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76. Evolving Embedded Fuzzy Controllers

Oscar H. Montiel Ross, Roberto Sepúlveda Cruz

The interest in research and implementations of
type-2 fuzzy controllers (T2FCs) is increasing. It has
been demonstrated that these controllers pro-
vide more advantages in handling uncertainties
than type-1 FCs (T1FCs). This characteristic is very
appealing because real-world problems are full
of inaccurate information from diverse sources.
Nowadays, it is no problem to implement an in-
telligent controller (IC) for microcomputers since
they offer powerful operating systems, high-level
languages, microprocessors with several cores, and
co-processing capacities on graphic processing
units (GPUs), which are interesting characteristics
for the implementation of fast type-2 ICs (T2ICs).
However, the above benefits are not directly avail-
able for the design of embedded ICs for consumer
electronics that need to be implemented in devices
such as an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGAs),
etc. Fortunately, for T1FCs there are platforms that
generate code in VHSIC hardware description lan-
guage (VHDL; VHSIC: very high speed integrated
circuit), C++, and Java. This is not true for the de-
sign of T2ICs, since there are no specialized tools
to develop the inference system as well as to op-
timize it.

The aim of this chapter is to present different
ways of achieving high-performance computing
for evolving T1 and T2 ICs embedded into FPGAs.
Therefore, we provide a compiled introduction
to T1 and T2 FCs, with emphasis on the well-
known bottle neck of the interval T2FC (IT2FC), and
software and hardware proposals to minimize its
effect regarding computational cost. An overview
of learning systems and hosting technology for
their implementation is given. We explain differ-
ent ways to achieve such implementations: at the
circuit level using a hardware description lan-
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guage, using a multiprocessor system and a high-
level language, and combining both methods. We
explain how to use the IT2FC developed in VHDL as
a standalone system, and as a coprocessor for the
FPGA Fusion of Actel, Spartan 6, and Virtex 5. We
present the methodology and two new proposals
to achieve evolution of the IT2FC for FPGA, one for
the static region of the FPGA, and the other one
for the reconfigurable region using the dynamic
partial reconfiguration methodology.
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76.1 Overview

An intelligent system and evolution are intrinsically re-
lated since it is difficult to conceive intelligence without
evolution because intelligence cannot be static. Hu-
man beings create, adapt, and replace their own rules
throughout their whole lives. The idea to apply evolu-
tion to a fuzzy system is an attempt to construct a math-
ematical assembly that can approximate human-like
reasoning and learning mechanisms [76.1]. A mathe-
matical tool that has been successfully applied to better
represent different forms of knowledge is fuzzy logic
(FL); also if-then rules are a good way to express hu-
man knowledge, so the application of FL to a rule-based
system leads to a Fuzzy Rule-Based System (FRBS).
Unfortunately, an FRBS is not able to learn by itself,
the knowledge needs to be derived from the expert or
generated automatically with an evolutionary algorithm
(EA) such as a genetic algorithm (GA) [76.2].

The use of GAs to design machine learning systems
constitutes the soft computing paradigm known as the
genetic fuzzy system where the goal is to incorporate
learning to the system or tuning different components
of the FRBS. Other proposals in the same line of work
are: genetic fuzzy neural networks, genetic fuzzy clus-
tering, and fuzzy decision trees. A system with the
capacity to evolve can be defined as a self-developing,
self-learning, fuzzy rule-based or neuro-fuzzy system
with the ability to self-adapt its parameters and struc-
ture online [76.3].

Figure 76.1 shows the general structure of an evo-
lutionary FRBS (EFRBS) that can be used for tuning
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Fig. 76.1 General structure
of an evolutionary fuzzy
rule-based system

or learning purposes. Although, it is difficult to make
a clear distinction between tuning and learning, the par-
ticular aspect of each process can be summarized as
follows. The tuning process is assumed to work on
a predefined rule base having the target to find the
optimal set of parameters for the membership func-
tions and/or scaling functions. On the other hand, the
learning process requires that a more elaborated search
in the space of possible rule bases, or in the whole
knowledge base be achieved, as well as for the scal-
ing functions. Since the learning approach does not
depend on a predefined set of rules and knowledge,
the system can change its fundamental structure with
the aim of improving its performance according to
some criteria. The idea of using scaling functions for
input and output variables is to normalize the uni-
verse of discourse in which membership functions were
defined.

According to De Jong [76.4]:

the common denominator in most learning systems
is their capability of making structural changes to
themselves over time with the intent of improving
performance on tasks defined by the environment,
discovering and subsequently exploiting interesting
concepts, or improving the consistency and gener-
ality of internal knowledge structures.

Hence, it is important to have a clear understanding
of the strengths and limitations of a particular learning
system, to achieve a precise characterization of all the
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permitted structural changes and how they are going to
be made.

De Jong sets three different levels of complexity
where the GA can perform legal structural changes in
following a goal, these are [76.4]:

1. By changing critical parameters’ values
2. By changing key data structures
3. By changing the program itself with the idea of

achieving effective behavioral changes in a task
subsystem where a prominent representative of this
branch is the learning production-systems program.

A good reason behind the success of production sys-
tems in machine learning is due to the fact that they
have a representation of knowledge that can simultane-
ously support two kinds of activities: (1) the knowledge
can be treated as data that can be manipulated according
to some criteria; (2) for a particular task, the knowledge
can be used as an executable entity.

The two classical approaches for working with evo-
lutionary FRBS (EFRBS) for a learning system are
the Pittsburgh and Michigan approaches. Historically,
in 1975 Holland [76.5] affirmed that a natural way to
represent an entire rule set is to use a string, i. e., an
individual; so, the population is formed by candidate
rule sets, and to achieve evolution it is necessary to use
selection and genetic operators to produce new gener-
ations of rule sets. This was the approach taken by De
Jong at the University of Pittsburgh, hence the name of
Pittsburgh approach. During the same period, Holland
developed a model of cognition in which the members
of population are individual rules, and the entire popula-
tion is conformed with the rule set; this quickly became
theMichigan approach [76.6, 7].

There are extensive pioneering and recent work
about tuning and learning using FRBS most of them
fall in some way in the Michigan or in the Pitts-
burgh approaches, for example, the supervised in-
ductive algorithm [76.8, 9], the iterative rule learning
approach [76.10], coverage-based genetic induction
(COGIN) [76.11, 12], the relational genetic algorithm
learner (REGAL) system [76.13], the compact fuzzy
classification system [76.14], with applications to fuzzy
control [76.15, 16], and about tuning type-2 fuzzy con-
trollers [76.17–20].

The focus of this chapter is on evolving embed-
ded fuzzy controllers; this subclassification reduces the
number of related works; however, they are still a big
quantity, since by an embedding system (ES), we can
understand a combination of computer hardware (HW)

and software (SW) devoted to a specific control func-
tion within a larger system. Typically, the HW of an ES
can be a dedicated computer system, a microcontroller,
a digital signal processor, or a FPGA-based system. If
the SW of the ES is fixed, it is called firmware; because
there are no strict boundaries between firmware and
software, and the ES has the capability of being repro-
grammed, the firmware can be low level and high level.
Low-level firmware tells the hardware how to work and
typically resides in a read only memory (ROM) or in
a programmable logic array (PLA); high-level firmware
can be updated, hence is usually set in a flash memory,
and it is often considered software.

