variance (Sokal and Rohlf 1995):
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R ¼ r2between
r2between þ r2within

; ð7:1Þ

where
r2between between-species variance and

r2within within-species variance.

If most of the variance resides at the between-species level and within-species
variance remains minuscule, the ratio will approach unity. However, if within-
species variation is similar to the between-species variation, the estimator will
return values that are ~0.5 and will approximate zero if within-species variation is
of a major concern. Repeatability can offer a standard metric to help the observer
judge about how much s/he can trust in the species-specific trait estimate as a
meaningful unit for the comparative analysis. Working with a trait that has
repeatability close to one indicates that a single individual will well-reflect the true
species-specific value. On the other hand, low repeatability indicates that within-
species variance may warrant some attention, and for an appropriate statistical
treatment, a systematic within-species sampling is needed to capture such variation.
Behavioral or physiological traits may often involve such a modest within-species
repeatability, while morphological or life history characters may depict less vari-
ation within species incurring higher repeatability (see also Blomberg et al. 2003).

Classically, repeatability can be acquired from an ANOVA model, in which the
variation in the response measurements is partitioned into components that cor-
respond to different sources of variation (Lessells and Boag 1987). The widely
used ANOVA-based repeatability takes the mean between-subject sum of squares
and the mean within-subject (residual) sum of squares and also considers the
species-specific sample sizes. Recently, Nakagawa and Schielzeth (2010) provided
a list of functions for repeatability (together with its confidence interval, and a test
statistics contrasting the estimated value against zero) based on mixed model
approach that can be flexibly used for a variety of data types and distributions.
These approaches can also be applied in the comparative context, where the
interest is to determine whether species consistently differ in their mean trait value
(some strategies are given in the OPM). However, the phylogenetic relationships
of species may warrant some attention and potentially necessitate the consideration
of more complex hierarchical modelling.

7.4.2.2 Independence

Another diagnostics that may be useful before entering into the core phylogenetic
analyses is to assess whether within-species sample size (or variance) occurs ran-
domly. There might be several biological reasons to why some species are sys-
tematically easier to sample resulting in larger sample sizes than other species
(Garamszegi and Møller 2011). Such factors can be associated with species-specific
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abundance (rare vs. common species), behavior (species that avoid traps vs. species
that are attracted by them), as well as life history and ecology (species breeding in
accessible vs. inaccessible habitats, solitary vs. colonial species) and even mor-
phology (small vs. large species with different mobility and/or detectability).
Furthermore, these effects may vary in non-random manner with respect to the
phylogenetic associations of species. Hence, within-species sample sizes can depict
a phylogenetic structure at the across-species level. These deviations from ran-
domness can be investigated by testing if within-species sample size (or variation)
is interspecifically related to biological predictors and phylogeny. (see Garamszegi
and Møller (2012) for an example analysis)

7.4.2.3 Preparation of Data

Before testing the evolutionary hypotheses in the statistical models, some prepa-
ratory steps may be warranted. These may include the conventional exercises for
data diagnostics and the verification of model assumptions (e.g., distribution, col-
linearity, balanced design, see more in Chap. 6), but also efforts to make our data
suitable for the particular method that will be used to control for within-species
variance. For example, we may need to decide whether we aim to work with
individual (population)- or species-specific data. We can use data on individuals for
the contrast and likelihood surface methods (see Table 7.1 and text below), but the
calculation of repeatability discussed above also requires repeated measurement
within each species and the underlying dataset needs to be tabulated accordingly.
We can supply species-specific trait values for the other methods such as based on
PGLS regression techniques (see Table 7.1 and text below). Means at the species
level can be either calculated from the raw individual data through simple summary
statistics or should already be available in this form if obtained from other sources.

When working with species-specific datasets, most of the methods assume that
within-species variances are known and correspond to large samples. However,
this criterion might be violated in most of the comparative studies, in which
within-species samples are often limited to few individuals (or populations). It is
also common that sample size at this level equals one, which makes variances
mathematically inestimable. For such a case, a corrected estimate might be
desired. For this purpose, Ives et al. (2007) suggest first calculating a pooled
variance over the entire sample:

�r2 ¼ 1
Nspecies

XNspecies

i¼1
r2withini ; ð7:2Þ

where
�r2 weighted (pooled) within-species variance,
r2withini within-species variance observed in ith species, and

Nspecies interspecific sample size after excluding species with a single observation.
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Hansen and Bartoszek (2012) suggested an improved estimate of the pooled
variance by weighing the species with their sample sizes:

�r2 ¼
PNspecies

i¼1 r2withiniðni � 1Þ
PNspecies

i¼1 ðni � 1Þ
; ð7:3Þ

where
ni within-species sample size for the ith species, other abbreviations as in

Eq. (7.2).

With these estimates, the species-specific standard errors ðSEniÞ as well as
variances could be computed:

SEni ¼
�r
ffiffiffiffi
ni

p ð7:4Þ

If the model for comparative analysis requires species-specific variances ð�r2niÞ
to be entered, these could be approximated as the square of this standard error
ðSE2

ni
Þ, that gives:

�r2ni ¼
�r2

ni
; ð7:5Þ

The use of this replacement procedure might be problematic, if true variances
vary considerably among species due to scaling effects for example (e.g., consider
body mass variation in a mouse and an elephant species). In this case, unrealisti-
cally high variances would be assigned to species, which, in reality, could actually
be characterized by small variance (e.g., variance in mouse would be adjusted
partially based on variance in elephant). This problem can be reduced by applying a
log-transformation on variances (or other variance-stabilizing transformation)
before the adjustment (see below) or by using the scale-independent coefficient
variation (cv) parameter for the pooling and subsequent weighting procedure, from
which error variances could be back-calculated (see Box 7.1 for calculations).

For making meaningful interpretations from interspecific patterns, tip values are
often required to have a scale on a log-axis for both statistical and biological
reasons. In such a case, not only species-specific means, but also the associated
variances should also be transformed. Note that this transformation also normal-
izes within-species variation, thus diminishes the problems caused by unequal
variances due to scaling effects (Revell 2010), as discussed above. Log-normal
distributions require that the joint log-transformation of the mean and variance
occurs according to the following approximations equations:
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yi ¼ log
�x2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2withini þ �x2i

q

0

B@

1

CA ð7:6aÞ

vi ¼ log 1þ
r2withini
�x2i

� �
; ð7:6bÞ

where
�xi and r2withini mean and variance, respectively, on the original scale,

yi and vi mean and variance, respectively, on the log-scale for species i.

However, these approximations are not necessary if the individual level data are
accessible, when one can just compute the mean and variance on the log-scale
directly.

In cases when we are interested in assessing the effect of the heterogeneity in
species-specific sample sizes, it might be important to consider issues about the
transformation of within-species sample sizes ðniÞ. Data heterogeneity is pre-
sumably more influential in cases of low sample sizes. On the other hand, after a
certain level, increasing sample size has a minor effect on precision. Therefore, we
may want to downweight data points with very low sample sizes, but without
making too much discrimination between species-specific trait estimates that come
from a reasonably large within-species samples (Garamszegi and Møller 2010).
Accordingly, a logarithmic or square-root transformation on sample sizes may help
dealing with this problem (see also Chap. 12).

Examples for calculating measurement errors based on pooled variances and for
log-transformation are given in the OPM.

7.4.3 Incorporating Within-Species Variation
into the Phylogenetic Analysis of Species-Specific
Traits

If we cannot achieve negligible within-species variances through a careful study
design, and a repeatability analysis indicates that the measurement error on any of
the investigated traits is considerable and may be meaningful, we need to use
phylogenetic comparative studies that can account for such variance components.
Assuming that information on the dispersion of data at the within-species level is
available in any form (e.g., as raw individual data or as a probability descriptor
summarized in Box 7.1), different phylogenetic methods can be applied to deal
with different test situations and data types with each offering different benefits. In
the sections below, I will provide an overview on these methods. I start this
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revision from the historical perspective, as I find it important to get a picture about
the essence of the classical methods in order to understand how modern approa-
ches discussed subsequently work.

7.4.3.1 The History of Interspecific Comparative Methods That
Account for Within-Species Variation: Back to the Root

The Autoregression Model

Although the spread of comparative methods with measurement error can be
witnessed in the contemporary literature, the history of the underlying method-
ology goes back to the beginnings of phylogenetic comparative methods. In the
same year when Felsenstein’s (1985) seminal paper was published, Cheverud et al.
(1985) proposed an alternative approach to control for phylogenetic non-inde-
pendence. This method was based on an autoregression model to accommodate the
concept of phylogenetic constraints in interspecific studies through partitioning the
observed total trait variance into inherited (phylogenetically determined) and
taxon-specific (caused by independent evolution) components:

yi ¼ pWyi þ ei; ð7:7Þ

where
yi observed trait mean for species i taken from the y vector of standardized trait

values for Nspecies species,
p phylogenetic autocorrelation coefficient (scalar),
W phylogenetic connectivity matrix reflecting the relatedness of species (i.e.,

genetic correlation between species),
ei ith element of the e vector of residuals.

In this equation, pWyi represent the phylogenetic part, while ei stands for the
taxon-specific part. Originally, the autocorrelation model does not require the
specification of an evolutionary model (such as Brownian motion), it only relies a
relaxed assumption that the inherited component is similar among closely related
species and different among distant species (but in principle, different evolutionary
assumptions could be brought into the W matrix). The approach by Cheverud and
coworkers (1985) includes estimation procedures based on maximum likelihood
(ML) iteration for the phylogenetic autocorrelation parameter p, which can be used
to make inferences about the importance of phylogeny in trait evolution. This
methodology has not received as much popularity in practice as the independent
contrast method (Felsenstein 1985), but its inherent promise for incorporating
issues about within-species variation has been recognized in its subsequent ana-
lytical development toward greater flexibility (e.g., Gittleman and Kot 1990).
Along this line, Cornillon et al. (2000) considered issues about differences between
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populations and, accordingly, split the inherited variance part into inter- and the
intraspecific components, while they also expressed the residual part at the level of
population (and not species). These matrices were used to fit an autoregressive
model through a maximum likelihood (ML). By doing so, the method is able to
capture within-specific variation that occurs among populations in both univariate
and multivariate test situations.

The Phylogenetic Mixed Model of Lynch and Its Extensions

The main logic of Cheverud et al. (1985) was also influential on the improvement of
comparative methodologies of other types. Lynch (1991) extended mixed modeling
techniques taken from quantitative genetics to decompose observed mean pheno-
types into different components. His model was based on the general formula:

yi ¼ b0 þ ai þ ei ð7:8Þ

a�N 0; r2C
� �

ð7:8aÞ

e�N 0; r2eI
� �

; ð7:8bÞ

where
yi observed trait mean for species i taken from the Nspecies � 1 dimensioned y

vector of standardized trait values,
b0 grand mean of the character over the whole phylogeny (intercept),
ai ith element of the a vector of heritable additive values with a dimension of

Nspecies � 1,
ei ith element of the e vector of residuals (dimension: Nspecies � 1),
N signifies that values of the given vector (i.e. a) are taken from normal

distribution that is specified with a mean (i.e. 0) and variance (i.e. 0; r2C)
r2 overall phylogenetically inherited variance (rate of evolution),
r2e residual variance,
I identity matrix (dimension: Nspecies � Nspecies),
C correlation structure defined by the phylogeny (dimension: Nspecies � Nspecies).

In this approach, ai represents the heritable phylogenetic effect sensu Cheverud
et al. (1985), while ei is Cheverud’s species-specific effect that also includes sam-
pling error beside the nonadditive genetic effects and environmental effects. Lynch
suggested an iterative approach based on expectation-maximization (EM, Dempster
et al. 1977) algorithm to find models with maximum likelihood (ML) that can be
used to estimate parameters, such as the mean phenotypes of ancestral taxa, additive
values, and residuals deviations as well as the variance-covariance structure of the
components of taxon-specific means. These parameters can serve basis for com-
puting regression coefficients and hypothesis testing. Although, in the above model
the author generally assumed that within-species variation is negligible and
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sampling errors on the phenotypic means can be treated as zero, he pointed that such
an assumption may be violated in many cases, for which the original method could
be adjusted if data on sampling variances and covariances are available.

Such a premise was further exploited by Christman et al. (1997) and Housworth
et al. (2004). These authors argued that if the estimation of species-specific
character states from a sample of individuals or populations is subject to consid-
erable error due to the relatively small number of individuals sampled per species,
an additional component should be added to Lynch’s formula to factor out the
within-species variances. The model of Housworth et al. (2004) for univariate case
yields

yij ¼ b0 þ ai þ ei þ eij ð7:9Þ

e�Nð0; r2e IÞ; ð7:9aÞ

where
yij observed trait value for individual j in species i
eij individual error term that is associated with the measurement of

individual j in species i,
r2e variance caused by errors when measuring a single individual, the

corresponding I identity matrix has a dimension of dimension:
PNspecies

i¼1 ni �
PNspecies

i¼1 ni,
b0; ai, and ei intercept, phylogenetic, and non-heritable residual components,

respectively, as in Eq. (7.8).

Christman et al. (1997) present an illustrative analysis (and the corresponding
MATLAB codes) on morphological characters originating from four populations of
amphipods, in which they relied on the extended Lynch’s model but without the non-
heritable effects ðyij ¼ b0 þ ai þ eijÞ. Through the incorporation of the term eij, these
approaches bring the focus onto individuals as the unit of analysis assuming that
each species on the phylogenetic tree is formed by a hard polytomy of individuals.
The length of the within-species branches scales with the degree of measurement
error and needs to be estimated in parallel with other parameters in the model.

Regression Techniques Based on Phylogenetic Generalized Least Squares (PGLS)

The autoregressive method of Cheverud et al. (1985) and the mixed model approach
originating from Lynch (1991) as well as their derivates combine the phylogenetic
constraint with the statistical model via a mean structure in the equation (pWy or ai),
while the intraspecific variance is usually lumpedwithin the error term (Lynch 1991;
Christman et al. 1997; Housworth et al. 2004). As an alternative approach,
phylogenetic methods based on generalized least squares (GLS) models incorporate
the phylogeny through the error structure (Grafen 1989; Martins and Hansen 1997;
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Revell 2010, see Chap. 5). This solution offers a flexible combination of errors from
different sources (e.g., phylogeny and within-species variance) as well as to
accommodate various test situations (e.g., estimating ancestral states, rates of
evolution, phylogenetic effects, correlations, and regressions). Martins and Hansen
(1997) present a general linear model in the form of:

y ¼ bXþ e; ð7:10Þ

where
y vector of characters or functions of character states for extant or ancestral

taxa,
b vector of regression slopes,
X matrix of states of other characters, environmental variables, phylogenetic

distances, or a combination of these, and
e vector describing error structure due to various sources.

This equation can be broadly used to translate evolutionary questions into a
statistical formula. By a smart definition of X and y, several evolutionary problems
can be tackled, while the characterization of e allows describing the impact of
confounding factors that can cause noises or biases in the estimation of b. The
error structure is composed of at least three types of error: the error due to common
ancestry ðeSÞ, the error due to within-species variation (on any character, eM), and
error due to the uncertainty in the reconstruction of phylogenetic history ðePÞ.
These errors can be combined in the PGLS framework (see Chap. 5), which thus
allows the careful definition of residuals that accommodate a complex covariance
structure within the term e.

Practical Constraints

Despite the relatively well-established statistical background for treating within-
species variance in different comparative approaches (e.g., autoregressive models,
phylogenetic mixed models borrowed from quantitative genetics, and phylogenetic
generalized linear models), until recently, these statistical approaches were rarely
exploited in practice. The reasons for such ignorance may rely on the practical
intractability of the proposed algorithms, the lack of evidence pointing to the
confounding role of measurement errors in the interspecific context and the
scarcity of data that captures within-species patterns. For example, the expecta-
tion-maximization (EM, Dempster et al. 1977) method proposed by Lynch (1991)
to fit models was very slow in practice, and even the reparameterized algorithm
that remedies this problem can only be applied to uni- and bivariate cases. The first
widely accessible computer software for incorporating measurement error was
Compare (Martins 2004). When it became accessible to deal with intraspecific
variance, the phylogenetic independent contrast method (that neglects such vari-
ance) was already flourishing in its renaissance epoch thanks to easy access to the
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program CAIC. (Purvis and Rambaut 1995). In addition to these technical chal-
lenges, early practitioners of the comparative approach might have disregarded the
importance of within-species variation because its confounding effects remained
under-documented compared to the well-known biases that can be caused by
common descent. Finally, various constraints during the collection of interspecific
data and the assembly of phylogeny may have shifted the focus from the within- to
the between-species patterns preventing the adoption of measurement error models
by appropriate within-species data.

Nonetheless, even in this early phase of the history, some investigators did
consider issues about measurement error in their comparative study, and their
solutions deserve mentioning. In a comparative study on the relationship between
population density and body size in birds, Taper and Marquet (1996) corrected
estimated regression parameters for attenuation bias due to measurement error
based on the ratio of the total variance and between-subject variance (Madansky
1959) and concluded that such a correction had a minimal effect on the focal
relationship. However, this correction is only applicable to the parameter estimates
of the ordinary least square regressions, thus the authors could only employ it in
the analysis based on raw species data without adjusting for phylogeny (but see its
extensions below for PGLS sensu Hansen and Bartoszek 2012). In another pio-
neering study, Monkkonen and Martin (2000) relied on randomization and boot-
strapping procedures to investigate the influence of the between-population trait
variations on the interspecific relationship between clutch size and nest excavation
propensity in Parus tits. They found that the outcome of the analysis was largely
similar across the 1,000 bootstrapped samples that randomly picked one popula-
tion estimate for each trait for each species. Although such a resampling technique
appears to be able to incorporate uncertainty in parameter estimates, it may not be
useful as a general method to control for within-species variance, because it is not
able to cope with attenuation bias (i.e., correct for the degree of underestimation of
parameters). When intraspecific variance is considerable, the confidence range
around the regression slope is more severely biased than the regression slope that
is based on species-specific mean values (Fig. 7.3).

7.4.3.2 Recently Developed Comparative Methodology for Handling
Within-Species Variance Components: Getting into Practice

Modern phylogenetic approaches began to recognize the importance of the sta-
tistical problems that can be caused by measurement errors, and such consider-
ations gave a burst to the expansion of available softwares and also enhanced the
spread of the methodology into research practice. These approaches, while taking
into account within-species variance, can now accommodate a wide range of
evolutionary questions about correlated trait evolution, ancestral states and phy-
logenetic signals (although the corresponding methodologies are not equally
developed). Most of these new approaches are closely linked with classical
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methods and can be grouped into the following main (not necessarily exclusive)
categories, which are also listed in Table 7.1. The performance of these methods
on simulated data is demonstrated on Fig. 7.4. Worked examples can be found in
the OPM.

Independent Contrasts

A new method based on independent contrasts (Felsenstein 2008) can be con-
sidered as a modified version of the Lynch’s model (Lynch 1991) under the
assumption that the evolution of species-specific values depicts Brownian motion
with a perfect phylogenetic heritability component. This extended contrast method
allows for multiple individual measurements per species resulting in within-spe-
cies phenotypic variances that are greater than zero and are the same for all
species. If phenotypic values are available for individuals, the contrasts can be
computed at both the within- and the between-species levels. This computation
assumes that individuals within a species are connected to each other with zero
branch lengths to form a species-specific node on the phylogenetic tree.

Table 7.1 Recently proposed phylogenetic comparative methods that can account for intra-
specific variances due to measurement error or biological variations at the within- and between-
individual as well as the between-population level
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Given such a tree structure linking all individuals of all species, the contrasts
can be obtained in the classical way (e.g., Felsenstein 1985) with the exception that
they are not standardized by their variances but are multiplied by coefficients that
include a weight factor for the number of observations. Specifically, the modified
method does not scale the contrasts to have equal variances, but it rather applies an
orthonormal transformation on the original variables so that the sum of squares of
the coefficients in the contrasts is forced to add up to one. Under such constraints,
at the within-species level, contrasts can be written as (Felsenstein 1985; Paradis
2011):

ci1 ¼
ffiffiffi
1
2

r
yi1 � yi2ð Þ

ci2 ¼
ffiffiffi
2
3

r
yi3 �

yi1 þ yi2
2

� �

..

.

cini�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ni � 1
ni

r
yini �

1
ni � 1

Xni�1

j¼1
yij

� �

ð7:11Þ
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Fig. 7.3 Dealing with within-species variation in interspecific comparisons by resampling
technique. Each data point represents an individual within species that are coded by different
symbols. The interspecific relationship between the predictor and response is estimated by
randomly taking one individual from each species to represent the species-specific character
values, which are then regressed across species. This procedure can be repeated multiple times
(100–1000). The resulting regression lines are given by the gray dotted lines (from 100
resamplings). The dashed black line shows the regression line that could be obtained by using the
averaged individual trait values at the species level. The slope and intercept of this line are given
in the legend together with the confidence intervals that could be estimated from the resampling
of individual values. Solid black line shows the true regression line (a = 5 and b = 3.5) that
originates from the generating species–species values, around which the individual-specific data
were simulated under two different variance scenarios: a small within-species variance, b large
within-species variance
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where
ci 1. . .ni�1 within-species contrasts for species i,
ni number of individuals measured in species i,
yi 1. . .ni individual observations for species i, andffiffiffiffiffiffiffi

ni�1
ni

q
general form of the normalizing constant.

Accordingly, having four observations in a species for example, three contrasts

can be derived with normalizing constants
ffiffiffiffiffiffiffiffi
1=2

p
,

ffiffiffiffiffiffiffiffi
2=3

p
, and

ffiffiffiffiffiffiffiffi
3=4

p
, respectively.

Considering alternative branching patterns within species, there can be several
ways to calculate the orthonormal contrasts, each resulting in the linear combi-
nation of the original measurements taken at the individuals that defines the
species-specific character states at the end. Taking the orthogonality constraints
into account, Felsenstein further developed an algorithm for computing between-
species contrasts recursively. In this approach, for each character, within- and
between-species sets of contrasts can be derived fulfilling the constraint that dif-
ferent contrasts for same characters are independent. Therefore, the same contrasts
for different characters will have the covariance that is equal to the covariance of
the original character values.
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Fig. 7.4 Dealing with within-species variation in interspecific comparisons by modern
phylogenetic methods (listed on Table 7.1). Each data point represents a species-specific mean
that that can be measured with a certain precision as estimated by the within-species variance on
the predictor (for simplicity, only errors on the predictors were considered). The interspecific
relationship between the predictor and response was assessed by (1) Phylogenetic least squares
methods without considering within-species variance (yellow line), (2) weighted phylogenetic
least squares models that give emphasis on different data points according to the underlying
variance (green lines), (3) measurement error PGLS models as was suggested by Ives et al.
(2007) (blue line), and (4) phylogenetic mixed models (purple line). Solid black line shows the
true regression line (a = 5 and b = 3.5) that originates from the generating species–species
values, around which individual-specific data were simulated under two different variance
scenarios: a small within-species variance (repeatability ~0.75) and b large within-species
variance (repeatability ~0.25) on the predictor. Dashed horizontal lines indicate the degree of
intraspecific variation within the predictor
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Unlike the contrasts that are obtained by the original method relying on species
means, the contrasts derived from individual data cannot directly be imported to
conventional statistical approaches to estimate parameters of evolutionary
importance (e.g., a slope from a regression forced through the origin). This is
because covariances are composed of different components at the within- and
between-species level (i.e., phenotypic covariance arising from between-individual
associations and covariance due to convergent evolution, Fig. 7.2). However, the
new contrast method also includes an expectation-maximization (EM) algorithm
(Dempster et al. 1977) to partition observed covariances among traits, similarly to
Lynch’s model, into phylogenetic (i.e., the between-species covariances) and a
phenotypic (i.e., the within-species covariances) components according to the
model

T� Aþ I� P; ð7:12Þ

where
T phylogeny matrix (expected covariances based on the length of shared

branches),
A between-species (phylogenetic) covariance matrix,
P within-species (phenotypic) covariance matrix,
I an identity matrix,
� Kronecker product multiplication (each element of the first matrix is

multiplied by each element of the second matrix).

The elements of the A and P matrices can be estimated from the contrasts (see
for example in the OPM relying on varCompPhylip that calls functions from
program Phylip) and can subsequently be used for making inferences about the
coevolution of traits. For example, if the aim is to challenge the null hypothesis
that species-specific values of two (or more) traits vary independently of each
other with regard to the phylogeny while accounting for the potential within-
species covariation of traits, one can fit a model in which the elements of A0 are
forced to be zero. This model can be compared by using likelihood ratio test with
the model that is based on an A1 matrix that represents the true associations
between species due to common ancestry. Estimated covariances from the model
with the highest likelihood can also be used to obtain parameters from regressions
of the variables on each other or correlation coefficients that are not confounded by
phylogenetic associations and within-species covariances.

Extensions to the PGLS

Approaches based on phylogenetic generalized least squares provide a rich set of
tools to study the effect of measurement error in phylogenetic comparative studies.
In these models, following the logic of Martins and Hansen (1997), within-species
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variance is lumped within an error term in the regression equation. Therefore,
individual-specific estimates are not required, neither do assumptions about phy-
logenetic resolutions within species. The model can flexibly accommodate infor-
mation on within-species variation. The flexibility is also prevalent in the fact that
the model allows measurement errors to be same or different for different taxa, and
actually, it assumes that within-species variances are available without bias and
not needed to be estimated. Of further advantage is that the PGLS approach can not
only applied to investigate questions about the correlated evolution of traits, but
can also be tailored to various test situations.

The PGLS approach for accounting measurement error in interspecific com-
parative studies relying on species as the unit of analysis adheres to the following
logic. Using information on the phylogeny and within-species variances (both are
known from data), and considerations about how to combine different error
components due to phylogenetic effects and within-species variances (and other
sources), one can establish an overall variance structure to describe the expected
covariance matrix in the models’ residual. By the careful definition of the overall
covariance structure, it is possible to handle cases when measurement errors are
correlating or even have an interaction with the phylogenetic error. Then, the
observer is left with a model-fitting problem, in which the task is to maximize the
probability of data conditioned on the expected covariances. Therefore, parameter
estimates from a best-fitting model with an error term that is composed of phy-
logenetic and measurement effects can be used to make inferences that are not
confounded by these factors.

Such an approach has been taken forward by Ives et al. (2007), who derived
statistical methods for the analysis of phylogenetically correlating data with
within-species variation to investigate a broad array of evolutionary questions.
Their entire methodology was built on the simple foundation that sampling vari-
ance can be added to the variance that is determined by the phylogenetic rela-
tionship of species (Martins and Hansen 1997). This scheme, on the one hand, can
be applied to univariate models of evolution, when the interest is on ancestral
states, rates of evolution and phylogenetic signal charactering the evolution of a
single trait. Such a model can be depicted as (see also Eq. 7.10):

y ¼ ba1þ eS þ eM ð7:13Þ

eS �Nð0; r2CÞ; ð7:13aÞ

eM �Nð0; r2withinIÞ; ð7:13bÞ

where
y vector of the observed trait values (dimension: Nspecies � 1),
ba a scalar giving the expected value (i.e., ancestral state at the base of the

tree) of the trait,
1 vector of ones,
eS vector of variances caused by the phylogeny (dimension: Nspecies � 1),
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eM vector of measurement error variances (dimension: Nspecies � 1),
C correlation structure defined by the phylogeny (dimension:Nspecies � Nspecies),
I identity matrix (dimension: Nspecies � Nspecies),
r2 the overall phylogenetically inherited variance (rate of evolution),
r2within measurement or within-species variance vector (dimension: Nspecies � 1).

This signifies that the total error term e ¼ eS þ eM depicts a multivariate normal
distribution and has a covariance matrix r2Cþ r2withinI. The phylogenetic com-
ponent comes from a distribution with a zero mean and a variance that is described
by the covariation matrix r2C. This matrix is composed of r2 that represents the
phylogenetically inherited variance (i.e., the rate of evolution), and C that stands
for the correlation structure that can be defined by the length of shared branches on
the phylogeny. On a similar vein, the measurement error component also follows a
normal distribution with a zero mean and with a covariance matrix of r2withinI that
gives the diagonal matrix of measurement errors (or within-species variances).
These divisions assume that the trait evolution follows the Brownian motion model
and that measurement errors are uncorrelated. However, other evolutionary models
can be accommodated by the appropriate translation of branch lengths into the C
matrix, while correlated measurement errors can be treated by nonzero off diago-
nals in the r2withinI (which then can be written as r

2
withinM). Elements of C and r2within

are given by the data (i.e., known phylogeny and standard errors around species-
specific means), the only parameters that are unknown are the ancestral state ðbaÞ
and the rate of evolution ðr2Þ. To estimate these parameters, Ives et al. (2007)
describe a model-fitting iteration processes based on estimated generalized least
squares (EGLS), maximum likelihood (ML) and restricted maximum likelihoods
(REML). In addition, by determining the rate of evolution under the assumption of
no phylogenetic structure in the data (C = I, assuming star phylogeny) and at the
observed phylogeny, it also becomes possible to calculate the strength of the
phylogenetic signal that is prevalent in the data in terms of Blombergs’ K
(Blomberg et al. 2003). Some procedures for characterizing univariate trait evo-
lution by using the method by Ives et al. (2007) are given in the OPM.

Ives et al. (2007) also present a list of models for multivariate cases, when
phylogenetic associations between traits are in the focus. Along this line, they
make PGLS technique suitable for designs such as correlations, principal com-
ponent analysis, multiple regression as well as reduced major axis regression for
functional relationships (but Hansen and Bartoszek (2012) warn against this last
application). The underling formula has a composition of

w ¼ bþ eS þ eM ð7:14Þ

where
w vector of species-specific tip values for traits x and y that are placed on top of

each other (dimension: 2Nspecies � 1),
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b vector containing the ancestral states ðbaÞ for the two traits, with the first
Nspecies elements being bax , while the second Nspecies elements being bay ,

eS phylogenetic error term vector (dimension: 2Nspecies � 1), in which the
phylogenetic variance on x ðeSxÞ is stacked on top of the phylogenetic
variance on y ðeSyÞ,

eM measurement error vector (dimension: 2Nspecies � 1), in which the within-
species variances of x ðeMx

Þ is stacked on top of the within-species variance
vector for y ðeMy

Þ.

The phylogenetic error term ðeSÞ has a joint covariance matrix, in which the
diagonal blocks are r2xC and r2yC, while the off-diagonal blocks are composed of
rxryC matrices that are multiplied by a linear combination of parameters that
describes the association between traits x and y (i.e., r, correlation coefficient or b,
regression slope). The error term eM is organized analogically, thus has a joint
covariance matrix based on blocks of r2withinx and r2withiny measurement error

variances in the diagonal, and matrices of rwithinxrwithiny representing the covari-
ances in measurement errors scaled by a factor that is proportional to the strength
of association between x and y. The unknown parameters in these models are
bax ; bay ; r

2
x ; r

2
y , and the coefficient r or b reflecting the strength of relationship

between x and y originating from their correlated evolution. The procedures based
on EGLS, ML, and REML approaches can be used for the estimation of these
parameters and even can be flexibly extended to multivariate cases such as prin-
cipal component analysis or multiple regression (i.e., when b ¼ ðb1; b2. . .Þ). Ives
et al. (2007) recommend parametric bootstrapping (a procedure, in which esti-
mated parameters are used to simulate a large number of datasets; then, the
parameters are repeatedly re-estimated from each simulated data) to determine
confidence interval around these estimates, which can be used for hypothesis
testing (i.e., r or b 6¼ 0). (see examples in the OPM).

Emphasizing the importance of the discrimination between observation errors
acting on the response and predictor variables in evolutionary regressions, Hansen
and Bartoszek (2012) suggested an alternative PGLS model. In their appraisal,
employing the above abbreviations, the general statistical equation can be written as:

y ¼ b0 þ b1x1 þ � � � þ bmxm þ eS þ eM � b1eMx1
þ � � � þ bmeMxm

� �
ð7:15Þ

where
y vector of the dependent variable (dimension: Nspecies � 1),
x1. . .xm vectors for 1…m dependent variables (each with the dimension of

Nspecies � 1),
b0. . .bm regression parameters including the intercept ðb0Þ and the slopes for

each predictors ðb1. . .bmÞ,
eS residual phylogenetic error term vector,
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eM measurement error vector for the dependent variable,
eMx1

. . .eMxm
measurement error vectors for each (1…m) predictor variable.

Therefore, the residual error in the model is composed of three components; the
joint covariance matrix includes (1) a matrix that describes the model of evolution
(in a form of r2C), (2) a matrix of raw observation variance in the response
variable (in a form of r2withiny), and (3) a matrix representing the effects of mea-

surement error in the predictor variables (a complicated variance structure relying
on observation variances conditional on the observed values of the predictor
variables) that is multiplied by the associated regression slopes (formally can be
written as Var½br2withinx jX�). The effect of measurement errors in the predictors
needs to be complex, because errors in one predictor will carry over and have an
influence on coefficients that pertain to other predictors.

Hansen and Bartoszek (2012) argued that applying an EGLS procedure to obtain
regression parameters from the above model results in more precise confidence
intervals around the estimates, but it does not remove the downward biases that are
caused by measurement errors around the predictors. In classical models of mea-
surement errors (Madansky 1959; Fuller 1987; Buonaccorsi 2010), such attenuation
bias can be corrected via a reliability ratio, K. This is defined as the ratio between
the true and observed sum of squares of the predictor variable, with the former
being estimated by subtracting the observational variance from the observed sum of
square. Hansen and Bartoszek (2012) present equations for the calculation of
reliability ratio when data are correlating due to the phylogenetic structure, thus the
logic of using a correction factor on the regression slope via K can be adopted to
aforementioned PGLS approach. They also include these calculations in their
estimation procedure, in which they combine ML-based and EGLS approaches for
the estimation of different parameters in their complex model. In the OPM, I show
how these functions (as implemented in GLSME) work in practice.

The main difference between the method by Ives et al. (2007) and that of
Hansen and Bartoszek (2012) is that the former approach does not strategically
discriminate between the effect of measurement error around the predictor and
response variables (these are lumped within the r2within matrix). On the other hand,
Hansen and Bartoszek (2012) uses separate matrices for the observation variance
for the response r2withiny and predictor r2withinx variables, with the latter having

complicated effects. Furthermore, strategies are different with regard how the two
methods correct for attenuation bias (e.g., for this purpose Hansen and Bartoszek
use the reliability ratio parameter).

Further Developments on the Phylogenetic Mixed Models

Implementing Lynch’s original suggestion, Housworth at al. (2004) and Hadfield
and Nakagawa (2010) brought the framework based on mixed modeling for the
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study the evolution of traits into practice. Along this line, Hadfield and Nakagawa
(2010) emphasized that animal models used to decompose variance components in
quantitative genetics are built on a mathematical basis that is very similar to what
is applied in phylogenetic mixed models. This analogy arises because the matrices
that define the relationship between subjects, i.e., those that represent the phy-
logeny and the pedigree, can be brought into a structure that is formally equivalent.
Based on this relationship, the quantitative genetics toolbox can be efficiently
exploited for the decomposition of error structures in phylogenetic comparative
studies (see more details in Chap. 11).

Accordingly, many test situations in interspecific comparative studies can be
regarded as variations to the same underlining statistical foundation, the phylo-
genetic meta-analysis. In this context, the general mixed model for univariate
questions can be written as (see also Eqs. 7.1, 7.8 and 7.9)

yi ¼ b0 þ ai þ ei þ mi; ð7:16Þ

m�Nð0; r2withinIÞ ð7:16aÞ

where
yi species-specific (or study-specific) effect size or trait value,
mi measurement error for species (or study) i (ith element of the m

vector with dimension of Nspecies � 1),
r2within within-species variance caused by differences between individuals

or species, the corresponding identity matrix (I) that has a
dimension of Nspecies � Nspecies,

b0; ai, and ei intercept (ancestral state at the root of the phylogeny), the effect
on species (or study) i that is caused by the common descent and
the non-heritable residual component of variation (residual error),
respectively, as in Eq. (7.8).

Chapter 11 shows how it can be extended into bi- or multivariate problems. The
matrix of expected (co)variances among subjects caused by the random effects can
be thus approached by a joint covariance matrix that is composed of the phylo-
genetic variance (again, in a form of r2C), the measurement error variance (in a
form of r2withinI if such errors are known) and the residual variance (r2eI assuming
that residuals are homoscedastic). The effects that are lumped in the residual
component may be important if deviations from the expected species-specific
means are mediated by processes that act independently of phylogeny and
within-species variances. Note that most of the above models can also be fitted to
this general outline. For example, the method by Ives et al. (2007) considers a
covariance structure, in which the phylogenetic and measurement error compo-
nents are combined in the same additive fashion, and which is equivalent with the
general phylogenetic meta-analysis model under the r2e ¼ 0 scenario. When spe-
cies-specific traits could be completely described by the Brownian motion of
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evolution, Felseinstein’s (2008) model can also be brought into a similar structure
with the main difference that r2within is common to all species and remains an
unknown quantity.

To determine the unknown parameters in the model (e.g., b0 and r2), previous
models based on PGLS or independent contrasts use estimation procedures
available in ML, EGLS, REML, or EM algorithms. However, for these approa-
ches, it becomes challenging to deal with non-Gaussian distributions as well as
with missing information regarding the species-specific trait values, within-species
variances, and phylogenetic resolutions. To overcome these shortcomings, Had-
field and Nakagawa (2010) proposed a method based on Markov chain Monte
Carlo (MCMC) simulation that can be accommodated to a wide range of phylo-
genetic questions and data types. MCMC can be used to fit the general model:

l ¼ Whþ e; ð7:17Þ

where
l a latent variable that provides the link function (e.g., Poisson and exponential)

to the values of the y response variable,
w design matrix of predictor variables x1. . .xm,
h vector of fixed and random effects, and
e vector of residuals.

Estimation protocols are needed to obtain l, h, the variance components r2

(corresponding to the distribution of phylogenetic random effect included in h),
and r2e (corresponding to the distribution of residual error e). The estimation of l is
achieved through a Metropolis–Hasting iteration process (Metropolis et al. 1953;
Hastings 1970), while h and the variance components are approximated by Gibbs
sampling (Geman and Geman 1984). By including a matrix of within-species
variances into the definition of h, such sources of variation can be flexibly
incorporated into models that represent various evolutionary questions. The
obtained parameter estimates from such models thus can be regarded as being
independent of the confounding effect of measurement error. Check the OPM for
an example based on the R package MCMCglmm.

Methods Based on the Evaluation of Likelihood Surfaces

Beside the problems posed by non-Gaussian distribution and missing data, another
limitation can appear in classical approaches to phylogenetic comparative ques-
tions. Specifically, they are constrained to use particular assumptions about the
mode of trait evolution. The evolutionary models that are traditionally considered
are the Brownian motion and the Ornstein–Uhlenbeck process, whose likelihood
functions are mathematically tractable for parameter estimations. For example,
due to analytical convenience, the above models generally accommodate the
Brownian fashion of evolution during the translation of branch length into the
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covariance matrix (i.e., elements of C are proportional to branch lengths). Some
departures from this standard can be achieved by the appropriate adjustment of the
formula, but more complicated models of evolution, such as branch-specific
directional selection requiring the estimation of large number of parameters,
cannot be tracked in this way.

To surmount this obstacle, Kutsukake and Innan (2012, see also Chap. 17)
introduced a method that is able to deal with more complex and realistic modes of
evolution. Instead of forming mathematical formulas to describe the relationship
between known data and the parameters of interest, they advocate the simulation
of data at different parameter settings to examine how well such simulation results
coincide with the observed data. By simulating a large number of data at various
parameter sets representing different hypotheses about patterns of evolutions, we
only need to examine the likelihood of each set based on the joint probability of
the observed and simulated data. Parameter combinations that provide the highest
likelihood can be used for making evolutionary inferences. If this ML estimation is
supported by approximate Bayesian computation (ABC, see Chap. 17), the algo-
rithm can take into account prior information on the expected distributions for all
parameters that can result in increased power.

An important flexibility of the above simulation-based method is that it can also
incorporate intraspecific variation. Although the simulation process focuses on
phenotypic trait values as estimated at the tips of the phylogeny, and the simulated
and the observed data are compared at the level of species, the likelihood function
can be adjusted for patterns of phenotypic variation accumulating within species.
Accordingly, the joint probability of observed and simulated data can be extended
to include species-specific trait values as well as standard deviations around them.
In fact, not only normal distributions, but also other forms of within-species dis-
tributions can be considered. Consequently, if data are available on how the data
are spread within species, such information can be efficiently incorporated in the
estimation of likelihood surfaces of model parameters. Focusing on the compari-
son of three evolutionary models, Kutsukake and Innan (2012) present an example
analysis for the estimation of ancestral statesbased on phenotypic data (mean and
standard deviation) that are sorted at the level of species. However, their logic can
be tailored to various evolutionary questions, and equivalent approaches can be
designed for multitrait evolution, when the interest is to obtain parameters to
describe patterns of correlated evolution.

Another likelihood-based method to incorporate intraspecific variation has also
been developed in the Bayesian framework that relies on MCMC methods (Revell
and Reynolds 2012). The main difference between this and most of the above-
discussed comparative methods is that Bayesian method uses trait data that are
broken down to individuals, while species-specific trait values are not needed as an
input (note that merely the independent contrast approach relies on similar
requirements). Therefore, only the phylogeny, individual values and evolutionary
models are treated as known (Revell and Reynolds 2012 considered Brownian
process for their description, but other evolutionary models can also be envisaged).
Parameters that express species means and variances are estimated together with
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the parameters of the evolutionary model from their joint probability distribution.
Therefore, such an approach can account for the possibility that processes involved
in the considered evolutionary model and its parameters can affect species means
and variances. The simulations accompanying the methodology of Revell and
Reynolds (2012) indicated that true species means are not necessarily the same as
the arithmetic mean of individual-specific values, especially when intraspecific
variance is relatively high. This suggests that accounting for the tree and the modes
of trait evolution may be warranted when inferring about tip values at the species
level from within-species samples. This does not only apply to the means but also to
variances, as patterns of the intraspecific distribution of traits may differ between
species in a phylogenetically determined fashion. In the OPM, I demonstrate the use
of this Bayesian method focusing on functions available in phytools.

The philosophy of the two above methods (Kutsukake and Innan 2012; Revell
and Reynolds 2012) is very similar in the sense that they both revolve around a
maximization of a likelihood function for the proposed set of evolutionary
parameters. To obtain this, one needs to derive the probability of data conditioned
on the means and variances of species as well as on the parameters of the
underlying evolutionary model and the phylogeny. While Kutsukake and Innan
(2012) evaluate the surface of likelihoods through processes of data simulation at
different combinations of parameters, Revell and Reynolds (2012) put forward an
MCMC-based Bayesians algorithm to obtain the joint posterior probability dis-
tributions of parameters. In the latter procedure, propositions for parameter values
are being made at each node of the chain, and these propositions are accepted
proportional to their likelihood.

There are also differences in how intraspecific variance is incorporated in the
likelihood function. The simulation-based method assumes that this is a known
property and thus the probability function of data given the simulated values can
be simply adjusted. On the other hand, in the Bayesian approach, within-species
variations are unknown, thus two different probabilities are needed for the for-
mation of likelihood. The first part gives the probability that the proposed mean
data arose from the model of evolution and phylogenetic tree, while the second
part describes the probability that observed individual-specific data conditioned on
the proposed species-specific means and variances. The advantages of the different
strategies applied in the above two methods might be exploited depending on the
question and data at hand. For example, if the biological hypothesis under testing
is related to the evolution of species-specific trait and within-species variance is
only regarded as a confounder, the model by Kutsukake and Innan (2012) may be
appropriate. However, if we have individual-specific values, we can investigate
interesting questions about the evolution of within-species variances.

Adjusting for Unequal Within-Species Sample Sizes

To correct for heterogeneity in sample sizes among subjects, one can use weighted
regressions (Draper and Smith. 1981; Neter et al. 1996), in which each data point
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is given an emphasis according to the corresponding sample size. Such a weighting
approach can also be adopted for the phylogenetic framework, but it has seen little
test in that context. Given that standard error reciprocally scales with sample size
(Box 7.1), the above methods (e.g., PGLS, phylogenetic mixed models) using
information on error variances can be supplied with 1/ni as an estimate of within-
species variance component. Such an analysis will give results that are adjusted for
differences in sample size. If both standard errors and sample sizes are provided,
the within-species variance that is corrected for sample size can be calculated
based on the regression of standard error against the sample size, which can be
subsequently used in a measurement error model. Some examples are shown in the
OPM.

Another way to deal with non-constant sample size is to apply data imputation
method that produces estimates for cases when information is unavailable. Vari-
ation in sample size can be considered as a consequence of missing information for
some individuals (Garamszegi and Møller 2011). Various approaches are available
to input missing data (Nakagawa and Freckleton 2008) in order either to equalize
within-species sample size by augmenting individual-specific data or even to
simulate data for species for which no data are available at all. Unfortunately, such
imputation methods have been rarely exploited in the phylogenetic contexts (see
Fisher et al. 2003).

7.4.4 Interpreting Phylogenetic Results in Light of
Within-Species Variation

Results from the above exercises should be interpreted carefully. It has been noted,
for example, that different approaches may provide somewhat different outcomes
(e.g., Ives et al. 2007). Hence, repeating the analyses by using alternative methods
if these are available may help establish our confidence in the validity of detected
patterns. If discrepancies are found, we may need to revisit the assumptions of
different models to check whether these were violated. Furthermore, the visual
inspection of data can also enhance the interpretations. For instance, the types of
graphics presented in this chapter show error ranges or sample sizes around the
species-specific estimates and also illustrate the results with and without
accounting for measurement errors (Figs. 7.1 and 7.2).

How does controlling for within-species variance change the results compared
to the situation when species-specific mean values are assumed to have no errors?
Does this difference correspond well with the estimated trait repeatabilities (i.e.,
high repeatability should cause only minor difference between different out-
comes)? Answers to such questions may help elucidate the validity of the findings.
The inspection of the estimated parameters can also be informative. In general, as
discussed above, we should expect that a control for within-species variance
increases phylogenetic signal in the data, while the regression slope or correlation
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coefficient strengthens after removing the attenuation bias that the measurement
error causes. Finally, we can also check the model fit statistics to verify whether
the model accounting for within-species variance offers better fit to the data.

7.5 Discussion

In this chapter, I investigated issues about the importance of within-species vari-
ance in phylogenetic comparative studies that generally focus on species-specific
means as a unit of analysis. Evidence from simulation studies suggests that this
focus on interspecific patterns should not inherently imply that intraspecific pat-
terns are to be ignored. The potential problems posed by measurement errors
around species-specific means do not only have consequences for how we analyze
data, but also for how we design and collect data for comparative studies, how we
interpret phylogenetic findings, and ultimately, how we think about evolution.

Warnings about the importance of the incorporation of within-species variance
into analyses at the across-species level have emerged in the recent literature,
which may likely demarcate avenues for the development of the methodology in
the future. However, I would argue that before such statistical developments take
place, empirical studies are needed that confirm the biological relevance of the
appropriate control methods. Lessons about the use of phylogenetic control teach
us that although interspecific data are unavoidably structured by common ancestry,
the phylogenetic control is warranted only if the data at hand require so (Freckl-
eton 2009; Revell 2010). Similarly, the smart application of measurement error
models that also involves biological considerations and a closer look into the data
should be preferred over the blind submission of subsequent comparative datasets
to complex analyses with intraspecific variation (note that more complex models
usually require fulfilling more assumptions). Accordingly, in spite of the fact that
in theory it seems necessary to deal with the confounding effects arising from
within-species distributions, in practice it may appear that the available data
represent a case when variation below the species level is negligible, and when
classical comparative methods perform with high confidence as well. I suspect that
this situation will call for the performance of diagnostics statistics in most of the
studies rather than full exploitation of phylogenetic approaches that account for
measurement error.

Thinking based on biological motivation may also direct us into a fascinating
research direction. So far, statistical considerations implied that within-species
variation is a somewhat unwanted side effect that we should get rid of in the
comparative analysis. This echoes the philosophy that was applied in the early
days of phylogenetic methodology, i.e., when the phylogenetic structure in the data
was regarded as something that should be removed from the data, for example via
the use of independent contrasts. Only later progress realized that the phylogenetic
trees in fact may be incorporated into the analyses in a more beneficial fashion that
allows making inferences about the modes of evolution (see Chap. 1). In a similar
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vein, from the current state of the art, subsequent research may also recognize that
measurement error in a statistical sense may hold interesting information from the
biological perspective (see Sect. 7.2) that can be exploited fruitfully. Therefore,
methods that do not only control for and factor out intraspecific variation, but can
also deal with its evolutionary relevance may open new dimensions. For instance,
within-species variance itself can be subject to selection, thus incorporating such
information into the phylogenetic comparative study as a covariate rather than
handling it as a confounder may provide interesting results. As an example, in a
study of flight initiation distance in birds, Møller and Garamszegi (2012) found
that within-species variance of this trait can be shaped by ecological factors,
suggesting that these are not just random variation around a species-specific mean.
Another toolbox that holds promises toward the same direction is the phylogenetic
meta-analysis (see Chap. 11), which brings effect sizes together with their confi-
dence intervals into the focus. In such an approach, each species-specific effect
size represents the strength (and direction) of a particular relationship between two
traits, while confidence intervals describe the precision of the mean effect size
estimate based on the underlying within-species sample size. The meta-analytic
study of phylogenetically structured effect sizes is basically a comparative problem
that also considers within-species variance around species-specific estimates. The
exploitation of such methods for investigating evolutionary questions awaits fur-
ther progress. These may be interesting, for example, when traits can show cor-
relations at both the within- and between-species level (see Fig. 7.2), and the aim is
to explain why some species display strong relationships, while others weak
relationship between two phenotypic traits.

The approaches discussed in this chapter generally assume that individual- or
population-specific measurements are independent of each other and thus depict no
further phylogenetic or other hierarchical structure within species (i.e., they can be
visualized on the phylogeny as forming a star polytomy with zero branch length).
However, such an assumption may not be necessarily true, especially when within-
species variance arises from variations between populations. In fact, populations of
the same species can have a certain evolutionary history, thus they cannot be
regarded as phylogenetically independent replicates, such as data from different
individuals (see Edwards and Kot 1995 who first used phylogenetic comparative
methods on intraspecific data). Moreover, populations are structured in space that
has consequences for migration and gene flow so that phenotypes in one locality
are affected by processes acting in other neighboring localities. Therefore, infer-
ences made from across-population patterns need to consider statistical issues
about non-independence at least due to two factors: phylogeny and gene flow.
Felsenstein’s group described various methods that are able to quantify evolu-
tionary patterns across multiple populations within a single species (Stone et al.
2011).

Such methods may, however, be developed further, and combined with other
comparative methods to partition variances and evolutionary patterns acting at the
between-population and the between-species levels (e.g., by relying on the mixed
model framework). For example, it might be straightforward to first estimate
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species-specific trait values and variances over multiple populations by incorpo-
rating the effects of phylogeny and gene flow sensu Stone et al. (2011) and then
subsequently use such species-specific estimates in an interspecific comparison.
Moreover, it might be straightforward to make distinction between cases when
populations should be treated as separate entries in the analysis and when they
should be pooled as one species. This might, of course, depend on several factors
such as data availably, the biological question, the relative importance of gene
flow, and phylogenetic constraints.

I envisage there being great potential for further development of comparative
methods incorporating measurement error along various other lines. Most of the
advancements have been made so far correspond to situations when the correlated
evolution of traits is of interest. However, there might be other phylogenetic
problems and designs that also warrant considerations about within-species vari-
ance. In practice, we might also need specific methods that are able to deal with
non-normal or skewed within-species distributions, count data as well as with
missing data. Furthermore, so far there is not a strong distinction between different
sources of within-species variance in the statistical approaches. Therefore, it may
prove useful to derive methods that can separate or combine variance components
that originate from instrumental errors, within- or between-individual variations,
and fluctuations across populations. Finally, there might be a scope for amal-
gamating methods that implement uncertainty in estimating tip values and that
consider measurement errors in a phylogenetic tree (de Villemereuil et al. 2012).
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Chapter 8
An Introduction to Phylogenetic Path
Analysis

Alejandro Gonzalez-Voyer and Achaz von Hardenberg

The questions addressed by macroevolutionary biologists are often impervious to
experimental approaches, and alternative methods have to be adopted. The phy-
logenetic comparative approach is a very powerful one since it combines a large
number of species and thus spans long periods of evolutionary change. However,
there are limits to the inferences that can be drawn from the results, in part due to
the limitations of the most commonly employed analytical methods. In this
chapter, we show how confirmatory path analysis can be undertaken explicitly
controlling for non-independence due to shared ancestry. The phylogenetic path
analysis method we present allows researchers to move beyond the estimation of
direct effects and analyze the relative importance of alternative causal models
including direct and indirect paths of influence among variables. We begin the
chapter with a general introduction to path analysis and then present a step-by-step
guide to phylogenetic path analysis using the d-separation method. We also show
how the known statistical problems associated with non-independence of data
points due to shared ancestry become compounded in path analysis. We finish with
a discussion about the potential effects of collinearity and measurement error, and
a look toward possible future developments.
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8.1 Phylogenetic Linear Models: Drawbacks
and Limitations When Analyzing the Influence
of Multiple Variables

Because comparative biologists address questions related to long-term processes,
they are faced with an important practical obstacle: the time necessary to produce
evolutionary change. Hence, as with many problems in ecology, evolution, and
behavior, the questions addressed by comparative biologists are often impervious
to experimental approaches and alternative methods have to be adopted. Phylo-
genetic comparative methods employ the results from replicated ‘‘natural experi-
ments’’ across multiple extant taxa as the data with which to test evolutionary
hypotheses. Repeated associations between putative functional traits and envi-
ronmental variables (proxies for a selective regime) or among traits are taken as
supporting the evolutionary hypothesis. However, although the approach is
potentially a very powerful one, given that comparisons generally involve
numerous species and hence span long periods of evolutionary change (Freckleton
2009), comparative biologists are constrained in the inferences or conclusions they
can draw from their results. Correlations between traits or between traits and the
environment in extant taxa do not address the question of evolutionary origin
(Martins 2000). Indeed, an important limitation when dealing with processes
having occurred in the distant past is that there is no information about the con-
ditions during most of the evolutionary history of the process being analyzed.
Therefore, although there is a relationship between traits in extant taxa and current
environments, this does not necessarily mean that there was a relationship between
traits and the environmental conditions when the adaptation arose (Martins 2000).
Furthermore, correlations between traits and the environment or between traits do
not necessarily imply that the environment or trait is the driving force for the
observed phenotypic changes (Martins 2000). Indeed, all correlative data have the
inherent limitation that there is no way to determine causality. Nonetheless,
a comparative method does exist allowing researchers to determine the order of
evolutionary transitions (contingency) in correlated discrete traits (Pagel and
Meade 2006).

These caveats not withstanding, there are also limitations regarding inferences
researchers can make about their results due to limitations of the most commonly
employed statistical methods. Currently, when testing hypotheses about associa-
tions between traits or traits and the environment, the method most often employed
by comparative biologists is based on linear models. Phylogenetic independent
contrasts or phylogenetic generalized least squares (PGLS) methods allow to
analyze covariation between traits or traits and the environment, controlling for
non-independence of data points (correlated residuals) due to shared ancestry
(Felsenstein 1985; Grafen 1989; Martins and Hansen 1997). In addition, PGLS
allows to combine continuous and discrete traits in a single model without the need
to code dummy variables as well as allowing for different models of trait evolution
to be incorporated in the analyses (Martins and Hansen 1997; see Chaps. 5 and 6).

202 A. Gonzalez-Voyer and A. von Hardenberg

http://dx.doi.org/10.1007/978-3-662-43550-2_5
http://dx.doi.org/10.1007/978-3-662-43550-2_6


However, both methods present similar limitations, which are the same as those of
traditional linear models. First, only a single-dependent variable can be analyzed at
a time, although a more realistic reflection of the complexity of the multivariate
relationships currently analyzed by comparative biologists would allow for
simultaneous exploration of the effects of a number of predictor variables on a
number of different outcomes. Second, in multivariate linear models, a particular
variable can either be a predictor or a response; however, a particular phenotypic
trait can be responding, for example, to the influence of the environment and in
turn be itself the cause of changes in a second phenotypic trait, hence a single trait
can be both a response and a predictor. In order to overcome these limitations of
traditional multivariate linear models, path analysis was developed. Confirmatory
path analysis (and structural equation modeling) is an extension of multiple
regression, but it is superior to ordinary regression analysis in that it allows
researchers to move beyond the estimation of direct effects and analyze the relative
importance of alternative causal models including direct and indirect paths of
influence among variables. In von Hardenberg and Gonzalez-Voyer (2013), we
introduced phylogenetic path analysis (PPA), integrating PGLS with the d-sepa-
ration method for path analysis developed by Shipley (2000a). The proposed
method allows researchers to harness the power of path analysis to disentangle
cause–effect relationships among variables with data leading to correlated resid-
uals due to shared ancestry. In this chapter and in the online practical material
(hereafter OPM) available at www.mpcm-evolution.org, we provide further
information and a detailed tutorial about how to perform PPA using the open
source statistical language R (R Development Core Team 2013).

8.2 The Philosophy of Path Analysis

Correlation does not imply causation. Back in our undergraduate statistics classes,
we were all taught this scientific mantra (Fig. 8.1). This statement is so deeply
embedded in our modern scientific culture that it even deserved its own Wikipedia
page.1 Indeed, it is undeniable that if A is related to B, this does not imply that B is
caused by A, or that A is caused by B. Both variables may, for example, be caused
by a third confounding variable C. Some simple examples will elucidate this point:
A highly significant correlation exists between the number of breeding pairs of
storks (Ciconia ciconia) and human birthrates in Europe (Matthews 2000). Does
this imply that storks deliver babies? Another study suggests that scientific pro-
ductivity (measured as the number of citations) of ecologists is inversely correlated
with per capita beer consumption (Grim 2008). Does this mean that beer drinking
is detrimental to your scientific career? If you are not willing to give up your
passion for beer, you may nonetheless be able to compensate eating lots of

1 http://en.wikipedia.org/wiki/Correlation_does_not_imply_causation Retrieved June 4, 2014
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chocolate. This at least is what a recent study in the New England Journal of
Medicine suggests (Messerli 2012). The study shows a significant correlation
between per capita chocolate consumption and the number of Nobel laureates per
10 million population in each country. All of these causal claims can easily be
dismissed, taking into account other possible common causal variables, if not
simply by logic. The main problem with the above-mentioned studies is that they
are based on observational data rather than on controlled or randomized experi-
ments (Fisher 1926), which are the commonly accepted scientific methods to infer
causality. It would be great to be always able to use proper randomized or con-
trolled experiments in all our studies, but this is obviously not possible, particu-
larly in the case of comparative studies, where the unit of analysis is estimates of
trait values for diverse species.

Correlation does not imply causation. This is what we have so dutifully learned.
But is this completely true? Actually no. Indeed, without being afraid of saying a
heresy, we can claim that correlation always implies an underlying, unresolved
causal structure (Shipley 2000b). If we can rule out that the correlation between
two variables is simply due to chance, there must be something that causes this
relationship directly or indirectly through some other variables, even if we cannot
necessarily identify the causes. The causal structure behind this correlation is
indeed said to be unresolved because we cannot know, from the single correlation
we can observe, how this correlation structure is built. Let us take a closer look at
the ‘‘baby-delivering storks’’ data of Matthews (2000). The original data are
available in the OPM available at http://www.mpcm-evolution.com as a
‘‘comma-separated values’’ (CSV) file. A tutorial showing how this data was
analyzed and plotted using the open source statistical language R (R Development
Core Team 2013), is also available in the aforementioned Web site. A quick glance
at Fig. 8.2 strongly suggests that there is a relationship between number of storks
and human births. Indeed, there is a significant relationship between the number of
stork pairs and human birthrate with a p value of 0.008.

Fig. 8.1 Courtesy of XKCD (Distributed under a creative commons attribution-noncommercial
2.5 license)
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Of course, none of us seriously believes that this means that storks really deliver
babies2! Everybody will most likely agree that there is some other confounding
variable which is the real, direct, or indirect cause of both the number of breeding
stork pairs and human birthrates. As we said: correlation always implies an
underlying, unresolved causal structure. Theoretically, we could test whether
storks actually deliver babies doing a randomized experiment, for example,
keeping constant the number of breeding stork pairs over a random selection of
countries3 in order to physically control for the variability in the number of stork
pairs and at the same time excluding the effect of other possible confounding
variables thanks to the randomization. However, this would undeniably be a very
large scale and impractical experiment, not considering the moral implications it
would have! What we can however do, if we have other factors which we suspect
to be the true cause behind both human birthrates and the number of stork pairs, is
to statistically control for the variability in these factors and thus see whether,
controlling for the supposed common cause (in statistical jargon we would say:
conditioning on it) the relationship between the number of storks and human
birthrates still holds. We can try this using one of the other variables available in
the dataset: area, which represents the surface size in squared kilometers of each
country. It is indeed reasonable to think that larger countries host a higher number
of stork pairs and at the same time have higher human birthrates, possibly indi-
rectly through some other unmeasured variable. Indeed, there appears to be a very

Fig. 8.2 Relationship
between the number of
breeding pairs of storks
(Ciconia ciconia) and human
birthrates in European
countries (data from
Matthews 2000)

2 If you do, you can stop reading here!
3 By hunting or, less drastically, translocating excess pairs from one country to an other.
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strong relationship between human birthrate and country area (Fig. 8.3a)! We can
do the same for the relationship between the number of stork pairs and area. In this
case also the relationship (Fig. 8.3b), even thought not as strong, is significant
(p = 0.0148). We can now go back to our first linear model of the relationship
between number of stork pairs and birthrates and statistically control for the effect
of the confounding variable area, simply including this variable in the model
transforming it into a multiple linear regression model of the kind4:
Birth * Area + Storks. Where Birth = birthrate, Area = country area, and
Storks = number of stork pairs. With this model, while the effect of area on
birthrate is highly significant (p = 6.62e-06), including this variable drastically
changed the significance of the effect of the number of stork pairs to an unim-
pressive p value of 0.307 compared to the p value of 0.008 we obtained previously
without conditioning on area! Technically, what we did is test the partial regres-
sion coefficient of the effect of the number of stork pairs on birthrate statistically
controlling for the confounding effect of area and thus testing the statistical
independence of the number of stork pairs from human birthrate. Is this enough to
be able to claim that area is thus the common cause of both the number of breeding
stork pairs and human birthrate? Sadly no. Indeed statistically, even if not logi-
cally, the result of this partial regression model may imply at least one alternative
causal structure besides the above-mentioned hypothesis: The number of stork

Fig. 8.3 a Relationship between human birthrate and country area; b relationship between the
number of breeding pairs of storks and country area (data from Matthews 2000)

4 Note that here and in the rest of this chapter, we use the modified Wilkinson-Rogers notation
for linear models (Wilkinson and Rogers 1973) widely used in statistical languages such as R. In
this notation, the intercept is implicit and the tilde (*) separates the left-hand side from the right-
hand side of the equation.
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pairs may indirectly influence human birthrate through the area of countries.5

While this alternative hypothesis does not necessarily make any logical sense in
this case,6 statistically, in the absence of further information, we cannot distinguish
it from the hypothesis that area influences both the number of storks and birthrate,
as the correlation pattern we observe among the variables (i.e., the partial
regression model described above), can imply more than one underlying causal
structure (as already mentioned that is why it is unresolved). However, while
correlation implies an underlying, unresolved causal structure, causation always
implies a completely resolved correlational structure (Shipley 2000a). This means
that the hypothesized causal relationships among variables imply one, and only
one, specific pattern of correlations and partial correlations (which in turn, how-
ever, can be cast by more than one causal model). Bill Shipley in his excellent
book on cause and correlation in biology compares the pattern of correlations we
can observe in nature to the shadows cast on a screen by a three-dimensional
object, which in turn represents the causal structure behind the observable corre-
lations (Shipley 2000b). A round shadow can be cast both by a ball as well as by a
frisbee (i.e., the implied causal structure is unresolved), but the ball can cast only a
round shadow (the implied correlational structure is completely resolved). This
means that, at least in principle, we could test the ‘‘goodness of fit’’ of the cor-
relational pattern we would expect to be cast by our hypothesized causal model,
with the correlational structure we observe in the data. To be able to do this, we
need a formal method to translate between the language of causality and the
language of statistical probability. We also need an appropriate measure of the fit
between the correlational pattern we observe in the data and the one that must exist
given a specific causal structure. We will take a closer look at the recently
developed methods permitting us to do exactly this, but first we need to define
better the language of causality. To this end, let us complicate a bit our model of
the causal relationships linking the various variables present in the Matthews
(2000) dataset. For example, we can plausibly hypothesize that while area is the
common cause of the number of stork pairs and human birthrate, this latter vari-
able in turn is the causal parent of the number of inhabitants in each country7

(Fig. 8.4). The causal model depicted in Fig. 8.4 is what in graph theory is called a
directed acyclic graph (DAG). Squares represent variables, which in the language
of graph theory are called ‘‘vertices.’’ The directed arrows, called ‘‘edges,’’ rep-
resent the hypothesized causal links. The graph is called ‘‘Acyclic’’ because in this
kind of graph, a causal path (i.e., the path you can do following the edges passing
from one vertex to the next along the causal model) never returns to the same
starting vertex. A vertex in a DAG such as birthrate in Fig. 8.4 can be both a

5 Implying that country size is somehow determined by the number of stork pairs inhabiting that
country!
6 Even though it is not necessarily more implausible than the hypothesis that storks deliver
babies!
7 In the data frame storks.dat this variable is called ‘‘Humans’’ and it is expressed as millions of
inhabitants.
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dependent and an independent variable at the same time (in the language of graph
theory you would say that it is both a causal parent and a causal child). We refer to
Shipley (2000b) and Pearl (2009) for more details about the language of graph
models. DAGs are the mathematical tool we use to formulate hypothesized models
of causal relationships among variables. What we now need are formal methods to
translate between the language of causality (which we represent with DAGs) and
the language of statistical probability. These tools have been introduced to biol-
ogists only relatively recently and they go under the name of path analysis and
structural equation models (of which classical path analysis is a special case). In
the next sections, we will describe them in more detail, with a specific reference to
past attempts in the literature to use these methods with data in which data points
are represented by species with non-independent errors due to the underlying
phylogeny. We will also introduce the d-separation-based technique for path
analysis (Pearl 1988, 2009) and the d-sep test developed by Shipley (2000a),
which are at the core of the method we recommend to use for phylogenetic path
analysis (von Hardenberg and Gonzalez-Voyer 2013).

8.3 Structural Equations and d-Separation-Based
Techniques

In structural equation models (SEM), the causal models are translated into a set of
linear equations following the causal structure, and the parameters to be estimated
from the data are specified. The expected pattern of covariance among the vari-
ables can thus be derived simply using the rules of covariance algebra. The free
parameters are estimated by maximum likelihood minimizing the difference
between the expected covariance matrix of the assumed model and the observed
covariance in the data. Finally, we can calculate the probability that the minimum
difference between the expected and observed covariance is different from zero
(i.e., the observed covariance pattern deviates significantly from the covariance
expected by the causal model). This method is appealing because it is based on
maximum likelihood and it permits the inclusion of unmeasured latent variables.
The latter is an important difference between SEM and path analysis based on
d-separation, which cannot include latent variables. For a thorough review of SEM

Area

HumansStork pairs Birth rate

Fig. 8.4 Causal model of the relationship between the number of breeding pairs of storks, human
birthrates in European countries, country area and population size depicted as a directed acyclic
graph
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methods, we point readers to Shipley (2000b) and Kline (2010). However, to make
SEM methods amenable to work with an underlying phylogenetic signal not only
must we compare the covariance matrix expected by the causal model with the
covariance observed in the data, but also somehow include the expected covari-
ance due to common ancestry. In Sect. 5, we review past attempts to develop
phylogenetic SEMs (for examples, see Lesku et al. 2006; Santos 2009, 2012;
Santos and Cannatella 2011). The method that we propose to use for phylogenetic
path analysis (von Hardenberg and Gonzalez-Voyer 2013) follows a different
approach and is based on the concept of d-separation developed by Judea Pearl and
his collaborators (Geiger et al. 1990; Pearl 1988; Verma and Pearl 1988).

D-separation8 is the ‘missing link’ between the language of causality, repre-
sented as directed acyclic graphs, and the language of statistical linear models.
D-separation specifies the minimum set (called the basis set) of independence and
conditional independence relationships (called d-separation statements) that hold
true among all variables (the vertices) of the hypothesized causal model. In other
words, it specifies the list of all, and only those, pairs of variables that are sta-
tistically independent conditioning on a set of other variables in the causal model.
The minimum set of conditional independencies is determined in the following
manner. First, list all pairs of non-adjacent vertices, i.e., the pairs of vertices that
are not directly connected by an arrow (edge) in the directed acyclic graph. This
gives a list of conditionally independent pairs of variables (these vertices are said
to be d-separated). Second, list all the vertices with an arrow pointing directly to
any of the conditionally independent variables in each pair, i.e., the causal parents
of any of the two d-separated vertices. This gives the list of variables upon which
the independent pairs of variables are conditioned, i.e., the variables that are
statistically controlled to test the independence between the d-separated variables.
Simply combining the two lists, we obtain the minimum set of conditional inde-
pendence statements, which have to be true not to reject the hypothesized causal
model. The conditional independence statements can be directly translated into
statistical models using correlation, linear models, or other statistical tests that
adequately fit the error structure of the data including nonparametric tests and
permutation methods. The flexibility in the statistical methods that can be
employed to test the conditional independencies is one of the important advantages
of d-separation compared to SEM methods. To make the above clearer, we will go
back to our ‘‘baby-delivering storks’’ example and the hypothesized causal model
depicted in Fig. 8.4. In this simple example, the number of stork pairs is
d-separated from birthrate (storks, birth), and from human population size (storks,
humans). Furthermore, area is d-separated from human population size (area,
humans). This gives us the following list: [(storks, birth), (storks, humans), and
(area, humans)]. Let us now list the causal parents. For the first statement (storks,
birth) we have only area, which is directly linked with both vertices. Following the
notation proposed by Shipley (2004), we put the parent variables between curled

8 D-separation is an acronym for ‘‘Directed’’ separation.
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brackets, in this case: {Area}. For the second statement (storks, humans), we have
two parent variables: area, directly causing storks, and birth, which is the causal
parent of humans {Area, Birth}. For the last statement in this example (area,
humans), we have only one causal parent which is birth directly causing humans
{Birth}. The resulting list is [{Area}, {Area, Birth}, {Birth}]. As we mentioned
above, combining these two lists we obtain the basis set of conditional indepen-
dencies which must be true for the data to fit this model: [(Storks, Birth){Area},
(Storks, Humans){Area, Birth}, (Area, Humans){Birth}]. We can now translate
these d-separation statements to statistical linear models in which we test the
independence of the pairs of variables in round brackets conditioning on their
parent vertices enclosed in curled brackets. The linear models we get are the
following:

Birth * Area + Storks
Humans * Area + Birth + Storks
Humans * Birth + Area
In the OPM (available at: http://www.mpcm-evolution.com), we show how you

can test these models using R. You may have noticed that actually, we already
tested the first of these linear models in Sect. 2 and found that, indeed, human
birthrate is statistically independent from the number of stork pairs when condi-
tioning on area with a p value of 0.307. The effect of storks on human population
size is not significant when conditioning on area and birthrate (p = 0.110) as well
as the effect of area on humans when conditioning on birthrate (p = 0.6232). The
fact that none of the three hypotheses implied in the above independence state-
ments is rejected, permits us to say that the hypothesized causal model depicted in
Fig. 8.4 is a plausible explanation of the correlation patterns we observe among the
variables.

Shipley (2000b) proposed to combine the p values using Fisher’s C statistic
which is calculated with the following formula:

C ¼ �2
Xk

i¼1

ln pið Þð Þ ð8:1Þ

where k is the number of conditional independencies in the minimum set and
p their p value. The C statistic follows a v2 distribution with degrees of free-
dom (df)= 2 k. The C statistic therefore provides a convenient statistic for testing
the goodness of fit of the whole path model. With this test (called the d-sep test),
the path model is rejected, i.e., it does not provide a good fit to the data, if the p
value of the C statistic is below the pre-specified alpha value (e.g., 0.05). We can
now test the fit of our hypothesized causal model of the relationships among
number of stork pairs, human birthrate and population size and country surface
area. The C statistic has a value of 7.713, which, knowing that the number of
conditional independencies k is 3, leads to a p value of the d-separation test of
0.26. This p value is larger than an alpha value of 0.05, and therefore, we can
accept the model depicted in Fig. 8.4 as a plausible causal explanation of the

210 A. Gonzalez-Voyer and A. von Hardenberg

http://www.mpcm-evolution.com


relationships found among the variables in our dataset. If you are not convinced,
and still believe that storks deliver babies, you can try an alternative model in
which instead of having a direct causal link from area to birthrate, you have a
direct causal link from the number of stork pairs to birthrate, while the other
relationships stay the same as in the previous model. This alternative causal model
is depicted as a DAG in Fig. 8.5. We leave it as a little exercise for the readers to
obtain the minimum set and thus apply the d-sep test to the derived conditional
independencies.9 If you carefully followed all the steps, you should get a C value
of 29.2 and a corresponding p value of 5.570647910-5, which is way below the
alpha value of 0.05. This model is therefore rejected, and this should, we think, put
the final word on the dispute of whether storks actually deliver babies! In the next
section, we show how to apply this elegant and powerful method to data with an
underlying phylogenetic signal, introducing in this way our proposed method for
phylogenetic path analysis (von Hardenberg and Gonzalez-Voyer 2013).

8.4 A Step-by-Step Guide to Phylogenetic Path Analysis
Using the d-Separation Method

The first step for any phylogenetic path analysis, as for any study in evolutionary
biology, is to clearly define the hypothesis (or hypotheses) being tested. Although
this may seem rather trivial to most readers, if not enough time is dedicated to
clearly define the hypotheses to be tested, their predictions and underlying
assumptions, the study can rapidly go astray and valuable time go to waste. A clear
description of the hypotheses to be tested will be crucial for the next step: data
collection. Although in the past, the limiting factor for comparative analyses was
the lack of well-defined and robust phylogenies, at present the limitations are
generally due to insufficient data. A well-defined hypothesis is important to guide
researchers as to the data required to test it. We should stress the importance of
careful data collection with particular attention to the importance of repeatability,

Area

HumansStork pairs Birth rate

Fig. 8.5 Alternative causal model of the relationship between the number of breeding pairs of
storks, human birthrates in European countries, country area, and population size depicted as a
directed acyclic graph

9 All conditional independencies and full results for this model are provided in the online
practical material (http://www.mpcm-evolution.com).
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data that are representative of the species, and at the same time are also compa-
rable across species (see Chap. 7).

The second step is to use graph theory to depict the hypotheses being tested as
directed acyclic graphs. As mentioned previously, although path analysis is an
extension of linear regression, it relies on path diagrams to depict the causal
relationships between the variables. Because path analysis is a model-testing
procedure, and not a model-developing one, all models to be tested should be
based on theory and previous evidence. Once the hypotheses to be compared have
been properly depicted by the directed acyclic graphs, the third step is to test the fit
of each path model to the data.

As seen above, to test the fit of a path model to the data, we must first enu-
merate the minimum set of conditional independencies that must be true for the
model to adequately fit the data. These conditional independencies can then be
translated into linear models and tested with conventional statistical tests. Shipley
(2009) showed that the d-separation method for path analysis can be extended to
data with a hierarchical structure using generalized mixed models to test the
conditional independencies in the minimum set. In von Hardenberg and Gonzalez-
Voyer (2013), we extended the method further to include the particular case of
interspecific comparisons, in which the lack of independence of data points and
resulting correlation structure in the residuals violates assumptions of traditional
statistical methods. We showed how the conditional independencies can be simply
translated into phylogenetic generalized least squares models. Because the con-
ditional independencies are being tested using linear regression models (PGLS)
rather than correlations, the order in which we put the variables in the model is
important and thus care must be taken when determining which vertex is the
‘‘dependent variable’’ and which vertex is the ‘‘independent variable.’’ Vertices
that are causal children (at the end of the causal path separating the two vertices of
interest) are dependent variables, while causal parents (at the beginning of the
causal path) are the independent variables. To calculate the number of conditional
independencies in the minimum set, the following handy formula can be employed
(Shipley 2000b):

V!

2� V � 2ð Þ!� A ð8:2Þ

where V is the number of vertices in the directed acyclic graph and A is the number
of edges (the arrows in our DAG). The test, for each conditional independency,
involves determining whether indeed, vertices are uncorrelated when conditioning
on the parents of each of them. A slightly special case, for defining conditional
independencies, is when two vertices are separated by a collider vertex. A vertex is
called a collider vertex when two edges from opposite directions in the causal path
point toward it (e.g., A ? B / C). A collider vertex is said to switch the causal
path from active to inactive, that is, vertices in one side of it are unaffected by
changes in vertices in the other side. Hence, when testing the conditional inde-
pendency of vertices on either side of a collider, the collider is not included in the
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conditioning set. For example, to test the conditional independency of (A, C) the
conditioning set is {/}. The symbol / is used to indicate that A, C are conditioned
on no other variable. The last step is to combine the p values of the conditional
independence tests using Fisher’s C statistic and thus test the fit of the hypothe-
sized causal model as shown in the previous section (Sect. 8.3).

To illustrate more clearly and in a greater extent the process of phylogenetic
path analysis, we now present an empirical example, which we invite the readers
to follow replicating it on their own computers using the R language. To make the
example biologically meaningful and more intuitive, we propose the following
evolutionary puzzle. The aim of the study is to identify the factors that determine
geographical range size in the Rhinogrades. If you are unaware of this particular
mammal order (Rhinogradentia, DE BURLAS Y TONTERIAS 1948), this comes
as no surprise. The Rhinogrades (also called snouters) were endemic to the islands
of the Hi-yi-yi Archipelago in the Pacific Ocean only discovered in 1941 but
erroneously completely destroyed by secret nuclear experiments in the 1950s,
causing the complete extinction of this highly diversified taxonomic group. The
main characteristic of the Rhinogrades is that their noses evolved and diverged (in
an analogous way to the beak in Darwin finches) into variegated forms with the
most diverse functions. In particular, in most genera of the Rhinogradentia,
the nose evolved into a complex locomotion organ (Fig. 8.6). For a full account of
the natural history of the Rhinogrades, we refer the readers to Stümpke (1967).
Previous studies suggest that, as in other mammalian species, there is an allometric
relationship between range size and body mass. Some Rhinogradentia specialists
suggest that species with larger range sizes also have larger litter sizes, because of
higher resource availability. Nonetheless, given the allometric relationship
between body size and litter size, it is still unclear whether the association between
litter size and range size is causal or merely correlational. There is much dis-
cussion regarding the relationship between range size and nose length. On the one
hand, range size has been proposed to directly affect nose length, given that
Rhinogradentia use their nasal appendage for locomotion and hence larger range
sizes select for longer-distance displacements. Alternatively, some experts suggest
that the direction of causality should be turned upside down and that it is nose
length that determines displacement distances, and therefore, species with longer
noses are able to expand their range size. Finally, there is some consensus among
Rhinograd experts that dispersal distance is determined by nose length. Based on
this knowledge, we can construct a set of hypotheses of causal relationships among
variables which we can depict using directed acyclic graphs with the five traits of
interest. We will refer to the five traits of this example with acronyms for brevity:
body mass = BM, litter size = LS, nose length = NL, dispersal distance = DD,
and range size = RS. Figure 8.7 presents the models we proposed for the present
example.

The nuclear disaster which destroyed the Hi-yi-yi islands, together with the
Rhinogrades also brought down the Darwin Institute of Hi-yi-yi, where all the
specimens and life history data of this group were conserved (Stümpke 1967).
We therefore had no other choice but to resort to simulated data for our example.
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We simulated a phylogenetic tree of 100 species under a pure-birth model. Data
for the five variables were simulated to evolve on the tree following a Brownian
model with a lambda-transformed tree (k = 0.8). The data were simulated to
evolve with varying degrees of inter-correlation among the variables based on a
pre-specified causal model. Variables directly linked in the path model presented
correlations of 0.5, while variables with indirect links presented correlations that
decreased proportionally with the number of variables separating them, with
correlation decreasing by half for each variable in the indirect link (see OPM).

Fig. 8.6 A representative of the Rhinogradentia order: the Hopsorrinhus aureus belonging to the
Hopsorrhinidae family (Snout Leapers sens. strict.), characterized by the peculiar nasal structure
which permits them tomove thanks to long backward leaps (Taken fromPlate VI, in Stümpke 1967)
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Use of simulated data following a pre-specified path model is an excellent means
to practice a novel approach. In the OPM (http://www.mpcm-evolution.com), we
provide both the simulated data (in a file called rhino.csv) and phylogeny (in a file
called rhino.tree) used in the Rhinogradentia example, as well as the R code used to
simulate the phylogenetic tree and data to enable readers to simulate their own data
under a different path model if they wish to do so. We also provide an online tutorial,

Fig. 8.7 Alternative path models depicting the relationship between body mass, litter size, nose
length, dispersal distance, and range size in Rhinogradentia
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replicating all steps described in this section using R. In the first model in Fig. 8.7,
there are 5 vertices and 4 edges, hence the minimum set contains 6 conditional
independencies to be tested (as follows using the above-mentioned formula).

These are the conditional independencies in the basis set and their translation
into linear models:

Conditional independencies Linear models

(BM, DD) {NL} DD * NL + BM
(BM, RS) {DD} RS * DD + BM
(NL, LS) {BM} LS * BM + NL
(DD, LS) {BM, NL} LS * BM + NL + DD
(LS, RS) {BM, DD} RS * BM + DD + LS
(NL, RS) {BM, DD} RS * BM + DD + NL

It is important to note that since we are using linear models to test the condi-
tional independencies (as opposed to correlations), care must be taken when
determining which variable is the response and which the predictor. In such cases,
to determine the order of variables in the conditional independency, always follow
the direction of causality in the directed acyclic graph (as noted above). Note that
in particular cases there is no a priori reason to define one variable as the
‘‘response’’ and the other as the ‘‘predictor’’ as each variable is at the end of a
causal path. In such circumstances, the researcher must decide how to define the
model to test the conditional independency and keep it constant in other models
being compared. We can test the conditional independencies using one of the
available statistical packages to perform PGLS and thus obtain the value of the C
statistic as described above. Note that an important advantage of the approach we
propose is that it allows for analyses to be done using the evolutionary model
which best fits the data (Freckleton 2009; Freckleton et al. 2002; Grafen 1989;
Hansen 1997; Pagel 1999). In the case of this particular example, given we sim-
ulated the data under a Brownian model we will use PGLS analyses with a
maximum-likelihood estimate of the lambda parameter (Freckleton et al. 2002;
Revell 2010). Following the same steps as for the first path model, we can also test
the minimum set of conditional independencies for model 2. These are presented
below with their translation into linear models:

Conditional independencies Linear models

(BM, DD) {NL} DD * NL + BM
(BM, RS) {DD, LS} RS * DD + LS + BM
(NL, RS) {DD, LS, BM} RS * DD + LS + BM + NL
(NL, LS) {BM} LS * BM + NL
(DD, LS) {BM, NL} LS * BM + NL + DD
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The reader can now test the conditional independencies of the remaining
models depicted as DAGs in Fig. 8.7.10 Table 8.1 presents the values of the C
statistic for each model as well as the p value.

Based on the results in Table 8.1, we can already conclude that the first three
models provide very poor fit to the data, because the p value of the C statistic is
significant. Hence, we can reject the hypothesis that the correlation structure
observed in the data is the result of these three proposed causal models. On the
contrary, models 4–9 cannot be rejected, or in other words the correlation structure
observed in the data could potentially result from any of these 6 models. As stated
above, there is inevitably some uncertainty regarding the causal model that gives
rise to the observed correlation structure in the data, and in this case we have
identified 6 candidate causal models. This not very satisfactory! Shipley (2000b)
proposed two competing models that can be compared based on the difference in
the C statistics, which follows a v2 distribution with D df = dfmodel1 - df model2.
However, only nested models can be compared in this manner. Ideally, we would
like to be able to compare among all models (including non-nested ones) and rank
them based on some estimate of their goodness of fit (Burnham and Anderson
2002). In von Hardenberg and Gonzalez-Voyer (2013), we proposed to use an
information theoretic approach alike to the classical Akaike Information Criterion
(Akaike 1974) using a modified version of AIC, which we called the C statistic
Information Criterion (CIC). This approach was first proposed, in the framework
of non-phylogenetic path analysis, by Cardon et al. (2011). Use of an information
theoretic approach requires that the measure of ‘‘goodness of fit’’ be based on
maximum-likelihood estimates; hence to be able to apply such an approach to path
analysis using d-separation, it is necessary to show that the C statistic, used to
calculate this criterion, is equivalent to a maximum-likelihood estimate. Shipley
(2013) recently provided such mathematical proof, validating the use of AIC (i.e.,

Table 8.1 C statistic, number of conditional independencies tested (k), and p values of the C
statistic for the 9 path models depicted in Fig. 8.7

Model C statistic k p value

1 63.809 6 4.52 9 10-9

2 62.769 5 1.08 9 10-9

3 28.973 6 0.004
4 6.582 5 0.764
5 5.258 4 0.730
6 6.439 5 0.777
7 6.018 4 0.645
8 7.699 6 0.808
9 7.362 5 0.691

10 All conditional independencies and full results for these models are provided in the online
practical material.
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CIC) to compare between non-nested models in the framework of d-separation
path analysis. This should allay concerns of readers worried by the fact that the
C statistic is calculated based on the p values of the conditional independency tests
and we are now using it to estimate CICc, apparently combining frequentist and
information theoretic approaches. To calculate CIC, we simply need to know the
number of parameters estimated in the path model using the empirical data. In
phylogenetic path analysis, we assume a multivariate normal distribution of errors
and linear relationships between variables, because these are assumptions of the
phylogenetic generalized least squares models used to test the conditional inde-
pendencies (for use of CIC with models with different error distributions, see
Shipley 2013). We employ here the formula to calculate CICc, the equivalent of
CIC with a correction for small sample sizes. In any case, when the sample size is
large relative to the number of parameters, CICc will converge on CIC. To cal-
culate CICc:

CICc ¼ C þ 2q� n

n� 1� qð Þ ð8:3Þ

where C is the C statistic for the particular model, q is the number of parameters
estimated in the path model, and n is the sample size, in the case of phylogenetic
path analysis the number of species. For a given path model, we are interested in
the slopes of each of the causal links between the variables and the variances. For
example, for model 1 in the Rhinogrades exercise, 9 parameters are estimated: the
variance for body mass (BM), which is the only variable without any causal parent
in the model, and the 4 slopes and the variances for the causal links. While in
model 2, 10 parameters are estimated: the variance for body mass, 5 slopes for the
causal links and 4 variances, because in this case range size is causally determined
by both litter size and dispersal distance, and therefore, two slopes and one var-
iance are estimated for these causal links (see Shipley 2013 for details). In cases in
which the interest lies only in the slopes of the causal links between the variables,
a quick way to obtain the number of parameters estimated in the model is simply to
add the number of vertices and number of edges in the path model. Note that for
models to be comparable using CICc, all models must have the same sample size
(number of species), and therefore, the data set is reduced to the maximum number
of species for which data for all variables is available. Furthermore, all compared
models must also have the same number of vertices, although they can have
different numbers of edges. Hence, to compare two models in which one variable
has no causal link to any other (i.e., there is no edge between it and any other
vertex in the model), the complete set of conditional independencies between this
variable and all others in the model must be tested to calculate the C statistic.
Indeed, such a model assumes that the ‘‘isolated’’ variable (unconnected to any
other variable in the model) is conditionally independent from all the variables in
the model, and this assumption must be tested (Cardon et al. 2011).

Now we can calculate CICc values for all the models, we are comparing in the
Rhinogrades example. With the CICc values in hand, we can also rank the models
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based on the difference in CICc (DCICc). DCICc is simply the CICc value of
model i minus the value of the model with the lowest CICc (CICcMIN). DCICc can
be used in the very same way as it is normally done in standard model selection
procedures using AIC (Cardon et al. 2011). Given that DCICc is measured in a
continuous scale of information, the values are comparable among models. As a
general rule of thumb, models with DCICc values\ 2 are all considered to have
substantial support (Burnham and Anderson 2002). The relative likelihood of a
model i given the data L (gi|data), provides information regarding the relative
strength of evidence for a model compared to the others and can be computed,
following Burnham et al. (2011):

‘ ¼ L gijdatað Þ ¼ exp�ð1=2ÞDCICcið Þ ð8:4Þ

Finally, CICc weights, the probability of each path model gi, given the data and
the set of models being compared, are also simple to compute as a measure of
strength of evidence (Burnham et al. 2011):

wi ¼ Pr mod gið Þ dataj gf ¼ liPR
j¼1 l

ð8:5Þ

Use of CICc allows us to move from a hypothesis testing to a hypothesis
comparison framework. Below we present the CICc values for all the tested
models in the Rhinogrades example, including the number of estimated parameters
in each model (q), DCICc, likelihoods and weights (Table 8.2).