In the literature, there is extensive work on suc-
cessful applications of type-1 and type-2 fuzzy sys-
tems; with regards to evolving embedded fuzzy sys-
tems, they were applied in a control mechanism for
autonomous mobile robot navigation in real environ-
ments in [76.21]. For the sake of limiting more the
content of this chapter, we have focused on EFRBSs
to be implemented in an FPGA HW platform, with
special emphasis on type-2 FRBSs. In this last cat-
egory, with respect to type-1 FRBS took our atten-
tion to the following proposals: The development of
an FPGA-based proportional-differential (PD) fuzzy
look-up table controller [76.22], FPGA implementa-
tion of embedded fuzzy controllers for robotic ap-
plications [76.23], a non-fixed structure fuzzy logic
controller is presented in [76.24], a flexible architecture
to implement a fuzzy controller into an FPGA [76.25],
a very simple method for tuning the input membership
function (MF) for modifying the implemented FPGA
controller response [76.26]; how to test and simulate the
different stages of a FRBS for future implementation
into an FPGA are explained in [76.27–29]. On type-
1 EFRBS there are some works like: A reconfigurable
hardware platform for evolving a fuzzy system by us-
ing a cooperative coevolutionary methodology [76.30],
the tuning of input MFs for an incremental fuzzy PD
controller using a GA [76.31]. In the type-2 FRBS cate-
gory, the amount of reported work is less; representative
work can be listed as follows: an architectural pro-
posal of hardware-based interval type-2 fuzzy inference
engine for FPGA is presented in [76.32], the use of par-
allel HW implementation using bespoke coprocessors
handled by a soft-core processor of an interval type-2
fuzzy logic controller is explored in [76.33], a high-
performance interval type-2 fuzzy inference system
(IT2-FIS) that can achieve the four stages fuzzifica-
tion, inference, KM-type reduction, and defuzzification
in four clock cycles is shown in [76.34]; the same
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system is suitable for implementation in pipelines pro-
viding the complete IT2-FIS process in just one clock
cycle.

This work deals with the development of evolv-
ing embedded type-1 and type-2 fuzzy controllers. In
the chapter, a broad exploration of several ways to
implement evolving embedded fuzzy controllers are
presented. We choose to work with the Mamdani fuzzy

controller proposal since it provides a highly flexible
means to formulate knowledge.

The organization of this chapter is as follows. In
Sect. 76.2 we present the basis of T1 and T2 FL to
explain how to achieve the HW implementation of an
FRBS. In Sect. 76.3 a brief description of the state of
the art in hosting technology for high-performance em-
bedded systems is given.

76.2 Type-1 and Type-2 Fuzzy Controllers

The type-2 fuzzy sets (T2FS) were developed with the
aim of handling uncertainty in a better way than T1 FS
does, since a T1FS has crisp grades of membership,
whereas a T2FS has fuzzy grades of membership. An
important point to note is that if all uncertainty dis-
appears, a T2 FS can be reduced to a T1FS. A type-2
membership function (T2MF) is an FS that has primary
and secondary membership values; the primary MF is
a representation of an FS, and serves to create a lin-
guistic representation of some concept with linguistic
and random uncertainties with limited capabilities; the
secondary MF allows capturing more about linguistic
uncertainty than a T1MF.

There are two commonways to use a T2FS, the gen-
eralized T2FS (GT2), and the interval T2FS (IT2FS).
The former has secondary membership grades of dif-
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Fig. 76.2 Type-2 membership function. For the triangular MF the
FOU is shown. The FOU is bounded by the upper part UMF(eA) and
the lower part LMF(eA). A vertical slice at x0 is illustrated. Right,
top: secondary MF values for a generalized T2MF; bottom: sec-
ondary MF values of an IT2MF

ferent values to represent more accurately the existing
uncertainty; on the other hand, in an IT2FS the sec-
ondary membership value always takes the value of
1. Unfortunately, to date for GT2 no one knows yet
how to choose their best secondary MFs; moreover,
this method introduces a lot of computations, making it
inappropriate for current application in real-time (RT)
systems, even those with small time constraints; in con-
trast, the calculations are easy to perform in an IT2FS.

A T2MF can be represented using a 3-D figure that
is not as easy to sketch as a T1MF. A more common
way to visualize a T2MF is to sketch its footprint of
uncertainty (FOU) on the 2-D domain of the T2FS. We
illustrate this concept in Fig. 76.2, where we show a ver-
tical slice sketch of the FOU at the primary MF value
x0; in the case of a GT2, in the right upper part of the
figure, the secondary MF shows different height values
of the GT2; in the case of an IT2F2, just below is the
secondary MF with uniform values for the IT2FS. Note
that the secondary values sit on top of its FOU.

Figure 76.3 shows the main components of a fuzzy
logic system showing the differences between the T1
and T2 FC. For T1 systems, there are three components:
fuzzifier, inference engine, and the defuzzifier which is
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Fig. 76.3 Type-1 and type-2 FC. The T2FC at the output
processing has the type reducer block
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the only output processing unit; whereas for a T2 system
there are four components, since the output processing
has interconnected the type reducer (TR) block and the
defuzzifier to form the output processing unit.

Ordinary fuzzy sets were developed by Zadeh in
1965 [76.35]; they are an extension of classical set the-
ory where the concept of membership was extended to
have various grades of membership on the real con-
tinuous interval Œ0; 1�. The original idea was to use
a fuzzy set (FS); i. e., a linguistic term to model a word;
however, after almost 10 years, Zadeh introduced the
concept of type-n FS as an extension of an ordinary FS
(T1FS) with the idea of blurring the degrees of mem-
bership values [76.36].

T1FSs have been demonstrated to work efficiently
in many applications; most of them use the mathematics
of fuzzy sets but lose the focus on words that are mainly
used in the context to represent a function which is more
mathematical than linguistic [76.37].

A T1FS is a set of ordered pairs represented
by (76.1) [76.38],

AD f.x; �A.x//jx 2 Xg ; (76.1)

where each element is mapped to Œ0; 1� by its MF �A,
where Œ0; 1� means real numbers between 0 and 1, in-
cluding the values 0 and 1,

�A.x/ W X ! Œ0; 1� : (76.2)

A pointwise definition of a T2FS is given as follows,eA is characterized by a T2MF �eA.x; u/, where x 2 X and
u 2 Jx � Œ0; 1�, i. e. [76.39],

eAD ˚
.x; u/; �eA.x; u/j8x 2 X;8u 2 Jx � Œ0; 1�



;

(76.3)

where 0� �eA.x; u/� 1.
Another way to expresseA is

eAD
Z

x2X

Z
u2Jx

�eA.x; u/=.x;u/ Jx � Œ0; 1� ; (76.4)

where
R R

denote the union over all admissible input
variables x0 and u0. For discrete universes of discourseR
is replaced by

P
[76.39]. In fact, Jx � Œ0; 1� repre-

sents the primary membership of x 2 X and �eA.x0; u/ is
a T1FS known as the secondary set. Hence, a T2MF
can be any subset in [0,1], the primary membership,
and corresponding to each primary membership, there
is a secondary membership (which can also be in [0,1])
that defines the uncertainty for the primary member-
ship.

When �eA.x; u/D 1, where x 2 X and u 2 Jx �
Œ0; 1�, we have the IT2MF shown in Fig. 76.2. The uni-
form shading for the FOU represents the entire IT2FS
and it can be described in terms of an upper member-
ship function and a lower membership function

N�eA.x/D FOU.eA/ 8x 2 X ; (76.5)

�eA.x/D FOU.eA/ 8x 2 X : (76.6)

Figure 76.2 shows an IT2MF, the shadow region is the
FOU. At the points x1 and x2 are the primary MFs Jx1
and Jx2 , and the corresponding secondary MFs �eA.x1/
and �eA.x2/ are also shown.

The basics and principles of fuzzy logic do not
change from T1FSs to T2FSs [76.37, 40, 41], they are
independent of the nature of the membership functions,
and in general, will not change for any type-n. When
a FIS uses at least one type-2 fuzzy set, it is a type-2
FIS.

In this chapter we based our study on IT2FSs, so the
IT2 FIS can be seen as a mapping from the inputs to the
output and it can be interpreted quantitatively as Y D
f .X/, where X D fx1; x2; : : : ; xng are the inputs to the
IT2 FIS f , and Y D fy1; y2; : : : ; yng are the defuzzified
outputs. These concepts can be represented by rules of
the form

If x1 iseF1 and : : : and xp iseFp; then y is eG : (76.7)

In a T1FC, where the output sets are T1FS, the de-
fuzzification produces a number, which is in some sense
a crisp representation of the combined output sets. In
the T2 case, the output sets are T2, so the extended
defuzzification operation is necessary to get T1FS at
the output. Since this operation converts T2 output sets
to a T1FS, it is called type reduction, and the T1FS is
called a type-reduced set, which may then be defuzzi-
fied to obtain a single crisp number.

The TR stage is the most computationally expen-
sive stage of the T2FC; therefore, several proposals to
improve this stage have been developed. One of the
first proposals was the iterative procedure known as the
Karnik–Mendel (KM) algorithm.

In general, all the proposals can be classified into
two big groups. Group I embraces all the algorithmic
improvements and Group II all the hardware improve-
ments, as follows [76.42]:

1. Improvements to software algorithms, where the
dominant idea is to reduce computational cost of
IT2-FIS based on algorithmic improvements. This
group can be subdivided into three subgroups.
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(a) Enhancements to the KM TR algorithm. As the
classification’s name claims, the aim is to im-
prove the original KM TR algorithm directly, to
speed it up. The best known algorithms in this
classification are:
i. Enhanced KM (EKM) algorithms. They

have three improvements over the original
KM algorithm. First, a better initialization
is used to reduce the number of iterations.
Second, the termination condition of the it-
erations is changed to remove unnecessary
iterations (one). Finally, a subtle computing
technique is used to reduce the computa-
tional cost of each iteration.

ii. The enhanced Karnik–Mendel algorithm
with new initialization (EKMANI) [76.43].
It computes the generalized centroid of gen-
eral T2FS. It is based on the observation that
for two alpha-planes close to each other, the
centroids of the two resulting IT2FSs are
also closed to each other. So, it may be ad-
vantageous to use the switch points obtained
from the previous alpha-plane to initialize
the switch points in the current alpha-plane.
Although EKMANI was primarily intended
for computing the generalized centroid, it
may also be used in the TR of IT2-FIS,
because usually the output of an IT2-FIS
changes only a small amount at each step.

iii. The iterative algorithm with stop condition
(IASC). This was proposed by Melgarejo
et al. [76.44] and is based on the analysis of
behavior of the firing strengths.

iv. The enhaced IASC [76.45] is an improve-
ment of the IASC.

v. Enhanced opposite directions searching
(EODS), which is a proposal to speed up
KM algorithms. The aim is to search in both
directions simultaneously, and in each iter-
ation the points L and R are the switching
points.

(b) Alternative TR algorithms. Unlike iterative KM
algorithms, most alternative TR algorithms have
a closed-form representation. Usually, they are
faster than KM algorithms. Two representative
examples are:
i. The Gorzalczany method. A polygon us-

ing the firing strengths Œf n; f
n
� and Œ.y1; yn/,

which can be viewed as an IT2FS.
It computes an approximate membership
value for each point. Here, yn D yn D yn,

for nD 1; 2; 3 : : : ;N.

�.y/D f C f

2
	 Œ1� .f � f /� ; (76.8)

where f �f is called the bandwidth. Then the
defuzzified output can be computed as

yG D arg maxy�.y/ : (76.9)

ii. The Wu–Tan (WT) method. It searches an
equivalent T1FS. The centroid method is ap-
plied to obtain the defuzzification. This is
the faster method in this category.

2. Hardware implementation. The main idea is to take
advantage of the intrinsic parallelism of the hard-
ware and/or combinations of hardware and parallel
programming. Here, we divided this group into four
main approaches that embrace the existing propos-
als of reducing the computational time of the type
reduction stage by the use of parallelism at different
levels.
(a) The use of multiprocessor systems, including

multicore systems that enable the same benefits
at a reduced cost. In this category are personal
and industrial computers with processors such
as the Intel Pentium Core Processor family,
which includes the Intel Core i3, i5 and i7; the
AMD Quad-Core Optetron, the AMD Phenom
X4 Quad-Core processors, multicore microcon-
trollers such as the Propeller P8X32A from
Parallax, or the F28M35Hx of the Concerto
Microcontrollers family of Texas Instruments.
Multicore processors also can be implemented
into FPGAs.

(b) The use of a general-purpose GPU (GPGPU),
and compute unified device architecture
(CUDA). In general, GPU provides a new
way to perform high performance computing
on hardware. In particular IT2FCs can take
the most advantage of this technology be-
cause their complexity. Traditionally, before
the development of the CUDA technology,
the programming was achieved by translating
a computational procedure into a graphic format
with the idea to execute it using the standard
graphic pipeline; a process known as encoding
data into a texture format. The CUDA technol-
ogy of NVIDIA offers a parallel programming
model for GPUs that does not require the use
of a graphic application programming interface
(API), such as OpenGL [76.46].
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(c) The use of FPGAs. This approach offers the
best processing speed and flexibility. One of the
main advantages is that the developer can deter-
mine the desired parallelism grade by a trade-off
analysis. Moreover, this technology allows us to
use the strength of all platforms in tight inte-
gration to provide the large performance avail-
able at the present time. It is possible to have
a standalone T1/IT2FC, or to integrate the same
T1/T2FC as a coprocessor as part of a high per-
formance computing system.