Use of CICc allows for finer comparisons amongmodels compared with what can
be gained by simply looking at the C statistic and its associated p value. Table 8.2
presents a clear ranking of all models from the Rhinogrades example. Those with
significant C statistics (models 1, 2, and 3) also show elevated CICc and DCICc
values, indicating that they provide a very poor fit to the data. We can also however
gain some insight about the six models with nonsignificant C statistics. Models 5, 7,
and 9 provide a relatively poorer fit to the data than the other threemodels (4, 6, and 8)
as theDCICc values are[2.We cannot distinguish betweenmodels 4, 6, and 8, since
they present very small differences in CICc, with all models showing DCICc values
\2. Note that care must be taken when comparing models with DCICc values\2.
As pointed out by Arnold (2010), also highlighted by Burnham and Anderson
(2002: p. 131), for equivalent AIC11 values, care must be taken when interpreting
models based solely on DAIC (or DCICc) values. In some cases, models might not
be truly ‘‘competitive’’ with top-ranking models, but appear to be based solely on
low CICc values, because addition of an uninformative variable, or in the par-
ticular case of path analysis an uninformative causal link between variables, can

11 CICc in the case of phylogenetic path analysis.
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lead to marginal changes in CICc values even though there is very little difference
in the goodness of fit. Therefore, models with such uninformative causal links
might present DCICc B 2, generally interpreted as indicating ‘‘substantial level of
empirical support’’ (Burnham and Anderson 2002: 170), although such an inter-
pretation would be erroneous. Burnham and Anderson (2002) suggest that models
having Di [DCICc] within 0–2 values of the best model should be examined to
check whether they differ from the best model by having 1 more parameter and
also present essentially the same maximized log-likelihood value (in this particular
case, similar C statistic). In such cases, the model with more parameters is not
really supported, but presents marginal difference with the ‘‘best model’’ simply
because one parameter is added to the model, although the fit of the model is not
truly improved as measured by the log-likelihood value (C statistic). Returning to
our example, we can see that models 4 and 6 differ by a single parameter from
model 8, the best-fitting model. Model 4 also differs from model 8 in the direction
of the causal link between range size and nose length, which as the reader might
remember was the cause of much discussion among Rhinograd experts. These
models also present small differences in C statistic with model 8 (model 4: dif-
ference = 1.35, model 6: difference = 1.21). Hence, following Burnham and
Anderson (2002) models 4 and 6 might not be considered as supported and
competitive to the same degree as the best-fitting model 8, even though they are
within DCICc\ 2. Note that we are by no means advocating selection of a single
model over all others. Rather, following Burnham and Anderson (2002) and
Arnold (2010), we highlight the need for caution when comparing models, above
all that it should not be done mechanistically simply based on DAIC (DCICc)
values. In applications of phylogenetic path analysis with empirical data, it is
highly likely that more than one model will present small (\ 2) DCICc values.
Under such circumstances, conclusions should be drawn based on the set of most
likely models.

In our example, Model 8 appears to be the best-fitting model. We can now
calculate standardized path coefficients of the causal edges linking the variables

Table 8.2 Number of parameters estimated in each model (q) C statistic information criterion
with correction for small sample sizes (CICc), DCICc, likelihoods (li), and CICc weights (xi) are
shown for each model of the Rhinogradentia example

Model q CICc DCICc li xi

8 9 27.700 0.000 1.000 0.349
6 10 28.911 1.211 0.546 0.190
4 10 29.054 1.354 0.508 0.177
9 10 29.834 2.134 0.344 0.120
5 11 30.258 2.558 0.278 0.097
7 11 31.018 3.318 0.190 0.066
3 9 48.973 21.273 2.402 9 10-05 8.380 9 10-06

1 9 83.809 56.109 6.548 9 10-13 2.284 9 10-13

2 10 85.240 57.540 3.201 9 10-13 1.117 9 10-13
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according to this model. Standardized path coefficients are particularly useful
because, being standardized, they are comparable with each other, and therefore,
we can compare the relative strength of each causal relationship in the model. To
calculate them, we must first standardize the original data. To do this, we subtract
the trait specific population mean from each value and divide by the standard
deviation. In the specific case of the simulated data used in this example (given it
is randomly drawn from a multivariate normal distribution with mean 0 and
standard deviation of 1), the data are already standardized, therefore this step is not
necessary.

We then use the standardized data to calculate the standardized path coefficients
using PGLS analyses, following the causal paths in the directed acyclic graph. In
the case of model 8, the path coefficients are as follows:

BM? LS 0.4973 (±0.0893 s.e.)
BM? NL 0.4614 (±0.0650 s.e.)
RS? NL 0.5281 (±0.0572 s.e.)
NL? DD 0.6285 (±0.0800 s.e.)

Had we truly competitive models, one way to account for this ‘‘model uncer-
tainty’’ is model averaging (Burnham and Anderson 2002). In von Hardenberg and
Gonzalez-Voyer (2013), we showed how standard model averaging procedures
can be applied also in the context of phylogenetic path analysis, averaging the path
coefficients of all models with CICc\ 2 according to the CICc weights of each
model, thus on the relative strength of the models in the averaged set of models.

What have we learned regarding the relationship between range size, nose
length, and other traits in Rhinogradentia after employing phylogenetic path
analysis to tackle the question? First, based on the best-supported model
(DCICc B 2), range size appears to be the causal parent of nose length, while litter
size does not appear to be causally linked to range size. Moreover, the effect of
range size on dispersal distance appears to be indirectly mediated through nose
length. In other words, in Rhinograds, dispersal distance appears to be directly
determined by nose length. Finally, given this entire example was based on data
simulated following a pre-specified path model we can now ask how precise is
phylogenetic path analysis in identifying the path model giving rise to the data?
Well, quite accurate in fact! The model we used to simulate the data is actually
model 8, which is the best-supported model based on CICc. Furthermore, model 9
is identical to model 8 except for the additional causal link between litter size and
range size. Despite virtually identical C statistics, there is a difference in CICc of
2.13, which suggests CICc is adequately penalizing this model for the additional
parameter. Finally, looking at the standardized path coefficients calculated above,
we see that they are all roughly around 0.5, which is not surprising, but reassuring,
as the data have been simulated with correlation coefficients of 0.5 for all the pre-
specified direct links.
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8.5 Phylogenetic Non-Independence of Data Points,
Correlated Residuals, and the Problems with Inflated
Type I Error

The interest in the present chapter is to apply path analysis to macroevolutionary
questions, involving comparisons among numerous species. Attempting to con-
vince readers of this book of the importance of accounting for non-independence
of data points due to phylogenetic relatedness of species is like preaching to the
choir.12 Nonetheless, we present first the challenges associated with accounting for
phylogenetic relatedness in path analysis and second demonstrate the extent of the
problem if non-independence of data points is ignored when undertaking confir-
matory path analysis using the d-separation method (von Hardenberg and Gonz-
alez-Voyer 2013). It is well known that interspecific comparative analyses violate
the assumption of traditional statistical methods that data points are independent,
indeed the varying degrees of shared ancestry of the species included in the
analysis influences the expected similarity of trait values (Felsenstein 1985;
Freckleton et al. 2002; Garland et al. 1992; Harvey and Pagel 1991). For linear
models, the main problem is the correlation structure of the residuals that is
determined by the degree of phylogenetic relatedness among species (Felsenstein
1985; Grafen 1989; Martins and Hansen 1997; Revell 2010; see Chap. 5). The
consequences of not accounting for phylogenetic effects in statistical analyses of
multispecies data are, among others, artificially inflated number of degrees of
freedom, incorrectly estimated variances, and increased type I error rates of sig-
nificance tests (Felsenstein 1985; Harvey and Pagel 1991; Martins et al. 2002;
Martins and Garland 1991; Rohlf 2006). These problems, however, become
compounded in path analysis because of the requirement of testing multiple
structural equations (in the case of SEM) or all the conditional probabilistic in-
dependencies that must be true for the causal model to be correct (in the case of the
d-sep test). Previous attempts at controlling for phylogenetic relatedness in path
analysis exist. Among those having included an explicit description of how phy-
logenetic non-independence was controlled are Lesku et al. (2006) and Santos and
Cannatella (2011) who used phylogenetic independent contrasts (PIC; Felsenstein
1985) as the data entered in a SEM. Use of independent contrasts allowed the
authors to account for phylogenetic non-independence explicitly in their SEM.
However, there are limitations associated with the use PIC. First, the method
assumes the traits, and covariances between traits evolve following a strict
Brownian motion model and performance can be compromised if the assumption
is not met (Revell 2010), second, PIC assumes strictly linear relationships between
traits (Quader et al. 2004). More recently, Santos (2012) combined two approaches
to control for phylogenetic non-independence in SEM in a study aimed at ana-
lyzing the factors associated to rate of molecular evolution in poison frogs. First,

12 All pun intended!
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for a set of species trait values, he estimated the phylogenetic signal of each trat by
estimating the maximum-likelihood value of k, he then calculated PIC from a
k-transformed phylogeny using the ML estimate for each particular trait. For data
on rate of molecular evolution he used an estimate of the variance-covariance
matrix derived from a molecular phylogeny.

We proposed an alternative approach (von Hardenberg and Gonzalez-Voyer
2013) combining confirmatory path analysis using the d-separation method (Pearl
1988; Shipley 2000b) and phylogenetic generalized least squares (PGLS; Martins
and Hansen 1997). The advantage of PGLS is that it can incorporate distinct
models of trait evolution, can combine continuous and categorical variables in a
single model without the need to code dummy variables, and provides the value of
the y-intercept (Martins and Hansen 1997; see Chap. 5). Further, a key advantage
of using PGLS is that it allows for path analyses to be undertaken using
taxon-specific trait values rather than contrasts, facilitating interpretation of the
results. Finally, in PGLS an evolutionary parameter is estimated simultaneously
with model fit, which determines the amount of phylogenetic signal in the data (in
the residuals of the model to be precise) and hence the necessary correction for the
expected covariance in trait values resulting from phylogenetic relatedness, given
the evolutionary model (Freckleton et al. 2002; Martins and Hansen 1997; Revell
2010). This is an important advantage because in some instances data may present
a phylogenetic structure that is intermediate between that predicted by the evo-
lutionary model and absence of phylogenetic correlation in the data (Freckleton
et al. 2002; Revell 2010). Under such circumstances, PGLS models have been
shown to outperform independent contrasts (Martins and Hansen 1997). These
advantages of PGLS allow us to ensure that tests of conditional independencies are
done with the adequate correction for phylogenetic signal in the residuals of each
particular model. Note that the flexibility of the d-separation method also allows
researchers to combine continuous, categorical, and discrete variables in their path
models, because tests of conditional independencies can be done using phyloge-
netic ANOVA, or other appropriate statistical methods (see Chap. 12 for an
introduction to phylogenetic-mixed models).

In von Hardenberg and Gonzalez-Voyer (2013), we used a simulation-based
approach to explore the consequences of ignoring phylogenetic non-independence
when undertaking confirmatory path analysis using the d-separation method. We
simulated evolution of five hypothetical traits along a simulated phylogeny under
the covariance matrix expected from the causal relationships among the traits
derived from a specific pre-defined causal model. In order to analyze the effects of
varying degrees of phylogenetic signal in the data, the simulations were run under
six different scenarios with different degrees of lambda (k), spanning from null to
strong phylogenetic signal in the simulated data. When k = 0 traits were simulated
evolving along a star phylogeny, where trait evolution for each species is com-
pletely independent, while at the other extreme of k = 1 traits were simulated to
evolve following a pure Brownian motion model, where the degree of similarity
between species traits is inversely proportional to the distance to the nearest
common ancestor. For the four remaining scenarios, prior to simulating trait
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evolution, the phylogenetic tree was transformed based on values of k ranging
from 0.2 to 0.8 (i.e., 0.2, 0.4, 0.6, and 0.8). Tests of conditional independencies
were done using the untransformed tree. One thousand datasets were simulated for
each of the six scenarios, each with an underlying phylogenetic tree of a fixed,
arbitrary size of 100 species. Each simulation of trait evolution was done using a
different simulated phylogeny; hence simulations also incorporated the effects of
varying phylogenetic topology. At each iteration, von Hardenberg and Gonzalez-
Voyer (2013) calculated Fisher’s C statistic and obtained a distribution of p values
to determine the level of type I error (i.e., the probability of rejecting the null
hypothesis, in this case the tested model, when it is true, testing the predicted set of
conditional independencies consistent with the ‘‘true’’ underlying causal model)
and the power (i.e., 1-the type II error, the probability of not rejecting the tested
model when it is actually false, testing the predicted set of conditional indepen-
dencies of a ‘‘wrong’’ causal model). These simulations were run both for d-sep
tests ignoring phylogenetic effects and for the phylogenetically explicit d-sep test.
The results of the first test, type I error, are shown in Fig. 8.8. It is clear that the
type I error of ‘‘classical’’ path analysis, ignoring phylogenetic non-independence,
increases rapidly with the degree of phylogenetic signal in the simulated data to
reach values[ 0.9 when traits are simulated to evolve via Brownian motion. On
the contrary, although our phylogenetic path analysis method is slightly over-
conservative, it nonetheless performs well under varying degrees of phylogenetic
signal in the data. Figure 8.8 clearly demonstrates the importance (to say the least)
of accounting for phylogenetic relatedness when undertaking path analysis using
the d-separation method. However, power was in general comparable between
‘‘classical’’ path analysis, ignoring phylogeny, and phylogenetic path analysis (see
Fig. 8.9). The high power of non-phylogenetic path analysis is not surprising. The
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analysis under six simulated scenarios spanning low to high phylogenetic signal in the data
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sagacious reader will have already guessed that the high power of non-phyloge-
netic path analysis is a consequence of the high type I error. Indeed when ignoring
phylogenetic relationships, there is a higher probability of detecting significant
correlations among traits, even if these are simply due to phylogenetic relatedness
rather than true correlated evolution, with the result of a higher probability of
rejecting the proposed model.

8.6 Does Collinearity Affect Path Analysis?

Literature on the effect of collinearity on Path Analysis is controversial. While
some studies suggest that structural equation models (SEM) can effectively
eliminate problems with collinearity (Pugesek and Grace 1998; Pugesek and
Tomer 1995), others suggest it can be cause for concern (Petraitis et al. 1996;
Grewal et al. 2004). As far as we know, no study has specifically dealt with the
effect of multicollinearity on the d-separation method. Because the phylogenetic
path analysis method we presented (von Hardenberg and Gonzalez-Voyer 2013) is
based on the use of PGLS to test conditional independencies, violations of the
assumptions of PGLS will inevitably undermine such tests. Least squares estimates
of statistical model parameters are robust to moderate, even high, levels of col-
linearity (Freckleton 2011). However, estimates of parameter variance may be
very sensitive affecting hypothesis tests, which would undermine confidence on
tests of conditional independencies. Hence, strong collinearity can indeed be a
problem, as long it is a problem for PGLS although it will be limited to the specific
conditional independences we are testing. Our view is however, that the d-sepa-
ration method can actually be an effective way to disentangle collinearity, at least
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Fig. 8.9 Power of traditional (i.e., non-phylogenetic OLS) and phylogenetic (PGLS) path
analysis under six simulated scenarios spanning low- to high-phylogenetic signal in the data
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when it is not very strong. Indeed, the way you set up your path analysis model,
and test for the independence among the variables to see if your model fits the
data, you basically are testing for the presence of collinearity among your vari-
ables. Models with strong collinearity among the variables not directly causally
linked will be rejected by the data and therefore will not be accepted as a possible
explanation of the cause–effect relationships among the variables. On the other
hand, collinearity between predictors could also affect the power of tests of con-
ditional independencies because collinearity increases the standard error of partial
regression coefficients. As collinearity increases, the ability to detect a significant
effect (statistically non-zero partial regression slope) is reduced (Freckleton 2011).
An often-unappreciated problem is the effect of measurement error, which is
common for most (if not all) data employed in comparative analyses. Measure-
ment error can result in underestimation of model parameters, even in the absence
of collinearity, due to attenuation (Freckleton 2011). Bias increases when there is
measurement error in combination with collinearity. Under such circumstances,
attenuation leads to underestimation of the effect of the predictor with the weakest
effect, while the predictor with stronger effect is over-estimated (Freckleton 2011).
One possibility, which would need to be explored, is to include within-species
variation in the models, for example, using mixed models (see Chaps. 7 and 10).
By including several measurements per species for each trait, we could not only
obtain a better estimate of the species mean but also obtain an estimate of the
species-specific variation, which could potentially mitigate the effects of mea-
surement error, although this has yet to be explored in the context of phylogenetic
path analysis. We follow Freckleton (2009) and strongly suggest to always verify
that the assumptions of the statistical methods employed to test the conditional
independencies of the path model are met, this will ensure robust results of tests of
conditional independencies.

8.7 Conclusions

The aim of this chapter was first to demonstrate in a didactic and easy to follow
manner how to undertake a path analysis using the d-separation method (Shipley
2000b), while explicitly accounting for phylogenetic non-independence. As
pointed out previously, the method we propose (von Hardenberg and Gonzalez-
Voyer 2013) is not the only attempt (see for example Lesku et al. 2006; Santos
2009, 2012; Santos and Cannatella 2011). However, we think our method has
some advantages, including, but not limited to, flexibility in the evolutionary
model, ability to execute the analysis on the data as such rather than resorting to
independent contrasts, and ability to include variables resulting in non-normal
distribution of errors. Comparative methods are developing rapidly, for example,
Chap. 9 in this book deals with phylogenetic logistic regression methods, which
could in theory allow for phylogenetic path analysis including binary traits.
Furthermore, the flexibility of PGLS would also allow for phylogenetic path
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analysis to be undertaken accounting for variation in species traits (Martins and
Hansen 1997), for example, using mixed models. The second aim of this chapter
was to show how using phylogenetic path analysis novel questions in macroevo-
lution can be addressed. Using our example with the simulated Rhinogradentia
data, we showed how path analysis can help in disentangling evolutionary rela-
tionships between traits. For example, based on the results we can say, with some
confidence, that litter size has no direct causal effect on range size in this fictitious
mammalian order. We also show how phylogenetic path analysis can be employed
to compare models with alternative causal relationships between variables. We
must once again point out that the observed correlational pattern in the data can
imply more than one underlying causal model, hence we might not always be able
to distinguish between alternative causal models. Nonetheless, use of CICc, model
comparison, and model averaging procedures can allow us to propose causal
hypotheses among variables from the observed correlational patterns. Do we mean
to say that employing this method we can do away with the limitations of com-
parative analyses for inferring causality pointed out at the beginning of the
chapter? By no means! Such limitations are still there, and the statistical controls
we use to disentangle cause–effect relationships are of course not comparable to
the physical controls and randomizations we can apply in well-designed experi-
ments. However, as stated at the beginning of the chapter, such an experimental
approach is virtually impossible to carry out in the context of comparative anal-
yses. Phylogenetic path analysis (using the d-separation method we propose or
other approaches) may well be the only resort we have to infer causality in
comparative studies. We must however keep in mind that path analysis is a
hypothesis testing approach rather than a hypothesis-generating method. Carefully
pondered and biologically meaningful, and supported, hypotheses of the causal
relationships among studied traits must be presented before jumping into model
testing. The end result of such a process is the confirmation of the plausibility of
the proposed evolutionary causal model (although other alternative causal models
can possibly explain the same observed correlation pattern), and probably more
interestingly, the rejection of erroneous evolutionary causal models. We would
therefore caution readers against overconfidence on the correctness of a causal
model fitting the observed correlation structure; nonetheless we can be reasonably
sure that rejected models are wrong. With all the uncertainties macroevolutionary
studies must deal with, we think that the advantages provided by phylogenetic path
analysis are not trivial. Furthermore, the causal model, or the set of models, we
finally adopt as potential evolutionary explanations of the patterns we observe
among the traits, can be formally challenged by alternative models in future
studies involving new or better data. Such a process of presentation of a model
(our causal hypothesis) and its provisory acceptance as plausible explanation of a
causal phenomenon until it is confuted by an alternative model is at the very base
of modern scientific methodology. We hope to have been successful in transmit-
ting our enthusiasm for this method and to stimulate thought as to how it can allow
you to tackle evolutionary questions in the context of comparative analyses.
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Chapter 9
Phylogenetic Regression for Binary
Dependent Variables

Anthony R. Ives and Theodore Garland Jr.

Abstract We compare three methods for phylogenetic regression analyses
designed for binary dependent variables (traits with two discrete states) both with
each other and with ‘‘standard’’ methods that either ignore phylogenetic relation-
ships or ignore the binary character of the dependent variable. In simulations
designed to reveal statistical problems arising in different methods, PLogReg (Ives
and Garland 2010) performed better than PGLMM (Ives and Helmus 2011) and
MCMCglmm (Hadfield 2010) to identify phylogenetic signal in the absence of
independent variables; PLogReg also outperformed a standard method for detecting
phylogenetic signal in binary data, ancestral character estimation (Schluter et al.
1997; Pagel 1994). All three phylogenetic methods performed similarly for iden-
tifying relationships with a continuously valued independent variable x, with all
methods having at most moderately inflated Type I error rates, and MCMCglmm
having slightly greater power. In contrast, standard logistic regression that ignores
phylogeny had seriously inflated Type I errors when x had phylogenetic signal.
Perhaps surprisingly, phylogenetic regression that ignored the binary nature of the
dependent variable, RegOU (Lavin et al. 2008), performed as well or better than
the other methods, at least for larger sample sizes (C64 species), although this
approach does not result in a model that can be used to simulate data (e.g., for
bootstrapping). We also apply the methods to a data set describing whether ante-
lopes fight or flee versus hide from predators as a function of their group size
(Brashares et al. 2000). We end with rough guidelines for analyzing binary
dependent variables, with the main recommendation being that multiple methods
and simulations should be used to give confidence in the statistical results.
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9.1 Introduction

Generally speaking, comparative data from phylogenetically related species
(or higher taxa) cannot be analyzed using standard statistical procedures because
mean values for a set of species (or their residuals from a statistical model) are
unlikely to be independent and identically distributed (Felsenstein 1985; Garland
et al. 1992; Harvey and Pagel 1991). Computer simulation studies have shown, for
example, that ignoring phylogenetic correlations often leads to Type I errors,
rejecting a null hypothesis that is in fact true (Grafen 1989; Martins and Garland
1991; Diaz-Uriarte and Garland 1996; Martins et al. 2002). The resulting falsely
low P-values in statistical tests may lead to seriously wrong conclusions in
comparative studies. Thus, use of statistical methods that incorporate phylogenetic
information is essential. For continuously valued traits, a growing number of
methods and associated software have been developed which incorporate the
possibility of phylogenetic correlations among taxa.

Traits with non-Gaussian distributions are surprisingly more difficult to analyze
than continuously valued traits when they occur as dependent (response) variables.
This difficulty arises in part because most non-Gaussian distributions have means
and variances that are not separable. In other words, the variance of the distri-
bution depends on the mean. This is different from the familiar Gaussian distri-
bution in which one parameter gives the mean and a second gives the variance. For
example, for a binomial distribution with probability p and number of trials n, the
mean is np and the variance is np(1 - p), so it is not possible to change n and/or
p in any way that changes the mean without also changing the variance. This
complication can be approximately addressed by transforming data. For example,
if binomial data are divided by

ffiffiffi
n

p
, then the variance is p(1 - p) which can be

changed independently of the mean
ffiffiffi
n

p
p, thus allowing the data to be fit with a

standard regression model that assumes a Gaussian distribution of residuals. This
is still an approximation, however, because the regression model assumes that the
data can take any value, not just integers between 0 and n. Therefore, the model
does not really fit the process that underlies the data and hence cannot be used to
simulate data with the same statistical properties. An inability to simulate data
makes it difficult to determine the performance of statistical methods designed to
analyze such data and generally precludes the use of methods based on simulations
to obtain null distributions of test statistics. To solve these problems, the last
20 years have seen huge advances in methods designed to analyze non-Gaussian
distributions, and these have spread into phylogenetic comparative methods.

One common type of inherently non-Gaussian response variable is binary, such
as when an organism either does or does not possess a particular phenotypic trait
(e.g., wings). Three methods have been developed for phylogenetically informed
analysis of binary dependent variables: (i) phylogenetic logistic regression,
implemented in a MATLAB program named PLogReg (Ives and Garland 2010),
(ii) generalized linear mixed models with frequentist estimation, PGLMM (Ives
and Helmus 2011), and (iii) generalized linear mixed models with Bayesian
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estimation, MCMCglmm (Hadfield 2010). These methods address the dual chal-
lenges of formulating an appropriate statistical model and estimating parameters
from the model. By accounting for the binary nature of the dependent variable, the
hope is that these methods maximize statistical power, that is, the ability to
identify parameters that differ statistically from zero or some other value of
interest. Power is a major concern, because binary variables contain relatively little
information as compared to continuously valued variables (Ives and Garland
2010); for binary variables, information is only available in the form of zeros and
ones, with no finer gradation between values. Therefore, there is a premium on
methods for binary data that have high statistical power.

When these three phylogenetic methods are used without independent vari-
ables, they become tests of phylogenetic signal (sensu Blomberg et al. 2003) in the
response variable of interest (Chap. 5). Here, we first compare the three methods
in their abilities to identify phylogenetic signal, including two additional ‘‘stan-
dard’’ methods: (iv) phylogenetic regression ignoring the binary nature of the
dependent variable and assuming an Ornstein–Uhlenbeck model of residual trait
variation (Chap. 15), RegOU (Lavin et al. 2008) and (v) maximum likelihood
(ML) estimation of discrete traits evolving along a phylogenetic tree using
ancestral character estimation, ACE (Pagel 1994; Schluter et al. 1997).

We also compare (i) PLogReg, (ii) PGLMM, and (iii) MCMCglmm for the
simple regression case of a single continuously valued independent (predictor)
variable, focusing on their abilities to estimate and perform statistical tests on a
regression coefficient. In this comparison, we additionally include (iv) RegOU and
(v) non-phylogenetic logistic regression with a Firth correction, Logistf from
logistf {R} (Heinze et al. 2013). We include RegOU because it runs quickly in
various software implementations and it might perform adequately in many cases,
even though it ignores the binary nature of the dependent variable. We include
Logistf because it is a standard method and illustrates the mistakes that can be
made by not accounting for phylogeny.

Additional methods that address related statistical problems are not included in
our comparisons. For example, Pagel (1994) presents a method for estimating the
correlation between two phylogenetically related binary traits. We excluded this
approach because here we focus on regression rather than correlation. Felsenstein
(2012) presents an estimation procedure for threshold models that can test the
correlation between both binary and continuously valued dependent variables.
When applied to only binary variables, this method should be similar to
MCMCglmm (Hadfield and Nakagawa 2010), so we do not include it here. Finally,
note that the methods we analyze are for binary dependent variables. Binary
independent variables with continuously valued dependent variables present no
special problems for the existing phylogenetic methods for regression and
ANOVA or ANCOVA (Garland et al. 1993; Lavin et al. 2008; Dlugosz et al. 2013;
Revell 2012; Rezende and Diniz 2012).

A subtext to this chapter is that there is no single ‘‘correct’’ way to perform
phylogenetic regressions with binary dependent variables. All of the methods have
strengths and weaknesses that must be balanced for a specific data set and
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question. The lack of a single best method is not uncommon in statistics when
confronted with data arising from complicated processes. The best that can be
done is to use different methods, know which is likely to perform best under
circumstances resembling those of the data under analysis, and use this knowledge
to help select the ‘‘best’’ result. We hope this chapter provides a rough guide for
doing this. Despite providing a guide, we hope that we also show that there is no
substitute for careful analysis of any complicated set of data, including applying
multiple methods and simulations to rigorously confirm the results.

Below, we first give descriptions of the methods. We then perform simulations
to compare them, first for the case without independent variables where the
methods become tests for phylogenetic signal and then for a simple regression with
one independent variable. These simulations are by no means exhaustive; we use
them more to illustrate the issues that arise in statistical analyses of binary data and
possible ways to address these issues, rather than to give recommendations for
which method to use for a particular data set and question. Indeed, one of our main
points is that there is no best method for all situations, so you should use our
simulations as guides to the types of simulations you should perform. Finally, we
apply the methods to a comparative data set which was analyzed previously using
phylogenetic logistic regression (Ives and Garland 2010). The online practical
material (http://www.mpcm-evolution.com) presents this analysis as a tutorial and
also the new code in R that performs the PGLMMs.

9.2 Description of Statistical Models and Estimation
Procedures

In building a statistical model, it is often valuable to consider the underlying
processes that might generate a data set. For example, for continuously valued
traits (e.g., body mass or length), a simple Brownian motion (BM) model (a
random walk in continuous time, Chap. 5) could be used to model phenotypic
changes that occur in a population experiencing no selection but nonetheless
evolving because of random mutation and genetic drift (Felsenstein 1985;
Freckleton et al. 2002; Blomberg et al. 2003). Equally, however, the BM model
could describe species under strong selection that track the environment instan-
taneously provided the environment itself changes randomly according to a BM
process. The logical conclusion from this recognition is that the observed pattern
of trait values among extant species does not necessarily give a lot of information
about the processes generating this pattern (Revell et al. 2008). Nonetheless,
building a statistical model under a specific evolutionary assumption can lead to a
model with useful statistical properties. For example, the BM model can be
modified to accommodate stabilizing selection using the Ornstein–Uhlenbeck
process, borrowed from physics (Felsenstein 1988; Garland et al. 1993; Martins
and Hansen 1997; Chap. 15). In this case, varying the strength of stabilizing
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selection varies the strength of phylogenetic correlations between species, thereby
producing a statistical model that can be used to estimate phylogenetic signal
(Martins and Hansen 1997; Hansen 1997; Blomberg et al. 2003).

For binary traits, no single generally applicable evolutionary or statistical model
exists. The lack of a uniquely suitable model is common in statistics, at least after
graduating beyond the simplest problems. It is not an issue restricted to the realm
of phylogenetically informed statistical procedures. For example, for regression
with a binary response variable in the absence of phylogenetic considerations, both
logistic and probit models are used routinely, each with its own advantages and
disadvantages (Gelman and Hill 2007). We now describe the five approaches that
we will compare. We give largely heuristic descriptions of the methods, as
opposed to technical descriptions, because these methods are already in the
literature.

9.2.1 Phylogenetic Logistic Regression (PLogReg)

The overall structure of PLogReg (Ives and Garland 2010) looks like that of standard
logistic regression. A single trait Y can take only one of two values (0 or 1) with
probability p, which itself depends on the independent (predictor) variable
x. Multiple independent variables can be used, and they can be binary, multistate
(coded into a set of 0–1 dummy variables), or continuously valued. A formal spec-
ification of the model with a single continuously valued independent variable x is

Pr Y ¼ 1ð Þ ¼ p

logit pð Þ ¼ b0 þ b1x

cov Yð Þ ¼ V p; að Þ
ð9:1Þ

Here, b0 and b1 are regression coefficients, and logit(p) is the logit function
log(p/(1 - p)) that maps any value of p in the interval (0, 1) onto values of
b0 + b1x between -? and ?. Thus, for a given value x, the probability that
Y = 1 is p = logit-1(b0 + b1x). No term is included for the ‘‘residual variation’’
because for a binary stochastic process, the variance is determined by the mean;
specifically, the variance equals p(1 - p). Thus, this is different from a conven-
tional least-squares regression equation, in which an explicit vector of residual
deviations from the predicted values is an inherent part of the statistical model.
Even though the variance of the binary dependent variable is specified by the
mean, the anticipated covariances can be positive as specified by the covariance
matrix V(p, a). These covariances represent phylogenetic signal, that is, the lack of
independence among data points Y caused by taxa having experienced a shared
evolutionary history prior to the speciation event(s) that begat them. Because the
variances depend on the mean p, so too do the covariances, and this presents
complications in the statistical model building and estimation not only for the
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regression coefficients b0 and b1 but also for the parameter that gives the strength
of phylogenetic signal, which in PLogReg is called a (Ives and Garland 2010).
Although Eq. (9.1) is written with a single independent variable x, PLogReg can
accommodate multiple independent variables, and when used without any inde-
pendent variables (with only regression parameter b0), PLogReg becomes a
method to estimate phylogenetic signal given by the parameter a.

The evolutionary model used to build PLogReg assumes that Y evolves along a
phylogenetic tree. There is a constant ‘‘instantaneous’’ probability of the trait
switching from 0 to 1 or from 1 to 0, so the more time that elapses, the greater the
chance of a switch occurring. The branch lengths of the phylogenetic tree scale the
time between nodes, so the probability of a switch occurring between nodes
increases with the branch length between nodes. Repeated switches can occur, and
an even number of switches results in no difference in Y between two nodes
(branching points) on the tree.

Phylogenetic signal arises because any two related species will have the same
trait value at their nearest shared ancestral node, just before the speciation event.
Depending on the switching rate for the trait in question, these two daughter
species will be more or less likely to retain that ancestral state. If the switching rate
is very low, then both daughters will likely retain the ancestral state, resemble each
other, and hence provide evidence of phylogenetic signal. The overall switching
rate given by the parameter a measures the strength of phylogenetic signal in trait
Y. The parameter a is scaled so that larger values of a correspond to greater
phylogenetic signal (lower switching rates). Although mathematically a can take
any real value, numerically PLogReg limits values of a to range between -4 (no
signal) and 4 (very strong signal).

Even though greater phylogenetic signal occurs for larger a, it may become
very difficult to test for this signal statistically (Ives and Garland 2010). For
example, in the extreme case of very strong phylogenetic signal (low switching
rates), all taxa will likely share the same trait value (0 or 1), so there is no variation
with which to test for statistical significance. This leads to the somewhat counter-
intuitive expectation that the power to detect phylogenetic signal occurs at inter-
mediate strengths of the signal. Again, this is different from continuously valued
traits where, despite limiting the divergence between taxa, strong phylogenetic
signal can nonetheless be (strongly) detected in what variation in trait values is
observed (Revell et al. 2008).

The process model for trait evolution just described does not involve any
independent variables. PLogReg introduces an independent variable x after the
evolutionary process establishes phylogenetic correlations in the values of
Y among taxa. To model the effects of independent variables, starting with the
values of Y following evolution up the phylogenetic tree, the model assumes that
these values then rapidly evolve toward 0 or 1 depending on the value of x,
independently for each species. In other words, the part of evolution of Y which is
driven by the value of x does not depend on phylogeny. Although this is not a
realistic model for many scenarios describing the evolution of dependent variables,
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it makes sense statistically, because it ensures that if there is no phylogenetic
signal in Y, then the model degenerates to standard logistic regression; in general,
it is desirable to have phylogenetic methods give their conventional counterparts
when there is no phylogenetic signal (Blomberg et al. 2003). This is an example of
trade-offs that must sometimes be made for statistical necessity: Although it might
not be evolutionarily plausible, the model underlying PLogReg leads to useful
statistical properties, and the model parameters can be statistically fit.

Although this model can be statistically fit, doing so is not easy for two reasons
that make it impossible to use standard statistical approaches and readily available
software. First, the likelihood function of the model is complicated. The likelihood
function is central to parameter estimation; it gives the likelihood of observing the
data, given values of the model parameters. Therefore, the maximum likelihood
(ML) parameter estimates are computed as those that give the greatest likelihood.
For parameter estimation in PLogReg, we used the statistical approach of quasi-
likelihood functions, which for technical reasons are well suited for logistic
regression (see Ives and Garland 2010). The second statistical issue is that ML
estimation for standard (non-phylogenetic) logistic regression is biased; standard
ML estimates are on average further from zero than they should be (Heinze and
Schemper 2002). In the non-phylogenetic case, this bias can be largely corrected
by penalizing the likelihood function as suggested by Firth (1993). We used a
similar approach in PLogReg. Simulations showed that this improves the statistical
properties of the estimates of PLogReg parameters (Ives and Garland 2010).

Simple diagnostics for determining the adequacy of models for binary depen-
dent variables do not exist, especially for the phylogenetic case. Of course, it is
always important to plot the data and fitted model, which can be instructive for
identifying gross violations of model assumptions. Nonetheless, the best approach
to assess the quality of parameter estimates is to perform a ‘‘parametric bootstrap’’
(Efron and Tibshirani 1993). A parametric bootstrap takes a fitted model and uses
it to simulate (a large number of) data sets. The parameters are then reestimated for
each of the simulated data sets. Some deep statistical theory shows that the dis-
tribution of the parameter values estimated from the simulated data sets approx-
imates (i.e., approaches asymptotically) the theoretical distribution of the
parameter estimates (Efron and Tibshirani 1993). This distribution can then be
used to obtain confidence intervals and perform statistical tests regarding the
parameters. For PLogReg, it is possible to approximate the distributions and
confidence intervals of estimates of the regression parameters b0 and b1, but
bootstrapping is the only effective way to obtain this information for the phylo-
genetic signal parameter a (Ives and Garland 2010).

It is also possible to perform a bootstrap to test null hypotheses, for example,
that a regression coefficient is zero, H0:b1 = 0. This is done by fitting the data
assuming b1 = 0, simulating the model to produce bootstrap data sets, estimating
b1 for each simulated data set, and counting the number of values of b1 for the
simulated data sets that exceed the value of b1 calculated from the data. In practice,
however, this approach often gives very similar results to that of bootstrapping
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using the observed value b1 and testing H0:b1 = 0 using the bootstrapped confi-
dence intervals of b1.

An additional advantage of parametric bootstrapping is that it allows identifi-
cation of bias in parameter estimates. If, for example, the mean of the parameter
estimates from the simulated data sets is lower than the value obtained from fitting
to the real data and consequently used to perform the simulations, then this would
indicate downward bias in the estimates, including the estimate from the original
data. It is possible to use this information to correct for bias; a value is picked that,
when used in the simulations, produces a mean parameter value that matches the
value computed from the data. However, we do not pursue this form of bootstrap
bias correction here, instead using bootstrapping simply to identify the existence of
bias. Although bootstrapping is useful, it is not a panacea, and there is no substitute
for looking at the data and fitted model, and using different methods.

In the simulations, we used the MATLAB code for PLogReg (Ives and Garland
2010), although there is a fast version available in phylolm {R} (Ho and Ane
2014).

9.2.2 Generalized Mixed Model with Frequentist Estimation
(PGLMM)

PGLMM (Ives and Garland 2010) is a ‘‘phylogenetic’’ implementation of a gen-
eralized linear mixed model (Gelman and Hill 2007; McCulloch et al. 2008; Bolker
et al. 2009) for binary data. The PGLMM for a single independent variable x is

Pr Y ¼ 1ð Þ ¼ p

logit pð Þ ¼ b0 þ b1xþ e

e� Nð0; r2CÞ
ð9:2Þ

Unlike PLogReg, PGLMM treats the probabilities p as random variables, with
the distribution of logit(p) being given by a standard regression model that
includes the random variable e that contains phylogenetic information. The value
of e can be thought of as a continuously valued, phylogenetically inherited, but
unmeasured trait. We assume that it evolves up the phylogenetic tree according to
a BM evolutionary process (Chap. 5). This makes e a Gaussian random variable
with covariance matrix r2C in which diagonal elements cii are proportional to the
branch lengths from the basal node of the phylogenetic tree to taxa i, and
off-diagonal elements cij are proportional to the shared branch lengths between
taxa i and j. The diagonal elements of C can be equal (for an ultrametric tree with
contemporaneous tips) or unequal (e.g., for a tree with time-calibrated branch
lengths in which some species became extinct in the distant past).
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An evolutionary interpretation of PGLMM is that an underlying, unobserved
continuously valued trait evolves up a phylogenetic tree. Then, for taxa at the tips
of the tree, the value of this trait determines the probability of Y taking values 0 or
1. Therefore, two stochastic processes are in play: the evolution of the underlying
continuous trait that gives the value of p and the choice of the value of Y given
probability p. For example, a herbivorous insect might evolve increased produc-
tion of a detoxifying enzyme (a continuous trait) that increases the chances that it
can shift to use a new host plant containing high levels of the toxin (a binary trait:
adoption or not of the host plant). Alternatively, the expression level of some gene
might determine whether wings develop during ontogeny. The PGLMM model
differs slightly from ‘‘threshold’’ models (Felsenstein 1988, 2012) in which the
value of Y is determined strictly according to whether the underlying continuous
trait exceeds a threshold value, although threshold and PGLMM models are
broadly equivalent from a functional perspective (Hadfield and Nakagawa 2010).

In PGLMM, r2 measures phylogenetic signal. If r2 = 0, Eq. (9.2) reduces to
standard logistic regression (McCullagh and Nelder 1989). If r2[ 0, then the
phylogenetic covariances between values of e lead to covariances between the
values of Y. Unlike PLogReg, there are no covariances between values of Y other
than those contained in C and generated by e. A important statistical property of
this model is that the variances (diagonal elements of C) are redundant. For
example, assume that the phylogenetic tree is a ‘‘star’’ with unconnected branches
of equal length leading from basal node to each tip (terminal) taxon. The corre-
sponding phylogenetic covariance matrix has identical diagonal elements and zero
off-diagonal elements. Therefore, even if r2[ 0, no phylogenetic signal exists. As
a consequence, the variances have no real effect in the model: The value of r2 does
not affect the variance in the values of Y, because we know that the variance equals
p(1 - p). The only effect r2 has is to complicate the interpretation of the
regression coefficients b0 and b1. Because the logit function is nonlinear, the
expected value of p is not equal to logit-1(b0 + b1x) when there is variation in e.
Therefore, the variance in e determined by r2 will affect the estimates of b0 and b1.

Technically, estimating r2 when no phylogenetic signal exists represents a
problem of statistical ‘‘identifiability’’ (Judge et al. 1985) because r2 and the
regression coefficients cannot be estimated simultaneously: Different combinations
of parameter values can give an identical fit of the statistical model to the data.
Identifiability is a very general phenomenon that plagues statistical analyses when
the model is improperly specified. A familiar example is that of collinearity of
independent variables in standard linear regression: If two independent variables
are perfectly correlated, then it is impossible to estimate regression coefficients for
both. This problem technically goes away if the independent variables are even
slightly less than perfectly correlated, although practically the problem remains for
even moderately highly correlated independent variables (e.g.,[0.7) unless
sample sizes are large. Our particular identifiability problem is similar in that if
any phylogenetic covariances (off-diagonal elements) are present in matrix C, then
it is technically possible to estimate r2 and the regression coefficients. Nonethe-
less, in practice, when phylogenetic signal is weak (off-diagonal elements of
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matrix C are small), it will be hard to estimate r2 unless sample sizes (number of
taxa) are very large. We will discuss statistical problems associated with identi-
fiability when describing our simulation results.

An additional problem arises when comparing values of regression coefficients
b0 and b1 in Eq. (9.2) for data sets that differ in phylogenetic signal and hence r2.
Because r2 affects the estimates of b1, apparent differences in regression coeffi-
cients among models could be caused by differences in the estimated strength of
the relationship between Y and x or by differences in the magnitude of phyloge-
netic signal. A simple way to at least approximately correct for this is provided by
Hadfield (2012), following Diggle et al. (2004): If b1 is estimated when r2[ 0,
then the value that would have been estimated in the absence of variance in e is
approximately b1(1 + c2r2)-0.5 where c = (16/15) (31/3/p). Thus, if all estimates
are corrected by a factor (1 + c2r2)-0.5, then the values of the regression coef-
ficients can be compared more directly. Note that although this correction facili-
tates comparisons among estimates for the PGLMM model (Eq. 9.2), the structure
of this model is different from that of the PLogReg model, and therefore, the
regression parameters are not expected to have exactly the same values for a given
data set, even though both models provide valid estimates of the same relationship
between Y and x.

In principle, various approaches can be used for parameter estimation for this
PGLMM, although none is easy to implement. For example, the software package
ASReml can be configured for PGLMM (Jarrod Hadfield, pers. comm.). Here, we
use the approach presented in Ives and Helmus (2011) for solving a more general
formulation of PGLMM models designed for data sets containing the presence/
absence of species from ecological communities as dependent variables. Parameter
estimation involves combining penalized quasi-likelihood (PQL) and restricted
maximum likelihood (REML) in a two-step process. This approach gives
approximate standard errors for the regression coefficients from which confidence
intervals can be calculated and statistical tests can be performed. Bootstrapping
can and should also be performed as described above for PLogReg. We imple-
mented PGLMM in MATLAB and provide a version in R in the online practical
material (http://www.mpcm-evolution.com); a more general but harder-to-use
function is also available in picante {R} (Kembel et al. 2010).

9.2.3 Generalized Mixed Model with Bayesian Estimation
(MCMCglmm)

A very similar model to PGLMM can be implemented using MCMCglmm {R}
(Hadfield 2010) with a Bayesian framework (Chap. 10). The model is
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Pr Y ¼ 1ð Þ ¼ p

probit pð Þ ¼ b0 þ b1xþ sþ u

s�Nð0; r2sCÞ
u�Nð0; r2uIÞ

ð9:3Þ

This is identical to Eq. (9.2), except a probit rather than logit transform is used,
and there is an additional random term u. In the general formulation of GLMMs
that MCMCglmm is designed to analyze, the random variable u represents residual
variation, and s is a ‘‘random effect’’ that captures hypothesized covariances in the
data. This model is identical in structure to the GLMMs that can be analyzed using
such popular programs as lmer in lme4 {R}, although most programs (including
lmer) for technical reasons restrict the structure of covariance matrix C to contain
blocks of covariance terms rather than covariances specific (and potentially
unique) to pairs of species; this means that a phylogenetic covariance matrix of
arbitrary form cannot be used. MCMCglmm has no such restriction and is an easy-
to-use program for investigating phylogenetic GLMMs.

MCMCglmm is a Bayesian statistical approach, and therefore, statistical results
have a different interpretation than those produced by other methods we investi-
gated (Chap. 10). Although long discussions in the literature argue the benefits of
Bayesian versus frequentist approaches, most statisticians we know are comfortable
using both, adopting Bayesian analyses mainly when the likelihood function does
not lend itself to be handled easily using frequentist approaches. The growth in the
use of Bayesian statistics has been fueled largely by the growth of inexpensive
computing power, which allows the application of the Markov chain Monte Carlo
(MCMC) algorithm to complex likelihood functions (Gelman et al. 1995).

MCMC Bayesian statistics, including MCMCglmm, approximate the distribu-
tion of a parameter estimate conditional on the observed data and an initial ‘‘prior’’
specification of the parameter distribution before information about the data is
used. The mode of the distribution of parameter values from the Markov chain is
then the ‘‘best’’ estimate of the parameter, and the spread of the distribution
determines the credibility of the parameter estimate. Rather than confidence
intervals, MCMCglmm generates credible intervals that give, for example, the
range of values that a parameter takes with 95 % probability. Although Bayesian
approaches do not give tests of hypotheses in the frequentist sense, the credible
intervals give similar information. For example, if the 95 % credible interval of b1

lies above and does not include zero, then we could say that the value of b1 is
greater than zero with 95 % credibility.

Owing to the structure of MCMCglmm, it is necessary to include the random
variable u; we fixed the variance ru

2 = 1, while estimating the variance rs
2 as a

measure of phylogenetic signal. The inclusion of u makes the model different from
the PGLMM model of Eq. (9.2). Nonetheless, this is not a serious difference,
because of the identifiability issue discussed for PGLMM (Sect. 9.2.2) when the
off-diagonal elements in covariance matrix C are all zero; the variance in u will
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affect the specific values of the estimates of the regression coefficients, but will
have little effect on the fit of the model. To make the regression coefficients more
comparable between models and data sets, we also correct the regression coeffi-
cients of the MCMCglmm model by a factor (1 + c2rs

2 + c2ru
2)-0.5 to ‘‘take

away’’ the effect of variances on the estimates of the regression coefficients
(Hadfield 2012); this should make values more comparable to those from
PGLMM.

To run MCMCglmm, it is necessary to make decisions about the structure of the
model, the prior parameter distributions, and the run characteristics. In our sim-
ulations, we found that using a probit transform (Eq. 9.3) performed better than a
logit transforms as used in PGLMM (Eq. 9.2). We followed the recommendations
of Hadfield (2012, Sect. 8.0.8) to use slice sampling and expanded priors for
variance parameters rs

2 and ru
2, choosing V2 priors as suggested by Villemereuil

et al. (2013). The MCMCglmm defaults were used for the length of the burn-in
(3,000) and sampled (10,000) chain lengths, with 1/10 samples taken for the
posterior parameter distributions. Diagnostics (Hadfield 2012) showed adequate
chain mixing for these settings. Discussion of these assumptions is provided in the
online practical material (http://www.mpcm-evolution.com).

9.2.4 Regression with a Model-Dictated Branch-Length
Transformation (RegOU)

For continuously valued dependent variables, the current state of the art in phy-
logenetic analyses is to perform regression while simultaneously estimating the
strength of phylogenetic signal using a branch-length transform (Chap. 15). This is
possible in a variety of packages; for example, ape {R} (Paradis et al. 2004)
provides phylogenetic correlation structures corresponding to different models of
evolution that can be used in regression through the gls function of nlme {R}. As
noted elsewhere, so-called PGLS methods are equivalent to phylogenetically
independent contrasts in their simplest form and do not inherently include esti-
mation of branch-length transforms (Lavin et al. 2008). Here, we use the module
RegOU in the Regressionv2.m (Lavin et al. 2008) MATLAB program to perform
equivalent analyses under the assumption that evolution follows an Orn-
stein–Uhlenbeck process, intended to mimic stabilizing selection (Felsenstein
1988; Garland et al. 1993; Chap. 15). The strength of stabilizing selection given by
the parameter d determines the phylogenetic signal estimated to exist in residuals.
In the absence of stabilizing selection (d = 1), RegOU gives BM evolution, while
stronger stabilizing selection (smaller d) erases evolutionary memory and reduces
phylogenetic signal. When d = 0, phylogenetic signal disappears, and the esti-
mated model parameters are then identical to those obtained by an ordinary
least-squares analysis, which in effect assumes a star phylogeny with no hierar-
chical structure. An advantage of integrating a branch-length transform into the
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regression analysis is that an a priori decision about the existence of phylogenetic
signal is unnecessary; instead, it is estimated along with the regression coeffi-
cients—the data are allowed to tell their own story (Lavin et al. 2008).

We used RegOU even though we know the binary data Y violate the RegOU
assumption that the dependent variable takes continuous values. Although one
could object to applying a statistical model that is known to be wrong, all sta-
tistical models are likely to be wrong in some way to some degree, and the
assumption of RegOU that Y be continuous might not make RegOU useless. By the
central limit theorem, even a process as discrete as flipping a coin will converge to
a Gaussian distribution if repeated enough times. With a sufficient number of taxa,
RegOU might be adequate to identify, for example, the existence of an effect of
independent variable x on Y. Because RegOU does not produce a model with
discrete outcomes, however, the values of the regression coefficients are difficult to
interpret. Furthermore, it is not possible to use a fitted model to simulate data, and
therefore, it is not possible to perform bootstrapping. Nevertheless, RegOU might
perform reasonably well for hypothesis testing (i.e., yield reasonable Type I errors
and power).

9.2.5 Ancestral Character Estimation (ACE)

Pagel (1994) presented a rapid method for computing the exact likelihood for a
model of two binary traits evolving along a phylogenetic tree in a correlated
fashion. Using the same approach (Schluter et al. 1997) but applied to a single trait
gives a method for estimating phylogenetic signal for a single binary trait. For a
single trait, the assumed evolutionary process is essentially identical to the first
part of the PLogReg model that generates phylogenetic correlations (Sect. 9.2.1).
The trait Y has an instantaneous probability of changing from 0 to 1 and from 1 to
0, and the longer the branch lengths between nodes, the greater the probability of
switches (and back-switches). The program ACE in ape {R} (Paradis et al. 2004)
computes the ML of this process while fitting the transition rate parameters.

Because ACE does not lead to a model that can be used for regression with an
independent variable x, we only use it to detect phylogenetic signal. As with
PLogReg, higher transition rates reduce phylogenetic signal and therefore could be
used to assess phylogenetic signal. Nonetheless, this does not lead to a clear test of
whether phylogenetic signal is present, because the threshold for the transition
rates above which we should declare no signal is unclear. Therefore, we used the
following procedure. We used Grafen’s (1989) rho branch-length transform (that is
easily implemented using the compute.brlen function in ape {R}) to modify a
given topology and hence produce trees representing different degrees of expected
phylogenetic signal. As rho approaches zero, the tree becomes a star, with no
phylogenetic covariances between taxa; in compute.brlen, rho can never equal
zero, so we used a minimum values of rho = 10-5 instead of zero. (Note that this
restriction on the lower limit of rho is particular to compute.brlen; other programs
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allow rho to become zero [e.g., DOS PDTREE and the PDAP module of Mes-
quite].) Larger values of rho correspond to greater shared branch lengths and hence
greater phylogenetic structure. We used ACE to calculate the ML of the model
over the possible transition rates for a given value of rho and then selected that
value of rho giving the greatest likelihood. Thus, a test for the existence of phy-
logenetic signal is whether the rho giving the greatest likelihood is statistically
greater than zero. ACE can analyze several models of evolution, such as allowing
a different rate for the 0 to 1 transition than for the 1 to 0 transition. However, in
preliminary simulation experiments, we found that the simplest model assuming
transitions are symmetrical gave the greatest power to detect phylogenetic signal.

9.2.6 Standard Logistic Regression with a Firth Correction
(Logistf)

To compare with a non-phylogenetic analysis, we used standard logistic regression
with a Firth correction to reduce bias in the estimates (Ives and Garland 2010) as
implemented by logistf {R} (Heinze et al. 2013). We only used this model in
simulations including an independent variable x.

9.3 Method Comparison Using a Simulation Model

We performed simulations both without and with an independent variable x. In the
absence of x, the phylogenetic models become tests of phylogenetic signal. To
generate simulation data for comparisons among models, we chose a model similar
to that underlying PLogReg, although differing slightly in the manner of gener-
ating phylogenetic signal. We first simulated switches in the value of Y along a
phylogenetic tree at a rate given by a = 0, which gives phylogenetic signal
comparable in magnitude to BM evolution of continuous traits (Ives and Garland
2010). However, rather than vary the value of a to change the strength of phy-
logenetic signal, instead, we performed an OU transform on the phylogenetic tree
(following the parameterization of Lavin et al. 2008), with d = 0 giving no
phylogenetic signal (a star phylogeny) and increasing values of d giving greater
phylogenetic signal (see Sect. 9.2.4 above and Chap. 15 for a description of the
OU branch-length transform). For the case with an independent variable x, again as
in PLogReg, we assumed that a second phase of evolution occurred in which
values of Y (at the tips of the tree) tended to switch toward 0 or 1 depending on the
value of x and the regression coefficient b1, and independently from the phylogeny.

To simulate values of x, we assumed values were chosen either with or without
phylogenetic signal. To model phylogenetic signal in x, we assumed BM evolution
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on the phylogenetic tree leading to a multivariate Gaussian distribution with mean
0, variance 1, and covariances proportional to the shared branch length for each tip
species. To model x in the absence of phylogenetic signal, we chose values of
x independently from a Gaussian distribution with mean 0 and variance 1. We
considered only ‘‘symmetrical’’ (‘‘balanced’’) phylogenetic trees; preliminary
simulations showed little difference in results between symmetrical and highly
asymmetrical ‘‘ladder’’ trees (see also Blomberg et al. 2003). Finally, when sim-
ulated data sets had C7/8 of the values of Y all zeros or all ones, we discarded
them because they will contain little information, and a prudent researcher would
not analyze them in the first place (cf. Diaz-Uriarte and Garland 1996, p. 45).

9.3.1 Phylogenetic Signal (Regression Without Independent
Variables)

We first investigated the ability of five methods—PLogReg, PGLMM,
MCMCglmm, RegOU, and ACE—to detect phylogenetic signal. We simulated
1,000 data sets for 64 species on a symmetrical phylogenetic tree subjected to an
OU branch-length transform. We used d values in increments of 0.1 in the range of
0 to 0.8; although d can exceed unity, values[0.8 were deemed unnecessary, given
the results obtained. For each of the five methods, we plotted the mean estimates of
the respective phylogenetic signal parameters and their 66 and 90 % inclusion
intervals (Fig. 9.1). The 66 % inclusion interval is comparable to ±1 standard
deviation. The 90 % inclusion interval gives an indication of the power of each
method to reject the null hypothesis of no phylogenetic signal; because this
hypothesis is one-sided, the lower boundary of the 90 % inclusion interval corre-
sponds to 5 % of the simulated data having estimates of no phylogenetic signal. It is
important to note that these inclusion intervals are not confidence intervals, because
the simulations were produced under a model that differed from all of the statistical
models. Nonetheless, the inclusion intervals give an indication of the probability
that the point estimate of phylogenetic signal from each model is greater than zero.
We did not perform simulations that involved estimating confidence intervals due
to the computational intensity required; for example, if confidence intervals were
computed for 1,000 bootstrap data sets for each of the 1,000 simulations, 1,000,000
estimations would be needed at each level of phylogenetic signal.

PLogReg was the best method for detecting signal, followed by PGLMM. Given
the similarity between the PGLMM and MCMCglmm models (Eqs. 9.2 and 9.3),
we were surprised that MCMCglmm did not perform better; even for the simulation
d = 0.8, more than 12 % of the simulations resulted in MCMCglmm estimates of
rs

2 = 0 indicating no phylogenetic signal (Fig. 9.1c). We suspect that this involves
the identifiability problem that affects both PGLMM and MCMCglmm. When no
phylogenetic signal exists (zero covariances in Y among taxa), the parameters b0

and r2 (rs
2 for MCMCglmm) are confounded by the identifiability problem; no
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Fig. 9.1 Estimates of phylogenetic signal from a PLogReg, b PGLMM, c MCMCglmm,
d RegOU, and e ACE. In all cases, the horizontal axis gives d of the OU branch-length transform
used to general different relative branch lengths for phylogenetic trees up which the binary
dependent variable evolved. The vertical axis gives the phylogenetic signal parameter for each of
the five methods. In each panel, the central line is the mean parameter values, and dashed and
solid lines give the 66 and 90 % inclusion intervals from 1,000 simulations at each value of
d with a = 0. Phylogenetic trees were all assumed to be symmetrical with 64 taxa. The lower
boundary of the 90 % inclusion interval corresponds to 5 % of the simulated data having
estimates of no phylogenetic signal, which gives an indication of the probability that the point
estimate of phylogenetic signal from each model is greater than zero. These simulations show the
relative performance of the methods at identifying phylogenetic signal, with PLogReg
outperforming the other methods, and able to detect signal when the value of d equals or
exceeds 0.2. Note that d can exceed unity, but simulations with d set at values[ 0.8 were deemed
unnecessary
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single pair of values gives the best model fit. The estimation approach of PGLMM
uses an iterative process alternating conditional likelihoods for b0 given r2 and for
r2 given b0, and we suspect that this acts to separate (i.e., decrease the correlation)
of the estimates of these parameters. By decreasing this correlation, PGLMM will
reduce the variability in the estimate of r2. Consistent with this explanation, for
simulations with d = 0.5, the correlation between the estimates of |b0| and r for
PGLMM was -0.26, while for MCMCglmm the correlation between |b0| and rs

2

was -0.35. At d = 0.5, zero is well outside the 90 % inclusion interval for
PGLMM while still within the inclusion interval for MCMCglmm.

RegOU did not perform well. This is presumably because it did a poor job
capturing the phylogenetic covariances among values of Y. By ignoring the binary
nature of the data, RegOU does not incorporate the constraints on the variances
and covariances that are imposed by the nature of binary data. Specifically, the
covariances are bounded by the variances in Y, and the variances in turn are set by
p(1 - p), which has a maximum value of p = 0.5. Therefore, if by chance there is
a relatively large number of ones (or zeros) in a data set, then the estimate of p will
be greater (or less) than 0.5 and the covariances in the data will necessarily be
reduced. RegOU does not account for this, and we suspect that this is the reason
for its poor power. In contrast, PLogReg explicitly accounts for the dependency of
the variances and covariances on p, in effect increasing the weight of the covar-
iances in the data to compensate for changes in p.

The performance of ACE was third after PGLMM. We expected ACE to per-
form better. The performance of ACE could be limited by its use of ML, in
contrast to penalized likelihood used by PLogReg and REML used by PGLMM,
although other explanations are possible, including the mismatch between the
model underlying ACE and the simulation model that we used.

9.3.2 Regression

We investigated the performance of five methods—PLogReg, PGLMM,
MCMCglmm, RegOU, and Logistf—to estimate b1 giving the relationship
between Y and the independent variable x. We simulated 1,000 data sets with
b0 = 0 and b1 = 1 for 64 species on a symmetrical phylogenetic tree subjected to
an OU branch-length transform with values of d between 0 and 2 in increments of
0.25. The values of x were assumed to have evolved under a BM model up the
phylogenetic tree with no branch-length transform (i.e., d = 1). For each data set,
we then estimated b1 using all five methods and plotted the means from the 1,000
simulations, as well as the 66 and 90 % inclusion intervals (Fig. 9.2).

Because of differences between the simulation and statistical models, we did
not expect the estimates of b1 to be exactly 1. Nonetheless, changes in the esti-
mates of b1 with d used to simulate the data indicate that phylogenetic signal
introduces bias in the estimates. All methods except RegOU showed upward bias
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Fig. 9.2 Estimates of regression parameter b1 from a PLogReg, b PGLMM, c MCMCglmm,
d RegOU, and e Logistf. In all cases, the horizontal axis gives d of the OU branch-length
transform used to generate different relative branch lengths for phylogenetic trees up which the
binary dependent variable evolved, and in the simulations b1 = 1. In each panel, the central line
is the mean parameter values, and dashed and solid lines give the 66 and 90 % inclusion intervals
from 1,000 simulations at each value of d with a = 0. Values for PGLMM and MCMCglmm
were corrected by factors (1 + c2r2)-0.5 and (1 + c2rs

2 + c2ru
2)-0.5, respectively (see text). For

simulations, the independent variable x was assumed to evolve as a Brownian motion process
along the specified tree. Phylogenetic trees were all assumed to be symmetrical with 64 taxa.
These results show both increased bias (mean parameter values) and decreased precision (width
of inclusion intervals) with increasing phylogenetic signal d
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with increasing phylogenetic signal, with PLogReg showing the least (12 % when
d = 2 vs. d = 0) and MCMCglmm showing the most (32 % when d = 2 vs.
d = 0). Simultaneously, increasing d made the estimates of b1 more variable for
all methods, as shown by the broadening of the inclusion intervals. This loss of
precision was least for RegOU (15 %) followed by PLogReg (34 %) and was
greatest for Logistf (48 %). Thus, failing to account for phylogenetic signal in
Logistf led to the greatest loss in precision as phylogenetic signal increased.

One of the greatest statistical concerns driving phylogenetic comparative
methods is Type I errors, rejecting the null hypothesis when it is true (e.g., see
Grafen 1989; Martins and Garland 1991; Garland et al. 1993; Diaz-Uriarte and
Garland 1996). To investigate Type I errors, we simulated data under the null
hypothesis of b1 = 0 and scored for each statistical method the proportion of
simulations for which the null hypothesis was rejected at the a = 0.05 significance
level (Fig. 9.3). The data were simulated up balanced, ultrametric phylogenetic
trees for N = 16, 32, 64, 128, and 256 terminal taxa assuming substantial phy-
logenetic signal (d = 1). Values of the independent variable x were simulated
either with phylogenetic signal given by BM evolution (Fig. 9.3a) or without
phylogenetic signal (Fig. 9.3b). The statistical tests for H0:b1 = 0 were performed
using asymptotic approximations with PLogReg, PGLMM, RegOU, and Logistf.
For MCMCglmm, to give comparable information to hypothesis testing, we used
the 95 % credible interval for b1, scoring the proportion of simulations for which
zero fell outside this interval.

Ideally, all methods would reject H0:b1 = 0 in 5 % of the simulated data sets
when the value of b1 in the simulations is in fact zero. Because we only performed
1,000 simulations, there will be some variability around this 5 % expectation.
Specifically, for 1,000 simulations, the 95 % confidence interval for expected
number of simulated data sets rejecting H0:b1 = 0 when the rejection rate is
correct can be calculated to be (3.6, 6.4 %); consistent departures from this range
imply incorrect Type I error rates. When phylogenetic signal exists in the inde-
pendent variable x, Logistf rejects H0:b1 = 0 much more frequently, indicating an
inflated Type I error rate (Fig. 9.3a). In the absence of phylogenetic signal in x,
however, Logistf does not perform badly (Fig. 9.3b). This type of behavior—
sensitivity of a statistical regression method to the distribution of the independent
variable—is also found in phylogenetic regression with continuous dependent
variables (Revell 2010). In standard regression, when phylogenetic signal is absent
in the residual variation, the distribution of the independent variables does not
affect the estimates and statistical tests of the corresponding regression coeffi-
cients. However, with phylogenetic signal in the residuals, the presence or absence
of phylogenetic signal in the independent variables does matter. The results for
Logistf show that when an independent variable is correlated with the residuals,
the data contain less information about the parameters. Logistf ignores this loss of
information, thereby giving incorrectly strong statistical tests leading to badly
inflated Type I error rates.
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The phylogenetic methods performed much better than Logistf when phylo-
genetic signal is present in x (Fig. 9.3a). For small sample sizes (N = 16), both
PLogReg and PGLMM underestimated the nominal number of simulations with
‘‘significant’’ values of b1, although they performed well for N C 32; this under-
estimate of significance (lower-than-appropriate Type I error rates) when N = 16
is conservative, in the sense that it means that false positives are less likely.
MCMCglmm had inflated Type I error rates for N = 16, which is an issue of
concern, although MCMCglmm performed similarly to PLogReg and PGLMM for
N C 32. Overall, RegOU performed well although, like MCMCglmm, it showed
inflated Type I error for N = 16. Without phylogenetic signal in x (Fig. 9.3b),
PLogReg, PGLMM, and MCMCglmm all showed lower-than-appropriate Type I
error rates, especially PLogReg and PGLMM when N = 16. Perhaps most sur-
prisingly, the two best performers were RegOU and Logistf that ignore, respec-
tively, the binary nature of the data and phylogenetic signal. These results illustrate
that, in statistics, it is sometimes possible for a method to be right even when it
does not incorporate all of the characteristics of the data.
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Fig. 9.3 Type I error rates (proportions of simulations in which H0: b1 = 0 was rejected when it
was true) at a = 0.05 as a function of the number of taxa in the sample (16, 32, 64, 128, and 256)
on a symmetrical phylogenetic tree for PLogReg (black), PGLMM using approximate standard
error (blue), MCMCglmm (green), RegOU (red), and Logistf (orange). Dotted black line
indicates nominal Type I error rate of 5 %. In a the independent variable x is assumed to show
Brownian motion phylogenetic signal, and in b x is assumed to have no phylogenetic signal
(evolution up a star phylogeny). In both a and b there is phylogenetic signal in the residual
variation given by d = 1 and a = 0. For all methods, the lines give the proportion of 1,000
simulations in which the null hypothesis b1 = 0 is rejected at the a = 0.05 level based on the
approximate asymptotic distribution of b1, except for MCMCglmm which gives the proportion of
simulations in which the 95 % credible interval excludes b1 = 0. Simulated data sets with
Y taking few values of 0 or 1 (B1/8 values) were excluded, because these data sets will give little
information for statistical fitting and a practitioner probably should not try to analyze them
statistically (e.g., see Diaz-Uriarte and Garland 1996, p. 45). Results in this figure show that all
methods other than PGLMM (blue line) show inflated Type I error rates for some values of
N when there is phylogenetic signal in x (panel a)
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To investigate statistical power, we generated curves of the probability of
rejecting the null hypothesis H0:b1 = 0 with values of b1 ranging from 0 to 1
(Fig. 9.4). The data were simulated for 64 species assuming phylogenetic signal in
Y (d = 1). Values of the independent variable x were simulated either with phy-
logenetic signal given by BM evolution (Fig. 9.4a) or without phylogenetic signal
(Fig. 9.4b). For PGLMM, in addition to performing the analyses using the
asymptotic approximation for standard errors of b1, we also performed a bootstrap
test of H0:b1 = 0 using the 95 % bootstrap confidence intervals of b1. To make this
feasible, we used only 200 bootstrapped data sets for each of 200 simulated initial
data sets, which still required 40,000 estimations for each of the 11 values of d. We
did not perform a similar test of the bootstrap for PLogReg, because the computer
time to run the 440,000 estimations was prohibitive. For single, real data sets,
however, bootstraps can be run for PLogReg.

RegOU performed well, with a correct Type I error rate (at d = 0) and good
power, especially when phylogenetic signal is absent in x (Fig. 9.4b). With phy-
logenetic signal in x (Fig. 9.4a), MCMCglmm had greatest power, at least for this
sample size of N = 64 (but see Fig. 9.3a). In part, this might be due to the greater
upward bias shown by MCMCglmm (Fig. 9.2c), which makes it more likely for
the 2.5 % tail of the distribution of the estimate of b1 to lie above zero. Using the
asymptotic approximations for the standard error of b1, both PLogReg and
PGLMM had slightly lower power than MCMCglmm and comparable power to
RegOU. The bootstrap results for PGLMM had the correct Type I error rates at
d = 0; correct Type I error rates are guaranteed with bootstrapping, provided the
data are well fit by the PGLMM model, because bootstrapping is based on sim-
ulating data and scoring those for which H0:b1 = 0 is rejected. Despite having the
correct Type I error rates when d = 0, the PGLMM bootstrap had lower power
than the other methods. Despite this low power, because the bootstrapping guar-
antees lack of Type I errors, it provides the most ‘‘secure’’ results.

Overall, the power curves show that all methods have roughly similar power.
However, given the inflated Type I error rates shown by all methods except for
PGLMM for some sample sizes (Fig. 9.3a), all phylogenetic methods run the risk
of giving false positive results. Generally, Type I errors are of greater statistical
concern than Type II errors (accepting the null hypothesis when it is false), and the
Type I errors shown by the simulations should lead to caution when interpreting
results. Indeed, many statisticians would not move on to consider statistical power
unless Type I error rates were assured at a nominal level, such as a = 0.05 (e.g.,
Martins and Garland 1991).

9.4 Method Comparison with Real Data

To compare methods using real data, we used an example provided by Brashares
et al. (2000) for 75 species of African antelope; this data set was also analyzed
using PLogReg in Ives and Garland (2010). We tested the hypothesis proposed by
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Jarman (1974) that species living in larger groups are more likely to flee or fight
predators (Y = 1), whereas solitary or pair-living species are more likely to hide
(Y = 0). Group size ranges between 1 and 70, and we treated log10-transformed
group size as a continuous variable. Because body size is likely also to affect
antipredator behavior, with larger-bodied species more likely to flee/fight than
hide, we followed Brashares et al. (2000) and also included log10 body mass as a
second independent, continuously valued variable. To stabilize the statical anal-
yses, both independent variables were standardized to have mean equal to zero and
standard deviation equal to one; this also makes the regression coefficients rep-
resent effect sizes of the independent variables whose magnitudes reflect the size
of effect of the variable (as is traditionally done in path analysis, Chap. 8). Group
size had phylogenetic signal (RegOU: d = 0.84, conf. interval = (0.52, 1.07);
Lavin et al. 2008), as did body size (d = 0.99, conf. interval = (0.77, 1.20)),
suggesting that phylogenetic signal in Y will present statistical challenges. Here,
we summarize the results of the analyses, and in the online practical material
(http://www.mpcm-evolution.com), we present this example as a tutorial.

All methods revealed a strong positive effect of group size on the response of
antelope to predators (Table 9.1, Fig. 9.5); antelopes with larger group sizes were
more likely to flee/fight than to hide. Because the methods incorporate the regression
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Fig. 9.4 Power curves for estimates of the regression parameter b1 from PLogReg (black),
PGLMM using approximate standard error (blue), PGLMM using bootstrapped confidence
intervals (dashed dark blue), MCMCglmm (green), RegOU (red), and Logistf (orange). The
power curves give the proportion of simulations in which the null hypothesis H0: b1 = 0 was
rejected at the a = 0.05 level for 64 taxa evolving on a symmetrical phylogenetic tree. In a the
independent variable x is assumed to show Brownian motion phylogenetic signal, and in b x is
assumed to have no phylogenetic signal (evolution up a star phylogeny). In both a and b, there is
phylogenetic signal in the residual variation given by d = 1 and a = 0. For all methods, the lines
give the proportion of 1,000 simulations in which the null hypothesis H0: b1 = 0 was rejected at
the a = 0.05 level, except for MCMCglmm which gives the proportion of simulations in which
the 95 % credible interval excludes b1 = 0, and the bootstrapped results for PGLMM that are
based on 200 simulations. These results show that all methods have similar power, with the
bootstrapped power curve for PGLMM having the lowest power
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Table 9.1 Comparison among five methods of estimating regression coefficients for the effects
of log10 group size and log10 body mass on the antipredator behavior (0 = hide, 1 = flee or fight)
of 75 antelope species

Parametera Estimate Approx.
SEb

95 % confidence/
credible intervalc

p-value Bootstrap
meand

95 % bootstrap
confidence
interval

PLogReg
a 0.50 -0.49 (-4, 4)
b0 -0.82 0.87 (-2.54, 0.90) 0.34 -0.86 (-3.67, 1.53)
b1 (body

mass)
0.096 0.45 (-0.80, 0.99) 0.84 0.13 (-1.08, 1.34)

b2 (group
size)

1.36 0.49 (0.39, 2.33) 0.007 1.71 (0.47, 3.66)

PGLMM
r2 7.16 2.86 (0.00, 8.0)
b0 -0.70 0.79 (-2.27, 0.87) 0.38 -1.13 (-3.27, 0.35)
b1 (body

mass)
0.22 0.60 (-0.98, 1.42) 0.71 0.51 (-0.98, 2.20)

b2 (group
size)

1.45 0.66 (0.13, 2.77) 0.031 1.66 (0.56, 3.24)

MCMCglmm
rs

2 4.28 (1.50, 13.9) 0.83 (0.01, 3.28)
ru

2 1 1
b0 -5.23 (-13.2, -1.12) -3.92 (-10.1, -0.34)
b1 (body

mass)
0.54 (-2.56, 4.03) 0.49 (-1.81, 3.23)

b2 (group
size)

4.20 (1.50, 13.9) 3.07 (0.68, 6.55)

RegOU
d 0.62
b0 0.39 0.20 (-0.008 0.79) 0.47
b1 (body

mass)
0.16 0.070 (0.021, 0.30) 0.026

b2 (group
size)

0.16 0.056 (0.049, 0.27) 0.007

Logistf
b0 -1.57 0.96 (-3.47, 0.33) 0.09 -1.59 (-3.66, 0.18)
b1 (body

mass)
-1.17 0.87 (-2.89, 0.55) 0.16 -1.16 (-3.01, 0.39)

b2 (group
size)

4.57 1.25 (2.10, 7.05) \0.0001 4.56 (2.27, 7.44)

a All independent variables were standardized to have mean 0 and variance 1 prior to analysis
b Standard errors of the estimates and confidence intervals were obtained using the asymptotic
approximations
c Approximate confidence intervals for the frequentist methods were computed using asymptotic
approximations. The credible intervals for MCMCglmm were computed in the fitting process
d Parametric bootstrapping was performed by simulating 1,000 data sets to obtain means and
confidence intervals
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Fig. 9.5 Analyses of
antipredator behavior
(0 = hide, 1 = flee or fight)
of 75 antelope species as it
depends on log10 group size
(see results shown in
Table 9.1). The first column
to the right of the
phylogenetic tree gives log10

group size, a continuously
valued independent variable,
colored from small (yellow)
to large (red). The second
column gives the trait value
Y (hide = white, flee/
fight = black). The
remaining 4 columns give the
fit of the models—PLogReg,
PGLMM, MCMCglmm, and
Logistf—as the probability of
fleeing/fighting predicted by
the models (Table 9.1) scaled
from fleeing/fighting with
probability zero (white) to
one (black). These fits also
incorporate the information
from the second independent
variable, log10 body size. All
methods revealed the effect of
group size on the response
variable (Table 9.1), and their
similar predictions are shown
by similar patterns in the last
4 columns
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coefficients differently, their values cannot be compared directly. Nonetheless, all
methods showed significant departure of b2 from zero. Although this main conclu-
sion would be reached regardless of the method used, the results nonetheless show
properties of the methods that we will discuss for each method in turn.

For PLogReg, bootstrapping shows that the value of b2 is an overestimate,
because the bootstrap mean is 1.71 compared to the value of 1.36 from the data
that were used to parameterize the simulation bootstraps. Furthermore, the boot-
strap confidence intervals are wider than those obtained from the approximate
standard errors (approximate (0.39, 2.33); bootstrapped (0.47, 3.66)). Simulta-
neously, the bootstrap confidence interval for a ranging from the minimum to
maximum values (-4 to 4) indicates that PLogReg is unable to determine whether
there is phylogenetic signal in the residuals.

Like PLogReg, the bootstrap of PGLMM shows upward bias in the estimate of
b2. The bootstrap confidence intervals show no statistically significant phyloge-
netic signal in the residuals (lower bound for r2 is zero). Nonetheless, due to the
upward bias in the estimates, the lower bound of the confidence interval could also
be upward biased. To test for this, we also performed a bootstrap under the null
hypothesis H0:b2 = 0 by fitting the model without group size x2, simulating data
sets from the fitted model, and then fitting the full model including group size to
the simulated data sets. Only 1/1000 simulations had an estimated value of
b2[ 1.45 (the value observed in the real data set), implying strong rejection of the
null hypothesis H0:b2 = 0.

Despite using essentially the same statistical models, the parameter estimates
from MCMCglmm were substantially different from PGLMM. We produced
‘‘bootstrap confidence intervals’’ for MCMCglmm by simulating 1,000 data sets
from the fitted MCMCglmm model and reporting the range covered by 95 % of the
estimated parameters. This procedure showed downward bias in the estimate of b2

although little bias in b1.
RegOU showed not only a statistically significant effect of group size but also

an effect of body size. Based on the simulations that show RegOU gives correct
Type I errors and has good power, we are inclined to trust these results with
respect to hypothesis testing. Nonetheless, it is not possible to interpret the values
of the parameter estimates in a meaningful way; they cannot be converted into the
probability that predators flee or fight. This also means that bootstrapping is
impossible, leading us to rely on the simulations (Figs. 9.2, 9.3 and 9.4) to give us
faith in the results.

Logistf gave, on the face of it, very good statistical properties. The effect of
group size was highly significant, and the bootstrapping showed that there is little
bias and that the approximate confidence intervals are accurate. However, because
both group size and body size show phylogenetic signal, we know that Logistf is
likely to suffer from severely inflated Type I errors (Fig. 9.3). Therefore, we
cannot trust the statistical results. This shows that even ‘‘good’’ superficial sta-
tistical behavior can be underlain by serious statistical mistakes.

Assessing the methods by their fits to the data, all models gave similar pre-
dictions for the probability that antelope trait flee/fight (Fig. 9.5). There are clear
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cases in which all models predict Y = 1 with high probability, yet in fact Y = 0
(compare column 2 with columns 3–6). These mis-predictions also appear to have
a phylogenetic pattern, with closely related species showing Y = 0 despite pre-
dictions otherwise. Nonetheless, none of the methods identified statistically sig-
nificant phylogenetic signal in the residual variation (Table 9.1).

9.5 Discussion

Of the several methods now available for analyzing phylogenetic binary data, our
comparisons gave no single ‘‘winner’’ that performed best under all situations and
for all questions asked about the data. If we had considered a greater range of
phylogenetic trees, sample sizes, and data characteristics (e.g., including multiple
regressions), then a ‘‘winner’’ might have been even less apparent. This is not
surprising, given the complexity of these methods and of the phylogenetically
evolved data they are trying to analyze. Below, we try to give simple guidelines for
different situations that might commonly arise, treating first the detection of phy-
logenetic signal and then regression with independent variables. We emphasize,
however, that multiple methods should be tried for any data set; data are generally
far more time-consuming to generate than are statistical models to run, so once data
are in hand, it makes sense to run multiple tests. If they all give the same results, this
is reassuring. If they do not, then our analyses have hopefully pointed to reasons for
the differences and helped identify which methods to trust. Nonetheless, we stress
that our simulations are far from exhaustive, and it is best to tailor simulations to
particular data sets. Moreover, we hope and expect new methods will be developed
which can be applied to old data, as raw data are now becoming routinely deposited
through online supplementary material and communal repositories.

9.5.1 Phylogenetic Signal (Regression Without Independent
Variables)

At least in our simulations, PLogReg was the most powerful method for detecting
phylogenetic signal in the absence of independent variables. It was the most likely to
show the existence of phylogenetic signal when it was in fact present (Fig. 9.1). On
the downside, PLogReg is also the most computer intensive of the methods con-
sidered here. For large numbers of taxa (e.g.,N = 256), bootstrapping can take a day
on a typical personal computer. Speed might be considerably helped, however, by
the methods of Ho and Ane implemented in phylolm {R} (Ho and Ane 2014).

In some situations, other methods are preferable. Following PLogReg, PGLMM
performs well and typically runs 100–1,000-fold faster. Therefore, for large data
sets or for extensive bootstrapping, PGLMM might be preferred. MCMCglmm, as
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a Bayesian method, gives information about the distributions and correlations
among parameter estimates, and MCMCglmm as a package gives nice tools that
make it possible to visualize and extract this information. This information is
helpful for diagnosing problems with model estimation; it can be used in a way
similar to bootstrapping to approximate the joint distribution of parameter esti-
mates. An advantage of MCMCglmm is that rather than iterating the estimation
procedure many times as required for bootstrapping, MCMCglmm provides
diagnostic information in a single estimation, making it functionally very fast.

Unlike the other methods, ACE provides estimates of ancestral states and
uncertainty in these estimates. This can be useful to illustrate possible evolutionary
sequences of events leading to the current distribution of traits among taxa. Per-
sonally, we are cautious about trying to infer much about evolutionary history
from information on only extant species (Garland et al. 1999; Bonine et al. 2005;
Chap. 22), yet mapping-inferred ancestral trait changes onto phylogenies can be
useful in conjunction with historical information about possible drivers of evo-
lution, such as environmental changes that cause alterations in the selective regime
(Hansen and Orzack 2005).

9.5.2 Regression

When an analysis includes independent variables, the main goals will likely be to
test the statistical significance and characterize the relationship between the
dependent and independent variables, that is, estimate the regression coefficients
and associated confidence intervals or statistical tests. Guidelines for method
selection for regression analyses are more complicated than those for detecting
phylogenetic signal, so we discuss different scenarios separately.

9.5.2.1 Independent Variables Lack Phylogenetic Signal

When independent variables show no phylogenetic signal, all methods worked
surprisingly well. In fact, there are few statistical problems introduced by phylo-
genetic signal in the residuals; even Logistf worked well, with little sign of inflated
Type I errors. Therefore, it makes sense, before performing any other analysis, to
first test for phylogenetic signal in the independent variables. If the estimates of
phylogenetic signal are zero, then try Logistf or another logistic regression
package (but use the Firth correction). It is necessary to recognize that by ‘‘no
phylogenetic signal,’’ we mean that the estimate of phylogenetic signal is exactly
zero; absence of statistically significant phylogenetic signal is probably not a strict
enough requirement to ignore phylogenetic signal all together, because the power
of statistical tests for signal is often low (Blomberg et al. 2003).
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9.5.2.2 Testing for Significant Regression Coefficients

If the goal of the analysis is to test the null hypothesis H0: b1 = 0, then RegOU or
similar methods that ignore the binary nature of the dependent variable give a
simple approach that in our simulations was remarkably statistically robust. This is
not the heresy it might initially seem. The central limit theorem is remarkable:
Given enough samples, the sum of their values will approach a Gaussian distri-
bution, regardless of the distribution of any single sample. In principle, ignoring
the unavoidable variation caused by Y taking only values of zero and one, RegOU
should suffer loss of power compared to methods that account for this variation,
yet we did not see a large loss of power in simulations with N = 64 (Fig. 9.4). A
major disadvantage of RegOU, however, is that it does not give a model that fits
the data. Therefore, it is hard to interpret the meaning of the regression coeffi-
cients, and it is not possible to simulate data from the model that has the statistical
properties of the original data. This makes parametric bootstrapping impossible.

9.5.2.3 Fitting a Binary Regression Model

PLogReg, PGLMM, and MCMCglmm all performed reasonable well in fitting a
model to data, although all had worrying defects. In particular, using the asymp-
totic approximations to the standard errors of the parameters, PLogReg tended to
give inflated Type I errors for larger samples sizes, whereas MCMCglmm gave
inflated Type I errors for smaller samples. Furthermore, all three methods showed
lower-than-expected Type I errors under some situations, implying loss of statis-
tical power (Fig. 9.3).

A solution to the Type I errors for PLogReg and PGLMM is to bootstrap the
statistical tests for H0:b1 = 0. Bootstrapping guarantees against inflated Type I
errors. Furthermore, bootstrapping the estimates of b1 will give the most accurate
confidence intervals and also show possible bias in the parameter estimates.
Similarly, investigation of the joint distribution of parameter estimates in
MCMCglmm will show possible problems with parameter estimation. Thus,
although these methods have potential problems, those problems can be identified,
and bootstrapping for PLogReg and PGLMM can solve the problem of inflated
Type I errors. These two methods, used with parametric bootstrapping, provide the
only approaches to fitting an appropriate model to phylogenetic binary data that
have yet been validated.

9.6 Summary and Future Directions

Analyzing binary comparative data while accounting for potential phylogenetic
correlations is not straightforward, but we hope our rough guidelines will help. It is
important at the onset of analyses, however, to carefully consider your data. If you
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have, for example, N = 16 taxa of which only three show one of the two possible
trait states, then you should probably not embark on an analysis at all, particularly
if the three taxa are closely related; the amount of information available in the data
is unlikely to yield trustworthy statistical results. Before analyzing the dependent
variable, test for phylogenetic signal in the independent variables; strong phylo-
genetic signal should suggest being particularly cautious in a regression analysis.
Similarly, check for collinearity among the independent variables and remove
those that seem unlikely to be informative on a priori grounds. Visually inspect the
data: Are there observable patterns in the dependent variable? Do model fits look
consistent with the data (e.g., Fig. 9.5)? If a statistical test tells you that a pattern is
significant, then you should be able to see it in the data. After initial analyses,
perform diagnostics by bootstrapping or by examining the parameter distributions
from MCMCglmm. Use multiple methods, hoping that they give similar results; if
they do not, then try to figure out why and which (if any) to trust. Finally, do not
hesitate to use a model that you know is not strictly appropriate—phylogenetic
regression for continuous traits, such as RegOU—as it still might give results that
are statistically robust for hypothesis testing.

Phylogenetic models for the analysis of binary dependence variables need
further statistical development. A simple, fast, robust method that does not suffer
inflated Type I errors is still not available. Improvements in algorithms (e.g.,
phylolm {R}) will help. Another possible avenue is to pursue probit models; for
MCMCglmm, the probit model had better statistical properties than the logit
model, although probit models are not available for frequentist methods. A limi-
tation of the three available methods we investigated is the absence of a true ML or
REML score that can be used for model selection. Practically, this is not a huge
hindrance, because all of the models can be used with classical backward or
forward stepwise regression using, for example, P-values to decide which terms to
include. Nonetheless, the popularity of backward and forward selection procedures
has waned, and most researchers will now want an AIC score or a related infor-
mation-theoretic metric. Finally, we have only investigated methods for binary
data, but the same issues (although probably less severe) will appear for Poisson
and other non-Gaussian data. Lots of problems are yet to be solved.
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Chapter 10
Keeping Yourself Updated: Bayesian
Approaches in Phylogenetic Comparative
Methods with a Focus on Markov Chain
Models of Discrete Character Evolution

Thomas E. Currie and Andrew Meade

Abstract Bayesian inference involves altering our beliefs about the probability of
events occurring as we gain more information. It is a sensible and intuitive
approach that forms the basis of the kinds of decisions we make in everyday life.
In this chapter, we examine how phylogenetic comparative methods are performed
within a Bayesian framework, introducing some of the main concepts involved in
Bayesian statistics, such as prior and posterior distributions. Many traits of bio-
logical and evolutionary interest can be modelled as being categorical, or dis-
cretely distributed, and here, we discuss approaches to investigating the evolution
of such characters over phylogenetic trees. We focus on Markov chain models of
discrete character evolution and how these models can be assessed using maxi-
mum-likelihood and Markov Chain Monte Carlo techniques of parameter esti-
mation. We demonstrate how this can be used to test functional hypotheses by
examining the correlated evolution of different traits, illustrated with examples of
sexual selection in primates and cichlid fish. We show how the order of trait
evolution can be determined (potentially providing a stronger test of causal
hypotheses) and how competing hypotheses can be assessed using Bayes factors.
Attractive features of these Bayesian methods are their ability to incorporate
uncertainty about the phylogenetic relationships between species and their repre-
sentation of results as probability distributions rather than point estimates. We
argue that Bayesian methods provide a more realistic way of assessing evidence
and ultimately a more intellectually satisfying approach to investigating the
diversity of life.
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10.1 Introduction

What are the chances of England winning the next football World Cup?1 An initial
estimate, for those lucky enough to be unfamiliar with the performances of the
national team, might come from knowing that 32 teams take part in the finals of
the tournament. Presuming that England qualify for this stage and prior to knowing
anything else about England or football, we might assume that all teams have an
equal chance of winning, meaning that the probability of England being victorious
is 1/32. However, differences in abilities between teams make it unsafe to assume
that all teams have an equal chance of winning. A look at how well England have
done in previous tournaments may also serve as a useful guide. England are only
one of eight teams to have won the competition2 since it started in 1930. There-
fore, we might adjust our estimate of the odds of success to 1:7. We might further
look at their record in tournaments over the last 15 years (i.e. since 1998) and see
that they have failed to make it beyond the quarter-finals and sometimes only as far
as the round of 16. Given this information, we might alter our estimation of the
chances of success down slightly. Once the World Cup finals kick off, we might
also update these beliefs about England winning we had prior to the tournament
based on how well (or more likely how badly) they play. If by some miracle they
made it through to the final, then even the most pessimistic fan would have to
adjust their estimate to somewhere closer to an even chance of success.

Altering our beliefs about the probability of events occurring as we gain more
information is extremely sensible and obviously forms the basis of the kinds of
decisions wemake in everyday life. It is this kind of reasoning that forms the basis of
Bayesian inference. In this chapter, we will examine how this is applied to phylo-
genetic comparative methods, with a particular focus on traits that are categorical or
discretely distributed. After first introducing some of the concepts involved in
Bayesian statistics, we will discuss earlier approaches to investigating the evolution
of discrete characters over evolutionary trees and how Bayesian approaches can
overcome some of the limitations of these approaches. In the Online Practical
Material (hereafter OPM) available at http://www.mpcm-evolution.com, we will
provide specific examples of how Bayesian phylogenetic comparative methods are
used to investigate interesting evolutionary questions.

10.2 Bayesian Inference

The Bayesian approach to probability can be summarized as follows: We have an
initial, or prior, belief about the probability of something being true which we
adjust based on new information to arrive at our updated, or posterior, belief

1 This way of introducing this topic owes a debt to Ronquist et al. (2009), although herewe focus on
the inadequacies of our national football team rather than the success of theSwedish ice hockey team.
2 1966.
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(Ronquist et al. 2009). This approach to thinking about probabilities was for-
malized by Thomas Bayes in the eighteenth century in what is known as Bayes
theorem, which states

Pr BjAð Þ ¼ Pr AjBð ÞPr Bð Þ
Pr Að Þ ð10:1Þ

This formula is read as the posterior probability of B given A Pr BjAð Þð Þ equals the
probability of A given B ( Pr AjBð Þð Þ, multiplied by the probability of B (Pr(B)) and
divided by the probability of A (Pr(A)) (Link and Barker 2009).