(d) The use of ASICs. The T1/T2FC is factory
integrated using complementary metal-oxide-
semiconductor (CMOS) technology. The main

advantages are that they are cheaper than
FPGAs. Differently to FPGA technology, ASIC
solutions are not field reprogrammable.

A system based on an FPGA platform allows us
to program all the Group I algorithms since modern
FPGAs have embedded hard and/or soft processors; this
kind of system can be programmed using high-level
languages such as C/C++ and also they can incorpo-
rate operating systems such as Linux. On the other
hand, T1/T2 FC hardware implementations have the
advantage of providing competitive faster systems in
comparison to ASIC systems and the in field reconfig-
urability.

76.3 Host Technology

Until the beginnings of this century, general-purpose
computers with a single-core processor were the sys-
tems of choice for high-performance computing (HPC)
for many applications; they replaced existing big and
expensive computer architectures [76.47]. In 2001,
IBM introduced a reduced intstruction set computer
(RISC) microarchitecture named POEWER4 (perfor-
mance optimization with enhanced RISC) [76.48].
This was the first dual core processor embedded into
a single die, and subsequently other companies intro-
duced different multicore microprocessor architectures
to the market, such as the Arm Cortex A9 [76.49],
Sparc64 [76.50], Intel and AMDQuad Core processors,
Intel i7 processors, and others [76.51]. These develop-
ments, together with the rapid development of GPUs
that offer massively parallel architectures to develop
high-performance software, are an attractive choice
for professionals, scientists, and researchers interested
in speeding up applications. Undoubtedly, the use of
a generic computer with GPU technology has many ad-
vantages for implementing an embedded learning fuzzy
system [76.46], and disadvantages are mainly related to
size and power consumption. A solution to the afore-
mentioned problems is the use of application specific
integrated circuits (ASICs) fuzzy processors [76.52–
54], or reprogrammable hardware based on microcon-
trollers and/or FPGAs.

The orientation of this paper is towards tuning and
learning using FRBS for embedded applications; for
now, we are going to focus on FPGAs and ASIC tech-
nology [76.55], since they provide the best level of
parallelization. Both families of devices provide char-
acteristics for HPC that the other options cannot. Each

technology has its own advantages and disadvantages,
which are narrowing down due to recent developments.
In general, ASICs are integrated circuits that are de-
signed to implement a single application directly in
fixed hardware; therefore, they are very specialized
for solving a particular problem. The costs of ASIC
implementations are reduced for high volumes; they
are faster and consume less power; it is possible to
implement analog circuitry, as well as mixed signal de-
sign, but the time to market can take a year or more.
There are several design issues that need to be car-
ried out that do not need to be achieved using FPGAs,
the tools for development are very expensive. On the
other hand, FPGAs can be introduced to the market
very fast since the user only needs a personal com-
puter and low-cost hardware to burn the HDL (HDL)
code to the FPGA before it is ready to work. They
can be remotely updated with new software since they
are field reprogrammable. They have specific dedicated
hardware such as blocks of random access memory
(RAM); they also provide high-speed programmable
I/O, hardware multipliers for digital signal processing
(DSP), intellectual property (IP) cores, microproces-
sors in the form of hard cores (factory implemented)
such as PowerPC and ARM for Xilinx, or Microblaze
and Nios softcore (user implemented) for Xilinx and
Altera, respectively. They can have built-in analog dig-
ital converters (ADCs). The synthesis process is easier.
A significant point is that the HDL tested code devel-
oped for FPGAs may be used in the design process of
an ASIC.

There are three main disadvantages of the FPGAs
versus ASICs, they are: FPGA devices consume more
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power than ASICs, it is necessary to use the resources
available in the FPGA which can limit the design, and
they are good for low-quantity production. To overcome
these disadvantages it is very important to achieve op-
timized designs, which can only be attained by coding
efficient algorithms.

During the last decade, there has been an increasing
interest in evolving hardware by the use of evolutionary
computations applied to an embeddeddigital system.Al-
though different custom chips have been proposed for

this plan, the most popular device is the FPGA because
its architecture is designed for general-purpose commer-
cial applications. New FGAs allow modification of part
of the programmed logic, or add new logic at the run-
ning time. This feature is known as dynamic or active
reconfiguration, and because in an FPGA we can com-
bine a multiprocessor system and coprocessors, FPGAs
are very attractive for implementing evolvable hardware
algorithms. Therefore, in the next sections, we shall put
special emphasis onmultiprocessor systems andFPGAs.

76.4 Hardware Implementation Approaches

In this section, an overview of the three main lines of
attack to do a hardware implementation of an intelligent
system is given.

76.4.1 Multiprocessor Systems

Multiprocessor systems consist of multiple processors
residing within one system; they have been available
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Fig. 76.4 Multicore system embed-
ded into an FPGA. Embedded is
a hard-processor PowerPC440 and
five MicroBlaze soft-processors. In
this system we can process an EA
using the island model

for many years. Multicore processors have equivalent
benefits to multiprocessors at a lower cost; they are inte-
grated in the same electronic component. At the present
time, most modern computer systems have many pro-
cessors that can be single core or multicore proces-
sors; therefore, we can have three different layouts
for multiprocessing; a multicore system, a multipro-
cessor system, and a multiprocessor/multicore system.



Evolving Embedded Fuzzy Controllers 76.4 Hardware Implementation Approaches 1459
Part

G
|76.4

Fig. 76.5 The whole embedded evolutionary IT2FC im-
plemented in the program memory of the multiprocessor
system, similarly as in a desktop computer I

Figure 76.4 shows a multicore system embedded into
a Virtex 5 FPGA XC5VFX70; it has the capacity to
integrate a distributed multicore system with a hard-
processor PowerPC 440 as the master, five Microblaze
32-bit soft-processor slaves, coprocessors, and periph-
erals. The FPGA capacity to integrate devices is, of
course, limited by the size of the FPGA. Figure 76.5
shows the full implementation in the program memory
of the multiprocessor system.

76.4.2 Implementations into FPGAs

The architecture of FPGAs offers massive parallelism
because they are composed of a large array of config-
urable logic blocks (CLBs), digital signal processing
blocks (DSPs), block RAM, and input/output blocks
(IOBs). Similarly, to a processor’s arithmetic unit
(ALU), CLBs and DSPs can be programmed to per-
form arithmetic and logic operations like compare,
add/subtract, multiply, divide, etc. In a processor, ALU
architectures are fixed because they have been de-
signed in a general-purpose manner to execute various
operations. CLBs can be programmed using just the
operations that are needed by the application, which
results in increased computation efficiency. Therefore,
an FPGA consists of a set of programmable logic cells
manufactured into the device according to a connec-
tion paradigm to build an array of computing resources;
the resulting arrangement can be classified into four
categories: symmetrical array, row-based, hierarchy-
based, and sets of gates [76.56]. Figure 76.6 shows
a symmetrical array-based FPGA that consists of a two-
dimensional array of logic blocks immersed in a set
of vertical and horizontal lines; examples of FPGAs in
this category are Spartan and Virtex from Xilinx, and
Atmel AT40K. In Fig. 76.6 three main parts can be
identified: a set of programmable logic cells also called
logic blocks (LBs) or configurable logic blocks (CLBs),
a programmable interconnection network, and a set of
input and output cells around the device.