To go back to our football example, by some miracle let us imagine that
England have made it through to the World Cup final, and yet more miraculously,
they have managed to score first. We can ask, what is the probability that England
will go on to win the final? We can calculate this using Bayes theorem which will
tell us the probability that England will win given the new information that we
have about England scoring first.

P England winjScore firstð Þ ¼ P Score firstjEngland winð ÞP England winð Þ
P Score firstð Þ

ð10:2Þ

In order to work this out, we need to know the prior probability of England scoring
first (i.e. in general, how common is it for England to be the team that scores
first?), and also for those games where England do win, the probability that they
scored first. Looking back over the past records, we find that England score first in
around two-thirds of their games (i.e. a probability of 0.67), and in the games that
they win, they score first 80 % of the time (i.e. a probability of 0.8). For the prior
probability of England winning, let us also say that at the beginning of the game,
there was an equal chance that either team could win.

P England winjScore firstð Þ ¼ 0:8� 0:5
0:67

ð10:3Þ

Working this through gives us a probability of around 0.6 that England having
scored first will indeed end years of hurt and lift the World Cup trophy. In the next
section, we will see how these concepts of using information to update our prior
beliefs and arrive at our posterior beliefs are used in the context of PCMs.

10.3 Phylogenetic Comparative Methods and Discrete
Characters

Comparing traits across species is a fundamental part of biology and enables us to
test hypotheses about the functions of the traits and gain insights into their evo-
lutionary history. In phylogenetic comparative methods (PCMs), we map traits of
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interest onto a phylogeny (which shows how the species are related evolutionarily)
and work backwards to make inferences about the pattern and process of change in
these traits. Evolutionary trees contain information that enables us to examine
biological diversity and make inferences about where, when, and how traits have
changed over time and to test hypotheses about why such diversity exists (Pagel
1999). As the chapters in this book demonstrate, a variety of methods have been
developed that can address a number of important evolutionary questions.

PCMs can be used to analyse both continuously and discretely distributed data.
Typical continuous characters involve measurable features of size and distance
(e.g. body size, wing length), while discrete traits are those that can be thought of
as falling into distinct categories (e.g. mating system, feeding behaviour) or
reflecting presence or absence of a certain trait.3 The majority of the other chapters
in this book deal with methods designed for continuous data (but see Chap. 9 by
Ives and Garland, Chap. 11 by de Villemereuil and Nakagawa, and Chap. 16 by
Beaulieu and O’Meara). Therefore, here, we will deal primarily with discrete
characters and how they can be implemented in a Bayesian framework. At the end
of this chapter, we will briefly see how this approach can be extended easily to
methods that utilize continuous traits. In order to understand the benefits a
Bayesian approach can have, we will first examine some of the other methods that
have been developed to analyse discrete traits.

10.3.1 Modelling the Evolution of Discrete Characters

10.3.1.1 Parsimony

The earliest PCMs for discrete traits were based on the idea of maximum parsi-
mony, i.e. minimizing the number of evolutionary changes (Maddison 1990).
Given a certain distribution of character states at the tips of the tree, there are many
different possible ways that a character can change over the tree. Parsimony
methods find the pattern4 that involves the lowest number of transformations
between character states. Parsimony works under an implicit assumption that the
rate of evolution is slow,5 and when this is the case, it leads to fairly accurate
reconstructions of character evolution (Huelsenbeck et al. 2003). In the basic
implementation of parsimony, only a single change can occur along a branch, and
a change from one state to any other is equally probable. This approach can be
modified slightly by proposing a cost matrix, wherein certain changes incur a
higher tariff (Maddison and Maddison 2009).

3 It should be noted that count data, such as clutch size, are also technically discrete yet are not
categorical.
4 or patterns if more than one solution is possible.
5 relative to rate at which new lineages form.
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10.3.1.2 Maximum Likelihood

Parsimony is somewhat limited in that it only provides reconstructions of the
pattern of changes in the character of interest. An alternative is to adopt a model-
based approach that seeks to make inferences about the process of character
evolution (from which likely patterns of changes can be reconstructed) (Pagel
1994a; Sanderson 1993). For example, the evolution of a binary trait (i.e. taking
values of 0 and 1) can be modelled in a very simple manner invoking just two
parameters, a rate of change from 0 to 1 and a rate of change from 1 to 0. In fact,
we can even propose a simpler model with just one parameter, if we assume that
these two rates are equal. We can use the information about the distribution of 0s
and 1s at the tips of the tree, and the branch lengths of the tree, in order to estimate
these rates of change. A slow rate of change is likely to lead to outcomes where
closely related species generally exhibit the same character, while under faster
rates of change, even closely related species will not necessarily share similar
characters (Fig. 10.1).

In practical terms, character evolution is modelled using a continuous-time
Markov chain, which is a mathematical system that transitions at random between
different character states. One of the features of a Markov process is that it has no
‘‘memory’’; the probability of change from one state to another depends only on
the current state and not on what has happened previously. A transition matrix is
used to describe the rate of change between different character states (Fig. 10.1).6

These rates are known as instantaneous rates of change and reflect the probability
of change over an infinitesimally small amount of time. This approach is extremely
flexible and can be readily extended to multiple character states, and more com-
plexity can be added to reflect variation in the rate of change between different
character states. For a given number of character states, different models, which
represent alternative evolutionary hypotheses, can be constructed and assessed as
to how well they explain the observed data. By setting certain rates of change
between character states to be zero, hypotheses about different evolutionary
pathways can be tested (Currie et al. 2010; Hibbett 2004; Pagel 1994a). Using the
example in Fig. 10.1, if we wanted to test the hypothesis that a certain can be
gained but never lost, then we could set q10 to 0, indicating that the transition from
1 to 0 cannot occur. This could then be tested against other models, which allow
changes in both directions. Using this approach, Currie et al. (2010) examined
competing hypotheses relating to alternative evolution pathways of human polit-
ical organization and found that changes follow incremental steps of increasing
hierarchical complexity, with larger jumps not occurring.

The fit of themodels to the data and the value of the parameters can be assessed by
calculating what is known as the likelihood function. Using maximum-likelihood
(ML) estimation, we search for the values of the model of evolution that give the
best description of the data (i.e. the values that maximize the likelihood function)

6 For more on transition matrices, see Chap. 16 by Beaulieu and O’Meara in this volume.
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(Pagel 1999). Using the example in Fig. 10.1, let us imagine we are estimating a
simple one-parameter model (i.e. q01 = q10). If we were to propose a high value for
this rate parameter, it would produce a low likelihood. Proposing a lower value
would result in a higher (i.e. better) likelihood. Proceeding like this, we would
propose lower values until we reached a point where lower values began producing
lower (i.e. worse) likelihoods (see Fig 10.2). By comparing the maximum likeli-
hoods of different models, we can test between different hypotheses about the
evolutionary process that gave rise to the observed data (see below, and Garamszegi
and Mundry Chap. 12, this volume).

One of the key advantages of model-based approaches over parsimony is that
they use the information about the branch lengths of the tree in the analyses. For
example, because more changes are likely over a long time period than a short one,
we would intuitively expect that saying something about the likely character state in
ancestral species becomes more difficult the further back in time you go. However,
parsimony discards this information and attaches the same probability to the
ancestor of two sister species, regardless of whether they diverged 100 years ago or
100 million years ago. Under model-based methods, however, the probability of the
inferred ancestral state is affected by the branch lengths of the tree (see Fig. 10.3).

Fig. 10.1 Model-based phylogenetic comparative methods use character data mapped onto the
tips of a phylogenetic tree to infer the parameters of a model of character evolution. The
evolution of binary, or two-state, character can be modelled simply with two parameters, a rate of
change from 0 to 1 and rate of change from 1 to 0. In this example, closely related species tend to
possess the same character state, indicating a slow rate of change. When using continuous-time
Markov chain methods, these rate parameters are represented in a transition (or ‘‘Q’’) matrix
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10.4 Bayesian Methods

10.4.1 Dealing with an Uncertain World

Under maximum-likelihood methods, we find point estimates of parameter values
that provide the best fit to the data. However, there may be a range of parameter
values (which give slightly lower likelihoods) that still provide a reasonable
description of the data. Rather than just calculating the maximum-likelihood
estimate of parameter values, we can employ a Bayesian approach to estimate the
posterior probability distribution of values (Fig. 10.4) (Pagel and Meade 2005). In
other words, we start with some prior distribution reflecting the possible values of
these parameters (see below); we then update this distribution based on the
analysis to arrive at the posterior distribution of the parameter values given the
observed data. This allows us to incorporate uncertainty in the parameter estimates
into our analyses.

This framework also allows us to incorporate phylogenetic uncertainty into our
analyses (Huelsenbeck et al. 2000; Pagel et al. 2004; Huelsenbeck and Rannala
2003; and Chap. 3 this volume). Rarely can we know the phylogenetic relationships
between species without error. Importantly, our inferences about how traits have
evolved may differ, depending on what we assume about the phylogenetic rela-
tionships between species. Rather than attempting to represent these phylogenetic
relationships with a single tree, it is more principled to use a collection of trees that
represent likely alternative hypotheses about how species are related. Furthermore,
de Villemereuil et al. (2012) demonstrate that using a Bayesian approach to
incorporate phylogenetic uncertainty in analyses of linear models is more accurate
(i.e. reduces the error rate associated with estimates of model parameters) than

Fig. 10.2 Example of a likelihood surface showing how the likelihood of the model changes
with different values of the rate parameter. In this example, the value of the parameter that
maximizes the likelihood is around 1.6
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running a regular PGLS7 analysis using a single tree. The collection of trees could
represent different published hypotheses, but probably more commonly comes from
a posterior sample of phylogenetic trees from a Bayesian method of phylogenetic
inference (i.e. trees created from an analysis of genetic or morphological data,
where phylogenetic trees are sampled in proportion to their probability). For
example, Bayesian posterior samples of 10,000 phylogenetic trees representing the

Fig. 10.3 Model-based phylogenetic comparative methods make use of the information from the
branch lengths of phylogenetic trees. Here, we can see how knowledge of the branch lengths
(which represent evolutionary time, or more generally evolutionary distance, if the branch lengths
are not in units of time) can affect estimation of the ancestral character states. In situation (i),
species A and B diverged relatively recently, meaning we can be more certain that their common
ancestor shared the same character state. In situation (ii), however, divergence occurred further in
the past, which means there is more uncertainty about the reconstruction of this character. In this
hypothetical example, the analyses indicate that the probability that the common ancestor had the
same character state as species A and B is around 0.75. Parsimony analyses do not use branch-
length information and so would return the same answer under both scenarios

Fig. 10.4 Bayesian MCMC methods produce a posterior distribution of likelihoods (left) and
parameter values (right). The straight vertical lines represent the equivalent estimates under a
maximum-likelihood analysis. Notice in the Bayesian analysis, the likelihoods reach the
maximum likelihood but do not exceed it (that is what maximum means!). The rate parameter
estimates fall either side of the maximum-likelihood value as slightly higher or lower values
produce slightly worse likelihoods

7 Phylogenetic generalized least squares.
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evolutionary relationships between (respectively), (i) primates, (ii) carnivorans, (iii)
even-toed ungulates and cetaceans, and (iv) odd-toed ungulates, are available from
the 10kTrees website8 with the intention of their being employed in comparative
analyses (Arnold et al. 2010). With Bayesian PCMs, we can naturally incorporate
phylogenetic uncertainty by performing the analysis over a sample of trees.9 In the
terms of Bayes theorem we introduced earlier essentially, we are asking, what is
the probability of the model of evolution given the data and the sample of phylo-
genetic trees? To do this, we need to give values for the prior probabilities of (i) the
data given the model and the trees, (ii) the model, and (iii) the trees.

Incorporating these different forms of uncertainty into our analyses in this way
is an intellectually satisfying (but practically challenging) feature of Bayesian
PCMs because it gives a better idea about how strong the support for any particular
hypothesis actually is (as good scientists, we should always be sceptical about our
models and look to see how robust they are to different assumptions). For example,
if there is a strong signal in the data, then the posterior distribution of parameter
values should cluster closely around the maximum-likelihood estimate. However,
if there is a weaker signal, the posterior will be wider and may be more likely to
overlap with alternative models. Likewise, we need to assess whether the strength
of support for a particular hypothesis is affected heavily by the particular evolu-
tionary relationships given by different phylogenetic trees.

10.4.2 MCMC Estimation

In order to estimate the posterior distribution of parameter values, we can use the
Markov chain Monte Carlo (MCMC) procedure to explore and take a sample of
values from ‘‘parameter space’’. In this technique, parameter values are sampled in
proportion to their posterior probability (i.e. more probable values are sampled
more frequently). Essentially, the chain starts with some approximate parameter
values and a tree drawn at random from the tree sample. The likelihood of the data
given these values and the tree is then calculated. At the next step, the values of the
parameters and the tree from the sample are changed at random and the likelihood
is again calculated. The new parameter values are either accepted, or the old values
are retained. If the new likelihood is an improvement on the previous likelihood,
then the new values are accepted. Otherwise, they are accepted only with a certain
probability, depending on how worse the new likelihood is.10 This process is
repeated many times. Eventually, the chain ends up searching more often through

8 http://10ktrees.fas.harvard.edu/
9 See Garamszegi and Mundry Chap. 12, this volume, for an example of how to incorporate
phylogenetic uncertainty within an Information Criterion framework.
10 The process described here relates to the Metropolis–Hastings MCMC algorithm. However,
other algorithms such as the Gibbs sampler are also available that follow different rules about
how they accept new values and explore the posterior distribution.
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the areas of parameter space that provide the highest likelihoods (Fig. 10.5). At
this point, which is known as convergence, the chain is sampling from the pos-
terior distribution.

There are two important issues we need to be aware of in evaluating the output of
MCMC analyses. Firstly, at the beginning, the MCMC has generally started at a
point away from the posterior distribution and the initial stages are characterized by
a ‘‘hill-climbing’’ phase as the chain moves from the low-likelihood region of
parameter space (Fig. 10.5). The chain is described as converging on the posterior
distribution. As we are looking to estimate the posterior distribution, we need to
discard the initial pre-convergence, or ‘‘burn-in’’, phase of the MCMC. Secondly,
the way new values in the MCMC procedure are accepted or rejected means suc-
cessive steps in the chain may be correlated with one another. Potentially, this
autocorrelation can lead to a biased sample that is not representative of the pos-
terior distribution. While running the analysis for a sufficiently long period of time
would ameliorate this problem, this could lead to a large and unnecessarily
unwieldy amount of output. The usual solution, known as thinning, is to take
samples from the MCMC at regular intervals (e.g. every 100 steps), rather than
output every single iteration of the chain. The sampling frequency can be deter-
mined by examining the degree of autocorrelation from initial exploratory analyses.

10.4.3 Priors

In order to come up with our posterior beliefs, Bayesian approaches require us to
specify the prior beliefs. For these PCMs, this means specifying what values we

Fig. 10.5 Example of the early stages of an MCMC sampling procedure. From a random starting
position, the algorithm gradually finds parameter values that provide a better fit to the data, until it
reaches the region of the posterior distribution. The initial phase where the likelihoods are
generally increasing is known as the burn-in
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think characterize the rates of evolution. Our parameter values are continuous and
in theory could take an infinite possible number of states. To make the process
tractable, we instead specify a prior distribution for the parameters (Ronquist et al.
2009). This is an extremely important aspect of Bayesian methods and is both a
blessing and a curse. One advantage is that it allows us to incorporate other sources
of knowledge so that we do not waste time exploring answers that cannot possibly
be true. The downside is that often we do not have much information about what
these priors should be. In the case of PCMs, it is difficult to know what values of
the rates of evolution are sensible a priori. Caution needs to be exercised as if there
is not a strong signal in the data, then the particular prior used can have a big effect
on the posterior and therefore may determine the answer we arrive at (Pagel and
Meade 2005). Indeed, the weaker the signal, the more the posteriors sample the
priors, meaning that in the extreme, the posterior sample will be the same as the
prior.

There are a number of different prior distributions that can be used (Fig. 10.6).
The simplest and least restrictive is the uniform distribution, which assumes that
any value between two specified points is equally likely. An alternative is the
exponential distribution, which assumes that lower values are more likely (which
may be plausible biologically if we share the assumption of parsimony that rates of
evolution are generally low). Another common prior is the gamma distribution,
which can take a variety of shapes, in some cases approximating an exponential, in
other cases assuming that mid-range values are most likely (this may be preferable
if we know certain changes have definitely occurred and therefore rate values must
be greater than zero). In cases where there is not much information to guide our
choices, it is preferable to use a uniform distribution, as this has the fewest
assumptions. However, if the signal in the data is not strong enough, it may be
necessary to specify a stronger prior. This can be assessed by examining the
posterior distributions of the parameters and seeing whether they centre around a
particular value or whether they have maintained a relatively flat distribution.
Different prior distributions can be explored, and their effect on the results can be

Fig. 10.6 Examples of different prior probability distributions that can be used in Bayesian
phylogenetic comparative analyses. Under a uniform distribution, all values within a given range
are equally probable. Lower values are more probable under exponential distributions (here
shown with varying distribution parameters, lambda). Gamma distributions have two parameters
(shape: alpha and scale: beta), which can give rise to a variety of different shaped distributions.
Under certain parameter values, the gamma distribution is similar to an exponential, and others
give a humped distribution with moderate values being most probable
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examined. If a particular result is determined by the choice of prior, then there
should be good, justifiable reasons for choosing that prior. The results of maxi-
mum-likelihood analyses are a useful way of guiding the choice of prior values as
they can give an indication of the mid-point of the posterior distribution (although
they will not define the range of the prior). As a general rule of thumb if the
posterior distribution appears to be truncated at either the upper or lower limits
defined by an informative (i.e. non-uniform) prior, then the limits of the prior
should be adjusted. One useful approach is to use hyperpriors, where the values of
the prior distribution are not set but can also vary (see glossary and the OPM). This
provides more information than a uniform distribution, but is less constraining
than a regular, single prior distribution.

10.5 Assessing Models of Evolution

When using model-based methods with discrete characters, we are generally not
interested in the values of the rate parameters themselves.11 Instead, the aim is to
compare different models. Usually, we are more interested in whether one model
(which represents a particular hypothesis) is a better explanation of the data than
another model (representing an alternative hypothesis). For example, we might
want to know whether change between two states of a binary trait occurs at the
same rate in both directions or whether changes from 0 to 1 occur at a higher rate
than from 1 to 0. We will see later how this approach is used to assess whether two
traits evolve together in a correlated fashion or whether they have evolved inde-
pendently of each other.

Under maximum likelihood, if one model can be thought of as ‘‘nested’’ within
another model (i.e. one model is a simpler version of another model, with certain
parameters set to be equal to each other, or ‘‘switched off’’ by setting them to zero),
then models can be compared via a likelihood ratio test (Posada 2009). The likeli-
hood ratio statistic is calculated as double the difference of the log-likelihoods of the
simpler and the more complex model. Generally, this statistic is assumed to
approximate a chi-squared distribution, with degrees of freedom determined by the
difference between the number of parameters in eachmodel. This therefore takes into
account the fact that a nested model with more parameters will never produce a
worse maximum likelihood, and it is easier to get a higher likelihood with more
parameters. A more general framework for comparing both nested and non-nested
models is model-selection procedures involving information criteria (e.g. AIC,
BIC), which contain an explicit term that takes into account the number of param-
eters in a model (models with too many parameters get ‘‘penalized’’) (Burnham and
Anderson 2002; see also Garamszegi and Mundry Chap. 12, this volume).

11 They are a function of the data, model, and distribution of tree used in the analysis, which
makes them hard to compare across analyses.
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Exactly the same idea of comparing alternative models is at the heart of
Bayesian approaches to statistical inference. Whereas under maximum likelihood
we are comparing the likelihoods of two models in a Bayesian framework, we
need to compare two posterior probability distributions, using what is known as the
marginal likelihood of each model. The marginal likelihood of a model is its
likelihood scaled by the prior probabilities and integrated over all the trees in the
sample and all values of the rate parameters (Pagel and Meade 2005).12 This
incorporation of the priors means that a model with more parameters is not unduly
favoured (just as extra parameters are penalized in the likelihood ratio test and AIC
methods described above). In a Bayesian framework, we can test between different
hypotheses by calculating a measure known as a Bayes factor (Kass and Raftery
1995).13 This is effectively a ratio of probabilities of the data given the different
hypotheses and can be calculated as the ratio of the marginal likelihoods of
models. Bayes factors are interpreted somewhat subjectively with rules of thumb
being employed to assess the strength of evidence in favour of one hypothesis or
another. Since these values are based on log-likelihoods, the difference between
them can be doubled so that they are on the same scale as likelihood ratio statistics.
A value of less than zero is obviously evidence against the main hypothesis (and
therefore evidence in favour of the alternative hypothesis). According to Kass and
Raftery (1995), values between 0 and 2 are only just in favour of the hypothesis
and not worth placing too much confidence in, 2–6 are described as ‘‘positive’’
evidence, 6–10 are ‘‘strong’’, while more than 10 is ‘‘very strong’’. In the following
sections, we will see how these concepts are applied in some examples of com-
parative analyses using Bayesian methods.

10.6 Using Model-Based Methods to Test Functional
Hypotheses

Most functional hypotheses take the form of arguing that a certain trait reflects an
adaptive response to some other variable. This underlies the classic textbook
examples of natural selection, variation in beak shapes in finches being a response
to different diets, and changes in the frequencies of black and white variants of the
peppered moth being linked to changing environments caused by industrialization.
We can compare a range of different species to ascertain whether a general rela-
tionship between our variables of interest exists. This comparative method is one

12 An approximation of the marginal likelihood is part of the output of the program used in the
practical section that accompanies this chapter.
13 Note that using Bayes factors (and model selection criteria such as AIC), it is possible to find
evidence for a null hypothesis, something that is not possible in classical, frequentist statistics
where the null hypothesis can only be rejected.
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of the three ways that evolutionary or behavioural ecologists assess evidence for
adaptive hypotheses (the others being experiments and optimality modelling)
(Davies et al. 2012).

Pagel (1994a) developed an elegant method for testing whether two binary traits
have indeed evolved together. This method is implemented in the program
BayesTraits14 and enables bothmaximum-likelihood andBayesianMCMCmethods
of estimation. To illustrate this approach, let us consider the hypothesis that oestrus
advertisement by females reflects an adaptation to living in multimale groups (Pagel
1994b; Domb and Pagel 2001) (wewill return to this example later in the chapter and
in the OPM). Prominent sexual swellings in female primates indicate when a female
is fertile and most likely to conceive. They are hypothesized to have evolved in
species that have groupswithmultiplemales, who compete for access to the females.
Looking at raw data from 60 species of Old World monkeys and apes, there appears
to be an association between these two variables. Nineteen species have both mul-
timale groups and females with conspicuous oestrus, 28 species lack either trait, nine
species have multimale groups but lack oestrus advertisement, while none of
the species have only single-male groups with females who advertise.15 Of these
60 species, many aremacaques (almost all of which possess both traits) andmany are
gibbons (all of which lack these traits). There is a strong possibility that we might
be overestimating the strength of the association between these traits unless we
adequately incorporate the phylogenetic relationships between these species.

Under Pagel’s method, we explicitly compare a model of evolution in which
these two traits evolve together (a dependent, or co-evolutionary model) and
model in which the two traits evolve without affecting each other at all (an
independent model). For two binary traits, there are four possible ways that these
traits can co-occur across species (i.e. 00, 01, 10, 11). The dependent model
proposes that there are 8 possible ways that traits can change between these four
possible states (Fig. 10.7). For example, a species with a single-male system and
without oestrus advertisement can develop either a multimale system or oestrus
advertisement (it is unlikely that both traits change at exactly the same time, and
this cannot happen under this model). The instantaneous rates of these changes
make up the parameters of our model of evolution (i.e. the Q matrix we came
across earlier). Under this model, the rate of change of one trait depends on the
state of the other. It is this characteristic that makes this a model of co-evolution. It
follows from this that an independent model would be one where the rate of
change of one trait does not depend on the state of the other. Such a model can be
achieved if we set the relevant parameters to be equal to each other (e.g. if the rate
of change from single- to multimale systems is the same regardless of whether
oestrus advertisement is present or not) (Fig. 10.7).

14 http://www.evolution.rdg.ac.uk/BayesTraits.html
15 Four species lack data for one of the traits, which illustrates that these methods can handle
missing data; the likelihood is simply integrated over all possible character states in these cases.
See also chap. 11 by de Villemereuil and Nakagawa for a discussion of the issues surrounding
missing data and how to deal with them.
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We can run analyses using Old World monkey and ape data over a sample of
phylogenetic trees, which represent the uncertainty about the phylogenetic rela-
tionships between these species. Figure 10.8 shows how the MCMC algorithm
samples from the posterior distribution. This is done for both the dependent and
the independent models of evolution. Thus, for our primate data, we obtain esti-
mates from these preliminary analyses of the marginal mean of *41 log-units for
the dependent model and *46 log-units for the independent model. Comparing
the dependent model to the independent model for our primate data gives us a
Bayes factor16 of 10, which means there is strong evidence that oestrus adver-
tisement has indeed co-evolved with multimale systems. Therefore, the association
between the traits we saw when we examined the raw data is not simply an artefact
of the historical relationships between the species.

This example shows how we can get some measure of whether two traits have
evolved together or not. We can also use these methods to investigate more about
the specific evolutionary history of the traits we are interested in and build up a
picture of where and when they have changed. A neat thing about this approach is
that we can go beyond simple measures of association and examine the order in
which the traits have occurred, particularly if we explicitly reconstruct the likely
state of traits at ancestral nodes in the tree. This can provide a much stronger test
of causal hypotheses. If changes in a certain trait are hypothesized to precede
changes in another trait, and if our analyses indicate that the order of trait changes
is actually the other way round, then we can reject that hypothesis.17 We will
return to our primate example in the OPM to give a demonstration of how this is
done.

Fig. 10.7 Dependent and independent models of evolution under Pagel’s method (1994a). The
independent model can be seen to be a simpler version of the dependent model, which occurs
when the arrows diagonally opposite each other (i.e. those that are the same colour) have the
same rate of evolution

16 on the scale discussed earlier.
17 It is important to note that while we can falsify causal hypotheses in this way, if we do find
evidence for the hypothesized order of trait changes, this does not prove causation but is at least
consistent.
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A nice example of this approach is provided by Fitzpatrick et al. (2009), who
show how female promiscuity, which creates increased sperm competition, leads to
larger and faster sperm. The authors examined the strength of sperm competition
(based on breeding characteristics) and the speed and size of spermatozoa in 29
species of cichlid fish from Lake Tanganyika in eastern Africa. Ancestral state
reconstruction using the Markov chain approach we have been discussing indicated
that it was likely that the common ancestor of all these species experienced low
sperm competition and had small, slow sperm. Examining the rates of change in their
dependent models of evolution, they found that some parameters frequently took a
value of zero, providing evidence that this transition had not occurred during the
evolutionary history of these species. This allowed them to assess the likely order in
which these traits changed. Their analyses indicate that sperm initially became faster
before getting bigger, and importantly, both sperm size and speed increase after
increases in levels of sperm competition, which is consistent with the idea of female
promiscuity driving these changes in sperm morphology (Fig. 10.9).18

Fig. 10.8 Example of MCMC sampling from the posterior distribution under dependent (blue)
and independent (red) models of evolution. The dependent model is generally returning higher
likelihoods, indicating that it is a better fit to the data than the independent model. Note that the
initial burn-in phase of the chain has been discarded

18 It is important to point out that the traits in these analyses were created by binarizing what
were initially continuously varying characters. While perhaps not an ideal way to treat these
characters, the study still provides a neat example of how the order of trait changes can be
inferred using Pagel’s method, which is attractive for testing casual, adaptive hypotheses. In cases
such as this, the distribution of a continuous character may provide information about whether
categorization is justifiable. For example, Holden and Mace (1997) showed that continuous
physiological variable lactose digestion capacity (LDC) exhibited a bi-model distribution,
therefore making the decision to binarize the trait into high and low LDC populations
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Other examples of this Bayesian approach have involved studies of mechanisms
of sex determination in marine reptiles (Organ et al. 2009), activity periods (Griffin
et al. 2012), and social systems in primates (Shultz et al. 2011), and the evolution
of brood parasitism in bees (Cardinal et al. 2009). These methods have also been
applied to human cultural evolution to examine such things as post-marital resi-
dence (Jordan et al. 2009), systems of grammar (Dunn et al. 2011), and political
complexity (Currie et al. 2010). It can be seen from the above examples that these
model-based techniques are extremely flexible and allow a wide range of evolu-
tionary questions to be addressed. This approach allows extensions to these simple
models to be easily incorporated. For example, these basic models assume that the
rate of evolution is constant over the tree. However, it is possible to test whether
the rate of evolution actually varies over the tree (Penny et al. 2001) or whether the
rate of change increases during speciation events (i.e. a punctuated mode of
evolution) (Pagel et al. 2006; Pagel 1999).

Fig. 10.9 Flow diagrams showing the inferred rates of change from three analyses of sperm
competition and sperm characteristics in cichlid fish. Ancestral state reconstructions indicate that
the common ancestor of 29 species of these fish had slow, small sperm and experienced low
levels of sperm competition. These analyses indicate a clear direction to the order in which the
traits change. Sperm gets faster before getting larger (top left), and both sperm size (top right) and
sperm speed (bottom middle) increase after sperm competition increases. Figure redrawn from
figures in Fitzpatrick et al. (2009) and modified with permission

(Footnote 18 continued)
understandable. Section 10.7 discusses an alternative way to model binary characters that have an
underlying continuous distribution.
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10.7 Further Issues and Advanced Topics

10.7.1 Stochastic Character Mapping and Alternative Ways
to Model Discrete Characters

A further extension of this kind of model-based Bayesian approach is to employ
the inferred rate of change to explicitly reconstruct the changes a character
undergoes over the whole phylogeny, using a technique known as stochastic
character mapping (SCM) (Bollback 2006; Huelsenbeck et al. 2003). We saw
earlier how this was traditionally done using parsimony techniques, and character
histories can also be approximated with likelihood methods by reconstructing
likely states at ancestral nodes and noting where character changes seem to occur
between these nodes. SCM goes one step further, by producing a posterior sample
of ancestral states and likely changes along the branch, and unlike previous
techniques, SCM can show multiple changes along a branch. By explicitly con-
sidering the rate of change and branch lengths in these character histories, SCM
makes more use of the information available. In addition to this kind of descriptive
application, SCM can also be used to detect signatures of positive selection in
genetic data and provides an alternative assessment of co-evolution based on the
amount of time traits spend together in certain states19. Furthermore, the output
from SCM analyses can be used in further analyses that examine how other traits
are evolving, e.g. variation in rates of change of a continuous character (O’Meara
et al. 2006) or the different selective regimes in OU models (Beaulieu et al. 2012).

Here, we have focussed on the Markov chain approach to modelling the evo-
lution of discrete characters. However, it should be noted that other methods are
also possible. For example, logistic regression (i.e. a regression analysis in which
the dependent variable is a categorical variable) can be adapted to incorporate the
variance–covariance structure derived from the phylogenetic associations between
species (Ives and Garland 2010; Ives and Garland Chap. 9 this volume). Also,
categorical traits can be modelled as if they are related to a continuously varying
underlying scale (the liability); above a certain value, the trait takes one form,
while below this value, it takes another form, etc. (Felsenstein 2005, 2012). One
advantage of these methods is that they allow us to examine the covariation
between more than just two binary characters.20 On the other hand, they do not
allow us to make direct inferences about the order in which traits change in the
manner that Pagel’s method does. As with all investigations, the particular method
that should be employed will depend on the question being asked and the data
available to answer it.

19 SCM is implemented in the program SIMMAP (http://www.simmap.com/) (Bollback 2006).
20 This is potentially possible in Pagel’s method described above, but would be more
complicated and involve many more parameters.
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10.7.2 Minimum Models and Reversible-Jump MCMC

One practical issue faced by the model-based approach is to find the optimum
number of parameters that sufficiently describe the evolutionary process, but do
not ask too much of the data. For example, the evolution of a single binary trait
may be best described by a simple model in which rates of gains and losses are
described by a single parameter, rather than a model in which these two rates are
both estimated. So an important task is to try and find minimum models by setting
some parameters to zero or making some parameters equal to each other (Pagel
and Meade 2005). Even for models with only a few rate parameters, the number of
possible ways to do this becomes very large, very quickly. A Bayesian technique
known as reversible-jump MCMC (Green 1995; Pagel and Meade 2006) allows us
to explore this universe of different models and not only sample parameter values
in proportion to their probability, but also sample the different models of evolution
themselves, i.e. those models with the optimal number of parameters to explain the
data well. By examining the posterior distribution of models, we have a direct way
of testing different scenarios of trait evolution, e.g. deciding between dependent
and independent models of trait evolution.

10.7.3 Continuous Traits and Packages for Performing
Bayesian PCMs

Many other chapters in this book introduce and discuss methods designed for
variables that are continuously distributed. The same principles of Bayesian infer-
ence can be applied to these methods, too. The main difference is that instead of the
rate parameters of a Markov chain, we want to find the parameters of models that
involve continuous variables and their evolution. For example, the posterior distri-
butions of the slope and intercept parameters of a linear model (de Villemereuil et al.
2012) or the variance and strength of selection parameters of an OUmodel (Beaulieu
et al. 2012) could be estimated in a Bayesian framework. In addition to employing
Markov chain models of discrete trait evolution, the software used in the OPM
(BayesTraits) can perform Bayesian implementations of phylogenetic generalized
least squares regression and correlation analyses. Additionally, open source software
from Bayesian inference using Gibbs sampling (BUGS) and related packages has
been used for Bayesian implementations of PCMs, and like BayesTraits, it is able to
incorporate phylogenetic uncertainty by performing analyses over a sample of trees
(de Villemereuil et al. 2012). Other packages such as MCMCglmm (Hadfield 2010)
can also be adapted to handle these kinds of Bayesian analyses in a phylogenetic
context (see chap. 11 by de Villemereuil and Nakagawa). Although MCMCglmm
cannot currently incorporate more than a single phylogenetic tree into analyses, an
attractive feature is that it is flexible enough to deal with traits that can take a number
of different distributions.

10 Keeping Yourself Updated: Bayesian Approaches 281

http://dx.doi.org/10.1007/978-3-662-43550-2_11


As a practical consideration, it should be noted that one drawback to these
Bayesian methods is that the time required to perform these analyses is greatly
increased in comparison with maximum-likelihood methods. This is due in part to
the extra time taken in the estimation of the posterior distribution (i.e. the Markov
chain may have to run for millions of iterations). The actual computational time
will also be greater the more taxa you are analysing or the more parameters you are
estimating. This is not only a factor in the final analyses, but also increases the
time that needs to be spent in the initial phases of an analysis where suitable priors
need to be chosen with care and the inputs that affect how the chain searches
parameter space need to be selected. However, the results from a Bayesian analysis
are relatively straightforward to handle and interpret, and once familiar with these
complications and with enough experience, these issues become less problematic.
Processor speeds are increasing ever more rapidly, and the time taken to perform
analyses is becoming much more manageable.

10.8 The Practical

In the OPM, you will use the program BayesTraits to perform phylogenetic
comparative analyses of discrete characters modelled as a Markov process in a
Bayesian MCMC framework. The practical uses the data from Old World mon-
keys and apes on oestrus advertisement and group composition that you were
introduced to above. You will use these data and a sample of phylogenetic trees to
test whether these traits have evolved dependently or independently using Pagel’s
method. At the end of the practical section, we provide a checklist of steps to
perform and things to look out for that will help in this process.

10.9 Conclusion

Bayesian techniques for performing phylogenetic comparative analyses provide a
powerful and flexible toolkit for tackling a wide range of evolutionary questions.
The strengths of this approach lie in its explicit focus on testing between alter-
native hypotheses,21 the incorporation of our uncertainty about phylogenetic
relationships, and the ability to include prior information to inform our analyses.
Furthermore, these Bayesian methods present the results as posterior distributions
rather point estimates of likelihoods and parameter values. While this may appear
cumbersome, and off-putting for the uninitiated, it is in fact a more realistic
representation of what our data can actually tell us about the evolutionary process

21 rather than just focussing on the rejection of null hypotheses as is the case with classical
statistical procedures.
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that generated them. Becoming familiar with the added complexities that Bayesian
analyses entail is well worth the effort as this approach ultimately proves a far
more satisfying way of testing evolutionary hypotheses.

Glossary

Bayes factors Bayes factors are a way of testing between different
hypotheses in a Bayesian framework. They are cal-
culated as ratios of the marginal likelihoods of dif-
ferent models. The larger the ratio the more support
there is for one model over another. The interpreta-
tion of Bayes factors is somewhat arbitrary, but rules
of thumb exist to use these values to assess the
strength of evidence in favour of one hypothesis over
another.

Hyperprior A hyperprior is a prior distribution on the hyperpa-
rameter of a prior distribution. In other words instead
of the parameters of the distribution being given fixed
values, they themselves are drawn from prior distri-
butions. In the program BayesTraits (which is used in
the OPM), the hyperparameters of specified distri-
butions are drawn from uniform distributions. For
example, a gamma distribution could have its shape
and scale parameters drawn from a uniform distri-
bution ranging from 0 to 10. In comparative analyses,
we do not always possess relevant biological infor-
mation that could inform us about what form and
values the priors should take therefore hyperpriors
are attractive because they allow us to be less
restrictive about the values of a given prior
distribution.

Marginal Likelihood The marginal likelihood of a model is its likelihood
scaled by the prior probabilities and integrated over
all values of the parameters. In the context of phy-
logenetic comparative analyses this may also involve
integrating over all the trees in the sample.

Markov Chain
Monte Carlo (MCMC)

MCMC is a statistical procedure used in Bayesian
analyses to search parameter space and sample values
in proportion to their posterior probability in order to
arrive at an estimate of the posterior distributions of a
model and its parameter values. A number of
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different criteria can be implemented to govern the
way an MCMC searches and samples the posterior
distribution. With the Metropolis–Hasting algorithm,
parameter values that increase the likelihood are
always accepted, while those that lead to a decrease
are accepted only with a certain probability. The
Gibbs sampler always accepts proposed values but
works by drawing new values from the conditional
distributions of the parameters (i.e. the distribution of
a parameter given the value of other parameters).

Maximum likelihood In a maximum-likelihood we search for the values of
the parameters of a statistical model that give the
largest possible value of the likelihood function.

Prior probability
and Priors/Prior
distribution

In Bayesian statistics, we need to specify our initial
belief about the probability of a hypothesis, given the
information available at the time. This belief then
gets updated when we gain more information (i.e.
this is our belief prior to the assessment of new
information). In the context of a comparative analy-
sis, we are assessing the parameters of a statistical
model, and before running the analysis and examin-
ing the data, we have to specify a prior probability
distribution of the values these parameters should
take given our current understanding. The chapter by
Currie and Meade provides some examples of com-
mon prior distributions that are used in comparative
analyses. See also Hyperprior.

Posterior probability
and Posteriors/Posterior
distribution

In Bayesian statistics, the posterior probability refers
to our belief in a hypothesis after (i.e. posterior to)
assessing new information. In the context of a com-
parative analysis, the results of our analysis give us
the posterior probability distribution of values of the
parameters of a statistical model. See also Markov
Chain Monte Carlo (MCMC).
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Chapter 11
General Quantitative Genetic Methods
for Comparative Biology

Pierre de Villemereuil and Shinichi Nakagawa

Abstract There is much in common between the aim and tools of the quantitative
geneticist and the comparative biologist. One of the most interesting statistical
tools of the quantitative genetics (QG) is the mixed model framework, especially
the so-called animal model, which can be used for comparative analyses. In this
chapter, we describe the phylogenetic generalised linear mixed model (PGLMM),
which encompasses phylogenetic (linear) mixed model (PMM). The widely used
phylogenetic generalised least square (PGLS) can be seen as a special case of
PGLMM. Thus, we demonstrate how PGLMM can be a useful extension of PGLS,
hence a useful tool for the comparative biologist. In particular, we show how the
PGLMM can tackle issues such as (1) intraspecific variance inference, (2) phy-
logenetic meta-analysis, (3) non-Gaussian traits analysis, and (4) missing values
and data augmentation. Further possible extensions of the PGLMM and applica-
tions to phylogenetic comparative (PC) analysis are discussed at the end of the
chapter. We provide working examples, using the R package MCMCglmm, in the
online practical material (OPM).

11.1 Introduction

Quantitative genetics (QG) and phylogenetic comparative (PC) methods have a lot
in common, yet the connections between the two fields have only recently been
stressed (Felsenstein 2005; Hadfield and Nakagawa 2010; Stone et al. 2011).
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Indeed, both frameworks share many characteristics: (1) they aim at the evolu-
tionary study of complex physiological, morphological, or ecological characters
for which (2) they assume a Gaussian distribution (but see Sect. 11.3.1 for this
assumption to be relaxed), and overall, (3) they aim at compartmentalising the
phenotypic variability into an evolutive genetic component and one or several
environmentally driven components. Quantitative geneticists have a long history
of developing flexible and powerful statistical tools (see Hill and Kirkpatrick 2010,
for a historical review), including the so-called ‘animal model’, which led to
statistical developments such as the restricted maximum likelihood (REML) and
the framework of (generalised) linear mixed models. Just as comparative phy-
logeny is using the relationship between species to investigate evolutionary events,
the quantitative geneticists are interested into the relationship between individuals
to infer the genetic component of polygenic traits. In particular, the ‘animal model’
is using a pedigree (a comprehensive record of the genealogy of the individuals) to
decompose the phenotypic variance into its genetic and environmental compo-
nents. To do so, the pedigree is transformed into a variance–covariance matrix of
relatedness between individuals, which is included as a ‘random effect’ into the
model. We will examine in this chapter how QG tools, namely (generalised) linear
mixed models, can be adapted to the PC analysis framework and how they can
nicely complement the widely used phylogenetic generalised least square (PGLS;
for details of PGLS, see Chaps. 5 and 6). We explain that PGLS can, in fact, be
seen as a special case of the phylogenetic (linear) mixed model (PMM) (Lynch
1991), which is, in turn, part of the overarching framework, phylogenetic gener-
alised linear mixed model (PGLMM) (Hadfield and Nakagawa 2010; Ives and
Helmus 2011). The evolutionary questions addressed in this chapter will thus be
much alike those of the other chapters of Part II.

11.1.1 A Very Brief History of Phylogenetic Mixed Models

Lynch (1991) was the first to recognise the possibility to apply QG methods to
comparative analysis, using mixed models to infer phylogeny-wide genetic vari-
ances against taxon-specific residual variance. The idea was to replace the vari-
ance–covariance matrix of relatedness between individuals by a phylogenetic
variance–covariance (or correlation) matrix, which assumes Brownian motion
model of trait evolution (i.e. assuming a constant variance in a trait through
evolution, so that related species share closer trait values). By doing so, we could
estimate ancestral states (or phylogenetic effects) instead of breeding values, and
phylogenetic signal (the so-called phylogenetic heritability) instead of pedigree-
based heritability Lynch (1991). Despite acknowledged interesting features (e.g.
see Miles and Dunham 1993), Lynch’s method PMM has only sparsely been
highlighted in the PC literature (Housworth et al. 2004; Felsenstein 2008) and it
seems to have rarely been used for practical comparative analysis. There are
numerous reasons why this is the case. We can, however, come up with two
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possible main reasons. First, Felsenstein’s (1985) independent contrast (PIC)
method had already set a standard for how to analyse inter-species comparative
data before Lynch’s (1991) QG-based method. Like other biological and human
processes, it is likely that a founder-takes-all type of phenomenon has been at work
(e.g. Waters et al. 2013). In other words, historical inertia (analogous to phylo-
genetic inertia!) may have played a role in this neglect on Lynch’s important work.
Second, unlike PIC, efficient algorithms and easy-to-use implementations have not
been available for Lynch’s method (at least until recently), even though Hous-
worth et al. (2004) provided some improvement in algorithms, which has espe-
cially made estimation for multiresponse (multivariate) models more reliable. The
under-usage of PMM feels little ironic because PIC is also a special case of PMM
(Housworth et al. 2004).

After two and half decades since Lynch’s work, Hadfield and Nakagawa (2010)
revived the connections between QG and PC methods by developing a fast com-
putational method for the phylogenetic variance–covariance matrix and its inverse.
They have shown how PMM can be implemented in existing R packages (R
Development Core Team 2011) and BUGS (Lunn et al. 2000). By developing an
MCMC algorithm, they have also extended PMM to PGLMM, which can deal with
non-Gaussian characters such as traits following binomial, multinomial, or Poisson
distributions. Notably, they have proposed multinomial logit mixed models for a
PC method. Such multinomial mixed models have not been used in QG although
common in econometrics and political science. They showed that this multinomial
PGLMMwould be useful for the evolution of multiple discrete traits such as colour
polymorphisms (i.e., for example, one taxon having three colour morphs, red,
while, and black; see also Sect. 11.2.1). Recently, a number of comparative studies
have tackled non-Gaussian traits using the framework of PGLMM (e.g. Ross et al.
2013a, b; Cornwallis et al. 2010; Maklakov et al. 2011).

We believe that it is worthwhile knowing the essence of Hadfield and Nakaga-
wa’s algorithm, although it is a little technical, as it represents the key connection
between their method and QG animal models. There is a striking similarity between
the phylogenetic variance–covariance matrix (hereby noted R) and the relatedness
matrix (hereby noted A). As stated above, the former represents relatedness among
species and is obtained from a phylogenetic tree, whereas the latter represents
relatedness among individuals and is obtained from a pedigree. As the matrix
A plays a critical role in estimating additive genetic variance and thus heritability of
traits of interest, R allows us to estimate the phylogenetic variance and thus phy-
logenetic signal (see Sect. 11.2). For statistical computation, rather than A and R,
we require their inverse matrices, A21 and R�1, whose computation can be extre-
mely slow or even sometimes infeasible (this problem becomes increasingly worse
as a pedigree or a phylogeny gets larger). So, the efficient algorithms of animal
models (Henderson 1976; Meuwissen and Luo 1992) use the additive genetic
variance S, which is an expanded version of A. The matrix S includes ‘missing
parents’ so that all individuals including ones that do not have parents in an original
pedigree will have a set of two parents. Importantly and rather counter-intuitively,
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the inverse matrix, S�1, can be computed in much less time thanA�1. This inclusion
of missing parents is analogous to including the ancestral nodes because a pedigree
and a phylogeny share the basic graph structure (with the phylogeny not having
fathers). Furthermore, a branch length between parent and child node in a phylogeny
is equivalent to inbreeding coefficient represented by a path between two individuals
in a pedigree. Therefore, the phylogenetic version of S, sayX, can be constructed by
including all ancestral nodes (not just tips, i.e. species), and the inverse of this (i.e.
X�1) can be used for computation. For example, with a large phylogeny (ca. 5,000
species), analysis with R�1 parametrisation (only using tips) could take over a
month while the same analysis with X�1 parametrisation (using tips and nodes)
would only be a matter of an hour or so (for more technical details, see Hadfield and
Nakagawa 2010).

11.1.2 Roadmap

In this chapter, we will show how QG methods can be useful for (1) multiple
measurements data and intraspecific variance inference, (2) phylogenetic meta-
analysis framework, (3) PC analysis on non-Gaussian characters, and (4) missing
species design, using the framework of missing data theory. The chapter will end
with a discussion about the interests and perspective of connections betweenQG and
PC analysis frameworks. Although the sections of this chapter are quite independent
from each other, readers who are unfamiliar with mixed models are strongly advised
to read the following section. Also, it is recommended reading the following sections
in the order of appearance. The reader will find working examples in the online
practical material (hereafter OPM) at http://www.mpcm-evolution . The two
most popular softwares for phylogeny-compatible mixed modelling are the frequ-
entist software ASReml (Gilmour et al. 2006) and the Bayesian R package
MCMCglmm (Hadfield 2010). Although the former is much faster, the OPM focus
on the second package for several reasons. To begin with, MCMCglmm being
Bayesian, it is more flexible than its frequentist equivalent and, in particular, it has
better properties regarding non-Gaussian traits (de Villemereuil et al. 2013). Perhaps
most importantly, the syntax of MCMCglmm is more oriented towards PC analysis
and Hadfield and Nakagawa’s (2010) algorithm has been directly implemented in it.

11.2 First Step: Mixed Model for Multiple Measurement
Data

Random effects are commonly used within the mixed models framework to
account for non-independent structure in the ‘residuals’. In the context of com-
parative analysis, it can be useful to use such random effects to take phylogenetic
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relationship between species into account. This section will constitute an intro-
duction to mixed models and their applications to comparative analysis, by using
the common case of multiple measurement data and intraspecific variance infer-
ence. For theoretical developments and review of methods for intraspecific vari-
ability, please refer to Chap. 7.

11.2.1 Description of the Simple Model

Let us assume we have phenotypic data y (e.g. body size) for several species and
co-factors of interest (we will assume just one called x, e.g. the temperature of the
environment). Now, consider we also have a phylogeny from which we derived a
phylogenetic correlation matrix R (say using the classical Brownian motion
assumption1). How can we define a mixed model to infer a relationship between
y and x while taking the phylogenetic structure into account? The model would be
as follows:

y ¼ lþ bxþ aþ e ð11:1Þ

where l and b, respectively, are the intercept and the slope for the co-factor2 x, a is
the phylogenetic random effect, and e is the residual error. Now, the two last terms
are assumed to be normally distributed with:

a�N 0; r2PR
� �

e�Nð0; r2R IÞ
ð11:2Þ

where I stands for the relevant identity matrix. Our model, thus, assumes that
phylogenetic effects are correlated according to the phylogenetic correlation
matrix R. Note also that our model is estimating two variances: VP is the variance
of the phylogenetic effect and VR is the residual error (environment effects,
intraspecific variance, measurement error, etc.).

It is important here to stress the resemblances and dissimilarities between the
PGLMM above, and the classical model assumed in PGLS is denoted as:

y�N lþ bx; r2PR
� �

ð11:3Þ

1 But, any kind of evolutionary model yielding such a variance–covariance matrix can be used,
such as Martins and Hansen’s (1997) or ACDC processes (Blomberg et al. 2003). In practice,
parameters of such models would be inferred before using the mixed model, but nothing, in
theory, forbids the construction of a complex mixed model inferring these components along
with performing the comparative regression.
2 Of course, there can be an arbitrary number of such co-factors (either continuous or categorical
variables).
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Although the models are very much alike, a striking difference is the absence of
the residual term e in the PGLS model, which only estimates r2P, but not r

2
R. In PC

analysis, this constraint (that the residuals are distributed exactly according to the
phylogeny) is usually relaxed using phylogenetic signal inference and introducing
an extra parameter whose role is to measure such signal. By contrast, quantitative
geneticists always assume that the pedigree (hence, the genetics) is only one source
of the observed variability, the other one being the environment, usually captured
by the residuals. Fortunately, comparative biologists do not have to give up on their
usual tools to consider using mixed models. The model described in Eqs. 11.1 and
11.2 is equivalent to Pagel’s k model of phylogenetic signal inference (Freckleton
et al. 2002; Housworth et al. 2004), given that the matrix R is a correlation matrix
(i.e. diagonal elements are equal to 1, Hansen and Orzack 2005; Hadfield and
Nakagawa 2010). Indeed, very much alike the heritability for QG analysis, we can

define Lynch’s phylogenetic heritability k ¼ r2P
r2Pþr2R

as a measure of the phylogenetic

signal.3 Actually, the above difference between PGLMM and PGLS is the only
major one. Most other differences actually lie on which extensions of this model are
used. For example, random effects and hierarchical modelling for non-Gaussian
traits (see Sect. 11.3.1) are widely used in the field of QG, but scarcely in PC
analyses. This chapter, among other things, aims at demonstrating how some of the
quantitative geneticist ‘tools’ can prove to be useful to the comparative biologist.

11.2.2 Using Random Effects: The Case of Multiple
Measurements

In many comparative cases, we have multiple measurements for each species. An
extension to deal with such cases is straightforward, and we have:

y ¼ lþ bxþ aþ sþ e ð11:4Þ

s�Nð0; r2S IÞ ð11:5Þ

where s is the ‘multiple measurement effect’ or species-specific effect after taking
out the phylogenetic effect. This effect accounts for the variability that has been

3 Note that, although k could be forced to one by setting up r2R ¼ 0 in the model, this could
cause numerical instability in frequentist software or strong auto-correlation in MCMC
algorithms. The software MCMCglmm, for example, does not allow such a setting.
Furthermore, there is some relevance in assuming that some of the biological variability is
not captured by the phylogeny (such as environment or even measurement variability), hence
assuming a residual variance. Also, notably, when r2R ¼ 0, PMM can be seen as equivalent to
PGLS and thus PIC (Stone et al. 2011; Blomberg et al. 2012).

292 P. de Villemereuil and S. Nakagawa



caused by the species’ contingent characteristics (or species-specific effects). r2S is
the variance of this effect. The other symbols are as in Eqs. 11.1 and 11.2.

Together, r2P and r2S accounts for the between-species variability (the first being
caused by the evolutionary history, the second by contingent events). By contrast,
the residual term r2R is a measure of the intraspecific variance of the trait.4 Note that
we are assuming the same intraspecific variance for all the species in the dataset,
which might be considered as a very strong (although practical) assumption.

A careful inspection of Eq. 11.4 might reveal a troubling fact. As it stands, we
have no clue of the type of relationship the slope b is measuring. As a comparative
biologist, the reader would most likely be interested in the between-species slope.
If the co-factor x only contains only one value per species (or mean specific
values), then there is no problem, since for an individual j belonging to species i,
the Eq. 11.4 can be rewritten as follows:

yi;j � ai � si ¼ lþ bxi þ ei;j ð11:6Þ

Hence, we can consider the random effect ai and si as within-species centring
effects and the slope b as a between-species slope.

Things are slightly more complicated using individual measurements in x, but it
is still possible to obtain the between-species and within-species slopes using a
technique called within-group centring (Davis et al. 1961; van de Pol and Wright
2009). The principle of this technique is to separate the predictor x into two
components: one containing the group-level mean of x (here, the specific mean)
and a second one containing the within-group variability. For an individual
j belonging to species i, the new model would thus be:

yi;j ¼ lþ bB�xi þ bWðxi;j � �xiÞ þ ai þ si þ ei;j ð11:7Þ

where:

�xi ¼
1
Ji

XJi

j¼1

xi;j ð11:8Þ

for Ji being the number of individuals in species i. Here, we are thus fitting two
slopes: bB is the slope of regression between species and bW is the (common) slope
of regression within each species. The model could be further complicated to
include one slope per species (a so-called random slope model), but such a
complex model would be out of the scope of this chapter. Note that, by con-
struction, the predictors �xi and ðxi;j � �xiÞ are perfectly orthogonal. Therefore, bB
and bW are truly independent. Finally, the calculation of k would be changed to
account for the extra random effect:

4 This is not totally true, since r2R also include noise such as measurement error, which is very
difficult to distinguish from intraspecific variance without a careful design.
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k ¼ r2P
r2P þ r2S þ r2R

ð11:9Þ

We are thus able to estimate intraspecific variance and between-species slope
for multiple measurement data with the help of a new random effect. This is only a
particular demonstration of the utility of multiple random effects model. One could
also use them to account for problems of unbalanced sampling in one’s dataset:
spatial correlation, biogeographic regions, etc. (see Ives and Zhu 2006). In theory,
most of the dependency structures in the error of the model could be accounted for
by a random effect.

11.2.3 Phylogenetic Meta-Analysis Using Random Effects

Meta-analysis is a powerful statistical tool to combine weighted results of multiple
studies on the same or similar topics. As such, although the technique originated
from medical and social sciences, meta-analysis has been used extensively in the
field of ecology and evolution (Nakagawa and Poulin 2012; Koricheva et al. 2013).
In ecological or evolutionary meta-analysis, it is common that data include mul-
tiple species, and therefore, the data look similar to those of comparative analysis.
The main difference is that what are ‘traits’ in PC analysis (e.g. brain size) are
‘effect sizes’ in meta-analysis (e.g. a relationship between brain size and repro-
ductive success within a species). Such effect sizes are commonly standardised
statistical metrics, which are dimensionless (Cohen 1988; Nakagawa and Cuthill
2007), so that they can be compared across studies or species. Four commonly
used effect size metrics5 are: (1) Fisher’s z-transformation of correlation coeffi-
cient (Zr), (2) Hedges’ d and its variants, (3) response ratio on the natural loga-
rithm (lnR), and (4) odds ratio on the natural logarithm (lnOR) (Nakagawa and
Santos 2012; Koricheva et al. 2013). A recent study suggests the importance of
incorporating phylogeny in meta-analysis because meta-analytic models with and
without phylogeny could result in different conclusions (Chamberlain et al. 2012).
Here, we will describe phylogenetic meta-analytic models. A working example of
such analysis can be found in the OPM.

Several versions of phylogenetic meta-analysis have been proposed (Adams
2008; Lajeunesse 2009; Hadfield and Nakagawa 2010). Although they are slightly
different in their details, they all aim for incorporating phylogenetic non-inde-
pendence. Here, we describe the one based on PMM, described in Hadfield and
Nakagawa (2010). In a phylogenetic meta-analytic, we have a vector of effect sizes
z and each effect size has its sampling error variance (all stored in a vector vm),

5 These standardised metrics are unbounded and follow approximately normal distributions.
However, note that the correlation coefficient r is bounded at -1 and 1 and does not follow a
normal distribution.

294 P. de Villemereuil and S. Nakagawa



which may sometimes be referred to as measurement error variance. The model is
denoted as:

z ¼ lþ aþmþ e ð11:10Þ

m�Nð0; vm IÞ ð11:11Þ

where l is the meta-analytic (grand) mean, m are the sampling (measurement)
error effects,6 and all the other symbols are as in Eqs. 11.1 and 11.2. Sampling
error variance is assumed to be known, and for all common effect size statistics,
equations are available to obtain their sampling error variances. For example, the
sample variance for Zr is 1

n�3, where n is sample size used to estimate a correlation
coefficient. Also note that meta-analysis is typically an intercept model (i.e. l is
the only fixed factor estimated). This is because the main purpose of a meta-
analysis is to identify a general trend. But, as you may realise, it is easy to add a
predictor (co-factor x in Eq. 11.1), by building up on Eq. 11.10. This model is
expressed as:

z ¼ lþ bxþ aþmþ e: ð11:12Þ

This model is known as (phylogenetic) meta-regression, and we can add as
many fixed factors and random factors as required. Such mixed model-based
phylogenetic meta-analysis or meta-regression has recently been used in a number
of studies (e.g. Horváthová et al. 2012; Santos and Nakagawa 2012; Prokop et al.
2012; Garamszegi et al. 2012).

Incidentally, remember the example in Sect. 11.2. There, we had multiple
measurements per species. Rather than all these raw multiple measurements, let us
suppose that we only have species trait means and standard errors (or alternatively,
standard deviations and sample sizes). In such a case, we have a model where the
square of standard errors for each species trait value can be considered as sampling
error variances vm so that:

y ¼ lþ bxþ aþmþ e ð11:13Þ

where y is a vector of the trait mean for each species. Now, we can see that a
phylogenetic meta-regression (Eq. 11.12) and a PC analysis incorporating within-
species (sampling error) variance (Eq. 11.13) are mathematically equivalent (see
Chap. 7); such equivalence has been pointed out previously (Nakagawa and Santos
2012; Jennions et al. 2012).

6 In a typical non-phylogenetic meta-analysis, a unit of analysis is ‘study’ where one effect size
is taken from one study. Here, we assume that one effect size from each species comes from one
study or neffect ¼ nspecies ¼ nstudy.
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11.3 Extensions of the Phylogenetic Linear Mixed Model

11.3.1 Non-Gaussian Characters: Generalised Linear Mixed
Model

One of the main advantages of the mixed model framework is that it has been
generalised to non-Gaussian response distribution (Gilmour et al. 1985; Breslow
and Clayton 1993). As a result, it is now relatively easy to investigate non-Gaussian
comparative data using a generalised phylogenetic mixed model (although one
needs to be aware of the classical pitfalls, see Bolker et al. 2009). Because of the
flexibility of the MCMC algorithm, the MCMCglmm package is one of the most
comprehensive in terms of the available distributions (even some complex ones like
zero-inflated Poisson). Note that non-Gaussian traits can also be analysed using
ASReml software with common distributions such as Poisson and binomial.7

Mixed models are generalised by adding a hierarchical layer in the model
described in Eq. 11.1. Indeed, we begin by assuming a hypothetical latent trait l,
which satisfies Eq. 11.1:

l ¼ lþ bxþ aþ e ð11:14Þ

Note that all assumptions detailed in Sect. 11.2 hold for l here, since we are
using the same model.8 Then, we use a ‘link function’ g to draw the relationship
between this latent trait l and our actual non-Gaussian data y. This function will
transform l into a quantity g�1ðlÞ, which will be the expectation of the distribution
of y.

For example, for count data, we will assume a Poisson distribution (noted P),
which only accepts positive mean. The canonical link function is the logarithm, so
that:

y�PðexpðlÞÞ ð11:15Þ

You will find a working example in the OPM using count data and Poisson
distribution.

For dichotomous (binary) data, we will assume a binomial distribution (noted
B) with a vector of probability of ‘‘success’’, p:

y�BðpÞ ð11:16Þ

7 However, the penalised quasi-likelihood used in ASReml has been shown to largely
underestimate the variance components for binary traits (Gilmour et al. 2006; de Villemereuil
et al. 2013).
8 Note, however, that e in Eq. 11.14 should be considered as the effect due to additive dispersion
rather than the residuals (for additive dispersion, see Nakagawa and Schielzeth 2010).
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One of the two link functions is usually assumed: the logit or the probit
functions. The logit link function is the canonical link function, calculated as:

l ¼ logð p

1� p
Þ ð11:17Þ

The probit link function is actually the inverse function of the cumulative
distribution function of a standard normal distribution, noted U:

l ¼ U�1ðpÞ ð11:18Þ

The probit has less mathematical support than the logit, but it has a better
biological interpretation, due to its strong link with the long-standing threshold
model (Wright 1934; Dempster and Lerner 1950), widely used in QG for
dichotomous traits (see also Chap. 9 for the use of phylogenetic logistic regression
for binary traits).

Because of this hierarchical modelling, the generalisation of the phylogenetic
mixed model to non-Gaussian traits allows us to keep assumptions about the main
Gaussian evolution processes, for example the Brownian motion model. Regarding
dichotomous traits, this model is indeed philosophically different from the Mar-
kovian processes widely used in the field of PC analysis (see Chaps. 10 and 16).
Whereas the latter model discretise the genetics of the dichotomous trait in
assuming probabilities of ‘jump’ from one state to the other, the former assume a
polygenic basis of the trait and thus a ‘smoother’ evolution (and possibly intra-
specific variability). More generally, a Gaussian latent trait is justified if you
consider highly polygenic characters (even for the discrete ones!), because then the
result of all genetic effects should be normally distributed, according to Fisher’s
(1918) infinitesimal model. Another interest lies, of course, in the fact that most
kinds of distributions can be used in Eq. 11.15. Indeed, most ecologically inter-
esting distributions are available in the MCMCglmm package (binomial, ordinal,
multinomial, Poisson, zero-inflated Poisson, etc.).

11.3.2 Missing Species and Data Augmentation

When we compile comparative data of a certain taxon, it is difficult to get all trait
values for every species in that taxon. In other words, missing data are common-
place in comparative data. What most of researchers have been doing is to ignore
species in which trait information is missing and to conduct analysis without such
species—this is called ‘complete-case analysis’. Unfortunately, complete-case
analysis in comparative data will often result in biased estimates (Nakagawa and
Freckleton 2008; Garamszegi and Møller 2011). To understand why this is so, we
will benefit from learning some basics on missing data mechanisms.
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Missing data mechanisms in the statistical literature are merely a classification
of how missing data are related to observed data so that missing data mechanisms
do not imply casual explanations for missing data. A series of work by Rubin and
Little has set foundations for missing data theory (Rubin 1976, 1987; Little and
Rubin 2002). In missing data theory, three types of missing data are recognised:
(1) missing completely at random (MCAR), (2) missing at random (MAR), and (3)
missing not at random (MNAR). To understand these mechanisms, we need to
introduce three concepts, by using notations by Enders (2010). First, we need to
recognise that the data matrix Y can be decomposed into an observed part Yo and a
missing part Ym. Second, the matrix R that has the same dimension as Y has either
0 or 1 in its elements, with 0 signifying ‘observed’ and 1 ‘missing’. The matrix
R is referred to as missingness. Third, we call h the vector of parameters that
described the relationships between the data Y and its missingness R. Now, the
probability distribution function for MCAR can be written as:

pðRjhÞ ð11:19Þ

It reads as follows: the probability of whether an element in R takes 0 or 1
depends neither on Yo nor on Ym. The lack of links between R and the data Y is
solely described by h (cf. Enders 2010). That is, missing values in a variable of
interest are distributed completely at random in relation to any other variables.
This function also implies that when missing data is MCAR, the complete-case
analysis will provide unbiased results although statistical power may be reduced.
However, MCAR is a very strong and actually unrealistic assumption because
biological processes usually cause missing values. For example, we are less likely
to have life-history data on rare species than on more abundant ones. Therefore, a
more realistic assumption for missing data is MAR. The probability distribution
function for MAR is:

pðRjYo; hÞ ð11:20Þ

Again, it reads as follow: the probability of having 0 or 1 in R depends only on
Yo, and this relationship between R and Y is described by h. That is, missing
values in a variable of interest are due to another variable that we have complete
data on. For example, missing values in life-history data of rarer species are MAR,
if we have complete abundance data, which governs the probability of missing-
ness. It is notable that MAR does not really mean ‘MAR’ in its usual sense
(although this might be very confusing).

Similarly, the probability distribution function for MNAR is:

pðRjYo;Ym; hÞ ð11:21Þ

It reads as follow: the probability of taking 0 or 1 in R depends both on Yo and
Ym, and this relationship between R and Y is described by h. That is, missing
values in a variable of interest are due to another variable that we do not have any
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information on or missing values are due to missing values themselves. For
example, missing data in life-history data of rarer species are MNAR, if we do not
have abundance data, which governs missingness, or if a life-history trait makes
particular species rare so that it is difficult to obtain such life-history data of rare
species. Importantly, if we conduct complete-case analysis on MAR or MNAR
missing data, parameter estimates will often be biased. Therefore, all comparative
analyses not accounting for missing species could provide biased parameters and
potentially lead to incorrect conclusions, because it is unlikely that such missing
species comply with the MCAR assumption. A working example using
MCMCglmm that assumes MAR can be found in the OPM.

An important problem here is that we never really know how MNAR missing
values were created because the patterns of missingness depend on missing values
themselves. Thus, treating MNAR missingness is usually very difficult or often
infeasible. Therefore, the most practical assumption is MAR, and many methods to
deal with missing data under MAR have been developed (Enders 2010; van
Buuren 2012). One notable method is data augmentation using Bayesian MCMC.
Although methodological details are beyond the scope of this chapter (for an
accessible account, see Enders 2010), data augmentation will provide unbiased
parameter estimates when missing data in a dataset fulfils MAR. MCMCglmm
uses a data augmentation method when missing data are in the response variable,
but not predictors. Datasets with missing data in multiple variables need to resort
to either using other methods such as multiple imputation (van Buuren 2012) or
using multiresponse models, which ASReml and MCMCglmm are capable of
running (for details, see Gilmour et al. 1985; Hadfield 2010). Although there are
still a handful of examples of comparative studies utilising the missing data theory
(e.g. Fisher et al. 2003; Gonzalez-Suarez et al. 2012; Cleasby and Nakagawa
2012), we expect that the use of missing data missing data augmentation or other
methods for dealing with missing data such as multiple imputation will be com-
monplace in PC analysis in the near future.

11.4 Discussion

Throughout this chapter, we have seen some of the most interesting properties of
PGLMM, arising from using QG mixed models for PC analysis. Because mixed
models are nowadays a standard in ecology and evolution, and the (sometimes
quite philosophical) difference between fixed and random effects is relatively well
understood by the scientific community (reviewed in Gelman and Hill 2006), we
expect that a shift towards phylogenetic mixed model will not be a huge step for
any practitioner interested in evolution. Such a shift would not represent a sig-
nificant change in the underlying model, since there is a strong proximity between
phylogenetic mixed models and phylogenetic generalised least squares. Yet, the
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GLMM framework might allow one to tackle some of the important issues listed in
the sections above. Incidentally, note that all the examples in this chapter use one
response variable, but all of the models above can be easily extended to be
multiresponse models, for which MCMCglmm provides an implementation
(Hadfield and Nakagawa 2010; Nakagawa and Santos 2012), as well as ASReml
(Gilmour et al. 2006). Additionally, multiresponse models for non-Gaussian traits
can account for a different distribution for each trait (Hadfield 2010).

Regarding the implementation of the models, we focused on the MCMCglmm
package in this chapter. Yet, although the Bayesian MCMC algorithm possesses
numerous advantageous sides in the case of GLMM implementation, it is
important to stress that one does not need to be Bayesian to run such models.9

However, we are still lacking a nice and flexible frequentist package that can
readily be used in the context of PGLMM (but see Ives and Helmus 2011), mainly
because accurate likelihood-based estimations for generalised linear mixed models
have proven difficult and still are an active area of research in statistics.

Further extensions of the phylogenetic mixed model are to be expected in the
future. For example, Stone et al. (2011) suggested, among other methods, the use
of MCMCglmm to control for population structure within species. On the same
idea, Buckley et al. (2010) used MCMCglmm to fit ‘species within the phylogeny’,
‘populations within species’, and ‘years within population’ effects. Such nested
design is easy and quite intuitive to implement using random effects in a mixed
model context (Schielzeth and Nakagawa 2013). Also, one can incorporate two
different phylogenies as random effects to investigate traits whose evolution is
affected by interactions between species, such as host–parasite, plant–pollinator,
and predator–prey interactions (Rafferty and Ives 2013; Hadfield et al. 2014).
Another way to extend the mixed model framework would be to allow for
uncertainty in the relatedness matrix. In the context of PGLS, de Villemereuil et al.
(2012) showed that failing to take this uncertainty into account could lead to anti-
conservative standard error of estimates. Although technically difficult to imple-
ment efficiently in a package such as MCMCglmm (J. Hadfield, personal com-
munication, but see Ross et al. 2013a, about an implementation of such uncertainty
using MCMCglmm), sampling in a distribution of phylogenies instead of using the
consensus, one might lead to better estimations (Huelsenbeck and Rannala 2003;
de Villemereuil et al. 2012). Because pedigrees are also not known without error
(either being social or genetically determined, see Charmantier and Réale 2005;
Sillanpää 2011), such ‘phylogenetic/animal models with uncertainty’ would ben-
efit both quantitative genetic and comparative analysis statistical fields.

Acknowledgments We are grateful for S. Lavergne, M. Lagisz, L. Z. Garamszegi and two
anonymous reviewers for their comments on our earlier versions of this chapter; their comments
have significantly improved this chapter. S.N. is supported by the Rutherford Discovery Fel-
lowship (New Zealand).

9 The data augmentation of Sect. 11.3.2, though, is very much linked to the MCMC algorithm.

300 P. de Villemereuil and S. Nakagawa



References

Adams D (2008) Phylogenetic meta-analysis. Evolution. Int J Organ Evol 62(3):567–572. doi:10.
1111/j.1558-5646.2007.00314.x

Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data:
behavioral traits are more labile. Evolution 57(4):717–745

Blomberg SP, Lefevre JG, Wells JA, Waterhouse M (2012) Independent contrasts and PGLS
regression estimators are equivalent. Syst Biol 61(3):382–391. doi:10.1093/Sysbio/Syr118

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009)
Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol
Evol 24(3):127–135. doi:10.1016/j.tree.2008.10.008

Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models.
J Am Stat Assoc 88(421):9–25. doi:10.2307/2290687

Buckley YM, Ramula S, Blomberg SP, Burns JH, Crone EE, Ehrlén J, Knight TM, Pichancourt
JB, Quested H, Wardle GM (2010) Causes and consequences of variation in plant population
growth rate: a synthesis of matrix population models in a phylogenetic context. Ecol Lett
13(9):1182–1197. doi:10.1111/j.1461-0248.2010.01506.x

Chamberlain S, Hovick S, Dibble C, Rasmussen N, Van Allen B, Maitner B, Ahern J, Lukas B,
Roy C, Maria M, Carrillo J, Siemann E, Lajeunesse M, Whitney K (2012) Does phylogeny
matter? Assessing the impact of phylogenetic information in ecological meta-analysis. Ecol
Lett 15(6):627–636. doi:10.1111/j.1461-0248.2012.01776.x

Charmantier A, Réale D (2005) How do misassigned paternities affect the estimation of
heritability in the wild? Mol Ecol 14(9):2839–2850. doi:10.1111/j.1365-294X.2005.02619.x

Cleasby IR, Nakagawa S (2012) The influence of male age on within-pair and extra-pair paternity
in passerines. Ibis 154(2):318–324. doi:10.1111/J.1474-919x.2011.01209.X

Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence
Erlbaum, Hillsdale, New Jersey

Cornwallis CK, West SA, Davis KE, Griffin AS (2010) Promiscuity and the evolutionary
transition to complex societies. Nature 466(7309):969–72. doi:10.1038/nature09335

de Villemereuil P, Wells JA, Edwards RD, Blomberg SP (2012) Bayesian models for
comparative analysis integrating phylogenetic uncertainty. BMC Evol Biol 12(1):102. doi:10.
1186/1471-2148-12-102

de Villemereuil P, Gimenez O, Doligez B (2013) Comparing parent–offspring regression with
frequentist and bayesian animal models to estimate heritability in wild populations: a
simulation study for gaussian and binary traits. Meth Ecol Evol 4(3):260–275. doi:10.1111/
2041-210X.12011

Davis J, Spaeth J, Huson C (1961) A technique for analyzing the effects of group composition.
Am Sociol Rev 26(2):215–225. doi:10.2307/2089857

Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35(2):212–236
Enders CK (2010) Applied missing data analysis. Methodology in the social sciences. Guilford

Press, New York, 2010008465 GBB060973 Craig K. Enders. ill.; 26 cm. Includes
bibliographical references (p 347–358) and indexes. Methodology in the social sciences

Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 1–15
Felsenstein J (2005) Using the quantitative genetic threshold model for inferences between and

within species. Philos Trans: Biol Sci 360(1459):1427–1434
Felsenstein J (2008) Comparative methods with sampling error and within-species variation:

contrasts revisited and revised. Am Nat 171(6):713–725. doi 10.1086/587525
Fisher D, Blomberg S, Owens I (2003) Extrinsic versus intrinsic factors in the decline and

extinction of Australian marsupials. Proc Biol Sci/Roy Soc 270(1526):1801–1808. doi:10.
1098/rspb.2003.2447

Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance.
Trans Roy Soc Edinb 52:399–433

11 General Quantitative Genetic Methods for Comparative Biology 301

http://dx.doi.org/10.1111/j.1558-5646.2007.00314.x
http://dx.doi.org/10.1111/j.1558-5646.2007.00314.x
http://dx.doi.org/10.1093/Sysbio/Syr118
http://dx.doi.org/10.1016/j.tree.2008.10.008
http://dx.doi.org/10.2307/2290687
http://dx.doi.org/10.1111/j.1461-0248.2010.01506.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01776.x
http://dx.doi.org/10.1111/j.1365-294X.2005.02619.x
http://dx.doi.org/10.1111/J.1474-919x.2011.01209.X
http://dx.doi.org/10.1038/nature09335
http://dx.doi.org/10.1186/1471-2148-12-102
http://dx.doi.org/10.1186/1471-2148-12-102
http://dx.doi.org/10.1111/2041-210X.12011
http://dx.doi.org/10.1111/2041-210X.12011
http://dx.doi.org/10.2307/2089857
http://dx.doi.org/10.1086/587525
http://dx.doi.org/10.1098/rspb.2003.2447
http://dx.doi.org/10.1098/rspb.2003.2447


Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: A test
and review of evidence. Am Nat 160(6):712–726. doi:10.1086/343873

Garamszegi LZ, Møller AP (2011) Nonrandom variation in within-species sample size and
missing data in phylogenetic comparative studies. Syst Biol 60(6):876–880

Garamszegi LZ, Marko G, Herczeg G (2012) A meta-analysis of correlated behaviours with
implications for behavioural syndromes: mean effect size, publication bias, phylogenetic
effects and the role of mediator variables. Evol Ecol 26(5):1213–1235. doi:10.1007/
S10682-012-9589-8

Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models.
Cambridge University Press, Cambridge

Gilmour AR, Anderson RD, Rae AL (1985) The analysis of binomial data by a generalized linear
mixed model. Biometrika 72(3):593–599. doi:10.1093/biomet/72.3.593

Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. http://
www.vsni.co.uk/software/asreml/

Gonzalez-Suarez M, Lucas PM, Revilla E (2012) Biases in comparative analyses of extinction
risk: mind the gap. J Anim Ecol 81(6):1211–1222

Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: The
MCMCglmm R package. J Stat Softw 33(2):1–22

Hadfield JD, Nakagawa S (2010) General quantitative genetic methods for comparative biology:
phylogenies, taxonomies and multi-trait models for continuous and categorical characters.
J Evol Biol 23(3):494–508. doi:10.1111/j.1420-9101.2009.01915.x

Hadfield JD, Kranov B, Poulin R, Nakagawa S (2014) A tale of two phylogenies: comparative
analyses of ecological interactions. Am Nat 183(2):174–187

Hansen TF, Orzack SH (2005) Assessing current adaptation and phylogenetic inertia as
explanations of trait evolution: the need for controlled comparisons. Evolution
59(10):2063–2072

Henderson C (1976) A simple method for computing the inverse of a numerator relationship
matrix used in prediction of breeding values. Biometrics 1:69–83

Hill WG, Kirkpatrick M(2010) What animal breeding has taught us about evolution. Ann Rev
Ecol, Evol Syst 41:1–19. doi:10.1146/annurev-ecolsys-102209-144728

Horváthová T, Nakagawa S, Uller T (2012) Strategic female reproductive investment in response
to male attractiveness in birds. Proc Roy Soc B-Biol Sci 279(1726):163–170

Housworth E, Martins E, Lynch M (2004) The phylogenetic mixed model. Am Nat 163(1):84–96.
doi:10.1086/380570

Huelsenbeck JP, Rannala B (2003) Detecting correlation between characters in a comparative
analysis with uncertain phylogeny. Evolution 57(6):1237–1247

Ives AR, Helmus MR (2011) Generalized linear mixed models for phylogenetic analyses of
community structure. Ecol Monogr 81(3):511–525

Ives AR, Zhu J (2006) Statistics for correlated data: phylogenies, space, and time. Ecol Appl
16(1):20–32

Jennions MD, Kahn AT, Kelly CD, Kokko H (2012) Meta-analysis and sexual selection: past
studies and future possibilities. Evol Ecol 26(5):1119–1151. doi: 10.1007/S10682-012-9567-1

Koricheva J, Gurevitch J, Mengersen K (2013) The handbook of meta-analysis in ecology and
evolution. Princeton University Press, Princeton

Lajeunesse M (2009) Meta-analysis and the comparative phylogenetic method. The Am Nat
174(3):369–381. doi:10.1086/603628

Little RJA, Rubin DB (2002) Statistical analysis with missing data, Wiley series in probability
and statistics, 2nd edn. Wiley, Hoboken, N.J., p 349–364

Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) Winbugs—a bayesian modelling
framework: concepts, structure, and extensibility. Stat Comput 10(4):325–337

Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution
45(5):1065–1080. doi:10.2307/2409716

302 P. de Villemereuil and S. Nakagawa

http://dx.doi.org/10.1086/343873
http://dx.doi.org/10.1007/S10682-012-9589-8
http://dx.doi.org/10.1007/S10682-012-9589-8
http://dx.doi.org/10.1093/biomet/72.3.593
http://www.vsni.co.uk/software/asreml/
http://www.vsni.co.uk/software/asreml/
http://dx.doi.org/10.1111/j.1420-9101.2009.01915.x
http://dx.doi.org/10.1146/annurev-ecolsys-102209-144728
http://dx.doi.org/10.1086/380570
http://dx.doi.org/10.1007/S10682-012-9567-1
http://dx.doi.org/10.1086/603628
http://dx.doi.org/10.2307/2409716


Maklakov AA, Immler S, Gonzalez-Voyer A, Ronn J, Kolm N (2011) Brains and the city: big-
brained passerine birds succeed in urban environments. Biol Lett 7(5):730–732. doi:10.1098/
Rsbl.2011.0341

Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to
incorporating phylogenetic information into the analysis of interspecific data. Am Nat
149(4):646–667

Meuwissen T, Luo Z (1992) Computing inbreeding coefficients in large populations. Genet Sel
Evol 24:305–313. doi:10.1186/1297-9686-24-4-305

Miles DB, Dunham AE (1993) Historical perspectives in ecology and evolutionary biology: the
use of phylogenetic comparative analyses. Ann Rev Ecol Syst 587–619

Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a
practical guide for biologists. Biol Rev 82(4):591–605

Nakagawa S, Freckleton RP (2008) Missing inaction: the dangers of ignoring missing data.
Trends Ecol Evol 23(11):592–596

Nakagawa S, Poulin R (2012) Meta-analytic insights into evolutionary ecology: an introduction
and synthesis. Evol Ecol 26(5):1085–1099

Nakagawa S, Santos ESA (2012) Methodological issues and advances in biological meta-
analysis. Evol Ecol 26(5):1253–1274

Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical
guide for biologists. Biol Rev Camb Philos Soc 85(4):935–956. doi:10.1111/j.1469-185X.
2010.00141.x

Prokop ZM, Michalczyk L, Drobniak SM, Herdegen M, Radwan J (2012) Metaanalysis suggests
choosy females get sexy sons more than ’’good genes’’. Evolution 66(9):2665–2673

R Development Core Team (2011) {R}: a language and environment for statistical computing.
http://www.R-project.org/

Rafferty NE, Ives AR (2013) Phylogenetic trait-based analyses of ecological networks. Ecology
in press

Ross L, Gardner A, Hardy N, West SA (2013a) Ecology, not the genetics of sex determination,
determines who helps in eusocial populations. Curr Biol 23(23):2383–2387. doi:10.1016/j.
cub.2013.10.013

Ross L, Hardy NB, Okusu A, Normark BB (2013b) Large population size predicts the distribution
of asexuality in scale insects. Evolution 67(1):196–206. doi:10.1111/J.1558-5646.2012.
01784.X

Rubin DB (1976) Inference and missing data. Biometrika 63(3):581–590
Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York, NY
Santos ESA, Nakagawa S (2012) The costs of parental care: a meta-analysis of the trade-off

between parental effort and survival in birds. J Evol Biol 25(9):1911–1917. doi:10.1111/J.
1420-9101.2012.02569.X

Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed
model era. Meth Ecol Evol 4(1):14–24. doi:10.1111/j.2041-210x.2012.00251.x
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Chapter 12
Multimodel-Inference in Comparative
Analyses

László Zsolt Garamszegi and Roger Mundry

Abstract Multimodel inference refers to the task of making a generalization from
several statistical models that correspond to different biological hypotheses and
that vary in the degree of how well they fit the data at hand. Several approaches
have been developed for such purpose, and these are widely used, mostly for
intraspecific data, i.e., in a non-phylogenetic framework, to draw inference from
models that consider different predictor variables in different combinations.
Adding the phylogenetic component, in theory, calls for a more extended
exploitation of these techniques as several hypotheses about the phylogenetic
history of species and about the mode of evolution should also be considered, all of
which can be flexibly incorporated and combined with different statistical models.
Here, we highlight some biological problems that inherently imply multimodel
approaches and show how these problems can be tackled in the phylogenetic
generalized least squares (PGLS) modeling framework based on information-
theoretic approaches (e.g., by using Akaike’s information criterion, AIC) or
maximum likelihood. We present a conceptual framework of model selection for
phylogenetic comparative analyses, where the goal is to generalize across models
that involve different combinations of predictors, phylogenetic hypotheses,
parameters describing the mode of evolution, and error structures. Although this
overview suggests that a model selection strategy may be useful in several situ-
ations, we note that the performance of the approach in the phylogenetic context
awaits further evaluation in simulation studies.

L. Z. Garamszegi (&)
Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC,
Seville, Spain
e-mail: laszlo.garamszegi@ebd.csic.es

R. Mundry
Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
e-mail: roger_mundry@eva.mpg.de

L. Z. Garamszegi (ed.), Modern Phylogenetic Comparative Methods and Their
Application in Evolutionary Biology, DOI: 10.1007/978-3-662-43550-2_12,
� Springer-Verlag Berlin Heidelberg 2014

305



12.1 Introduction

The world is so complex that researchers are often confronted with the challenge of
assessing a large number of biological explanations for a given phenomenon
(Chamberlin 1890). Making drawing inference from multiple hypotheses tradi-
tionally involves the evaluation of the appropriateness of different statistical models
that describe the relationship among the considered variables. This task can be seen
as a model selection problem, and there are three general approaches that allow such
inference based on statistical analysis. The approach that dominated applied sta-
tistics for decades is that of null-hypothesis significance testing (NHST)
(Cohen 1994). Applying NHST, one typically states a null-hypothesis of no influ-
ence or no difference, which is then rejected or not based on a significance threshold
(conventionally, P = 0.05 that specifies the probability that one would obtain the
observed data given the null hypothesis were true). In this framework, nested
multiple models can be examined in a stepwise fashion, in which terms can be
eliminated or added based on their significance following a backward or forward
process (but see, e.g., Mundry and Nunn 2008; Whittingham et al. 2006; Hegyi and
Garamszegi 2011 for problems with stepwise model selection). The second
approach is Bayesian inference where one considers a range of ‘hypotheses’ (e.g.,
model parameters) and incorporates some prior knowledge about the probability of
the particular model parameter values to update one’s ‘belief’ in what are more and
less likely model parameters (Congdon 2003; Gamerman and Lopes 2006).
Bayesian inference has a long history, but only recent increases in computer power
made its application feasible for a wide range of problems (for relevance for
comparative studies, see Chaps. 10 and 11). The third, relatively recent approach to
statistical inference is based on information theory (IT) (Burnham and
Anderson 2002; Johnson and Omland 2004; Stephens et al. 2005). Here, a set of
candidate models, which represent different hypotheses, is compared with regard to
how well they fit the data. A key component of the IT approach is that the measure
of model fit is penalized for model complexity (i.e., the number of estimated
parameters), and, as such, IT-based inference aims at identifying models that rep-
resent a good compromise between model fit and model complexity. Most fre-
quently, IT-based inference goes beyond simply choosing the best model (out of the
set of candidate models) and allows accounting for model selection uncertainty (i.e.,
the possibility that several models receive similar levels of support from the data).

Although model selection is classically viewed as a solution to the problem
caused by the large number of potential combinations of predictors that may affect
the response variable, here we propose that the comparative phylogenetic framework
involves a range of questions that require multimodel inference and approaches
based on IT. In particular, we emphasize that in addition to the variables included in
the candidate models, the models can also differ in terms of other parameters that
describe the mode of evolution, or account for phylogenetic uncertainty and heter-
ogeneities in sampling effort. In this chapter, we present general strategies for
drawing inference from multiple evolutionary models in the framework of
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phylogenetic generalized least squares (PGLS). We formulate our suggestions
merely on a conceptual basis with the hope that these will stimulate further research
that will assess the performance of the methods based on simulations. We envisage
that such simulation studies are crucial steps before implementing model selection
routines into the practice of phylogenetic modeling. Our discussion is accompanied
with an Online Practical Material (hereafter OPM) available at http://www.
mpcm-evolution.com, which demonstrates how our methodology can be applied to
real data in the R statistical environment (R Development Core Team 2013).

12.2 The Fundaments of IT-based Multimodel Inference

Given that a considerable number of primary and secondary resources discuss the
details of the IT-based approach (Burnham and Anderson 2002; Claeskens and
Hjort 2008; Garamszegi 2011; Konishi and Kitagawa 2008; Massart 2007), we
avoid giving an exhausting description here. However, in order to make our
subsequent arguments comprehensible for the general readership, we first provide
a brief overview on the most important aspects of the approach.

12.2.1 Model Fit

The central idea of an IT-based analysis is to compare the fit of different models in
the candidate model set (see below). However, it is trivial that more complex
models show better fits (e.g., larger R2 or smaller deviance). Hence, an IT-based
analysis aims at identifying those models (in the set of candidate models; see
below) that represent a good compromise between model complexity and model
fit, in other words, parsimonious models. Practically, this is achieved by penalizing
the fit of the models by their complexity. One way of doing this is to use Akaike’s
information criterion (AIC), namely

AIC ¼ �2 lnL modeljdatað Þ þ 2k; ð12:1Þ

where
L modeljdatað Þ maximum likelihood of the model given the data and the parameter

estimates,
k the number of parameters in the model (�2 lnL modeljdatað Þ is known

as ‘‘deviance’’).

Two models explaining the data equally well will have the same likelihood, but
they might differ in the number of parameters estimated. Then, the model with the
smaller number of parameters will reveal the smaller AIC (and the difference in
the AIC values of the more complex and the simpler model will be twice the
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difference of the numbers of parameters they estimate). Hence, in an IT-based
analysis, the model with the smaller AIC is considered to be ‘better’ because it
represents a more parsimonious explanation of the response investigated.1 Note-
worthy, some argue that AIC-based inference can select for overly complex
models and suggest alternative information criteria (Link and Barker 2006). Here,
we continue focusing on AIC with the notion that the framework can be easily
tailored for other metrics.

The core result of an IT-based analysis is a set of AIC values associated with a
set of candidate models. However, unlike P values, AIC values do not have an
interpretation in themselves but receive meaning only by comparison with AIC
values of other models, fitted to the exact same response. The model with the
smallest AIC is the ‘best’ (i.e., best compromise between model parsimony and
complexity) in the set of models. However, in contrast to an NHST analysis, it
would be misleading to simply select the best model and discard the others. This is
because the best model according to AIC (i.e., the one with the smallest AIC)
might not be the model that explicitly describes the truth (in fact, it is unlikely to
ever be). Such discrepancies can happen for various reasons, including stochas-
ticity in the sampling process (i.e., a sample is used to draw inference about a
population), measurement error in the predictors and/or the response, or unknown
predictors not being in the model, to mention just a few. An analysis in the
framework of a phylogenetic comparative analysis expands this list considerably
to include, for instance, imperfect knowledge about the phylogenetic history or the
underlying model of evolution (e.g., Brownian motion or Ornstein-Uhlenbeck). An
IT-based analysis allows dealing elegantly with such model selection uncertainty
by explicitly taking it into account (see below).