Embedded programmable logic devices usually in-
tegrate one or several processor cores, programmable
logic and memory on the same chip (an FPGA) [76.56].
Developments in the field of FPGA have been very
amazing in the last two decades, and for this reason,
FPGAs have moved from tiny devices with a few thou-
sand gates that were used in small applications such as
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finite state machines, glue-logic for complex devices,
and very limited CPUs. In a 10-year period of time,
a 200% growth rate in the capacity of Xilinx FPGAs
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Fig. 76.7 IT2FC design entity (FT2KM). This top-level module contains instances of the four fuzzy controller
submodules

devices was observed, a 50% reduction rate in power
consumption, and prices also show a significant de-
crease rate. Other FPGA vendors, such as ACTEL, and
ALTERA show similar developments, and this trend
still continues. These developments, together with the
progress in development tools that include software and
low-cost evaluation boards, have boosted the acceptance
of FPGAs for different technological applications.

Development Flow
The development flow of an FPGA-based system con-
sists of the following major steps:

1. Write in VHDL the code that describes the systems’
logic; usually a top-down and bottom-up methodol-
ogy is used. For example, to design an IT2FC, we
need to achieve the following procedure:
(a) Describe the design entity where the designer

defines the input and output of the top VHDL
module. The idea is to present the complex
object in different hierarchical levels of abstrac-

tion. For our example, the top design entity is
FT2KM.

(b) Once the design entity has been defined, it is
required to define its architecture, where the de-
scription of the design entity is given; in this
step, we define its behavior, its structure, or
a mixture of both. For the case of the IT2 FLS,
we define the system’s internal behavior, so we
determined the necessity to achieve a logic de-
sign formed by four interconnected modules:
fuzzification, inference engine, type reduction,
and defuzzification. The VHDL circuits (sub-
modules) are described using a register transfer
logic (RTL) sequence, since we can divide the
functionality in a sequence of steps. At each
step, the circuit achieves a task consisting in
data transference between registers and evalua-
tion of some conditions in order to go to the next
step; in other words, each VHDL module (de-
sign entity) can be divided into two areas: data
and control. Each of the four modules needs
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to be conceptualized, so we need to define its
own design entity and, therefore, its particular
architecture as well interconnections with inter-
nal modules. This process is achieved when we
have reached the last system component.

(c) Integrate the system. It is necessary to create
a main design entity (top level) that integrates
the submodules defining their interconnections.
In Fig. 76.7 the integration of the four modules
is shown.

2. Develop the test bench in VHDL and perform RTL
simulations for each submodule of the main design
entity. It is necessary to achieve timing and func-
tional simulations to create reliable internal design
entities.

3. Perform synthesis and implementation. In the syn-
thesis process, the software transforms the VHDL
constructs to generic gate-level components, such
as simple logic gates and flip-flops. The imple-
mentation process is composed of three small sub-
processes: translate, map, and place, and route. In
the translate process the multiple design files of
a project are merged into a single netlist. The map
process maps the generic gates in the netlist to the
FPGA’s logic cells and IOBs, this process is also
known as technology mapping. In the place and
route process, using the physical layout inside the
FPGA chip, the process places the cells in physical
locations and determines the routes to connect di-
verse signals. In the Xilinx flow, the static timing
analysis performed at the end of the implantation
process determines various timing parameters such
as maximal clock frequency and maximal propaga-
tion delay [76.57].

4. Generate the programming file and download it to
the FPGA. According to the final netlist a configu-
ration file is generated, which is downloaded to the
FPGA serially.

5. Test the design entity using a simulation program
such as Simulink of Matlab and the Xilinx system
generator (XSG) for Xilinx devices. The idea here
is first to plot the surface control in order to analyze
the general behavior of the design (a controller in

our example), and second to integrate the design en-
tity as a block of the desired system to be controlled.
Although, this fifth step, is not in the current litera-
ture of logic design for FPGA implementation, it is
the authors’s recommendation since we have expe-
rienced good results following this practice.

Using the design entity FT2KM.vhd, which was
created and tested using the aforementioned develop-
ment flow, we can integrate it an FPGA in two ways:

1. As a standalone system. Here, we mean an inde-
pendent system that does not require the support
of any microprocessor to work, the system itself
is a specialized circuit that can produce the de-
sired output. The IT2FC is implemented using the
FPGA flow design; therefore, it is programmed us-
ing the complete development flow for a specific
application.

2. As a coprocessor. The coprocessor performs spe-
cialized functions in such a way that the main
system processor cannot perform as well and faster.
For IT2FCs, given an input, the time to produce an
output is big enough to achieve an adequate con-
trol of many plants when the IT2FC is programmed
using high-level language, even we have used a par-
allel programming paradigm. Since a coprocessor is
a dedicated circuit designed to offload the main pro-
cessor, and the FPGA can offer parallelism on the
circuit level, the designer of the IT2FC coproces-
sor can have control of the controller performance.
The coprocessor can be physically separated, i. e.,
in a different FPGA circuit (or module), or it can be
part of the system, in the same FPGA circuit. In this
work, we show two methods to develop a system
with an IT2FC as a coprocessor. In both methods,
we consider that we have a tested IT2FC design en-
tity. In the first case, we shall use the FT2KM design
entity to incorporate the fuzzy controller as a copro-
cessor of an ARM processor into an FPGA Fusion.
In the second case, we are going to create the IT2FC
IP core using the Xilinx Platform Studio; the core
will serve as a coprocessor of the MicroBlaze pro-
cessor embedded into a Spartan 6 FPGA.

76.5 Development of a Standalone IT2FC

Figure 76.7 shows the top-level design entity (FT2KM)
of the IT2FC and its components (submodules) for
FPGA implementation. The entity codification of the
top-level entity and its components are given in

Sect. 76.5.1. All stages include the clock (clk) and re-
set (rst) signals. In the defuzzifier, we have included
these two signals to illustrate that a full process takes
only four clock cycles, one for each stage. In prac-
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tice, we did not add these two signals, since when we
used it as a coprocessor, in order to incorporate it to
the system, one 8-bit data latch is added at the output.
For a detailed description of the IT2FC stages con-
sult [76.34].