12.2.2 Candidate Model Set

A key component in an IT-based analysis is the candidate set of models to be
investigated, which classically includes models with different combinations of
predictors. The validity of the analysis is conditional on this set, and if the can-
didate model set is not a reasonable one, the results will be deceiving (Burnham
and Anderson 2002; Burnham et al. 2011). Hence, the development of the can-
didate set needs much care and is a crucial and potentially challenging step of an
IT-based analysis. First of all, different models might represent different research
hypotheses. For instance, one might hypothesize that brain size might have co-
evolved with social complexity (e.g., group size), ecological complexity (e.g.,
seasonality in food availability), or both. However, in biology, it is frequently not
easy to come up with such a clearly defined set of potentially competing models,

1 When drawing inference in an IT framework, it is essential to not mix it up with the NHST
framework. Most crucially, it does not make sense to select the best model based on AIC and then
test its significance or the significance of the predictors it includes.
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and hence one frequently sees candidate model sets that encompass all possible
models that can be built out of a set of predictors. Furthermore, in the context of
phylogenetic comparative analysis, different models in the candidate set might
represent different evolutionary models (e.g., Brownian motion or an Ornstein-
Uhlenbeck process) or different phylogenies. It is important to emphasize that in a
phylogenetic comparative analysis both these aspects (and also other ones) can be
reflected in a single candidate set of models; that is, the candidate set might
comprise models that represent combinations of hypotheses about the coevolution
of traits, the model of evolution, and the phylogenetic history.

12.2.3 Accounting for Model Uncertainty

There are several ways of dealing with model selection uncertainty (i.e., with the
fact that not only one model is unanimously selected as best). One way is to
consider Akaike weights. Akaike weights are calculated for each model in the set
and can be thought of as the probability of the actual model to be the best in the set
of models (although there are warnings against such interpretations, e.g., see
Bolker 2007). From Akaike weights, one can also derive the evidence ratio of two
models, which is the quotient of their Akaike weights and tells how much more
likely is one of the two models (i.e., the one in the numerator of the evidence ratio)
to be the best model. Akaike weights can also be used to infer about the impor-
tance of individual predictors by summing Akaike weights for all models that
contain a given predictor. The summed Akaike weight for a given predictor then
can be considered analogous to the probability of it being in the best model of the
set (see also Burnham et al. 2011; Symonds and Moussalli 2011).

12.2.3.1 Model Averaging

One can also use Akaike weights for model averaging of the estimated coefficients
associated with the different predictors. Here, the estimated coefficients (e.g.,
regression slopes) are averaged across all models (or across a confidence set of best
models2) weighted by the Akaike weights of the corresponding models (see also
Burnham et al. 2011; Symonds and Moussalli 2011). Hence, an estimate of a
coefficient from a model having a large Akaike weight contributes more to the

2 Another way of dealing with model selection uncertainty is to consider the best model
confidence set, which contains the models that can be considered as best with some certainty.
Different criteria do exist to identify the best model confidence set among which the most popular
are to include those models that differ in AIC from the best model by at most some threshold
(e.g., 2 or 10) or, alternatively, to include those models for which their summed cumulative
Akaike weights (from largest to smallest) just exceed 0.95. In this chapter, we do not consider
such subjective thresholds further, and throughout the remaining discussion we refer to model
averaging in a sense that it is made across the full model set.
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averaged value of the coefficient. When using model averaging of the estimated
coefficients, there are two ways of treating models in which a given predictor is not
present: one is to simply ignore them (the ‘natural’ method), and one is to set the
estimated coefficient to zero for models in which the given predictor is not included
(the ‘zero’ method; Burnham and Anderson 2002; Nakagawa and Hauber 2011).
Using the latter penalizes the estimated coefficient when it is mainly included in
models with low Akaike weights, and to us, this seems to be the better method.

12.3 Model Selection Problems in Phylogenetic
Comparative Analyses

There can be several biological questions involving phylogenies, which necessitate
inference from more than one model that are equally plausible hypothetically.
Most readers might have encountered such a challenge when judging the impor-
tance of different combinations of predictor variables. However, in addition to
parameters that estimate the effects of different predictors, in a phylogenetic
model, there are several other parameters that deal with the role of phylogenetic
history or with another error term (e.g., within-species variance). The statistical
modeling of these additional parameters often requires multiple models that dif-
ferently combine them, even at the same set of predictors. Below, we demonstrate
that in most of these situations the observer is left with the classical problem of
model selection, when s/he needs to draw inferences from a pool of models based
on their fit to the data. Accordingly, the same general framework can be applied:
Competing biological questions are first translated into statistical models, and then,
multimodel inference is used for generalization.

12.3.1 Selecting Among Evolutionary Models with Different
Combinations of Predictors

The classical problem of finding the most plausible combination of predictors to
explain interspecific variation in the response variable while accounting for the
phylogeny of species is well exemplified in the comparative literature. Starting
from a pioneering study by Legendre et al. (1994), a good number of studies exist
that evaluate multiple competing models to assess their relative explanatory value
and to draw inferences about the effects of particular predictors. Below, as an
appetizer, we provide summaries of two of these studies to demonstrate the
diversity of questions that can be addressed by using the model selection frame-
work. In the OPM, we give the R code that can be easily tailored to any biological
problem requiring an AIC-based information-theoretic approach.

Terribile et al. (2009) investigated the role of four environmental hypotheses
mediating interspecific variation in body size in two snake clades. These hypotheses
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emphasized the role of heat balance as given by the surface area-to-volume ratio,
which in ectothermic vertebrates may influence heat conservation (e.g., small-
bodied animals may benefit from rapid heating in cooler climates), habitat avail-
ability (habitat zonation across mountains limits habitat areas that ultimately select
for smaller species), primary productivity (low food availability can reduce growth
rate and delay sexual maturity, which would in turn result in small-bodied species in
areas with low productivity), and seasonality (large-bodied species may be more
efficient in adapting to seasonally fluctuating resources that often include periods of
starvation). To test among these hypotheses, the authors estimated the extent to
which the patterns of body size are driven by current environmental conditions as
reflected by mean annual temperature, annual precipitation, primary productivity,
and range in elevation. They challenged a large number of models with data and
chose the best model that offered the highest fit relative to model complexity to
draw inference about the relative importance of different hypotheses. This best
model included all main predictors, but the amount of variation explained differed
between Viperidae and Elapidae, the two snake clades investigated. Moreover, the
relative importance for each predictor also varied, as indicated by the summed
Akaike weights. Consequently, none of the proposed hypotheses was over-
whelmingly supported or could be rejected, and the mechanisms constraining body
size in snakes can even vary from one taxonomic group to another.

A recent phylogenetic comparative analysis of mammals focused on the
determinants of dispersal distance, a variable of major importance for many
ecological and evolutionary processes (Whitmee and Orme 2013). Dispersal dis-
tance can be hypothesized as a trait being influenced by several constraints arising
from life history, a situation that necessitates multipredictor approaches. For
example, larger body size can allow longer dispersal distances because locomotion
is energetically less demanding for larger-bodied animals. Second, home range
size may be important, as dispersing individuals of species using larger home
ranges may need to move longer distances to find empty territories. Furthermore,
trophic level, reflecting the distribution of resources, may mediate dispersal dis-
tance with carnivores requiring more dispersed resources than herbivores or
omnivores. Intraspecific competition may also affect dispersal: species maintaining
higher local densities may also show higher frequencies of distantly dispersing
individuals which thereby encounter less competition. Finally, investment in
parental activities can be predicted to negatively influence dispersal, as species that
wean late and mature slowly will create less competitive conditions for their
offspring than species with fast reproduction. To simultaneously evaluate the
plausibility of these predictors, Whitmee and Orme (2013) applied a model
selection strategy based on the evaluation of a large number of models composed
of the different combinations (including their quadratic terms) of the considered
predictors. Even the best-supported multipredictor models had low Akaike
weights, indicating no overwhelming support for any particular model. Therefore,
they applied model averaging to determine the explanatory role of particular
variables, which indicated that home range size, geographic range size, and body
mass are the most important terms across models.
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12.3.2 Dealing with Phylogenetic Uncertainty: Inference
Across Models Considering Different Phylogenetic
Hypotheses

While phylogenetic comparative studies necessarily require a phylogenetic tree,
the true phylogeny is never known and must be estimated from morphological or,
more recently, from genetic data; thus, phylogenies always contain some uncer-
tainty (see detailed discussion in Chap. 2). In several cases, more than one phy-
logenetic hypothesis (i.e., tree) can be envisaged for a given set of species, and it
might be desirable to test whether the results found for a given phylogenetic tree
are also apparent for other, similarly likely trees.

With GenBank data and nucleotide sequences for phylogenetic inference, the
above problem is not restricted anymore to the comparison of a handful of alter-
native trees corresponding to different markers. Nonetheless, the reconstruction of
phylogenies from the same molecular data still raises uncertainty issues at several
levels. Different substitution models andmultiple mechanisms can be considered for
sequence evolution, each leading to different sets of phylogenies that can be con-
sidered (note that this is also a model selection problem). Moreover, even the same
substitution model can lead to various phylogenetic hypotheses with similar like-
lihoods. As a result, in the recent day’s routine, several hundreds or even thousands
of phylogenetic trees are often available for the same list of species used in a
comparative study. The most common way to deal with such a large sample of trees
is the use of a single, consensus tree in the phylogenetic analysis. However, although
this approximation is convenient from a practical perspective, using an ‘average’
tree does not capture the essence of uncertainty, which lies in the variation across the
trees. The whole sample of similarly likely trees defines a confidence range around
the phylogenetic hypothesis (de Villemereuil et al. 2012; Pagel et al. 2004).

For the appropriate treatment of phylogenetic uncertainty, one needs to incor-
porate an error component that is embedded in the pool of trees that can be
envisaged for the species at hand. Martins and Hansen (1997) proposed that most
questions in relation to the evolution of phenotypic traits across species can be
translated into the same general linear model:

y ¼ bXþ e; ð12:2Þ

where
y is a vector of characters or functions of character states for extant or ancestral

taxa,
X is a matrix of states of other characters, environmental variables, phylogenetic

distances, or a combination of these,
b is a vector of regression slopes,
e is a vector of error terms with an assumed structure.
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e is composed of at least three types of errors that can be assembled in a
complex way: eS; the error due to common ancestry; eM; the error due to within-
species variance or measurement error; and eP; the error due phylogenetic uncer-
tainty. The regression technique based on PGLS when combined with maximum
likelihood (ML) model fitting offers a flexible way to handle and combine the
errors eS and eM (for example, they can be treated additively if they are inde-
pendent, see Chaps. 5 and 7). However, simultaneously handling the third error,
the one that is caused by phylogenetic uncertainty, eP; is more challenging, because
it is not an independent and additive term (Martins 1996). Approaches based on
Bayesian sampling that are discussed in Chap. 10 offer a potential solution. They
allow the use of a large number of similarly likely phylogenetic trees by effectively
weighting parameter estimates across their probability distribution and can also
incorporate errors due to within-species variance (de Villemereuil et al. 2012).
However, widely available Bayesian methods can be sensitive to prior settings and
are not yet implemented in the commonly used statistical packages.

We propose a simpler solution and suggest that when combined with multi-
model inference, approaches based on PGLS can be used to deal with uncertainties
in the phylogenetic hypothesis. The underlying philosophy of this approach is that
when a list of trees is available, each of them can be used to fit the same model
describing the relationship between traits using ML. Subsequently, parameter
estimates (e.g., intercepts and slopes) can be obtained from the resulting models,
which can then be averaged with a weight that is proportional to the relative fit of
the corresponding model to the data. The output will not only provide a single
average effect (as is the case when using a single model fitted to a consensus tree)
but will also include a confidence or error range as obtained from the variance of
model parameters across models associated with different trees. This interval can
be interpreted as a consequence of the uncertainty in the phylogenetic hypothesis,
that is, the mean estimate (model-averaged slope, or the slope that is based on the
consensus tree) with the associated uncertainty component (variance among par-
ticular slopes) will form the results together. The logic of analyzing the inter-
specific data on each possible phylogeny to obtain a sample of estimates and then
to calculate summary statistics from this distribution was already proposed by
Martins (1996). Our favored method differs with regard to that it applies a model-
averaging technique to derive the mean and confidence interval from the frequency
distribution of parameters. This can be important, because if the pool of the trees
across which the models are fitted reflects the likelihood of particular trees
explaining the evolution of taxa, the resulting model-averaged parameter estimates
will also reflect this variation.

Although apparently different trees are used in each model, drawing inference
across them does not violate the fundaments of information theory that assumes
that each model is fitted to the very same data. Different trees can be regarded as
different hypotheses that arise from identical nucleotide sequence information.
They are actually just different statistical translations of the same biological
information and act like scaling parameters on the tree. The approach may be
particularly useful when a large number of alternative trees are at hand (e.g., in the
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form of a Bayesian sample originating from the same sequence data). When only a
handful of phylogenies is available (e.g., from other published papers), model-
averaged means and variances can also be calculated, but conclusions would be
conditional on the phylogenies considered (i.e., some alternative phylogenies may
have not been evaluated). Furthermore, fitting models to trees that correspond to
different marker genes calls for philosophical issues about the underlying
assumption concerning the use of the same data.

In Fig. 12.1, we illustrate how our proposed model averaging works in practice
(the underlying computer codes are available in the OPM). In this example, we
tested for the evolutionary relationship between brain size and body size in primates
by using PGLS regression methods with ML estimation of parameters. We con-
sidered a sample of reasonable phylogenetic hypotheses in the form of 1,000 trees as
obtained from the 10KTrees Project (Arnold et al. 2010).When using the consensus
tree from this tree sample, we can estimate that the phylogenetically corrected
allometric slope is 0.287 (SE = 0.039, solid line in Fig. 12.1). However, using
different trees from 10KTrees pool in the model provides slightly different results for
the phylogenetic relationship between traits, as the obtained slopes vary (gray lines
in the left panel of Fig. 12.1). The model-averaged regression slope yields 0.292
(model-averaged SE = 0.041, dashed line in the left panel of Fig. 12.1). This mean
estimate is quite close to what one can obtain based on the consensus tree, but the
variation between the particular slopes corresponding to different trees in the sample
delineates some uncertainty around the averaged allometric coefficient. Few models
in the ML sample provide extreme estimates (note that, model fitting with one
particular tree even results in a negative slope, left panel of Fig. 12.1). However,
these models were characterized by a very poor model fit; thus, their potential
influence is downweighted in the model-averaged mean estimate.

The benefit of using the AIC-based method to account for phylogenetic uncer-
tainty over Bayesian approaches is that the former does not require prior information
on model parameters that would affect the posterior distribution of parameters, an
issue that is often challenging in the Bayesian framework (Congdon 2006) and that
is also demonstrated in Fig. 12.1. In the right panel, we appliedMarkov chainMonte
Carlo (MCMC) procedure to estimate the posterior distribution of parameter values
from the same PGLS equation by using (Pagel et al. 2004; Pagel and Meade 2006)
BayesTraits with the same interspecific data and pool of trees (see also Chap. 10).
Supposing that we have no information to make an expectation about the range
where parameter estimates should fall, we are constrained to use flat and uniform
prior distributions (e.g., spanning from -100 to 100).3 When we used MCMC to

3 It may not be necessarily applied to the current biological example, because allometric
regressions are intensively studied (e.g., Bennett and Harvey 1985; Hutcheon et al. 2002; Iwaniuk
et al. 2004; Garamszegi et al. 2002). Therefore, results from a large number of studies on other
vertebrate taxa may be used to define a narrower and more informative prior. However, in this
example simulated on the general situation when no preceding information on the expected
relationship is available. Note that technically BayesTraits only allows uniform priors for
continuous data.
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sample from a large number of models with different parameters and trees and took
1,000 estimates from the posterior distribution of slopes, we detected that the
estimate is accompanied by a considerable uncertainty (Fig. 12.1, right panel). For
comparison, the 95 % confidence interval of the allometric coefficients obtained
from the ML sample is 0.278–0.312, while it is 0.211–0.373 for the MCMC sample
(i.e. the confidence interval obtained from the Bayesian framework is almost five
times wider than that from the AIC-based inference). Consequently, the Bayesian
approach introduces an unnecessary uncertainty due to the dominance of the prior
distribution on the posterior distribution.

Another benefit of using ML model fitting over a range of phylogenetic
hypotheses in conjunction with model averaging is that by doing so we can exploit
the flexibility of the PGLS framework. For example, as we discussed above, one
can evaluate different sets of predictor variables when defining models, or as we
explain below, one can also take into account additional error structures (e.g., due
to within-species variation) or different models of trait evolution (e.g., Brownian
motion or an Ornstein-Uhlenbeck process). These different scenarios can be
simultaneously considered during model definition, but can also be combined with
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Fig. 12.1 Estimated regression lines for the correlated evolution of two traits (body size and
brain size in primates) when different hypotheses for the phylogenetic relationships of species are
considered and when ML (left panel) or MCMC (right panel) estimation methods are used in the
AIC-based or Bayesian framework, respectively. Gray lines show the regression slopes that can
be obtained for alternative phylogenetic trees (left panel 1,000 ML models fitted to different trees,
right panel 1,000 models that the MCMC visited in the Bayesian framework). The alternative
trees originate from a sample of 1,000 similarly likely trees that can be proposed for the same
nucleotide sequence data (Arnold et al. 2010). The dashed bold line represents the slope estimate
that can be derived by model averaging over the particular ML estimates (left panel) or by taking
the mean of the posterior distribution from the MCMC sample of 1,000 models (right panel).
Both methods provide a mean estimate over the entire pool of trees by incorporating the
uncertainty in the underlying phylogenetic hypothesis. The solid bold line shows the regression
line that can be fitted when the single consensus tree is used. The model-averaged slope, the mean
of the posterior distribution, and the one that corresponds to the consensus highly overlap in this
example (which may not necessarily be the case). However, the precision by which the mean can
be estimated is different between ML and MCMC approaches, as the latter introduces a larger
variance in the slopes in the posterior sample
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alternative phylogenetic trees (some examples are given in the OPM). This will
result in a large number of candidate models representing different evolutionary
hypotheses, over which model averaging may offer interpretable inference.

Box 12.1 A simulation strategy for testing the performance
of multimodel inference

The behaviour of the AIC-based framework to account for phylogenetic
uncertainty requires simulation studies that consist of the following steps.
First, one needs to simulate a tree for a considered number of species and
under some scenario for the underlying model (e.g., time-dependent birth–
death model or just a random tree). The next step is then to simulate species-
specific trait data along the branches of the generated phylogeny. To obtain
simulated tip values, we also need to consider a model to describe the
evolutionary mechanism in effect (e.g., Brownian motion or an OU process).
We might also consider other constraints for trait evolution, for example, by
defining a correlation structure (a zero or a nonzero covariance) for two
coevolving traits. These parameters will serve as generating values, and the
underlying tree and the considered covariance structure will reflect the truth
that we want to recover in the simulation. If the interest is to examine the
performance of the model-averaging strategy to account for phylogenetic
uncertainty, we need to generate a sample of trees that integrates a given
amount of variance (e.g., both the topology and branch lengths are allowed
to vary to some pre-defined degree). For each simulation, we can then fit a
model estimating the association between the two traits by controlling for
phylogenetic effects. The phylogeny used in this model to define the
expected variance–covariance structure on the one hand can be the con-
sensus tree calculated for the whole sample of trees. On the other hand, we
can also fit the model to each tree in the sample and then do a model
averaging to obtain an overall estimate for the parameter of interest (e.g.,
slope or correlation as calculated from the model). By simulating new trait
data (and optionally new pools of trees), we can repeat the whole process a
large number of times (i.e., 1,000 or 10,000 times). At each iteration, we
will, hence, obtain estimates (either over the consensus tree or over the entire
sample of trees through model averaging) for the parameter of interest.
Finally, we can compare the distribution of these parameters over simula-
tions with the generating parameter state. The difference between the mean
of the distribution and the generating value will inform about bias of the
approach, while the width of the distribution informs about precision (the
uncertainty in parameter estimation).

As an important cautionary note, we emphasize that the performance of the
AIC-based method based on model averaging still requires further assessment with
both simulated and empirical data. In Box 12.1, we describe the philosophy of an
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appropriate simulation study that can efficiently test the performance of averaging
parameters over a large number of models corresponding to different hypotheses
about phylogenies or other evolutionary patterns.

12.3.3 Variation Within Species

One of the advantages of the PGLS approach is that it allows accounting for
within-species variation, which broadly includes true individual-to-individual or
population-to-population variation, and also other sources of variation in the
estimates of taxon trait values such as measurement error (see Ives et al. 2007;
Hansen and Bartoszek 2012; and Chap. 7). Given that these different sources of
error can be translated into different models, selecting among these may also be
performed by model selection. Does a model that considers within-species vari-
ation perform better than a model that neglects such variation? Such simple
questions can be developed further as by applying the general Eq. 12.2, in which
different error structures (e.g., phylogenetic errors and measurement errors, or
measurement error on one trait may correlate with measurement error on another
trait) can be combined in different ways.

For example, when considering intraspecific variation in an interspecific con-
text, we can evaluate at least four models and compare them based on their relative
fit (here, we are only focusing on the main logic; for details on how to take into
account intraspecific variation, see Chap. 7). First, as a null model, we can fit a
model that is defined as an ordinary least squares regression (i.e., with a covariance
matrix for the residuals based on a star phylogeny and measurement errors being
zero). Then, we can investigate a model that does account for phylogeny but not
for the uncertainty in the species-specific trait values (conditioned on the true
phylogeny, while measurement errors are assumed to be equal to zero), and also a
model that considers measurement error but ignores the phylogenetic structure
(unequal and nonzero values along the diagonal of the measurement error matrix,
and a phylogenetic covariance matrix representing a star phylogeny). Finally, we
wish to test a model that includes both error structures (the joint vari-
ance–covariance matrix reflecting the phylogeny and the known measurement
errors). To obtain parameter estimates and to make appropriate evolutionary
conclusions, the observer can rely on the model that offers the best fit to the data as
indicated by the corresponding AIC (but only if one model is unanimously sup-
ported over the others). Such a simple model selection strategy can be followed in
the OPM of Chap. 7. Note that for the appropriate calculation of AIC according to
Eq. 12.1 (and thus for the meaningful comparison of models), it is required that the
number of estimated parameters is determined, which may be difficult when
parameters in both the mean and variance components are estimated. This problem
can be avoided by a smart definition of models (e.g., by defining analog models
that estimate the same number of parameters even if these are known to be zero).
In any case, the approach requires further validation by simulation studies.
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Methods that account for within-species variation can also deal with a situation,
in which different sample sizes (n) are available for different species, implying that
data quality might be heterogeneous (i.e., larger errors in taxa with lower sampling
effort; see Chap. 7 for more details). For example, if within-species variances or
standard errors are unknown, one can fit a measurement error model by using
1/n as an approximation of within-species variance.

Another way to incorporate heterogeneous sampling effort across species into
the comparative analyses is to apply statistical weights in the model. A particular
issue arising in this case is that weighting can result in a large number of models
(with potentially different results). For example, by using the number of individ-
uals sampled per taxon as statistical weights in the analysis, we enforce weights
differing a lot between species that are already sampled with sufficient intensity
(e.g., the underlying sample size is 20 at least) but still differ in the background
research effort (e.g., 100 individuals are available for one species, while 1,000 for
another). However, if we log- or square-root-transform within-species sample sizes
and use these as weights, more emphasis will be given on differences between
lightly sampled species than on differences between heavily sampled species.
Continuing this logic, and applying the appropriate transformation, we can create a
full gradient that scales differences in within-species sample sizes along a con-
tinuum spanning from no differences to large differences between species with
different within-species sample sizes.

For illustrative purposes (Fig. 12.2, left panel), we have created such a gradient
of statistical weights by the combination of the original species-specific sample
sizes (n) and an emphasis parameter (the ‘weight of weights’) that we will label x;
x is simply an elevation factor that ranges from 1 to 1/100 and defines the
exponent of n. If x is 1, the original sample sizes are used as weights in the
analysis. If x is 1/2 = 0.5, the square-root-transformed values serve as weights,
and differences between small sample sizes become more emphasized than dif-
ferences between species with larger sample sizes. x = 1/? = 0 represents the
scenario in which all species are considered with equal weight (n0 = 1), so the
model actually represents a model that does not take into account heterogeneity in
sampling effort. Other transformations on sample sizes based on different scaling
factors that create a gradient can also be envisaged.

Using the parameter x, we provide an example for the study of brain size
evolution based on the allometric relationship with body size (Fig. 12.2 right
panel, the associated R code is provided in the OPM). We have created a set of
phylogenetic models that also included statistical weights in the form of the x
exponent of within-species sample sizes. The scaling factor x varied from 0 to 1.
We challenged these models with exactly the same data using ML; thus, model fit
statistics (e.g., AIC) are comparable. We found that when accounting for phylo-
genetic relationships, the x = 0 scenario provides by far the best fit, implying that
weighting species based on sample size is not important. This finding is not
surprising, given that both traits, brain size and body size, have very high
repeatability (R[ 0.8). Thus, relatively few individuals provide reliable infor-
mation on the species-specific trait values. Giving different weights to different
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species based on the underlying sample sizes would actually be misleading; the use
of different x values leads to qualitatively different parameter estimates for the
slope of interest (Fig. 12.2, right panel). This indicates that the results and con-
clusions are highly sensitive to how differences in sampling effort are treated in the
analysis. Note that the above exercise only makes sense if (1) there is a consid-
erable variation in within-species sample size and (2) if there is no phylogenetic
signal in sample sizes. These assumptions require some diagnostics prior to the
core phylogenetic analysis (see an example in Garamszegi and Møller 2012).

Garamszegi and Møller (2007) relied on a similar approach in a study of the
ecological determinants of the prevalence of the low pathogenic subtypes of avian
influenza in a phylogenetic comparative context. It was evident that there was a
vast variance in sampling effort across species, as within-species sample size
varied between 107 and 15,657. Therefore, when assessing the importance of the
considered predictors, it seemed unavoidable to simultaneously account for
common ancestry and heterogeneity in data quality. The application of the strategy
of scaling the weight factor yielded that, contrary to the above example, the
highest ML was achieved by a certain combination of the weight and phylogenetic
scaling parameters. That finding was probably driven by the relatively modest
repeatability of the focal trait (prevalence of avian influenza), suggesting that, due
to different sample sizes, data quality truly differed among species.

We advocate that the importance of a correction for sample size differences
between species is an empirical issue that can vary from data to data, which could
(and should) be evaluated. We provided a strategy by which the optimal scaling of
weight factors can be determined. In these examples, an unambiguous support could
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Fig. 12.2 The effect of using different transformations of the number of individuals as statistical
weights. The left panel shows how differences between species are scaled when the underlying
within-species sample sizes are transformed by exponentiating them with the exponent x. x
varied between 1 (untransformed sample sizes maximally emphasizing differences in data quality
between species) and 0 (all species have the same weight; thus, data quality is considered to be
homogeneous). The right panel shows the maximized log-likelihood (black solid line) and the
estimated slope parameters of models (red dashed line) for the brain size/body size evolution that
implement weights that are differently scaled by x
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be obtained for a single parameter combination. However, we can imagine situa-
tions, in which more than one model offers relatively good fit to the data, in which
case inference would be better made based on model averaging (corresponding
codes are given in the OPM) instead of focusing on a single parameter combination.
Furthermore, the evaluation of the sample size scaling factor (as well as the
assessment of within-species variance) can be combined with the evaluation of
alternative phylogenetic hypotheses, as the IT-based framework offers a potential
for the exploration of a multidimensional parameter space. Accordingly, each
scaling factor can be incorporated into various models considering different phy-
logenies (or each phylogenetic tree can be evaluated along a range of scaling fac-
tors), and the model selection or model-averaging routines may be used for drawing
inference from the resulting large number of models. Again, the performance of
these methods necessitates further investigations by simulation approaches.

12.3.4 Dealing with Models of Evolution

12.3.4.1 Comparison of Models for Different Evolutionary Processes

Several phylogenetic comparative methods (e.g., phylogenetic autocorrelation,
independent contrasts, and PGLS) assume that the model of trait evolution can be
described by a Brownian motion (BM) random-walk process. However, this
assumption might be violated in certain cases, and other models might need to be
considered. For example, a model based on the Ornstein-Uhlenbeck (OU) process
is another choice that takes into account stabilizing selection toward a single or
multiple adaptive optima (Butler and King 2004; Hansen 1997; see also discussion
in Chaps. 14 and 15). Other model variants of the BM or OU models, such as the
model for accelerating/decelerating evolution (AC/DC, Blomberg et al. 2003) or
the model for a single stationary peak (SSP, Harmon et al. 2010), can also be
envisaged.

Given that we usually do not have prior information about the ‘true’ model of
evolution, alternative hypotheses about how traits evolved could be considered in
statistical modeling. If the considered evolutionary models are mathematically
tractable (there are cases when they are not! see Kutsukake and Innan 2013), they
can be translated into statistical models suitable for a model selection framework.
Accordingly, each model can be fitted to the data, and once finding the one that
offers the highest explanatory power, it can be used for making evolutionary
inferences. This does not only control for phylogenetic relationships, but knowing
which is the most likely evolutionary model can give insight about the strength,
direction, and history of evolution acting on different taxa. Importantly, when
using a model selection strategy in this context, the observer aims at identifying
the single best model that accounts for the mode of evolution; thus, model aver-
aging may not make sense. Therefore, for making robust conclusions, we need to
obtain results in which models are well separated based on their AIC in a way that
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one model reveals overwhelming support as compared to the others. Alternatively,
one could use model averaging to estimate regression parameters (and also to
estimate the parameters of the evolutionary model if parameters of different
models are analogous), thus accounting for the uncertainty in the assessment of the
underlying evolutionary process.

To demonstrate the use of model selection to choose among different evolu-
tionary models, we provide an example from Butler and King (2004), but other
illustrative analyses are also available in the literature (Collar et al. 2009, 2011;
Harmon et al. 2010; Hunt 2006; Lajeunesse 2009; Scales et al. 2009). Butler and
King (2004) re-examined character displacement in Anolis lizards on the Lesser
Antilles, where lizards live either in sympatry or in allopatry. Where two species
coexist, these differ substantially in size, while on islands that are inhabited by
only one species, lizards are of intermediate size. Therefore, one can hypothesize
that body size differences on sympatric islands result from character displacement
(i.e., when two intermediate-sized species came into contact with one another
when colonizing an island, they subsequently diverged into a different direction).
This hypothesis can be evaluated using alternative models of body size evolution
that differ in the degree of how they incorporate processes due to directional
selection and character displacement. The authors, therefore, evaluated five dif-
ferent models: (1) BM; (2) an OU process with a single optimum; (3) an OU
process with three optima corresponding to large, intermediate, and small body
size; (4) another OU model that includes an additional parameter to the three-
optima model to deal with the adaptive regimes occurring on the internal branches
as an estimable ancestral state; and (5) a model implementing a linear parsimony
reconstruction of the colonization events (arrival history of species on the islands).
Only the last model assumes character displacement. These models were com-
pared by different methods including AIC, a Bayesian (Schwarz’s) information
criterion (SIC), and likelihood ratio tests that unanimously revealed that the best-
fitting model was the OU model with the reconstructed colonization events
(Fig. 12.3). Altogether, the results support the hypothesis that character dis-
placement had an effect on the evolution of body size in Anolis lizards that col-
onized the Lesser Antilles.

12.3.4.2 Parameterization of Models

Another way to cope with the mode of evolution and to improve the fit of any
model can be achieved by the appropriate setting of parameters that describe the
fine details of the evolutionary process. For example, BM models can be adjusted
using the parameters j, d, or k that apply different branch-length transformations
on the phylogeny (e.g., j stretches or compresses phylogenetic branch lengths and
thus can be used to model trait evolution along a gradient from punctuational to
gradual evolution, while d scales overall path lengths in the phylogeny and thus
can be used to characterize the tempo of evolution) or that assess the contribution
of the phylogeny (k weakens or strengthens the phylogenetic signal in the data)
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(Pagel 1999). Furthermore, the importance of the rates of evolutionary change in
character states can also be assessed via estimation of the corresponding parameter
(Collar et al. 2009; O’Meara et al. 2006; Thomas et al. 2006). Finally, UO models
also operate with particular parameters (such as a for the strength of selection and
h for the optimum) that can take different values (Butler and King 2004; Hansen
1997, see also discussion in Chaps. 14 and 15).

The parameterization of models is a task that requires the investigator to choose
among alternative models with different parameter settings, which is typically a
model selection problem. This task is usually addressed with likelihood ratio tests,
in which a null model (e.g., with a parameter set to be zero) is contrasted with an
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19.6
18.8
28.8
28.6
23.6
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27.1
13.5
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14.5
14.3
14.2
14.3

BM OU(1) OU(3) OU(4) OU(LP)
–2ln –34.66 –34.66 –40.21 –47.22 –49.69
AIC –30.66 –26.66 –28.21 –33.22 –37.69
LR 0 5.55 12.56 15.03
P 1 0.24 0.028 0.0046

Fig. 12.3 Graphical representation of five evolutionary models considered for the evolution of
body size in Anolis lizards inhabiting the islands of Lesser Antilles. BM Brownian model; UO(1)
Ornstein-Uhlenbeck process with a single optimum; OU(3), OU(4) Ornstein-Uhlenbeck process
with three or four optima, respectively i.g., Ornstein-Uhlenbeck process with four optima, one of
which is an ancestral state; OU(LP) Ornstein-Uhlenbeck process with implementing a linear
parsimony reconstruction of the colonization events, which thus considers character displace-
ment. The table shows the model fit statistics of different models.: deviance, Akaike’s
information criterion (see Eq. 12.1), and likelihood ratio test comparing the given model with the
BM model (LR and the associated P values). Modified from Butler and King (2004) with the
permission of the authors and University of Chicago Press
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alternative model (e.g., with a parameter set to a nonzero value). If the test turns
out significant, the alternative model is accepted and used for further analyses
(e.g., tests for correlations between traits) and for making evolutionary implica-
tions. Another strategy is to evaluate the ML surface of the parameter space and
then set the parameter to the value where it reveals the maximum likelihood (i.e.,
the strategy that most PGLS methods apply). Furthermore, AIC-based informa-
tion-theoretic approaches can be used to obtain the parameter combinations that
offer the best fit to the data.4

However, such a best model approach is not always straightforward. Parameter
states can span a continuous scale, and it is possible that a broad range of
parameter values are similarly likely. For example, the optimal phylogenetic
scaling parameter k is usually estimated using maximum likelihood. This esti-
mation might be robust if the peak of the likelihood surface is well defined (i.e.,
few parameter states in a narrow range have a very high likelihood, while the
remaining spectrum falls into a small likelihood region, Fig. 12.4, upper panels).
Our experience, however, is that the likelihood surfaces are rather flat and vary
considerably if single species are added or removed from the analysis (especially
at modest interspecific sample sizes, Freckleton et al. 2002). This means that a
broad range of parameter values describe the data similarly well (Fig. 12.4, lower
panels), thus arbitrarily choosing a single parameter value on a flattish surface for
further analysis may be deceiving.

We suggest that such uncertainty in parameter estimation can easily be incor-
porated using model averaging. Applying the philosophy that we followed for
dealing with multiple trees or scenarios for the correction for heterogeneous data
quality, we can also estimate the parameters of interest (e.g., ancestral state, slope,
or correlation between two traits) at a wide range of the settings of the evolu-
tionary parameters. Given that IT-based approaches typically compare sets of
discrete models, we need to create a large number of categories for the continuous
parameter (e.g., by defining a finite number, such as 100 or 1,000, bins for k in
increasing order between the interval of 0–1) that can be used to condition dif-
ferent models. Then, inference across this large number of models based on their
relative fit to the data can be made, and given that intermediate states between the
large number of categories are meaningful, interpretations can be extended to a
continuous scale. Therefore, evolutionary conclusions can be formulated based on
the parameter estimates that are averaged across models receiving different levels
of support instead of obtaining them from a single model. In theory, k can be
model averaged as well, but when the maximum likelihood surface is flat (meaning
that many models with different ks will have similar AIC), deriving a single mean
estimate may be misleading. In such a situation, only estimates together with their
model-averaged standard errors (or confidence intervals) make sense.

In the OPM, we show for k how this model averaging works in practice. We
also provide examples for the case when the exercise for model parameters is

4 As long as the number of parameters is equal, AIC and ML reveal the same.
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combined with multimodel inference for statistical weights (Fig. 12.5). We keep
on emphasizing that our suggestions merely stand on theoretical grounds; the
performance of model averaging in dealing with the uncertainty of model
parameterizations awaits future tests (based on both empirical and simulated data).
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Fig. 12.4 Typical shapes of maximum likelihood surfaces of the phylogenetic scaling factor
lambda (k). The upper figures show two examples, in which the surface has a distinct peak and
only a narrow range of parameter values are likely. In contrast, the bottom graphs depict two
cases in which the likelihood surface is rather flat, thus incurring a considerable uncertainty when
choosing a single value. Vertical red lines give the values at the maximum likelihood. For the
illustrative purposes, it is assumed that y-axes have the same scale
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12.3.5 The Performance of Different Phylogenetic
Comparative Methods

The logic of model selection can also be applied to assess whether any particular
comparative method is more appropriate than others. For example, in a meta-
analysis, Jhwueng (2013) estimated the goodness of fit of four phylogenetic
comparative approaches. He collected more than a hundred comparative datasets
from the published literature, to which he applied the following methods to esti-
mate the phylogenetic correlation between two traits: the non-phylogenetic model
(i.e., treating the raw species data as being independent), the independent contrasts
method (Felsenstein 1985), the autocorrelation method (Cheverud et al. 1985), the
PGLS method incorporating the Ornstein-Uhlenbeck process (Martins and Hansen
1997), and the phylogenetic mixed model (Hadfield and Nakagawa 2010; Lynch
1991). Model fits obtained for different approaches were compared based on AIC,
which revealed that the non-phylogenetic model and the independent contrasts
model offered the best fit. However, the parameter estimates for the phylogenetic
correlation were quite similar across models, indicating that the studied compar-
ative methods were generally robust to describe evolutionary patterns present in
interspecific data.
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Fig. 12.5 Likelihood surface when the phylogenetic signal (lambda, k) and the data heteroge-
neity (omega, x) parameters are estimated in a set of models using different parameter
combinations for the brain size/body size evolution in primates (data are shown in Fig. 12.1). The
surface shows the log-likelihoods of a large number of fitted models that differ in their k and x
parameters. These parameters are allowed to vary between 0 and 1 (with steps of 0.01) in all
possible combinations. For a definition of x, see Fig. 12.2
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12.4 Further Applications

So far, we mostly focused on the potential that the IT framework provides in
association with the PGLS framework, when models are fitted with ML. However,
multimodel inference also makes sense in a broader context, and related issues are
known to exist in a range of other phylogenetic situations. We provide some
examples below (without the intention of being exhaustive), but further applica-
tions can also be envisaged. This short list may illustrate that the benefits of
multimodel inference can be efficiently exploited in relation to interspecific data.

A typical model selection problem is present in phylogenetics, when the interest
is to find the best model that describes patterns of evolution for a given nucleotide
or amino acid sequence. As briefly discussed in Chap. 2 (but see in-depth dis-
cussion in Alfaro and Huelsenbeck 2006; Arima and Tardella 2012; Posada and
Buckley 2004; Ripplinger and Sullivan 2008), several models have been devel-
oped to deal with different substitution rates and base frequencies that ultimately
influence the evolutionary outcome. The reliance on different models for phylo-
genetic reconstructions can result in phylogenetic trees that vary in their branching
pattern and the underlying stochastic processes of nucleotide sequence changes
that generate branch lengths. Given that a priori information about the appropri-
ateness of different evolutionary models is generally lacking, those who wish to
establish a phylogenetic hypothesis from molecular sequences are often confronted
with a model selection problem. Accordingly, several evolutionary models need to
be fitted to the sequence data, and the one that offers the best fit (e.g., as revealed
by likelihood ratio test or an AIC-based comparison or Bayesian methods) should
be used for further inferences about the phylogenetic relationships.

An intriguing example for the application of IT approaches in the phylogenetic
context is the use of likelihood methods to detect temporal shifts in diversification
rates. By fitting a set of rate-constant and rate-variable birth–death models to
simulated phylogenetic data, Rabosky (2006) investigated which rate parameter
combination (e.g., rate constant or rate varying over time) results in the model with
the lowest AIC. The results suggested that selecting the best model in this way
causes inflated Type I error, but when correcting for such error rates, the birth–
death likelihood approach performed convincingly.

Eklöf et al. (2012) applied IT methods to understand the role of evolutionary
history for shaping ecological interaction networks. The authors approached the
effect of phylogeny by partitioning species into taxonomic units (e.g., from
kingdom to genus) and then by investigating which partitioning best explained the
species’ interactions. This comparison was based on likelihood functions that
described the probability that the considered partition structure reproduces the real
data obtained for nine published food webs. Furthermore, they also used marginal
likelihoods (i.e., Bayes factors) to accomplish model selection across taxonomic
ranks. The major finding of the study was that models considering taxonomic
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partitions (i.e., phylogenetic relationships) offered better fit to the data, and food
webs are best explained by higher taxonomic units (kingdom to class). These
results show that evolutionary history is important for understanding how com-
munity structures are assembled in nature.

Depraz et al. (2008) evaluated competing hypotheses about the postglacial
recolonization history of the hairy land snail Trochulus villosus by using AIC-
based model selection. They compared four refugia hypotheses (two refugia, three
refugia, alpine refugia, and east–west refugia models) that could account for the
phylogeographic history of 52 populations. The four hypotheses were translated
into migration matrices, with maximum likelihood estimates of migration rates.
These models were challenged with the data, and Akaike weights were used to
make judgments about relative model support. This exercise revealed that the
model considering the two refugia hypothesis overwhelmingly offered the best fit.

In a phylogenetic comparative study based on ancestral state reconstruction,
Goldberg and Igić (2008) investigated ‘Dollo’s law’ which states that complex
traits cannot re-evolve in the same manner after loss. When using simulated data
and an NHST approach (likelihood ratio tests), they found that in most of the cases
the true hypothesis about the irreversibility of characters was falsely rejected.
However, when using appropriate model selection (based on AIC-based IT
methods), the false rejection rate of ‘Dollo’s law’ was reduced.

Alfaro et al. (2009) developed an algorithm they called MEDUSA, which is an
AIC-based stepwise approach that can detect multiple shifts in birth and death rates
on an incompletely resolved phylogeny. This comparative method estimates rates of
speciation and extinction by integrating information about the timing of splits along
the backbone of a phylogenetic tree with known taxonomic richness. Diversification
analyses are carried out by first finding the maximum likelihood for the per-lineage
rates of speciation and extinction at a particular combination of phylogeny and
species richness and then comparing these models across different combinations.

Further examples, e.g., for detecting convergent evolution based on stepwise
AIC (Ingram and Mahler 2013) and for revealing phylogenetic paths based on the
C-statistic Information Criterion (von Hardenberg and Gonzalez-Voyer 2013) can
be found in Chaps. 18 and 8, respectively.

12.5 Concluding Remarks

What we have proposed here are several approaches to exploit the strengths of IT-
based inference in the context of phylogenetic comparative methods. Using IT
methods such as model selection in combination with phylogenetic comparative
methods seems to offer the potential to elegantly solve problems which otherwise
would be hard to tackle. Other IT methods such as model averaging allow dealing
with phylogenetic uncertainty by explicitly incorporating it into the analysis and
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exploring to what extend it compromises certainty about the results. Taken
together, IT-based methods offer a great potential since they relieve researchers
from the need of making arbitrary and/or poorly grounded decisions in favor of
one or the other model. Instead, they allow dealing easily with such uncertainties
or, at least, allow an assessment of their magnitude (among the set of potential
models). Uncertainty is at the heart of our understanding about nature; thus, sta-
tistical methods are needed that appreciate this attribute instead of neglecting it.

We need to stress, though, that our propositions are based on theoretical
grounds and need to be tested before they can be trusted. Particularly, simulation
studies (e.g., along the design in Box 12.1) seem suitable for this purpose since
they allow to investigate to what extend our propositions are able to reconstruct
‘truth’ which otherwise (i.e., in the case of using empirical data) is simply
unknown. Simulation studies are warranted because the use of AIC (and other IT
metrics) to non-nested models (which was largely the case here) is somewhat
controversial (Schmidt and Makalic 2011). Another cautionary remark is that we
refrained ourselves to suggest that only the IT-based model selection can be used
to address the problems we raised. We envisage this discussion to serve as an
initiative for comparative studies to consider the suggested methods as additions to
the already existing toolbox, which yet await further exploitation.

Since the philosophy of IT-based inference is rather different from that of the
classical NHST approach and since the two approaches are quite frequently mixed
in an inappropriate way (e.g., selecting the best model using AIC and then testing
it using NHST), we feel that some warnings on the use of the IT approach might be
useful (particularly for those who were trained in NHST): IT-based inference does
not reveal something like a ‘significance,’ and the two approaches must not be
combined (Burnham and Anderson 2002; Mundry 2011). In the context of our
propositions, this means that at least part of them naturally preclude the use of
significance tests. This is particularly the case when sets of models with different
combinations of predictors and/or sets of different phylogenetic trees are investi-
gated. The end result of such an exercise is a number of AIC values associated
with a set of models. Selecting the best model using AIC and then testing its
significance is inappropriate. Rather, one could model average the estimates and
their standard errors (but not the P values!) or also the fitted values and explore to
what extend these vary across the different trees. Furthermore, one could use
Akaike weights to infer about the relative importance of the different predictors.
However, some of our proposed approaches might not necessarily and completely
rule out the use of classical NHST. In fact, we do not argue against using NHST,
which we regard as a scientifically sound approach if used and interpreted cor-
rectly. What we recommend is to not combine the use of significance tests with
any of the approaches we suggested and draw inference solely on the basis of IT
methods (e.g., Akaike weights or evidence ratios).
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Chapter 13
Simulation of Phylogenetic Data

Emmanuel Paradis

Abstract Simulating phylogenetic data is a powerful tool for evolutionists, but
this can be a complicated task. This chapter gives an overview on the methods to
simulate species traits, particularly on a phylogeny. We show that building from
three fundamental models (Brownian motion (BM), Ornstein–Uhlenbeck (OU),
and Markov chains (MC)), many biologically relevant scenarios can be simulated.
We also review briefly the simulation of phylogenies and the available software for
phylogenetic data simulation (PDS). The online materials give several examples,
including some complex cases, using R.

13.1 Introduction

Biological evolution proceeds over various scales of time, space, and complexity.
It is thus an ideal subject for computer simulation. Phylogenetic data simulation
(PDS) can be fascinating because of its power, but also intimidating because of its
sophistication, which may disconnect it from real biological problems. The goal of
this chapter is to show how recent developments in PDS can be incorporated in the
general framework of the phylogenetic comparative method (PCM) and help to
answer some fundamental biological questions.

13.2 Two Examples

We start with two examples to illustrate how simulations can help in evolutionary
studies. The first one considers the phylogeny of salamanders of the genus
Plethodon as reconstructed by Highton and Larson (1979) and shown in Fig. 13.1.
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These amphibians display several interesting biological features such as having no
lung. Kozak et al. (2009) studied body size evolution of this group by considering
four categories of size. One way to investigate this question is to simulate a
discrete trait along the phylogeny of these salamanders and to look at the patterns
generated under different parameter values. For simplicity, we consider here two
categories of body size and assume that change is equally likely in both directions.
The parameter to be varied here is the rate of change ‘large body’ � ‘small
body’. We can simulate the evolution of body size many times, starting arbitrarily
with ‘large’ as the root state, and examine the frequencies of both states for the tips
of the tree. Figure 13.2 shows the proportion of large-bodied species for three
values of the rate of change. This shows clearly that, if this rate is moderate or high
(0.1 or higher), we should expect both body size categories to be in approximately
equal proportions. Of course, this conclusion holds for any trait or variable
evolving along this phylogeny under the same model. The phylogeny is also a
parameter of the simulation, and our conclusion may not hold for a different one—
this can be checked by running the simulations with a different tree.

This simple example shows that simulations can be used to make theoretical
predictions without the complicated mathematical developments typically used by
theoreticians. Furthermore, this illustrates a fundamental point about prediction
under a probabilistic model of evolution: the frequency of species in a particular
state is a random variable, and simulations give a good picture of its distribution (a
result that would be very difficult to obtain with theoretical equations of this
model).
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60 50 40 30 20 10 0

Fig. 13.1 Phylogeny of 26 species of the genus Plethodon
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The second example has a more statistical motivation: it shows how some
statistical results about PCMs that may be difficult to conceptualize can be illus-
trated easily with simulations (see Chap. 1). We consider the case of two traits that
do not evolve along the phylogeny because, for instance, they are subject to
selection so that closely related species are not likely to be more similar than
distant ones. We want to know the consequences of using Felsenstein’s (1985)
method of phylogenetically independent contrasts (PIC) to analyse these data. The
online materials show an example of R code to perform this task. By repeating
simulations, a large number of times when the null hypothesis is true (no corre-
lation between the two traits), we can estimate the type I error rate of the PIC
method that is the probability to reject the null hypothesis when it is true. Using
10,000 replications, we found that the type I error rates were 0.119, 0.171 and 0.
191, for sample sizes of 10, 50 and 100 species, respectively. This result shows
two things. First, in this situation, the probability of rejecting the null hypothesis
when it is true is substantially higher than 0.05. So, taking into account phylo-
genetic relationships when this should not be done can lead to wrong conclusions.
Second, this probability is higher for increasing sample size. This is again a result
that is not trivial and would be extremely difficult to demonstrate with formal
mathematical developments.

13.3 Traits

Simulating traits on a phylogeny requires a model of evolution. Classically, two
models are used for continuous traits: Brownian motion (BM) and Ornstein–Uh-
lenbeck (OU). For discrete traits, the basic model is a Markov chain (MC). These
three models can be simulated in either continuous or discrete time (Fig. 13.3 and
Box 13.1).

Box 13.2 gives some details on the structure of these three models. It appears
that evolution of a single trait can be simulated using four basic parameters: r2 (the
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Fig. 13.2 Distribution of the proportion of large-bodied species over 1,000 simulations starting
with a large-body root state and evolving along the tree shown on Fig. 13.1
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rate of evolution in the BM and OU models), h (the optimum value of the traits in
the OU model), a (the strength of selection toward h), and r (the rate(s) of change
among states in MC models). The simplest models of trait simulation are thus
defined with one (or three) constant parameter(s). However, from a biological
point of view, it is relevant to be able to vary these parameters in order to simulate
data under biologically relevant scenarios. It is important here to distinguish two
layers of complication of these models.

The first layer considers a single trait and how its parameter(s) of evolution may
vary, suppose we want these parameters to vary among the different branches of a
tree. Typically, a PDS will run successively along the edges of the tree starting
from the root. Continuous-time equations can be used with the branch length as t,
and the value of the trait at a node is passed to the daughter lineages. Therefore,
there is no difficulty in making the parameter values different among the branches.

Box 13.1 Mathematics of PDS

Deterministic Versus Stochastic Simulations.
Classically, two kinds of simulations are distinguished: deterministic
(involving the application of successive equations) and stochastic (involving
random numbers). Some simulations of evolution may be deterministic (for
instance, a model of infinite population with selection), but in the vast
majority of cases, PDS will be stochastic. Figure 13.4 shows an example of
the contrast between the two types of simulation using an OU model. Each
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Fig. 13.3 The three fundamental models of trait evolution simulation in continuous or discrete
time. BM Brownian motion; OU Ornstein–Uhlenbeck; MC Markov chain
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simulation starts from x = 0 and ‘moves’ progressively toward the optimum
value h = 10. This shows that considering stochasticity in the model
depends on the parameter values, of course, but also on the dynamics under
way: stochasticity is less important when x is increasing because the
dynamics here is dominated by the ‘attraction’ toward h.

Continuous- Versus Discrete-Time Simulations.
Time is continuous but the operations on a computer are discrete because
they are treated sequentially by the processor. So considering time as con-
tinuous or discrete in PDS makes sense depending on the context of the
study. Conceptually, a discrete-time model is simpler and may be written in
a generic way as xtþ1 ¼ f ðxtÞ, where x is the simulated variable, and f is a
function. A continuous-time model is more complicated to derive and often
starts from a differential equation that specifies how the simulated variable
changes during a very short time interval dt:

dx
dt

¼ f ðxtÞ :

There are two possible ways to use such a differential equation in a simu-
lation. The first way is to find an analytical solution that will have typically a
form xt ¼ f ðx0; tÞ, where x0 denotes the initial state of x. The second way is
to solve the differential equation numerically, often because it is too com-
plicated to find an analytical solution; in that case, the task is similar to a
discrete-time simulation. Note that ‘time’ is denoted as t in both cases but
they have very different meanings: in continuous time, t is a continuous
variable, whereas in discrete time, t; t þ 1; . . .; are successive time steps (see
Figs. 13.3 and 13.5).

The choice of considering time as continuous or discrete in a simulation
depends on the situation. An important consideration is whether an analyt-
ical equation is available with t continuous. Another important consideration
is whether time (in absolute units, e.g. years) is a crucial ingredient of the
model. There are a number of analytical formulae that can be used in PDS,
some of them are mentioned in this chapter or can be found in the online
materials.

Suppose now that we want to make the parameters dependent on absolute time:
their values will be defined by a function of time. For instance, consider the BM
parameter and assume that it follows a function denoted as s(t). Continuous-time
formulations become more complicated as they require integration over time (e.g.
Molini et al. 2011): if the integral of s is easy to calculate, then there is no

13 Simulation of Phylogenetic Data 339



computational difficulty. If not, such integrals can be evaluated numerically. An
alternative is to consider discrete-time models in which case r2 varies at each time
step (Fig. 13.5). This approach is attractive, especially since continuous-time OU
or MC models are difficult to analyse (see Massey and Whitt 1998). It follows that
a wide range of biologically interesting scenarios can be simulated as a time-
dependent formulation can be applied to several forms of variation (which can be
considered separately or in combination):

• Intrinsic: the parameter values depend on species variables, (body mass, met-
abolic rate, etc.) which themselves change through time.

• Extrinsic: the parameter values are related to global variables (climate) for all
species (or a subset).

• Random: the parameters vary randomly either completely or partially, possibly
with some form or temporal auto-correlation.

The second layer of complication is when considering several traits simulta-
neously. They may evolve independently (involving no additional parameter), or
they may be linked, which will usually be modeled with a covariance function or a
functional relationship. Depending on the number of traits and on the nature of
their links, this may imply one or several additional parameters. Some examples
are given in the online materials http://www.mpcm-evolution.com/.
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Fig. 13.4 How stochasticity changes the dynamics of a simulation. The values of x were
simulated with a discrete-time OU model with h ¼ 10; a ¼ 0:1; x0 ¼ 0, and r as indicated on
each graph (five replications were done). See how stochasticity is more obvious when x � h
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Box 13.2 Basic Models of Single Trait Evolution

The Brownian motion (BM) model has many applications such as modeling
the random walk of particles or the evolution of continuous traits under
random drift. The basic operation of simulating under a BM model is to add
to the value of the trait at time t, xt, a random normal variate with mean zero
and variance r2. This parameter is the only parameter of the BM model and
is often referred to as the rate of evolution in the biological literature.
Clearly, the larger the value of r2 the faster x will change. Because change
occurs in any direction, the expected value of x is equal to the initial value x0

1

(a)

(b)

(c)

2

3

x1

x2 = x1 + ε1→2

x3 = x1 + ε1→3

x1

x3

xt
• xt+1 = xt + ε

•

Fig. 13.5 Simulating a trait x on a tree under a Brownian motion model with continuous or
discrete time. a A portion of a phylogenetic tree showing three nodes numbered 1 to 3.
b Simulation in continuous time: the values of x for the nodes 2 and 3 are generated directly from
their ancestor. The e’s are random variates, following a normal distribution with mean zero and
variance given by the product of the parameter r2 with the corresponding branch lengths (hence
the subscripts). c Simulation in discrete time: the branch lengths are broken down in elementary
time steps, and the trait values are generated by successive applications of the equation, which is
shown here for a single step. The e’s are now random variates, following a normal distribution
with mean zero and variance equal to the rate parameter r2 (t is not involved). It is clear that the
continuous-time version is faster to compute, but the discrete-time one handles easily external
variables, which may change independently of the tree
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while the variance around this expectation is given by r2t so that the
probability to observe xt = x0 decreases when t increases. The covariance
between two tips (i.e., the similarity between the values of x measured on
two species) is given by the product of r2 with the distance between the root
of the tree and the most common recent ancestor of both tips (which mea-
sures the quantity of shared evolution between them).

In the Ornstein–Uhlenbeck (OU) model, change in x is ‘attracted’ toward
a value denoted as h with a ‘strength’ controlled by the parameter a. So there
are two additional parameters compared to the BM model. In discrete time,
setting a = 0 reduces the OU model to the BM model, but in continuous
time, this equivalency works only in the limit for very small value of a
(when a tends to zero) because of a division by 2a (Gillespie 1996). The
covariance between two tips of a tree under this model is given by
r2 expð�adÞ=2a, where d is the distance between both tips measured on the
tree; so, by contrast to the BM model, this does not depend on shared
evolution.

Markov chains (MC) offer a very general framework to model the evo-
lution of discrete traits. Figure 13.3 shows the simplest MC model with two
states (denoted as A and B) and a single parameter so that changes in both
directions A ? B and B ? A occur at the same speed. Here, the parame-
terization differs between the continuous- and discrete-time cases. In con-
tinuous time, the parameter is a rate r with the constraint 0 B r, which
quantifies the fastness of change during a very short time interval (so short
that multiple changes are impossible). The rate matrix Q is built with the
rates, and its diagonal elements are set so that its rows sum to zero. If a
transition between two states is not directly possible, zero is entered in the
corresponding entry of Q. The probabilities of change among the states of
x during a time interval t are calculated with the matrix exponential of the
product Qt. The result of this operation is a matrix denoted as P and its rows
sum to one. In discrete time, this framework does not apply and the
parameter is a probability of change p (0 B p B 1) arranged in a matrix
P whose rows sum to one.

13.4 Trees

The simulation of trees is a vast topic in computer science (Siltaneva and Mäkinen
2002). We shall limit ourselves to the methods and algorithms relevant for PCMs.
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13.4.1 Speciation–Extinction Trees

Simulating trees of various shapes (i.e., focusing on their topology) have received
a lot of interest during the 1980s and 1990s; see the thorough review by Mooers
and Heard (1997). An issue that has received a lot of attention is whether different
models are more likely to generate unbalanced topologies than balanced ones
(Page 1991). Over the last decade, speciation–extinction trees (also known as
birth–death trees) have become increasingly popular as they are more biologically
realistic since they consider the process of successive random speciation and
extinction events over time. The parameters are the speciation and extinction rates
(or probabilities) denoted as k and l.

Box 13.3 gives the rationale behind most algorithms for simulating trees, as
well as drawing some connections with simulation of traits. The methods are
described below in the section on software.

13.4.2 Non-ultrametric Trees

Non-ultrametric trees are often considered when one wants to simulate trees
estimated from molecular sequence data. The rationale behind this method is the
fact that branch lengths in phylogenies reconstructed from molecular data are
assumed to be the product of time and substitution rate (Felsenstein 2004). In that
case, the procedure is to first simulate an ultrametric tree (typically, a birth–death
one) and then transform its branch lengths by multiplying them by the rates of
molecular substitution (Brown and Yang 2011). Unless this last parameter is
constant throughout the tree, the resulting tree will be non-ultrametric.

13.4.3 Trees and Traits Jointly

The joint simulation of traits and trees is a good illustration of how different
approaches can be used and combined. In Paradis (2005), a discrete-time approach
was used to simulate the evolution of a continuous trait that affects speciation
probability. FitzJohn (2012) used a continuous-time approach to simulate the
evolution of a discrete trait that affects speciation and extinction rates: he used a
time-to-event formulation where the events are speciation, extinction, and transi-
tions among states. The following section gives more details on this model and its
variants.
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13.5 Software

Software for PDS can be grouped in two categories: integrated and stand-alone.
Integrated software is part of a set of programs or code devoted to phylogenetics or
evolutionary biology. Stand-alone software has programs that do not need addi-
tional programs to run on a computer. Integrated software for phylogenetics has
become increasingly popular over the last decade, and three computer languages
are now widely used: Perl, Python, and R. However, only the last one offers tools
to simulate traits under almost all models we have seen above. Therefore, we shall
focus on R in this section and mention briefly the tools available in the two other
languages.

Box 13.3 Time-to-Event and PDS

When simulating trees, there is a duality between continuous- and discrete-
time methods. In continuous time, the speciation (k) and extinction (l)
parameters are effectively rates and may be larger than one. Kendall (1948)
studied the behaviour of a general model, where k and l are functions of
time using differential equations. He derived probability formulae for the
distribution of population size (which could be individuals or species). More
recently, Maddison et al. (2007), FitzJohn et al. (2009), and Etienne and
Rosindell (2012) used a similar approach for other models of diversification.
Explicit formulae are different compared to the simulation of traits because
we consider here discrete events (births and deaths). It is interesting to look
at some of its details because this shows how different mathematical tools
appear as different views of the same problem and complement each others.
Suppose an individual (or a species) is exposed to death (or extinction) with
rate l. We can model this situation with a Markov chain since there are two
discrete states with the rate matrix Q given by:

alive dead
alive
dead

�l l
0 0

� �

We remind that the diagonal elements are set so that the rows sum to zero.
Because there is only one possible transition (alive ? dead), the matrix
exponential of Qt can be written directly:

alive dead
alive
dead

e�lt 1 � e�lt

0 1

� �

The top-right term of this matrix is the cumulative density function (CDF) of
the exponential distribution. (The parameter of the exponential distribution
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is usually denoted as k, which we use here to denote the speciation
parameter, or sometimes as h for hazard rate.) Indeed, the probability of
dying at time t is also the probability of surviving until but not after t. Thus,
we find the well-known result that if l is constant, the survival times follow
an exponential distribution with density le�lt (i.e., the derivative of the
CDF). If l varies through time, an integration over t is done similar to what
we have seen in the main text for traits, so the probability of surviving until
at least time t is:

exp �
Z t

0

lðuÞdu

2

4

3

5:

The event considered may not be only extinction but also speciation, so that
these equations can be used to simulate the branch lengths and the topology
of a tree. As above, time dependence in k and l can be included either with
explicit formulae if their primitives can be found, or using numerical inte-
gration (Paradis 2011; Hallinan 2012).

The interesting thing about writing down the relationship between an MC
model and a time-to-event formulation is that it appears how to handle more
complex models (see Sect. 4.3). For instance, Etienne and Rosindell (2012)
considered a model where species are either ‘good’ or ‘incipient’ each with
their own parameters (particularly, they assumed k = 0 for the incipient
species) and used differential equations to simulate phylogenies from it and
derive some formulae.

In the discrete-time setting, k(t) and l(t) are probabilities and what has
been seen above about traits can also be applied to simulation of trees.

13.5.1 Perl and Python

The Bio::Phylo module (Vos et al. 2011) has several functions to simulate trees
under some simple models: birth–death and coalescent models. The simulation is
stopped when a specified number of tips are reached.

The package DendroPy (Sukumaran and Holder 2010) can simulate trees in
discrete or continuous time. The parameters k and l can be constant or vary
randomly at the node of the tree according to a normal distribution with variance
specified by the user. More complex models can be simulated with ‘multiple
stages’ or by extending an existing tree.
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The package Cass provides several functions to generate branching times under
various models of speciation–extinction and different sampling schemes (e.g.
Stadler 2009).

13.5.2 R

By contrast to Perl or Python, authors of R packages have adopted common data
structures to code phylogenetic trees and traits, so inter-operability among those
packages is enhanced. Consequently, a greater variety of tools are available under
this environment. Currently, there are ca. 100 packages available for phylogenetics
with R, though only a few provide tools for PDS. It is difficult to know precisely
‘‘what does what’’ among these packages because most of them are modified
through regular releases. So, the list of functions and tools below is susceptible to
change over time. To keep track of these changes, a list of packages and their main
functionalities is maintained on the Comprehensive R Archive Network (CRAN)
as a ‘Task View for phylogenetics’.1 The online materials provide a number of
examples of PDS with R.

Ape (Paradis et al. 2004) provides three functions to simulate any kind of
trait(s) under any model (Table 13.1). All these functions require a tree as input.
For instance, the command rTraitCont(tr) will simulate a single trait under
a BM model with the rate parameter r ¼ 0:1 along the tree named tr. Several
options of these functions control the model, the parameter values, or whether to
output the values of the trait for the nodes of the tree (they are always output for
the tips). These functions allow us to simulate trait(s) under all models described
above, especially rTraitMult, which can handle several traits (Table 13.2).

Diversitree (FitzJohn 2012) offers a variety of functions to perform joint sim-
ulation of traits and trees (Table 13.3). The basic model is called ‘binary state
speciation and extinction’ (BiSSE) introduced by Maddison et al. (2007). This
model considers a binary trait taking the value 0 or 1 evolving under an asym-
metric Markov model (so the changes 0 ? 1 and 1 ? 0 occur at different rates).
The phylogeny itself evolves with speciation and extinction parameters that
depend on the state of the binary trait. Therefore, this model has six parameters.
This basic model has been extended in several directions, such as the ‘MuSSE’
model where the trait has more than two states, or the ‘QuaSSE’ model where the
trait is quantitative (Tables 13.3 and 13.4). This package includes also several
utility functions to extract information from the output of the simulations (e.g.
history.from.sim.discrete). This helps to visualize the tree together
with the transitions of the character(s).

Ape includes some basic functions to simulate trees (Table 13.5). The function
rtree generates a tree by successive random splits; the branch lengths are

1 http://cran.r-project.org/web/views/Phylogenetics.html
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Table 13.1 Functions to simulate traits on a phylogeny with ape

Function What it simulates Comments

rTraitCont Single continuous trait with BM,
OU or custom model

Fast code for BM and OU models
Parameters can be branch specific
Custom model can be anything

rTraitDisc Single discrete trait with Markov models Any number of states
Total control on the model
Rates can be branch specific

rTraitMult Multivariate models Total control on the model
Any number of traits

Table 13.2 Some options of the functions described in Table 13.1 (C continuous, D discrete,
M multivariate)

Option Value Type of trait(s)

phy The tree CDM
model The model CDM
ancestor Logical value CDM
root.value Value of the trait at the root CDM
sigma r C
alpha a C (model = ‘OU’)
theta h C (model = ‘OU’)
k The number of states D
rates r D
states Labels for the states D
p The number of traits M

Table 13.3 Functions to simulate traits and trees with diversitree

Function What it simulates Comments

tree.bd Tree with k and l constant
tree.yule Id. with l ¼ 0
tree.bisse Tree and a binary trait Uses the BiSSE model
tree.bisseness Id A variant of the BiSSE model
tree.musse Tree and a discrete trait Uses the MuSSE model
tree.musse.multitrait Tree and several discrete

traits
Id

tree.quasse Tree and a continuous trait Uses the QuaSSE model
tree.classe Tree and a discrete trait Uses the cladogenetic SSE

model
tree.geosse Tree and a geographic range Uses the GeoSSE model
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simulated independently (by default from a uniform distribution that can be
changed by the user). rcoal simulates a coalescent tree with constant population
parameter H. Coalescent trees are mostly relevant for population questions, but
this function is a quick way to generate an ultrametric tree with a fixed number of
tips. Two other functions use any model of temporal change in k and l to simulate
birth–death trees in continuous time (as described in Paradis 2011): rbdtree,
which outputs an ultrametric tree with only the lineages surviving until the end of
the simulation, and rlineage, which outputs a tree with all lineages. Both
functions simulate trees on a fixed time.

Another important class of algorithms to generate birth–death trees is based on
conditioning on a fixed value of n. The package TreeSim provides a function,
sim.bd.taxa, to simulate phylogenies with a fixed number of tips, whereas
sim.bd.taxa.age simulates with fixed number of tips and fixed time. It can
also simulate incomplete phylogenies under various sampling schemes (Stadler
2009, 2011).

13.5.3 Stand-alone Programs

A vast number of programs offer the possibility to simulate trees and/or characters,
most of them with limited possibilities (e.g. simulating a tree with constant spe-
ciation and extinction rates, or a trait under a BM model). We limit ourselves to a
few that are interesting in the present context.

Table 13.4 Options of the functions described in Table 13.3. The simulation is stopped when
either ‘max.taxa’ or ‘max.t’ is reached

Option Value

pars Parameters (numerical values)
max.taxa Maximum number of species ‘alive’
max.t Maximum time span of the tree
include.extinct Logical value
x0 Initial value of the trait

Table 13.5 Functions to simulate trees with ape (n number of tips)

Function What it simulates Comments

rtree Non-ultrametric tree n fixed
rcoal Ultrametric tree Assumes H constant; n fixed
rbdtree Ultrametric tree Fossil lineages not output

Simulation ends after fixed time; n variable
rlineage Non-ultrametric tree All lineages output

Simulation ends after fixed time; n variable
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• EREM can simulate a random tree and binary (0/1) characters with a random
model that pertains to the evolution of genomes (mainly insertions and dele-
tions). The parameters can vary randomly along the tree. It is implemented in
Matlab (a C++ version was announced a few years ago). http://carmelab.huji.
ac.il/software/EREM/erem.html.

• EvolSimulator can perform complex simulations of genes and genomes,
including heterogeneous mutation regimes among lineages, variable patterns of
selective pressure across sequences, paralogy, and horizontal gene transfer. It is
implemented in C++. http://acb.qfab.org/acb/evolsim/.

• Phylocom simulates phylogenies in discrete time together with up to five traits
with a pseudo-Brownian motion model. Ancestral competition can be simu-
lated too. It is implemented in C and OS-specific binaries are available for
download. http://phylodiversity.net/phylocom/.

Acknowledgments I am grateful to László Zsolt Garamszegi for inviting me to write this
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Chapter 14
Use and Misuse of Comparative Methods
in the Study of Adaptation

Thomas F. Hansen

Abstract The comparative method can be used to test hypotheses of adaptation
by comparing groups of species that meet different adaptive challenges. This
requires attention to phylogenetic correlations and to historical lags in achieving
adaptation. The modern phylogenetic comparative method has provided some
partial solutions to these problems, but the field has also suffered from a systemic
lack of demand for biological justifications of its statistical procedures. Conse-
quently, assumptions have been made for statistical convenience and are often
inconsistent with the relevant biology. I argue that common comparative tests of
adaptation, including Brownian-motion based phylogenetic linear models and
inferred-changes methods based on reconstructing ancestral states, violate essen-
tial characteristics of adaptation as a biological process. I discuss the requirements
for biologically consistent comparative analysis of adaptation, and I review work
toward this goal.

14.1 Introduction

Ever since Darwin the comparative method has been a major tool for studying
adaptation on macroevolutionary timescales. By comparing species living in dif-
ferent niches or environments, we can look for systematic differences in biological
traits and relate these to functional needs in the environment. Consider deer ant-
lers. The males of most species in the deer family (Cervidae) sport antlers that are
used in sexual displays. These are cast after the mating season and regrown each
year. This pattern suggests an influence of sexual selection. We can construct a
comparative test for the involvement of sexual selection by comparing deer
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species likely to experience different strengths of sexual selection. This can be
based on ecological data on the severity of competition among males for females.
For example, one could compare the size of antlers in species with monogynous
versus polygynous mating systems. In a now classical paper, Clutton-Brock et al.
(1980) did this by comparing the size of antlers across species with different-sized
breeding groups, and they indeed found larger antlers in species with more
competitive mating systems.

There are, however, many difficulties with such analyses. Perhaps the most
fundamental of these relates to the fact that we are working with observational data
and not with controlled experiments. This means that there are usually many
possible interpretations of any one pattern, and many unknown or at least
uncontrolled factors that can influence the result. Hence, it is crucial that com-
parative tests of adaptation are not done in isolation from other biological infor-
mation. Studies have to start from specific hypotheses with a priori biological
motivation, and the truism that hypotheses can only be falsified and not confirmed
is even more to the point in observational than it is in experimental studies. In the
case of antlers, we have a priori reasons to evoke sexual selection, but there are
many different sexual-selection hypotheses to choose among, and even if some
form of sexual selection is operating, it is almost certainly not the only relevant
selective force. The growth of antlers requires considerable resources, and dif-
ferent diets may put different costs on antler growth (Geist 1998). For example,
Geist argued that one factor that allowed the gigantic antlers of the Irish elk was a
mineral-rich diet of willow (see also Gould 1998). Antlers may also be a hindrance
of movement and the costs of this may depend on the habitat (open or closed), the
predation pressure, the shape of the antler, and the size of the animal. Antlers are
also integrated with the rest of the organism. Strong static and ontogenetic all-
ometries exist within species, and the positive evolutionary (among-species)
allometry (Fig. 14.1) that culminates in the relatively huge antlers in large-bodied
species such as the Irish elk could be a non-adaptive side effect of body-size
evolution (Gould 1973, 1974, 1977). Sexual selection may also act on alternative
traits, and because of the positive allometry, large antlers in deer with competitive
mating systems could be a non-adaptive side effect of selection on sexual size
dimorphism. The mating system correlates with body size, and Clutton-Brock
et al. (1980) even suggested that the positive evolutionary allometry of antler size
may be a result of adaptive evolution of larger male bodies in more polygynous
mating systems.

Adaptation is not instantaneous, and the ancestry of the species must be con-
sidered when evaluating its antler traits. For example, although the Irish elk had
relatively huge antlers that may have deviated positively from the evolutionary
allometry, so do the antlers of its closest living relatives, the fallow deers
(Fig. 14.1). Lister et al. (2005) and Hughes et al. (2006) obtained ancient DNA
from the Irish elk and showed that it indeed was related to fallow deers in the
genus Dama (Fig. 14.2). Hence, the antlers of the Irish elk may reflect ancestral
constraints and cannot automatically be assumed to be fully adapted to the
‘‘current’’ environment of the species.
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Such ancestral constraints generate phylogenetic covariance (=phylogenetic
correlation) between species and may thus violate the independence assumptions
of standard statistical methods. This problem came in focus in the 1970s and
contributed to a negative view of species comparison as non-rigorous methods that
could only suggest, but not test, hypotheses. The emergence of so-called phylo-
genetic comparative methods that dealt with this statistical problem was therefore
an important development in evolutionary biology. The foundational paper of
Felsenstein (1985) presenting the method of independent contrasts showed how
statistically correct analyses could be conducted based on a phylogeny with branch
lengths and an assumed model of evolution. Together with rapid growth in the
quality and availability of molecular phylogenetic information, this led to a
renaissance of large-scale comparative studies and in the last decade, we have seen
proliferation of ever more sophisticated methods for comparative analysis (see
Martins 2000; Garland et al. 2005; Cooper et al. 2010; Freckleton et al. 2011;
Nunn 2011; Stone et al. 2011; O’Meara 2012; Pennell and Harmon 2013; and this
volume for some twenty-first century reviews).
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Fig. 14.1 Allometry of antler size against shoulder height in deer based on data from Clutton-
Brock et al. (1980) with the Irish elk added (data from Gould 1974). Allometric curve estimated
from non-phylogenetic least-squares regression on log-scale. The Irish elk (Megaloceros) and its
closest living relative, the fallow deer (Dama), both deviate positively from the allometric
relationship
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Developers of phylogenetic comparative methods have been concerned with
solving statistical problems and have sometimes lost sight of the biological contexts
in which the methods are to be used. Nowhere is this more evident than in the study
of adaptation. For a long time, phylogenetic comparative methods for quantitative
traits were built almost exclusively around a single model of evolutionary change,
the Brownian-motion model, which introduces serious interpretational problems
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Fig. 14.2 Molecular phylogeny for the deer family including the Irish elk based on ancient
DNA. Reprinted from Hughes et al. (2006) with permission from Elsevier
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when it is used to represent adaptive evolution. It is plainly inconsistent with
adaptation toward an optimal state in given niche (Hansen and Orzack 2005).
Starting with Hansen (1997) and Butler and King (2004), alternative methods that
were more appropriate for testing adaptation were proposed, but have only recently
been in regular use. Over the last few years, these methods have seen rapid
development. Here, I review some of these developments and discuss the logic of
and problems with the comparative study of adaptation.

14.2 The Concept of Adaptation

To better understand how the comparative method can be informative about
adaptation, it is useful to clarify how I think about the concept and to outline some
of the different notions of adaptation that have played a role in the comparative
methods literature.

While it is possible to talk loosely about adaptation of a whole organism to a
niche, as in saying that the polar bear is adapted to the arctic, quantitative studies
must focus on specific biological traits. Adaptations are also for something spe-
cific. A trait is an adaptation for some task, X, if it helps perform X. The polar
bear’s white fur is an adaptation for camouflage against the arctic snow if it does
help make the bear less visible and this improves the bear’s fitness. Note that we
may speak of adaptation in this sense even if the relevant task disappears. The
white fur is an adaptation for camouflage against the snow even if the snow
disappears and the species come to exist in a snow-free environment, say the zoo.

While all (genetic) adaptation is due to selection, not all selection leads to
adaptation. A trait may be under selection for a number of reasons, but only
selection causally generated by the success in performing task X will build
adaptation for task X. This observation is related to Sober’s (1984) distinction
between selection for a trait and selection of a trait. A trait Y may be selected
because it is correlated with some other trait under selection. This is called indirect
selection, and while it is a potent mechanism for evolution, it is no more a
mechanism for generating adaptations in Y than non-selective factors such as
genetic drift or gene flow. Furthermore, a trait may be selected for more than one
reason, and selection of trait Y for task Z will not generate adaptation for task
X except by circumstance.

It seems reasonable to expect most traits to be influenced by several sources of
both direct and indirect selection. The antlers of a deer may be under direct
selection for impressing females, but this must be seen against a background of
indirect selection acting on body size and mineral metabolism, and it will have to
compete and interact with direct selection originating in male–male conflict and
predation.

For this reason, I think adaptation is best understood in the context of a balance
of forces. In fields such as behavioral ecology and life-history theory, investiga-
tions often start with the assumption that a trait is optimized by selection, and
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adaptation for task X is studied by asking how variations in the need for X may
shift the position of the optimum (Michell and Valone 1990; Reeve and Sherman
2001). This assumes that there are constrains from other selective forces. By
saying that the shape of the antlers of a deer is adapted to attract females, we mean
that female preferences have been able to shift the optimal antler shape away from
the value it would have had if the females did not care. Note that this makes
adaptation into a question of degree. The antlers may not be, and are indeed not
expected to be, optimal for attracting females. It is enough that the female pref-
erence has some influence on the fitness function of the antlers.

In Hansen (1997), I proposed to understand the comparative study of adaptation
in a similar way. As is done in within-species optimality studies of adaptation, we
can start by assuming that the traits are optimal and then use the comparative
method to compare the position of the optima in different environments. A com-
parative study of deer with monogynous versus polygynous mating systems can
reveal whether antlers tend to evolve toward different states in the two situations.
If they do, this is evidence that the antler optima are influenced by mating system
or some variables correlated with mating system.

This view of the comparative study of adaptation is consistent with the most
common ways of studying adaptation within species, but it differs dramatically
from how adaptation is usually conceived in phylogenetic or historical studies. For
example, there is a cladistic tradition for doing comparative studies of adaptation
based on identifying trait changes and associating these with states or changes in
the environment (e.g., Ridley 1983; Coddington 1988; Baum and Larson 1991;
Brooks and McLennan 1991; Maddison 1994; Larson and Losos 1996). In this
approach, only apomorphisms are candidate adaptations. This view is also
reflected in Gould and Vrba’s (1982) distinction between adaptation and exapta-
tion, where the term adaptation is restricted to traits that have demonstrably
originated due to the adaptive function (also favored by Sober 1984). In contrast,
the broad non-historical concepts of adaptation favored by many, and in practice
used by all, neontologists (Reeve and Sherman 1993) differ by focusing on
whether traits are maintained by selection for the ‘‘adaptive’’ (including exaptive)
function regardless of how the trait originated.

In comparative studies, these different notions of adaptation may lead to dra-
matically different approaches and conclusions. While the historical approach is
limited to identifiable changes (or even apomorphisms), the non-historical
approach will also utilize trait maintenance, absence of change, as evidence of
adaptation (e.g., Williams 1992; Frumhoff and Reeve 1994; Westoby et al. 1995;
Hansen 1997; Price 1997; Reeve and Sherman 2001). To exaggerate, a cladist may
hold that the relatively huge antlers of the Irish elk cannot be adaptations to
anything in the elk’s environment, because the trait is ancestral (i.e., shared with
the fallow deers). The counter argument is that the large-sized antlers must be
adaptations for something because they have been maintained for long periods of
time in balance with obvious selection pressures to reduce them. In Hansen (1997),
I argued that we have comparative evidence for hypsodonty, high-crowned cheek
teeth, being an adaptation to grazing in horses, because the trait has been
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maintained in all grazing horses and it has not evolved in browsing horses. A
cladist may instead say we have little evidence as a parsimony analysis reveals
only a single shift to hypsodonty within this group and this is not sufficient sta-
tistical evidence to draw any conclusions.

Ironically, Gould did not heed his own rallying cry of ‘‘stasis is data’’ when
discussing adaptation.

14.3 The Logical Structure of the Comparative Study
of Adaptation

Sober (2008) points out that comparative studies involve a shift in explanandum
from why a trait has a certain value to why there is a difference between groups in
this value. That is, we shift from trying to explain why the antlers of Irish elk have
an average span of 3 m to explain why polygynous and monogynous deer have
different antler sizes. I want to argue, however, that this shift in explanandum does
not need to entail a shift in explanans. In both cases, the explanation can be based
on the assumption that the trait is at or near an optimum and the explanatory goal
is to identify the factors that determine the positions or differences of optima.

Hansen and Bartoszek (2012) formalized this as follows. Let Y be the state of the
trait we are studying, say antler size, and let us assume that this trait is at or close
to a fitness optimum determined as a function of a number of factors, X, as
Y = f(X1, …, Xm). Assuming we know the function, f, and the exact state of all
relevant factors, we could make a perfect prediction of the position of the optimum.
In practice, however, we can only know, or at least measure, one or a few relevant
factors, and we do not know the exact functional relationship between these and the
optimal state. It is still possible to test hypotheses of adaptation. Let us say we want
to test whether antler size is influenced by sexual selection, and we have obser-
vations of the strength of sexual selection from several species. This could come
from direct measures of variance in mating success or from data on mating systems
and some theory linking mating system to strength of sexual selection (e.g., arguing
that sexual selection on males is stronger in polygynous mating systems). Let X1 be
our measure of strength of sexual selection, and rewrite the model as

Y ¼ b0 þ b1X1 þ r X1; . . .;Xmð Þ; ð14:1Þ

where r(X1, …, Xm) = f(X1, …, Xm) - (b0 + b1X1) are biologically determined
residual deviations from the model. Obviously, these residuals will be different in
different species due to different values of the X-variables. It is still possible to test
the influence of our focal variable X1 by estimating the coefficient b1. This will
give the linear influence of X1 on the optimum. For example, if X1 is taken to be an
indicator of polygynous versus monogynous mating systems, b1 will be the
average difference in optimal antler size for the two mating systems. I want again
to underscore that this does not assume that there is one unique optimum for each
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mating system. Each species has its own optimum, f(X1, …, Xm), determined by
many factors. The comparative method works by identifying systematic effects of
some focal variables above the background noise due to changes in other
unmeasured factors and then testing whether these effects are consistent with
theoretical predictions. If not, the theory should be revised.

Many issues with comparative methods revolve around the model residuals,
which may violate any of the standard linear model assumptions. Because the
residuals depend on biological factors thatmay be shared among related species, they
cannot be assumed to be independent. The residuals may also depend on the focal
factor or on variables that are related with the focal factor. Given that some factors
may also be discrete or of major influence, the residuals are not necessarily normally
distributed. While these problems are serious, they can all be diagnosed and at least
partially dealt with. The focus of the modern phylogenetic comparative method has
been to solve the non-independence problem. We will now look at how this is done.

14.4 Phylogenetic Comparative Methods

Most comparative analyses are standard regression or ANOVA types of analyses
with species trait means as the dependent variable. In this setting, the phylogenetic
comparative method is a standard linear model modified to account for phyloge-
netic correlations in the residuals. Formally, the model can be written as

y ¼ Dbþ r ð14:2Þ

r�Nð0; VÞ ð14:2aÞ

where y is a vector of species observations, D is a design matrix with predictor
variables, b is a vector of parameters to be estimated, and r is a vector of residuals
assumed to be normally distributed with mean zero and, a not necessarily diagonal,
variance matrix, V. If the D and V are specified, generalized least squares (GLS)
estimates can be used to obtain unbiased minimum-variance estimates of the
parameter vector b, and if D and V depend on additional parameters with unknown
values, as they typically do in adaptation models, then so-called estimated GLS,
where the additional parameter values are estimated by maximum likelihood, can
be used (e.g., Martins and Hansen 1997; Chaps. 5 and 6).

While this is straightforward in principle and can also be extended to gen-
eralized linear models such as logistic regression (Martins and Hansen 1997;
Hadfield and Nakagawa 2010; Ives and Garland 2010; Chap. 9), the crux is how to
model the D and V matrices. The standard approach, which forms the basis of
nearly all phylogenetic comparative methods, is to leave the design matrix fixed
and model the covariances in V as proportional to shared branch lengths on a
phylogeny. This is justified if the response and predictor variables jointly follow a
multivariate Brownian-motion process (Felsenstein 1985). In this case, regressions
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of variables on each other are linear and residuals are normally distributed with
covariances proportional to shared branch lengths. This is the basis for the method
of independent contrasts, which may be regarded as an algorithm for implementing
GLS when residual covariances are proportional to shared branch lengths.

It is essential to realize, however, that other evolutionary processes lead to dif-
ferent patterns. Hansen and Martins (1996) give an overview of the phylogenetic
correlation patterns expected under different evolutionary processes, and many do
not provide a simple proportionality of covariance to branch lengths (see Chap. 15).
Furthermore, it is also typical that model residuals have patterns of phylogenetic
signal that are different from the patterns in the data themselves (Labra et al. 2009).

14.5 Problems with the Standard Phylogenetic
Comparative Method

Confusing phylogenetic signal in the data (e.g., the traits) with phylogenetic signal in
model residuals is perhaps the most common error in the application of modern
phylogenetic comparative methods (Fig. 14.3). The core assumptions of indepen-
dence, normality, and homoscedascity that are made in the standard regression and
ANOVA models apply to the residuals from the model and not to the response or
predictor variables per se. Still, it is entirely common to see tests for phylogenetic
signal being conducted on the data and used to justify the use, or not, of phylogenetic
corrections. This is a fundamental error and has no doubt lead to many misappli-
cations of phylogenetic corrections (see Hansen and Orzack 2005; Labra et al. 2009;
Revell 2010; Hansen and Bartoszek 2012 for discussions of the problem).

Figure 14.3a illustrates a common pattern in cross-species regression analyses.
This is essentially the standard textbook illustration of the need for phylogenetic
corrections, but this pattern is in fact totally consistent with the assumptions of
standard non-phylogenetic regression. Even if there is a strong phylogenetic signal
in both the response (y-axis) and the predictor variable (x-axis), there is no indi-
cation of a phylogenetic pattern in the residual deviations. This situation arises
when adaptation is rapid. Then, we do not expect a phylogenetic signal in model
residuals, but if related species tend to occur in similar environments (i.e., having
similar values of their predictor variables), then we still expect a phylogenetic
signal in the response variable. Correcting for phylogeny in this situation is
throwing the baby out with the bathwater.

My impression from the relatively few studies that have reported phylogenetic
signal in model residuals is that this situation is more common than situations with
strong phylogenetic signal in model residuals as illustrated in Fig. 14.3b. If so,
then the application of phylogenetic comparative methods has done more harm
than good in the study of adaptation. Standard non-phylogenetic methods would
usually have been a better choice than methods based on independent contrasts and
the like.
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Furthermore, this problem is but one instantiation of a suite of problems
deriving from a statistically convenient, but biologically unjustified, separation of
‘‘non-phylogenetic’’ adaptation from ‘‘phylogenetic’’ residual deviations. For
example, methods such as phylogenetic autocorrelation (e.g., Cheverud et al.
1985) and phylogenetic eigenvector regression (e.g., Diniz-Filho et al. 1998) are
based on explaining trait variation with one or more descriptors of phylogenetic
distance (e.g., phylogenetic eigenvectors) and analyzing trait–trait or trait–envi-
ronment relations in the reminder. This removes phylogenetically structured
adaptation from consideration. While phylogenetic (and spatial) eigenvector
regressions are useful descriptive tools, they are not well suited for estimating
adaptation (see Freckleton et al. 2011; Diniz-Filho et al. 2012 for debate).

Figure 14.4 illustrates how any adaptive process that is sufficiently slow to
generate a phylogenetic signal in model residuals will also generate systematic
deviations from the optimal state that would manifest as a lag or ‘‘bias’’ in the
mean structure of the model (Hansen et al. 2008; Hansen and Bartoszek 2012;

Fig. 14.3 Sources of phylogenetic effects. The trait Y on the y-axes is adapting to an
environment X on the x-axes, but species A–H deviate from the regression line. In a, the species
are divided into two clades as shown in the phylogeny, and even if both Y and X are associated
with the phylogeny (all species in a clade have the same sign of Y and X values), the residual
deviations, r, from the line are not associated with the phylogeny (species within a clade are
deviating in different directions). In b, the species within a clade are deviating in similar
directions, and a phylogenetic GLS would be appropriate. In a, the phylogenetic effect in the trait
is generated by the association of the trait with a phylogenetically-structured environment, while
in b, it is also influenced by phylogenetically correlated maladaptations. Developed in
collaboration with A. Labra and modified from Labra et al. (2009)
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Bartoszek et al. 2012). This shows that the past history of the predictor variables
should enter into the design matrix, D, and the weighting of the past should match
with the degree of phylogenetic signal in the residual variance matrix, V. If not,
estimates of the optimal relation to the predictor variables will be biased. For
example, estimated regression slopes may be more shallow than the optimal
relation between variables as illustrated in Fig. 14.4a. This means that the standard
practice of modeling residual variance and mean structure separately is inconsis-
tent with evolution toward optimal states. Species simply cannot provide unbiased
information about optimal trait–environment relations at the same time as they
retain ancestral residual correlations with other species (Fig. 14.4b).