The fuzzification stage has two input variables, x1
and x2. This module contains a fuzzifier for the up-
per MFs, and another for the lower MFs of the IT2FC.
For the upper part, for the first input x1, considering
that a crisp value can be fuzzified by two MFs be-
cause it may have membership values in two contiguous
T2MFs, the linguistic terms are assigned to the VHDL
variables e1up and e2up, and their upper membership
values are ge1up and ge2up. For the second input x2,
the linguistic terms are assigned to the VHDL vari-
ables de1up and de2up, and gde1up and gde2up are the
upper membership values. The lower part of the fuzzi-
fier is similar; for example, for the input variable x1 the
VHDL assigned variables are e1low and e2low, and their
lower MF values are ge1low and ge2low, etc. The fuzzifi-
cation stage entity only needs one clock cycle to perform
the fuzzification. These eight variables are the inputs of
the inference engine stage [76.58].
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The inference engine is divided into two parallel
inference engine entities IEEup is used to manage the
upper bound of the IT2FC, and IEElow for the lower
bound of the IT2FCs. Each entity has eight inputs from
the corresponding fuzzifier stage, and eight outputs;
four belong to the output linguistic terms, the rest corre-
spond to their firing strengths. All the inputs enter into
a parallel selection VHDL process, the circuits into the
process are placed in parallel; the degree of parallelism
can be tailored by an adequate codification style. In our
case, all the rules are processed in parallel and the eight
outputs of each inference engine section (upper bound
and lower bound) are obtained at the same time be-
cause the clk signal synchronizes the process, hence this
stage needs only one clock cycle to perform a whole
inference and provide the output to the next stage. In
the upper bound, the four antecedents are formed at
the same time, for example, for the first rule, the an-
tecedent is formed using the concatenation operator &,
so it looks like ante WD e1 & de1. Each antecedent can
address up to four rules and depending on the combina-
tion, one of the four rules is chosen; the upper inference
engine output provides the active consequents and its
firing strengths. The lower bound of the inference en-
gine is treated in the same way [76.59].

At the input of the TR, we have the equivalent val-
ues of the pre-computed yil, i. e., the linguistic terms of
the active consequents (C1left, C2left, C3left, and C4left),
the upper firing strength .gc1up, gc2up, gc3up, and gc4up/,
in addition to the equivalent values of the pre-computed
yir.C1right, C2right, C3right, and C4right), the lower firing
strength .gc1low, gc2low, gc3low, and gc4low/ [76.60]. All
the above-mentioned signals go to a parallel selection
process to perform the KM algorithm [76.39]. There
are parallel blocks to obtain the average of the upper
and lower firing strength for the active consequents, re-
quired to obtain the average of the yr and yl; a block to
obtain the different defuzzified values of yr and yl; par-
allel comparator blocks to obtain the final result of yr
and yl [76.61].

The final result of the IT2FC is obtained using the
defuzzification block, which computes the average of
the yr and yl, and produces the only output y.

76.5.1 Development of the IT2 FT2KM
Design Entity

Figure 76.8 shows the implementation of a static IT2FC
that can work as a standalone system. By static, we
mean that the only way to reconfigure (modify) the
FC is to stop the application and uploading the whole
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configuration bit file (bitstream). In this system, the
inputs of the fuzzifier and the defuzzifier output are
connected directly to the FPGA terminals. The assign-
ment of the terminals is achieved in accordance with the
internal architecture of the chosen FPGA. Hence, it is
necessary to provide to the Xilinx Integrated Synthesis
Environment (ISE) program, special instructions (con-
straints) to carry through the synthesis process. They
are generally placed in the user constraint file (UCF),
although they may exist in the HDL code. In general,
constraints are instructions that are given to the FPGA
implementation tools with the purpose of directing the
mapping, placement, timing, or other guidelines for
the implementation tools to follow while processing an
FPGA design. In Fig. 76.7 the overall entity of design
of the IT2FC (FTK2M) was defined as follows,

entity FT2KM is

Port(clk, reset : in std_logic;

x1, x2 : in std_logic_vector(8 downto 1);

y : out std_logic_vector (8 downto 1)

);

end FT2KM;

The architecture of FT2KM has four components, and
all of them have two common input ports: clock (clk),
and reset (rst). All ports in an entity are signals by de-
fault. This is important since a signal serves to pass
values in and out of the circuit; a signal represents cir-
cuit interconnects (wires). A component is a simple
piece of customized code formed by entities as corre-
sponding architectures, as well as library declarations.
To allow a hierarchical design, each component must be
declared before been used by another circuit, and to use
a component it is neccesary to instatiate it first. In this
approach the components are:

1. The component labeled as fuzzyUpLw. It is the T2
fuzzifier that consists of one fuzzifier for the upper
MF of the FOU and one for the lowerMF. It has two
input ports x1 and x2; these are 16: e1Up to de2Low.

component fuzzyUpLw is

port(clk, reset : in std_logic;

x1, x2, ge1Up, ge2Up, gde1Up, gde2Up :

in std_logic_vector(n downto 1);

e1Up, e2Up, de1Up, de2Up, e1Low,

e2Low, de1Low,

de2Low : out std_logic_vector(3 downto 1);

ge1Up, ge2Up, gde1Up, gde2Up, ge1Low,

ge2Low, gde1Low,

gde2Low : out std_logic_vector(n downto 1);

);

end component;
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The instantiation of this component is achieved us-
ing nominal mapping and the name of this instance
is fuzt2. Note that ports clk, reset, and x1 and x2 are
mapped (connected) directly to the entity of design
FT2KM, since as we explained before, all ports are
signals by default, which represent wires. The piece
of code that defines the instantiation of the fuzzyU-
pLw component is as follows,

fuzt2 : fuzzyUpLw port map(

clk => clk, reset=> reset, x1 => x1, x2 => x2,

e1Up => e1upsig, e2Up => e2upsig, de1Up => de1upsig,

de2Up => de2upsig, ge1Up => ge1upsig, ge2Up => ge2upsig,

gde1Up => gde1upsig, gde2Up => gde2upsig, e1Low => e1lowsig,

e2Low => e2lowsig, de1Low => de1lowsig, de2Low => de2lowsig,

ge1Low => ge1lowsig, ge2Low => ge2lowsig, gde1Low => gde1lowsig,

gde2Low => gde2lowsig

);

2. The component Infer_type_2 corresponds to the T2
inference the controller. It has 16 inputs that match
to the 16 outputs of the fuzzification stage. This
component has 16 outputs to be connected to the
type reduction stage. The piece of code to include
this component is:

component Infer_type_2 is

port(rst, clk : in std_logic;

e1, e2, de1, de2, e1_2, e2_2, de1_2, de2_2 : in STD_LOGIC_VECTOR (m downto 1);

g_e1, g_e2, g_de1, g_de2, g_e1_2, g_e2_2,

g_de1_2, g_de2_2 : in STD_LOGIC_VECTOR (n downto 1);

c1, c2, c3, c4, c1_2, c2_2, c3_2, c4_2 : out STD_LOGIC_VECTOR (m downto 1);

gc1_2, gc2_2, gc3_2, gc4_2, gc1, gc2, gc3, gc4 : out STD_LOGIC_VECTOR (n downto 1);

);

end component;

This component is instantiated with the name In-
fer_type_2 as follows,

inft2: Infer_type_2 port map(

rst => reset, clk => clk, e1 => e1upsig, e2 => e2upsig, de1 => de1upsig,

de2 => de2upsig, g_e1 => ge1upsig, g_e2 => ge2upsig, g_de1 => gde1upsig,

g_de2 => gde2upsig, e1_2 => e1lowsig, e2_2 => e2lowsig, de1_2 => de1lowsig,

de2_2 => de2lowsig, g_e1_2 => ge1lowsig, g_e2_2 => ge2lowsig, g_de1_2 => gde1lowsig,

g_de2_2 => gde2lowsig, c1 => c1sig, c2 => c2sig, c3 => c3sig, c4 => c4sig,

gc1 => gc1sig, gc2 => gc2sig, gc3 => gc3sig, gc4 => gc4sig, c1_2 => c12sig,

c2_2 => c22sig, c3_2 => c32sig, c4_2 => c42sig, gc1_2 => gc12sig,

gc2_2 => gc22sig, gc3_2 => gc32sig, gc4_2 => gc42sig

);