Until the mid 2000s, almost all phylogenetic comparative analyses of contin-
uous traits were based explicitly or implicitly on the assumption that model
residuals evolve as an undirected Brownian motion. The Brownian motion has the
property that the expected state of a descendant must equal the state of its ancestor.
Hence, there is no mechanism for a systematic decrease of ancestral discrepancies
between trait and environment. Instead, the degree of maladaptation will increase
gradually through time due to the undirected random changes. Hansen and Orzack
(2005) pointed out that this leads to what they called the problem of inherited
maladaptation. If the tip species live in different environments, then the environ-
ment must have changed somewhere on the phylogeny, and then the change in the
predictor variable implies that the species must jump to a new state where it has
the same residual deviation as it had before. It inherits the maladaptation of its

Fig. 14.4 Maladaptation, optimality, and phylogenetic effects. a How maladaptation flattens the
evolutionary regression. A set of ancestral species (black dots) sit on a line describing the
(primary) optimal relation between the trait and the focal environment. Secondary environmental
changes may shift the species off the line in random directions (horizontal arrows to open dots),
leading to a more shallow ‘‘evolutionary regression’’ (dotted line). The species then undergo
adaptive evolution (vertical arrows), and the evolutionary regression will approach the optimal
regression as the ancestral maladaptation is reduced. b How maladaptation leads to residual
correlation. Two maladapted ancestral species, ‘‘A’’, speciate while evolving toward their
(primary) optimal states. The descendant species, ‘‘D’’, deviate from optimality in a correlated
manner. This correlation disappears as they reach their optima. Inspired by Sober (2008), and
developed in collaboration with A. Labra
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ancestor even when this implies it must jump across or away from its ‘‘optimal’’
state (Fig. 14.5a). This shows that, while the standard model can be used to
estimate the statistical influence of an environmental variable on a trait, it is not a
biologically coherent model of adaptation to fixed optima, and its estimates should
not be taken as estimates of optimal states.
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Fig. 14.5 Stochastic-process models of adaptation along a (two-species) phylogeny. a Evolution
follows a Brownian motion. The ancestral species splits into two (black and gray) at time t1, and
at time t2, one of the sister species (the black) experience an environmental change as its optimum
(dashed gray lines) changes from h1 to h2. In a standard phylogenetic comparative analysis, this
would be modeled by adding the difference (h2 - h1) to the species (as the model is the sum of
the environmentally predicted value and residuals evolving as Brownian motion). Note how this
implies that ancestral maladaptation (DA) must be transferred to maladaptation in the new
environment (DD) even if the ancestral species happened to be close to the new optimum. Note
also how the Brownian motions tend to drift further and further away from the optimum.
Maladaptation is increasing (on average) even in a constant environment. b Same as a except that
the species now evolve according to an Ornstein–Uhlenbeck process around their optima. Here,
the species tend to be pulled toward their optima if they diverge too far, and note how the two
species lose their ancestral correlation much faster than with the Brownian motion. When the
environment changes, the (black) species is gradually pulled toward its new optimum. The
phylogenetic half-life (t1/2 = ln2/a) is the time it takes to get halfway there (on average)
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14.6 Modeling Adaptation

A way to approach the above problems is to base the comparative method on the
Ornstein–Uhlenbeck process in place of the Brownian motion (Fig. 14.5; and see
Chap. 15). The Ornstein–Uhlenbeck process models trait change as a sum of a white
noise and a deterministic pull toward a particular state (the ‘‘optimum’’). Themodel is

dy ¼ �aðy� hÞdt þ r dW ; ð14:3Þ

where dy is the trait change in a time interval dt, h is the ‘‘optimum,’’ and the dW is
independent normally distributed random variables with mean zero and variance
proportional to dt (i.e., a white noise). The parameters a and r describe, respec-
tively, the strength of the pull toward the optimum and the standard deviation of
the stochastic changes. If a is zero, the pull to the optimum disappears and the
Brownian motion is regained.

In Hansen (1997), I proposed a solution to the above problems based on
assuming that the predictor variables acted on the optimum, h, and thus only
indirectly on the trait. Hence, the focus of estimation was shifted from the direct
relationship between trait and environment and on to the relationship between the
environment and the optimal state. In this way, species are allowed to be influ-
enced by past environments, to lag behind their current optimal state, and to
deviate in manners consistent with the deviation of their relatives. In the simplest
cases, the model predicts that past environments have an influence proportional to
an exponential function of the elapsed time since the environment occurred
multiplied by a and that the covariance between related species is proportional to
the exponential of the time separating them multiplied by a. The exact equations
for this and various extensions of the model can be found in Hansen (1997) and
Hansen et al. (2008).

This setup aligns the comparative method with within-species optimality
studies of adaptation. In both cases, adaptation is studied as the influence of
variables on an assumed optimum. As I argued above, the main reason why species
trait means are different is because they evolve around different local optima
determined by many factors. Optimality studies are concerned with testing the
effects of one or a few variables on the optimum, and residual deviations are
mainly due to the fact that we cannot know all relevant variables. This means that
residual deviations are not due to maladaptation in the general sense, but reflect
‘‘maladaptation’’ relative to a focal selective agent under study. To make this
distinction explicit, I introduced the concept of a primary optimum, defined as the
average optimum reached by a number of species evolving in the same niche for
sufficient time to allow ancestral constraints to disappear (Hansen 1997). This term
was inspired by Simpson’s (1944) concept of a primary adaptive zone. The idea is
that the niche or adaptive zone is described by one or a few factors, say the grazing
adaptive zone being defined by using grasses as major food source. The hypothesis
that a trait, say hypsodont teeth, is an adaptation to this niche would then predict
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that the primary optimum for tooth crown height of grazers is different from the
primary optimum of other dietary niches. The local optimum of particular species
in this niche may deviate from the primary optimum due to differences in
secondary variables that do not enter the niche definition, say body size, skull
shape, or the availability of alternative food sources, but if the trait is significantly
influenced by the primary niche, then we predict systematic differences between
the primary optima.

More specifically, our approach starts as a linear model of the primary optimum,
determined by one or a few predictor variables that will differ across species or parts
of the phylogeny. It then uses an Ornstein–Uhlenbeck model for evolution around
this, not necessarily constant, primary optimum. The simplest setup is to map dif-
ferent niches onto a phylogeny and then estimate the value of the primary optimum
in each of these niches. If hj is the value of the primary optimum in niche j, Hansen
(1997) showed that the predicted trait value for species i is

ŷi ¼ c0iya þ c1ih1 þ c2ih2 þ � � � þ ckihk; ð14:4Þ

where ya is the ancestral state at the root of the phylogeny, and the coefficients cji
represent the influence of environmental state j on species i. Each period in the
species’ past history that was associated with a niche contributes a term e�ate �
e�atb to the coefficient of that niche with te and tb being the times back to the end
and the beginning of the period. Hence, each coefficient cij is the sum of such terms
for each period in which the species i was associated with niche j. The coefficient
coi equals e�atr , where tr is the time back to the root of the phylogeny. Hence, all
coefficients are between zero and one, and they sum to one. The coefficient cor-
responding to a particular environmental state will be large when the species has
spent a lot of its history associated with this state, but more recent associations are
weighted more heavily than more ancient ones. The larger the rate of adaptation, a,
the more the weighting is shifted toward recent environments, and when a
approaches infinity, then only the current environment is weighted and the model
converges on a standard non-phylogenetic linear model.

There are many variations and extensions of this basic model. Butler and King
(2004) developed a method for evaluating and comparing different niche
arrangements with information-theoretical criteria. See also Ingram and Mahler
(2013) for further extensions (Chap. 18). This is useful because the Achilles heel
of the method is the need for reconstructing the niches on a phylogeny. The test of
adaptation relies on the reconstruction of the historical past, and as I will discuss
below, ancestral-state reconstruction is often unreliable and prone to systematic
biases in the absence of true historical information. Hansen et al. (2008) presented
another approach to deal with this problem based on assuming a model of
evolution for the predictor variables and then using only tip-species observations
as data. Their model relied on Brownian motion for the predictors and is thus only
applicable to continuous predictor variables, although is possible to combine this
with discrete reconstructed niches in ANCOVA types of models for the primary
optimum (Escudero et al. 2012; Voje and Hansen 2013). Extensions to randomly
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evolving discrete predictors (e.g., discrete niches) based on simple Markov chain
models are possible, but have not yet been developed. Bartoszek et al. (2012)
extended the method to multivariate response variables that can both influence
each other’s primary optima and be stochastically correlated. A special case of the
Bartoszek et al. (2012) model extends Hansen et al. (2008) by allowing predictor
variables to follow an Ornstein–Uhlenbeck model. Beaulieu et al. (2012) extended
the method in a different direction by allowing not only the optima but also the
a-parameter and r-parameter to differ among reconstructed niches. This allows
testing of niche- and clade-dependent rates of adaptation and evolution in a quite
general and flexible manner (Chap. 15). See also Lajeunesse (2009) for imple-
mentation of the method into a meta-analytic framework.

It is important to understand that little is gained by just using the Ornstein–
Uhlenbeck process to model the variances and covariances in the residual V matrix
as done in many studies and implemented in some software. This simply trans-
forms the form of the relationship between covariance and phylogeny and does not
capture the effects of species tracking optima throughout the phylogeny. It does
not adequately address any of the above-mentioned problems, which derive from
the artificial separation of adaptation and residual deviation.

14.7 Using the Method to Study Adaptation of Deer Antler
Size

For illustration, I present some analyses of a data set on deer antler size from Plard
et al. (2011) and also analyzed by Bartoszek et al. (2012). The basic data are
measures of antler length in 32 species from the deer family (Cervidae), and to test
the hypothesis that antler size is influenced by sexual selection, we use a classi-
fication from Clutton-Brock et al. (1980) of the mating system into large, medium,
and small breeding groups. The idea is that there will be stronger sexual selection
in the large breeding groups. The small breeding group is close to monogynous
systems. In Fig. 14.6a, we see a parsimony mapping of the breeding-group systems
on a phylogeny. I used the program Slouch (Hansen et al. 2008) to run an analysis
with log antler length as response variable and breeding-group-size niche as a
predictor variable with three states. The estimated primary optima for antler size
corrected for body mass are shown in Fig. 14.6b. They indicate a strong effect in
the predicted direction, and the results are consistent with sexual selection being
important. The phylogenetically corrected R2 is 41 % after body size is corrected
for and 87 % for the whole model.

These estimates are conditional on the best estimates of the a-parameter and
r-parameter of the Ornstein–Uhlenbeck model. Figure 14.6c shows the likelihood
surface for these parameters that to aid interpretation have been transformed to two
new parameters: t1/2 = ln2/a and vy = r2/2a. The phylogenetic half-life, t1/2, is the
average time it takes to evolve half the distance from the ancestral state towards an
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optimum in a new niche as illustrated in Fig. 14.5b. The stationary variance, vy, is
a measure of how much the trait tends to deviate from the primary optimum when
evolution has come to a stochastic equilibrium. The likelihood function peaks at a
half-life of t1/2 = 7 % of time from tip to root of the phylogenetic tree. Hughes
et al. (2006) estimated that the most recent common ancestor of the Cervidae lived
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Fig. 14.6 Analyzing adaptation of antler size to breeding-group size using Slouch. aMapping of
small, medium, and large breeding groups as ‘‘niches’’ on the phylogeny (reprinted from
Bartoszek et al. 2012 with permission from Elsevier). b Estimated primary optima for log antler
length on the three breeding group sizes given as regressions on log body mass. The slope on log
body mass is 0.61 ± 0.18 (±standard error), and the intercepts for the small, medium, and large
breeding groups are, respectively, 2.55 ± 0.56, 3.48 ± 0.83, and 3.71 ± 0.90. The model
explains R2 = 87 % of the variance. c Log-likelihood surface for phylogenetic half-life t1/2 and
stationary variance, vy for this model. The best estimates are t1/2 = 0.07th and vy = 0.16. d Log-
likelihood surface for the same parameters from a model with only an intercept. The best
estimates here are t1/2 = 2.4th and vy = 3.6, but the surface has a ridge that extends outward to
infinity indicating that the phylogenetic effect is indistinguishable from the pattern expected from
Brownian motion. Note different scales from c. Flat areas in the likelihood surfaces correspond to
parameter values for which the log-likelihood is more than two units worse than the best estimate.
Data for analysis originally from Plard et al. (2011)
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between 16 and 23 million years ago. Taking this into account, the half-life is
between t1/2 = 1.1 and t1/2 = 1.6 million years. While this corresponds to a
considerable lag in adaptation from a microevolutionary perspective, it is practi-
cally undistinguishable from instant adaptation on the timescales of this phylog-
eny. Instantaneous adaptation (t1/2 = 0) has only marginally lower likelihood. We
can exclude long half-lives, however. The log-likelihood has dropped about two
units when the half-life has reached 30 % of the distance from root to tip, which
may be described as a moderate phylogenetic effect.

Now consider Fig. 14.6d, which shows the log-likelihood surface for t1/2 and vy
for a model with only an intercept (i.e., no predictor). In this case, the phylogenetic
half-life measures the phylogenetic signal in the trait (log antler size) as opposed to
in the model residuals. The best estimate of the half-life in this case is 2.4 times the
time back to the most recent common ancestor of the Cervidae, or between 38 and
55 million years. Half-lives that are much longer than the time back to the com-
mon ancestor are essentially indistinguishable from the pattern of a Brownian
motion, which has a half-life of infinity. Consequently, the likelihood surface in
Fig. 14.6d has a long ridge that extends out to infinity with only a microscopic
drop in likelihood. In contrast, zero half-life is here soundly rejected (about 8 log-
likelihood units worse). Hence, if we look at antler size in isolation, we see a
pattern that resembles Brownian motion, and any conventional check for phylo-
genetic signal would be consistent with the use of a standard phylogenetic method
as the independent contrasts. Looking at the phylogenetic signal in model residuals
in Fig. 14.6c, however, shows that this would be a serious mistake. The weak
phylogenetic signal in the residuals means that a non-phylogenetic analysis would
be close to optimal. The reason why this happens is that antler size tracks predictor
variables with strong phylogenetic effects (as seen in Fig. 14.6a) and thus inherits
this phylogenetic signal even if there is little phylogenetic signal in the residual
deviations. This is precisely the situation that was illustrated in Fig. 14.3a.

Although consistent with a strong effect of sexual selection on antler size, the
fitted model is crude. The characterization of the breeding group niches is quali-
tative, the reconstruction of niches on the phylogeny is almost certainly seriously
inaccurate, the phylogeny itself is inaccurate (cmp. Figure 14.2 with Fig. 14.6a),
and the antler- and body-size measurements have unknown measurement error. It
is indeed remarkable that the model explains so much of the variance. Bartoszek
et al. (2012) give a more detailed analysis of the same data. There, antler size and
sexual size dimorphisms are analyzed together as coevolving variables based on a
multivariate Ornstein–Uhlenbeck process around niche-dependent optima. This
analysis shows that antler size and sexual size dimorphisms are not coevolving in
the sense of influencing each others’ primary optima, but they show correlated
evolution in their stochastic deviances that must be due to correlations in some
secondary variables, and their primary optima depend on breeding group size in
the predicted manner.
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14.8 Interpreting the Parameters
in the Ornstein–Uhlenbeck Model

Lande (1976) showed that the Ornstein–Uhlenbeck process could be derived from
a simple model of quadratic stabilizing selection and genetic drift, and this is
sometimes used to justify and interpret the parameters in the comparative method.
Under this interpretation, the a-parameter becomes equal to the product of additive
genetic variance and the curvature of the stabilizing selection function and the r2

parameter becomes equal to the additive variance divided by the effective popu-
lation size. This is on a generational timescale, however, and on the million-year
timescales that usually separate distinct species, the rates of evolution that can be
predicted from estimates of evolvability and strengths of selection are so high as to
be essentially instantaneous (Hansen 2012).

The conclusion from this is that evolution on a fixed fitness surface is usually so
rapid that we do not expect any ancestral effects or any similarity of related species
beyond what is due to similar positions of their adaptive optima. We know,
however, that related species are similar, and this requires an explanation. A clue
to explanation may be to ask why a primary optimum may not be reached
instantaneously.

A possibility suggested by Hansen (1997) was based on Simpson’s (1944) idea
that primary adaptations may be slow due to the need to establish a number of
secondary adaptations before it can reach its fullest expression. This idea is per-
haps most clearly expressed by Kemp (2006, 2007), who referred to it as the
correlated-progression hypothesis. Here, we imagine the focal biological trait as
embedded in a complex network of coadapted interactions with other traits. Any
large change in a focal trait is thus unlikely to be beneficial due to internal
selective constraints even if there is external selection to change it. A small change
may, however, be beneficial on balance, and this will set up selection on other trait
to adjust to this small change, which will again make possible a further change in
the focal trait, and so on. Thus, external directional selection on a trait (or suite of
traits) may result in a slow correlated progression. On this view of evolution, a
small a-parameter may result from strong internal selective constraints. This point
is discussed in more detail in Labra et al. (2009) and Hansen (2012).

The definition of the primary optimum as an average optimum over repeated
reruns of evolution in a given niche assumes that evolution in the niche tends to
evolve around this optimum. It does not capture cases with two or more distinct
centers of attraction, as with distinct alternative strategies or disruptive selection
where more extreme alternatives are favored. We may, however, extend the
concept to cover niche-dependent trends of evolution. A primary trend may be
defined as the average directional rate of evolution over repeated reruns of evo-
lution in the given niche. In the Ornstein–Uhlenbeck model, this manifests itself in
cases where a long phylogenetic half-life is combined with primary optima that are
far outside the range of among-species variation. In this case, the average direc-
tional change per time is equal to ah, and the trends can thus be estimated by
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multiplying the estimated primary optima with the estimated a-parameter. In these
situations, the model behaves like a Brownian motion with niche-dependent trends
(see Hansen 1997).

14.9 Software and Applications

These adaptation methods have now been used in many studies and are at least
partially implemented in several software packages. The popularity of the methods
is to a large degree due to Butler and King’s (2004) R package Ouch, which can
estimate optima in fixed niches mapped onto a phylogeny and assess the fit of
different niche arrangements. Later, several other packages with complementary
functionality have been developed. Slouch, originally developed by Hansen et al.
(2008) to fit the model with randomly evolving predictor variables, has also been
extended to handle fixed niches mapped on the phylogeny combined with random
effects. It differs from Ouch by using different parameterizations of the model (t1/2
and vy in place of a and r2) and by using a grid search in place of a numerical
optimization algorithm. The latter is an advantage in that it makes the uncertainty in
parameter estimation more apparent and guards against convergence on suboptimal
peaks in the likelihood, but a disadvantage with large numbers of species, as it can be
slow and cumbersome to use. Slouch can also be used to correct for known obser-
vation variance in both response and predictor variables. Beaulieu et al’s (2012)
Ouwie allows not only the primary optima but also the a-parameter and r-parameter
to depend on niches, and is hence useful for estimating environment-dependent rates
of evolution and adaptation (in this respect, it extends Brownie, O’Meara et al.
2006). MvSlouch (Bartoszek et al. 2012) allows several traits to evolve around a
multivariate primary optimum determined by fixed niches or other randomly
evolving variables. A restricted multivariate model can also be fitted by Ouch. The
multivariate models are very parameter rich, however, and their application is
technically difficult and requires much data and well-specified hypotheses to con-
strain the number of parameters. The program Surface (Ingram and Mahler 2013)
includes routines for identifying and comparing models of convergent evolution
based on alternative niche reconstructions on the phylogeny (Chap. 18). Versions of
the model can also be fit by the programs Ape (Paradis et al. 2004), Brownie
(O’Meara et al. 2006), Compare (Martins 2004), and Geiger (Harmon et al. 2008).

I am aware of more than 70 published applications of these methods, which will
be reviewed elsewhere (Hansen, Pienaar, Voje, Bartoszek in preparation). The
main impression is that most of these studies are able to find evidence of adap-
tation in that they can convincingly reject alternative non-adaptive models and
provide parameter estimates in accordance with a priori expectations from the
adaptive hypothesis. Importantly, adaptation is also sometimes rejected. For
example, Labra et al. (2010) found no signs that the size of the parietal (third) eye
was adapted to any climatic or thermophysiological variables in a lizard genus
(Liolaemus), thereby providing evidence against long-standing hypotheses of
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thermobiological functionality for this organ. It is commonly found that adaptation
is fast enough to produce none to mild residual phylogenetic correlations, but this
is not always the case, and it remains necessary to consider phylogeny. The
standard phylogenetic comparative model would, however, only have been
appropriate in a small minority of cases and would then also need to be reinter-
preted in terms of estimating trends. A recurring problem with many of these
studies is the failure to report parameter estimates, or reporting them without units.
This limits the possibility for interpreting and generalizing from this body of work.

14.10 Testing for Adaptation in Qualitative
(Categorical) Traits

The study of adaptation has always been one of the major uses for comparative
methods. Most usage is simply looking for predicted associations between traits
and environments without controlling for phylogeny, or based on phylogenetic
corrections that are not justified with appropriate process models. Either of these
approaches may be informative in a qualitative sense, but falls short of delivering
logically consistent quantitative estimates of precisely defined parameters. For
continuous quantitative characters, the explicit adaptation models are now suffi-
ciently well developed to fill the need.

The situation is less clear for qualitative traits. Although there are stochastic-
process models appropriate for categorical traits, there has been no discussion of
how to parameterize adaptation along the lines I discussed above. Simple Markov-
chain models can be used to estimated the intensities (probabilities per time) of
change between states of a variable as a function of the state of another variable
(e.g., Pagel 1994), and this allows tests of adaptation in similar ways as above
(e.g., Hansen and Orzack 2005). In particular, maintenance of a trait A in the
presence of environment B can be used as evidence of adaptation of trait A to
environment B. Armbruster (2002) used this method to test whether bract color
(green/white vs. pink/purple) in Dalechampia blossoms depended on type of bee
pollinator (euglossine vs. megachilid). He found no support for this in a study of
37 species. He did, however, find support for an influence of vegetative colors on
the evolution of bract colors, concluding that bract colors may be changing due to
indirect selection stemming from a pleiotropic relation to stem pigments.

In analogy with the adaptation model for continuous traits, one could define
adaptation as a systematic niche-dependent effect on the rates of transition
between states, or equivalently, on the equilibrium probabilities of the states. This
could be done directly in a generalized linear model setup or indirectly by allowing
the categorical trait to be a threshold function of an underlying continuous variable
that itself follows the adaptation model, but such models remain to be developed.
Felsenstein (2012) has shown how a threshold model on traits evolving as
Brownian motion can be fit to discrete comparative data, and it should be possible
to extend this to Ornstein–Uhlenbeck models (see also Chap. 16).
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14.11 Ancestral-State Reconstruction
and Inferred-Changes Methods

Perhaps the most common comparative test of adaptation is to reconstruct char-
acter and environmental states on a phylogeny and then use these as data in various
statistical analyses. In the cladistic tradition, this is done by inferring trait changes
with parsimony methods and then using these inferred changes as data in sub-
sequent analyses (Maddison 1994). Ancestral states and changes can also be
inferred by assuming specific evolutionary process models such as Brownian
motion or Markov chains (Martins and Hansen 1997; Schluter et al. 1997) and then
either the reconstructed states at nodal values or the inferred changes along
branches can be used as data in subsequent analyses.

Unfortunately, inferred changes on a phylogeny are poorly suited for statistical
analysis (Frumhoff and Reeve 1994). In the cladistic tradition, inferred changes are
treated as independent evolutionary events, and it is assumed that using them as
data solves the phylogenetic correlation problem that arises when using species
data. Ridley (1983, p. 18) makes this argument explicit when he writes ‘‘To
recognize independent evolution is to distinguish primitive from derived character
states. Derived characters are independently evolved characters.’’ From this, he
proposed a research strategy for testing adaptation based on using inferred changes
from primitive to derived character states as independent data in statistical ana-
lyzes. In my opinion, his argument is mistaken in two interesting ways.

The first and most obvious problem is that the inferred changes to be used as
data are not the actual changes that have happened in the history of life, but
estimates thereof. Even if the true changes could be regarded as independent
evidence, the estimates cannot. Inferred changes based on parsimony (or any other
method) are not independent of each other. Whether a change is inferred to have
happened on a particular branch in the phylogeny depends on what changes are
inferred on other branches. Using inferred changes as data in non-phylogenetic
statistical analysis will seriously violate the assumptions of independent sampling
and is likely to give misleading information about evolution.

If the ancestral states are inferred from a statistical model such as a Markov
chain or a Brownian motion, then it is possible to derive the joint statistical
distribution of the inferred changes including their variances and covariances
(Martins and Hansen 1997). This makes it possible to use them correctly in sta-
tistical analyses that take account of covariance and heteroscedacity. Doing this,
however, reveals a fundamental circularity of the inferred-changes approach. First,
a model is assumed and parameters may be estimated to infer the changes, and
then, the inferred changes are used to make inferences about evolution. It is clear
that those inferences are constrained to reflect the assumptions of the model used
to infer the changes. For example, a set of ancestral states reconstructed from
extant species data by assuming a Brownian-motion process will have the same
average as the extant species. Hence, one will observe that there is no temporal
trend in the (inferred) data, but this is just recovering a property of the assumed
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model and does not constitute evidence against evolutionary trends. More subtle
errors of this sort are hard to avoid. In any case, the likelihood principle of
statistics tells us that given an evolutionary process model, then all the information
about its parameters is contained in the probability of the observed data given the
model (i.e., in the likelihood function). From this, it follows that reconstruction of
ancestral states can never provide any information that cannot be obtained by a
standard likelihood analysis of the observed tip species. The best that can be hoped
from an inferred-changes method is a roundabout way to construct a likelihood
function, and I am not aware of a single application that has achieved even that.

In addition to the statistical problem of using inferred changes as if they were
true changes, there is also an interesting biological problem with Ridley’s rea-
soning. It concerns his assumption that the true changes from primitive to derived
character states can be treated as independent observations of an evolutionary
process. The problem with this can be seen from our model (14.1) of how a trait is
determined by a number of observed and unobserved factors. The model was:
Y = b0 + b1X1 + r(X1, …, Xm). If a change on a branch happens because the
focal variable, X1, changes with an amount DX1, then we may predict a change
DY = b1DX1, which would be independent of changes on other branches provided,
and this is the problem, provided that there are no correlations between branches in
the changes of secondary variables that make the residuals. If, due to some
inherited common biology, X2 has a tendency to increase in one part of the phy-
logeny, then the residuals from a regression of DY on DX1 will tend to be similar in
this part of the phylogeny. Put in other words, evolutionary changes in different
parts of a phylogeny are expected to be correlated for exactly the same reason that
species trait values in different parts of the phylogeny are expected to be corre-
lated. The underlying reason is that both states and changes are dependent on
shared third variables inherited from a common ancestor. This is also the reason
why pairwise contrasts on a phylogeny cannot be taken to be independent except
under specified precise assumptions about the underlying evolutionary process,
such as in the derivation of independent contrasts from a multivariate Brownian
motion. For example, it can be shown that independent contrasts are not inde-
pendent if the species data were generated by an Ornstein–Uhlenbeck process.

In molecular evolution, the reconstruction of ancestral genes and proteins is
becoming increasingly popular. This approach has an advantage over the recon-
struction of higher level physiological, morphological, behavioral, and life-history
traits in that molecular reconstructions are based on models of evolution that are
better understood and delineated. Still, the fundamental problems are the same,
and reconstructed genes and proteins should not be used to test laws of adaptation.
Also here, the principled approach would be to estimate parameters of defined
models based on extant species data without the vivid but statistically unnecessary
pass through a reconstructed ancestor.
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14.12 A Measurement-Theoretical Perspective
on Comparative Methods

Measurement is the assignment of numbers to attributes of reality. Measurements
are valid when relations among the numbers reflect relevant relations among the
attributes of reality. Only then can inferences made from the numbers lead to
meaningful inferences about nature. Measurement theory is the study of the
mapping from reality to numbers. Houle et al. (2011) pointed out that a mea-
surement-theoretical perspective has been lacking from biology and argued that a
large number of common problems, ranging from relatively obvious errors such as
ignoring units or using p values as measures of effect to more subtle problems
involving violations of scale type or making statistical manipulations that violate
the theoretical context of the study, can be diagnosed as violation of measurement-
theoretical principles.

Comparative studies are extremely vulnerable to such problems because there is
a need to simultaneously handle difficult statistical problems, error prone data of
heterogeneous origin, and quantification of poorly understood theories of evolution
on long timescales. The drive to solve statistical problems can easily come into
conflict with studying meaningful biological relations, and without a firm grasp of
the meaning of measurement, it is easy to loose the biological baby with the
statistical bathwater.

An undercurrent of this essay has been that the statistical laundering that took
place with the development of phylogenetic comparative methods has also
weakened the connections to biology, and particularly so in the treatment of
adaptation. I have argued that the assumption of evolution as Brownian motion has
fundamental incompatibilities with adaptation in the sense of evolution toward
niche-dependent optima. The Brownian-motion assumption arose from the need to
model interspecies covariances as shared branch lengths so as to be able to use
GLS techniques without having to estimate extra nuisance parameters in the
variance matrix. This implicitly assumes that the effects of adaptation could be
separated from the residual covariances and that the estimated parameters in
regression and ANOVAs could be interpreted in the same way as they would in
non-phylogenetic analyses. As shown above, the meaning of these parameters
change. For example, the regression slope becomes influenced both by the optimal
relation and by the expected evolutionary lag (Fig. 14.4).

Evolutionary regression studies are often conducted in a descriptive statistical
manner without quantitative links to the theory that motivated the study. A
qualitative prediction of, say, a positive relationship between two variables may
motivate the study, but the context of this prediction is often not used to inform or
constrain the statistical procedure. When statistical manipulations are decoupled
from theoretical context, this will often lead to measurement-theoretical problems.
Using interspecies trait covariances in place of residual covariances needs justi-
fication, and even if such justification can be derived in some cases, as when all
variables follow a joint multivariate Brownian motion, it is typically incorrect, as
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discussed above. I suspect this mistake was allowed to proliferate to such a degree
because there was no demand to formally justify statistical methods and proce-
dures from biological assumptions. I will now briefly discuss two more examples
where statistical arguments void of biological justification have lead to serious
errors in comparative studies.

One case concerns the estimation of allometric relationships, which is important
both as a goal in itself by testing hypotheses about scaling relationships and
functional adaptations, and due to its widespread use in controlling for body size.
While essentially all theory about allometric scaling refers to a power relation
between variables (i.e., Y = aXb, where Y is a trait and X is usually a measure of
body size, as in Fig. 14.1), there appeared in the 1970s a verbal broadening of the
term allometry to describe all kinds of nonlinear trait relationships. This lead to a
curious situation where predictions derived from or about allometry in the narrow
sense of a power relationship were tested with statistical methods incompatible
with the power relationship. For example, the allometric exponent b is traditionally
estimated from a log–log regression (log[Y] = Log[a] + bLog[X]), but in the
context of broad-sense allometry, the exponent has no meaning and the theoretical
necessity of the log-transformation disappears, so that researchers started to do
‘‘allometric’’ linear regression on the arithmetic scale (see Houle et al. 2011; Voje
et al. 2014 for discussion and documentation). This was sometimes accompanied
with arguments that the log-transformation was not necessary for statistical rea-
sons (e.g., it was not necessary to stabilize the variance or to achieve normality).
When theoretical context was thus forgotten, a theoretically necessary manipula-
tion became confused with a statistical manipulation and was then often dropped
for statistical reasons. One result of this was a substantial body of work and an
emerging consensus that static and ontogenetic ‘‘allometries’’ are evolvable and
flexible traits and not important constraints on evolution. Voje et al. (2014; Voje
and Hansen 2013) have shown, however, that none of this work apply to allometry
in the traditional narrow sense and that there is in fact considerable evidence that
static allometries are highly constrained and may therefore act as evolutionary
constraints on trait adaptation even on macroevolutionary timescales as hypothe-
sized by Huxley (1932), Rensch (1959), Gould (2002), and others.

Another common violation of measurement-theoretical principles in cross-
species regression studies involves the use of nonparametric curve-fitting tech-
niques such as reduced major-axis regression. Such techniques are based on
geometrical arguments on how to draw a line through points and not justified in
terms of estimating parameters in a defined model. In particular, the common
practice of using the reduced major-axis slope to estimate allometric exponents has
obscured our empirical knowledge of allometric scaling relationships (Voje et al.
2014). This slope is computed as the ratio of the standard deviations of the vari-
ables involved and does not even include their covariance. Except when points
deviate little from a straight line, it typically gives a seriously misleading estimate
of a true underlying regression slope (Kelly and Price 2004; Hansen and Bartoszek
2012). Using the reduced major-axis slope to estimate an allometric exponent or a
causal effect of a predictor variable on a trait are measurement-theoretical mistakes
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because there are no connections between the statistical procedure and the entities
to be estimated.

Reduced major-axis and other nonparametric regression techniques are some-
times said to improve on standard regression when there is ‘‘error’’ in both
response and predictor variables. This is only true under highly specific and
unlikely circumstances and seems to derive from an implicit assumption that all
residual deviations are due to measurement error in the variables and not to bio-
logical deviations from the model (Hansen and Bartoszek 2012). In reality, most
residual deviations from evolutionary regression models are due to biological
deviations from the linear relationship as described in Eq. (14.1). Indeed, if this
was not the case, there would be no reason to worry about phylogenetic correla-
tions! In such cases, the ‘‘corrections’’ of the major axis and more general struc-
tural equation models are completely off the mark. In particular, reduced major-
axis regression should never be used in comparative analyses, and every result
drawn from this method should be reconsidered.

Yet, this is not to deny that measurement error is a major concern in com-
parative analyses. In a typical comparative analysis, data have to be gathered from
many individuals within each of many species in a consistent manner. Often
sample sizes for individual species are small and vary with orders of magnitude
between species, so that some are much more reliable than others (Garamszegi and
Møller 2010; 2011). Many comparative studies are also based on compiled data
sets of dubious quality. For example, the data on antler-body-size regression
shown in Fig. 14.1 and used in the classical analyses by Gould (1974) and Clutton-
Brock et al (1980) are reported without any indication of uncertainty and appear to
be of poor quality. As just one example, I traced the estimate of the body size of
the fallow deer given as a 91.0-cm shoulder height to the following statement in
Ward’s (1903) Record of big game: ‘‘Height at shoulder about 3 feet’’ (Ward 1903,
p. 64). Somehow this qualitative statement transmuted into a fixed quantitative
measurement with three significant digits on the cm scale ready to be used in the
comparative studies. This may seem outrageous, but I fear it is quite typical. Smith
and Jungers (1997) documented even worse problems in a standard data set of
primate body size used in many comparative studies.

The most important thing to do about this is to pay more attention to data quality
and also not to accept measurements without units and indications of uncertainty (as
I admittedly did in my example). If estimates of measurement error variation are
available, for example, as standard errors of species means, methods have been
developed to include these into phylogenetic comparative studies (e.g., Lynch
1991; Martins and Hansen 1997; Ives et al. 2007; Felsenstein 2008; Lajeunesse
2009; Hadfield and Nakagawa 2010; Hansen and Bartoszek 2012; Revell and
Reynolds 2012; reviewed in Chap. 7). Also the bias in regression slopes induced by
measurement error in predictor variables that sometimes motivates the use of
nonparametric regression can easily be corrected with simple extensions of the
standard phylogenetic linear model (Hansen and Bartoszek 2012).
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14.13 Conclusion

The emergence of phylogenetic comparative methods may appear a textbook case
of scientific progress. The growing recognition of statistical problems and
inconsistencies led to increasing dissatisfaction with comparative biology, but this
was resolved by the development of new methods of measurement and the
incorporation of new types of data in the form of molecular phylogenies. Phylo-
genetic comparative methods then became the core of a new research paradigm
that was more quantitative, statistical, and rigorous than what went before. Here, I
have argued that this paradigm shift was not without its problems. In relation to the
study of adaptation, the solutions to the statistical problems generated conceptual
and interpretational inconsistencies that need to be resolved. I believe these
inconsistencies at least now have been identified and that solutions are emerging at
an accelerating pace. There is still more work to be done before we are able to deal
with all the different types of data and theories that we would like to include in our
analyses and tests of adaptation with comparative methods, but I hope this chapter
can help clarify the principles for how this can be done.
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Chapter 15
Modelling Stabilizing Selection:
The Attraction of Ornstein–Uhlenbeck
Models

Brian C. O’Meara and Jeremy M. Beaulieu

Abstract Ornstein–Uhlenbeck models are a generalization of Brownian motion
models that allow trait values to evolve to follow optima. They have become
broadly popular in evolutionary studies due to their ability to better fit empirical
data as well as for the biological conclusions which can be drawn based on their
parameter estimates, especially optimum trait values. We include a survey of
available software implementing these models in phylogenetics as well as cautions
regarding the use of this software.

15.1 Introduction

The mean value of a trait in a species is affected by multiple factors: physical
constraints on evolution, lack of variation, change due to finite population size, and
trade-offs between different optima. From one generation to the next, a trait value
could change due to processes such as genetic drift, selection towards an optimum,
or mutational pressure. If these movements are independent and identically dis-
tributed and have an additive effect through time, by the central limit theorem,
evolution will fit a Brownian motion process (if the movements have a multipli-
cative effect through time, the log of the trait value will be evolving under Brownian
motion). An Ornstein–Uhlenbeck (OU) process would better describe the process if
these movements tended to be in the direction of a particular trait value (such that
species with a trait value larger tend to evolve a smaller trait value).
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By way of a rough example, consider the position of a toddler attached to their
parent by an elastic band. On average, the toddler’s position is centred on the
parent’s position. This mean trait position (with trait units) is often denoted h and
called the ‘‘optimum’’ as an analogy to models of adaptive quantitative evolution.
In some phylogenetics models, h is fixed; in others, there can be discrete shifts in
optima (equivalent to attaching the parent end of the lead to a different parent), and
in others, h can move (equivalent to a parent walking down the street with toddler
attached). The rate at which a toddler wiggles, r2 (in units of squared trait value
over time), corresponds to the equivalent parameter with Brownian motion.
Finally, the strength of pull by the band (a) can also vary: a strong band pulls the
toddler back to the parent more rapidly than a weak band does. A different way to
express this is in terms of the amount of time that is expected for a trait to move
halfway to the mean value (phylogenetic half-life) which is simply ln(2)/a (and is
measured in time units) (Hansen 1997). For more detailed information about OU
models, see Chap. 14.

15.2 Utility

In phylogenetics, we can use the OU model to describe the motion of one trait that
depends on the state of another trait or the motion of a trait thought to be con-
strained. Note that in the former case, the independent trait need not be explicitly
included in the model. OU models are often interpreted as models of adaptation,
with h thought to be an adaptive optimum and r2 thought to be variance due to
genetic drift. This is generally an incorrect interpretation, however. As noted by
Hansen (1997), on a macroevolutionary timescale, there is an almost instantaneous
movement of a trait to its optimum, in contrast to the half-life of millions of years
often discovered from application of OU models. Such a model, therefore,
describes how a trait optimum itself moves. If a trait value for a species is not at an
optimum, it is more likely that the true optimum of that species is not at the h given
in the model rather than that the trait value is itself far from the optimum.

On the whole, OU models in phylogenetics are simply phenomenological
models of optimum movement rather than quantitative genetics models of adap-
tation within species. Nonetheless, these models have substantial utility. First, they
can adjust for nonlinear accumulation of variance with time. Under Brownian
motion, two diverging species have trait variance that increases linearly with time:
species sharing an ancestor 50 MYA have twice the trait variance of species
sharing an ancestor 25 MYA. However, on a long timescale, we might expect this
rate to slow down: two sister species of flowering plants may differ in height by
10 % after just a short divergence time, but we do not expect over many millions
of years to have one species microscopic and the other taller than the tallest
redwood. This pattern of rate of trait divergence slowing through time (due to
factors such as soft constraints on trait values) can be fit by using a single mean
OU model, which has the effect of shortening especially rootward edges (in units
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of expected change) in comparison with the expectation under Brownian motion.
This correction can be useful for models such as independent contrasts (Felsen-
stein 1985) that rely on branch lengths in units of expected change.

These models can also be used to test evolutionary hypotheses. For example,
Whittall and Hodges (2007) evaluated the idea that there are three distinct evolu-
tionary optima for nectar spur length based on pollinator type using OU models. They
mapped on OU regimes based on pollinator syndrome and compared the fit of an OU
model with three hparameters (one parameter per regime) with fits of models that had
just one optimum or Brownian motion. Many studies use a similar strategy of
comparing models with multiple pre-assigned optimum trait value parameters with
models with a single optimum or a continually moving optimum (Brownian motion).
Recent models (Beaulieu et al. 2012) allow for h, r2, and/or a to all vary on the tree.
For example, one could investigate whether the rate of evolution, r2, varies over the
tree but use a single optimum. Figure 15.1 shows simulations of these models.

Another use of these models is in a more exploratory vein. Ingram and Mahler
(2013) developed an approach that rather than a priori assignment of h parameters
to regimes on the tree allows the data and tree to drive this assignment (see also
Chap. 18). This allows detection of unexpected clumping of optimality parame-
ters. However, this can be interpreted in a hypothesis-testing framework as well.
For example, Mahler et al. (2013) examined Anolis lizards and find support for
convergence of morphological optima, consistent with earlier work on this group
(e.g. Losos 1992; Jackman et al. 1997), but also recovered unique optima that
could be investigated in the future.

Regardless of whether a model is being used to test a hypothesis or to inves-
tigate parameters, one must choose which model to use. Sometimes, this is the
actual question: Is a model with regimes mapped based on habitat better than a
model with regimes mapped based on diet? In other cases, the relevant question is
the actual parameter estimate: Is the optimal body size for mammals in the tem-
perate region greater than the optimal size for tropical mammals? For an inves-
tigation where the model chosen is of primary interest, a likelihood ratio test
(comparing the fit of two nested models) or a reversible jump MCMC approach,
where an algorithm can move between different models, returning the posterior
probability of each, would be appropriate. Many biologists incorrectly use the
Akaike information criterion as a proxy for significance, though it is appropriate
for determining which model loses the least amount of information as well as
relative weights for different models. Biology is complex: Ornstein–Uhlenbeck
models describe a phenomenological process, and it is unlikely that all taxa in a
clade have exactly the same OU parameters. Given enough power, a more complex
model is likely to be chosen. For model comparison questions, therefore, it is
important to consider carefully what the actual question is, as ability to reject a
simple BM or OU model may come more from power than a biological process.
For many questions, we recommend a parameter estimation approach instead,
rather than merely demonstrating that Brownian motion is rejected in favour of a
single mean OU model, which shows that under the best model, phylogenetic half-
life is greater than the age of the tree, suggesting a very slow pull towards an
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optimal value. Biological significance of parameters should be considered as well
as statistical significance. Given frequent uncertainty in choosing the best model, a
multimodel inference approach (Burnham and Anderson 2004) may be appropriate
where inferences about parameter values are based on multiple models weighted
by their fit (often using Akaike weights) rather than just from a single model.

15.3 Historical Development

Ornstein–Uhlenbeck models have a long history in physics (Uhlenbeck and Ornstein
1930; Doob 1942) and have also been used in finance (Barndorff-Nielsen and
Shephard 2001). Within phylogenetics, their adoption was proposed by Felsenstein
(1988), yet their widespread use can be traced to their advocacy by Hansen (1997)
and development in an information-theoretic context by Butler and King (2004). In
fact, Butler and King’s (2004) R package OUCH was the first to provide biologists a
useful framework for analysing models of Brownian motion and Ornstein–Uhlen-
beck models with one or more means. With OUCH, the means are painted as
‘‘regimes’’ on the tree by assigning different evolutionary parameters to different
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branches of a tree. For example, one could imagine that all parts of the tree that are
reconstructed as having bats as pollinators may be assigned to have h1, while the
parts of the tree reconstructed as having insect pollinators could be assigned h2. One
could also assign regimes based on taxonomy: assign one h parameter to the
angiosperm clade and a different h parameter to the paraphyletic group of non-
angiosperm vascular plants. The optimal values for these parameters can be found
under likelihood. Models (differing in number and mapping of regimes, as well as
non-OU models) may be compared using the Akaike information criterion (Akaike
1973). Chapter 12 covers model selection in more detail. In this way, a model with
one mean parameter can be compared with one with multiple mean parameters.
Beaulieu et al. (2012) extended this by allowing for h, r2, and/or a to all vary on the
tree, in their R package OUwie. This also allows painting of sets of model param-
eters (regimes) on different parts of the tree. In theory, regimes may change within a
branch, but by default, many programs assume no more than one change per branch
and assign regimes to nodes. In OUwie, if two ends of a branch differ in regime, the
regime change is assumed to happen halfway along a branch; in OUCH, in this
situation, the regime change is assumed to happen at the beginning of the branch. In
OUwie, stochastic character mapping (Huelsenbeck et al. 2003) from the R package
phytools (Revell 2012) can be used to reconstruct the state of a discrete character
everywhere along a tree and then assign regime based on this reconstruction.
However, this can cause issues if there is uncertainty in this mapping (Revell 2013),
as some parts of branches will be misassigned to the wrong regime.

A separate trend has been the development of multivariate models. Hansen
et al. (2008) developed an approach to relate a character evolving under an OU
process to a mean evolving under a BM model. This allows for a natural lag
between the state of the predictor variable (the trait evolving under Brownian
motion) and the state of the character evolving under OU (which has an optimum
value that depends on the state of the predictor variable). This was later extended
by Bartoszek et al. (2012) to a case where multiple characters are coevolving,
perhaps in addition to a predictor variable.

A quasi-multivariate approach was developed by Ingram and Mahler (2013) in
the R package SURFACE. This wraps OUCH, so uses its model with a single r2

and a value for a character and one or more h values. However, it tries different
painting of h regimes over the tree and finds the painting that minimizes the
information lost in the model. Its quasi-multivariate nature is that the painting of
the regimes, but not the parameter values themselves, is shared across multiple
characters, allowing them to jointly inform this placement.

Finally, an OU model with a single regime everywhere on the tree has the effect
of simply transforming branch lengths, in the same way that Pagel’s kappa or
lambda (Pagel 1997, 1999) are ways to stretch a tree so that branch lengths better
represent the evolutionary process. Thus, there are several software packages that
can choose a single a value that results in a set of branch lengths that best fit a
model for available data, either for a single trait or for dealing with phylogenetic
non-independence when doing regression or correlation between multiple traits.
These include PHYSIG (Blomberg et al. 2003), ape (Paradis et al. 2004),
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COMPARE (Martins 2004), geiger (Harmon et al. 2008), and phylolm (Ho and
Ané 2014). Table 15.1 compares multiple software packages which implement
OU models for phylogenetics.

15.4 Caveats

With Brownian motion, the expected value after any amount of time is the initial
value. Even so, as time information about ancestral state decays, so does infor-
mation about potentially different models operating deeper in the tree. With
Ornstein–Uhlenbeck processes, the expected value is a weighted average of the
initial value and the optimal value. Longer amounts of time, and stronger attraction
parameters, mean that historical signal will begin to disappear. Even for large
trees, there may be very little information about past regimes. Uncertainty in
returned parameter values may be estimated by using an approximation based on
the slope of the likelihood surface at its point of maximum likelihood (Beaulieu
et al. 2012). A better way to estimate this is to look at the actual likelihood surface
over a range of parameter values (as in SLOUCH (Hansen et al. 2008)). Parametric
bootstrapping (simulating under the recovered model) is another way to estimate
uncertainty: Under the assumption that a model is true, what distributions of
parameter estimates are recovered if evolution were rerun under that model? High
a values erase history about past processes, but low a values may also be prob-
lematic in that they make multiple h parameters more difficult to estimate, as the
final trait values could depend less on h. In addition to issues arising with a low or
high a, some of the more complex models with multiple a and r2 values can also
be difficult for parameter estimation. The number of regimes on a tree can increase
without limit, as each branch can be broken into multiple regimes, and this can
rapidly exhaust any information in the data. Even assuming no more than one
regime per branch and thus a branch-specific estimate of a, r2, and h, on a tree
with N taxa, there are 3 9 (2 N-2) parameters to estimate but no more than
N 9 number of characters (typically one) to provide data.

Dealing with the state at the root can also be problematic. With Brownian
motion, the root state is estimated based on the parameter values and branches and
does not depend on the rate of evolution. With Ornstein–Uhlenbeck processes, the
root state can be estimated, but where there is little information about the past due
to strong attraction, it is biased towards zero (Beaulieu et al. 2012). Some software,
such as OUwie or phylolm, default to assuming the root state comes from the
stationary distribution of the evolutionary process, but has an option to separately
estimate the root state. However, the lack of information about the root state can
mean that separately estimating this parameter can lead to inaccurate estimates for
other parameters. It is important to note that while OUCH originally estimated a
state at the root, more recent versions of the package assume stationarity. Bart-
oszek et al. (2012) fix the root state at the optimal value for the regime on the root
branches.
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A related issue is whether Brownian motion is a restriction of an Ornstein–
Uhlenbeck model. In other words, as a approaches zero, do the model’s parameter
estimates and likelihood converge towards those of a Brownian motion model?
There is, of course, the caveat that the uncertainty in estimates of h should increase
without bound as one approaches a of zero. Nevertheless, since the treatment of
the root state differs between OU model implementations, but not between
Brownian motion implementations, in some software (such as OUwie or geiger),
an OU model with one regime approaches Brownian motion as a approaches zero.
However, in others, such as the current version of OUCH, the implemented
Brownian motion model is not nested within the implemented OU model: the
likelihood of an OU model with a single h does not converge to the likelihood of a
Brownian motion model as a approaches zero. This is an active area of discussion
that has yet to be resolved.

An important issue when dealing with any model is understanding what the
parameters mean. The h parameter is in the units of the trait(s) under investigation
(i.e., kg for body mass), and this is true regardless of implementation. The r2 rate
is in units of trait units squared over branch length units (i.e., kg/MY), and a is in
units of reciprocal branch length units (i.e., MY-1). Phylogenetic half-life has time
units (i.e., MY). One unfortunate trend, in both our work and the work of others, is
to fail to report these units. Users should note that some programs in this area
rescale trees before analysis. One common rescaling is dividing each branch length
by the total height of the tree, which makes all root to tip lengths one. This can
help deal with numerical issues arising from software with finite precision, but it
also means that r2 and a will not have the same units as in the original tree,
hindering interpretation. However, these parameters can be rescaled to the original
units later in the process.

Biologists have become used to computational issues involved in tree inference
and so treat such inferences with caution; fitting a single model to an existing tree
can seem like a trivial issue in comparison. However, estimating the likelihood of
an OU model and getting good parameter estimates for it can, in practice, be
difficult. Part of this stems from nearly flat likelihood surfaces: numerical opti-
mization may terminate before reaching a peak if changes in parameter values
have only a slight effect on the likelihood. Certain pairs of parameters may also
tend to form a ridge in likelihood space, making them difficult to optimize. There
is also the temptation to use overly complex models: a thirty-taxon dataset may
simply not have enough information in one character to estimate multiple a values.
While model selection approaches should not choose models that are too complex
for the available data, they are not guaranteed to work all the time. The details of
the mathematical steps used to calculate likelihood for OU models in many
software packages can make these methods prone to encountering errors due to
finite precision, though these errors may be hidden from most users (but may still
affect whether optimization works properly). Many of the developers of software
packages are biologists or mathematicians foremost who may lack the expertise to
test and optimize every part of a program. For these various reasons, users of OU
software should examine results with some skepticism. The open source nature of
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software in this field will allow users to examine its interior workings and do
things such as try different starting points for parameter optimization (some pro-
grams do this automatically, others do not). However, even more basic tests can be
performed without knowing how to program that will give a sense of whether the
parameter estimates coming back are reasonable or may reflect a problem with the
software. For example, if the exact same analysis is run again, are the same
likelihood scores and parameter estimates returned each time? Inconsistency may
indicate that the search is sensitive to starting values and that more runs must be
attempted to find the best values. While not all models compared need to be
nested, in cases where one model is truly a restriction of another model, the
likelihood of the restricted model (but not the AIC score) must be the same or
worse than the likelihood of the general model: Does this occur? For programs that
allow user specification of fixed points at which to evaluate likelihood, what is the
shape of the likelihood surface: Are points near the returned maximum likelihood
estimates of the parameters always worse in likelihood than what the program
returned as the best values? In the case where two programs implement the same
model, do they return the same parameter estimates for the same data (though note
the issue about potential rescaling, above)? Is a returned parameter value at one of
the preset maximum or minimum bounds of the software? If so, it may make sense
to change this bound, as the maximum likelihood estimate is probably outside this
region, though this may result in numerical precision problems within the program
(often a reason for setting default bounds). Doing these steps takes time, but
spending a few extra days to verify that the returned results are correct may be a
worthwhile investment after the months to years it can take to get the phylogeny
and trait data required to address a biological question using these models.

15.5 Example

Within flowering plants, there is a strong growth form-dependent distribution in
genome size (i.e., the amount of DNA in any given cell), with woody species
containing smaller genome sizes, on average, as well as lower overall variance,
when compared to herbaceous species. It has been suggested (Beaulieu et al. 2008,
2010, 2012) that these patterns largely reflect differences in life history. Woody
angiosperms generally take longer to reach reproductive maturity (Verdú 2002),
leading to longer generation times and fewer opportunities for random insertion/
deletions to occur on a per unit time basis. Indeed, woody lineages consistently
show slower overall rates of genome size evolution when compared to herbaceous
lineages (Beaulieu et al. 2010, 2008).

Here, we illustrate how the OU framework can be used to uncover rate differ-
ences in genome size evolution between woody and herbaceous growth form states
within the Fabaceae (i.e., legumes). This example is further fleshed out in the
Online Practical Material (hereafter OPM) available at http://www.
mpcm-evolution.com. Genome size estimates were taken from the Plant DNA
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C-value database (Bennett and Leitch 2010), and we arrayed onto the time-cali-
brated phylogeny of legumes from Beaulieu et al. (2010). We focus these analyses
on the monoploid genome size, or the 1Cx value, in order to correct for the pos-
sibility that polyploidy can inflate rates of genome size evolution. The monoploid
genome size represents the amount of DNA in the unreplicated monoploid chro-
mosome set and is calculated by dividing the 2C DNA amount by ploidy. These
values were log10-transformed prior to all analyses to ensure that these data min-
imally conformed to Brownian motion evolution (Oliver et al. 2007).

For this analysis, regimes are mapped on the tree based on likelihood estimation
of ancestral states using the package corHMM (Beaulieu et al. 2013) though
stochastic character mapping, parsimony, or other ways of assigning regimes to
branches could be used. A variety of continuous trait models are then investigated.
These include Brownian motion with a single rate (‘‘BM1’’ in the program),
Brownian motion with a different rate allowed for each discrete state regime
(‘‘BMS’’), OU with a single optimum (‘‘OU1’’), OU with a different optimum for
each regime, but with a constant a and rate of evolution (‘‘OUM’’), and finally a
model with a different optimum and rate of evolution for each regime (‘‘OUMV’’).
Other models are available, such as one that varies optimum, a, rate of evolution
for each regime or various other restrictions of this model, but the set of models for
the example is limited to a workable set which can run relatively quickly.

For all the models, the parameter estimates as well as the AIC with small sample
correction (AICc) are stored. The best (smallest) AICc value is subtracted from the
AICc values for each model to get the DAICc value. In this example, the best model
is OUMV, a model with one a across the tree but different r2 and h for each discrete
state regime. The next best model has a DAICc much higher (42.8), which corre-
sponds to an Akaike weight that is much tinier (\1 billionth) than that of the best
model. If support were much more similar across models, model averaging would
make sense as a way to deal with uncertainty in the models, but given this difference
is would not be expected to help. In fact, model averaging may even be problematic
if a complex model with very little support generates very bad parameter estimates,
as the low weight on the model might not be enough to counter the magnitude of the
poor estimates. For the best model, the optimal value for herbaceous plants was
0.254 ± 0.036 log10 (pg), which corresponds to 1.289 ± 1.037 pg, while for
woody plants, it was 0.904 ± 1.029 pg after transformation out of log-space. The
half-life of the process is 0.115 MY, while the tree is 59 MY old, suggesting a
strong pull to each of these values. The rate of evolution of genome size while
herbaceous is over five times greater than the rate of evolution while woody
(2.968 ± 0.303 log10(pg)/MY vs. 0.574 ± 0.105 log10 (pg)/MY).

There are two lessons from this analysis. The first is that history does not matter
much for genome size in this group: the short half-life indicates that the trait value
of a species is quickly pulled from its ancestral state to whatever the optimal state
is. However, the optimal states seem very similar, and each is within one standard
error of the other, suggesting little evidence for different optimal states. In contrast,
the r2 rates do differ, having a biologically significant fivefold rate difference as
well as a statistically meaningful rate difference. This suggests that while history
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does not matter much for mean value, state matters a great deal for rate of evo-
lution. This analysis also points out a limitation of software: given the similarity in
OU means across states but not OU r2 parameters, an even better model might be
one with one a and h across the tree but different r2 for each discrete state (in
OUwie’s jargon, this would be an OUV model) but this has yet to be implemented.

15.6 Future Directions

There are numerous potential advances in this area. One trivial advance would be
inference of ancestral states under an OU process. This is possible with a single
OU mean tree transform, as can be implemented in geiger (Harmon et al. 2008) or
COMPARE (Martins 2004), but has not yet been implemented in software for
more complex OU models. Another straightforward advance would be a wrapping
of the Beaulieu et al. (2012) family of OU models in the SURFACE (Ingram and
Mahler 2013) approach to check for regime shifts for r2 and a in the same way this
is done for OUCH-type models.

Most work in this area has been in a regression or information-theoretic
framework, and the utility of Bayesian approaches has yet to be explored fully.
They have potential in allowing a way to bring in information from external
sources about parameters as priors without having to fix this information. How-
ever, given frequent uncertainty in parameter estimates in these models, it will be
essential to make sure that the results are driven in part by the data rather than only
reflecting the priors.

Ornstein–Uhlenbeck models are among the most complex models of continuous
trait evolution available to date. They give information about the parameters of
evolutionary change on a macroevolutionary timescale but may not reflect
microevolutionary processes (Hansen 1997). Models that operate at the level of
population genetics mechanisms may be important in the future to allow infer-
ences of processes rather than just fitting evolutionary patterns. Continued
development of multivariate approaches remains important as well.

Acknowledgments This chapter benefited greatly from comments by László Zsolt Garamszegi
and an anonymous reviewer and discussions with Thomas Hansen, Marguerite Butler, Aaron
King, and Tony Jhwueng.

References

Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In:
Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai
Kiado, Budapest, pp 267–281

Barndorff-Nielsen OE, Shephard N (2001) Non-gaussian Ornstein–Uhlenbeck-based models and
some of their uses in financial economics. J Roy Stat Soc Ser B (Stat Methodol)
63(2):167–241. doi:10.2307/2680596

15 Modelling Stabilizing Selection 391

http://dx.doi.org/10.2307/2680596


Bartoszek K, Pienaar J, Mostad P, Andersson S, Hansen TF (2012) A phylogenetic comparative
method for studying multivariate adaptation. J Theor Biol 314:204–215

Beaulieu JM, Jhwueng D-C, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection:
expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 66(8):2369–2383

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong
predictor of cell size and stomatal density in angiosperms. New Phytol 179(4):975–986

Beaulieu JM, O’Meara BC, Donoghue MJ (2013) Identifying hidden rate changes in the evolution
of a binary morphological character: the evolution of plant habit in campanulid angiosperms.
Syst Biol 62:725–737

Beaulieu JM, Smith SA, Leitch IJ (2010) On the tempo of genome size evolution in angiosperms.
J Bot. doi: 10.1155/2010/989152

Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 6.0, Dec. 2012)
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data:

behavioral traits are more labile. Evolution 57(4):717–745
Burnham KP, Anderson DR (2004) Multimodel inference—understanding AIC and BIC in model

selection. Sociol Methods Res 33(2):261–304
Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for

adaptive evolution. Am Nat 164(6):683–695
Doob JL (1942) The Brownian movement and stochastic equations. Ann Math 43(2):351–369
Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15
Felsenstein J (1988) Phylogenies and quantitative characters. Annu Rev Ecol Syst 19:445–471
Hansen TF (1997) Stabilizing selection and the comparative analysis of adaptation. Evolution

51(5):1341–1351
Hansen TF, Pienaar J, Orzack SH (2008) A comparative method for studying adaptation to a

randomly evolving environment. Evolution 62(8):1965–1977
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating

evolutionary radiations. Bioinformatics 24(1):129–131
Ho LST, Ané C (2014) A linear-time algorithm for Gaussian and non-Gaussian trait evolution

models. Syst Biol 63(3): 397–408
Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters.

Syst Biol 52(2):131–158. doi:10.1080/10635150390192780
Ingram T, Mahler DL (2013) SURFACE: detecting convergent evolution from comparative data

by fitting Ornstein–Uhlenbeck models with stepwise Akaike Information Criterion. Methods
Ecol Evol 4(5):416–425

Jackman T, Losos JB, Larson A, de Queiroz K (1997) Phylogenetic studies of convergent
adaptive radiations in Caribbean Anolis lizards. In: Molecular evolution and adaptive
radiation. pp 535–557

Losos JB (1992) The evolution of convergent structure in Caribbean Anolis communities. Syst
Biol 41(4):403–420

Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the
macroevolutionary landscape in island lizard radiations. Science 341(6143):292–295

Martins EP (2004) COMPARE, version 4.6 b. Computer programs for the statistical analysis of
comparative data. Distributed by the author at http://compare.bio.indiana.edu/, Department of
Biology, Indiana University, Bloomington, IN

Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM (2007) The mode and tempo of
genome size evolution in eukaryotes. Genome Res 17(5):594–601

Pagel M (1997) Inferring evolutionary processes from phylogenies. Zoolog Scr 26(4):331–348
Pagel M (1999) Inferring the historical patterns of biological evolution. Nature

401(6756):877–884
Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R

language. Bioinformatics 20(2):289
Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other

things). Methods Ecol Evol 3(2):217–223

392 B. C. O’Meara and J. M. Beaulieu

http://dx.doi.org/10.1155/2010/989152
http://dx.doi.org/10.1080/10635150390192780
http://compare.bio.indiana.edu/


Revell LJ (2013) A comment on the use of stochastic character maps to estimate evolutionary rate
variation in a continuously valued trait. Syst Biol 62(2):339–345

Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev
36(5):823–841

Verdú M (2002) Age at maturity and diversification in woody angiosperms. Evolution
56(7):1352–1361. doi:10.1111/j.0014-3820.2002.tb01449.x

Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine
flowers. Nature 447(7145):706–709

15 Modelling Stabilizing Selection 393

http://dx.doi.org/10.1111/j.0014-3820.2002.tb01449.x


Chapter 16
Hidden Markov Models for Studying
the Evolution of Binary Morphological
Characters

Jeremy M. Beaulieu and Brian C. O’Meara

Abstract Biologists now have the capability of building large phylogenetic trees
consisting of tens of thousands of species, from which important comparative
questions can be addressed. However, to the extent that biologists have applied these
large trees to comparative data, it is clear that currentmethods, such as those that deal
with the evolution of binarymorphological characters, make unrealistic assumptions
about how these characters are modeled. As phylogenies increase both in size and
scope, it is likely that the lability of a binary character will differ significantly among
lineages. In this chapter, we describe how a new generalized model, which we refer
to as the ‘‘hidden rates model’’ (HRM), can be used to identify different rates of
evolution in a discrete binary character along different branches of a phylogeny. The
HRM is part of a class of models that are more broadly known as Hidden Markov
models because it presupposes that unobserved ‘‘hidden’’ rate classes underlie each
observed state and that each rate class represents potentially different transition rates
to and from these observed states. Aswe discuss, the recognition and accommodation
of this heterogeneity can provide a robust picture of binary character evolution.

16.1 Introduction

Underlying many important discoveries in ecology, evolution, and behavior is the
use of a phylogenetic tree. Phylogenies allow for the non-independence of taxa to
be accounted for while also opening up new ways of examining how traits change
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through time, detect correlations between ecological and morphological charac-
ters, and better understand patterns of lineage diversification. Prior studies of these
questions, particularly of larger, older, and widespread clades, have tended to rely
on very sparse taxon sampling or on a representative sample of the major lineages
contained within the group. The traits amenable to these types of trees can neither
change too little (lest there be no variation to examine) nor too much (lest there be
no signal left to detect) and so are naturally a biased set. The amount of sequence
data available has grown rapidly. In just 20 years, what has been considered a
‘‘large’’ tree has gone from 500 taxa (Chase et al. 1993) to those that contain more
than 50,000 species (Smith et al. 2011, also see Bininda-Emonds Chap. 4 this
volume). By scaling up analyses to include many more taxa, we can analyze traits
with a much wider range of evolutionary rates, and this includes many traits of
great ecological and evolutionary importance.

At the same time, however, it is clear that these large comprehensive phylog-
enies present new challenges for comparative biology. For decades, the dominant
models have always assumed a homogeneous process through time and across
taxa. As biologists, we know that life is not evolving according to a homogeneous
process. Mass extinction events change the ecological context for evolution.
Evolution within lineages can lead to different selective regimes. Such heteroge-
neity requires that different models be applied to different parts of a phylogeny.
Recent attention has been focused almost exclusively on solving this problem for
continuously varying characters. It is now possible to apply parameter-rich models
for detecting meaningful differences in phenotypic evolution among clades, among
specific branches, or even pieces of branches under processes such as Brownian
motion (O’Meara et al. 2006; Thomas et al. 2006; Revell 2008) or the Ornstein–
Uhlenbeck process (Butler and King 2004; Beaulieu et al. 2012). Models of dis-
crete binary character evolution, on the other hand, have received fairly little
attention, and biologists are still forced to rely on conventional models that apply
uniform rates of change to all branches in a tree.

Simple models of binary character evolution may make sense for less inclusive
clades, such as the traditional genus or family levels, which often contain rela-
tively few instances of character change. But, they are not likely to adequately
explain the evolution of a discrete binary character in very large and very old
clades. At these phylogenetic scales, it is hard to ignore evident distributions of
observed character states. Some parts of the tree will often only exhibit one
character state, while other parts apparently have undergone frequent state changes
and appear rather labile. Obviously, not accounting for heterogeneity in different
parts of a tree can lead to problems with estimates of transition rates and/or the
inference of the likeliest ancestral states that accompany them. More broadly,
however, when phylogenetic trees can contain many thousands of species, we miss
important opportunities to discover patterns that could not previously have been
recognized and quantified.

In this chapter, we describe a generalized model, which we refer to as the
‘‘hidden rates model’’ (HRM) (Beaulieu et al. 2013a) that allows for the identi-
fication of different rates of evolution in a discrete binary character along different
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branches of a phylogeny. This model was inspired by the covarion model
(COncomitant VARIable codON; Fitch and Markowitz 1970) of nucleotide sub-
stitution, which presupposes that unobserved rate classes underlie each nucleotide
state at a site in an alignment, and that each rate class represents potentially
different transitions to and from observed states (Penny et al. 2001; Galtier 2001).
All these models are part of a class that are more broadly known as Hidden
Markov models because the different rate classes are treated as ‘‘hidden’’ states in
the Markov process. As we will discuss, our HRM provides a powerful tool for
detecting various forms of branch-specific heterogeneity when it exists, and can
adequately pinpoint where underlying, but unobserved or unmeasured, factors
have influenced the evolution of a binary character, even though the HRM is
formally time homogeneous.

16.2 The Hidden Rates Model

Although they emphasize Bayesian methodology, Currie and Meade (Chap. 13
this volume) provide a thorough introduction to the underlying theory of contin-
uous-time Markov models and the various procedures used for calculating their
likelihood and estimating transition rates. But briefly, under a likelihood-based
approach, the likelihood is defined as being proportional to the probability of
observing the data given a model of evolution and a specific tree,

LðQÞ / PðDjQ;TÞ ð16:1Þ

where the data, D, is a vector of observable character states at the tips of a
phylogenetic tree, T, whose branch lengths and topology are assumed to be known.
The model of evolution, defined by Q, is an instantaneous rate matrix describing
the possible transition rates between character states. For a single binary character
that has two observable states, 0 and 1, Q is a 2 9 2 matrix,

Q ¼ � q0!1

q1!0 �

� �
ð16:2Þ

which we can then use to compare the fit of two models: one where we assume equal
transition rates between the two states ðq0!1 ¼ q1!0Þ, or one where we assume two
distinct transition rates ðq0!1 6¼ q1!0Þ. This matrix is transformed into a transition-
probability matrix, symbolized as P(t), and is equal to eQt, where t represents the
length a branch. In general, we use this matrix to calculate conditional likelihoods,
which are defined as the sum of the probability of observing everything descended
from a focal node given that the focal node is in each character state. These like-
lihoods are computed for every node in the tree starting with the tips and working
down toward the root. Thus, the conditional likelihood at the root represents the
likelihood in Eq. (16.1) (for the more details about the dynamic programming
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algorithm used to carry out this computation, see Felsenstein 1981). In order to
complete the calculation at the root, however, an additional step is needed which
involves of weighting the conditional likelihood by the prior probability of the
possible states at the root. By default, we assume that each possible character state is
weighted equally. Other approaches weight the conditional likelihood by the
probability that each character state gave rise to the descendant character states
given the transition rates and the tree—a procedure described by FitzJohn et al.
(2009). This probability is calculated by dividing the likelihood that the root is in
each character state and rate combination by the sum of the likelihoods of all
possible character states.

Looking at Q in Eq. (16.2), it is easy to see how unsatisfying it might be to
assume that, at most, two transition rates (a forward and backward rate between the
two states for our character) govern the evolution of a binary character, particu-
larly when applying such a model to a very broad assemblage of species. As one
zooms out, including more and more clades, the factors that are associated with
transitions between states are unlikely to be consistent. For example, the frequency
of transitions between fleshy and dry fruit types in flowering plants will differ
depending on whether or not clades occur in regions where biotic dispersal is more
likely (i.e., tropics). In insects, the loss of flight will vary based on the environ-
ment, costs of dispersal, or any other correlated factor that can change across a
tree. More broadly, processes that can also affect rates of character evolution
include generation time, effective population size, the underlying genetic archi-
tecture of the trait, and/or mutation rates. However, going into the analysis, we
may be unaware or even unclear what these specific factors might be—we just
know that these rates could change in different portions of the tree. Thus, the HRM
is designed as a means to effectively ‘‘paint’’ areas of a phylogeny where transi-
tions happen frequently or infrequently due to unmeasured characters that affect
the rates.

Conceptually, the HRM is a generalized form of the covarion model (Fitch and
Markowitz 1970), which is used to infer phylogenies from sequence data by
allowing the rate of nucleotide substitutions to not only vary by site, but also along
branches. The covarion model assumes that there are two stochastic processes at a
site: one for transitions between specified rate classes; and the other for transitions
between character states within a given rate class. However, because only
nucleotide states can be observed, these rate classes are considered ‘‘hidden’’ states
in the model, and therefore, we have to treat each observed nucleotide at a site as
an ambiguous observation of the different unobserved rate classes. In the formu-
lation of Penny et al. (2001), the unobserved rate classes are instances when the
mutation rate of a nucleotide base is either turned ‘‘on,’’ and transitions among the
four nucleotide states are possible, or turned ‘‘off,’’ where the mutation rate is set
to zero.

The unobserved rate classes under the HRM are similar to the model described
by Galtier (2001), where they need not be considered ‘‘on’’ or ‘‘off,’’ but can
represent distinct transition models (i.e., rate class A, rate class B, etc.). In other
words, these rate classes may differ in being considered ‘‘on’’ or ‘‘off,’’ ‘‘fast’’ or
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‘‘slow,’’ or in the direction of asymmetry of transitions between states. As with the
covarion model, we assume that each observed character state is an ambiguous
observation of the different unobserved rate classes, and we can use the same
likelihood framework as in Eq. (16.1) to calculate the conditional probability of all
ancestral nodes including the root (Felsenstein 1981). That is, we begin at the tips
by summing over the probabilities that are compatible with our observed character
state: for example, assuming two rate classes, A and B, the probability is set to 1
for both 0A and 0B given our observation of a tip being in state 0. We define a new
model, Q, to account for the process of transitioning between all character state
and rate class pairs:

Q ¼

� q0A!1A q0A!0B 0
q1A!0A � 0 q1A!1B

q0B!0A 0 � q0B!1B

0 q1B!1A q1B!0B �

2
664

3
775 ð16:3Þ

Notice in this particular case that the entries in Q describing dual transitions
(state and rate class transitions occur simultaneously) are set to zero to force such
transitions to either pass through the same state to a different rate, or to pass through
a different state in the same rate (see Pagel 1994). This assumption can be relaxed, of
course, by simply adding these transitions back into the model. As with the
likelihood model described above, a nonlinear optimization routine is used to find
estimates for the entries in Q that maximizes the conditional likelihood at the root.

16.3 HRM Model Space

Under the HRM framework, the Q matrix described in Eq. (16.3) can easily be
modified to allow any number of hidden rate classes (Fig. 16.1). In fact, model
complexity can range from a model with a single rate class, which is the same as
the familiar time-homogeneous model in Eq. (16.2), to a model that includes an
infinite number of rate classes. One extreme case, where a hidden rate class is
assumed for every branch, is similar in effect to the ‘‘no-common mechanism’’
model, which is a parsimony equivalent (Tuffley and Steel 1997). Of course, it is
unlikely that such a model would ever fit the data well, because the number of
parameters would far exceed the number of data points (see Holder et al. 2010).
Nevertheless, we can use model selection methods, such as Akaike’s information
criterion (AIC) (Akaike 1974), to obtain the model that best fits the data, or
calculate the relative weight for a set of models that can be taken as information
about the evolutionary process. As with Huelsenbeck et al. (2004), Pagel and
Meade (2006), a reversible jump MCMC approach could also be used to get the
posterior probabilities of various models.

The discussion thus far has focused exclusively on evaluating models that
contain increasing numbers of hidden rate classes. However, these represent a very
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small subset of the possible models that could be evaluated. For instance, the
‘‘precursor model’’ of Marazzi et al. (2012) illustrates an efficient use of param-
eters in creating a specific model in the HRM framework (Fig. 16.1). Under the
precursor model, there are two rates that correspond to transitions between one

0, Class A

(a)

(b)

0, Class B

1, Class A

1, Class B

0, Class A

0, Class B

0, Class C

1, Class A

1, Class B

1, Class C

0, Class A

0, Class B

1, Class A

1, Class B

“Facilitator”

0 1

HRM + 2 rate classes

 HRM of increasing complexity

HRM + 3 rate classes

Covarion model

Examples of subset HRM+2 rate classes

“Precursor” model

1, Class A

1, Class B

0

HRM for one state only

0, Class A

0, Class B

1, Class A

1, Class B

Rates vary among, but not within, classes

Fig. 16.1 a Graphical representation of HRM’s with increasing number of hidden rate classes.
Under the HRM framework, model complexity can range from a model with a single rate class,
which is the same as a model that assumes a homogeneous process, to a model that includes an
infinite number of rate classes. Here, we highlight HRM’s with two- and three-ordered hidden
rate classes, with the black arrows denoting the directions of the possible transition among the
different state and rate class combinations. b For a given number of hidden rate classes, there are
many models that contain a subset of the possible parameters (see HRM MODEL SPACE). For an
HRM with two rate classes such subset models include, but are certainly not limited to, the
‘‘precursor’’ model of Marazzi et al. (2012), models where hidden rate classes underlie one state
as opposed to both, models where particular transitions are set to zero as in the covarion model, or
various combinations of models where transition rates vary among, but not within, each rate class
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observed state and a ‘‘hidden’’ precursor state, and between the hidden state and
the other observed state. This model essentially describes the hidden state as
‘‘facilitating’’ transitions to and from the observed states.

To get a sense of the complete model space provided by the HRM framework,
we can use Stirling numbers of the second kind (Abramowitz and Stegun 1972) to
count the different combinations of models for a given a number of parameters.
The Stirling numbers are computed as

S n; kð Þ ¼ 1
k!

Xk
i¼0

�1ð Þk�i k!

ði� kÞ!i! ði
nÞ ð16:4Þ

where n parameters are partitioned into all possible k subsets (i.e., 1, 2, …,
n parameters). The Bell (1934) number, which is the sum of these Stirling num-
bers, can be used to count the total number of distinct model combinations con-
tained within a given HRM. For an HRM that contains two hidden rate classes,
there are 4,140 distinct models that could be evaluated (i.e., the sum of 8 total
parameters partitioned into all possible subsets of 1, 2, …, 8 parameters); for three
hidden rate classes there are 190, 899, 322 distinct models. Note however that this
calculation assumes that the rate classes are ordered (see Fig. 16.1). This need not
always be the case, and an HRM could easily be constructed that assumes an
unordering of the different rate classes. Of course, the addition of several more
parameters to account for transitions between all rate classes would make the
model even more parameter rich and contain even more distinct subset models
than in the ordered case. In any event, parameter subsets of a three-ordered hidden
rate classes include, but are not limited to, models where hidden rate classes only
underlie one state as opposed to both, models where particular transitions are set to
zero (as in the covarion model), or various combinations of models where tran-
sition rates vary among, but not within, each rate class (Fig. 16.1). Again, we can
use model selection methods to either obtain the relative weight for each of these
models and average the parameters (i.e., model averaging approach), or simply
determine which model is the best fit among the set.

16.4 HRM in Relation to Other Models

HRM is not the only model that deals with heterogeneity. As mentioned above, the
covarion model (Penny et al. 2001; Galtier 2001) allows states to switch from off
to on: effectively an extreme form of the HRM model where one of the categories
has no transitions. An important set of models developed by Yang et al. (1995) fit
different rates to different branches of a tree. These are typically applied for codon
models but can in principle be applied to any discrete data. Yang (1994) also
developed the use of a discrete gamma to deal with rate heterogeneity across sites.
The likelihood of the data is calculated under each of several rates pulled from a
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distribution described by a single parameter. Pagel and Meade (2004) develop a
phylogenetic mixture model that is essentially a generalization of this; rather than
just allowing likelihoods to be calculated across different overall rates, they allow
the rate matrix to also vary.

The thresholdmodel (Wright 1934; Felsenstein 2005, 2012) represents a different
approach to dealing with heterogeneity. Rather than a hidden discrete trait affecting
the rate of the observed trait, it allows for a hidden continuous trait to set the state of
the observed trait. When this continuous trait, termed the liability, crosses the
threshold, the discrete character changes state. This has been extended for multi-
state-ordered characters (Revell 2014). The behavior of the model is grossly similar
to HRM in that the frequency of discrete state changes varies over the tree; with the
HRM, due to different hidden rates, and in this case, due to distance of the liability
from the threshold. There are some important differences, however. With the
canonical threshold model, there is the expectation over time that the liability moves
away from the threshold, as it evolves with unbounded Brownian motion, and so the
long-term expectation is that the transition rate eventually becomes zero. Revell
(2014) has largely addressed these issues by modifying the threshold model so that
the liability evolveswith bounds orwith a strong attraction (i.e., Ornstein–Uhlenbeck
process, see O’Meara and Beaulieu Chap. 16 this volume) back to the threshold.
However, the HRM also allows this in that it could have absorbing states, but it does
not require it. The threshold model also assumes that near a change, where the
liability is close to the threshold, the rate of gain or loss of a trait is equal, though the
overall gain and loss rates could still be unequal by starting with a liability greater or
lower than the threshold. The HRM can allow unequal rates on parts of the tree or
over the whole tree. An advantage of the threshold model is that it only has
parameters for the starting liability, the threshold value, and rate of movement of the
liability; making it a relatively efficient way to fit changing rates over a tree.

16.5 Application of the HRM

The development of the HRM was motivated by the desire to understand rates
of evolution between two growth habit states, woody and herbaceous, within
campanulid angiosperms, a large flowering plant clade containing some 35,000
species, including the familiar composites (sunflowers and relatives), umbels
(carrots and relatives), and Dipsacales (honeysuckles and relatives). Historically,
growth habit has been considered by botanists to be far too labile to be understood
across larger, more traditional taxonomic ranks (Cronquist 1968). This is because
the vegetative features of a plant are thought to be intimately tied to the envi-
ronment in which they exist, and since species contained within larger, older, and
globally distributed clades can occur in a range of environments, growth habit
should vary considerably at larger phylogenetic scales. Furthermore, there is
increasing genetic evidence that transitions between woody and herbaceous forms
should be fairly easy (Groover 2005), involving the suppression and re-expression
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of only a few genes regulating both the cambial growth necessary for wood for-
mation and the onset of flowering (Lens et al. 2012).

Such genetic integration of both vegetative and reproductive development
suggests that the capacity for growth habit evolution should be ever present within
flowering plants. However, it is quite puzzling that the distribution of particular
habits is non-uniform across the angiosperm phylogeny. For example, some large
and old clades contain only woody species (e.g., Fagales, which contain oaks and
their relatives), others contain only herbaceous species (e.g., Brassicaceae, which
contain mustards and their relative), and still others show extreme variation in
habit presumably through many transitions between woody and herbaceous states
(e.g., Asteraceae, sunflowers, and their relatives). These observations alone call
into question the use of conventional likelihood-based methods for understanding
the evolution of growth habit.

Here, we show results from a recent study of 8,911 campanulid species where
growth habit was scored and where a large comprehensive phylogeny was used
(Beaulieu et al. 2013a). We compare the fit of five models of evolution. The two
simplest models are the conventional time-homogeneous models, where we either
assume there are equal transition rates between woody and herbaceous states, or
there are two distinct transition rates, one for transitions from woody to herbaceous
and another for transitioning from herbaceous to woody. We also assessed the fit of
HRM’s that assume two, three, and four hidden rate classes underlying each
observed woody and herbaceous state (see Fig. 16.1 for how these models are
graphically structured).

When comparing the fit of the time-homogenous models to the HRM’s with
different numbers of hidden rate classes, it is clear that models of branch-specific
rates of evolution are by far the better fit to the growth habit data. For instance, the
addition of just a single hidden category provides an extraordinary improvement in
the likelihood over both the one-rate and two-rate time-homogeneous models (just
over 400 log-likelihood units; Fig. 16.2). With three hidden rate classes the like-
lihood is improved by an additional 100 log units, but begins to plateau, where the
fit of a model with four hidden rate classes did not substantially improve the
likelihood any further.

A HRM with three rate classes was the best-fit model overall based on AIC and
with the estimated parameters indicating a complicated process of transitioning
between woody and herbaceous states in an ancestrally woody clade. Incidentally,
the model suggests that the three hidden rate classes represent transition models of
increasing rate: ‘‘slow,’’ ‘‘medium,’’ and ‘‘fast.’’ In practice, such structured rate
classes will not always result, and describing rate classes in such terms as ‘‘slow’’
or ‘‘fast’’ will be inappropriate, though it works in this particular case. In the slow-
rate class, the asymmetry in transition rates is similar to the time-homogenous
model in that it is more likely for herbaceous species to re-evolve a woody habit
than the reverse (qWS?HS = 0.0000, s.e. = ±0.0002; qHS?WS = 0.0009;
s.e. = ±0.0007). In fact, being woody in the slow-rate class represents an
absorbing state: herbaceous may not evolve again once a lineage transitions into
this state and rate combination. However, it is important to emphasize that rates
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under the HRM are equivalent to substitution rates, not mutation rates, and
therefore, only provide an indication of what happened over evolutionary time and
not what was proposed by mutation. Thus, in this particular case, the capacity to
transition to herbaceous may still exist in these plants, unless, of course, this
rate class represents instances where clades have lost the genetic machinery
to shut down cambial activity. Finally, in the medium (qWM?HM = 0.0383,
s.e. = ±0.0346; qWM?HM = 0.0012, s.e. = ±0.0149) and fast (qWF?HF = 99.8,
s.e. = ±2.9; qHF?WF = 39.9, s.e. = ±1.9) rate categories, it is far more likely for
a lineage to transition from woody to herbaceous. The model also indicates that
transitions among the different rate classes follow a general trend in which higher
rates are inferred for transitions toward a slower rate class.

The general picture emerging within campanulids, particularly when ‘‘painting’’
the likeliest state and rate combinations onto internal nodes clearly supports the view
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Fig. 16.2 Plot of the log-likelihoods for the different models fit to the growth habit data of
Campanulidae (campanulids) from Beaulieu et al. (2013a, b). The addition of a single hidden rate
(HRM + 2) improved the likelihood by just over 400 log units over both time-homogenous
models. When three rate classes were allowed (HRM + 3), the likelihood was improved by
another 100 log units. Four rate classes (HRM + 4) did not substantially improve the likelihood
any further
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that the rate at which growth habit evolves varies enough among clades to be
biologicallymeaningful (Fig. 16.3). For example,most of the branches inferred to be
in the faster rate classes appear to be confined only to Asteraceae, a geographically
widespread clade (Bremer and Gustafsson 1997; Beaulieu et al. 2013b), where
changes in growth habit as an adaptive response to new environments is well doc-
umented within the group (Carlquist 1974). In other groups, the evolution of growth
habit is clearly limited, which may also point to their ecology, but also may reflect
other additional underlying genetic factors.Within the Aquifoliales (e.g., hollies and
their relatives), for example, the herbaceous habit has either never evolved or is a
strategy that has not been successful, even though the group is currently widely
distributed across both tropical and temperate regions. Whatever factors may be
underlying these differences observed among clades, the use of the HRM clearly
demonstrate that even though the capacity for growth habit evolution may be ever
present, it is clearly expressed in fundamentally different ways.

16.6 Future Directions and Conclusions

Incorporating different rate classes of transition rates are not limited to binary
characters. In a general sense, the concept of including ‘‘hidden’’ states can be used
in any instance where the number of observed states is less than the number of

Ast.Ast.

Aqui.

(a) (b)

Aqui.

Fig. 16.3 Examples of branches ‘‘painted’’ as being in the different state and rate classes in the
HRM with 3 rate classes applied to a phylogeny of 8,911 species of Campanulidae (campanulids)
from Beaulieu et al. (2013a). Branches are colored based on whether the marginal probability is
[0.75 (dark) of being in each growth habit state and rate class combination. The evolution of
growth habit in campanulids clearly varies among clades. For example, woody clades such as
Aquifoliales (denoted by an open dot) have slower, and the herbaceous clades such as Asteraceae
(denoted by a black dot) generally have faster, rates of growth habit evolution, a woody, slow,
b herb, medium + fast
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actual states. In other words, it is rather straightforward to extend the HRM to
include characters that take on multiple states (i.e.,[2 states). A good example
comes from Maddison (1993): Consider a set of taxa whose observed states are red
tails, blue tails, and no tails. In the HRM framework, one could treat this as having
four hidden states—tail red, tail blue, tailless red, tailless blue—with three dis-
played states with tailless red and tailless blue both being present because tailless
color is unknown. The HRM could then be used to address questions such as
whether particular tailless species are more likely to have genes for red or blue
color.

Similarly, biologists are not always interested in the transitions back and forth
between states in just one binary character, but rather how the state of one binary
character can affect the probability of change in another. There are ways to do this,
of course, which have been highly influential (see Pagel 1994), but they still
assume that the evolutionary process is homogeneous across the tree. Future
extensions of the HRM will include models of correlated evolution between two or
more binary characters in order to provide a new way of understanding the overall
strength of character correlations and how it can change in various portions of
phylogeny.

Future extensions will also include developing a HRM that, along with esti-
mating transition rates, will also estimate the effect of a character state on spe-
ciation and extinction rates (i.e., BiSSE approach; Maddison et al. 2007; FitzJohn
et al. 2009). Often these types of methods are used to test whether a character state
is a ‘‘key innovation,’’ as indicated by one state being correlated with higher net
diversification rates (i.e., speciation–extinction) relative to another. At greater
phylogenetic scales, however, the real effect between a character state and
diversification rates is not always clear. What may seem like a causal connection
may actually be due to other unmeasured factors or because the analysis included a
nested clade that exhibits both the focal character and ‘‘something’’ else (Beaulieu
and Donoghue 2013). The development of an HRM that includes the estimation of
speciation and extinction rates as they relate to character states and rate classes
would provide a powerful extension and allow for a more refined understanding of
how particular character states influence the diversification process.

For now, the hidden rates framework can be used as a means of detecting
differences in the evolution of a binary character and for the identification of
models that can dramatically improve the fit to the underlying data. Unlike most
existing approaches for both continuous and discrete characters, which require a
priori assignment of models to different branches (O’Meara et al. 2006; Thomas
et al. 2006; O’Meara 2007; Beaulieu et al. 2012), the HRM uses the observed
character data directly to infer where the evolutionary model shifted in a phy-
logeny. In this way, the HRM is inherently exploratory, much like methods such as
AUTEUR (Eastman et al. 2011) and SURFACE (Ingram and Mahler 2012; Mahler
and Ingram Chap. 22 this volume) are for understanding clade-specific differences
in continuous trait evolution. With the availability of such exploratory tools, we no
longer have to restrict analyses, or describe results, in terms of a particular tax-
onomic rank (genus, family, order, etc.). Instead, we may begin to discover that
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important evolutionary events better correspond to groups of taxa that do not have
a formal name (e.g., Smith et al. 2011). It is in this way that methods such as the
HRM will afford us with a far better understanding of evolution.

References

Abramowitz M, Stegun IA (1972) Handbook of mathematical functions, with formulas, graphs,
and mathematical tables. National Bureau of Standards, Washington (DC)

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control
19:716–723

Beaulieu JM, Donoghue MJ (2013) Fruit evolution and diversification in campanulid
angiosperms. Evolution 67:3132–3144

Beaulieu JM, Jhwueng D-C, Boettiger C, O’Meara BC (2012) Modeling stabilizing selection:
expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369–2383

Beaulieu JM, O’Meara BC, Donoghue MJ (2013a) Identifying hidden rate changes in the
evolution of a binary morphological character: the evolution of plant habit in campanulid
angiosperms. Syst Biol 62:725–737

Beaulieu JM, Tank DC, Donoghue MJ (2013b) A Southern Hemisphere origin for campanulid
angiosperms and traces of the break-up of Gondwana. BMC Evol Biol 13:80

Bell ET (1934) Exponential polynomials. Ann Math 35:258–277
Bremer K, Gustafsson MHG (1997) East Gondwana ancestry of the sunflower alliance of

families. Proc Natl Acad Sci USA 94:9188–9190
Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for

adaptive evolution. Am Nat 164:683–695
Carlquist S (1974) Island biology. Columbia University Press, New York and London
Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD et al (1993) Phylogenetics

of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot
Gard 80:528–580

Cronquist A (1968) The evolution and classification of flowering plants. Houghton Mifflin, Boston
Eastman JM, Alfaro ME, Joyce P, Hipp AL, Harmon LJ (2011) A novel comparative method for

identifying shifts in the rate of character evolution on trees. Evolution 65:3578–3589
Felsenstein J (1981) A likelihood approach to character weighting and what it tells us about

parsimony and compatibility. Biol J Linn Soc 16:183–196
Felsenstein J (2005) Using the quantitative genetic threshold model for inferences between and

within species. Philos Trans R Soc B 360:1427–1434
Felsenstein J (2012) A comparative method for both discrete and continuous characters using the

threshold method. Am Nat 179:145–156
Fitch WM, Markowitz E (1970) An improved method for determining codon variability and its

application to the rate of fixation of mutations in evolution. Biochem Genet 4:579–593
FitzJohn RG, Maddison WP, Otto SP (2009) Estimating trait-dependent speciation and extinction

rates from incompletely resolved phylogenies. Syst Biol 58:595–611
Galtier N (2001) A maximum-likelihood phylogenetic analysis under a covarion-like model. Mol

Biol Evol 18:866–873
Groover AT (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214
Holder MT, Lewis PO, Swofford DL (2010) The Akaike Information Criterion will not choose

the no common mechanism model. Syst Biol 59:477–485
Huelsenbeck JP, Larget B, Alfaro ME (2004) Bayesian phylogenetic model selection using

reversible jump Markov Chain Monte Carlo. Mol Biol Evol 21:1123–1133
Ingram T, Mahler DL (2012) SURFACE: detecting convergent evolution from comparative data

by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods
Ecol Evol 4:416–425

16 Hidden Markov Models for Studying the Evolution 407



Lens F, Smets E, Melzer S (2012) Stem anatomy supports Arabidopsis thaliana as a model for
insular woodiness. New Phytol 193:12–17

Maddison WP (1993) Missing data versus missing characters in phylogenetic analysis. Syst Biol
42:576–581

Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on speciation
and extinction. Syst Biol 56:701–710

Marazzi B, Ane C, Simon MF, Delgado-Salinas A, Luckow M, Sanderson MJ (2012) Locating
evolutionary precursors on a phylogenetic tree. Evolution 66:3918–3930

O’Meara BC, Ane C, Sanderson MJ, Wainwright PC (2006) Testing for different rates of
continuous trait evolution. Evolution 60:922–933

O’Meara BC (2007) Estimating different rates of gene loss on a tree. Genetics 117:1415–1416
Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the

comparative analysis of discrete characters. Proc R Soc B 255:37–45
Pagel M, Meade A (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in

gene sequence or character-state data. Syst Biol 53:571–581
Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by

reversible-jump Markov Chain Monte Carlo. Am Nat 167(808):825
Penny D, McCormish BJ, Charleston MA, Hendy MD (2001) Mathematical elegance with

biochemical realism: the covarion model of molecular evolution. J Mol Evol 53:711–723
Revell LJ (2008) On the analysis of evolutionary change along single branches in a phylogeny.

Am Nat 172:140–147
Revell LJ (2014) Ancestral character estimation under the threshold model from quantitative

genetics. Evolution 68:743–759
Smith SA, Beaulieu JM, Stamatakis A, Donoghue MJ (2011) Understanding angiosperm

diversification using small and large phylogenetic trees. Am J Bot 98:1–12
Thomas GH, Freckleton RP, Szekely T (2006) Comparative analyses of the influence of

developmental mode on phenotypic diversification rates in shorebirds. Proc R Soc Lond B
273:1619–1624

Tuffley C, Steel M (1997) Links between maximum likelihood and maximum parsimony under a
simple model of site substitution. Bull Math Biol 59:581–607

Wright S (1934) An analysis of variability in the number of digits in an inbred strain of guinea
pigs. Genetics 19:506–536

Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable
rates over sites: approximate methods. J Mol Evol 39:306–314

Yang Z, Kumar S, Nei M (1995) A new method of inference of ancestral nucleotide and amino
acid sequences. Genetics 141:1641–1650

408 J. M. Beaulieu and B. C. O’Meara



Chapter 17
Detecting Phenotypic Selection
by Approximate Bayesian Computation
in Phylogenetic Comparative Methods

Nobuyuki Kutsukake and Hideki Innan

Abstract This chapter discusses the fundamental structure and advantages of the
approximate Bayesian computation (ABC) algorithm in phylogenetic comparative
methods (PCMs). ABC estimates unknown parameters as follows: (1) simulated
data are generated under a suite of parameters randomly chosen from their prior
distributions; (2) the simulated data are compared with empirical data; (3)
parameters are accepted when the distance between the simulated and empirical
data is small; and (4) by repeating steps (1)–(3), posterior distributions of
parameters will be gained. Because ABC does not necessitate mathematical
expression or analytic solution of a likelihood function, ABC is particularly useful
when a maximum-likelihood (ML) estimation is difficult to conduct (a common
situation when testing complex evolutionary models and/or models with many
parameters in PCMs). As an application, we analysed trait evolution in which a
specific species exhibits an extraordinary trait value relative to others. The ABC
approach detected the occurrence of branch-specific directional selection and
estimated ancestral states of internal nodes. As computational power increases,
such likelihood-free approaches will become increasingly useful for PCMs, par-
ticularly for testing complex evolutionary models that deviate from the standard
models based on the Brownian motion.
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17.1 Background

Evolution is messy. Rates, direction, and mode of evolution vary through time and among
clades and characters, and this inconstancy itself will often be unpredictable and haphazard.
Phylogenetic methods that ignore this variation will often produce inaccurate and misleading
results. As a result, researchers must embrace statistical approaches that assess such variation
rather than assuming constancy (Losos 2011).

Phylogenetic comparative methods (PCMs) are powerful approaches to test
evolutionary models of speciation and trait evolution (Chap. 1). Although PCMs
have been widely used in evolutionary biology, it is always important to remember
that statistical inferences regarding evolutionary parameters are based on
assumptions and hypotheses. In studies of continuous traits, single-rate Brownian
motion (BM) has been commonly used as a model for character evolution. BM
represents a neutral evolution or evolution tracking a continuously fluctuating
optimum value and is a good approximation for describing a pattern of trait
divergence. However, this does not mean that the BM-like evolutionary mode can
always approximate the process of divergence well (Estes and Arnold 2007;
Gingerich 2009). It is natural to assume that the process comprises heterogeneous
evolutionary rates and modes; that is, they vary within lineages, among branches,
and within clades (Losos 2011). One approach to coping with this heterogeneity is
to test a multiple-rate BM model against a simple single-rate BM model.
Researchers can set a model with varying rates for each branch or for mono-
phyletic subgroups based on a priori biological hypothesis (O’Meara et al. 2006;
Thomas et al. 2006), or set a model without specifying a hypothesis (Venditti et al.
2011). Another approach includes scaling parameters on branch lengths or evo-
lutionary rates, and test models of punctuated, accelerating/decelerating, or early
burst evolution (Table 17.1; Blomberg et al. 2003; Pagel 1997, 1999; Harmon
et al. 2010). Additionally, the local occurrence of stabilising selection can be
modelled by using the Ornstein–Uhlenbeck (OU) process (Table 17.1; Chap. 15).
Parameters specific to each model (Table 17.1) are incorporated to calculate an
expected covariance among the traits of each species. The variance–covariance
matrix, a critical component of the likelihood function of PGLS (phylogenetic
generalised least squares), is used for estimating unknown parameters via a
maximum-likelihood (ML) estimation or a Bayesian approach. With these
approaches, it is currently possible to address a wide range of questions. However,
some methods are mathematically complex and not always transparent for general
users of PCMs. Moreover, traditional approaches may not be well enough estab-
lished to test complex evolutionary scenarios with many parameters because the
description of the variance–covariance matrix is not straightforward to gain. It is
preferable to have a flexible toolkit that allows for testing of such complex evo-
lutionary models.

A simulation-based likelihood approach using an approximate Bayesian com-
putation (ABC) (Bokma 2010; Slater et al. 2012; Kutsukake and Innan 2013) may
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be one solution. This approach is useful when analytic expressions of likelihood
and the ML estimator cannot be gained. In this chapter, we aim (1) to explain the
basic structure, method, and caveats of ABC, (2) review the application of ABC to
PCMs, (3) provide a protocol for the ABC approach, (4) provide an example using
ABC, and (5) discuss the future direction of the ABC approach.

17.2 Approximate Bayesian Computation

The ABC framework was originally developed in population genetics (Tavare
et al. 1997) and gradually introduced to the disciplines of ecology and evolutionary
biology (Beaumont 2010; Bertorelle et al. 2010; Csillery et al. 2010). The major
advantage of ABC is that parameter estimation can be performed even when the
likelihood of the data cannot be computed, most often due to data complexity. The
fundamental structure of ABC is as follows: let x be the observed data and assume
an evolutionary model with the parameters g, which we aim to estimate. g could be
a vector with multiple parameters.

(1) Determine the prior distributions of all parameters g in x.
(2) For each parameter, generate a random value from the prior distribution. A

random set of the parameters at the ith simulation is denoted by g0i.
(3) Simulate data xi0 using g0i:
(4) Accept g0i if xi0 is identical to the observed data x.
(5) Go to (2) until a large number of accepted g0 values have been accumulated.

In most cases, the simulation will rarely produce xi0 that is completely identical
to the observed data x. To solve this problem, instead of using the full data set,
ABC usually employs summary statistics (denoted by s, which usually comprises
several types of summary statistics, i.e., s = [S1, S2, … Sn]) and use s(x) and s(xi0)
instead of x and xi0. Even when summary statistics are used, it may be rare to gain

Table 17.1 Examples of parameters used in previous studies of PCMs

Model Parameters Biological meaning

Scaling branch length ka Phylogenetic signal
da Temporal rate change
ja Gradual versus punctuational evolution

ACDC gb The overall rate of acceleration (AC) or deceleration (DC)
Early burst rc The pattern of rate change through time
OU (whole phylogeny) db A restraint parameter in the OU transformation
OU ad Strength of stabilising selection
a Pagel (1997, 1999)
b Blomberg et al. (2003)
c Harmon et al. (2010)
d Hansen (1997), Butler and King (2004)
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an s(xi0) value that is exactly the same as s(x). In such a case, we can set a certain
range of tolerance. One simple algorithm, a rejection sampling, uses the following
relaxed criterion:

ð40ÞAccept g0i when qðsðxÞ�sðx0iÞÞ\e;

where e is a tolerance and q(�) is a function for calculating a distance between
s(x) and s(xi0), representing their similarity. By setting a tolerance, the efficiency of
parameter acceptance will dramatically increase in comparison with (4). In addi-
tion to this simple rejection sampling algorithm, more sophisticated methods have
been proposed to improve data-acceptance efficiency, such as importance sampling
or ABC–MCMC (Markov chain Monte Carlo; see Marjoram et al. 2003 and
Majoram and Tavare 2006 for details).

17.3 Caveats of ABC

Although Sect. 17.2 provided the fundamental structure of ABCs, several general
caveats remain that users should be aware of. Because of space limitations, we will
briefly discuss three core points, summary statistic sufficiency, estimation
robustness, and model selection, although other general caveats of Bayesian
computation apply (see Gelman et al. 2013).

First, the number and choice of summary statistics is critical in ABC (see
Beaumont et al. 2002; Csillery et al. 2010; Leuenberger and Wegmann 2010 for
details). The use of summary statistics reduces the dimensionality and complexity of
the data (Tavare et al. 1997). Accordingly, if researchers use too few summary
statistics, too much information is discarded, resulting in a low resolution of the
parameter estimation. However, if too many summary statistics are used, the accep-
tance rate will be so low that it will be computationally intensive. Researchers must
examine the performance of their chosen summary statistics before applying ABC to
real data, such as by conducting power tests with artificially generated data.

The second point concerns estimation robustness and computational efficiency
determined by the level of tolerance e. If tolerance is not sufficiently small,
parameter estimation will be rough (Beaumont 2010), while too severe tolerance is
not practical because computational efficiency will be too low. Therefore,
researchers are required to set an adequate level of tolerance in ABC, meaning that
a certain amount of subjectivity and uncertainty remains in parameter estimation.
To address this problem, post hoc correction approaches have been proposed to
increase the accuracy of parameter estimation, such as post-sampling regression
adjustment using general linear model (ABC–GLM; Leuenberger and Wegmann
2010).

Third, simple model selection cannot be used in the framework of ABC. This
difficulty stems from the fact that likelihoods are not calculated, and data accep-
tance in each model depends on summary statistics and tolerance (Beaumont 2010;
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Csillery et al. 2010; Robert et al. 2011). Although this can be problematic in the
case of comparing un-nested models, model selection based on posterior distri-
butions is relatively straightforward when models are nested (explained below).

17.4 Application of ABC to PCMs

Three PCM studies have used ABC for analysing trait evolution (Table 17.2; see
Rabosky (2009) for an analysis of clade diversification using ABC). These studies
aimed to test evolutionary models that are difficult or not straightforward to handle
in the traditional framework of PCMs.

The first PCM study using ABC was performed by Bokma (2010). This study
aimed to separate the effects of parameters of cladogenetic evolution and of
anagenetic evolution on trait disparity. There are wide variations in trait disparity
among clades, and understanding the ecological and evolutionary causes of this
phenomenon has been a central interest in macroevolutionary studies. It is likely
that a trait disparity is positively correlated with a parameter of anagenetic evo-
lution (i.e. rate parameter of BM). Additionally, the number of speciation events
may be positively correlated with the trait disparity because the interval between
speciation events should be smaller in larger clades, automatically resulting in
larger trait variance (Ricklefs 2004, 2006; Purvis 2004). Thus, the effects of
anagenetic and cladogenetic evolution on trait disparity are confounded and dif-
ficult to separate. To solve this problem, Bokma (2010) applied ABC to trait
disparity in passerine data (originally used in Ricklefs 2004) to investigate the
relative importance of those parameters with respect to anagenetic evolution,
cladogenetic evolution, and their combination. Bokma (2010) conducted a simu-
lation using a model comprising two free parameters (anagenetic and cladogenetic
parameters) and estimated those parameters using phenotypic variance as sum-
mary statistics. They found that gradual anagenetic change was more important
than a combination of anagenetic and cladogenetic evolution in terms of
explaining the phenotypic divergence observed in this group.

In another study, Slater et al. (2012) used a mixture of Markov-chain Monte
Carlo (MCMC) and ABC to infer the speciation/extinction rates and parameters of
trait evolution in an incompletely sampled phylogeny. This study was motivated
by a common problem in PCM studies: it is usually difficult to perform complete
sampling of a phylogeny and collect trait data from all species. Data incom-
pleteness could reduce the accuracy of statistical inference of evolutionary
parameters and the power to test models. Nevertheless, ABC can handle such
incomplete data relatively well because data are transformed into summary sta-
tistics so that it is not always necessary to sample all data (as long as collected data
are unbiased and represent each clade). Using this unique characteristic of ABC,
Slater et al. (2012) developed a new framework with which to test evolutionary
models using incomplete data. First, speciation and extinction parameters were
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estimated from known data by MCMC. They conducted simulations to generate a
phylogeny under a birth/death process using sampled parameter values. Next,
using ABC, they simulated trait evolution according to BM rates on the generated
phylogeny using the rate parameter(s) of BM and sampled the trait value at the
root. Finally, summary statistics (mean and variance) calculated from the simu-
lated trait data were compared with those calculated from the real data of each
clade. This study applied this algorithm to test the difference in BM rate param-
eters of the body size between pinnipeds and terrestrial carnivores. This study was
interested in estimating two to three parameters, namely the trait value at the root,
and one or two rate parameters assigned to those two groups. Given that a model
with one rate parameter is nested within a model with two rate parameters, this
study used a posterior probability to select the two models. The ABC approach
revealed that, contrary to expectation, rate parameters did not differ between the
two groups.

Testing multi-BM models is also possible in the traditional framework of PCMs
(O’Meara et al. 2006; Thomas et al. 2006), but it requires the assumption of
complete sampling. Slater et al. (2012) demonstrated that ABC handles this
technical problem quite well and stated that their method is applicable to other
existing evolutionary models, thereby providing an important first step in testing
complex evolutionary models by ABC. This method was implemented in the
software MECCA (Modeling Evolution of Continuous Characters using ABC)

Third, our recent study (Kutsukake and Innan 2013) used ABC under an evo-
lutionary model with heterogeneous evolutionary modes and rates within a phy-
logeny (assuming that the phylogeny is known). Although this algorithm is
designed to model wide ranges of trait evolution, one useful application is to detect
directional selection occurring locally within the phylogeny. In molecular evolu-
tion studies, there is a popular approach to measure branch-specific directional
selection (e.g. dN/dS or Ka/Ks) (Li 1997; Yang 2006). Motivated by this approach,
our model was designed to incorporate branch-specific selection parameters and

Table 17.2 Summary of three PCM studies using ABC

Study Parameters Reason for using
ABC

Summary
statistics

Empirical example

Bokma
(2010)

Anagenetic and
cladogenetic
evolution
parameters

No analytical
solution for an
evolutionary
model

Phenotypic
variance

Parameter estimation of
phenotypic variance
in passerine birds

Slater et al.
(2012)

Speciation rate,
extinction rate,
ancestral state,
BM rate

Incompletely
sampled
phylogeny and
trait data

Mean and
variance
for terminal
lineages

Comparison of
terrestrial carnivores
and pinnipeds

Kutsukake
and
Innan
(2013)

See Table 17.3 for
details

Branch-specific
directional
selection

Direct (and
full)
likelihood

Detection of directional
selection in human
brain size
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allowed statistical testing and measurement of the intensity of selection. We
considered the BM model (with slight modifications) to be a null neutral model.
This simplest model can be extended by adding as many branch-specific selection
parameters as desired for setting an alternative.

Using this framework, Kutsukake and Innan (2013) showed a simple example
analysis of data on brain volume among four species of great apes. In total, three
parameters were involved: the trait value at the most recent common ancestor, the
background evolutionary rate, and the strength of directional selection at the
human lineage (the method will be explained later). It was shown that the trait
evolution on the branch reaching to humans significantly deviated from the BM
mode, exhibiting strong evidence of branch-specific directional selection.

Although only a few PCM studies have used ABC thus far, ABC has a great
potential to be applied to a wide range of problems and settings. Since phenotypic
evolution consists of a process in which trait values increase or decrease, listing all
parameters making up this process should be sufficient to build any complex
evolutionary models. Of PCM studies using ABC, only our model is flexible
enough to be applied to various evolutionary processes at any time point; these can
be deviate from the simple BM process and include various modes and intensities
of selection on different branches. Another strength is that our framework employs
direct likelihood as a summary statistic, by which it is possible to avoid the
problem of which and how many summary statistics should be used in ABC (see
Sect. 17.3). Furthermore, intraspecific variation, a factor that has been overlooked
but is known to affect to parameter estimation in PCMs (Garamszegi and Møller
2010; Chap. 7), and uncertainty in phylogeny can be taken into account (see below
and Table 17.3). Below, we describe the model and algorithm of our approach in
detail.

17.5 ABC Algorithm in Kutsukake and Innan (2013)

We herein explain the algorithm of Kutsukake and Innan (2013) in more details
(see also Fig. 17.1a for a simplified structure of this algorithm; an example pro-
gram written in the C language in shown in the Online Practical Material, http://
www.mpcm-evolution.com).

A necessary data set for applying this algorithm is the same as those for other
studies. First, trait data are required for each species. Intraspecific variation can also
be incorporated by setting a distribution of the trait. Any kind of distribution can be
handled, from a regular quantitative trait that likely follows a simple normal distri-
bution to a trait with a discrete distribution. The phylogeny w (topology and branch
length s) of the species is also needed and is assumed to be known (this assumption
could be relaxed as phylogenetic uncertainty can be taken into account in the algo-
rithm; see Table 17.3). K represents all other parameters involved. At minimum, may
comprise the trait value of the most recent common ancestor (h0) and evolutionary
rate l. The evolutionary rate, the number of evolutionary events (i.e. mutation and
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Table 17.3 Main parameters used in a simulation-based likelihood approach by Kutsukake and
Innan (2013)

Parameter Biological meaning Notes

Known parameters
w Species tree (topology and branch

lengths)
When topology and/or branch

length includes uncertainty,
it is possible to consider
those uncertainties by using
a randomly chosen
topology and/or a set of
random values for branch
length in each simulation

si Length of the ith branch on the
tree in a given unit (e.g. time
or genetic distance)

n Number of nodes
X ¼ fX1;X2;X3; . . .Xng Observed nodal data (e.g. mean) This setting assumes data

contain no measurement
errors. Measurement errors
can be incorporated by
considering that r contains
both intraspecific variation
and measurement errors, or
by setting a new parameter
set to represent
measurement error. Internal
nodes such as fossil data
can also be used

r ¼ fr1;r2;r3; . . .rng Observed nodal data on
intraspecific variation
(standard deviation or other
parameters)

A parameter set of
interests ðKÞ

h0 Phenotype of the MRCA
l Evolutionary rate (the number

of a phenotypic change) per
time unit (e.g. a million years,
a generation) and genetic
distances

lþ and l� for increasing or
decreasing a trait value. It is
possible to assume different
evolutionary rates for each
branch i by setting lþi ; l

�
i

Other factors
/ Changes in phenotypic values

caused by a single event of
evolution; this parameter
can be set arbitrarily

/þ; /� for different effects for
increasing or decreasing
trait value. For example, it
is possible to model a larger
evolutionary effect
increasing a trait than one
decreasing a trait by setting
/þ [/�. In the case that
the evolutionary effect
differs among branches, a
different value (/þ

i ; /
�
i )

can be used

(continued)
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fixation), is denoted by li at branch i, whose length is si. Thus, the expected
number of evolutionary events increasing and/or decreasing the trait value is lisi.
The effect of each evolutionary event on the trait is denoted by /, which should
follow a certain distribution. By setting branch-specific lisi, it is possible to model
the density distribution of the phenotypic change for each branch and to test wide
ranges of evolutionary models such as branch- or clade-specific directional
selection (see below) or the OU process (see Kutsukake and Innan 2013 for
details). This setting enables researchers to treat those models and a null model
(neutral evolution) as nested models, allowing one to avoid the complicated
problem of model selection in ABCs (see Sect. 17.3).

Under this framework, it is possible to apply the ABC algorithm along
the following four steps. The steps correspond to the general ABC procedure in
Sect. 17.2.

Step 1 Determine the prior distribution of each parameter. An advantage of
Bayesian statistics is that it enables the setting of informative (i.e. strong)
prior distributions based on prior biological knowledge.

Step 2 Choose a random value for each parameter from the prior distribution.
Parameters used in the simulation (K0) are randomly chosen from their
prior distributions.

Step 3 Let trait values evolve by simulation. Simulation of the trait evolution of
phylogeny w is conducted using K0. As a result, simulated values H of
traits of n species are gained.

Step 4 Calculate the likelihood by comparing simulated data with the real data
and determine whether that parameter set is accepted or rejected. Each
simulated value hi is compared with the real value Xi. By comparing
n species, a joint probability (full likelihood) PrðXjHÞ ¼
PrðX1; X2; X3; . . .;Xnjh1; h2; h3; . . .; hnÞ will be calculated. In the case
that this probability is computationally very difficult to gain, a composite

Table 17.3 (continued)

Parameter Biological meaning Notes

si ¼ f ðl; sÞ or
f ðl; s; . . .Þ

Number of fixed mutations that
increase (sþi ) or decrease (s�i )
the phenotypic value at
a certain branch i

A random integer from a
Poisson distribution with
mean lþi si (or l�i si) in the
case of BM evolution. If
one wants to test more
complex evolutionary rate
in which the evolutionary
rate is a function of the
branch length or time from
root, such as accelerating or
decelerating evolutionary
rate, additional parameters
can be used in this function

H ¼ fh1; h2; h3; . . .hng Simulated data of n descendent
species
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likelihood Pr XjHð Þ ¼
Qn

i¼1
PrðXijhiÞ may be used as an approximate proxy,

which should work fairly well as long as the sampled species are rea-
sonably diverged. Here, one important advantage in our framework is that
the choice of summary statistics is avoided. Although previous studies
have used means or variance as summary statistics (Table 17.2), this study
employed a more straightforward method by using the direct likelihood
instead of a summary statistic. The use of likelihood as a summary sta-
tistics may not be common in standard ABC, where data are usually
represented by a set of summary statistics and likelihood cannot be ana-
lytically computed. Note that we can compute the likelihood of the
observed data given a ‘‘simulated data set’’. In our framework, given a
parameter set, a single run of random simulation provides a simulated data
set representing a single realisation of the random process. Then, the
likelihood is computed given this simulated data set. This is different from
the standard ML estimation that requires the likelihood given a parameter

(a)

(b)

Fig. 17.1 a An illustrative
example of the ABC
approach. A trait simulation
can be conducted based on a
parameter set ðKÞ on a
phylogeny with a discrete
timescale. The number of
simulation rounds is shown in
parenthesis. A number (x) of
simulations were conducted
until enough samples were
collected to infer posterior
distribution. b The trait value
can be simulated by the
BM-like evolutionary mode
(a lower branch) or
directional selection to
increase trait value (an upper
branch). Vertical axis
indicates a trait value, and
white arrows indicate
direction of trait evolution for
each branch, with its length
corresponding to the number
of evolutionary events
increasing or decreasing trait
values
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set. Intraspecific variation in the trait data can be considered by using the
probability density function when calculating PrðXijhiÞ, the probability of
gaining X given h. Thus, by assuming a certain distribution of intraspecific
variation, we can evaluate the similarity between the simulated and real
data using the likelihood. As a consequence, our algorithm can avoid the
common problem of choosing appropriate summary statistics.

Using Pr XjHð Þ, acceptance of K0 can be determined. As described above,
there are several methods of judgment (Marjoram et al. 2003; Majoram
and Tavare 2006); the researchers determine which method will be used.
However, we caution users on choosing the acceptance threshold. A strict
threshold increases the precision of parameter estimation, but if it is too
strict, the computational load may be too large. A reasonable choice is
desired so as to gain posterior distributions within a realistic computation
time (see Sect. 17.3).

Step 5 Obtain posterior distributions of the parameters and assess the importance
of each parameter. Repeat Steps (2)–(4) until a sufficient number of
parameters is accepted. This usually requires intensive iterative compu-
tation, particularly when there are many parameters. Posterior distributions
and credible intervals can be used to judge whether each parameter is
different from a specific value (e.g. a value expected under a null model)
and to accordingly test which evolutionary models are supported.

17.6 Detecting Branch-Specific Directional Selection

In this ABC approach, it is possible to let phenotypic traits evolve via directional
selection only in certain branches (Fig. 17.1b). There are various ways to model
such local occurrence of directional selection. Kutsukake and Innan (2013)
introduced a simple model in which the direction and intensity of selection is
parameterised by a single parameter, k. That is, it is assumed that if selection
favours the increase in a trait at a branch with sl, the expected numbers to increase
and decrease the trait are given by ksl and sl=k, respectively. When k equals 1,
the result is the same as neutral evolution, as the numbers of evolutionary events
increasing and decreasing the trait value are identical on average.

The model using k is not the only universal way to model directional selection.
Other types of directional selection can be flexibly modelled by setting new
parameters. For example, directional selection in one direction can co-occur with
constant occurrence of neutral evolution, including evolution in the opposite
direction. In such cases, researchers can set a new parameter, and evolutionary
events increasing a trait value can be multiplied by that parameter while those
decreasing the trait value will be untouched. In other cases, consistent directional
selection of a trait may start to operate from a certain intermediate point of a
branch because of alterations in a fitness landscape by environmental changes. In
such cases, researchers can create a model in which a trait value evolves neutrally
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until the intermediate point of the branch, and the evolutionary rate is multiplied
by a parameter of directional selection in the rest of the branch.

Given that there are several ways to model directional selection and to represent
the relative intensity of selection, it is useful to quantify the expected change in the
trait value for each branch, which is denoted by Dsel. In the case of using k, the
Dselvalue can be calculated by lþi sik � l�i si=k (Kutsukake and Innan 2013). To
test the presence of directional selection, the posterior distribution of Dsel can be
compared to zero or to a maximum value of the trait change under a pure neutral
model (denoted by Dnull in Kutsukake and Innan 2013). The advantage of using
Dsel is that it can cancels out the confounding relationship between l and k (or
other parameters for directional selection); that is, k is inversely correlated with l
because those two parameters compensate for each other to let a phenotypic value
increase (or decrease) towards a certain value. In other words, a low evolutionary
rate must necessitate strong directional selection, whereas weak directional
selection may be sufficient when evolutionary rate is large. In such a situation, the
most meaningful quantity should be Dsel rather than l or k.

17.7 Application to Weevil Rostrum Demonstrating
Branch-Specific Direction Selection

We analysed weevil rostrum evolution to show how our framework can be applied
to a complex model of trait evolution with branch-specific directional selection
(see OPM). Toju and Sota (2006) studied interspecific variation in the rostrum, an
organ used to excavate host plant fruits to lay eggs inside, among seven species of
weevils. They investigated two nearly isolated subpopulations of one of those
species, Curculio camelliae. Interestingly, their interpopulation comparison
between the subpopulations showed a positive correlation between the thickness of
the camellia fruit walls and the weevil rostrum length, suggesting that an arms race
occurred between those two traits. Toju and Sota (2006) applied PGLS (Chaps. 5
and 6) and showed significant effects of two scaling parameters, j and d (Pagel
1999). The significant effects of these parameters indicate punctuated evolution
and the large effect of a short branch. They also estimated the ancestral states by
the ML approach (Schulter et al. 1997). As a result, the rostrum length of the
common ancestor (an internal node C in Fig. 17.2a) between C. camelliae and its
sister species (C. species on C. sasanqua) was estimated at 8.12, an approximately
intermediate value of their descendent species (Fig. 17.2a). This estimated value
suggests that the rostrum length should have increased in C. camelliae but
decreased in its sister species.

Note that these results reflect BM-based models, in which a uniform rate of
evolution was applied to the entire tree, and directional selection on the lineage of
C. camelliae was not specifically incorporated. Therefore, the estimated ancestral
states of C. camelliae may have been overestimated. We re-analysed the data
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reported by Toju and Sota (2006) and tested the model showing that branch-
specific directional evolution has increased the rostrum length in the lineage
leading to C. camelliae. In the ABC, we conducted trait simulation by setting three
parameters: the ancestral value, background (neutral) evolutionary rate, and
intensity of directional selection k. We assumed a Gaussian distribution of rostrum
length and calculated the probability for the ith species by considering intraspecific
variation r as follows:

Pr Xijhið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

i

p exp �ðhi � XiÞ2

2r2
i

" #
: ð17:1Þ

We accepted data by the criterion that the probability of acceptance is pro-
portional to a direct likelihood (Kutsukake and Innan 2013). Using this equation,
we can avoid the common problem of the tolerance (see Sect. 17.3).

The obtained posterior distributions favoured our model of branch-specific
directional selection over the null model based on neutral evolution. The posterior
distribution of k did not overlap with 1, the value indicating neutral evolution
(Fig. 17.2b). The ancestral value estimated by this branch-specific directional
selection model was much smaller than that estimated by ML estimator, not only
in the ancestor of C. camelliae but also in other internal nodal species (Fig. 17.2b).
These differences are obviously due to the incorporation of branch-specific
directional selection. This estimation supports the idea that a co-evolutionary arms
race promoted the evolution of an exaggerated trait.

Although an OU model can also be applied to the branch to the Japanese
species, we believe that applying directional selection is more suitable in this case
because there should be no adaptive optimum in an arms race, and phenotypic
shifts should be unidirectional.

17.8 Further Applications

An advantage of the ABC approach is that researchers can flexibly test compli-
cated evolutionary models even when their likelihood cannot be computed. This
advantage meets recent demands of PCMs as comparative approaches are cur-
rently applied to wide ranges of biological problems and complicated models.
Another advantage of ABC is that trait simulation provides a good opportunity to
critically consider each stage of an evolutionary event. Using simulations,
researchers can create models focusing on evolutionary processes, rather than
evolutionary patterns. However, user should be aware of the caveats of ABCs
(discussed in Sect. 17.3). Careful calibration of summary statistics, tolerance,
power analysis, and well-designed model settings are necessary. The ABC
approach itself is also rapidly developing, and we recommend that ABC users
follow the ongoing improvements and debates.
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Fig. 17.2 a Phylogeny and trait values (rostrum length; mean and 1 SE) of seven species of
weevils (C. camelliae were sampled in two locations: YKI and HSK). Phylogenetic relationship
of these species was estimated by mitochondrial COI gene sequences (Toju and Sota 2006). The
trait values indicated by white circles correspond to the estimated values of internal nodes A, B,
and C by Toju and Sota (2006). We tested an evolutionary model in which directional selection to
increase a trait value has occurred between internal nodes C of the ancestor of C. camelliae
(indicated by a thick line with an upward arrow). Simulations were performed by a discrete
timescale using a million years. b Posterior distributions of parameters and 95 % confidence
intervals based on 2,000 accepted parameter sets (ancestral value at internal nodes A, B, and C,
evolutionary rate, and selection) of our ABC analysis. We did not accept simulated data with a
negative trait value. Black inverted triangles indicate trait values estimated by Toju and Sota
(2006). In this analysis, / was set as an exponential distribution with a mean of 0.05 mm,
meaning that one evolutionary change results in a trait change whose magnitude is a random
value from an exponential distribution whose average is 0.05 mm. Prior distributions were set as
follows: MRCA * U(3.15, 9), evolutionary rate per a million year *U (0, 50), and
k * U (0.0001, 30), where U(�) indicates a uniform distribution
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We believe that ABC-based PCMs have many developmental possibilities and
can be applied to broad ranges of evolutionary questions and empirical data. As
our example showed, one can model branch-specific directional selection by set-
ting a specific value of the evolutionary rate (l; Table 17.3) at each branch. As an
extension of this directional selection model, an acceleration of selection pressure,
often witnessed during co-evolutionary arms races, can be also analysed. With
further modifications / (Table 17.3), one can model an evolutionary scenario in
which different species have a different degree of trait change stemming from one
evolutionary event. Such a situation is common in analyses of size traits or body
mass, in which the degree of trait change (e.g. an increase/decrease in body mass)
positively correlates with its species trait value (e.g. body mass). Furthermore,
changes in the evolutionary rate and mode in the middle of a branch, hybridisation,
and cultural evolution can also be flexibly incorporated in this framework.

Finally, we should note that our ABC approach may not fit to a ready-made
software or statistical library because flexibility is the most important advantage of
the ABC. It is ideal that each user writes programs for evolutionary models that the
given researcher would like to test (see OPM).
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Chapter 18
Phylogenetic Comparative Methods
for Studying Clade-Wide Convergence

D. Luke Mahler and Travis Ingram

Abstract A recurring question in ecology and evolutionary biology is whether
deterministic evolutionary convergence ever occurs among large sets of species,
such as ecological communities or entire evolutionary radiations. Questions about
large-scale convergence have featured prominently in discussions of the nature of
community assembly and in debates about the relative roles of contingency versus
determinism in macroevolution. Until recently, however, there have been relatively
few attempts to use a phylogenetic comparative approach to answer questions about
clade-level convergence. This is beginning to change with the development of new
and more flexible comparative techniques for studying macroevolutionary con-
vergence. In this chapter, we discuss ecological and evolutionary questions that
have motivated interest in convergence at large spatial and phylogenetic scales. We
review the statistical approaches that have been used to investigate clade-wide
convergence, then describe SURFACE, a recently developed method for objec-
tively studying convergence using macroevolutionary adaptive landscape models.
We introduce new features within this framework for testing hypotheses about the
biogeography of large-scale convergence and for visualizing the relative contri-
butions of different traits to multidimensional convergence, and demonstrate these
features using convergent Caribbean Anolis lizard faunas. We conclude by dis-
cussing the limitations of current approaches for studying clade-wide convergence
and highlighting some directions for future research.
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18.1 Why Study Convergent Evolution at the Clade Scale?

The fact that organisms experiencing similar selective pressures often converge by
evolving similar adaptations is not controversial, and many studies have elucidated
the ecological conditions and genetic and developmental mechanisms responsible
for convergence among particular populations or species (Arendt and Reznick
2008; Conway Morris 2003; Losos 2011; Manceau et al. 2010). By contrast, the
notion that entire communities or clades could evolve to be deterministically
similar remains a source of disagreement among both ecologists and evolutionary
biologists (Blondel 1991; Cody and Mooney 1978; Gould 1989; Ricklefs and
Miles 1994; Samuels and Drake 1997; Schluter 2000; Schluter and McPhail 1993;
Segar et al. 2013).

In ecology, discussions of community convergence have played a role in
debates about the mechanisms governing community assembly and structure.
Inspired by the perception that similar but historically isolated environments were
often host to what appeared to be suites of ‘ecologically equivalent’ species (e.g.,
Karr and James 1975; Pianka 1974), a number of workers in the 1970s and 1980s
became interested in whether similar ecological settings could lead to the evolu-
tion of deterministically similar communities (Cody 1974; Cody and Mooney
1978; Gatz 1979; Karr and James 1975; Keast 1972; Lawton 1984; Melville et al.
2006; Orians and Paine 1983; Orians and Solbrig 1977a; Ricklefs and Miles 1994;
Ricklefs and Schluter 1993). Most early community similarity research focused on
the non-evolutionary assembly of communities from existing species pools (Cody
and Diamond 1975; Fox 1987; Strong et al. 1984), but evidence for similar
communities on different continents raised the question of whether matched
communities in similar environments could arise through evolutionary processes
(Cody and Mooney 1978; Karr and James 1975; Kelt et al. 1996; Ricklefs and
Miles 1994; Ricklefs and Travis 1980; Schluter 1986, 1990; Emerson and
Gillespie 2008; Segar et al. 2013). Community similarity is most often measured
using the phenotypic or functional attributes of species, but related approaches
have asked whether communities are similar in other features such as richness and
abundance in ecological guilds (Orians and Solbrig 1977b; Segar et al. 2013), the
degree of species packing (Gatz 1979; Orians and Solbrig 1977b; Ricklefs and
Travis 1980), the axes of variation among species (Wiens 1991; Young et al.
2009), or the relationship between morphology and ecology (Cody and Mooney
1978; Karr and James 1975; Melville et al. 2006; Miles et al. 1987; Montaña and
Winemiller 2013; Ricklefs and Miles 1994).

In evolutionary research, the notion of clade-wide convergence has featured
most prominently in the debate over the importance of contingency and deter-
minism in macroevolution. Trajectories of evolutionary change are conventionally
viewed as being at least somewhat predictable at microevolutionary scales, but
idiosyncratic and unpredictable over the longer timescales over which clades
diversify. According to this view, commonly referred to as the contingency

426 D. L. Mahler and T. Ingram



hypothesis, both the inevitable differences in the initial conditions for evolution in
different lineages and the influence of chance events during the course of evolution
are sufficient to preclude highly similar macroevolutionary outcomes (Gould 1989,
2002, 2003; Price et al. 2000; Simpson 1950); (discussed in Beatty 2006, 2008;
Erwin 2006; Inkpen and Turner 2012; Pearce 2012; Powell 2009, 2012). Many
have challenged this view, citing the apparent emergence of so-called ‘replicated
adaptive radiations’—independent clades containing similar sets of species that
have resulted from diversification in similar environments. With the rise of
molecular systematics, phylogenetic investigations of many groups of organisms
have revealed patterns of frequent ecological and morphological convergence,
often among species that were previously thought to be close relatives based on
superficial similarities (Givnish 1997; Losos and Mahler 2010). Such large-scale
convergence would provide support for evolutionary determinism and would
suggest a more limited role for initial conditions and chance events in determining
macroevolutionary outcomes. Phylogenetic patterns suggestive of replicated
adaptive radiation have now been reported for cichlid fishes (Clabaut et al. 2007;
Kocher et al. 1993; Rüber et al. 1999; Stiassny and Meyer 1999; Young et al.
2009), Anolis lizards (Losos et al. 1998; Mahler et al. 2013), Hawaiian spiders
(Blackledge and Gillespie 2004; Gillespie 2004, 2005) and plants (Givnish 1999;
Givnish et al. 2009), continental radiations of mammals (Madsen et al. 2001;
Springer et al. 1997), frogs (Bossuyt and Milinkovitch 2000; Moen and Wiens
2009), damselfishes (Cooper and Westneat 2009; Frédérich et al. 2013), land snails
(Chiba 2004), and many other groups (e.g., Alejandrino et al. 2011; De Busschere
et al. 2012; Kozak et al. 2009; Patterson and Givnish 2003; Ruedi and Mayer 2001;
Ellingson 2013).

Many questions about macroevolutionary convergence remain unanswered.
First, because some degree of convergence is expected among any large clades that
have diversified from similar ancestors, it is possible that much of the celebrated
convergence in replicated radiations is actually unremarkable and not indicative of
deterministic evolution (Stayton 2008). Even assuming that replicated radiations
are deterministically similar, there has been little investigation into the evolu-
tionary process responsible for such convergence. In particular, while conceptual
models of replicated radiation typically involve lineages in different regions being
attracted to similar adaptive peaks, methods for inferring the number and position
of such peaks on a macroevolutionary landscape have been lacking. In addition,
there has been much recent discussion about whether convergence only occurs
among members of geographically distinct clades, as might be expected if
ecological opportunity and competition regulate the evolution of novel niche
specialists (Losos 1996; Wiens et al. 2006), or whether convergence may occur
repeatedly within the same region (Kozak et al. 2009; Muschick et al. 2012;
Scheffer and van Nes 2006; Ingram and Kai 2014).

Testing hypotheses about processes underlying large-scale convergence has
been a challenge, as the long timescales over which clades typically diversify
preclude direct observation in nature. As a result, many of our insights into
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evolutionary contingency and determinism have come from experimental studies
of microorganisms evolving in laboratory settings (Hekstra and Leibler 2012;
Kassen 2009; Lenski and Travisano 1994; MacLean 2005; Rainey and Travisano
1998; Saxer et al. 2010; Tyerman et al. 2005) or from computer simulations
(Gavrilets and Vose 2005; Pie and Weitz 2005; Scheffer and van Nes 2006;
Stayton 2008; Wagenaar and Adami 2004; Yedid and Bell 2002; Yedid et al.
2008). However, in recent years, phylogenetic comparative methods have
increasingly been employed to investigate questions about clade-wide conver-
gence in natural systems. To date, most such studies have used phylogenies to
identify instances of convergence or to test whether the frequency or fidelity of
convergence within or among clades exceeds expectations under simple null
models. However, comparative tools that incorporate evolutionary processes into
models of convergence on macroevolutionary adaptive landscapes are now
available, allowing tests of a wider range of hypotheses about evolutionary con-
vergence using phylogenetic comparative data.

18.2 Historical Development of Methods for Studying
Clade-Wide Convergence

Interest in clade-wide convergence predated the advent of modern phylogenetic
comparative methods, meaning that the first quantitative techniques for studying
convergence among evolutionarily distinct communities were necessarily non-
phylogenetic. Starting in the 1970s, community ecologists tested for community
convergence by directly comparing the ecological or morphological attributes of
species in independent communities (reviewed in Cody and Mooney 1978; Orians
and Paine 1983; Blondel 1991; Ricklefs and Miles 1994; Samuels and Drake 1997;
Schluter 2000). A common technique for making such comparisons was to con-
struct a multidimensional Euclidean ‘morphospace’ (Ricklefs and Travis 1980;
Wiens 1991; Gatz 1979) and to ask whether the communities showed phenotypic
matching (e.g., exceptionally small mean Euclidian distances between species and
their nearest neighbors from the other community in morphospace). If the sets of
species were well-matched despite their different evolutionary histories, then a
case could be made that the communities were convergent (Cody and Mooney
1978; Ricklefs and Travis 1980; Gatz 1979; Ricklefs and Miles 1994). Using this
framework, one could test whether communities were more similar than expected
using a given null distribution, usually obtained by randomization.

A drawback of this approach is that it is ahistorical and thus does not explicitly
test whether organisms have evolved to be more similar to one another than were
their ancestors (i.e., whether they are truly convergent or just similar). This point
was certainly appreciated by many early workers, and led some to focus on com-
parisons of communities on different continents (Karr and James 1975; Orians and
Solbrig 1977a; Ricklefs and Travis 1980). Schluter (1986) indirectly addressed this
problem by comparing the similarity observed among communities in matching
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habitats from different regions (and different evolutionary origins, presumably) to
the similarity observed among communities in contrasting habitats from the same
region. Such a pattern of differences among relatives and similarities with species in
similar communities would be consistent with community convergence. However,
an alternative explanation for the same pattern is that community matching might
be due to ecological sorting from a larger species pool in each region rather than
convergent evolution.

A critical step in testing for convergence of communities or radiations was thus
the incorporation of evolutionary history into statistical null models. According to
this approach, the investigator quantifies the similarity of communities or clades
using a standard statistical measure as described above, such as the mean nearest-
neighbor distance in morphospace, and then evaluates this statistic against an
evolutionary null distribution (Fig. 18.1). We refer to this as the ‘statistical’
approach in what follows. The null distribution may be generated by simulating
trait data on a phylogenetic tree using an evolutionary model that lacks deter-
ministic evolutionary convergence, such as random-walk Brownian motion (BM)
(Fig. 18.2) or a single-optimum Ornstein–Uhlenbeck (OU) model. The OU model
(Uhlenbeck and Ornstein 1930) includes stochastic evolution as well as attraction
toward an ‘optimum’ trait value, which has the effect of eroding the signal of
evolutionary history and reducing the volume of trait space that can be explored
(Felsenstein 1988). These features make it useful as a null model that can result in
phenotypically similar species without deterministic convergence. The observed
measure of convergence can then be compared to this null distribution to test
whether putatively convergent groups of species are more similar than expected by
chance. A related approach uses phylogenetic simulations to generate a null dis-
tribution of a test statistic for ANOVA-like designs (Garland et al. 1993), where
the goal is to quantify the phenotypic similarity of unrelated species belonging to
categories representing putatively convergent niches (e.g., Brandley et al. 2014;
Glor et al. 2003; Harmon et al. 2005; Johnson et al. 2009; Winchester et al. 2014).

Thus far, we have focused on testing for convergence among clades from dif-
ferent regions or among multiple clades that have radiated within a shared region,
but another form of ‘clade-wide convergence’ occurs when multiple sets of lineages
in a single large clade converge on one another within a broad geographic region.
An alternative method for identifying exceptional convergence in such cases
considers how the phenotypic similarity of species is related to the phylogenetic
distance between them (Muschick et al. 2012). Stochastic models such as BM
predict a general increase in phenotypic distance at increasing evolutionary scales,
and despite a high variance in phenotypic distance among distantly related pairs of
species, relatively few such pairs are expected to have highly similar phenotypes. In
contrast, if convergence is widespread, one can predict an overrepresentation of
pairs of phenotypically similar distant relatives. Muschick et al. (2012) devised a
test for this pattern that summarizes a plot of phenotypic versus phylogenetic
distances using hexagonal binning and tests for a surplus of pairs in bins repre-
senting high phylogenetic distance and low phenotypic distance compared to
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evolutionary null models. As long as stasis over long timescales can be ruled out as
a cause of similarity between distant relatives, this method provides a means to
detect widespread convergence within a clade. While the first application focused
on convergence within a region (Lake Tanganyika cichlids), one could also focus
on pairs of species from the same or from different regions to test the prevalence of
convergence in both geographic contexts.

A drawback of all of these statistical approaches is that they do not explicitly
model a process underlying convergent evolution. Instead, they at best compare a
measured empirical pattern to a model such as BM that lacks convergent pro-
cesses, to determine whether the empirical pattern differs from the null expectation
in a manner consistent with clade-wide deterministic convergence. While this
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Fig. 18.1 Workflow for two approaches to studying clade-wide convergence using a phyloge-
netic tree and trait data (multiple phenotypic axes, such as from a phylogenetic principal
components analysis). The example data set shown here contains clades in two regions (white and
black), which form three clusters in trait space. The upper path illustrates the ‘statistical’
approach to accounting for phylogeny, in which trait data are used to calculate a statistic
summarizing the extent of among-region similarity which is then compared to the same value
calculated for data simulated on the tree using an evolutionary null model such as Brownian
motion. In this example, the mean of the nearest-neighbor distances between each species and its
most similar counterpart in the second region or clade is employed as the summary statistic. The
summary statistic can be compared to the null distribution to test for significant clade-wide
convergence, but does not incorporate a process model required for model comparison or
predictive simulations. The lower path shows the approach used by SURFACE to fit
macroevolutionary models that incorporate convergence to the tree and trait data. The two
stages use stepwise AICc first to place peak shifts on the tree and then to identify shifts that are to
the same, convergent peak. The method outputs a mapping of the peaks to each branch of the tree
and estimates of the peak positions in trait space and the rates of adaptation and stochastic
evolution. This ‘Hansen’ model can then be used in comparison with null or alternative models or
to characterize features such as the geographic context (see Fig. 18.3) or dimensionality (see
Fig. 18.4) of convergence
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remains a useful technique for hypothesis testing, it does not provide the means to
estimate evolutionary parameters that can result in convergence or allow for
comparison with alternative models.

Fig. 18.2 Visualization of deterministic convergence versus chance similarity in two clades. The
top panels show trait values over time of two clades diversifying to occupy the same set of four
adaptive peaks (Ornstein–Uhlenbeck optima, denoted by horizontal lines). While the clades differ
in ancestral state and the sequence of peak shifts, the resulting faunas are deterministically similar
as a result of diversification on the same macroevolutionary landscape. This can be contrasted
with the lower panels, which show traits evolving under Brownian motion during diversification.
In one or a few trait dimensions, some lineages are expected to evolve similar trait values purely
by chance; an important goal of any tests for clade-wide convergence is ruling out chance as an
explanation for faunal similarity

18 Phylogenetic Comparative Methods 431



18.3 Development of the Phylogenetic Ornstein–Uhlenbeck
Model of the Macroevolutionary Adaptive Landscape
and its Utility for the Study of Clade-Wide
Convergence

The incorporation of processes that underlie convergence into model-based phy-
logenetic comparative methods presents new opportunities to gain a mechanistic
understanding of replicated radiations. BM does not include the deterministic
component necessary to represent adaptive evolution on a macroevolutionary
landscape, which makes it useful as a null model but unsuitable if we wish to model
convergence explicitly. An important advance was achieved with the realization
that versions of the OU model (Uhlenbeck and Ornstein 1930) could be applied to
models of adaptive evolution (Chaps. 14 and 15). The deterministic component of
the OU process causes a species’ mean trait value to be pulled toward an optimum,
with a force proportional to its distance from the optimum (Chap. 15). Lande
(1976) showed that this model can describe the evolution of a continuous trait in a
population under a balance of stochastic mutation and genetic drift and determin-
istic selection that is directional when the population is approaching the optimum
and stabilizing when it is at the optimum. While the parameters of the OU model
estimated from comparative data often do not correspond well to population genetic
parameters (Harmon et al. 2010), the model has proven to be a useful representation
of adaptive evolution, in which the optimum can be interpreted as the location of an
adaptive peak (Felsenstein 1988; Martins 1994).

An important advance came when Hansen (1997) demonstrated how the OU
model could be used to model peak shifts on a macroevolutionary adaptive
landscape (e.g., Simpson 1944). If certain lineages within a clade begin evolving
toward a new peak, such as equids shifting from browsing to grazing, this can be
modeled as these lineages becoming attracted to a new optimum trait value.
Hansen (1997) showed how this peak-shift model could be fit to a phylogenetic
tree and trait data, and Butler and King (2004) subsequently introduced the
‘OUCH’ methodology as a generalized framework for fitting such ‘Hansen’
models by ‘painting’ the branches of a tree with multiple selective regimes, each
corresponding to a hypothesized peak. The multipeak OU model can thus be
interpreted as a representation of the macroevolutionary landscape (Simpson 1944)
and can be used to test hypotheses such as whether clades in multiple regions have
reached the same set of peaks (Fig. 18.2). The parameters of the model are the
positions of one or more optima h; the rate a at which species adapt toward their
present optimum; and the Brownian rate parameter r2 that governs the magnitude
of stochastic fluctuations in trait values (an additional parameter represents the
root state and is typically assumed to come from the stationary distribution of the
OU process rather than being estimated—see Chap. 15 for additional discussion).
The macroevolutionary landscape is characterized by one or more adaptive peaks,
with the relative rates of adaptation and stochastic evolution roughly indicative of
the steepness of the peaks. We deal here with ‘Simpsonian’ macroevolutionary
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landscapes that measure individual fitness as a function of phenotypic values, in
contrast to ‘Wrightian’ landscapes that measure population mean genotype fit-
nesses (Hansen 2012; Svensson and Calsbeek 2012).

The Hansen model has been widely used to test adaptive hypotheses, such as
whether species in different regimes (typically defined based on ecological con-
texts such as discrete habitats) repeatedly evolve toward different phenotypic
optima. Other elaborations of the OU model allow variation among regimes in a
and r2 in addition to the positions of optima (Beaulieu et al. 2012; Chap. 15),
increasing the variety of hypotheses that can be tested. The Hansen model is a
valuable tool for comparative hypothesis testing, but there is an important caveat
that limits its applicability to testing for replicated radiation. The method requires
an a priori adaptive hypothesis, such that one must paint the hypothesized regimes
onto specific branches to reflect taxa already thought to be convergent in advance
of testing for clade-wide convergence. This approach is suitable for testing certain
hypotheses about convergent evolution, such as whether particular ecological or
behavioral shifts consistently lead to adaptation of similar morphological traits
(e.g., Collar et al. 2011; Frédérich et al. 2013; Lapiedra et al. 2013). However, if
we wish to assess the extent of convergence using phenotypic data alone, it would
be circular to first use phenotypic similarity to assign species to regimes. To deal
with this limitation, we devised an algorithm for fitting Hansen models to a data set
in the absence of a priori hypotheses and thus objectively identifying convergent
peak shifts (Ingram and Mahler 2013).

18.4 Using SURFACE to Infer a Macroevolutionary
Adaptive Landscape from Comparative Data

As we have described, tests for clade-wide convergent evolution have been dom-
inated by two approaches. One statistically quantifies the similarity of communities
or faunas and uses null model comparisons to assess whether the observed similarity
exceeds what would be expected by chance. This method has the benefit of
objectivity, but does not incorporate a mechanism underlying convergence. The
second approach uses model-based comparative methods to test whether indepen-
dent shifts to shared selective regimes result in convergent phenotypic evolution.
This method incorporates adaptive processes, but its reliance on potentially sub-
jective regime specification is problematic if we wish to test for clade-wide phe-
notypic convergence without using independent data to define regimes.

To bridge this gap, we introduced the SURFACE method, which constructs a
representation of the macroevolutionary adaptive landscape, taking as inputs only
continuous trait data and a tree (Ingram and Mahler 2013). SURFACE (a recursive
acronym for ‘SURFACE Uses Regime Fitting and AIC to model Convergent
Evolution’) uses stepwise AIC (Alfaro et al. 2009; Thomas and Freckleton 2012) to
first identify peak shifts well supported by the data and then to identify whether any
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of these shifts involve convergence toward the same peaks (Fig. 18.1). The method
is implemented as the R package ‘surface’, which contains functions for running the
analysis, simulating data sets, and visualizing the results.

Here, we briefly outline the steps involved in a SURFACE analysis, and refer
the reader to Ingram and Mahler (2013) for a detailed description. First, a single-
peak OU model is fit to the phylogeny and continuous trait data using maximum
likelihood. This approach can handle multidimensional trait data by making the
simplifying assumption that there are no covariances between traits in the rates of
adaptation (a) or stochastic evolution (r2), which is most likely to be valid if the
traits are orthogonal axes such as those obtained from a principal components
analysis. This assumption allows the log likelihoods calculated separately for each
trait to be added together to give the overall model log likelihood L. A set of all
candidate models in which a peak shift is added to one branch in the tree is then
generated (in the present implementation, each branch may experience only a
single peak shift, which occurs at its origin). Each model is fit, and log likelihoods
are added across traits as before. For each candidate model, the small sample size-
corrected Akaike Information Criterion (AICc) is calculated as a measure of model
performance that accounts for the model complexity (number of parameters,
p) and sample size n (number of species k multiplied by number of traits m).

AICc ¼ �2 logLþ 2k þ 2p pþ 1ð Þ
n� p� 1

ð18:1Þ

The addition of one peak shift adds one parameter per trait to account for the
new estimated optima and one parameter to represent the phylogenetic placement
of the peak shift. The candidate model that most improves (i.e., reduces) the AICc

is selected, a peak shift is placed at the origin of the corresponding branch, and the
process is iterated to place additional peak shifts until the AICc ceases to improve.

This ‘forward’ phase of the method yields a Hansen model containing some
number of peak shifts, each of which is toward a different peak. The second,
‘backward’ phase evaluates the fit of models in which sets of shifts are toward to
the same convergent peak. Reducing the number of peaks (and optima) in the
model may improve the AICc if the model likelihood remains high despite the
reduction in model complexity. This second stepwise process is iterated until
model improvement stops and a final model is identified. The extent of conver-
gence in this model can be quantified in a number of ways, including the reduction
in the number of peaks in the backward phase and the number of peak shifts that
are toward convergent peaks (see 18.5). Once quantified, measures of convergence
from the fitted model can be compared to a null distribution obtained by running
SURFACE on data simulated under BM or other models that lack deterministic
convergence. Additionally, parametric bootstrapping can be carried out to con-
struct approximate confidence intervals on the convergence parameters or other
parameters of interest, by running SURFACE on many data sets simulated under
the fitted Hansen model. These approaches allow the researcher to evaluate
whether the extent of convergence in a model is greater than expected by chance.
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18.5 Extending SURFACE to Ask Questions About
the Nature of Convergence in Replicated Radiations

SURFACE provides a Hansen model representing the macroevolutionary adaptive
landscape, as well as several measures of the extent and frequency of convergence,
but additional steps are needed to interpret the details of any detected convergence.
Here, we describe new methods for characterizing the biogeographic pattern of
convergence and for comparing the extent of convergence among traits.

a. The geographic context of convergence

Biogeography is central to many hypotheses about clade-scale convergence and
must be incorporated if we wish to use SURFACE to infer whether convergence
tends to occur because radiations in different regions are replicated (e.g., Chiba
2004; Mahler et al. 2013; Ellingson 2013) or because radiations generate locally
replicated adaptive diversity within regions (e.g., Kozak et al. 2009; Muschick
et al. 2012). Some degree of replicated radiation can be inferred if the same peaks
are occupied by lineages in each region, and such an inference may be straight-
forward in cases where each region is occupied by a distinct subclade. However, if
the ancestral geographic locations of lineages are uncertain, we need appropriate
statistical methods to account for this uncertainty in evaluating whether adaptive
peak shifts occurred in the same or in different regions.

We describe a simple approach to inferring the biogeography of convergence
using a Hansen model fitted by SURFACE, which contains some number of peak
shifts, each assigned to a branch in the tree. We combine this information with
hypothesized biogeographic histories that include the timing of dispersal events
between regions and can be used to estimate the region in which each peak shift
occurred. The calculations described below require that each node in the tree can be
assigned to a single geographic region; if some ancestors are though to span
multiple regions, a reasonable approach may be to treat this as uncertainty and
sample histories that include the different regions. Biogeographic history estimates
may come from a variety of techniques including ancestral character reconstruction
using likelihood or parsimony and stochastic character mapping (Huelsenbeck et al.
2003). While these histories can include one or more dispersal events along a
branch, we consider only the geography at the beginning and at the end of each
branch. We do this so that geography is defined at the same resolution as peak
shifts, as SURFACE is limited to inferring one peak shift per branch. We make the
assumption that the region occupied at the end of a branch (rather than the region
occupied by the parent species when the branch originated) is the region in which
any peak shift occurred. Unless specified otherwise, the peak shift placed at the root
of the tree in the Hansen model is assumed not to correspond to a geographic shift.

To illustrate our approach, we incorporate estimates of geographic history into
an analysis of ecomorphological convergence in Greater Antillean anoles
(Fig. 18.3). Mahler et al. (2013) used SURFACE to show that there are many more
instances of convergence in this group than expected by chance, and inferred that
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Fig. 18.3 Illustration of a Hansen model obtained using SURFACE that illustrates the
biogeography of exceptional clade-wide morphological convergence in Greater Antillean Anolis.
The left panels, adapted from (Mahler et al. 2013), illustrate the placement of adaptive peaks on
the branches of the phylogenetic tree (a) and in morphospace (b). Branches in color indicate
convergent peaks (that attract more than one lineage), while non-convergent peaks are in gray
scale. b shows the first two dimensions of a four-dimensional morphospace for Greater Antillean
anoles derived from a phylogenetic principal components analysis (pPCA). Large circles denote
estimated positions for peaks on the macroevolutionary landscape (circles are slightly larger for
convergent peaks than non-convergent ones), and small circles denote trait values for the 100
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most instances of convergence involved lineages from multiple islands. To for-
malize the latter result and to uncover additional details about the geography of
Greater Antillean anole convergence, we use stochastic character mapping with
the ‘make.simmap’ function in the ‘phytools’ R package (Revell 2012; Chap. 4) to
generate 1,000 biogeographic histories of transitions between the four islands
(Cuba, Hispaniola, Jamaica, and Puerto Rico; Fig. 18.3c). We then reconsider the
macroevolutionary landscape inferred by SURFACE (Mahler et al. 2013) in an
explicitly geographic context.

Having inferred the phylogenetic positions of both peak shifts and geographic
shifts, we can ask a variety of questions about the geography of convergence. The
biogeographic question most relevant to tests for replicated radiation is whether
convergence to a shared peak typically occurs in distinct regions or within a single
region. To assess this, we examine two alternative measures that categorize con-
vergence by geography: one uses the geography of individual convergent peak
shifts, while the other uses the geography of pairs of convergent lineages. While
these measures provide similar information, they allow us to ask somewhat dif-
ferent questions about the geography of convergence.

The first approach classifies each peak shift based on the geographic context of
the lineages that have reached that peak. We first count the number of peak shifts
in the model fitted by SURFACE that are toward convergent peaks, denoted as
c (Ingram and Mahler 2013). For each of the c convergent peak shifts, we ask
whether the shift occurred toward a peak occupied only by lineages that occur in
different regions from that of the focal lineage, and we count the total number of
such shifts as cbetween (e.g., shifts 3, 8 and 29, among others, in Fig. 18.3d). Next,
we count the number of convergent shifts that occur toward a peak that is only
occupied by lineages from the same region, cwithin (e.g., shifts 6 and 19 in
Fig. 18.3d). Finally, we count the number of shifts to peaks occupied both by other
lineages from the same region, as well as lineages from different regions, cboth
(e.g., shifts 10, 12, and 27, among others, in Fig. 18.3d). These three geographic
convergent shift statistics sum to c. Note that the total number of convergent shifts
to peaks occupied in more than one region is the sum of cbetween and cboth and that
the total number of geographically replicated convergent shifts (i.e., shifts to peaks
occupied by at least one other lineage from the same region) is the sum of cwithin

extant anole species in the data set. Colors of species’ trait values and the optima to which they
are attracted correspond to a. The right panels show the biogeography of anoles on the tree
(c) and of the peaks in morphospace (d). The phylogeny in c is identical to a, but branches are
colored according to the Greater Antillean island occupied at the end of the branch (see text) in
one stochastic character map estimate of Anolis geographic history. Panel d depicts the estimated
positions of adaptive peaks in morphospace as in b, but colored by island to indicate the
geography of convergent and non-convergent peak shifts. Numbers indicate which lineages from
c have shifted to each adaptive peak, allowing assessment of whether shifts to convergent peaks
occurred within the same geographic region (e.g., shifts 6 and 19), in different regions (e.g., shifts
17 and 25) or both (e.g., shifts 8, 10 and 27). Note that for the morphospace panels, peaks that
appear to overlap are distinct in other trait dimensions (not illustrated) that were part of the
SURFACE analysis

b
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and cboth. For Anolis, we averaged these calculations across the 1,000 stochasti-
cally mapped geographic histories. As expected, most of the convergent peak
shifts (91 %) were to peaks occupied on multiple islands (i.e., cbetween + cboth),
while very few (9 %) were to single-island peaks (i.e., cwithin; Fig. 18.3d). How-
ever, it was not uncommon for independent lineages from the same island to adapt
to the same adaptive peak, and 36 % of shifts were to peaks occupied by at least
one other lineage from the same island (i.e., cwithin + cboth; Fig. 18.3d).

The second approach quantifies the geography of pairwise cases of conver-
gence, examining all pairs of peak shifts that were toward the same peak. We
define the number of such cases as cc: a peak reached by two shifts represents a
single case of convergence; a peak reached by three shifts represents three pairwise
cases, and so on. For each of the cc pairwise cases of convergence, we identify
whether the two shifts occurred in the same region (e.g., for convergent peaks in
Fig. 18.3d, whether pairs of shifts have the same color) or in different regions
(pairs of shifts have different colors in Fig. 18.3d). We add these values to estimate
the number of within-region cases of pairwise convergence (ccwithin) and the
number of between-region cases (ccbetween), which sum to cc (Ingram and Kai
2014). The alternative measures c and cc provide similar information and will
differ more in cases when many lineages converge on a small number of peaks. In
anoles, we found that 82 % of pairwise cases of convergence occurred between
islands (Fig. 18.3d), confirming the replicated nature of Greater Antillean anole
radiations.

Specific hypotheses about replicated radiation can be carried out by comparing
any of these geographic measures of convergence to null distributions, generated
either by randomizing the positions of geographic and/or peak shifts or by ana-
lyzing simulated data sets with SURFACE. Related approaches could be used to
ask additional biogeographic questions, such as whether convergence is more
common in some regions than in others, whether shifts toward certain peaks only
occur in certain types of regions (e.g., large versus small; temperate versus trop-
ical), and whether peak shifts coincide with the colonization of novel areas. In
anoles, we found that on average, 20 % of peak shifts occurred on branches
containing geographic shifts, while 56 % of geographic shifts occurred on bran-
ches containing peak shifts. This indicates that most peak shifts occur within
islands, but that about half of the anole colonizations to new islands nonetheless
coincided with an adaptive peak shift. In addition to testing new hypotheses, there
is scope for extending the methods described here to accommodate common
biogeographic scenarios with added complexity, such as species that span multiple
regions or regions that do not have discrete boundaries.

b. Partitioning the signal of convergence among traits

Another important feature of clade-wide convergence is the degree to which
convergent evolution varies among traits in a multidimensional data set. The
SURFACE algorithm combines evidence across multiple traits when identifying
the best-fitting model at each step, making the simplifying assumption that the
evolution of each trait is governed by independent parameters (a and r2).
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However, a signal of convergence may arise in different ways: each trait may
contribute approximately equally to the model improvement, or one or more traits
may show very strong convergence, while others show little or none. In such a
case, the additional non-convergent traits may reduce our ability to detect the
strong signal of convergence in other phenotypic dimensions, and we may draw
false conclusions about the dimensionality of convergence.

Here, we describe how one can visualize the contribution of each trait to the
improvement in the overall model support (i.e., AICc) during the course of model
selection by SURFACE. We have previously visualized the change in AICc

throughout the forward and backward phases using a line graph of model AICc

against the number of peaks at each step (Ingram and Mahler 2013; Mahler et al.
2013). In a data set with evidence for many convergent peak shifts, this graph will
appear roughly triangular, with an AICc decrease from left to right as peaks are
added during the forward phase, and a second decrease from right to left as
convergent peaks are collapsed during the backward phase.

To divide the AICc among traits, we must consider both components of
the AICc (Eq. 18.1). The fit of the model to each trait, captured as the deviance
(-2 log L), can easily be partitioned among traits as it is based on the sum of trait-
specific log likelihoods. The second component of the formula is the ‘penalty’
term, which captures the complexity of the model (number of parameters p) and
the correction for finite sample size (n). This component is not trait-specific
(because the parameters representing the phylogenetic positions of shifts are
shared across traits), but for the purpose of visualization, we divide this term by
the number of traits (m) and then add this value to the deviance for each trait i to
obtain a ‘partial AICc’:

partial AICcðiÞ ¼ �2logLi þ
1
m

2pþ 2pðpþ 1Þ
n� p� 1

� �
: ð18:2Þ

We standardize the overall AICc and the partial AICc of each trait to initial
values of zero and then plot the partial AICc values along with the overall AICc as a
function of the number of peaks through both phases of the analysis. For each point
on the line graph, the sum of the partial AICc values is equal to the overall AICc.

The extent to which the partial AICc for each trait declines gives an indication of
how much it contributes to the addition of peak shifts during the forward phase and
to the identification of convergent peak shifts during the backward phase. If all traits
contribute roughly equally, their lines will each show a similar decline, while if the
signal is dominated by a single trait, the latter’s partial AICc will decline substan-
tially, while those of the other traits may decline little or even increase. This visu-
alization can be done using the function ‘surfaceAICPlot’ in the ‘surface’ package,
which has an option traitplot that can be set to dev for deviance or aic to use the
partial AICc values. If the deviance is used, the values will sum to give the total
model deviance rather than the AICc; as the deviance cannot improve as the number
of parameters decreases during the backward phase, we find the visualization using
partial AICc more intuitive.
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To illustrate this approach, we show a partial AICc plot from the SURFACE
analysis of ecomorphological convergence in the anole data set, which consists of
four traits derived from a phylogenetic principal components analysis (Revell
2009; Fig. 18.4). This visualization shows that the first two trait axes, which
correspond to relative limb length and body size and combine to explain 73 % of
the total variation, each contribute strongly to the overall improvement in model
fit. The third axis, which loads with relative tail and limb lengths, showed mod-
erate improvement, while the AICc for the fourth axis, representing toepad lamella
number, worsened throughout the forward phase. This trait-by-trait examination of
the anole analysis reinforces the longstanding view that convergence in anoles is
multidimensional (e.g., Harmon et al. 2005), but indicates that not all trait axes
show the same signal. While repeating a SURFACE analysis following the post
hoc removal of traits that failed to contribute to model improvement constitutes
data dredging and would thus be problematic for hypothesis testing, care should be
taken at the outset not to include traits that lack biological relevance (such as very
minor axes of a principal components analysis) or that are unrelated to the eco-
logical and evolutionary questions of interest.

18.6 Caveats, Future Directions, and Conclusions

18.6.1 Caveats

Direct inference of convergence requires that the similarity of putatively conver-
gent species can be compared to that of their ancestors. Because empirical
information about ancestral phenotypes is typically lacking, detecting convergence
using comparative data is a challenge. By explicitly modeling processes that can
cause convergence and examining the fit of such models to empirical data, we can
use phylogenetic approaches to gain new insights into convergence. Nonetheless,
such approaches have only recently been developed, and current methods exhibit
several limitations. Here, we discuss caveats associated with the use of existing
landscape models and propose several suggestions for the improvement and fur-
ther development of comparative tools for studying convergence.

The SURFACE method generates an approximation of the macroevolutionary
adaptive landscape in the form of a multiple-peak phylogenetic Hansen model.
While this model incorporates important evolutionary processes, it is a rather
simple representation of the landscape (Hansen 2012; Ingram and Mahler 2013).
The Hansen model estimated by SURFACE contains estimates of the phylogenetic
positions of adaptive peak shifts, the positions of the peaks in morphospace (h), the
trait-specific rate of adaptation of lineages toward those peaks (a), and the trait-
specific rate of stochastic evolution (r2). A more general model of evolution on the
macroevolutionary adaptive landscape would permit variation in the evolutionary
parameters, so that peaks might vary in height or steepness or some lineages might
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have higher intrinsic rates of adaptation or stochastic evolution. The flexible
Ornstein–Uhlenbeck ‘OUwie’ model described by Beaulieu et al. (2012; Chap. 15)
permits a and/or r2 to vary across the tree, but is not presently implemented to
operate in the absence of an a priori hypothesis about the phylogenetic positions of
shifts in h, a, and r2. While it is in theory straightforward to use stepwise model
selection to compare flexible Ornstein–Uhlenbeck models, it may prove chal-
lenging in practice due to the need to fit large numbers of candidate models at each
step, and the possibility that many data sets will not contain enough information to
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Fig. 18.4 Visualizing the relative contributions of individual traits to multidimensional
convergence. This figure shows the relative ‘partial AICc’ scores for each trait axis (colored
sequences) as well as the relative multidimensional AICc scores (black sequence) for all of the
models fit during a single SURFACE analysis of Greater Antillean anoles. For each trait, partial
AICc values are standardized relative to the partial AICc score of the initial single-peak Hansen
model. Starting at the left with a partial AICc value of zero (corresponding to the single-peak OU
model), each sequence records that trait’s relative model support for each Hansen model (y-axis)
as the number of independent adaptive peaks (x-axis) is increased during the forward SURFACE
phase and then reduced during the backward phase as convergence among independent lineages
is permitted. Although cumulative model support increases at each SURFACE step (decreasing
AICc values at each step in the full model sequence), model support for individual traits does not
improve uniformly as peaks are added, and peak shifts are sometimes added even if they decrease
model support for some traits, provided that these losses are offset by gains in model support for
other traits. An estimate of the relative contribution of each trait to the fit of the final Hansen
model may be obtained by comparing the partial AICc values of all traits for this model (larger
circles with white dots in the center). In the case of Greater Antillean Anolis, the overall fit of the
final Hansen model is driven in large part by relative limb length (pPC1) and body size (pPC2),
with a smaller contribution from relative tail and forelimb lengths (which have contrasting
loadings on pPC3). The final model actually provides an inferior fit to toepad lamella data (pPC4)
than the initial single-peak model. Note that while individual traits varied in whether they
supported the addition of new peaks during the forward phase, all traits supported the
simplification of the macroevolutionary landscape as similar peaks were modeled as convergent
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distinguish among alternative plausible parameter combinations for such complex
models (Beaulieu et al. 2012).

SURFACE also assumes that the positions of peaks on the adaptive landscape
are static, but both Simpson’s description (Simpson 1944) and recent elaborations
(Arnold et al. 2001; Hansen 2012) allow dynamic macroevolutionary landscapes
on which species adapt toward peaks whose positions shift over time. If the
landscape is dynamic, our ability to identify and interpret clade-wide convergence
will likely depend on whether peaks move in synchrony in different regions (e.g.,
if they are tracking shared climatic changes) or more idiosyncratically. Recent
methodology allows the incorporation of moving optima into the inference of OU
model parameters (Bartoszek et al. 2012; Hansen et al. 2008), and extensions of
these methods may allow the inference of convergence even in cases where the
adaptive landscape is dynamic. Another possibility is to relax the assumption of
SURFACE that each trait is evolutionarily independent in terms of its a and r2 and
to evaluate the influence of correlated evolution as lineages converge to shared
adaptive peaks (Bartoszek et al. 2012).

As with any statistical tool, users of SURFACE should ensure both that they
have a data set that is sufficiently large and complete to support the fitting of
complex models (see discussion in Ingram and Mahler 2013) and that the
assumptions of the standard Hansen model yield realistic parameter estimates for
their data. The examination of the estimated positions of trait optima in mor-
phospace may aid in evaluating the appropriateness of the model, with two pos-
sible interpretations in the event that any estimated optima are extreme, falling far
outside the range of trait values in morphospace. First, the assumption that all
evolutionary regimes have the same rates of adaptation and stochastic Brownian
evolution may be invalid, and the optimum might be estimated to be distant
because the rate of adaptation to the peak is constrained to equal the lower rate
supported elsewhere in the clade. Alternatively, the poorly matched species may in
fact be experiencing directional selection toward a distant optimum (though the
position of the optimum itself is unlikely to be estimated well). In addition to
visual inspection, posterior predictive simulation may be useful for checking
whether empirical measures of convergence indeed arise from the fitted model
(e.g., see Mahler et al. 2013). Also, pairing a SURFACE analysis with a ‘statis-
tical’ approach for testing for convergence as described above may help to confirm
the robustness of the pattern of similarity implied by the model fit.

Because a Hansen model estimated by SURFACE contains a mix of parameters
representing the evolutionary model (h, a, and r2) and parameters describing the
extent of convergence in this model (e.g., c, cc, and the geographic variables
discussed in 18.5), uncertainty in the model must be considered at multiple levels.
A single SURFACE analysis does not provide an estimate of this uncertainty, but
it is straightforward to calculate confidence intervals for the rates and optima using
parametric bootstrapping, simulating many data sets under the fitted model and
re-estimating the parameters. A similar bootstrapping approach can be used to
infer confidence intervals for measures of convergence, although this requires the
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more time-consuming process of simulating under the fitted model and running
SURFACE on each resulting data set. This approach can in theory be extended to
incorporate uncertainty in the topology and branch lengths of the phylogeny itself,
by running analyses on a sample of trees (e.g., from the posterior distribution from
a Bayesian phylogenetic analysis). While variation in topology among trees pre-
cludes direct comparisons of the Hansen models returned by SURFACE, one can
combine bootstrapped estimates of convergence parameters across trees to obtain
confidence intervals that more completely account for uncertainty.

There are many possible Hansen models that could be fit to a given data set, and
while the stepwise algorithm used in SURFACE provides a means of navigating
among candidate models, it also results in many models never being evaluated. In
some cases, the early fixation of well-supported shifts may preclude the later
discovery of globally superior Hansen models that do not include those shifts.
Unlike with the model parameters, it is not straightforward to measure the
uncertainty in the fitted model that is due to these stepwise constraints. A partial
solution to this problem is provided in the sample_shifts option of the
‘surfaceForward’ and ‘runSurface’ functions in the ‘surface’ package, which per-
mits the fixation of suboptimal shifts (chosen randomly from a sample of models
above a specified support threshold) during an individual SURFACE run. By
repeatedly running SURFACE using relaxed model selection criteria, it is possible
to obtain a set of models for which an important element of path dependency has
been relaxed (see Mahler et al. 2013 for an example). Although such a set of models
is not statistically analogous to a sample of models from a Bayesian posterior
distribution, it can nonetheless be used to heuristically assess the influence of path
dependency on parameter estimates, as well as to potentially identify models that
may be superior to the model returned by the standard SURFACE analysis.

In the future, it may be possible to simultaneously address several of these issues
by exploring model and parameter space in a Bayesian framework. Bayesian
Markov Chain Monte Carlo methods have recently been employed for a similar
comparative purpose—identifying the locations of phylogenetic shifts in the evo-
lutionary rate without a priori information (Eastman et al. 2011; Revell et al. 2012;
Venditti et al. 2011), and a similar approach could be employed to model adaptive
peak shifts. To identify shifts, it would be necessary not only to estimate Hansen
model parameters, but also to estimate the numbers of total and convergent peak
shifts, meaning that the algorithm would need to evaluate models that differ in the
number of estimated parameters. Eastman et al. (2011) used reversible-jump
MCMC to sample from models of varying complexity to determine the number and
placement of evolutionary rate shifts that have occurred in a clade, and this
approach may be suitable for examining shifts among evolutionary regimes.
Alternatively, the clustering of convergent lineages into discrete regimes in mor-
phospace might be modeled using a Dirichlet process prior (e.g., Heath et al. 2012)
in which both the number and phylogenetic branch composition of regimes, as well
as the evolutionary parameters that characterize these regimes are estimated.
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18.6.2 Future Directions

The development of methods for explicitly modeling macroevolutionary conver-
gence provides a powerful framework for studying convergence among entire
communities or clades. This is leading to renewed investigation of key questions in
ecology and evolution, such as whether radiations in different biogeographic regions
are more similar than expected by chance and whether significant convergence
occurs within single regions. In combination with suitable ‘statistical’ approaches to
measuring the pattern of similarity, macroevolutionary models of convergence
provide the means to ask many additional questions about phenotypic convergence.

One potentially useful application of SURFACE might be to directly model
convergence in species’ ecological attributes (e.g., continuous measures of habitat
use, climatic niche preferences, or diet), rather than morphological traits that are
thought to reflect ecological adaptations. The Hansen model fit to the ecological
attributes of extant species might reveal whether distinct ecological niches are
stable and convergent over long timescales. Further, the evolutionary correspon-
dence between ecology and morphology could be investigated explicitly through
comparison of macroevolutionary adaptive landscapes separately estimated for
clades using ecological versus morphological attributes. By examining the posi-
tions of peak shifts in each Hansen model, one could use such information to ask
whether species adopt novel ecological preferences prior to evolving morpholog-
ical specializations, or alternatively whether morphological innovations precede
novel resource use. Likewise, a comparison of ecological and morphological
macroevolutionary landscapes might complement functional studies to reveal
‘many-to-one mapping,’ an alternative to morphological convergence in which
lineages adapting to similar ecological pressures evolve different morphological
solutions (Alfaro et al. 2005; Bock 1980; Bock and Miller 1959; Losos 2011).

Models of the macroevolutionary landscape may also be useful for answering
longstanding questions about the sequence of adaptations during the evolutionary
assembly of communities and clades. Hansen models provide an estimate of the
temporal sequence of peak shifts, though we note that accurate placement of peak
shifts on the branches of the phylogeny becomes more difficult for deep branches or
when peak shifts are frequent (Ingram and Mahler 2013). Information about the
timing of peak shifts could be used to test whether adaptive peaks in replicated
radiations are colonized in the same sequence or whether the evolutionary assembly
of similar radiations is more idiosyncratic (Ackerly et al. 2006; Losos et al. 1998;
Sallan and Friedman 2012; Streelman and Danley 2003); reviewed in (Glor 2010).
Other questions about the filling of morphospace that could be addressed are
whether peak shifts tend to occur between nearby peaks (versus large jumps
through morphospace) and whether peaks at the periphery of morphospace tend to
be discovered later in the course of adaptive radiation (Gavrilets and Vose 2005;
Price 1997; Ricklefs and Travis 1980). The continued application and elaboration
of macroevolutionary adaptive landscape models has the potential to address many
exciting questions about convergent evolution in adaptively radiating clades.
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Chapter 19
Metrics and Models of Community
Phylogenetics

William D. Pearse, Andy Purvis, Jeannine Cavender-Bares
and Matthew R. Helmus

Abstract Community phylogenetics combines ideas from community ecology
and evolutionary biology, using species phylogeny to explore the processes
underlying ecological community assembly. Here, we describe the development of
the field’s comparative methods and their roots in conservation biology, biodi-
versity quantification, and macroevolution. Next, we review the multitude of
community phylogenetic structure metrics and place each into one of four classes:
shape, evenness, dispersion, and dissimilarity. Shape metrics examine the structure
of an assemblage phylogeny, while evenness metrics incorporate species abun-
dances. Dispersion metrics examine assemblages given a phylogeny of species that
could occupy those assemblages (the source pool), while dissimilarity metrics
compare phylogenetic structure between assemblages. We then examine how
metrics perform in simulated communities that vary in their phylogenetic struc-
ture. We provide an example of model-based approaches and argue that they are a
promising area of future research in community phylogenetics. Code to reproduce
all these analyses is available in the Online Practical Material (http://www.
mpcm-evolution.com). We conclude by discussing future research directions for the
field as a whole.

W. D. Pearse (&) � J. Cavender-Bares
Department Ecology, Evolution, and Behavior, University of Minnesota,
1987 Upper Buford Circle, Saint Paul, MN 55108, USA
e-mail: will.pearse@gmail.com

J. Cavender-Bares
e-mail: cavender@umn.edu

A. Purvis
Department of Life Sciences, Natural History Museum,
Cromwell Road, London SW7 5BD, UK
e-mail: andy.purvis@nhm.ac.uk

M. R. Helmus
Amsterdam Global Change Institute, Department of Animal Ecology,
Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
e-mail: mrhelmus@gmail.com

L. Z. Garamszegi (ed.), Modern Phylogenetic Comparative Methods and Their
Application in Evolutionary Biology, DOI: 10.1007/978-3-662-43550-2_19,
� Springer-Verlag Berlin Heidelberg 2014

451

http://www.mpcm-evolution.org
http://www.mpcm-evolution.com
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-43550-2_19&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-43550-2_23&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-43550-2_19&amp;domain=pdf
https://doi.org/10.1007/978-3-662-43550-2_23


19.1 Overview

Community phylogenetics seeks to explore the ecological and evolutionary factors
that underlie the assembly of communities and how species interactions influence
evolutionary and ecosystem processes. The field represents a (re-)integration of
community ecology and evolution, in the hope that historical species interactions
and environmental conditions reflected in phylogeny can inform us about present-
day ecology. However, rapid advances in computational tools, phylogenetic
inference methods, DNA databases, and metrics mean the scope of community
phylogenetics is constantly expanding and developing.

This chapter should provide the reader with an entry point to begin critically
conducting their own community phylogenetic analysis. To this end, the Online
Practical Material (http://www.mpcm-evolution.com) contains annotated R (R Core
Team 2014) code with which the reader can repeat all the analyses and simulations
presented in this chapter. We begin by describing the development of community
phylogenetics and follow by outlining a framework to understand community
phylogenetic metrics. We then examine the performance of several metrics in a
simulated data set and give a brief introduction to the field of community phy-
logenetic modelling. We conclude the chapter by discussing caveats and future
directions for the field.

19.2 Historical Overview of the Metrics of Community
Phylogenetics

It was Darwin 1859 who first hypothesised a relationship between species’ taxo-
nomic proximity and competitive interactions, arguing that congeners use the same
resources and so competition should be strongest among them. While Darwin was
interested in how this increasing competition would affect natural selection, later
scientists (Jaccard 1901; Elton 1946) would ask how the number of congeners
present in a community reflected the biogeographic and ecological processes
structuring it. Despite controversies over the sensitivity of such approaches to
species richness (Järvinen 1982), the idea that ecological processes could be
detected in the evolutionary relationships among species in ecological communi-
ties took hold.

Conservation biologists were quick to recognise the utility of phylogeny as a
way to quantify species uniqueness and thus aid conservation prioritisation. Vane-
Wright et al. (1991) first argued to prioritise more basal evolutionary lineages
(acknowledged by May (1990) who published first), and Altschul and Lipman
(1990) suggested incorporating time-calibrated phylogenies and Felsenstein’s
comparative method (1985). Soon after, Faith (1992) coined the phylogenetic
diversity (PD) metric as the summed phylogenetic branch length connecting all
species in a set to rank areas for preservation. Later metrics partitioned the

452 W. D. Pearse et al.

http://www.mpcm-evolution.com


phylogenetic diversity of clades among their species to facilitate species-based
conservation of phylogenetic diversity (Pavoine et al. 2005; Redding and Mooers
2006; Isaac et al. 2007).

In parallel, the taxonomy-based metrics developed in conservation biology
(May 1990; Vane-Wright et al. 1991) were adapted to understand community
assembly in degraded ecosystems. Warwick and Clarke (1995) counted the mean
number of taxonomic ranks separating community members to derive the D family
of metrics (some members were independently derived by Izsáki and Papp 1995),
which were later extended to estimate taxonomic similarity among communities
(Izsáki and Price 2001). Although not the first modern study of ecological taxo-
nomic structure (cf., e.g. Douglas and Matthews 1992), Warwick and Clarke
(1995) provided the first clear example of how habitat filtering can change the
taxonomic (and so phylogenetic) composition of ecological communities.

These antecedents provided the basis for papers (Webb 2000; Webb et al. 2002)
that developed a framework and set of hypotheses for the use of phylogenetics in
mainstream ecology and mark the beginning of modern community phylogenetics.
Webb (2000) developed the Net Relatedness Index (NRI) and the Nearest Taxon
Index (NTI) to measure the phylogenetic structure of a tropical forest plot. NRI
and NTI examine whether the relatedness of species to one another in a com-
munity differs from what would be expected under random assembly from a list of
potential species (the source pool). Most community phylogenetic studies assume
close relatives are ecologically similar (niche conservatism; reviewed in Wiens
et al. 2010). Under this assumption, communities whose species are more closely
related than under random assembly (underdispersed, or clustered, communities)
reflect habitat-filtered assembly, while communities of unexpectedly distantly
related species (overdispersed communities) indicate the influence of competitive
exclusion.

The assumption of niche conservatism has subsequently been scrutinised, and
inferring ecological process purely on the basis of phylogenetic pattern is now
treated with scepticism. For example, in one of the early empirical tests of the
Webb et al. (2002) framework, Cavender-Bares et al. (2004) demonstrated that
niche convergence (rather than conservatism) among distantly related oak lineages
caused overdispersion in hyper-diverse oak forest communities. Subsequently,
Valiente-Banuet and Verdú (2007) found that facilitation among distantly related
species could lead to overdispersion, and Mayfield and Levine (2010) argued that
competition may lead to phylogenetic clustering. The ecological and evolutionary
mechanisms that produce phylogenetic community structure vary and depend on
where in the tree of life one is looking (phylogenetic and biogeographic scale) and
the modes of trait evolution at work (Cavender-Bares et al. 2006). Kraft et al.
(2007) demonstrated that when known ecological and evolutionary processes are
simulated, the anticipated community phylogenetic patterns are reliably recovered,
but Kembel (2009) has shown that dispersal can mask such patterns. Development
of model-based methods (see Sect. 19.5) offers hope of explicitly testing mecha-
nistic hypotheses about how evolutionary and ecological processes interact, rec-
onciling many objections about inferring process from phylogenetic pattern.
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19.3 A Systematic Classification of Community
Phylogenetic Metrics

While many have reviewed issues in community phylogenetics (e.g. Emerson and
Gillespie 2008; Graham and Fine 2008; Cavender-Bares et al. 2009; Vamosi et al.
2009; Mouquet et al. 2012; Swenson 2013), our focus here is specifically on meth-
odology. Pavoine and Bonsall (2011) are of note in that they emphasise analogues
between phylogenetic and functional trait diversity and define six major classes of
diversity metric. Three of these classes (all shape measures in our classification) are
of particular interest here:multivariate richness (the sum of a phylogeny’s branches;
essentially PD), regularity (the balance of a tree; see Sect. 19.3.1), and divergence
(the mean distance among species). Vellend et al. (2011) chose a very different
scheme, classifying phylogenetic diversity metrics as ‘type I’ or ‘type II’ depending
onwhether they begin bymeasuring the phylogenetic distinctiveness of species (I) or
examine subsets of a regional phylogeny (II).