To connect the instances fuzt2 and Infer_type_2 it is
necessary to define some signals (wires),

signal e1upsig, e2upsig, de1upsig, de2upsig : std_logic_vector (m-1 downto 0);

signal ge1upsig, ge2upsig, gde1upsig, gde2upsig :std_logic_vector (7 downto 0);

signal e1lowsig, e2lowsig, de1lowsig, de2lowsig :std_logic_vector (m-1 downto 0);

signal ge1lowsig, ge2lowsig, gde1lowsig, gde2lowsig : std_logic_vector (7 downto 0);
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3. The component TypeRed corresponds to the type
reduction stage of the T2FC. It has 16 inputs that
should connect the inference engine’s outputs and it
has two outputs yr and yl that should be connected
to the deffuzifier through signals, once both have
been instantiated. The piece of code to include this
component is:

component TypeRed is

Port (clk, rst : in std_logic;

c1, c2, c3, c4, c1_2, c2_2, c3_2, c4_2 : in STD_LOGIC_VECTOR (3 downto 1);

gc1, gc2, gc3, gc4, gc1_2, gc2_2, gc3_2, gc4_2 : in STD_LOGIC_VECTOR (7 downto 0);

yl, yr : out std_logic_vector (8 downto 1));

end component;

This component is instantiated with the name trkm
as follows,

inft2: Infer_type_2 port map(

rst => reset, clk => clk, e1 => e1upsig, e2 => e2upsig, de1 => de1upsig,

de2 => de2upsig, g_e1 => ge1upsig, g_e2 => ge2upsig, g_de1 => gde1upsig,

g_de2 => gde2upsig, e1_2 => e1lowsig, e2_2 => e2lowsig, de1_2 => de1lowsig,

de2_2 => de2lowsig, g_e1_2 => ge1lowsig, g_e2_2 => ge2lowsig, g_de1_2 => gde1lowsig,

g_de2_2 => gde2lowsig, c1 => c1sig, c2 => c2sig, c3 => c3sig, c4 => c4sig,

gc1 => gc1sig, gc2 => gc2sig, gc3 => gc3sig, gc4 => gc4sig, c1_2 => c12sig,

c2_2 => c22sig, c3_2 => c32sig, c4_2 => c42sig, gc1_2 => gc12sig,

gc2_2 => gc22sig, gc3_2 => gc32sig, gc4_2 => gc42sig

);

The signals that connect the instance Infer_type_2
to the instance trkm are

signal c1sig, c2sig, c3sig, c4sig : std_logic_vector (m-1 downto 0);

signal gc1sig, gc2sig, gc3sig, gc4sig : std_logic_vector (7 downto 0);

signal c12sig, c22sig, c32sig, c42sig : std_logic_vector (m-1 downto 0);

signal gc12sig, gc22sig, gc32sig, gc42sig :std_logic_vector (7 downto 0);

4. The last component defit2 corresponds to the de-
fuzzifier stage of the T2FLC. It has two inputs and
one output.

component defit2 is

Port ( yl, yr : in std_logic_vector (n-1 downto 0);

y : out std_logic_vector (n-1 downto 0));

end component;

This component is instantiated with the name dfit2
as follows,

dfit2 : defit2 port map(yl => ylsig, yr => yrsig, y => y);

We did not define any signal for the port y since
it can be connected directly to the entity of design
FT2KM. The instances trkm and dfit2 are connected
using the following signals,

signal ylsig, yrsig : std_logic_vector (n-1 downto 0);
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This approach of implementing an IT2FC pro-
vides the faster response. The whole process
consisting of fuzzification, inference, type re-
duction, and defuzzification is achieved in four

clock cycles, which for a Spartan family im-
plementation using a 50MHz clock represents
80�10�9 s, and for a Virtex 5 FPGA-based system is
40�10�9 s.

76.6 Developing of IT2FC Coprocessors

The use of IT2FC embedded into an FPGA can cer-
tainly be the option that offers the best performance
and flexibility. As we shall see, the best performance
can be obtained when the embedded FC is used as stan-
dalone system. Unfortunately, this gain in performance
can present some drawbacks; for example, for people
who were not involved in the design process of the con-
troller or who are not familiar with VHDL codification,
or the code owners simply want to keep the codifica-
tion secret. All these obstacles can be overcome by the
use of IP cores. Next, we shall explain two methods of
implementing IT2FC as coprocessors.

76.6.1 Integrating the IT2FC Through
Internal Ports

In Fig. 76.9, we show a control system that integrates
the FT2KM design entity embedded into the Actel
Fusion FPGA [76.62] as a coprocessor of an ARM
processor. This FPGA allows incorporating the soft pro-
cessor ARM Cortex, as well as other IP cores to make
a custom configuration. The embedded system con-
tains the ARM processor, two memory blocks, timers,
interrupt controller (IC), a Universal Asynchronous Re-
ceiver/Transmitter (UART) serial port, IIC, pulse width
modulator/tachometer block, and a general-purpose in-
put/output interface (GPIO) interfacing the FT2KM
block. All the factory embedded components are soft
IP cores. The FT2KM is a VHDL module that together
with the GPIO form the Ft2km_core soft coprocessor,
handled as an IP core; however, in this case, it is nec-
essary to have the VHDL code. In the system, the IT2
coprocessor is composed of the GPIO and the FT2KM
modules, forming the Ft2km_core. In the system, more-
over, are a DC motor with a high-resolution quadrature
optical encoder, the system’s power supply, an H-bridge
for power direction, a personal computer, and a digital
display.

The Ft2km_core has six inputs and two outputs. The
inputs are error, c.error, ce, rst, w, and clk. The 8-bit
inputs error and c.errror are the controller input for the
error and change of error values. ce input is used to en-

able/disable the fuzzy controller, the input rst restores
all the internal registers of the IT2FC, and the input
w allows starting a fuzzy inference cycle. The outputs
are out, and IRQ/RDY; the first one is the crisp output
value, which is 8-bit wide. IRQ/RDY is produced when
the output data corresponding to the respective input is
ready to be read. IRQ is a pulse used to request an inter-
rupt, whereas, RDY is a signal that can be programmed
to be active in high or low binary logic level, indicating
that valid output was produced; this last signal can be
used in a polling mode. In Fig. 76.9 we used only 1 bit
for the IRQ/RDY signal, at the moment of designing the
system the designer will have to decide on one method.
It is possible to use both, modifying the logic or sepa-
rating the signal and adding an extra 1-bit output.