We propose four classes of community phylogenetic structure with names
chosen to reflect existing community ecological literature: shape, evenness, dis-
persion, and dissimilarity. A graphical overview of these measures is given in
Fig. 19.1, and more than 40 metrics are placed into the scheme in the online
supplementary materials. Shape metrics describe an assemblage phylogeny’s
topology, branch lengths, size, how closely related its species are, and many

●

●

Fig. 19.1 Overview of phylogenetic shape, evenness, dispersion, and dissimilarity metrics, as
described in Sect. 19.3. Shape metrics measure only the observed assemblage phylogeny—the
parts of the phylogeny in black. Evenness metrics measure how evenly species’ abundances are
distributed across the assemblage phylogeny; the abundances of species in two communities are
represented by the size of filled and open circles on the figure. Dispersion metrics examine
whether the observed members of an assemblage are a random subset of the species pool (grey
and black parts of the phylogeny). Dissimilarity metrics quantify phylogenetic similarity between
observed assemblages. The two assemblages in this figure contain the same species, and so their
phylogenetic dissimilarity is null unless abundances are taken into account
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predate community phylogenetics. Evenness metrics reflect how species’ abun-
dances are distributed throughout a phylogeny, and many are extensions of
existing metrics of species diversity. Dispersion metrics ask whether an assem-
blage phylogeny differs from what would be expected, under a given null model,
from a source pool phylogeny of potential and actual members of that assemblage.
Finally, dissimilarity metrics quantify differences in the phylogenetic composition
of species occupancy and abundance between assemblages.

19.3.1 Shape

Shape metrics assess the structure of a phylogeny alone and can be calculated with
only a list of species and their phylogeny (reviewed in Mooers and Heard 1997).
Many predate community phylogenetics itself and were intended for use in
macroevolutionary studies. One of the more well known is Colless’ Index (IC),
which measures phylogenetic balance as the extent to which nodes in a phylogeny
define subgroups of equal size (Colless 1982). An unbalanced assemblage phy-
logeny indicates that particular clades dominate that assemblage, perhaps because
they display key traits that adapt them to that environment. The c statistic (Pybus
and Harvey 2000) was originally intended to detect decreases in the rate of
diversification through time; in a community phylogenetic context, this is con-
sistent with an assemblage containing species that are relatively unrelated to one
another. Phylogenetic species richness (PSV; Helmus et al. 2007) measures
whether the distribution of species across the phylogeny differs from expectation
under a Brownian null model and is analogous to the mean phylogenetic distance
(MPD) among species on a phylogeny. We caution that an assemblage phylogeny
is affected by processes operating outside the assemblage (see Heard and Cox
2007); shape measures sensitive to symmetry at different phylogenetic depths (see
Agapow and Purvis 2002) may be useful tools when exploring these issues.

19.3.2 Evenness

Measures of evenness ask whether species abundances are biased towards any
particular clade(s) throughout the phylogeny. Many are extensions of existing
measures of ecological diversity or shape measures; for instance, the Imbalance in
Abundance of higher Clades (IAC; Cadotte et al. 2010) metric is essentially an
abundance-weighted form of IC. Classical measures of the phylogenetic signal of
species’ traits (e.g. Pagel’s k; 1999) are evenness metrics when calculated using
species’ abundances, although in most cases statistical transformation of abun-
dances (e.g. taking their logarithm) is advised. Often shape and evenness metrics
are calculated for individual sites (a shape/evenness) and across a landscape (c) to
measure b shape or evenness (see Graham and Fine 2008). We intend to use the
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term evenness analogously to its use in other fields of ecology (see Magurran 2004;
Pavoine and Bonsall 2011), but the reader should note that Kraft et al. (2007) and
others use the term ‘phylogenetic evenness’ to indicate communities that contain
more distantly related species than expected from null models. We suggest the use
of the term ‘phylogenetic overdispersion’ for this case in reference to the statistical
definition of overdispersion (see Sect. 19.3.3 below).

19.3.3 Dispersion

Metrics of phylogenetic dispersion describe whether an observed assemblage is a
phylogenetically biased subset of the species that could coexist in that assemblage
(the source pool). Bias can reflect community assembly or survival of an extinction
episode, and most metrics focus on whether individuals or species are more or less
related to one another (under- or overdispersed, respectively) than under a null
expectation. They differ from shape and evenness measures, upon which they are
often based, in that they require a null expectation; their value is contingent not
just upon the observed assemblage but also a null expectation derived from ran-
dom assembly of same-sized assemblages from a more inclusive source pool. NRI
and NTI are the best known: the Net Relatedness Index (NRI) compares the
phylogenetic distance among all members of a community, while the Nearest
Taxon Index (NTI) examines only distances among nearest relatives. The first
definition of NRI and NTI (Webb 2000) counted nodal distance between species,
and the second (Webb et al. 2002) used phylogenetic branch lengths. Kembel
(2009) defined standard effect sizes of MPD and the mean nearest taxon distance
(SESMPD and SESMNTD), which are the negations of NRI and NTI, respectively.
Pearse et al. (2013) showed that the randomisations that control for phylogenetic
structure in NRI and NTI make the measures test statistics, and so their absolute
values can be misleading. They found that D (Fritz and Purvis 2010), which is
based upon independent contrasts (Felsenstein 1985) and a Brownian null distri-
bution, can be more sensitive than NRI.

19.3.4 Dissimilarity

Measures of dissimilarity explicitly examine differences in assemblages’ compo-
sitions, and many have analogues with classical ecological measures (e.g.
PhyloSor and Sørensen’s Index; Bryant et al. 2008). Unlike standard dissimilarity
metrics, phylogenetic dissimilarity metrics differentiate among communities with
no shared species. The metric phylogenetic community dissimilarity (PCD; Ives
and Helmus 2010), for example, partitions dissimilarity into compositional (the
proportion of shared species) and phylogenetic (the relatedness of unshared spe-
cies) components, but the most widely used measure—especially by microbial
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ecologists—is UniFrac (Lozupone and Knight 2005). UniFrac measures the
amount of phylogenetic branch length unique to each community, essentially
asking how much PD is unique to each community. These measures are distinct
from measures of co-evolution (see Chap. 20) in comparing assemblages across a
common phylogeny.

19.4 Quantitative Classification of Community
Phylogenetic Metrics

Our classification of metrics into four groups is based on how the metrics are
calculated and what the metrics attempt to measure. Here, we ask whether the
members of our groupings give similar results in common data sets.

Given a particular number of species, n, in a species pool, there is a finite
number of unique community compositions that we label the feasible set of
community compositions for n species (Haegeman and Loreau 2008; Locey and
White 2013). The feasible set can be calculated for any n (though it is often
approximated for large n), and given a phylogeny, the distribution of the feasible
values of any phylogenetic metric can be derived. Figure 19.2a provides the
feasible distribution of PSV for a fully balanced phylogeny of 8 species with equal
branch lengths (as in Fig. 19.1). Using this same tree, we simulated 6,000 com-
munities, half structured by phylogenetic attraction where closely related species
were more likely to be found together and half by repulsion (the converse). For an
ultrametric phylogeny of n species with covariance matrix V, we defined attraction
as the Cholesky decomposition of V and repulsion as the decomposition of V21,
referring to either as the matrix L below. The probability of species s residing in a
simulated community was a stochastic process as defined by

ps ¼
ecLR

1þ ecLR
ð19:1Þ

where c was a scalar (fixed at 10) that determined the strength of attraction/
repulsion and R an n 9 1 matrix of normally distributed random numbers centred
at 0. The PSV distributions of these two simulated communities (Fig. 19.2b, c)
differ markedly from the feasible set (Fig. 19.2a) and from each other, suggesting
that metric distributions for empirical and feasible sets of communities can be
compared to detect processes that cause phylogenetic attraction and repulsion. To
group metrics calculated on these three data sets, we obtained the values of 27
metrics across the simulated communities and hierarchically clustered the metrics
(R function hclust, complete linkage method) based on their standardised (centred
to have a mean of zero and standard deviation of 1) Euclidian distances. Our
methods were chosen to permit direct comparison with a similar study by Cadotte
et al. (2010).
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The classification of Sect. 19.3 does not perfectly map onto groupings in
Fig. 19.2d, e, f; the clustering of the metrics was inconsistent between the
attraction and repulsion simulations. This suggests that a single quantitative
classification of metrics is unlikely since the metric correlations depend on the
underlying data set, but the systematic classification of Sect. 19.3 provides
definitive categories for all the metrics.
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Fig. 19.2 Distributions and clustering dendrograms of community phylogenetic metrics
calculated for feasible communities and communities simulated under models of phylogenetic
attraction or repulsion. In (a), (b), and (c), the size of the circles (centres marked in grey)
represent the numbers of unique species compositions that give each PSV value. a The feasible
distribution of PSV for an eight species, balanced phylogeny. b The PSV distribution for
communities simulated with attraction is generally lower than the feasible distribution and much
lower than the communities simulated under repulsion (c). Below each distribution (d–f) are
dendrograms based on a hierarchical clustering of the values of 27 community phylogenetic
metrics calculated for each data set. The number of metrics differs among (d) and (e, f) because
(d) uses the feasible set of species which is defined only for species presence/absence; in (e) and
(f), we simulated abundances and thus incorporated evenness metrics. The white, black, and grey
circles indicate shape, dispersion, and evenness metrics, respectively. See the Online Electronic
Material for all metric names and abbreviations
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19.5 Statistical Models of Community Phylogenetic
Structure

While community phylogenetic metrics will continue to be developed, explicit
statistical models are the next methodological frontier. Models explain phyloge-
netic structure across a number of assemblages simultaneously, maximising sta-
tistical power, and can incorporate phylogenetic, environmental, trait, and other
information. While not models in the statistical sense of fitting probability dis-
tributions, the first model-based approach stemmed from randomisation methods
developed to infer meta-community processes (Pillar and Duarte 2010). There are
a number of related approaches (Leibold et al. 2010; Pavoine and Bonsall 2011;
Peres-Neto et al. 2012), most involving the comparison of site-by-species matrices
with matrices of environmental and species trait data.

Fitting a statistical model to community data allows for estimates of covariate
effects and their errors, prediction of community composition, and model com-
parison using test statistics. Phylogenetic generalised linear mixed models
(PGLMMs; Ives and Helmus 2011) were the first statistical models to be devel-
oped for community phylogenetics. Here, we illustrate the simplest PGLMM that
predicts community composition on the basis of phylogeny alone. Fitting more
complex models is useful and possible, but comes with a greater computational
complexity and risk of fitting models too complex to be parameterised from the
data at hand.

For n species distributed across m sites, the probability of any species being
found at a site is logistically modelled as follows:

li ¼ logit�1ðaspp þ bi þ csiteÞ ð19:2Þ

where i indexes a particular spp at a particular site, aspp is a categorical fixed effect
that accounts for variation in species prevalence across communities, and bi is a
Gaussian distributed random effect with mean 0 that accounts for phylogeny. The
covariance matrix of bi is the Kronecker product of Im and rspp

2 Vspp, where Im is
the m 9 m identity matrix and rspp

2 Vspp an estimated scalar multiplied by the
n 9 n phylogenetic covariance matrix. The resulting covariance matrix of bi is
block diagonal with rspp

2 Vspp repeated as the blocks and zeroes elsewhere. Lastly,
csite is similar to b but with ones as the blocks in its covariance matrix. Including
aspp and csite separates differences in species prevalence across communities or
community size from phylogenetic effects.

We fit the PGLMM in Eq. 19.2 to the two simulated data sets from Sect. 19.4
(depicted in Fig. 19.2b and c). Note that the estimated scalar rspp

2 gives the
strength of the phylogenetic attraction, not repulsion, and so we expected rspp

2 to
only be significant for the communities simulated with attraction. Indeed, we
identified significant phylogenetic pattern only in the attraction-simulated com-
munities (attraction rspp

2 : 0.87, 0.78–0.95 95 % CI, repulsion rspp
2 : 0.0, 0.0–0.1

95 % CI). To test for repulsion, we altered the covariance matrix of bi by replacing

19 Metrics and Models of Community Phylogenetics 459



rsppVspp with rsppVspp
21 (i.e. we replaced bi with di from model III of Ives and

Helmus 2011) and fit this new model to both data sets (note the similarity with
Sect. 19.4 model). This second PGLMM only detected phylogenetic pattern in the
communities simulated under the repulsion model (attraction rspp

2 : 0.0, 0.0–0.10
95 % CI, repulsion rspp

2 : 0.96, 0.87–1.06 95 % CI). The nature of this PGLMM
and its performance detecting phylogenetic dispersion did not change, as many
metrics did in Sect. 19.4. However, these models were calculated across only the
first 50 of the communities simulated in Sect. 19.4 due to computational limita-
tions, although new algorithms may overcome this (Ho and Ané 2014).

19.6 Future Developments

Studies often use trait data to justify investigators’ assumption of niche conser-
vatism and thus map phylogenetic pattern onto ecological process (which is
contentious at best; Cavender-Bares et al. 2009). Yet if phylogeny is only a proxy
for species traits, it is unclear why a phylogenetic ‘middleman’ (Swenson 2013) is
needed when the trait data themselves are available. If we are to claim that a
perfect phylogeny reflects species’ niches better than trait data (Srivastava et al.
2012) or that phylogeny is a useful proxy for difficult to obtain functional trait data
(Mace et al. 2003), then we must directly compare the explanatory power of traits
and phylogeny. Yet phylogenetic signal in a trait does not mean phylogenetic and
trait data are in perfect agreement; even if they were (not), measurement error may
falsely indicate (dis)agreement. Recent developments, such as the traitgram
approach (Cadotte et al. 2013), allow the explanatory power of phylogeny and
traits to be partitioned and interactions between the two explored. An alternative is
to contrast the evolution of species’ traits with their present-day ecology; Cav-
ender-Bares et al. (2006) found that traits critical to habitat filtering (such as plant
height) were convergent, while traits associated with local competition (such as
leaf habit) were conserved in oak trees. Silvertown et al. (2006; also see Ackerly
et al. 2006) went a step further, categorising traits as a, b, or c depending on their
order of evolutionary divergence and relating these evolutionary dynamics to the
likelihood of species coexisting in the present.

Community phylogenetics provides an excellent framework within which to
examine the ‘problem and promise of scale dependency’ (Swenson et al. 2006),
and spatial and taxonomic scaling continues to draw interest (e.g. Cavender-Bares
et al. 2006; Kembel and Hubbell 2006). There is evidence of variation among
clades in phylogenetic structure even within well-defined groups (e.g. Parra et al.
2010) and tentative evidence of links between clade age and phylogenetic dis-
persion (Pearse et al. 2013). Variation among clades is to be expected; under a
Brownian model of trait evolution (which most metrics assume or, like PSV, are
derived under; see also Peres-Neto et al. 2012), phylogeny is a poorer predictor of
similarity for distantly related species. Advances in the modelling of species’ trait
evolution (reviewed in see also Cooper et al. 2010; Chap. 14) have provided us
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with more sophisticated models of trait evolution, which should generate different
expectations for ecological dissimilarity and so present-day phylogenetic structure.
Indeed, the mode of speciation in a clade could affect its community phylogenetic
structure today. To give a simplified example, species brought back into secondary
contact may be unlikely to coexist due to shared environmental tolerance (or gene
flow; see Fig. 5 in Cavender-Bares et al. 2009), while descendents of rapid
adaptive radiations might be sufficiently dissimilar to coexist.

19.7 Conclusion

There will never be one perfect definition of an ecological assemblage, and so
there will never be one perfect way of describing one. It is no surprise that some
express misgivings about the incursion of phylogenetic structure into ecology;
initial attempts to incorporate phylogenies into comparative analysis were met
with criticism, and many feared that implicit assumptions of the approach were
ignored (e.g. Westoby et al. 1995). Such initial scepticism is healthy—there is
always a danger that a new framework will be applied simply because it can be,
without any critical evaluation of its implications. The incorporation of phyloge-
netic structure into ecology is not without its pitfalls, but a little over a decade
since Webb et al. (2002) outlined their research paradigm we have a remarkably
mature suite of metrics and methods. Looking forward, ecologists and evolu-
tionary biologists are moving beyond describing phylogenetic structure, and
instead, testing detailed hypotheses about how that structure came to be. Species’
evolutionary history was shaped by their ecology, and it seems natural to see what
the shape of species’ evolutionary past can reveal about their ecology today.
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Chapter 20
Event-Based Cophylogenetic Comparative
Analysis

Michael Charleston and Ran Libeskind-Hadas

Abstract Cophylogenetic analysis seeks to explain the relationships between
mutually evolving pairs of species such as hosts and parasites. In the last two
decades, increasingly sophisticated computational methods have been developed
for performing cophylogenetic analyses. In particular, event-based reconstruction
methods attempt to find the best supported reconstructions of pairs of related trees
using a set of events including cospeciation, duplication, transfer, and loss. This
chapter formulates the cophylogeny reconstruction problem, describes the algo-
rithmic techniques that have been developed for this problem, and compares and
contrasts the software packages that implement these methods.

20.1 Introduction

It has been famously said and restated many times that nothing in biology makes
sense except in light of evolution (Dobzhansky 1973). We would add another
axiom: nothing evolves in isolation. In every biological system, there are inter-
actions among individuals, between strains and species, across genera and eco-
logical roles. It is as much an unavoidable outcome of biological life as is
evolution itself: All biological systems evolve; all biological systems include
interactions; interactions influence fitness; and differences in fitness influence
natural selection—evolution therefore cannot make sense except in light of
coevolution.
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Coevolution can mean many things: from the very ‘‘small-scale’’ changes in the
env gene giving rise to conformational changes of the HIV virus capsid in response
to changing drug therapies in an AIDS patient (Chun et al. 1999), to phenotypic
changes of large ectoparasites, e.g., lice in response to diversification of their host
species (Hafner and Nadler 1988).

The term ‘‘coevolution’’ is sometimes assumed to be strictly reciprocal: Two
organisms exert selective pressure on one another and both evolve in response
(Thompson 1994). This may arise, for example, in host–parasite relationships,
mutualisms, and competitive relationships. More generally, coevolution is a state-
ment about non-independence of pairs of species: At least one species—or, more
generally, taxonomic unit or taxon—is evolving non-independently of another.

In this chapter, we focus on the quite common asymmetric relationship
between groups of ecologically linked taxa such as that which exists between
pathogens or parasites and their hosts. The relationship is asymmetric because in
cases such as these, which represent a strong majority of cases in which coevo-
lutionary analysis is applied, one organism is evolving much more slowly than the
other. It should be noted that some exceptions to this rule are known to exist
(Cuthill and Charleston 2012).

For example, in a now very famous exemplar of coevolution at the species level,
Hafner and Nadler’s ‘‘gopher-louse’’ study (Hafner and Nadler 1988), the pocket
gophers (family Geomyidae) have much longer generation times and a slower
substitution rate, in comparison with their chewing lice parasites (Phthiraptera:
Ischnocera) (Light 2007). The gophers do not evolve detectably in response to
phenotypic changes in the lice (which live on and in the gophers’ fur), but the lice
have been shown to have an evolutionary history that is highly congruent with that
of the gophers. This congruence has been shown to be statistically significant in
many studies (Hafner and Nadler 1988, Hafner and Page 1995, Demastes and
Hafner 1993 and others). The smaller, evolutionarily more agile lice (in the sense of
this faster mutation rate and other potential contributing factors) are coevolving
with their changing environment, i.e., their host species, as it diverges and
diversifies.

Assume that we are given the phylogenetic tree, H, for the ‘‘host’’ and P, for the
‘‘parasite’’ (or ‘‘pathogen’’) species as well as the association, or ‘‘mapping,’’
between extant parasites and their hosts (i.e., an association between the tips, or
leaves, of the two trees). Also assume for now that we have some way of mea-
suring congruence between trees. The most fundamental question that we can ask
is ‘‘how does the level of congruence between these two trees compare to random
data?’’ If the level of congruence is statistically higher than that of random trees
(or the same trees but with randomized associations of the tips), then we can reject
the null hypothesis that the similarity of these trees is due to chance. In addition,
we can ask questions such as:

1. What were the associations of the (hypothetical) ancestral species in P to those
in H?

2. How long have the species in H and P been interacting with each other?
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3. What is the level of cospeciation between H and P?
4. How often do parasites jump species boundaries to new hosts in H?
5. Are there particular branches in either tree that appear to contribute to most to

the (in)congruence between H and P?

Collectively, these and related questions can be called the ‘‘cophylogeny
problem.’’ These questions require computational methods, and these methods
have become increasingly sophisticated over the last two decades. This chapter
examines these methods, their underlying assumptions, and their strengths and
weaknesses.

20.2 An Overview of Cophylogeny Methods

The ‘‘cophylogeny problem’’ is relatively new in biology, partly because it is
computationally difficult to solve, but also because there have been, up until the
present, very few good datasets to which to apply these kinds of analyses. While it
is common to find evolutionary trees for groups of species in the scientific liter-
ature, there have been relatively few studies in which trees for two or more
ecologically linked groups of species have been estimated.

We also require some knowledge about the associations between the tips of
both trees, which often requires substantial fieldwork. Often, the predominant form
of observed association between hosts and parasites (or pathogens) is in the form
of ‘‘presence’’ that a particular parasite is found on a particular host, or ‘‘absence,’’
it was not found on that host. Host specificity—the degree to which a parasite
prefers one host to another—is therefore usually judged simply by ‘‘absence’’ of
observation on other hosts, which is a clear statistical bias toward favoring false
negatives. Indeed, there is consistent evidence that across many systems, parasites
or pathogens are limited more by opportunity than by common descent (e.g., Bush
and Clayton 2006; Poulin 2007; Poulin and Keeney 2008).

So our data have been limited quite significantly because they are hard to get,
and often, in particular in light of this host specificity issue, they are also hard to
interpret. We also note the unavoidable effect of variable intensity of study of
different host/parasite systems, which is that more intensely studied groups are
much more likely to have knowledge about their associations gathered than are
less well-studied groups. This must lead to missing associations, in turn leading to
less well-supported hypotheses of codivergence or coevolution.

The first computational method for measuring the congruence of host and par-
asite trees given their tip associations was Brooks’ Parsimony Analysis (BPA)
(Brooks 1981; Brooks et al. 2001). BPA first codes the parasite tree P as a set of
binary vectors with one vector per tip. Next, each tip of host tree H is assigned the
vector of its associated tip in P. Those vectors are interpreted as character vectors,
and the well-known Fitch Parsimony Algorithm (Fitch 1971; Felsenstein 2004) is
used to find the minimum number of state changes required to transform an all-zero
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binary vector at the root into the binary vectors at the tips. The minimum number of
state changes is interpreted as a measure of congruence between P and H.

The BPA method suffers from a lack of a natural interpretation of how the
computed score corresponds to evolutionary events. The merits of BPA have been
questioned, while Brooks has vehemently defended his approach, resulting in an
occasionally healthy debate (Page 1990; Ronquist and Nylin 1990; Brooks et al.
2001). No known publicly distributed software packages implement BPA.

Another approach, called ParaFit (Legendre et al. 2002), codes each of two
trees P and H and the tip associations as a separate matrix. These three matrices
are multiplied in a specific order, and one of several statistics can be computed on
the result to score the congruence of the host and parasite trees. This method is
useful for statistical analyses of congruence, but does not offer insights on where
the two trees differ and the evolutionary events that might explain those differ-
ences—although it can be used to identify which tip associations are contributing
most to the measured congruence (Legendre et al. 2002). The AxParaFit software
tool (Stamatakis et al. 2007) is an optimized version of ParaFit, and CopyCat is a
software tool that provides a convenient user interface for AxParaFit (Meier-
Kolthoff et al. 2007).

The congruence index method (de Vienne et al. 2007) computes another
measure of similarity between each of two trees P and H by determining the
largest subtree common to both trees. Specifically, a subtree of P (or H) is obtained
by removing tips and then collapsing internal nodes with only one child. A subtree
T is said to be a maximal agreement subtree if it can be obtained by performing
this process from P and from H and there exists no larger subtree that can be
constructed in this way. The number of tips in a maximum agreement subtree is
used as the measure of congruence between the two trees. This measure can be
compared to those of randomly generated trees of the same size as P and H in
order to test the null hypothesis that the two trees are congruent by chance. While
some concerns have been raised about this method (Kupczok and von Haeseler
2009), the authors note that this test is intended only to ‘‘get a first and rapid
(computationally cheap) insight on the topological congruence between two trees’’
before proceeding to more detailed analyses (de Vienne et al. 2009).

All of the aforementioned methods provide statistical measures of congruence
between pairs of trees, but do not attempt to infer the best supported set of events that
explain their congruence and incongruence. In contrast, event-based reconstruction
methods provide both congruence scores and corresponding mappings, or recon-
structions, of P into H. For this reason, event-based methods are said to solve the
cophylogeny reconstruction problem. Event-based based methods offer rich insights
into the evolutionary histories of pairs of phylogenies, and for that reason, we focus
on these methods in the remainder of this chapter. Among these methods and soft-
ware tools, which are discussed in more detail in the next section, are TreeFitter
(Ronquist 1995), TreeMap (Charleston and Page 2002), CoRe-PA (Merkle et al.
2010), and Jane (Conow et al. 2010).
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The input to the cophylogeny reconstruction problem is a triple (H, P, /)
comprising a host tree H, a parasite tree P, and a function / that associates each
parasite tip with a host tip. The triple (H, P, /) can be represented graphically as a
tanglegram as shown in the example in Fig. 20.1. The objective is to map P into
H to associate ancestral nodes of P with locations in H. Host and parasite tips are
associated as specified by / and each ancestral association places a node p in P on
a node or an edge of H, implying a set of coevolutionary processes, or events, that
reconcile the two trees.

The possible events are cospeciation, duplication, lineage sorting, and host
switching. Cospeciation corresponds to contemporaneous speciation in the host
and parasite (mapping a parasite tree node onto a host tree node), duplication
corresponds to speciation in the parasite that is not contemporaneous with speci-
ation in the host (mapping a parasite tree node onto a host tree edge), lineage
sorting corresponds to a parasite lineage failing to speciate with a host (an edge of
the parasite tree that passes through a node in the host tree), and host switching
corresponds to a duplication event in which one of the two parasite lineages
‘‘jumps’’ to another part of the host tree.

Assume that a cost is associated with each of the four types of events: cospe-
ciation, duplication, lineage sorting, and host switching. Our objective is to find a
reconstruction of P into H that is consistent with the tip mapping / and that
minimizes the total cost of the events in the mapping. For example, Fig. 20.2
shows three different reconstructions for the trees P and H in Fig. 20.1. If co-
speciation has cost 0 and all other event costs have cost 1, then the cost of the
reconstruction in Fig. 20.2a–c is 3, 7, and 4, respectively. The choice of event
costs is a notoriously difficult problem and is addressed in more detail in the next
section.

We note that the cophylogeny reconstruction problem arises in several contexts
other than host–parasite evolution. For example, a fundamental problem in phy-
logenomics is that of reconciling gene trees and species trees. In the widely studied
DTL (Duplication–Loss–Transfer) model, the four events are speciation, dupli-
cation, loss, and horizontal gene transfer which, mathematically, correspond to the
cospeciation, duplication, lineage sorting, and host switching, respectively.

Fig. 20.1 A simple
tanglegram
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Similarly, biogeographical analyses of species and their habitats require recon-
struction of species trees and their area cladograms interacting through vicariance,
sympatric speciation, dispersal, and extinction which are again analogous to the
four cophylogenetic events. While these domains are different, the events are
mathematically analogous, and thus, the reconstruction problems are the same.
Thus, the cophylogeny reconstruction problem is broadly applicable to a number
of domains beyond host–parasite coevolution.

20.3 Computational Complexity, Algorithms,
and Heuristics

The problem of finding minimum cost reconstructions under the four event types
(cospeciation, duplication, lineage sorting, and host switching) is known to be
computationally intractable or, in the parlance of computational complexity the-
ory, NP-complete (Ovadia et al. 2011). Roughly, this means that while the problem
can be solved by algorithms whose running time grows exponentially with the
number of tips in the trees, there is no known efficient (polynomial-time) algorithm
for the problem. Moreover, complexity theory provides strong evidence that no
efficient algorithm exists for any NP-complete problem.
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Fig. 20.2 Three possible reconstructions of the parasite tree P (orange) into the host tree H
(blue) for the tanglegram in Fig. 20.1. The first a is an optimal map if, for example, duplication,
host switch, and loss events each cost 1 and cospeciation costs 0 and assuming that we have no
further information about the relative timing of events between P and H. b The second is optimal
if host switches are prohibitively expensive and suggests a history dominated by ancient
duplications and recent losses. The last solution, c would be optimal if we knew that all the
divergence events on P were very recent, such as the case when considering viruses switching
between host species
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Thus, two approaches can be taken: Heuristics can be used to quickly find good,
but not necessarily optimal, solutions, or exact algorithms can be used to find
solutions of optimal cost, but these algorithms have exponential running times that
are prohibitive for large trees.

Exact solutions to the cophylogeny reconstruction problem can, however, be
found in polynomial time if host switching is prohibited. For this reason, some
early event-based approaches simply prohibited host switching. However, host
switching is known to occur in many biological systems and thus excluding this
event severely limits the scope of the analyses that can be conducted.

Exact solutions can also be found in polynomial time, even with host switches,
if the tree is fully dated—that is, if a total ordering is given on the relative times of
the internal nodes (Libeskind-Hadas and Charleston 2009; Doyon et al. 2010).
However, accurately dating the internal nodes of a phylogenetic tree is generally
difficult (Rutschmann 2006). In the absence of reliable dates, the problem becomes
computationally intractable because of the difficulty of maintaining time consis-
tency. If, however, the time consistency constraint is relaxed, potentially permit-
ting reconstructions that require contradictory orderings on the relative times of
events, then the problem can also be solved by efficient polynomial-time algo-
rithms. Empirical results suggest that these algorithms rarely introduce timing
inconsistencies (Addario-Berry et al. 2003). Moreover, timing inconsistencies can
be easily detected. However, if a solution is found to have timing inconsistencies,
this approach offers no recourse.

While maximum parsimony reconstructions attempt to infer evolutionary
events, the reconstructions and their numerical scores alone do not suffice to
address the question of whether or not two trees are congruent. Congruence is
usually determined by performing random permutation tests. Specifically, the
parasite tree P or the association / between host and parasite tips is randomized
some number of times and the score is recomputed for each randomized instance.
If x % or less of random trials do not get as good a score as the original P, then we
can say P is significantly congruent at the x % level. That is, x (or more accurately
x/100) serves as an empirical p-value. Since these tests typically comprise hun-
dreds or even thousands of trials, the efficiency of the reconstruction algorithms is
particularly important.

20.4 Software

The prevailing software tools for the cophylogeny reconstruction problem are
TreeFitter (Ronquist 1995), TreeMap (Charleston and Page 2002;Charleston
2012), CoRe-PA (Merkle et al. 2010), and Jane 4 (Conow et al. 2010). TreeFitter
and the original version of TreeMap (TreeMap 1) were among the earliest tools.
While TreeFitter is no longer supported by its developer, it is available as an open
source project. CoRe-PA (based on a predecessor called Tarzan) and Jane are more
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recent additions to this small jungle1 of tools. This section describes the underlying
approaches and major features of these different tools. While version numbers are
henceforth omitted, our comparisons refer to TreeMap 3, CoRe-PA 0.5.1, and Jane
4. The URLs for these tools are available from the Online Practical Material for
this chapter (http://www.mpcm-evolution.com).

TreeMap uses an exact algorithm to find optimalreconstructions. In addition, it
can find multiple so-called Pareto-optimal solutions that are optimal for different
event costs. The issue of event costs and Pareto optimality is explored in more
detail in the next section. Since the running time of exact algorithms grows
exponentially with the number of tips in the trees, TreeMap offers mechanisms for
reducing running time by limiting the number of host switch events that it
considers.

TreeFitter uses two different algorithms. Its ‘‘lower-bound’’ algorithm effi-
ciently finds reconciliations of optimal cost by relaxing the time consistency
constraint, possibly resulting in invalid solutions. Its ‘‘upper-bound’’ algorithm is
not documented but evidently finds optimal time-consistent reconstructions, and
this implies that its running time is exponential. CoRe-PA also relaxes the time
consistency constraint and thus efficiently finds solutions that may be invalid.

Jane exploits the fact that optimal cost reconciliations can be found efficiently if
the trees are timed. If the trees are not timed, Jane explores a sample of the
possible relative times of the events and solves each of them efficiently, reporting
the best solutions it finds. Thus, Jane’s solutions are always time consistent,
guaranteed to be optimal for timed trees, but are not guaranteed to be of optimal
cost for untimed trees.

Thus, in terms of running time for untimed trees, CoRe-PA is the fastest, Jane is
intermediate, and TreeMap is the slowest. (TreeFitter is fast in the ‘‘lower-bound’’
mode and slow in the ‘‘upper-bound’’ mode.) Conversely, TreeMap finds solutions
that are guaranteed to be valid and of optimal cost (assuming the number of host
switches is not constrained), Jane finds solutions that are guaranteed to be valid
and have good but not necessarily optimal cost, and CoRe-PA and TreeFitter
(‘‘lower-bound mode’’) find solutions that may not be valid, but if they are, then
their cost is optimal.

Beyond the algorithmic similarities and differences mentioned above, these
tools share a number of common features. All of these tools allow for user-defined
event costs, compute reconciliations, and have functionality for performing ran-
domized permutation tests. TreeFitter, CoRe-PA, and Jane provide methods for
handling polytomous trees (discussed further in the next section). Additionally,
TreeMap, CoRe-PA, and Jane all offer graphical user interfaces and tools for
editing pairs of trees and their tip assignments and viewing the reconstructions.

These tools also have unique features and limitations. TreeFitter has a com-
mand-line interface but no graphical user interface and does not render the

1 Indeed, the jungle metaphor originates from a data structure called a ‘‘jungle’’ which is used in
the TreeMap tool.
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reconstructions. Recognizing that the choice of event costs can affect the
reconstructions, TreeFitter can explore a user-specified range of event costs in
user-specified increments. However, it also imposes constraints on the permitted
relationships of event costs.

A unique feature of CoRe-PA is that it offers a mode that attempts to
automatically infer event costs based on the assumption that these costs should be
inversely proportional to the frequency of their corresponding events. CoRe-PA’s
‘‘parameter-adaptive’’ approach, therefore, uses a mathematical optimization
technique to find event costs that are inversely proportional to the frequency of
events in the maximum parsimony reconstructions that they induce. This allows
the user to avoid the difficult and ill-defined process of estimating appropriate
event costs, but it is not clear that the inferred costs are necessarily biologically
realistic or give rise to the most plausible reconstructions.

Jane supports preferential host switching (Charleston and Page 2002), which
permits the user to assign different costs for host switch events, depending on the
distance from the original host to the new host. It also permits multi-host (i.e.,
widespread) parasites using an event called ‘‘failure to diverge’’ (discussed in more
detail in the next section). Additionally, it has a ‘‘time zone’’ feature that allows
complete or partial annotations on relative times of events and finds solutions that
respect the provided timing information.

20.5 Computational and Biological Issues

This section examines some of the computational and biological issues in
cophylogenetic reconstruction in more detail.

20.5.1 Performance Optimizations

As datasets get larger, there is a need for faster heuristics. One promising approach
is to ‘‘condense’’ a problem instance by recognizing recurring patterns in the two
trees and collapsing them to create a slightly smaller problem instance. Rather than
optimizing a score, this approach (Drinkwater and Charleston, in prep) is built
purely for speed and makes no guarantees on optimality. It does produce a
reconstruction, but it is as a result of the collapsing process. This algorithm is even
faster than the best dynamic programming algorithms for reconstruction discov-
ered to date. Its accuracy is commendable despite having no guarantees: In the
majority (68) of 102 published tanglegrams, it was shown to find solutions as good
as those found by Jane.
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20.5.2 Event Costs

One way that event-based approaches differ from one another is in the way that
they address event costs. Generally, these costs are assumed to satisfy the fol-
lowing weak constraint: Cospeciation cost (cc) is strictly less than duplication (cd),
host switch (cw), or loss (cx). These have been chosen after the work of Fahrenholz
(1913) who famously stated that parasite phylogeny should mimic host phylogeny.

It is very difficult to know what these event costs should really be though: Every
biological system is different, and what works in one case will not be appropriate
for another. It should be noted that the event costs are ‘‘unit-less’’ in the sense that
only their relative values are important: Scaling all event costs by any constant
factor simply scales the total cost of the solution by that value. Generally speaking,
cospeciation is assumed to have a low cost (e.g., 0 or some small positive value)
and all other events have a larger positive cost. In some analyses, cospeciation is
set to have a cost of -1 and all other events have a cost of 0 so that minimum cost
reconstructions maximize the number of cospeciations.

Some approaches such as TreeFitter and Jane require the user to specify the
event costs or range of possible event costs, while others, such as CoRe-PA,
attempt to infer event costs automatically. In contrast, TreeMap does not use
explicit event costs but rather seeks to find all solutions that are optimal for some
choice of event costs. Specifically, we can represent a reconstruction by an event
count vector (c, d, t, s) which counts the number of cospeciations, duplications,
transfers, and host switches, respectively. An event count vector v = (c, d, t, s) is
said to be strictly better than another event count vector v0 = (c0, d0, t0, s0) if each
entry in vector v is less than or equal to its corresponding entry in vector v0 and at
least one entry in v is less than its corresponding entry in v0. A reconstruction with
an event count vector v is said to be Pareto optimal if there exists no other
reconstruction with an event count vector strictly better than v. We use the term
‘‘Pareto optimal’’ to refer to both the reconstruction and its event count vector.

TreeMap was the first reconstruction algorithm to use the notion of Pareto-
optimal reconstructions. Since the underlying algorithm in TreeMap has expo-
nential worst-case time, in practice it finds a subset of the Pareto-optimal event
count vectors. Moreover, even for a single set of event costs, there may be a large
number of different equally good maximum parsimony reconciliations. And, in the
case of searching for a Pareto front, there will be an even larger number of
candidate reconstructions. Thus, it is not computationally feasible to enumerate all
of the distinct maximum parsimony reconciliations.

Recently, Libeskind-Hadas et al. have devised efficient polynomial-time algo-
rithms that compute all Pareto-optimal event count vectors and determine the
number of distinct reconstructions for each Pareto-optimal event count vector
(Libeskind-Hadas 2013). These algorithms are implemented in a suite of tools
called xscape. For example, the costscape tool lists the set of all Pareto-optimal
event count vectors and partitions the cost space into ‘‘regions’’ such that all event
costs in a given region give rise to the same set of Pareto-optimal reconciliations.
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Figure 20.3 shows the regions found by costscape for a dataset of figs and the fig
wasps that pollinate them (Weiblen and Bush 2002) where cospeciation is fixed to
cost 0, duplication is normalized to cost 1, and loss and transfer (switch) have costs
ranging from 0.2 to 5, relative to the unit cost of duplication. Each color-coded
region corresponds to the subset of the cost space with identical maximum par-
simony solutions and those solutions have Pareto-optimal event count vectors as
shown in the legend. In addition, the legend shows the number of distinct maxi-
mum parsimony reconciliations in that region. The point corresponding to Jane’s
default event costs is also shown, demonstrating that a single event cost provides
only a small snapshot of the totality of plausible solutions.

20.5.3 Event Support

We have noted earlier that maximum parsimony reconciliation can produce a large
number of equally optimal solutions for a single set of event costs and an even
larger number over a range of event costs. It is important, therefore, to distinguish
between events that are robust (e.g., occur in many solutions and are insensitive to
perturbations of event cost) and those that are not. Pareto-optimal reconciliation
offers new and promising approaches to identifying highly supported events.

In general, the number of different event cost regions can grow quadratically
and the number of distinct reconciliations can grow exponentially with the size of
the parasite tree. Nonetheless, we can count the number of reconciliations and
enumerate the events in those solutions in polynomial time. The number of rec-
onciliations grows exponentially because of the number of ways of choosing the
events that comprise the reconciliation. So, the number of events is polynomially
bounded even though the number of reconciliations is not. This observation turns
out to be useful in identifying strongly supported events.

Given a range of costs on the transfer and loss events, we find the Pareto-
optimal regions, and in the process, in each region, we collect the set of events that
are shared by every reconstruction in that region. Those events are inferred to be
strongly supported for that region. We can define an event to have a-consensus
support, 0\ a B 1, if the event arises in every reconstruction in a fraction of at
least a of the regions. Two special cases are majority consensus (events that arise
in more than half of all regions) and strict consensus (events that arise in all
regions). This is in contrast to recent work that defines event support based on a
single fixed cost for the events (Bansal et al. 2013; Nguyen et al. 2013).

These event consensus support values can be computed by efficient polynomial-
time algorithms implemented in the eventscape tool (Libeskind-Hadas 2013). For
example, Fig. 20.4 shows a summary of results obtained applying eventscape to
five host–parasite datasets: figs and fig wasps (Weiblen and Bush 2002), gophers
and lice (Hafner and Nadler 1998), indigobirds and finches (Sorenson et al. 2004),
seabirds and lice (Paterson et al. 2000), and trees and moths (Kawakita et al.
2004). One cost space had transfer and loss costs ranging from 0.5 to 2, a 4-fold
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range, and the second had transfer and loss costs ranging from 0.2 to 5, a 25-fold
range. For each dataset and range value (4 or 25), we counted the number of events
of each type supported at the given level and normalized by the total number of
events of that type found in all regions in the cost space.

These results show that even under strict consensus, a substantial fraction of
events can be identified that arise in every reconciliation across the cost space.
Interestingly, cospeciation and transfer events appear to be more highly supported
than duplication and loss events.

20.5.4 Multi-host Parasites

Generally, the cophylogeny problem assumes that each tip in the parasite tree is
only associated with a single host tip (i.e., / is a function from parasite tips to host
tips). This is a significant limitation because there are many cases in which par-
asites associate with multiple hosts. To date, there are no generally accepted
methods of dealing with the multiple-host problem.

Suppose one parasite p is associated with multiple host tips. If these hosts are
all each others’ closest relatives in the host tree, then this set of hosts constitutes a
monophyletic group, and we can simply denote this clade as a single taxonomic
unit and consider it as a single ‘‘meta-tip’’ in our analysis (Fig. 20.3a). However, if
the hosts of p are spread across the host tree more widely (as in Fig. 20.3b), then
this approach will not work. We need some way of accounting for the (possibly
myriad) alternatives for the history of associations of p with sets of hosts within H,
at least back until the common ancestor of these widespread hosts, and possibly
beyond (Figs. 20.3c, 20.5).

Fig. 20.3 The Pareto-
optimal event count vectors
for the fig wasp dataset and
the corresponding regions.
The cost space ranges from
0.2 to 5 for both transfers and
losses. The solutions found
using Jane with its default
cost values are indicated with
a black hollow dot. Note also
that the event count vector
11; 3; 1; 13h i has a region that
is a line rather than a polygon
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New types of ‘‘events’’ are required to explain widespread host associations.
One such event, called failure to (co)diverge, allows a parasite lineage to ‘‘split’’
when its associated ancestral host lineage speciates as shown in Fig. 20.4a.
Association with widespread hosts can be explained, for example, by a series of
failure to diverge events beginning at the most recent common ancestor of those

Fig. 20.4 Fraction of events of each type found under majority and strict consensus for five
host–parasite datasets, each using a 4-fold and 25-fold range of event costs

Fig. 20.5 a A tanglegram showing parasites with multiple hosts and hosts with multiple
parasites. Parasite p has multiple hosts but it is on a single monophyletic clade which is then
collapsed to a single OTU in the same subfigure, b a case in which parasite r’s hosts do not form
such a clade and cannot be collapsed in this way, and c, d two histories showing multi-locations
of ancestors of p
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hosts as shown in Fig. 20.4b. Some systems, such as Jane, support failure to
diverge events and use the ‘‘most recent common ancestor solution.’’

Another type of event that can be used to explain multi-host parasites might be
called spreading. In contrast to failure to diverge, spreading allows a parasite
lineage to on its current host lineage and sends a copy to another host lineage on a
different part of the tree. This is shown in Fig. 20.4a. Currently, no cophylogeny
mapping system supports spreading events, though some promising approaches are
currently being studied by the authors and others.

20.5.5 Polytomous Trees

Phylogenetic trees often contain non-binary branches, known as polytomies or
multifurcations. These polytomies may be artifacts of the phylogenetic inference
process (soft polytomies) or biologically meaningful (hard polytomies). Polytomies
create additional challenges for cophylogenetic reconstruction.

When both the host and parasite trees contain a polytomy in corresponding
locations, it may seem natural to resolve those polytomies identically. However,
this is a highly dubious approach as it risks serious bias toward finding significant
congruence based on that resolution. Moreover, in many cases, the polytomies in
the two trees do not occur in corresponding locations. For example, one tree might
have a polytomy at the root, while the other tree is fully resolved at the root.

TreeFitter, CoRe-PA, and Jane all handle polytomous trees in different ways.
TreeFitter resolves polytomous trees by constructing a user-defined number of
randomly resolved trees and performs reconciliations using each of these trees.
CoRe-PA does not specify how polytomies are handled, and Jane uses a population
of randomly resolved trees, allowing the user to specify whether the polytomy
resolutions should be interpreted as occurring in rapid succession or may be
temporally interleaved with other events in the tree.

Finally, we provide a worked-out example of a cophylogenetic analysis using
both TreeMap and Jane in the Online Practical Material (http://www.
mpcm-evolution.com).

20.6 Conclusions

The techniques and tools described in this chapter have been applied to a wide set
of biological systems. But challenges remain in dealing with the messiness of data
in which the trees are not fully known and possibly not even treelike (e.g.,
reticulate phylogenies due to hybridization), associations are blurry, and there may
even be multiple interacting sets of organisms such as in the highly complex fig/fig
wasp/nematode/wolbachia system (Shoemaker et al. 2002, Jackson 2004). Addi-
tional open problems remain in dealing with multi-host parasites, polytomies,
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determining ‘‘support values’’ for events in reconciliations, among others. Fortu-
nately, there is an active research community pursuing these problems and we
expect that increasingly sophisticated techniques and tools will be available in
years to come.
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Chapter 21
Phylogenetic Prediction to Identify
‘‘Evolutionary Singularities’’

Charles L. Nunn and Li Zhu

Abstract Understanding adaptive patterns is especially difficult in the case of
‘‘evolutionary singularities,’’ i.e., traits that evolved in only one lineage in the
clade of interest. New methods are needed to integrate our understanding of
general phenotypic correlations and convergence within a clade when examining a
single lineage in that clade. Here, we develop and apply a new method to inves-
tigate change along a single branch of an evolutionary tree; this method can be
applied to any branch on a phylogeny, typically focusing on an a priori hypothesis
for ‘‘exceptional evolution’’ along particular branches, for example in humans
relative to other primates. Specifically, we use phylogenetic methods to predict
trait values for a tip on the phylogeny based on a statistical (regression) model,
phylogenetic signal (k), and evolutionary relationships among species in the clade.
We can then evaluate whether the observed value departs from the predicted value.
We provide two worked examples in human evolution using original R scripts that
implement this concept in a Bayesian framework. We also provide simulations that
investigate the statistical validity of the approach. While multiple approaches can
and should be used to investigate singularities in an evolutionary context—
including studies of the rate of phenotypic change along a branch—our Bayesian
approach provides a way to place confidence on the predicted values in light of
uncertainty about the underlying evolutionary and statistical parameters.

Convergence is fundamental to the comparative approach to testing adaptive
hypotheses in biology. In short, we can be more confident that a trait is an
adaptation if it has evolved repeatedly—rather than once—in association with
another trait, environment, or other factors (Pagel 1994). Phylogeny is essential to
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this endeavor because an evolutionary tree provides the scaffolding upon which to
identify evolutionary origins of traits and their covarying factors. Thus, phylo-
genetic methods are widely used to identify correlated trait evolution, to probe the
factors that drive speciation and extinction, and to estimate rates of evolutionary
change (Harvey and Pagel 1991; Garland et al. 2005; Nee 2006; Maddison et al.
2007; Martins 1994; Nunn 2011).

The convergence approach has proved incredibly powerful, yet this approach is
not appropriate for investigating evolutionary singularities—i.e., traits that
evolved in only one lineage in the clade of interest. Such a trait may appear in a
single taxon on the tree, and thus, the evolutionary event occurred on the branch
leading to that taxon (autapomorphy), or the singularity may occur on an internal
branch, leading to its representation in all species in a subclade of multiple species
(a synapomorphy). As with many concepts in cladistics, identifying singularities
depends on the taxonomic level under consideration. Thus, we might say that
‘‘winged flight’’ is an evolutionary singularity in mammals (i.e., bats), but not
among vertebrates more broadly (i.e., bats and birds).

Evolutionary singularities are especially relevant in studies of human evolution.
Indeed, humans are unusual mammals with a suite of ‘‘zoologically unprecedented
capacities’’ (Tooby and DeVore 1987, p. 183), such as language, walking with a
striding gait, and wearing clothing. Humans possess complex cultural traits that
build on other cultural traits and thus exhibit cumulative cultural evolution (Tennie
et al. 2009). In terms of quantitative traits, humans have relatively large brains and
exhibit longer periods of parental care than are found in other primates of our body
mass. These traits can be examined in broad phylogenetic context using the
comparative method (Barton 1996; Dunbar 1993; Deaner et al. 2000). Evolu-
tionary anthropologists are interested in identifying the characteristics of humans
that make us unique relative to other primates (Martin 2002; Kappeler and Silk
2009; Rodseth et al. 1991). Yet the novelty of our traits makes it challenging—
some might say impossible—to quantitatively investigate the factors that influ-
enced their evolution using convergence-based comparative approaches.

Considering quantitative characters such as brain size or body mass, two related
approaches can be used to investigate evolutionary singularities. One approach
‘‘predicts’’ trait values for tips of the tree and quantifies deviations from this pre-
diction (Garland and Ives 2000; Nunn 2011; Organ et al. 2011). The other approach
estimates rates of evolutionary change along the branch of interest and then com-
pares this rate to other branches on the tree (O’Meara et al. 2006; Revell 2008). We
focus on the first of these approaches, which we call ‘‘phylogenetic prediction.’’

When using the term phylogenetic prediction, we are specifically referring to
predicting trait values on a tip of a tree, in contrast to the occasional use of the
phrase ‘‘predicting phylogeny’’ to infer phylogenetic relationships. Just as it is
useful to reconstruct traits at internal nodes on a phylogeny, predictions for values
of traits on the tips of the tree are valuable for evolutionary research (Garland and
Ives 2000; Nunn 2011). For example, predicting values on the tips of the tree can
be used to estimate trait values in unmeasured species or for studying species that
are too rare and endangered for handling or invasive sampling.
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Here, we focus on using phylogenetic prediction to assess whether a species
differs from what is expected based on both phylogeny and trait correlations. We
might ask, for example, do humans have a later age at first reproduction, relative to
other primates and incorporating the body mass scaling of primate life history
traits? Prediction would be based on the association between body mass and age at
first reproduction and—assuming phylogenetic signal in the traits or residuals from
the statistical model (see Chap. 5)—our phylogenetic closeness to other apes. With
a prediction in hand, we could then test whether the observed mean age at first
reproduction in humans departs from expectations for other primates of our body
mass, accounting for broader phylogenetic differences among the species in the
sample. It is also possible to account for multiple predictor variables in the pre-
diction, such as diet or predation risk.

In what follows, we consider a general framework for predicting trait values on
the tips of the tree in a phylogenetic generalized least squares (PGLS) framework
(Garland and Ives 2000;Organ et al. 2007, seeChaps. 5 and 6 for details about PGLS),
and we review how this and related approaches have been used in previous com-
parative research. In theOnline PracticalMaterial (http://www.mpcm-evolution.com
weprovide newRcode and instructions to run the analyses using aBayesian approach
that also performs model selection (e.g., see Chap. 10) and controls for uncertainty
in phylogenetic, evolutionary, and statistical parameters. The Online Practical
Material also provides further statistical testing of the approach using simulations.

We apply our code—called BayesModelS, for ‘‘Bayesian Model Selection’’—
to two traits in humans in which we predict unique selection pressures relative to
other anthropoid primates (monkeys and apes). First, we investigated the inter-
membral index (IMI). The IMI is calculated as 100 9 forelimb length/hindlimb
length; it has been used widely in studies of primate morphology because it
covaries with categories of locomotor behavior involving vertical clinging and
leaping (VCL), quadrupedal, or suspensory locomotion (Napier and Walker 1967;
Martin 1990; Napier 1970). The IMI approximates 70 in primate species that
exhibit VCL, 70–100 in those with quadrupedal locomotion, and 100–150 in
primates that show suspensory locomotion (Martin 1990). Given this strong
association, the IMI has been used to reconstruct locomotor behavior in the fossil
record (e.g., Napier and Walker 1967; Martin 1990; Jungers 1978). With our
highly derived (bipedal) locomotion, humans do not fall into any of these loco-
motor categories. In addition, our locomotion is associated with long legs and short
arms—similar to species showing VCL and low IMI—but we evolved from sus-
pensory species (all apes), which show the largest IMI values. Thus, if you had to
bet on a trait as a singularity, the IMI in humans would be a good place to put your
money; we test that prediction with our new computer code.

Second, we examine predictors of white blood cell counts in humans, both to
re-investigate previous findings with our new methods (Nunn et al. 2000; Nunn
2002) and to test whether humans have exceptionally high numbers of circulating
white blood cells. We specifically predicted that humans would have a larger
number of neutrophils than predicted for a typical primate because humans have
been exposed to a large number of parasites and pathogens through our close
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contact with domesticated animals and through agricultural practices (e.g., indirect
contact with rodents that raid food stores, more sedentary lives, and formation of
vector breeding grounds through irrigation, Barrett et al. 1998). Moreover, cooking
likely provided additional energy for humans (Wrangham 2009), potentially
increasing investment in immune defenses, which would be reflected by having
higher numbers of circulating white blood cells.

21.1 Background: Phylogenetic Prediction

21.1.1 Relevant Literature

One of the first clear descriptions of phylogenetic prediction was provided by
Garland and Ives (2000), where they argued for its utility in estimating traits in
extinct or unmeasured extant species. They also showed how this approach can be
used to identify deviations from allometric relationships, which is similar to our
use here—i.e., they provide prediction intervals on a regression and test whether a
species falls outside those intervals. Garland and Ives (2000) described how to
conduct phylogenetic prediction with either independent contrasts or PGLS and
provided approaches for placing confidence intervals on the predictions (see also
Garland et al. 1999). In applying the method, Garland and Ives (2000) showed that
phylogenetic information provides better predictions of trait values in unmeasured
species, specifically by shifting the predicted interval to reflect phylogenetic
propinquity to other species in the dataset and narrowing the interval compared to
‘‘generic’’ predictions that lack phylogenetic placement of the unmeasured species.

Organ et al. (2007) used phylogenetic prediction to investigate the evolution of
genome size in birds, with a focus on extinct species. It is thought that smaller
genomes reduce metabolic costs and are under selection for decreased size in birds
due to the energetic expenditure of flight (Hughes and Hughes 1995). Organ et al.
(2007) predicted genome size based on the size of osteocytes (bone cells). To do
this, they used a Bayesian phylogenetic regression analysis implemented in the
program BayesTraits (Pagel and Meade 2007). First, they confirmed an association
between osteocyte size and genome size in living vertebrates. Next, they generated
posterior probability distributions of genome size in 31 extinct dinosaurs, con-
trolling for uncertainty in phylogeny and statistical parameters with their Bayesian
approach. Remarkably, for all but one of the extinct theropods within the lineage
that gave rise to birds, genome sizes fell within the range of variation found in
living birds. Their analyses therefore suggest that the evolution of reduced genome
size occurred before the evolution of flight. Thus, evolutionary correlations can be
used to make phylogenetically informed predictions about traits that do not fos-
silize, based on both phylogeny and statistical associations with other features that
do fossilize (see also Organ and Shedlock 2009).
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This approach has also been used to investigate evolutionary singularities in
primate evolution, focusing on human dental characteristics and feeding behavior
(Organ et al. 2011). Cooking food is a key behavior that has influenced many
aspects of human evolution and is unique to humans (Wrangham 2009), but has
this behavior influenced quantitative aspects of our feeding behavior and mor-
phology? Again using BayesTraits, analyses revealed that food processing had
major impacts on the amount of time humans spend feeding: Our phylogenetic
model predicted that we should feed for 48 % of our daily activity budget if we
were a typical primate with our body mass, as compared to an extremely low
observed value of 4.7 % in humans. In addition, Organ et al. (2011) found that
cooking influenced dental morphology, providing a way to pinpoint the timing of
transitions to cooking (and other sophisticated food processing) in human evolu-
tion. With a Bayesian phylogeny of hominins, they found evidence for a reduction
in molar size in Homo erectus, with the morphological change suggesting that this
hominin species had already adopted significant food processing behavior well
before the emergence of modern humans.

Brain evolution is also a topic of great interest in the context of human evo-
lutionary novelty. The human brain is thought to be central to many important
aspects of human uniqueness, especially in terms of our cognitive abilities and
social learning (Reader and Laland 2002; Deaner et al. 2007), but it remains
unclear which parts of the brain are most important for understanding human
uniqueness (Sherwood et al. 2012). At a gross level, many quantitative compar-
ative approaches have been taken to assess brain evolution on the lineage leading
to Homo, which clearly involved rapid, large, and unique changes (Lieberman
2011; Allman and Martin 2000; Sherwood et al. 2008; Martin 1990). In one recent
study, for example, Barton and Venditti (2013) investigated whether human frontal
lobes are exceptionally large relative to other brain regions in primates.
Remarkably, they found no evidence for such effects and also failed to find evi-
dence of elevated evolutionary change in prefrontal white and gray matter (relative
to other brain areas) along the human lineage (examining variation in evolutionary
rates is the other approach to investigating evolutionary novelty, noted above).

A somewhat different approach to understanding hominin brain evolution was
taken by Pagel (2002). In a study of how brain size changed over time across a
phylogeny of fossil hominins, he showed how branch-length scaling parameters
can be used to investigate the tempo and mode of evolution (e.g., in terms of
acceleration of brain size in human evolution). The intercept from his regression
model served as a prediction of brain size in the ancestral node, deep in the human
lineage. Like the previous example, Pagel’s approach is also more closely tied to
estimating rates of evolutionary change. A variety of methods have been devel-
oped in this regard, with some based on independent contrasts (McPeek 1995) and
others based on detecting variation in rates using maximum-likelihood approaches
(O’Meara et al. 2006; Revell 2008).

Phylogenetic prediction is not strictly limited to testing for exceptional evo-
lution. Using the method of Garland and Ives (2000), for example, Fagan et al.
(2013) predicted measures of maximum population growth rate in poorly known
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mammalian species based on life history characteristics. Using cross-validation
procedures, they found good agreement between observed and predicted values.

A different set of methods was used to investigate extinction risk in carnivores
(Safi and Pettorelli 2010). In this study, the authors modeled threat status in a clade
of 192 carnivore species based on phylogeny, geography, and environmental
variables, with one goal to assess how well predictions matched empirical threat
levels. Using phylogenetic eigenvector regression (Diniz-Filho et al. 1998) and
spatial eigenvector filtering (Diniz-Filho and Bini 2005), they found that geogra-
phy and phylogeny are important predictors of threat status and probably of other
biological characteristics. Thus, it is important to include phylogeny and geogra-
phy in predictive models of extinction risk.

The issue of evolutionary singularities and phylogenetic prediction was dis-
cussed in Nunn (2011). The present chapter expands the discussion of phyloge-
netic prediction and provides code to implement some of the proposals in Nunn
(2011).

21.1.2 Implementation of Phylogenetic Prediction

The first well-described implementation of phylogenetic prediction was provided
by Garland and Ives (2000). Using the software PDTREE and two traits, the
authors described how to re-root the tree such that the target species and its sister
occur at the base of the tree. The user then makes predictions based on the value of
X in the target species and the branch length connecting it to the rest of the tree.
The authors also provide equations for implementing phylogenetic prediction in a
PGLS framework.

As noted above, BayesTraits has also been used to predict trait values based on
a regression model (Organ et al. 2007, 2011). The program works well for multiple
predictor variables, it can analyze results across a block of trees to account for
phylogenetic uncertainty, and it is possible to estimate three different parameters
that scale the phylogeny to reflect the degree of phylogenetic signal (see Chap. 5
and below). One issue, however, is that BayesTraits is incompletely documented
(prediction is not mentioned in the manual, yet it can be accomplished), and it
lacks the flexibility of running analyses within a statistical package that allows
programming, such as R. With R code, for example, users can more flexibly
automate and adjust the analyses—e.g., combine them easily with other data
transformation and statistical procedures of interest—and it is easier to test the
assumptions of the methods. An additional issue is that BayesTraits does not
provide an easy-to-use model selection procedure that is integrated with parameter
estimation. While one could run all possible models and select among them based
on likelihood or Bayesian approaches, that would be extremely time-consuming.
Based on these issues, we re-implemented and extended much of the functionality
of BayesTraits in R.
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21.1.3 General Approach

We focus on a case in which the evolutionary singularity occurs on a terminal
branch and thus is autapomorphic. The species in which the hypothesized
exceptional character occurs is termed the ‘‘target species’’ (Fig. 21.1). We are
interested in how some quantitative (continuously varying) trait differs between
the target species and the rest of the species in the clade. We call this trait the
‘‘target trait.’’ Before proceeding, it is important to note that we are focusing on the
situation where we have an a priori expectation for a singularity in some trait(s) in
a particular lineage, rather than searching post hoc for exceptional differences
predicting a single trait’s value for all species in a clade in a one-by-one procedure
through all the species.

Our phylogenetic prediction approach involves three steps. First, we build a
regression model to describe how a set of independent variables predicts a
response variable, where the response variable is the target trait and the target
species is not included in the analysis. Second, we use the resulting regression
model to predict values of the target trait in the target species, based on measured
values of the independent variables for the target species and its phylogenetic
position relative to the other species in the dataset. Finally, we compare the pre-
dicted value of the target trait to the actual value in the target species. The larger
this difference, the more ‘‘exceptional’’ the target trait is in the target species
relative to other species in the clade, given the statistical model and phylogeny.

We wish to emphasize that phylogenetic prediction is not simply ancestral state
reconstruction, as might be used for inferring the states of interior nodes on the
tree. Our approach makes use of a phylogeny, an evolutionary model, and output
from a regression analysis, whereas trait reconstruction uses only a phylogeny and
an evolutionary model (or the assumption of parsimony). The regression analysis
incorporates phylogenetic information, typically through a variance–covariance
matrix in PGLS (see Chap. 5). Importantly, we exclude the target species when
estimating parameters of the PGLS model. The prediction is based on this model,
the variance–covariance matrix that includes the target species and predictor
variables for the target species. If the statistical model has no predictors (or if the
predictors fail to account for variation in the regression model), the approach is
similar to standard ancestral state reconstruction, with only phylogeny, an esti-
mated intercept, and the underlying evolutionary model providing predictions for
the target trait in the target species (i.e., the estimate is made based on deviations
from the estimated intercept). If there is no phylogenetic signal in the model,
predictions are based solely on the statistical model, as might occur for predictions
from a standard least-squares regression.

The method that we develop is based on PGLS, which provides a flexible
approach to studying correlated evolution (Pagel 1997, 1999; Garland and Ives
2000; Martins and Hansen 1997; Grafen 1989; Rohlf 2001, Chap. 5). In addition,
the statistics estimated within the PGLS framework can be used to reveal other
important questions about trait evolution, including the degree of phylogenetic
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signal (i.e., the parameter k, Pagel 1999; Freckleton et al. 2002). Specifically, we
assume that the target trait is the response variable in a PGLS with one or more
predictor variables, of the form:

Y ¼ aþ b1X1 þ b2X2 þ � � � þ biXi þ e

In this model, X and Y are trait values, a is the intercept, b is the regression slope,
and e is the error term. Phylogenetic relatedness is incorporated into the error term
with a phylogenetic variance–covariance matrix, which is derived from the phy-
logenetic topology and branch lengths and scaled to reflect the degree of phylo-
genetic signal (Pagel and Meade 2007; Freckleton et al. 2002; Nunn 2011).

As noted above, a variety of statistical approaches can be used to assess whether
the predicted value of the target trait differs from expectations in the target species.
One could simply examine the magnitude of the difference, although this would
not provide a way to judge the ‘‘significance’’ of the difference. It is also possible
to use likelihood-based methods, for example through a likelihood ratio test. From
such a test, a p-value can be obtained, which gives the probability of obtaining a
difference as extreme or more extreme, assuming the null hypothesis of no dif-
ference is true. Finally, the user can (and should) calculate prediction intervals on
the predicted value, again incorporating phylogeny (for equations, see Garland
et al. 1999; Garland and Ives 2000).

Here, we use Bayesian framework to assess departures from predictions. Spe-
cifically, our method generates a posterior probability distribution for the target
trait in a target species—such as a predicted value for body mass in Homo sapiens.
While many approaches could be taken, including the frequentist approaches just
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Fig. 21.1 Implementation of phylogenetic targeting. This phylogeny shows a simple case in
which we are making a prediction for the ‘‘target species’’ based on two independent variables
(the second of which is a binary variable, e.g., nocturnal vs. diurnal activity in primates). We
typically have data on the target species, but it is omitted here to emphasize that the regression
model is estimated without information on the target species. Then, with independent variables
for the target species, predictions for the response are made that incorporate phylogeny and the
degree of phylogenetic signal in the residuals of the model (Revell 2010). Finally, the actual
value of the response in the target species is compared statistically to the predicted value
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described, Bayesian approaches are particularly appropriate for phylogenetic
prediction. First, they provide a quantitative measure of the degree of difference,
measured as the proportion of posterior predictions that are more or less extreme
than observed. In addition, the Bayesian framework takes into account uncertainty
in other parameters—including uncertainty associated with phylogenetic topology,
branch lengths, and estimation of regression parameters and phylogenetic signal
(Pagel and Lutzoni 2002). Finally, model selection procedures can be easily
implemented within the Bayesian framework and by doing so effectively consider
uncertainty in the model selection procedure itself. For Bayesian approaches see
Chap. 10.

21.1.4 BayesModelS: R Scripts for Model Fitting, Model
Selection, and Prediction

With these needs in mind, we developed new R scripts to conduct phylogenetic
prediction in a Bayesian framework. BayesModelS uses a Bayesian Markov Chain
Monte Carlo (MCMC) approach to obtain posterior probabilities of regression
coefficients and phylogenetic scaling parameters (k and j) across a set of trees. The
parameter k is generally viewed as a measure of phylogenetic signal (Freckleton
et al. 2002). It scales the off-diagonal elements of the variance–covariance matrix
by k, with k = 0 equivalent to no phylogenetic signal because the internal branches
collapse to zero length, resulting in a star phylogeny (Felsenstein 1985). The
parameter j raises branch lengths to the exponent j (Pagel 1997, 2002). Thus, when
j = 0, all branches are set to be equal, which is consistent with a speciational
model of evolution in which change occurs during the process of speciation
(Garland et al. 1993), assuming no extinction on the tree. However, we view these
parameters as ways to scale the branches to best meet the assumptions of the
regression model (especially homoskedasticity), rather than being informative of
the underlying evolutionary process.

Our script implements model selection procedures using Bayesian approaches
by updating a vector indicating whether variables are included (1) or excluded (0)
in the model at steps in the Markov chain and estimating coefficients for those that
are included. The specific details of this procedure are provided in the Appendix.
When a ‘‘missing’’ species is identified, it is considered to be a target species.
Another function in our script then generates a posterior probability distribution of
predicted trait values for that species (provided predictor variables are given for
the target species).

BayesModelS takes two files as input: one that contains one or more phylog-
enies with branch lengths (in ‘‘phylo’’ format, Paradis et al. 2004) and the other
serving as a data file. The data file should include headers that indicate variable
names horizontally along the top, with species names in the first column that
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correspond to species in the phylogeny file. The code compares species names in
the data and tree files to identify mismatches or missing species and reports those
discrepancies to the user. The user specifies the statistical model to be evaluated
based on column names, including the possibility to fix a variable in the model so
that it is always included (i.e., permanently set to ‘‘1’’ in the vector associated with
model selection). The user can also estimate scaling parameters k and j or allow
the MCMC procedure to select among them. Although it is possible to include k
and j in the model selection procedure, we recommend also running analyses in
which only one of these scaling parameters is estimated, to assess whether similar
estimates are obtained. In addition, k and j can be fixed to particular values (most
commonly 0 or 1). The user also defines a burnin period and sampling (thinning)
rate.

Output includes a summary of the data and phylogeny used, a detailed log of
parameters and likelihoods in the sampled MCMC iterations, and graphical output
of parameter estimates. For phylogenetic prediction, the method produces graph-
ical and quantitative output for assessing whether a target species departs from
predictions. Likelihood of the data for sampled models is recorded to provide a
way to assess whether burnin was reached (i.e., whether the MCMC chain reached
a stable distribution that can be sampled) and whether the thinning rate is sufficient
(i.e., with low correlation between adjacent saved states in the chain).

More details are provided in the Appendix and the Electronic Online Material
that accompany this book, including mathematical details on how the approach was
implemented, simulation tests to assess the performance of the method, R code,
data, and instructions for running the functions. The worked examples that follow
also demonstrate the utility of the output for assessing performance of the MCMC
analysis (e.g., ensuring adequate burnin and using the post-burnin samples).

21.2 Empirical Applications: How Do Humans Differ
from Other Primates?

Bipedal Locomotion and the Intermembral Index. We investigated whether the
intermembral index (IMI) in humans differs from what one would predict in a
primate of our body mass. As described above, we predict that humans have a
small IMI compared to other primates because bipedal locomotion has resulted in
longer legs relative to arms and thus a lower IMI (see above and Nunn 2011). We
tested this prediction using data on 117 primate species and a block of 100 trees
sampled from a Bayesian posterior probability distribution provided in version 3 of
10kTrees (Arnold et al. 2010).

BayesModelS can take multiple predictor variables. Here, as a first illustration
of the method, we used a simple model with only body mass as a predictor of IMI.
We set the burnin to 100 iterations and sampled the chain every 100 iterations
thereafter for 200,000 iterations, resulting in 2,000 samples for the posterior
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distribution of all parameters and the prediction for humans. We estimated k as a
measure of phylogenetic signal by setting the argument varSelection (i.e., var-
Selection = ‘‘lambda’’). Analyses were repeated three times to ensure that
they stabilized on the same parameter space, and we visually assessed whether
likelihoods reached a steady state with adequate sampling. Data were log10-
transformed prior to analysis. Humans were identified as ‘‘missing’’ in the analysis
through the argument ‘‘missingList’’ in BayesModelS (i.e., missing-
List = c(‘‘Homo_sapiens’’)). The species supplied to missingList are
excluded from the first step of estimating parameters in the model (along with all
species for which a predictor or response variables are missing in the proposed
regression model). Thus, predictions that come from the model are not biased by
extreme values in the target species.

When estimating parameters of the statistical model, the chain quickly reached
stationarity (Fig. 21.2), showing a plateau with variation typical of an MCMC
sample around the plateau (some large moves downward, but disproportionately
sampling parameter space that made the data more likely). Body mass was selected
to be included in the model in 1991 of the 2000 saved iterations (99.6 %, where
model ‘‘inclusion’’ is indicated by zero–one codes and an estimated nonzero
regression coefficient in the program output). Moreover, the regression coefficient
was consistently positive when it was included in the model (Fig. 21.3,
mean = 0.052). We also found good evidence for phylogenetic signal, with the
estimate of k close to 1 (mean = 0.99, Fig. 21.4). For comparison, we also ran the
analysis in the caper (Orme et al. 2011) package of R using a consensus tree. The
estimated regression coefficient was 0.050, and the maximum-likelihood estimate
of k was 1. In this case, BayesModelS provided good agreement to PGLS
approaches for this dataset. We recommend that users also cross-check their
results with other programs until the performance of our scripts has been more
thoroughly tested and check the Online Practical Materials regularly or contact the
authors for the latest version of the code.

We then used the model to predict the IMI in humans and compared the
predictions to the empirical estimate for humans (72, i.e., 1.86 after log10-trans-
formation). This was achieved by predicting the value for humans based on the
saved parameters and the sample of trees from 10kTrees (Arnold et al. 2010). More
specifically, for each of the 2,000 posterior samples of the regression coefficients
and other parameters (including k), we predicted the value in humans, ending up
with 2,000 predicted values (Fig. 21.5). The mean predicted value was 2.05, with a
95 % credible interval of 1.99–2.10. Thus, the human value of 1.86—shown as a
dashed line in Fig. 21.5a—clearly falls outside this range, as predicted. In addi-
tion, the model clearly narrowed in on a narrow portion of the distribution of the
IMI across species (Fig. 21.5b). Data and code to run this example is provided in
the Online Practical Material.

Primate White Blood Cell Counts. As a second example, we examined primate
white blood cell (WBC) counts, focusing on the most common of the WBCs,
neutrophils, which are involved in innate immune responses. For reasons outlined
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above, we predicted that humans would be evolutionary outliers in white blood
cell counts. In addition to testing an interesting hypothesis in human evolution, we
chose this example because two of the variables are discrete traits with three
ordinal levels: Female promiscuity was coded as a three-level variable (monoga-
mous, usually one male but not always, and typically more than one male, from
van Schaik et al. 1999); terrestriality was also coded on a three-part scale reflecting
typically arboreal, typically terrestrial in wooded environments, and typically
terrestrial in an open environment, where the last category is associated with the
greatest terrestrial substrate use (from Nunn and van Schaik 2002). We also used
the model to show how k or j models of trait evolution can be selected using
MCMC during estimation of regression coefficients. All data were log10-trans-
formed prior to analysis.

The underlying regression model re-examines previous findings (Nunn et al.
2000; Nunn 2002). Following these studies, we predicted that neutrophil counts
increasewith promiscuity (to reduce risk of STD transmission), bodymass (to reduce
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Fig. 21.2 Likelihood of the data based on model parameters across the MCMC run. When run
effectively, the MCMC analysis will sample parameter space in proportion to the likelihood of the
data (top panel). Input also included 100 dated phylogenies (Arnold et al. 2010), one of which
was randomly selected at each iteration. The resulting distribution of likelihoods shows that the
MCMC chain preferentially samples the models that make the data most likely (bottom panel)
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risk of dietary transmission, with larger animals eating more resources), terrestrial
substrate use (to reduce risk offecally transmitted parasites on the ground), and group
size (to reduce risk of social transmission in larger groups). We also included body
mass because body mass covaries with some of our variables and larger-bodied
primates have been found to have higher WBC counts in previous comparative
analyses (Nunn et al. 2009; Cooper et al. 2012). Previous research found support for
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Fig. 21.3 Regression coefficients for the intermembral index (IMI) analysis. Histogram provides
the posterior probability of the regression coefficients relating the IMI to body mass from the
MCMC run
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Fig. 21.4 Branch-length scaling parameter in the intermembral index analysis. Posterior
probability distribution of the k parameter (j was not used)
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the effects of promiscuity, but not group size or substrate use (Nunn et al. 2000; Nunn
2002).

Thus, we estimated the regression coefficients for the following full model,
while also using model selection procedures to determine which variables should
be included in the model:

Neutrophils�Group Sizeþ Body Mass þ Promiscuity 0; 1; 2f g
þ Substrate 0; 1; 2f g

Values in the curly brackets indicate the levels of the ‘‘promiscuity’’ and ‘‘sub-
strate’’ use variables, with increasing values indicating increasing promiscuity or
terrestrial substrate use, respectively. We used the same MCMC settings that were
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Fig. 21.5 Predicted IMI in humans. a Panel A shows the posterior probability distribution of
predicted IMI for humans, with the empirical (observed) value of the IMI for humans shown as a
dashed line well below the predicted values (all values log10-transformed). b Panel B shows the
observed distribution of the IMI in primates as a whole. While many primates have a low IMI,
they tend to be small-bodied, and humans come from ancestors with high IMI (suspensory apes).
Thus, the observed value for humans is relatively low, based on our body mass and phylogenetic
position
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used in the IMI analysis, giving 2,000 posterior distribution samples of the
regression coefficients and other parameters and thus 2,000 predictions for
humans. For estimating k versus j, we set varSelection = ‘‘random.’’

The analysis revealed that mating behavior (promiscuity) was entered into the
model in all sampled runs, with effects as demonstrated previously (Nunn 2002).
That is, more promiscuous species have higher neutrophil counts (Fig. 21.6). As
with previous analyses, we failed to find support for effects of terrestrial substrate
use (only 1.2 % of models) and group size (only 6.6 % of models) as predictors of
neutrophil counts. Body mass was also rarely included in the model (only 10.2 % of
the models). Interestingly, we found greater support for using the j-transformation
than the k-transformation, with 87.6 % of the posterior sample favoring j and a
relatively low estimate of j (mean = 0.092, see Fig. 21.7). This suggests that many
comparative analyses that focus only on estimating k may be doing a suboptimal
job of transforming phylogeny for comparative analyses. We also ran the analysis
treating the factor variables as if they were continuously varying. This produced
weaker results for the promiscuity codes, with the variable included in the model in
only 65.3 % of the models (but positive in 99.6 % of the samples in which it was
entered).

To predict neutrophil counts in humans, we used the coefficients from the
‘‘factor’’ models (i.e., discrete codes for promiscuity and substrate use), assuming
that humans are monogamous. Given that the promiscuity variable is discrete and
neither of the quantitative variables (body mass or group size) was consistently
entered into the models, we expected a wide 95 % credible interval. That is what
we found, with a distribution (0.45–0.97) that is nearly as wide as the observed
distribution of values in primates (Fig. 21.8; compare this to the substantially
narrower distribution of predicted IMI relative to other primates in Fig. 21.5). The
observed value for humans falls within this wide distribution, resulting in no
evidence for human uniqueness in terms of neutrophil counts. Without quantitative
predictors, however, the model gives only a weak prediction for this test, making it
hard to draw firm conclusions. Computer code, phylogenies, and data for these
analyses are provided in the Online Practical Material.

21.2.1 Future Directions and Conclusions

Evolutionary novelties pose a serious challenge for the comparative method.
Biologists would like to study these traits in broad comparative perspective, but
how can this be achieved without falling into the trap of adaptive storytelling?
How can we investigate evolutionary singularities—or cases of ‘‘exceptional
evolution’’ for quantitative traits—in a statistically rigorous way? We propose that
phylogenetic prediction offers a valuable solution for this challenge, especially
when combined with other methods, such as comparing rates of evolutionary
change in different lineages (O’Meara et al. 2006; Revell et al. 2008). In particular,
the underlying statistical model is based on widely accepted approaches to
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investigating adaptive evolution using phylogenetic comparative methods. When
this model is applied to a single lineage in a phylogenetic context, it gives fresh
insights into whether the general pattern of adaptive evolution is also explanatory
in the ‘‘target species’’ of interest.

The importance of phylogenetic prediction is underappreciated in studies of the
evolutionary process, especially when considering whether a particular species
departs from the overall evolutionary pattern in a group of organisms. The
approach has yet to be widely used, due in part to lack of good implementation in
R, which is becoming established as the standard for comparative analyses. In this
chapter, we aimed to overcome these limitations through new R scripts (Bayes-
ModelS), original analyses, and supplementary datasets that enable others to run
our analyses. We focused especially on the context of human evolution. However,
we expect that many other biological systems provide similar examples of evo-
lutionary singularities for which this perspective—and versions of our code—
would be useful. It is worth noting that our BayesModelS code can also be run
without the prediction component to provide Bayesian PGLS with model selection.
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Fig. 21.6 Regression coefficients for the promiscuity codes in analyses of white blood cell
counts. BayesModelS generated two dummy variables that compare intermediately promiscuous
primates to those that are monogamous (top) and another that compare intermediately
promiscuous primates to those that are highly promiscuous (bottom). The negative coefficient
for the top plot indicates that less promiscuous primates have lower white blood cell counts, while
the positive coefficient for the bottom plot indicates that more promiscuous primates have higher
white blood cell counts. The latter comparison is especially strong, with more of the distribution
of coefficients being positive
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In terms of future directions, it would be desirable to further assess the statis-
tical performance of BayesModelS to detect differences (some simulations are
provided in the Appendix). By simulating evolutionary change under known
conditions and varying the number of species, it is possible to investigate Type I
error rates (when simulation along a lineage uses the same model as in other
species) and Type II error rates (i.e., statistical power, when higher rates of evo-
lution and/or directional evolution occur on the target species’ lineage, corre-
sponding to greater evolutionary change). By using a particular phylogeny in the
simulation—e.g., primates if the question involves humans as the target species—
one could estimate statistical properties in a specific biological context of a
hypothesized singularity in a particular lineage. It will also be important to
investigate whether predictive capability declines when more extreme values of
predictor variables are used, especially if those extreme values are more likely to
result in singularities through nonlinear or threshold effects or if they involve
extrapolation beyond available data.

As noted throughout, one can also investigate exceptional evolution in terms of
variable rates of evolution: We expect elevated rates of evolution in the target trait
on the lineage leading to the target species. In a previous application of this
general approach to study human feeding time, for example, Organ et al. (2011)
showed that the rate of evolution was substantially elevated in the lineage leading
to humans. Treating branch length as a measure of evolutionary rate, the branch
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Fig. 21.7 Posterior probability distribution of the branch-length scaling parameters. The k or j
parameters were selected as part of the MCMC analysis (the j model was preferred, indicated by
the larger sample in the posterior distribution for j than for k)
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leading to humans would need to be 50 times longer to accommodate the large
reduction in molar size in early Homo (under a Brownian motion model and based
on changes in body mass). In another example using evolutionary rate variation,
Nunn (2011) applied a method (McPeek 1995) based on independent contrasts to
study the IMI. As expected, this analysis revealed that change on the branch
leading to modern humans is significantly elevated, as compared to other contrasts
among the apes. Thus, in addition to computer code provided here for phylogenetic
prediction, it would be valuable to develop user-friendly code to implement a wide
range of methods, such as McPeek’s (1995) method, or to study variable rates of
evolution in the context of singularities using existing code, such as Brownie
(O’Meara et al. 2006) and related code in the phytools package in R (Revell 2011).
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Fig. 21.8 Human neutrophil count predicted. Posterior probability distribution of predicted
number of neutrophils in humans. a Panel A shows the posterior probability distribution of
predicted neutrophils for humans, with the empirical (observed) value for humans shown as a
vertical dashed line (all values log10-transformed). The observed value falls within the posterior
probability distribution, which is exceptionally wide (see main text). b Panel B shows the
observed distribution of neutrophil counts in primates as a whole
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Appendix:
Phylogenetic Prediction for Extant and Extinct Species

1. Mathematical Description of Method

Consider the following regression model for n different species:

yi ¼ a0 þ h1xi1 þ � � � þ hmximþ 2i ð21:1Þ

In the above model, yi is the response variable for the ith species and xi ¼
ðxi1; . . .; ximÞ are covariates associated with the ith species. The error terms for all
species 2 ¼ ð21;22; . . .;2nÞ follow multivariate normal distribution:

2 �N ð0;Vr2Þ

In this equation, V is the covariance matrix structure and r2 is the standard
deviation. Ordinary linear regression usually assumes the errors are independent,
identical, and normally distributed, such that the covariance matrix has the same
value along the diagonal of V with off-diagonal set to zero. For biological data,
however, different species will exhibit similarity because of common ancestry,
which leads to positive values on the off-diagonals. Moreover, the diagonal of
V may show heterogeneity if root-to-tip distances vary, as might be the case if
fossils are included or when the branch lengths are based on molecular change
rather than absolute dates. As noted above, it is possible to select scaling
parameters that transform the branch lengths to better model the evolution of traits
on a given tree topology. The parameter k scales internal branches (off-diagonal
elements of V) between 0 and 1; when k ¼ 0, this corresponds to no phylogenetic
structure, i.e., a star phylogeny. The parameter j raises all branches to the power j.
Thus, when j ¼ 0, this corresponds to a phylogeny with equal branch lengths, as
might occur when speciational change takes place.

Hence, the covariance structure V can be crucial to comparative analyses of
species values, and scaling parameters provide important insights into the evolu-
tionary process and degree of phylogenetic signal in the data.

The objective is to select the optimal model with respect to different covariates
and variance structures. Two variance structures, k and j, are considered as scaling
parameters. We aim to select covariates as well as the variance structure that best
characterizes trait evolution. Meanwhile, precise estimation of different parameters
(regression coefficients, k, j) is also required. Given that only k and j are con-
sidered, we can rewrite the distribution of 2 as follows:

2 �N ð0; IVr
2
k þ 1� IVð Þr2j

� �
RðT; IV ; k; jÞÞ ð21:2Þ
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In this equation, IV indicates the selection of variance structure. IV will be equal to
1 for estimating k and 0 for estimating j. The parameters r2k; r

2
j are standard

deviations for k and j. Covariance matrix RðT; IV ; k; jÞ is a function of the evo-
lutionary tree T , indicator IV , k, and j. Henceforth, we will use notation R to
replace RðT; IV ; k; jÞ.

Using a Bayesian framework, the parameters are treated as random variables
and their distribution is investigated. In order to select models, three types of
parameters are included in the above model:

1. Parameters for tree selection T . Here, we would use a large number of trees to
represent uncertainty in the phylogeny that describes evolutionary relationships
among the species. A posterior distribution ofM trees fT1; . . .; TMg will be used
and treated as a uniform distribution (although a single tree can also be used).

2. Parameters for variable selection H1 ¼ ðc; bÞ. This includes the indicator
variable c ¼ ðc1; . . .; cmÞ, which indicates whether a variable is included in the
model. Moreover, effect size b ¼ ðb1; . . .;bmÞ for each covariate is also
included. The regression coefficient hi ¼ ci � bi; i ¼ 1; 2; . . .;m.

3. Parameters for variance selection H2 ¼ ðIV ; k; j;r2k; r2jÞ

Let Y and X be matrices of the response variable and m explanatory variables
for n species, respectively, as given below:

Y ¼ y1; y2; . . .; ynð ÞT ; X ¼
x11 � � � x1m
..
. . .

. ..
.

xn1 � � � xnm

0
B@

1
CA

Then, the joint posterior distribution for all parameters will be

f ðc; b; IV ; k; j; r2k; r2j; TjY;XÞ / pðc; b; IV ; k; j; r2k; r2j; TÞf ðYjc; b; IV ; k; j; r2k; r2j; T ;XÞ ð21:3Þ

In the above equation,

1. pðc; b; IV ; k; j; r2k; r2j; TÞ is the prior distribution for all parameters. We assume
the priors of tree selection, variable selection parameters and variance selection
parameters are independent, i.e., p c; b; IV ; k; j; r2k; r

2
j; T

� �
¼ p Tð Þp c; bð Þ

pðIV ; k; j; r2k; r2j; TÞ. We also assume prior to variable selection, p c; bð Þ; to
satisfy p c;bð Þ ¼ p cð Þp bjcð Þ. pðcÞ follows a non-informative prior, and for each
i, bijci ¼ 1� cið ÞN l̂; Sð Þ þ ciNð0; s2Þ, while l̂; S; s2 are predefined parameters.

2. f ðYjc; b; IV ; k; j; r2k; r2j; T ;XÞ is the probability density function:

f Yjc; b; IV ; k; j; r2k; r2j; T;X
� �

¼ IVNðYjXh; r2kRÞ þ ð1� IVÞNðYjXh; r2jRÞ
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Equation (21.3) is difficult to analyze. However, b can be integrated out, which
significantly simplifies the calculation. Consequently, we only need to consider the
posterior distribution f ðc; IV ; k; j; r2k; r2j; T jY ;XÞ. After the posterior distribution is
obtained, f ðbjc; IV ; k; j; r2k; r2j; T ; Y ;XÞ follows multivariate normal distribution.

Let X cð Þ be columns of X with cj ¼ 1 and R
0 ¼ R

0
T ; IV ; k; j; r2ð Þ ¼

ð 1r2 X cð ÞTR�1X cð Þ þ 1
s2 IÞ, then the posterior distribution can be simplified to:

f c; IV ; k; j; r
2
k; r

2
j; TjY;X

� �
¼ p cð Þp IV ; k; j; r

2
k; r

2
j

� �
p Tð Þ

� IV
det R

0� �1
2

r2k
� � P cð Þ

det Rð Þ
1
2

exp � 1

2r2k
A1

� �
þ ð1� IVÞ

det R
0� �1

2

r2j
� � P cð Þ

det Rð Þ
1
2

exp � 1
2r2j

A2

� �0

@

1

A

ð21:4Þ

where A1 ¼ Y
0
R�1Y � 1

r2k
ðy0

R�1X cð ÞR0
X cð Þ

0
R�1YÞ; and

A2 ¼ Y
0
R�1Y � 1

r2j
ðy0

R�1X cð ÞR0
X cð Þ

0
R�1YÞ:

The posterior distribution from Eq. (21.4) is difficult to obtain; hence, we
generate posterior samples using MCMC (Liu 2003) to select the optimal model.
Gibbs sampling will be used to get the posterior samples. Gibbs sampling is an
algorithm that can generate a sequence of samples from the joint probability
distribution of two or more random variables. In each iteration of Gibbs sampling,
we use the following procedure to obtain posterior samples:

1. Simulate Tk from fT1; . . .; TMg;
2. Simulate c from f ðcjIV ; k; j; r2k; r2j; T ;Y;XÞ;
3. Simulate IV from f ðIV jc; k; j; r2k; r2j; T;Y;XÞ;
4. Simulate k; j; r2k; r

2
j from f ðk;j; r2k; r2jjc; IV ; T ;Y;XÞ;

5. Simulate b from f bjc; k; j; r2k; r2j; T;Y;X
� �

:

Since c and IV in Step 1 follow a Bernoulli distribution, the posterior sample
can be directly obtained. In Step 4, k; j can be obtained by the Metropolis–Hasting
Algorithm (Hastings 1970) and r2k; r

2
j from the inverse gamma distribution. b in

Step 5 follows a multivariate normal distribution.

After N posterior samples, H 1ð Þ
1 ;H 2ð Þ

1 ; . . .;H Nð Þ
1

n o
; H 1ð Þ

2 ;H 2ð Þ
2 ; . . .;H Nð Þ

2

n o
and

fT ð1Þ; T ð2Þ; . . .; TðNÞg have been obtained, we are interested in which model should
be selected, which can be achieved via different criteria and goals:

1. Model with the highest posterior probability

Let P MijX;Yð Þ; i ¼ 1; 2. . .; 2mþ1 be the posterior probability of ith candidate
models. P MijX;Yð Þ is given by the percentage of model i in the posterior samples.
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The one with the highest posterior probability can be selected as the optimal
model:

M� ¼ argmaxiPðMijX;YÞ

2. Inclusion probability for variables (model selection)

The inclusion probability of jth variable can be defined as Pðcj ¼ 1jX; YÞ, which is
a marginal probability across all posterior samples. This probability can be esti-

mated by P cj ¼ 1jX; Y
� �

¼
P

cðkÞj

N

3. Probability of the variance structure

The probability of k model and j model, PðIV ¼ 1jX;YÞ, can be obtained through

P IV ¼ 1jX;Yð Þ ¼
P

IðkÞV

N

4. Inference on regression coefficients

For a specific candidate model Mi, the inference on parameters for Mi can be
directly obtained from posterior samples for Mi. Moreover, estimation of effect
size in general for a certain covariates can be obtained through Bayesian model
averaging (BMA) (O’Hara and Sillanpaay 2009). For example, bi, which is effect
size for the ith covariates, can be estimated as posterior mean:

b̂i ¼
X

k

P MkjX;Yð ÞEMkðbiÞ

where EMkðbiÞ is the average of posterior sample bi for Mk model. The above

estimator is actually the general mean of posterior sample for bðkÞi . So we can use

Var b̂i
� �

¼ VarðbðkÞi Þ

as the estimator for the variance of b̂i.

Model Checking

Bayesian model checking (Gelman 2004) can be used to check whether the model
is consistent with the data. Consider data Y;X and corresponding posterior samples,

H 1ð Þ
1 ;H 2ð Þ

1 ; . . .;H Nð Þ
1

n o
; H 1ð Þ

2 ;H 2ð Þ
2 ; . . .;H Nð Þ

2

n o
and fTð1Þ; Tð2Þ; . . .; T ðNÞg. Under

the assumption of a linear model, we can use each posterior sample to generate one

predicted (i.e., ‘‘fake’’) YðkÞ given fX; T kð Þ;H kð Þ
1 ;HðkÞ

2 g in the following way:

YðkÞ �N Xh kð Þ; I kð Þ
V r2k
� � kð Þþ 1� I kð Þ

V

� �
r2j
� � kð Þ� �

R kð Þ
� �
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where R kð Þ ¼ RðT kð Þ; I kð Þ
V ; k kð Þ; jðkÞÞ. So for each posterior sample, one fake YðkÞ

can be obtained. A predefined function zðkÞ ¼ f ðYðkÞÞ with fYðkÞ;¼ 1; 2; . . .;Ng
can be obtained and compared to zC ¼ f ðYÞ obtained through real data. With
comparison between fzðkÞg and zC, the validity of the model is evaluated.

The logic of model checking is that if the model is valid, then the generated
fake Ys should be statistically similar to the true observed Y. The choice of
function f depends on the dataset and model we have used. However, there are
several commonly used f functions, e.g., variance (zðkÞ ¼ varðYðkÞÞ) and median
(zðkÞ ¼ medianðYðkÞÞ). Each time, we check zC against the distribution of fzðkÞg and
two-sided p-values will be identified. If p-value is smaller than 0.05, we will
conclude that the data are not consistent with the model.

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correct rate in Identifying the True Model, sigma^2 = .01

number of active effects

co
rr

ec
tr

at
e

in
id

en
tif

yi
ng

th
e

co
rr

ec
tm

od
el

Bayesian Model Selection
Stepwise, Forward
Stepwise, Backward

(a)

Fig. 21.9 a Percentage of time each method identifies the correct model (r2k;r
2
j ¼ 0:01).

b Percentage of time each method identifies the correct model (r2k;r
2
j ¼ 0:02). c Percentage of

time each method identifies the correct model (r2k;r
2
j ¼ 0:03)
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Prediction for an unknown response (Gelman 2004) for a species is also available
in this Bayesian framework, for example, if one wishes to predict a value for a
species that has not yet been studied or to investigate whether a particular species
deviates from expectations of the evolutionary model (Organ et al. 2011). Consider
species n1 with known tree Tnew and explanatory variable Xnew, but response

variable Ynew is missing. Assume posterior samples, H 1ð Þ
1 ;H 2ð Þ

1 ; . . .;H Nð Þ
1

n o
;

H 1ð Þ
2 ;H 2ð Þ

2 ; . . .;H Nð Þ
2

n o
and T 1ð Þ; T 2ð Þ; . . .; T Nð Þ� 	

are obtained, the joint distribu-

tion of Y kð Þ;Y kð Þ
new

� �T
given Xnew; Tnew;H

kð Þ
1 ;H kð Þ

2 will be:

Y kð Þ;Y kð Þ
new

� �
�N X;Xnewð ÞTh kð Þ; I kð Þ

V r2k
� � kð Þþ 1� I kð Þ

V

� �
r2j
� � kð Þ� �

R T ðkÞ [ Tnew; I
kð Þ
V ; k kð Þ; jðkÞ

� �� �
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Fig. 21.9 (continued)
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for each posterior sample. Let RðkÞ
new ¼ R Tnew; I

kð Þ
V ; k kð Þ; jðkÞ

� �
, then the covariance

matrix for combined tree will satisfy:

R T kð Þ [ Tnew; I
kð Þ
V ; k kð Þ; j kð Þ

� �
¼ R kð Þ R kð Þ

12

R kð Þ
21 R kð Þ

new

 !
¼ R kð Þ R kð Þ

12

R kð Þ
21 R kð Þ

22

 !

Since we have already observed y, the distribution of y kð Þ
new can be obtained through

a conditional normal distribution:

YðkÞ
newjY�Nðl kð Þ;RðkÞÞ
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Fig. 21.9 (continued)
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while

l kð Þ ¼ Xnewh
ðkÞ þ R kð Þ

21 R kð Þ
11

� ��1
ðY � XhðkÞÞ

RðkÞ ¼ R kð Þ
22 � R kð Þ

21 R kð Þ
22

� ��1
R kð Þ
12

So for each posterior sample, one simulated YðkÞ
new can be obtained. Then, we can

use the median and variance of predictive draws fYðkÞ
new; k ¼ 1; 2; . . .;Ng to make

predictions for values of the response variable in the new species. If the observed
value for the species falls outside of, for example, the 95 % credible interval of

Fig. 21.10 a Model checking for variance. b Model checking for mean. c Model checking for
minimum. d Model checking for maximum. Red line indicates the actual data
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predictions, one might infer that an exceptional amount of evolutionary change has
occurred.

2. Simulation Test of Method Implemented in BayesModelS

We use simulated data to evaluate the performance of BayesModelS, focusing on
estimation of parameters (but not prediction). Comparisons between our procedure
and stepwise regression were conducted. For each dataset, we simulated predictor
variables X and response variable Y with known associations among the variables
on a single phylogeny taken from a posterior distribution of 100 phylogenies for 87
primate species. The variables for each species are independently and identically
distributed according to Nð0; 1Þ. For BayesModelS, we then ran analyses across
100 trees. For stepwise regression, we used a single tree, which was identical to the
tree used to generate the data.

Fig. 21.10 (continued)
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Two different sets of simulated data were used. The first dataset is used to check
whether Bayesian variable selection correctly identifies the variables to include in
the statistical model, as compared to stepwise regression. The inclusion posterior
probability of significant and insignificant effects was also evaluated. Consider a
regression model with 10 covariates. The coefficients for covariates will be
assumed to follow the distribution:

bi � IS �N l; r21
� �

þ 1� ISð Þ � N 0; r22
� �

; 8i

while l; r21; r
2
2 are predefined as 1; 0:1; 0:01, respectively. IS is an indicator of

whether or not this effect is active (i.e., nonzero). The response variable y can be
simulated from Eq. (21.1). Different dataset with IV ¼ 1, k=j ¼ Unif ½0; 1�, and
r2k; r

2
j ¼ 0:01; 0:02; 0:03 will be used.

Fig. 21.10 (continued)
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In reality, sometimes the true regression coefficients are neither zero nor large
(O’Hara and Sillanpaay 2009), as in the previous dataset. The sizes of coefficients
can be tapered toward zero. In this part, we consider a regression framework
similar to O’Hara and Sillanpaay (2009), with the following regression model:

yi ¼ aþ
Xm

j¼1

hjxijþ 2i

For simulations, known values of a ¼ logð10Þ and r2k; r
2
j ¼ 0:01; 0:02; 0:03

were used. The covariate values, the xij’s, were simulated independently and drawn
from a standard normal distribution, Nð0; 1Þ. We also assume m ¼ 21 and
2�Nð0;RðT ; 1; 0:5; 0:5ÞÞ or 2�Nð0;RðT ; 0; 0:5; 0:5ÞÞ, for the models of k and
j, respectively. The regression coefficients, hj, were generated as equal distance

Fig. 21.10 (continued)
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between a� bk and aþ bk, while a ¼ 0; b ¼ 0:05. Twenty datasets were generated
for k ¼ 1; 2; . . .; 20.

We used several performance measures to evaluate BayesModelS. We checked
whether BayesModelS can successfully identify the correct model, identified as the
model with the highest posterior probability. For the stepwise regression, the
optimal model was chosen using both forward and backward stepwise procedures.
Repeated simulations were conducted to check the percentage of time the two
methods identify the correct model.

Moreover, median of inclusion probability for each covariate in Bayesian
Model Selection was also evaluated. This is compared to the percentage of
inclusion for each covariate of stepwise regression through repeated simulations.

Fig. 21.11 Prediction of 87 species with Bayesian Model Selection. Blue points are for median
of predictive sample, and red points are true response. The blue squares are 50 % credible
interval, and blue lines are 95 % credible interval for predictive samples. Forty of the predictions
are outside the 50 % intervals (relative to expectation of 43.5), while 2 of the predictions are
outside the 95 % interval (relative to expectation of 4.3)
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We do the following for 500 times. Each time, we use a tree to generate data.
Then, we use Bayesian method and stepwise regression to estimate the correct
model for these data. Since we know the true model, we know whether this is right
or wrong for the two methods. We assess the statistical performance of Bayes-
ModelS and stepwise regression from this set of results.

The percentage of time each method can identify correct model with the sim-
ulated data can be found in the following Fig. 21.9

In more than 90 % of the simulations, the Bayesian Model Selection procedure
identified the correct model, regardless of the r2k=r

2
j value. It is worth noting that

stepwise regression performed well when the number of significant effects is high.
When the number of significant effects is low, stepwise regression performs poorly
due to a high Type I error rate (Mundry and Nunn 2009).

Next, model checking and prediction with Bayesian Model Selection were
conducted. One fixed sample from Data 2 was simulated with IV ¼ 1,
k ¼ 0:5; r2k ¼ 0:1; k ¼ 20. We used four functions to check validity of the model,
mean, variance, median, and range. The checking result can be found in
Fig. 21.10. We find that the model is consistent with the data, which is not sur-
prising since the data are generated from line model.

Finally, we used BayesModelS to predict unknown species in a simulation
context. Each time, one species was identified as ‘‘missing’’ and then the predict()
function was used to predict this species based on the remaining 86 species. The
predictive sample was compared to the true response, as shown in Fig. 21.11. We
can find that the true response of most species is within 95 % confidence interval
of prediction, which means Bayesian Model Selection can effectively make pre-
diction on unknown species.
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Chapter 22
Preparing Paleontological Datasets
for Phylogenetic Comparative Methods

David W. Bapst

Abstract The fossil record holds considerable promise for furthering our under-
standing of macroevolutionary patterns, particularly allowing us to analyze
hypotheses which cannot be tested with phylogenies of extant taxa alone. How-
ever, although there is a growing number of paleontological studies that use
phylogenetic comparative methods to address questions of trait evolution, there is
little documentation on obtaining the timescaled phylogenies of fossil taxa
required for such analyses. This chapter is an attempt to introduce interested
readers to the issues involved with that process, including the uncertainties and
biases involved with fossil data, which some might inadvertently overlook. In
addition, I illustrate how the fossil records of different groups can be very different
in terms of the datasets available, including the issues of that data, and stress that
there is no ‘one size fits all’ solution. Instead, for several hypothetical examples,
I recommend several approaches that explicitly consider potential uncertainties,
unavailable data, and biasing factors.

22.1 Introduction

Phylogeny-based analyses of evolution have proven critical to testing for macro-
evolutionary processes and measuring the tempo of diversification and trait evo-
lution. Increasingly, biologists working on extant taxa (i.e., ‘neontologists’) have
available a large number of timescaled, ultrametric phylogenies or, if not, tools
are readily available to obtain such a phylogeny, given the necessary data.
However, information from the fossil record can reveal patterns that cannot even
be predicted from datasets consisting of extant taxa alone (Finarelli and
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Flynn 2006; Losos 2010; Slater et al. 2012; Slater 2013). Working with fossil data
is the only avenue available to paleontologists who wish to understand evolution in
extinct groups. Unfortunately, the typical procedures for obtaining and preparing a
phylogeny for analyses often do not apply to fossil datasets. This chapter is
intended to fill this paleontological gap in the primers that are presently available
for preparing data for general comparative analyses and to introduce users to the
basic concepts and necessary tools for evaluating the fossil record.

This chapter is structured in a series of discussions with the reader. First, I
address the current state of analyses in paleontology that depend on phylogenetic
datasets, particularly comparative studies of trait evolution, as it is currently an
active area of interest and the theme of this book. Secondly, using several hypo-
thetical workers with similar research questions, I illustrate how the information
and data obtainable for different groups of organisms can vary drastically, due
simply to differences in morphological completeness, incompleteness of the
associated geologic record, taphonomy and the historical contingencies of the
paleontological approaches used in studying that group. Finally, I discuss several
approaches that take into consideration uncertainties and biases of fossil data,
rather than ignoring such issues.

22.1.1 Questions for Phylogeny-Based Analyses
in Paleobiology

For decades, paleobiologists have used phylogenetic and non-phylogenetic data-
sets to understand a myriad of topics in macroevolution. To cover every sort of
analysis that a paleobiologist might attempt with a phylogenetic dataset would be
impossible. In line with the theme of this volume, this chapter will specifically
focus on preparing fossil datasets for analyzing trait evolution, which are often
approached with a family of analyses referred to as phylogenetic comparative
methods. Borrowing phylogenetic comparative methods from the neontological
literature to study trait evolution has recently become a popular paleobiological
pursuit (for some recent examples: Friedman 2009; Hunt and Carrano 2010;
Hopkins 2011, 2013; Benson et al. 2012; Fusco et al. 2012; Sallan and Friedman
2012; Benson and Choinere 2013; Raia et al. 2013; Zanno and Makovicky 2013).
The majority of the methods used were generally developed with only ultrametric
molecular phylogenies in mind and so it is often not apparent what issues need to
be considered before applying these methods to fossil data. Some typical questions
addressed with these analyses of trait evolution are ‘Was there a directional bias
over time in the evolution of a trait, such as is postulated for body size under
Cope’s Rule?’ ‘Were rates of trait change relatively faster or slower in a particular
group or interval?’ or ‘What is the relationship among traits or between a trait and
an environmental predictor?’ Analyses for trait evolution are often quite similar to
analyses used in model-based studies of phylogeography, which have also recently
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been applied to fossil data (Gates et al. 2012), and such biogeographic analyses
usually require similar types of phylogenetic datasets.

Why would we want to analyze trait evolution with information from the fossil
record, given that including this information can introduce issues not encountered
with extant lineages? Other than the obvious reason that the clade of interest might
be extinct and only known from the fossil record, we also know that paleonto-
logical data can reveal patterns that are not apparent in analyses including only
living species. Constant, directional trait evolution cannot be reconstructed or
detected on ultrametric phylogenies, unless a strong prior is put on the root state
(Felsenstein 1988; Cunningham and Oakley 2000). Finarelli and Flynn (2006)
showed that a trend of increasing body size could not be reconstructed in canid
mammals without fossil data. Slater et al. (2012) used simulations to show that
even small amounts of fossil data can assist in identifying patterns of trait evo-
lution, such as trends.

Additionally, comparative analyses that utilize the fossil record can also reveal
changes in patterns of evolution through time that would not necessarily be
detectable from extant taxa alone, even when active trends are not involved. For
example, Slater (2013) used a phylogenetic dataset of extinct and extant mammals
to show that Mesozoic mammal appears to have been constrained to evolve only
small body sizes. Similarly, Benson and Choinere (2013) used a dataset of extinct
Mesozoic theropods to identify a shift toward increased rates of forelimb evolution
in early avian dinosaurs. Wagner and Erwin (2006) used a phylogeny and a dataset
of discrete ecomorphological characters to test whether Paleozoic gastropod shells
were constrained by intrinsic or extrinsic factors. Additionally, paleontological
comparative studies can utilize information unavailable for extant species, such as
the longevity of morphospecies in the fossil record as a predictor for extinction
risk. For example, Hopkins’ (2011) phylogenetic study of Cambrian trilobites
found that species longevity was correlated with both geographic range and
(surprisingly) reduced intraspecific variation in morphology. In a similar study,
Roy et al. (2009) used analyses of phylogenetic signal to show that extinction rates
among bivalve families were predicted by their relatedness, suggesting that
extinction risk is tied to heritable traits.

However, if we have a dataset from the fossil record, why do we need to study
trait evolution in phylogenetic context? Most of the questions considered above
were first addressed by paleobiologists without the explicit data structures that we
refer to as phylogenies. One particular predecessor to phylogenetic approaches was
comparing ancestor–descendant pairs to estimate trends (Alroy 1998, 2000). Alroy
(1998) used taxonomic structure and the order of appearance within genera to
effectively average over the uncertainty in ancestor–descendant relationships
within higher taxa. Similar approaches have also been developed to get at rates of
trait change in the absence of phylogenetic information (Bapst et al. 2012; Evans
et al. 2012). However, these ‘non-phylogenetic’ approaches still require infor-
mation about relationships, often using taxonomy as a rough proxy for the phy-
logenetic hierarchy, assuming that taxonomy is both trustworthy and that earlier
taxa are probably ancestors to later appearing taxa.
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There are many other popular questions that are not the focus of this chapter; in
fact, there are probably enough topics concerning the use of fossil data in phy-
logeny-based analyses to fill an entire book. However, many of the related anal-
yses are either quite simple and thus do not warrant extended discussion, or the
methods available are incomplete and further development of methods is needed.

A major issue for a biological audience would be the selection of fossil cali-
brations for obtaining a timescaled molecular tree, which can be sensitive to the
choice of fossil dating constraints (Benton and Donoghue 2007; Heath 2012;
Warnock et al. 2012). This has motivated the development of approaches that rely
on additional data from the fossil record for calculating more informed priors (e.g.,
Nowak et al. 2013). Similar questions in paleobiology simply do not require the
methodological preparation discussed in this chapter, such as ‘When did a par-
ticular clade first diverge from their sister lineage?’ or ‘How incomplete is the
fossil record, given a phylogenetic hypothesis for a group?’ Analyzing the misfit
between phylogeny and the appearance times of taxa generally only requires a
cladogram and set of first appearance times (e.g., Norell and Novacek 1992;
Huelsenbeck 1994; Benton and Storrs 1994; Benton and Hitchin 1997; Siddall
1996; Wills 1999; Pol and Norell 2001; Wills et al. 2008; Boyd et al. 2011).
Scientists interested in these questions, however, may benefit from the discussion
of timescaling approaches in this chapter.

The diversification of lineages has long been a focus of paleobiology, with
considerable interest in how information from relationships might be used in our
estimates of past diversity and rates of origination (branching) and extinction.
Phylogenetic corrections to diversity estimates mainly rely on long established
methods (Norell 1992; Smith 1994), although there is debate about the conditions
under which phylogenetic information improves taxonomic estimates of diversity
and the degree to which potential ancestor–descendant relationships need to be
considered (Wagner 1995, 2000; Norell 1996; Lane et al. 2005; Guinot
et al. 2012; Bapst 2014). Biologists have developed a wide range of diversification
analyses for molecular phylogenies based on tree imbalance (e.g., Mooers and
Heard 1997; Chan and Moore 2002) or using branch times from the present (e.g.,
Nee et al. 1992; Alfaro et al. 2009). None of these methods are entirely appro-
priate for fossil data due to incomplete sampling, even when using a time-slice
approach to create ultrametric phylogenies (Tarver and Donoghue 2011). How-
ever, this topic is still in its infancy, with some models recently introduced for
paleontological phylogenies that can directly parameterize sampling processes
(Stadler 2010; Didier et al. 2012) and new attempts to combine typical taxonomic
estimates for obtaining diversification rates from phylogenetic datasets (e.g.,
Simpson et al. 2011; Ruta et al. 2011). In addition, Ezard et al. (2011) took a very
different approach from those mentioned and applied hazard models to a phy-
logeny of living and extinct planktonic foraminifera to estimate the effect of traits
and environment on diversification and extinction.
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22.2 The Fossil Record is Different–and Fossil
Records are Different

There are numerous reasons why the typical dataset for extant taxa and any given
paleontological dataset might require different approaches. Not all of these issues
are immediately obvious, but they all require special consideration. A key element
of paleontological data is that the available fossil record for each group of
organisms can be very different in terms of the type and amount of data available.
This means the methods that we can apply to analyze and interpret phylogenetic
patterns in one clade may not work at all for a different group’s fossil record.

To illustrate how very different the information available can be for different
groups in the fossil record, I’d like to introduce you to four imaginary friends, all
of whom want to analyze paleontological data in a phylogenetic framework
(Table 22.1). Brock wants to test if there are trends in body size in planktonic
microfossils from the Late Cenozoic, which have an extremely well-sampled fossil
record owing to their abundance in deep-sea ocean cores. Misty wants to use
comparative methods to test if there is a relationship between body size and taxon
longevity in Mid-Paleozoic brachiopods. Lance wants to use phylogenetic data to
study the patterns of evolution in biomechanical traits among Mesozoic avians and
other theropod dinosaurs. Erika intends to study the rate of evolution of floral traits
and already has a well-supported molecular phylogeny for the living members of
an angiosperm clade, but she also wants to include information from a few
extremely well-preserved specimens from a unique fossil bed in the Mid Cenozoic.

Although some readers might assume I am referring to specific individuals in
paleontology with Erika, Lance, Misty, and Brock, I would like to stress that these
combinations of groups and research interests were chosen purely out of the
rhetorical concern of what best illustrates the issues presented by the fossil record.
I do not provide citations here to real analyses similar to these examples because I
do not want readers to mistakenly wonder if I am targeting anyone for the defi-
ciencies of their group. I myself study macroevolution in the extinct Graptoloidea,
a group of fossil plankton which present their own issues; however, these issues are
more specific to graptoloids and thus are less useful for examples in this chapter.

Brock, Misty, Lance, and Erika all have extremely different datasets, because
the fossil records they are working with are so very different. All four of them will
have to deal with issues not encountered if they were only analyzing a molecular
phylogeny of extant taxa. As stressed above, even though they share the same goal
of applying comparative methods that require a time-calibrated phylogeny, all four
will likely end up using very different solutions to achieve that goal. To understand
the inherent differences, we will consider the major issues of the fossil record and
discuss how each of our four friends is affected.
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22.2.1 An Incompletely Sampled Geologic Record

First and foremost, anyone who wishes to analyze anything about the fossil record
has to understand the fundamental nature of the fossil record: Everything is
incompletely sampled. While sampling issues are certainly important to every field
of science, the incomplete gaps and tattered remains of the fossil record are
immediately apparent to most observers. To paraphrase a colleague, this has made
paleontology the science of studying a degraded biological record. How we deal
with this degradation is the art of paleontology.

The key to understanding the incompleteness of the fossil record is stratigraphy.
Stratigraphy, for those without a geological background, is the order and position
of sedimentary rocks in geologic outcrops (Fig. 22.1). Sedimentary rocks form
when sediments such as sand, mud, and silt are deposited in some environment
where they become buried, compacted, and eventually lithify (become rock).
Fossils are found within units of sedimentary rock, a series of stratigraphic layers
that share similar geologic characteristics, probably reflecting a similar environ-
ment of deposition (series of related units are called formations). Many units are
barren, reflecting environments in which skeletonized organisms did not live or
could not be preserved in (or both), with a very small number capable of pre-
serving non-skeletonized organisms. The vast majority of sedimentary units are
also highly incomplete, each containing and often separated by innumerous sed-
imentation hiatuses and intervals of erosion, reflecting the discontinuity of sedi-
mentation rate (Sadler 1981). The formation of sedimentary rocks and their
preservation to the present ultimately is a reflection of the ever shifting balance
between deposition and erosion, resulting in many regions of the world that
completely lack any rock record for a particular interval of time. Finally, there are

Table 22.1 Summary of our hypothetical paleobiology-inclined friends, with their questions and
groups of study

Name of
hypothetical
worker

Research topic Group of research interest

Brock Trends in body size
evolution

Cenozoic planktonic microfossils

Misty Relationship between body
size and taxon longevity

Mid-Paleozoic brachiopods

Lance Testing patterns of
biomechanical trait
evolution

Mesozoic avians and other theropod dinosaurs

Erika Rate of evolution of floral
traits

An extant angiosperm clade with fossil taxa
from a locality of exceptional preservation

As discussed throughout this chapter, their group of interest will present various challenges to
obtaining a timescaled phylogeny. Thus, their choice of group may create more difficulties and
require more research effort than the application of comparative methods to address these dif-
ferent research topics
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many aspects of the relationship between the sediments buried and the fossils we
find which reflect the interaction between biotic communities and their environ-
ment (see Patzkowsky and Holland 2012, for a comprehensive discussion), and
these relationships impact when and how often we sample particular taxa (e.g.,
Holland 2003).

Thus, the fossil record is incomplete because the rock record is incomplete:
Some intervals of time have almost no fossil record available, while for other
intervals, the rock record only captures a small number of regions and habitats,
with varying degrees of completeness. Except in groups with extremely high
sampling potential that lived in environments of high and constant deposition,
there will always be some fraction of species missing from the fossil record. Even
for taxa sampled in the fossil record, we almost certainly sampled them some
unknown time after they originated and an equally unknown time before they went
extinct, making their first and last appearances biased estimates for those events. In
addition, the sparseness of rocks we can absolutely date means that for most fossil
records, first and last appearances are always known with some imprecision
(Figs. 22.1 and 22.2).

Knowing that the fossil record is incompletely sampled, the question becomes
how we can quantify and account for the uncertainty introduced by that incom-
pleteness (e.g., Strauss and Sadler 1989). In order to understand sampling beyond
just assuming it exists, we must choose a model of sampling processes. A com-
monly assumed and mathematically tractable model is that sampling (both pres-
ervation and collection of specimens) is a Poisson process occurring at some time-
homogenous rate (e.g., Huelsenbeck and Rannala 1997; Solow and Smith 1997;
Foote 1997; Stadler 2010), much like the birth and death models used to study
diversification (e.g., Kendall 1948; Raup et al. 1973; Raup 1985; Nee et al. 1992;
Foote 2000). A Poisson process is a statistical model of some process that pro-
duces a rare event occurring over some interval at a constant rate: The number of
events that occur in an interval is described by the Poisson distribution, and the
waiting times between events is described by the exponential distribution.
Although such a simple, uniform model is almost certainly incorrect, only a few
studies have explored the limitations of assuming uniform sampling or have
presented alternative models (e.g., Holland 2003; Liow et al. 2010; Wagner and
Marcot 2013). Others have split sampling into two separate processes, modeling
preservation and collection of preserved specimens individually (Heath 2012).
Alternatively, some approaches do not model sampling rate or probability
explicitly; instead, sampling intensity is modeled indirectly using various proxies,
such as the amount of exposed rock outcrop (Raup 1976; Peters and Foote 2001;
Smith and McGowan 2007; Lloyd 2012).

The incomplete sampling of the fossil record is entangled with another basic
limit of the rock record: the limits of geologic timescales. The vast majority of
fossil finds cannot be assigned with precision to a particular date, but rather to
some discrete interval, often several million years long. Some exceptional sedi-
mentary records exist in which events can be pinned with very precise dates as a
result of great diligence and the luck to find a very complete rock record, such as
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with many deep ocean cores. Most fossil finds lack the potential to be resolved so
finely. This temporal uncertainty represents the lack of biostratigraphic, litholog-
ical, and geochemical evidence to further resolve the age of a sedimentary unit.
For example, if some fossil outcrop is composed of only long-lived taxa from a
rock formation bounded by geochemically obtained absolute dates that are
extremely distant, then the age of that outcrop will be very poorly constrained
(e.g., Fig. 22.1).

Our ability to resolve the appearance dates of a fossil can differ widely because
the stratigraphic quality of each particular locality can be very different, such that
resolution can vary greatly within a group of fossil taxa, even among close rela-
tives. One fossil taxon might be known to first occur within a two-million-
year-long interval in the Early Triassic, while its sister taxon may be very hard to
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Fig. 22.1 The relationship between the fossil record and the rock record is most obvious at the
level of a single hypothetical outcrop, seen here as an idealized stratigraphic section. At this
particular locality, horizontal sedimentary rock units of different composition are found stacked
vertically, with oldest sediments at the bottom (a common feature of outcrops but not common
enough). The doughnut, triangle, and double triangle represent fossils found at different beds,
split into separate morphotaxa by differences in their morphology. The collection of taxa in the
section is patchy and unevenly distributed, with some units apparently lacking fossils, and some
collections within a taxon’s range lacking that particular fossil. Atypically, this section has not
just one but two ash beds that can be absolutely dated, revealing a span of more than 15 million
years. As shown from the range bars shown on the right, the double-triangle taxon is first
sampled and the triangle taxon is last sampled within this time span, but whether they truly
originated/went extinct during that interval is complicated by the incomplete sampling. Omitted
from this simplified example is the common association between rock types and faunas and the
tendency for rock types to reoccur in a cyclical manner (see Patzkowsky and Holland 2012, for
numerous empirical examples)

522 D. W. Bapst



pin down, maybe known from a single site constrained only as far as being
anywhere within the fifty-million-year-long Triassic interval. Furthermore, a given
taxon may be sampled many times over within a single interval (as exemplified in
Fig. 22.1), to a degree which may be unexpected under homogenous models of
sampling. Particularly in the marine fossil record, the number of finds or collec-
tions can be so dense that they are often not measured (or possibly not even
quantifiable), meaning that the only recorded information is the first and last
intervals in which those morphotaxa appear.

Our understanding of the timing of appearances in the fossil record can also differ
considerably across groups and environments (e.g., Wagner and Marcot 2013).
Occurrences listed from discrete time intervals and the low probability of sampling
the true first or last appearance of a given taxon can combine to provide considerable
uncertainty and bias in ‘when’ observed morphotaxa originate and go extinct.
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Fig. 22.2 An example model of phylogeny and sampling in the fossil record. a In this diagram, a
clade of persistent morphotaxa are separated by anagenesis and budding cladogenesis events
(Foote 1996). b Sampling events are distributed randomly across the evolutionary history of this
group. c This means only a small proportion of taxa are sampled, and their observed ranges are
truncated with respect to their true ranges. Furthermore, we may only be able to resolve first and
last appearance dates to within stratigraphic intervals, often of uneven duration. d The nested
cladogram that would be ideally obtained for the sampled taxa. Patterns of branching and
ancestry among taxa can lead to intrinsic polytomies, such as the one containing taxa C, E, and H,
which have no correct resolution on an unscaled cladogram (Bapst 2013b)
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This provides a sometimes unexpected hurdle to those who want to make use of
timing information from the fossil record. Marine records tend to be much more
complete and known with much better precision than terrestrial records, because of
higher and more constant sedimentation rates which allow for more complete rock
records. Brock’s microfossils will probably have excellent stratigraphic records
available from a variety of deep-sea cores, with exceptional dating precision and
extremely dense sampling through time. The first and last appearances of Misty’s
Paleozoic brachiopods will probably be resolved to geologic stages, if not to shorter
intervals. Lance’s theropods are probably much more incompletely known. Mor-
phospecies in many terrestrial tetrapod groups are known from only a single col-
lection or formation, unlike the long-ranging microfossils and marine invertebrates,
suggesting these fossil records are more incomplete and making it difficult to infer
the relative stratigraphic order of these collections. Ultimately, the majority of
Lance’s taxa may be known only from a set of earliest and latest dates for each
geologic stage they were collected in. Erika’s plant fossils will likely depend on the
geologic context of those beds of exceptional preservation they are found in. If Erika
is lucky and the fossil bed is perhaps associated with several volcanic ash layers, she
may have very specific dates for when these fossils were buried. Otherwise, she
might know only that her fossils are from some point in a lengthy interval, perhaps
spanning several million years (e.g., the Early Miocene).

22.2.2 The Availability of Paleontological Phylogenies

To apply phylogeny-based approaches, you have to have some sort of branching
topology. By necessity, paleontological phylogenies utilize datasets of morpho-
logical features to reconstruct relationships. Many issues have been raised with
phylogenies inferred from morphological characters, and those seeking to apply
phylogenetic comparative methods to fossil data should understand these potential
drawbacks (e.g., Rieppel and Kierney 2002; Scotland et al. 2003; Wagner 2000,
2012). Independently of issues with morphological systematics, making a new
phylogeny from a new character matrix of morphological data is a time-consuming
task that can take a career to do properly. As it is, scientists who want to use
phylogeny-based approaches often plan on finding trees in the literature rather than
making them entirely anew. Unfortunately, published phylogenetic hypotheses in
paleontology often predate modern cladistic practices or are not available for a
given set of taxa. Current phylogenetic effort is also unevenly distributed among
groups. The relationships of many marine invertebrate groups receive relatively
little attention compared to vertebrate groups. For example, Lance’s theropods
may have an abundance of published cladograms relative to Misty’s Paleozoic
brachiopods. Among invertebrate groups, somewhat more cladistic effort is been
devoted to arthropods, echinoderms, and graptolites than others, based on a per-
publication metric (Neige et al. 2009). In some groups, traditional taxonomy alone
may be the closest approximation to information on the relationships among taxa.
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The methods used to infer relationships also vary considerably among groups,
with many complete phylogenies for a fossil group constructed by hand, based on
a mélange of stratigraphic order, morphology, and expert opinion, rather than the
product of computational algorithms (e.g., Pearson 1998). Additionally, some
studies that use an explicit parsimony criterion may not have been applied via
optimization algorithms, instead involving the comparison of a small set of can-
didate topologies by hand (e.g., Fortey and Cooper 1986). Non-computational,
hand-drawn trees make up the majority of published topologies for some groups,
particularly microfossils. These are sometimes referred to as lineage or ‘stra-
tophenetic’ phylogenies (Gingerich 1979), although that term is also used for
some computational clustering approaches (e.g., Wei 1994; Roopnarine 2005;
Hannisdal 2006, 2009). Some microfossil workers (e.g., Aze et al. 2011; Ezard
et al. 2011) have preferred stratophenetic phylogenies over results from compu-
tational cladistics analyses of molecular and morphological data. This preference
is generally argued on the basis that cladistics analyses greatly disagree with other
sources of evidence, such as stratigraphic order, or that formal analyses are too
under-sampled taxonomically to provide consistent results.

Unfortunately, handmade lineage phylogenies are often much more inclusive of
known taxa than trees constructed from formal character matrices and computa-
tional analyses and often represent the most taxonomically complete phylogenies.
The incompleteness of computational phylogenies is partly an issue of taxonomic
level, with such analyses often performed in the fossil record only at the supra-
specific level, with genera or families. In other groups, the taxonomic sampling of
cladograms is simply patchy because the fossil record leaves only incomplete
specimens, and some taxa are much more incomplete than other. Thus, in some
fossil groups, a few species may be known in exceptional detail, while the majority
of taxa are known from much more incomplete material. The taxa included in
phylogenies tend to be the more complete, well-preserved taxa. This is problem-
atic, as preservation potential can vary non-randomly with ecology, morphology,
and habitat (e.g., Valentine et al. 2006), such that available cladograms may
unwittingly represent biased taxon sampling with respect to these factors. For our
intrepid comparative paleobiologists, this can produce biases in any attempt to
study the evolution of ecologies and morphologies that correlate with preservation.

Of course, incomplete taxon sampling and a lack of prior phylogenetic work are
also an issue in molecular phylogenetics, but the reasons for those biases in the
fossil record are very different and so these biases must be evaluated on their own
terms. Furthermore, the broad scale of quality and repeatability of what counts as
paleontological phylogenetics for many groups is very different from conflicts in
molecular biology, such as the issue of whether a mitochondrial tree is comparable
to a nuclear gene tree. Ultimately, any worker interested in applying comparative
methods in the fossil record will have to decide on their minimum criteria for an
acceptable, useable hypothesis of relationships.
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To illustrate how different the phylogenetic data available for different groups
in the fossil record can be, let us consider what our four friends would find in a
stereotypical situation. Lance is probably doing the best: The most detailed spe-
cies-level phylogenies are often available for tetrapod vertebrates. Misty might
locate cladograms made from a computational algorithm, but they might include
only a portion of the brachiopods in her dataset: Maybe a species-level cladogram
for a single genus or a cladistic analysis conducted at the family or genus level.
Brock will likely find only some detailed (but probably handmade) stratophenetic
lineage phylogenies for his microfossil group. Finally, Erika may discover that her
plant fossil taxa have only been loosely placed in the taxonomic hierarchy and
their position never indicated in even the most informal of phylogenies.

22.2.3 A Timescaled Tree

One of the biggest hurdles to any worker looking to use paleobiological data in a
phylogeny-based analysis is that the vast majority of such analyses require trees
which are scaled to time (or some measure of expected evolutionary change;
Garland et al. 1992). Modern biological studies often use dates from molecular
clock analyses, calibrated using constraints from the fossil record when available.
While many groups in the fossil record have extant members, allowing clade
divergence dates to be taken directly from molecular clock analyses, not all of
them do. Less obviously, even in those groups that do have extant members, a
number of sub-clades will probably lack extant taxa. Without extant members and
(ignoring the rare cases with ancient DNA), molecular clock dates do not directly
aid the inference of branching times in an extinct clade (although they can indi-
rectly inform other dating approaches for fossils; e.g., Ronquist et al. 2012). Even
assuming a phylogeny where every extinct taxon had an extant sister, the node
splitting each of these sister pairs cannot be dated under a molecular clock
approach. Thus, dates derived from molecular clocks may be difficult to relate to
divergence times in a paleontological dataset, unless there is a clear distinction
between stem and crown taxa for all living clades.

Existing phylogenies that contain fossil taxa are, with very few exceptions as of
the moment, not timescaled. Although methods exist to simultaneously infer
relationships among fossil taxa and timescale the resulting phylogeny (e.g., Marcot
and Fox 2008; Pyron 2011; Ronquist et al. 2012), they are not yet widely used.
Instead, the majority of phylogenies found in the paleontological literature are
unscaled cladograms, usually obtained via parsimony analyses. Thus, any phy-
logeny of fossil taxa constructed or found by searching the literature is likely an
unscaled cladogram (like Fig. 22.1d). The divergences among fossil lineages
cannot be dated with molecular clocks, and, until recently, there was relatively
little information on how to proceed with timescaling the available cladogram with
stratigraphic occurrence data. Although the fossil record can be read at face value,
this is probably unrealistic in all but the most exquisitely sampled of groups
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and brings unwelcome artifacts when more derived taxa appear earlier than more
primitive taxa. To deal with these issues, numerous methods were developed to
timescale a cladogram and are discussed in detail later in this chapter.

In a stereotypical scenario, three of our four scientists probably will not readily
obtain a timescaled tree. If Brock’s microfossil taxa were on a stratophenetic tree,
then that tree is already timescaled. Misty and Lance probably have cladograms (of
some sort), but these cladograms probably would not be timescaled. Instead, they
will have to utilize the available stratigraphic information. Assuming Erika has
found a phylogeny that includes her plant fossils, she will probably also need to
utilize stratigraphic data to obtain divergence dates for extinct taxa or she will be
unable to place her fossil taxa on a timescaled phylogeny.

22.2.4 Morphotaxa, Ancestors, and ‘Intrinsic’ Polytomies

Fossil taxa are almost entirely delimited based on their morphology. While all
paleontologists would prefer to work with taxonomic units comparable to bio-
logical species, this is not possible for every group. Even ignoring the mercurial
nature of species-level taxonomy in some groups, taxa equivalent to biological
species sometimes are not distinguishable given the traits that readily preserve.
Many groups are analyzed at the lowest taxonomic level that can be consistently
recognized by experts: in some groups, that is species, in others, genera. However,
even in those groups which can be split to ‘species,’ it can be difficult to support
the claim that such morphospecies represent reproductively isolated ‘biological’
species, especially given the frequency of cryptic speciation observed in modern
studies of some groups (Pfenniger and Schwenk 2007; Trontelj and Fiser 2009)
and the morphological variability exhibited by single, reproductively isolated
species (Wayne 1986). For groups that are entirely extinct, there may not even be
an appropriate modern benchmark to set our expectation of what morphological
variation a species might have, meaning that the use of the term ‘species’ is
entirely disconnected from any special connotation that term has when used for
living species, for which reproduction isolation can be tested.

Furthermore, the morphotaxa of the fossil record are often not limited to single
moments in time. Many morphospecies of marine invertebrate groups, microfossil
groups, and even Cenozoic mammals persist across stretches of geologic time
(Foote and Raup 1996). Although the fossil specimens may not be perfectly
identical, these morphospecies are clearly recognizable from one fossil collection
to another. In some cases, discrete morphological characters do not noticeably
change over tens of millions of years, as is apparent from the longevity of fossil
morphospecies in many invertebrate groups (Eldredge 1971; Van Valen 1973;
Stanley 1979; Eldredge et al. 2005). This is at odds with the modern interpretation
of a phylogeny in comparative biology, for which taxonomic identity is only
appended to terminal tips. These terminal tips represent populations observed at a
specific instance in time (usually the present day), not morphologically persistent
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lineages that may have been present over several million years. For Misty and
Brock, who likely will be dealing with morphospecies that persist across geo-
logical time, this issue will need to be dealt with.

At present, we do not have comparative methods that can take into account our
observation that morphotaxa can persist without much morphological change.
Instead, a particular times of observation has to be selected within each mor-
photaxon’s duration (Bapst 2013a, 2014). The choice of these dates is not arbi-
trary: They may have a considerable impact on the resulting branch lengths
(compare parts d and e in Fig. 22.3, which contrast the use of first and last
appearances as the times of observation). Preferably, these times of observation
should be the dates corresponding to the specimens used for trait measurement,
although this distinction is unhelpful for a static discrete trait. Hunt (2013) took
multiple samples from the same morphotaxa, treated as independent observations,
to test for relative stasis, but the majority of comparative paleontologists do not
collect multiple samples from the same morphospecies across time. Even then,
multiple observations of the same discrete trait value across an anagenetic lineage
may be unexpected under typical models of discrete trait change and may produce
unexpected artifacts of model fitting.

Morphotaxa can also potentially be ancestors to one another. For example, a
lineage might be sampled as one morphotaxon and then sampled later as a different
morphotaxon, through either anagenetic or cladogenetic change. There may even
be multiple intervening morphotaxa that are not sampled, yet the first taxon is still
an ancestor of the later (‘indirect’ ancestry; Foote 1996; for example, taxa C and
F in Fig. 22.2). Furthermore, evidence from the fossil record suggests morphotaxa
often persist unchanged through speciation events, with analyses supporting a
model in which only one daughter lineage accrues immediate morphological
change (Wagner and Erwin 1995). This means a single morphotaxon might be the
ancestor to a large number of morphologically distinguishable but independently
derived descendants. In addition to this, you could have scenarios in which you
have sampled an ancestral morphotaxon. Although the incomplete sampling of the
fossil record might lead us to predict that the chance of observing ancestors is quite
rare, modeling suggests that the possibility of sampling ancestors is quite high
(Foote 1996).

Although paleobiologists are not required to make any explicit assumptions
about ancestor–descendant relationships in comparative methods, these relation-
ships are likely present and cannot safely be ignored. Many studies ignore the
potential for ancestral taxa, often treating the concept of ancestors as philosoph-
ically inconsistent with a cladistic motive. In studies which do consider ancestors,
one commonly applied rule of thumb treats early appearing, autapomorphy-lack-
ing sister taxa as ancestors (Smith 1994). However, this protocol has been
challenged on the grounds that such an assumption ignores the potential for
character reversal or loss (Wagner 1996; Polly 1997). Many stratophenetic lineage
phylogenies include extensive sets of ancestor–descendant relationships based
solely on expert opinion (e.g., Pearson 1998), while a few phylogenetic methods
exist that allow ancestors to be inferred based on a compromise of stratigraphy and
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morphology (e.g., Fisher 2008). Ultimately, none of these methods account for the
general lack of positive evidence for any particular set of ancestor–descendant
relationships. Actually, identifying single ancestors with certainty may be
impossible in practical terms. In a phylogenetic comparative framework, ancestral
populations can be described in a typical phylogeny structure by placing ancestors
on a zero-length branch, effectively attributing zero divergence between a taxon
and the lineage that produces later appearing taxa (Bapst 2013a, 2014).
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Fig. 22.3 Attempts to timescale phylogenies of fossil taxa for comparative analyses are
challenged by the production of ZBLs and the choice of times of observation. a The true
timescaled phylogeny of the sampled taxon ranges from Fig. 22.2. b The timescaled tree inferred
given the cladogram and ranges from Fig. 22.2. Taxon B appears to be part of the polytomy
containing C, E, and H because of an internal zero-length branch. c The basic timescaled tree
with all edges constrained to be some minimum branch length, with the resulting extensions
shown as dotted lines. This both reveals the presence unapparent ZBLs and emulates the
minimum branch length timescaling method (Laurin 2004). d–e Using the minimum branch
length timescaled tree from (c), we can contrast the impact on the resulting branch lengths of
using the first appearance dates or the last appearance dates as times of observation. Depending
on the analyses used, this difference in branch lengths could have an impact on the results of a
phylogenetic comparative study (Bapst 2014). In addition, note that these branch lengths differ
from those which would be inferred if the true timescaled tree in (a) was known
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Ancestors have implications beyond their mere existence. If either (a) ancestors
are sampled or (b) single morphotaxa have multiple sampled descendants, the
expected maximum resolution decreases for a given cladogram of these taxa. This
decrease occurs because either scenario introduces true sets of relationships that
cannot be reduced to binary branching nodes in a cladogram, producing an ‘intrinsic’
polytomy (Wagner and Erwin 1995; Bapst 2013b). A lack of intrinsic resolution is
particularly expected in well-sampled groups in the fossil record, and thus, we would
predict relatively unresolved topologies to result from analyses of such groups.
While this introduces another reason to expect phylogenetic uncertainty in paleon-
tological data, the greatest implication is that any polytomy found among a con-
sensus tree could indicate complex scenarios of ancestor–descendant relationships
(such as the apparent polytomy in Fig. 22.2d). This possibility should not be ignored
when we encounter polytomies in the course of a comparative analysis.

For our four friends, Brock alone probably would have explicit ancestor–
descendant relationships from the lineage phylogenies he obtained from the
published literature. Misty and Lance probably do not have information on implied
ancestor–descendant relationships, although there may be some lineage phyloge-
nies for Misty’s brachiopods with such. Erika, who would be lucky to have a
phylogeny, will be very unlikely to have any information on ancestor–descendant
relationships, although given that her fossil come from a single stratigraphic
horizon, perhaps the probability of sampling an ancestor of her extant taxa is
negligible.

22.3 Preparing Datasets from the Fossil Record

As with any scientific analysis, paleontological or otherwise, every worker will have
to consider whether the available data is sufficient and how to account for uncer-
tainties in any downstream analysis. If the phylogenetic and stratigraphic infor-
mation available is not sufficient for a scientist to be comfortable with applying a
phylogenetic comparative analysis, the only alternative is to do primary data col-
lection and analysis to get better data, like a better phylogeny. Some groups may just
be too incompletely known at present to draw deeper understanding about trait
evolution in those groups, at least from within a phylogenetic context.

If we decide our data are sufficient, we still have to account for the potential
uncertainties listed above: topological relationships, chronostratigraphy, times of
observation for persistent taxa, branching times of divergence, and ancestral taxa.
Ignoring these similar uncertainties by taking the most likely result to each, or
even taking the best solution across all the uncertainties, could be misleading and
mask potential uncertainties. For example, under a simple sampling model, the
most likely time of extinction for any single taxon is its time of last appearance in
the fossil record even though we simultaneously expect, under the same model,
that a large proportion of taxa go extinct after they are last observed (Strauss and
Sadler 1989).
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We need to take such uncertainties into account, not ignore them. For each
uncertainty, we can produce multiple likely solutions, and combine them, ulti-
mately expressing our uncertainties as a large number of possible timescaled
phylogenies (iterations of this idea can be found in Pol and Norell 2006; Boyd
et al. 2011; Bell and Braddy 2012; Lloyd et al. 2012; Sallan and Friedman 2012;
Bapst 2013a). We can then analyze across a sample of phylogenies to understand
the impact of these various unknowns on an analysis. If our analyses require a
timescaled tree, using a sample of multiple phylogenies may be the only avenue to
account for the many forms of uncertainty unique to the fossil record.

22.3.1 Combining Taxonomy and Phylogeny

For Misty and her brachiopods, we postulated that perhaps she was not able to find
complete phylogenetic information. Perhaps the hypotheses she wishes to test will
require collecting character data and inferring new phylogenies, composed of the
taxa she is interested in. Yet, there may be a few alternative solutions to consider
first. If her main issue is that her taxa are spread across a number of overlapping
but conflicting cladistic studies, formal supertree methods have proven to be useful
(e.g., Sanderson et al. 1998; Bininda-Emonds et al. 2007; Ruta et al. 2007; Lloyd
et al. 2008; Bronzati et al. 2012; Brocklehurst et al. 2013; also see Chap. 3 by
Bininda-Emonds in this volume). However, particularly in invertebrate groups
where cladistic analyses can be sparse, a different set of issues emerges. Maybe
Misty could find trees that cover only a portion of the group she wanted to work
on, or the cladograms she found were at the genus level although she aims to test
hypotheses at the species level. Phylogenies that include a large majority of taxa
may be necessary to avoid results unbiased by taphonomic variation and, yet, such
trees are difficult to obtain.

One solution might be to consider the ‘gray’ phylogenetic data: The relation-
ships implied by stratophenetic diagrams or ancestor–descendant relationships,
generally provided in older literature. Similarly, traditional Linnean taxonomy
itself is generally assumed to represent a rough first approximation of relation-
ships. The quality of such gray phylogenetic data is extremely variable and needs
to be considered carefully.

Scientists who want to have more inclusive datasets of relationships without
building new trees must seek compromises between the trees produced using
explicit quantitative phylogenetics and the gray phylogenetic literature, including
taxonomy. Hybrid ‘informal’ trees that merge phylogenetic and taxonomic
information are becoming increasingly common, particularly among scientists
studying patterns of macroevolution and macroecology. Recent examples include
the widely used Phylomatic for plant relationships (Webb and Donoghue 2005),
which uses phylogenetic relationships when available but defaults to taxonomic
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relationships when they are not, or the inclusive, global phylogeny of birds which
merges taxonomic and phylogenetic data (Jetz et al. 2012). Some analyses have
even used phylogenetic datasets constructed entirely from traditional taxonomic
hierarchies (e.g., Green et al. 2011).

If Misty can find a reasonable genus-level tree for her group, she might be able
to use taxon lists of genera and species as a way of artificially expanding her
phylogeny’s taxonomic resolution to the species level. Each genus can be replaced
with a polytomy of the species listed for it, reflecting the lack of knowledge for
relationships within that taxon.

The main drawback of using taxonomic data as a replacement for phylogeny is
that the each higher taxon is assumed to be a valid monophyletic clade. This
assumption will need to be considered carefully by each scientist. The monophyly
of the traditional taxonomic hierarchy can vary considerably across different fossil
groups; for example, Bulman (1970) explicitly defined several form-taxa for
graptolites that he considered polyphyletic and many others which were clearly
paraphyletic. If we can reject polyphyly but not paraphyly for a group, we can
include the possibility of such in our taxonomic–phylogenetic summaries by
collapsing the nodes uniting potentially paraphyletic taxa. This effectively pro-
duces much larger polytomies, acknowledging the uncertainty in the relationships.
However, although this approach is becoming more popular, we badly need
analyses comparing phylogenetic trees and taxonomic hierarchies for the same
groups and testing their relative capability to address common macroevolutionary
questions.

Ultimately, such taxonomic–phylogenetic summaries may become dominated
by unresolved polytomies, reflecting the phylogenetic uncertainty of this approach.
Phylogenetic uncertainty is certainly not limited to datasets that make use of
taxonomic information as a replacement for phylogenetic data; for instance, many
paleontological cladograms are also poorly resolved. By randomly resolving
polytomies in our dataset many times, we can test whether a particular analysis
consistently produces the same result across the potential range of topologies.
Unfortunately, some common comparative analyses are positively misled by
phylogenetic uncertainty, particularly tests of phylogenetic signal (Davies
et al. 2011). Furthermore, such effects may vary from dataset to dataset, depending
on the distribution of phylogenetic uncertainty. Approaches such as parametric
bootstrapping on phylogenetic datasets (e.g., Boettiger et al. 2012) may be useful
for identifying whether phylogenetic uncertainty could be biasing analytical
conclusions.

22.3.2 Timescaling in the Fossil Record

Once we have a cladogram containing the taxa we want (maybe not fully
resolved), we next have to worry about how we will timescale this topology. This
issue is confounded with the need to consider potential ancestor–descendant
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relationships and the requirement that tip taxa represent populations, if examined
taxa persist over considerable geologic time.

All timescaling methods are dependent on the quality of the stratigraphic data
available. Data on temporal occurrences for taxa should, at least, record which
intervals taxa first and last occur in and the dates for those intervals. If precise
dates are available, or dates for individual samples of the fossil taxa, this infor-
mation can also be useful, particularly if timescaling involves parameterized
models of sampling. Such detailed data may be available in online databases, but
often the intervals in which taxa are found and dates for those intervals are found
in separate references.

Of course, depending on what sort of tree we are using it may already be
timescaled, as is the case with Brock’s lineage phylogeny of his microfossil group.
Such trees are generally produced by hand and not using computational algorithms
or a measure of optimality, but there are now a number of exceptions to this
statement. Phylogenetic methods which simultaneously infer topology and
timescale the divergences between lineages have increasingly gained popularity
over the past two decades. The earliest approaches, sometimes referred to as
stratocladistics or strato-likelihood, applied a hybrid of maximum parsimony
phylogenetics with an algorithm that could choose less parsimonious phylogenies
if they exhibited a better fit to the temporal order of taxa in the fossil record
(Fisher 1991, 1994, 2008; Wagner 1998; Marcot and Fox 2008). More recently, it
was proposed to infer timescaled phylogenies under both probabilistic models for
morphological character change (Lewis 2001) and models of taxonomic sampling
in the fossil record, within a likelihood or Bayesian framework (Wagner and
Marcot 2010, 2013). A parallel effort has also seen the development of simulta-
neous methods which use morphological clocks in a Bayesian framework to
produce ‘tip-dated’ timescaled phylogenies of fossil and extant taxa (Pyron 2011;
Ronquist et al. 2012; as used in Slater 2013; Wood et al. 2013). In the majority of
these applications, an uninformative tree prior is used that allows divergence dates
to be mostly informed by the combined molecular and morphological clocks and
the first appearance dates, instead of a model of sampling in the fossil record
(e.g., Ronquist et al. 2012). Probabilistic models of sampling through time
(Stadler 2010) have been implemented for use in estimating viral phylogenies,
where samples were taken throughout an epidemic, but were recently applied to
datasets containing fossil taxa (Alexandrou et al. 2013). As these Bayesian
methods develop further, hopefully adding the ability to assign taxa as ancestral
lineages, they will likely become the methods of choice for generating timescaled
phylogenies of fossil taxa.

For now, most phylogenetic datasets in paleontology will likely consist of
unscaled cladograms, such as the datasets of Misty and Lance. This means that
they will need to apply some type of post-inference timescaling algorithm to their
cladogram, using their collected stratigraphic data. Most of these methods are
fairly ad hoc, with no underlying statistical model. The most basic timescaling
method proposes that clades are as old as the oldest taxon within that clade
(Norell 1992; Smith 1994; example in Fig. 22.3b). Ancestral taxa are sometimes

22 Preparing Paleontological Datasets 533



inferred, but only if such taxa lack autapomorphies and are sampled earlier than
their sister lineage (e.g., Wickstrom and Donoghue 2005).

The greatest issue with this ‘basic’ method (as I have termed it; Bapst 2013a
and 2014) is the presence of artificial zero-length branches (‘ZBLs’) in the
resulting timescaled phylogenies (Hunt and Carrano 2010). These are introduced
in two different ways: First, if taxa are known from single occurrences or if the tree
is being timescaled so the tip-dates used are the first appearance times, then every
sister pair of taxa will produce at least one terminal ZBL, as there is zero time
between this earliest first appearance and the branching time for each clade (e.g.,
the branch leading to taxon B in Fig. 22.3c). Secondly, ZBLs are introduced when
more derived taxa appear earlier than more primitive taxa in a clade, causing
internal branches to be zero-length (e.g., the branch ending in the clade containing
taxa B, C, E, and H in Fig. 22.3c). Such mismatches between phylogeny and
stratigraphy are expected under any scenario of incomplete sampling, but ZBLs
pose a number of issues. First, they may pose algorithmic difficulties for some
comparative software, but secondly, such ZBLs are generally interpreted by
comparative analyses as implying multiple, simultaneous branching events. Taxa
placed on a zero-length terminal branch are effectively assumed to represent direct
ancestors of their sister lineage (Hunt and Carrano 2010). Several arbitrary
transformations to deal with this issue have been used, such as moving branching
times earlier in time, such that all branches have some minimum branch length
(Laurin 2004; example in Fig. 22.3c).

One timescaling approach assumes a morphological clock and uses the number
of character state transitions (estimated during phylogeny inference) as a proxy for
the relative length of timescaled branches (e.g., Ruta et al. 2006; Brusatte
et al. 2008; Lloyd et al. 2012). A related approach extends branch lengths to
maximize the fit to a model of Brownian motion for some continuous trait, such as
body size (Laurin 2011). Caution is necessary in applying such strict morpho-
logical clock approaches, as considerable evidence exists from the fossil record for
the heterogeneity of rates of trait evolution (e.g., Wagner 1995; Bapst et al. 2012;
Lloyd et al. 2012). The simultaneous Bayesian methods described above also
make use of a morphological clock, but allow for the relaxed clock models
implemented previously for molecular data, thus allowing for some heterogeneity
of rates of character change (Ronquist et al. 2012).

Some paleontological studies have opted to avoid the need for a timescaled
phylogeny for analyses of trait evolution (e.g., Friedman 2009; Pyenson and
Sponberg 2011; Smith 2012; Pittman et al. 2013). While some of these studies use
this merely for convenience or because stratigraphic information is unavailable or
incomplete, other studies argue that if all branches are set to ‘unit-length’ (i.e., 1,
or some other nonzero value), than the resulting tree has branch lengths that simply
reflects the evolutionary potential under a ‘speciational’ model of evolution, as
might be expected under punctuated equilibrium. This assumption is somewhat
analogous to the explanation given for the commonly used kappa transformation
(Pagel 1999), which scales the set of branch lengths in a comparative analysis
from their true length to 1, and is thus considered to reflect a measure of
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speciational trait change. Unfortunately, the branching nodes of any cladogram
composed of extant, extinct, or any combination thereof are probably a poor
reflection of the speciation events within a group (Pennell et al. 2014). Extant
phylogenies are missing the branching events that lead to extinct lineages, and
even phylogenies that include extinct taxa will be missing those unknown lineages
that we have never sampled, due to the capricious nature of the fossil record.
Given that the necessary biological and geological assumptions are not well
supported, using equal branch lengths should be avoided except in analyses where
the choice of branch lengths demonstrably has little or no effect on the result.

Very recently, parameterized models of sampling in the fossil record have been
used to provide a context in timescaling cladograms (Bapst 2013a; Wagner and
Marcot 2013). A considerable advantage of these model-based post-inference
methods is that they can consider taxa as potential ancestors based on the calcu-
lated probability of sampling ancestors. Unfortunately, these same methods also
require a priori estimates, as either rates or probabilities, of sampling (Wagner and
Marcot 2013), or extinction and branching in addition (Bapst 2013a). Such esti-
mates are often available for marine invertebrate records, such as Misty’s bra-
chiopods, but not for more poorly sampled fossil records, like Lance’s theropods.
The proposed simultaneous Bayesian methods avoid this issue by simultaneously
sampling these parameters simultaneously from the data during analysis (Wagner
and Marcot 2010).

A major issue of timescaling in the fossil record is that unless a morphological
clock is assumed, there is not any information that allows us to narrow down when
a branching event occurred. Similarly, nothing indicates whether a specific taxon is
likely to be an ancestor not. Even with divergence dating informed by a mor-
phological clock, uncertainty will be present even if morphology does change at a
constant rate, as there will always be only a finite number of morphological
characters to measure change in. Thus, considerable uncertainty in divergence
times exists in general, even when probabilistic models of sampling and mor-
phology are utilized. As mentioned previously, the majority of such sampling
models treat the first and last appearance times of specific taxa as the most likely
times that they also originated and went extinct (Strauss and Sadler 1989). For the
purposes of inferring branching times, a single set of divergence times obtained via
maximum likelihood with such models will be highly misleading. Additionally, it
is difficult to utilize the information from confidence intervals on branching times
in typical comparative methods, particularly given that divergence dates for nested
nodes on a single phylogeny constrain each other, such that more nested (derived)
nodes have to occur later in time relative to ancestral nodes.

Bayesian approaches that simultaneously infer topology and timescale allow for
the direct consideration of uncertainty by returning a large posterior sample of
timescaled phylogenies. A stochastic alternative for post-inference timescaling
methods is to generate many timescaled trees, each one with node ages sampled
from some probability distribution, with node ages for a single tree sampled
sequentially for consistency. Analyses can then be run over the sample of
timescaled phylogenies. Tomiya (2013) constrained a small number of divergence

22 Preparing Paleontological Datasets 535



dates using estimates from molecular clock studies and then sampled (and
resampled) ages for the remaining nodes under a uniform probability distribution. I
recently introduced the cal3 method (Bapst 2013a), which stochastically samples
node ages from the probability density implied by a probabilistic model of sam-
pling in the fossil record.

This stochastic approach brings other benefits, beyond just divergence data. The
cal3 method extends this stochastic algorithm and the sampling model to sto-
chastically assign ancestral taxa and resolve soft polytomies relative to the amount
of stratigraphic misfit expected given the sampling rate (Bapst 2013a). Addition-
ally, the uncertainty in fossil appearance dates from discrete intervals can be
accounted for by randomly resampling dates from within those intervals for each
generated timescaled phylogeny (e.g., Pol and Norell 2006; Lloyd et al. 2012;
Sallan and Friedman 2012). Stochastic timescaling can also account for issues
related to the times of observation of morphotaxa. While typical choices have been
to use either the first or last appearance times to date terminal tips (Fig. 22.3d–e),
these may not be the most reasonable choices in analyses of trait evolution. Ide-
ally, times of observations for such analyses should represent the precise date of
the specimens used for measuring traits, but this information is often not available.
One alternative is to randomly resample dates from within a taxon’s stratigraphic
range, like the solution for obtaining dates from discrete intervals. Stochastic
timescaling provides a framework for considering all these diverse sources of
uncertainty in our analyses.

Bayesian tip-dating or post-inference stochastic methods are ideal approaches to
timescaling if the ultimate goal is to apply phylogenetic comparative methods. In a
recent study, I compared the performance of the basic method, the minimum branch
length transformation and the stochastic cal3 method in a series of simulations
where comparative data were generated and then analyzed on trees timescaled
using these different methods (Bapst 2014). The non-stochastic timescaling
methods were allowed a partial stochastic element by randomly resolving polytomies
and resampling dates from within simulated discrete intervals, such that all the
analyses were done on samples of multiple timescaled trees. Although some
analyses were not particularly affected by the differences in these timescaling
methods, this was not true for all comparative analyses. Estimates of the rate of trait
evolution and comparisons between models of trait evolution were particularly
biased by artifacts introduced by the basic and minimum branch length timescaling
methods. This suggests that the choice of an appropriate timescaling method may
be just as important for some phylogeny-based analyses as choosing an acceptable
cladogram.

Unfortunately, differences in datasets entail differences in methods. At present,
only scientists who work on well-sampled fossil records, such as Misty, can utilize
the cal3 method and other methods because of the need for detailed information
about the sampling intensity of the fossil record. Workers like Lance will have to
apply methods that are more arbitrary, while being aware that the methods they use
may be introducing unwanted artifacts, like erroneously inferring very short
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branches. These timescaling artifacts may propagate errors and biases when
applying comparative methods (Bapst 2014).

In the online practical material associated with this chapter (located at http://
www.mpcm-evolution.com), I demonstrate the timescaling approaches available in
the freely available software package paleotree (Bapst 2012) for the statistical
programming language R (R Core Team 2013). These examples use a real dataset
of retiolitid graptolite genera, consisting of a consensus tree from Bates et al.
(2005) and chronological data from Sadler et al. (2009).

22.3.3 Cheating with the Fossil Record: Not Placing Fossil
Data Directly on Trees

Clearly, obtaining a timescaled tree of fossil taxa is a difficult and sometimes time-
consuming process, but is it absolutely necessary to ask the evolutionary questions
we are interested in? For the moment, let us ignore the approaches discussed so
far, which require us to have a timescaled phylogeny of fossil taxa.

Fossil data certainly inform us about past patterns, but it is clear that we may
not always have sufficient information to place extinct taxa with certainty within a
phylogeny, neither topologically nor with respect to when a taxon diverged from
other lineages. If we do not feel certain enough about the information at hand, we
cannot feel confident to proceed with analyses of evolutionary history. Our friend
Erika’s flower fossils may simply be known to have features indicative of her
study group and nothing else. However, there are ways of including information
from the fossil record without having fossil taxa placed as terminals within a tree.

Slater et al. (2012) introduced a promising approach for studying trait evolution
by treating fossil data as informative priors in a Bayesian framework. In their
method, trait values known from the fossil record only needed to be loosely
associated with some clade on a molecular phylogeny of extant taxa. These trait
values were then used an informative priors on the trait value at a particular node,
essentially using a fossil as an estimate of ancestral morphology. The procedure
for setting these priors at nodes is analogous to the application of fossil calibrations
as node age priors in molecular clock analyses. Using this approach in both
simulations and mammalian fossil data, Slater et al. found that even weakly
constrained trait data like this could allow for considerably more power in dis-
tinguishing patterns of trait evolution. However, simulations by Slater et al. found
that the fossil-prior approach had less power than including a fossil as an actual tip,
suggesting that it is still preferable to include fossil taxa as tip taxa if possible.

Approaches, such as this informative prior framework, can avoid placing fossil
taxa on a timescaled tree and shall probably become valuable for groups which are
diverse in the modern but have poor fossil records. I would recommend this
approach for scientists like Erika, who only have some fossils loosely known to
represent early representatives of a group much better known from the modern.

22 Preparing Paleontological Datasets 537

http://www.mpcm-evolution.org
http://www.mpcm-evolution.com


However, just like setting fossil calibrations, there has to be reasonable evidence
that a fossil specimen represents an early member of a particular extant clade.
Hence, the Slater et al.’ method does not allow us to consider information from
fossils that represent distantly related and/or extinct clades.

22.4 Conclusion

Using the fossil record in comparative analyses is a pursuit that requires consid-
erable care, both with respect to issues common to most of the fossil record, but
also for the aspects specific to each group of fossil taxa. The issues of the fossil
record cannot be solved without pluralism, as no single workflow can satisfy every
scientist seeking to utilize paleontological data. The four individuals we followed
had the same motivation but different types of data available, requiring them to
adopt very different procedures just to reach the stage where they could apply
phylogenetic comparative methods. In the long term, methods will hopefully be
developed that can deal with more of the differences among different paleonto-
logical datasets, particularly Bayesian phylogenetic inference with a tip-dating
approach. Eventually, development of methods might provide a single framework
for paleontological comparative analyses, but until that point, forcing a single
methodology across datasets will restrict our ability to utilize the advantages of the
fossil record.
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Symbols
D, 119, 120
j, 119, 120
k, 119, 216, 323, 324
d, 118, 119, 121

A
ABC. See Approximate Bayesian computation

See also Approximate Bayesian
computation

ABC-GLM, 412
ACDC, 411
ACE, 233, 243, 245–247, 257
Adaptation

broad-sense, 356
maladaptation, 361
narrow-sense, 6, 11, 355–357, 363, 369

Adaptive peaks, 427, 430–432, 434–442, 444
Adaptive peak shifts, 430–435, 437–441, 443,

444
Adaptive radiations, 51
Adaptive zone, 363
Additive binary coding, 67
Additive tree, 22, 38
AIC. See Akaike’s Information Criterion
AICc, 390
Akaike’s Information Criterion, 11, 217, 307,

383, 385, 389, 390, 434, 439
Akaike weights, 121, 305, 307, 309, 311, 328,

384, 390, 399
Allometric coefficient, 314
Allometric relationship, 318
Allometry, 113, 352, 353, 374
Alternative splicing, 62
Amino acid, 27, 28
Anagenetic evolution, 413
Ancestor-descendant relationships, 20, 22, 23,

517, 528, 530

Ancestors, 528
Ancestral state estimation or reconstruction,

88, 90, 106, 168, 180, 185, 186, 191,
231, 233, 364, 371, 372, 387, 390, 487

Ancient DNA, 352, 354
ANCOVA, 364
Anolis, 84, 90, 91, 425, 427, 436–438, 441
ANOVA, 358, 373
Antlers, 351–353, 365–367, 375
Ape (program), 369, 385, 386
Apomorphisms, 356
Approximate Bayesian computation (ABC),

409, 412
Attenuation bias, 164, 180, 188, 194
Attraction, 387
Autocorrelation, 105, 176, 179, 272, 325

B
Back-mutation, 71
Basic time-scaling, 533
Basis set, 209, 210, 212, 216
Bayes Factor, 275, 277
Bayesian (Schwarz’s) information criterion,

321
Bayesian posterior support, 33
Bayesian statistics, 32, 58, 121, 190, 191, 232,

240, 241, 257, 263, 264, 281, 284, 306,
313, 326, 391, 410, 488

Bayes theorem, 265
BayesTraits (program), 486
Behavior, 158, 159, 170, 172, 173
Between-individual variation, 160
Between-population variation, 160
Between-subject correlation or regression, 165
Bias, 158, 159, 164, 167, 168, 170, 180, 188,

194, 316, 360, 361, 375
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Binomial distribution, 296, 297
Biogeography, 425, 435–438, 444
Bi- or multivariate model, 164, 168, 177, 186,

191
Bipartition frequencies, 57
Bipedal locomotion, 490
Birth-death model, 344, 346, 348, 414
BM. See Brownian motion model of evolution,

383–385
Bootstrapping, 32
Bootstrap profiles, 68
Brain, 485
Branch length transformations, 22, 23, 38, 59,

67, 108, 112, 122
Branch-specific directional selection, 409
Branch swapping, 68
Bremer support, 51
Brooks Parsimony analysis (BPA), 467
Brownian motion model of evolution, 38, 110,

117, 122, 176, 181, 186, 189–191, 216,
222, 234, 288, 297, 308, 309, 315, 316,
322, 354, 358, 361, 362, 371, 373,
381–385, 387, 388, 390, 396, 402, 409,
429–432, 434

Brownie (program), 369
Burn-in, 272, 278

C
Cal3, 536
Candidate models, 306, 308
Candidate model set, 308
Categorical predictors, 140
Categorical characters. See Discrete characters
Causality, 202
Causal parent, 209
Causal structure, 204–206
Central limit theorem, 381
Character evolution, 263, 266–268
Character mapping, 371, 372
Character-state transformations, 62
Chloroplast genes, 26
CIC. See C-statistic information criterion
Circular phylogram, 83
Clades, 58
Clade-wide convergence, 425, 426, 428–431,

433, 438, 442
deterministic, 430
morphological, 436

Cladewise order, 80
Cladistics, 356, 357, 371
Cladogenetic evolution, 413
Coadaptation, 366–368

Coalescent event, 52, 59, 348
Codon models, 401
Coefficient of variation (R2), 116
Co-evolution, 466
Collinearity, 141, 225
Community phylogenetics, 50
Comparative biology, 49
Comparative data, 77–79, 83, 99, 100
Compare (program), 369, 386, 387, 391
Compatibility, 57
Complexity, 267, 279
Composite likelihood, 418
Computational complexity, 470
Concentrated changes test, 107
Conditional independence, 209
Conditioning, 348
Consensus tree, 57, 60, 312, 314, 315
Constraint

evolutionary constraints, 353, 368, 374
selective constraints, 356, 368

Contingency, 202, 425, 426, 428
Continuous characters, 266–268, 397
Continuous trait data, 78, 88, 89, 91
Convergence, 11, 71, 272, 481
Convergent evolution, 50, 369
Cophylogenetic analysis, 465
Cophylogeny problem, 465, 467, 468, 469
CopyCat (program), 468
Correlated measurement errors, 160
Correlated progression, 368
Correlated-progression hypothesis, 368
Correlation and causation, 203
Correlation coefficient, 164, 184, 194
Cospeciation, 465, 469
Count trait, 296
Covariance, 6, 7, 341
Covarion model, 397–399, 401
Credible interval, 419
C-statistic information criterion (CIC),

217–219

D
DAG. See directed acyclic graph
Dalechampia, 370
Darwin, 452
Data duplication, 62
Data imputation, 193
Data quality, 65, 375
Deer, 351–354, 356, 365–367
Degrees of freedom, 123
Deletion, 27
Dependent model, 276––278
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Design matrix, 59, 358, 361
Determinism or deterministic evolution,

425–429, 431, 432, 434
Deviance, 307
Directed acyclic graph (DAG), 207, 212
Directional selection, 414
Discrete characters, 83, 264–266, 274, 280,

282, 370
Dispersion (phylogenetic), 456
Dissimilarity (phylogenetic), 456
Distance matrix, 59
Distance methods, 30
Distributions of covariates, 139
Divergence-time estimates, 67
Diversification, 518
Divide-and-conquer framework, 60
DNA-DNA hybridization, 63
dN/dS, 414
D-separation method, 203, 208, 209, 212, 222,

223
D-sep test, 210
Duplication, 465, 469

E
Early burst, 411
Ecology, 166, 173, 195
EGLS. See Estimated generalized least squares
Elopomorpha, 87
Empirical Bayesian model, 84
Estimated generalized least squares (EGLS),

186, 190, 358
Euclidian distances, 428
Evenness (phylogenetic), 455
Event count vector, 474
Event support, 475
Evidence ratio, 309
Evolutionary pathways, 267
Evolutionary rate, 168, 185, 186, 415
Evolutionary regression, 361, 375
Evolutionary singularity, 482
Evolutionary trees, 266
Exact algorithms, 471
Exaptation, 356
Exon shuffling, 62
Expectation-maximization, 177, 179, 184
Expected covariance, 105, 115, 118
Extinction risk, 50, 486

F
Fallow deer, 352, 353, 356
Fasta, 28
Fisher’s C statistic, 210, 217

Fitch parsimony algorithm, 467
Flipping, 57
Fossil record, 515
Full hierarchical Bayesian model, 84
Full likelihood, 417
Full-null model comparison, 148

G
Gaps, 27
Geiger (program), 369
GenBank, 63
Gene duplication, 25
Gene flow, 60, 160, 195
Generalized least squares (GLS), 107, 118,

126, 127
Generalized linear mixed models (GLMM),

232, 287–292, 294, 296, 297, 299, 300
Generalized linear model (GLM), 358, 370

multivariate, 203
Gene tree, 25, 49, 53

heterogeneity, 53
parsimony, 60

Genetic drift, 52, 368, 381, 382
Genetic markers, 40
Genetic sequences, 21
Genome size, 389, 484
Geographic map, 77, 79, 93, 95
Geomyidae, 466
GLM. See Generalized linear model
GLMM. See Generalized linear mixed model
Global congruence, 49
GLS. See Generalized least squares
Gradual versus punctuational evolution, 411
Growth habit, 402, 403, 405

H
Hansen model, 433–436, 440–444
Heterogeneity, 166, 175, 192, 325

in data quality or sampling effort, 306, 318,
319

Heteroscedasticity, 145
Heuristics, 71, 471
Hidden Markov models, 397
Hidden rates model, 396
Hidden support, 50
Homology, 21, 24, 25, 27, 42
Homoplasy, 21, 22, 25, 71
Horizontal gene transfer, 25, 49, 469
Horse, 356, 357
Hosts, 465
Host specificity, 467
Host switching, 469
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Human evolution, 496
Hybridization, 25, 26
Hyperpriors, 274, 283
Hypsodonty, 356, 357, 363

I
Importance of sampling, 412
Incomplete lineage sorting, 25, 49
Incomplete phylogeny, 348
Incomplete taxon sampling, 525
Independent contrasts. See Phylogenetically

independent contrasts
Independent model, 276, 277, 278
Inferred-changes methods, 372
Influential cases, 147
Information-theoretic approaches (IT), 305,

306
Informative priors, 537
Insertion, 27
Instrumental errors, 159
Interactions, 135
Intermembral index, 490
Inter-observer reliability, 159
Interspecific sample size, 164, 169
Intraspecific variance or variation. (See also

Within-species variance or variation),
124, 159, 291, 293, 297, 415

Intrinsic resolution, 530
Irish elk, 352–354, 356
Ischnocera, 466
IT. See Information Theoretic Approaches

J
Joint probability, 417

K
Ka/Ks, 414

L
Landscape, 435
Latent variables, 208
Life history, 158, 170, 172, 173, 311
Likelihood, 51, 313, 383, 385, 387, 388, 390
Likelihood function, 237, 241, 267, 283, 410
Likelihood ratio (LR), 119, 184, 274, 275, 322
Likelihood-free approaches, 409
Lineage sorting, 469
Liolaemus, 369
Lizard, 369
Logistic regression, 358

Logit function, 235, 239
Log-normal distribution, 174
Long-branch attraction, 51
Loss, 465
LR. See Likelihood ratio

M
Macroevolutionary landscapes, 425, 427,

428, 431-433, 435–437, 440–442, 444
Major-axis regression, 375
Maladaptation, 361–363
Marginal likelihood, 275, 283
Markov Chain Monte Carlo (MCMC), 7, 32,

71, 190, 191, 270–272, 276–278,
281–283, 284, 289, 290, 296, 300, 314,
315, 370, 371, 489

Markov model, 297, 338, 344, 347
Markov process, 267, 282
Matching phylogenies to data, 34
Mating systems, 352, 357, 365
Matrix representation with parsimony, 56
Maximal agreement subtree, 468
Maximum likelihood, 31, 60, 85, 118, 176,

177, 186, 190, 191, 263, 267, 269, 270,
274–276, 282, 283, 307, 313, 323, 324,
410

Maximum parsimony, 29, 70
MCMC. See Markov Chain Monte Carlo
MCMCglmm (program), 231, 233, 240–242,

245–256, 258, 259
Measurement, 373, 375
Measurement error, 159, 187, 226, 313, 317,

375
Measurement theory, 373, 374
Measuring congruence, 466
Modeling evolution of continuous characters

using ABC (MECCA), 414
Meta-analysis, 61, 294, 295, 365
Meta-regression, 295
MinCutSupertree, 57
Minimum branch length, 534
Minimum evolution, 31
Missing data, 193, 297–299
Missing taxa, 69
Mitochondrial genes, 26
Mixed model. See Generalized linear mixed

model
Mode of evolution, 106
Model averaging, 309
Model of evolution, 267, 271, 276
Model of substitution or sequence evolution,

26, 28
Model selection, 134, 274, 306, 310, 412, 489
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Molar size, 485
Molecular clock, 526
Molecular evolution, 372
Molecular phylogenetics, 50
Monophyletic group, 476
Morphological data, 524
Morphology, 173
Morphospace, 89, 92, 428, 429, 436, 437, 440,

442–444
Morphotaxa, 527
Most recent common ancestor (MRCA), 415
Motion, 320
MRCA. See Most recent common ancestor
Multicollinearity, 141
Multi-host parasites, 476
Multimodel inference, 123
Multiple hits, 71
Multiple substitutions, 71
Multi-response models, 300
Multispecies coalescent model, 49
Multivariate, 6, 11, 91, 346, 385, 391
Mutation, 25
MvSlouch (program), 369

N
Nearest taxon index (NTI), 453
Nearest-neighbor distances, 428–430
Neighbor joining (NJ), 31, 71
Nestings, 58
Net relatedness index (NRI), 453
Network, 42
Newick format, 34
Newick tree, 80, 81
Nexus format, 28, 34
NHST. See Null-hypothesis significance test-

ing, 308, 328
Niche, 363, 364, 369
Niche conservatism, 453
NJ. See Neighbor joining
Nodal support, 69
Non-Gaussian data, 190
Non-Gaussian distribution, 232
Non-linear terms, 135
Non-overlapping, 68
Non-parametric bootstrap frequency, 67
Non-parametric methods, 58
Non-parametric regression, 374, 375
Non-synonymous mutation, 28
Normal distribution, 415
Normality of the residuals, 144
NRI. See Net relatedness index
NTI. See Nearest taxon index

Nuclear genes, 26
Nucleotides, 21, 27, 28, 32
Null-hypothesis significance testing, 121, 164,

168, 177, 184, 187, 306, 308, 328

O
Object of class ‘‘phylo’’, 94, 96
Objective function, 57
Observer effect, 159
OLS. See Ordinary least squares regression
Optimal regression, 361
Optimal states, 390
Optimality, 355–357, 361, 363
Optimization criterion, 57
Optimum, 356, 357, 363, 364, 368, 381–385,

390
Ordinary least squares regression (OLS), 113,

120, 121, 124, 317
Ornstein-Uhlenbeck model of evolution (OU),

122, 190, 233, 308, 316, 320–322,
381–391, 388, 396, 402, 429,
431–434, 441, 442

multivariate, 367, 309, 315, 322, 325, 365
Orthologous, 25
OU. See Ornstein-Uhlenbeck model of

evolution
OUCH (program), 369, 384–388, 391, 432
OUwie (program), 369, 385–388, 391, 441

P
Pairwise comparisons, 107
Paper paradigm, 100
Paradigm shift, 376
ParaFit (program), 468
Paralogous, 25
Parameter estimates, 358, 370
Parametric bootstrap, 187, 237, 238, 258, 434,

442
Parasites, 465
Pareto-optimality, 472, 474
Parietal (third) eye, 369
Parsimony, 266–268, 270, 273, 280, 357,

365, 371
Partitioned approach, 49, 55
Partitions, 62
Path analysis, 12
PCMs. See Phylogenetic compparative

methods
PDTREE (program), 486
Peaks, 434, 436, 439, 442
Peak shifts, 435, 439
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Pedigree, 189
PGLMM. See Phylogenetic generalized linear

mixed models
PGLS. See Phylogenetic generalized least

squares
Phenotypic evolution, 415
Phylogenetic ANOVA, 429
Phylogenetic autocorrelation, 117, 320
Phylogenetic comparative biology, 78, 79, 100
Phylogenetic comparative methods (PCMs),

77, 78, 99, 263–265, 268, 270, 354,
351, 357–359, 409

Phylogenetic correlation, 358, 359, 370, 371
Phylogenetic covariance, 353
Phylogenetic effects, 360, 361, 366, 367
Phylogenetic eigenvector regression, 360
Phylogenetic generalised linear mixed models

(PGLMM), 231, 232, 238–242,
248–256, 258, 459

Phylogenetic generalized least squares
(PGLS), 6, 9, 105–107, 110–112, 115,
117, 118, 120–124, 126, 127, 168, 173,
178, 179, 183, 184, 190, 202, 212, 216,
223, 242, 305, 307, 313, 320, 325,
358–360, 373, 483

Phylogenetic half life, 362, 365, 366, 368, 382,
383, 388

Phylogenetic inaccuracy, 122
Phylogenetic inference, 270
Phylogenetic logistic regression, 107, 232, 234
Phylogenetic marker, 24
Phylogenetic meta-analysis, 189, 195
Phylogenetic mixture model, 177, 179, 183,

188, 195, 325, 402
Phylogenetic non-independence, 222, 223
Phylogenetic path analysis (PPA), 203, 211,

213
Phylogenetic pipelines, 63
Phylogenetic prediction, 482
Phylogenetic principal components analysis

(pPCA), 430, 436, 440
Phylogenetic regression, 106, 120, 231, 233,

249, 259
Phylogenetic scaling factor. See also k, 324
Phylogenetic scatter plot matrix, 78, 91, 93
Phylogenetic signal, 105, 110, 117, 119,

120–122, 168, 169, 173, 180, 185, 186,
193, 231, 233–237, 239–252, 255–257,
259, 288, 292, 321, 325, 359–361, 367,
411

Phylogenetic topology, 122
Phylogenetic tree, 20, 23, 34, 42
Phylogenetic uncertainty, 9, 23, 25, 32, 40, 41,

179, 269, 271, 281, 306, 415

Phylogenetically independent contrasts, 5, 9,
107, 110, 115, 122, 167, 168, 176, 181,
190, 194, 202, 320, 353, 359, 372,
498

Phylogram, 80, 82, 97, 99
Phylolm (program), 386, 387
Phylomorphospace, 89–92, 98
PHYSIG (program), 385, 386
Physiology, 158, 159, 172
Phytools (program), 77–79, 84, 87, 89, 91, 97,

99, 100, 385, 437
Pie diagram, 85
Pleiotropy, 370
PLogReg (program), 231, 232, 235–240,

243–256, 258
Plotting phylogenies, 38
Pocket gophers, 466
Poisson distribution, 296, 297
Poisson process, 521
Pollination, 370
Polynomial time, 58
Polytomy, 23, 39, 112, 116, 123, 530
Pooled variance, 173
Population genetics, 53, 411
Population growth rate, 485
Population sizes, 60
Posterior probability distribution, 83–85, 87,

265, 269, 275, 284, 413
Post-order tree traversal, 81
Power analysis, 421
PPA. See phylogenetic path analysis
Precursor model, 400
pPCA. See Phylogenetic principal component

analysis
Predictor variable, 164, 165, 187, 308–310
Pre-order tree traversal, 81, 82, 88, 93
Primary optimum, 363–366, 368
Primary signals, 70
Primary trend, 368
Primate, 491
Prior probability distributions, 265, 273, 283,

411
Priors, 273, 275, 282, 306, 313–315
Probability, 263–265, 267, 268, 270, 271, 273,

281, 283, 284
Probability distributions, 59
Programming, 79, 97
Punctuated evolution, 420

Q
Quantitative genetics, 6
Quantitative trait, 415
Quartet puzzling, 60

550 Index



R
Random walk. See Brownian motion model of

evolution
Randomization, 180, 182
Rare genomic changes, 64
Rate matrix, 342, 344
Rate of adaptation, 364, 367, 369
Rate of evolution, 368, 497
Rates of evolutionary change, 482
Recombination, 25, 62
Reconciled trees, 60
Reduced major-axis regression (RMA), 374
RegOU (program), 231, 233, 242, 243,

245–253, 255, 258, 259
Regression, 115, 358–361, 373–375
Regression slopes, 164, 165, 177, 184, 193,

309, 314, 315
Rejection sampling, 412
Reliability ratio, 188
REML. See Restricted maximum likelihood
Repeatability, 171, 183, 193, 318, 319
Repeats, 27
Replicated adaptive radiation, 427, 432, 433,

435, 437, 444
Replicated radiation, 438
Research effort, 318–320
Residuals or residual errors, 105, 118, 120,

122, 357–361, 367, 375
Response variable, 164, 165, 187
Restricted maximum likelihood (REML), 186,

190, 240
Rhinogrades, 213, 219
RMA. See Reduced major-axis regression
Rogue lineage, 100
Rooted phylogeny, 22

S
Sample size, 137
Sampling effort, 166, 170, 171, 319
Saturation, 26, 51
Scaffold, 68
Scale, 353, 374, 375
Scale type, 373
Scaling parameters, 420
Secondary signals, 70
Seed tree, 66
Selection

sexual selection, 351, 352, 357, 365, 367
indirect selection, 355, 370
stabilizing selection, 368, 411

Selection regimes, 383–387, 390

Semi-random walk, 122
Sensitivity analysis, 65
Sequence alignment, 26, 27
Sexual size dimorphism, 367
Shape (phylogenetic), 455
Shifts, 439, 443
Signal enhancement, 51
Simulated phylogenies, 39
Simulation, 167, 190–192, 307, 316, 317, 328,

411
Simulation-based likelihood, 410
Slouch (program), 365, 366, 369, 386, 387
Source tree, 68
Speciation, 52
Species tree, 25, 49
Spurious relationship, 167, 168
Standardised contrasts, 109
Standardized path coefficient, 220
Star phylogeny, 39
Stasis, 357
Statistical assumption, 158, 166, 173, 195
Statistical control, 205
Statistical independence, 158
Statistical noise, 164
Statistical power, 164, 169, 170, 224, 233, 251,

258
Statistical significance, 164
Statistical weights, 165, 166, 169, 175, 183,

192, 318, 319
Stepwise AIC, 430, 433, 443
Stirling numbers, 401
Stochastic character mapping, 78, 83–85, 90,

92, 385, 435, 437, 438
Stochasticity, 340
Storks deliver babies, 204, 209
Stratified bootstrapping, 68
Stratigraphy, 520
Stratocladistics, 533
Stratophenetic, 525
Strict consensus, 56
Structural equation modeling, 208, 222
Study design, 170
Substitution models, 312
Substitution rates, 326
Summary statistics, 411
Supermatrix, 49
Supertree, 33, 41, 49, 65, 531
Support measures, 67, 70
SURFACE (program), 361, 385, 386, 391,

425, 430, 433–444
Synapomorphies, 67
Synonymous mutation, 28
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Tanglegram, 469
Taxon, 466
Taxonomic labels, 65
Taxonomic level, 61
Taxonomic overlap, 66
Taxonomic substitution, 56
Taxonomy, 65
Thermobiological, 370
Thinning, 272
Thomas Bayes, 265
Threshold model, 370, 402
Time of observation, 528
Time scale, 368
Tolerance, 412
Topological information, 69
Total evidence, 51
Trait, 381, 460
Trait evolution, 50, 516
Traitgram, 88, 89, 92
Transfer, 465
Transformation, 319

log transformation, 174, 175, 182, 318, 374
Transition matrix, 267
Transition, 71
Transversions, 28, 71
TreeBASE (program), 63
Trends, 368, 371
Type I errors, 222, 224, 231, 232, 249, 251,

255, 257–259
Tip-dated, 533

U
Ultrametric tree, 22, 38, 115, 120
Uncertainty. See also Phylogenetic uncertai-

nity, 164, 306, 309, 312, 315, 316, 321,
328, 384, 385, 387–391

Uni-variate model, 164, 168, 177, 178, 185,
191

Unrooted phylogeny, 22

V
Variance-covariance matrix, 113, 115, 118,

125, 126, 140

W
Weighting, 62
White blood cell, 491
Within-group centering, 293
Within-individual variation, 160
Within-species sample size, 166–172, 175,

192, 195
Within-species variance or variation. See also

intraspecific variance or variation, 159,
315, 313

Within-species
Within-subject correlation or regression, 165

X
Xscape (program), 474

Y
Yule tree, 80

Z
Z-transformation, 136
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