The GPIO IP has two 32 bit wide ports, one for input
(reading bus) and one for output (write bus). The output
bus connects the GPIO IP to the ARM cortex using the
32 bit bus APB. The input bus connects the IT2FC IP to
the GPIO IP. The ARM cortex uses the Ft2km_core as
a coprocessor.

76.6.2 Development of IP Cores

In Sect. 76.6.1, we showed how to integrate the fuzzy
coprocessor through an input/output port, i. e., the IP
GPIO. We also commented on the existence of IP cores
such as the UART and the timers that are connected
directly to the system bus as in any microcontroller
system with integrated peripherals. In this section, we
shall show how to implement an IT2FC connected to
the system bus to obtain an IT2FC IP core integrated to
the system architecture. The procedure is basically the
same for any FPGA of the Xilinx family. We worked
with the Spartan 6 and Virtex 5, so the Xilinx ISE De-
sign Suite was used.

The whole process to start an application that in-
cludes a microprocessor and a coprocessor can be
broadly divided into three steps:

1. Design and implement the design entity that will be
integrated as an IP core in further steps, then follows
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Fig. 76.9 A coprocessor implemented into the Actel Fusion FPGA. The system has an ARM processor, the IT2FC
coprocessor implemented through the general-purpose input/output port, and some peripherals

the development flow explained in Sect. 76.4.2. In
our case, the design entity is FT2KM.

2. Create the basic embedded microcontroller system
tailored for our application. We already know the
kind and amount of memory that we will need, as

IPIF (VHDL)

Peripheral
(VHDL)

User logic
(VHDL)

OPB or PLB bus

well as the peripherals. This step is achieved as fol-
lows: we create themicroprocessor system using the
base system builder (BSB) of the Xilinx Platform
Studio (XPS) software. The system contains a Mi-
croblaze softcore, 16KB of local memory, the data
controller bus (dlmb_cntlr), and the instruction con-
troller bus (ilmb_cntlr).

3. Create the IP core, which should contain the de-
sired design entity, in our case the FT2KM. This
step is achieved using the Import Peripheral Wiz-
ard found in the Hardware option in the XPS. The
idea is to connect the FTKM design entity to the
processor local bus (PLB V4.6) through three reg-
isters, one for each input (two registers) and one
for the output. Upon the completion, this tool will
create synthesizable HDL file (ft2km_core) that im-
plements the intellectual property interface (IPIF)

Fig. 76.10 IP Core implementation of a user defined pe-
ripheral. The IT2FC coprocessor is implemented into the
user logic module. This module achieves communication
with the rest of the system through the PLB or the on-chip
peripheral bus OPB. For a static coprocessor, use the PLB.
For an implementation in the reconfigurable region, use the
OPB J
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services required and a stub user_logic_module.
These two modules are shown in Fig. 76.10. The
IPIF connects the user logic module to the sys-
tem bus using the OPB or the PLB bus or to the
on-chip peripheral bus (OPB). At this stage, we
will need to use the ISE Project Navigator (ISE)
software to integrate to the user_logic_module all
the required files that implement the FT2KM de-
sign entity. Edit the User_Logic_I.vhd file to de-
fine the FT2KM component and signals. Open the
ftk2_core.vhd file and create the ftk2_core entity
and user logic. Synthesize the HDL code and exit

ISE. Return to the XSP and add the FTK2_core
IP to the embedded system, connect the new IP
core to the mb_plb bus system and generate ad-
dress. Figure 76.10 shows the IT2FC IP core;
the IPIF consists of the PLB V4.6 bus controller
that provides the necessary signals to interface
the IP core to the embedded soft core bus sys-
tem.

4. Design the drivers (software) to handle this design
entity as a peripheral.

5. Design the application software to use the design
entity.

76.7 Implementing a GA in an FPGA

In essence, evolution is a two-step process of random
variation and selection of a population of individuals
that responds with a collection of behaviors to the envi-
ronment. Selection tends to eliminate those individuals
that do not demonstrate an appropriate behavior. The
survivors reproduce and combine their features to ob-
tain better offspring. In replication random mutation
always occurs, which introduces novel behavioral char-
acteristics. The evolution process optimizes behavior
and this is a desirable characteristic for a learning sys-
tem. Although the term evolutionary computation dates
back to 1991, the field has decades of history, ge-
netic algorithms being one avenue of investigation in
simulated evolution [76.63]. GAs are family of compu-
tational models, which imitates the principles of natural
evolution. For consistency they adopt biological termi-
nology to describe operations. There are six main steps
of a GA: population initialization, evaluation of candi-
dates using a fitness function, selection, crossover, and
termination judgment, as is shown in Algorithm 76.1.
The first step is to decide how to code a solution to the
problem that we want to optimize; hence, each individ-
ual is represented using a chromosome that contains the
parameters. Common encoding of solutions are binary,
integer, and real value. In binary encoding, every chro-
mosome is a string of bits. In real-value encoding, every
chromosome is a string than can contain one or several
parameters encoded as real numbers. Algorithm 76.1
starts initializing a population with random solutions,
and then each individual of the population is evaluated
using a fitness function, which is selected according to
the optimization goals. For example, for tuning a con-
troller it may be enough to check if the actual output
controller is minimizing errors between the target and

the reference. However, one or more complex fitness
functions can be designed in order to carry out the con-
trol goal. In steps 3 to 5 the genetic operations are
applied, i. e., selection, crossover (recombination), and
mutation. In step 6, the termination criteria are checked,
stopping the procedure if such criteria have been ful-
filled.

Algorithm 76.1 General scheme of a GA
initialize population with random candidate solu-
tions
evaluate each candidate
repeat
select parents
recombine pairs of parents
mutate the resulting offspring
evaluate new candidates
select individuals for the next generation

until termination condition is satisfied

In this work, we have chosen work a GA to evolve
the IT2FC. However, the ideas exposed here are valid
for most evolutionary and natural computing methods.
So, there are two methods to implement any evolu-
tionary algorithm. One is based on executing software
written using a computer language such as C/C++,
similarly as with a desktop computer. The second
method is based on designing specialized hardware us-
ing a HDL. Both have advantages and disadvantages;
the first method is the easier method since there is
much information about coding using a high level lan-
guage for different EAs. However, this solution may
have similar limitations for real-time systems since they
are slower than hardware implementations by at least
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a factor of magnitude of five. On the other hand, state
machine hardware-based designs are more complex to
implement and use. In this section we shall present
a small overview of both methods.

76.7.1 GA Software Based Implementations

It is well known that a GA can run in parallel, taking ad-
vantage of the two types of known parallelism: data and
control parallelism. Data parallelism refers to executing
one process over several instances of the EA, while con-
trol parallelism works with separate instances.

Coarse-grained parallelism and fine-grained paral-
lelism are two methods often associated with the use
of EA in parallel. The use of both methods is called
a hybrid approach. Coarse-grained parallelism entails
the EA cores to work in conjunction to solve a prob-
lem. The nodes swap individuals of their population
with another node running the same problem. The cores

can exchange individuals with each other to improve
diversity. The amount of information, frequency of ex-
change, direction, data pattern, etc., are factors that can
affect the efficiency of this approach.

In fine-grained parallelism, the approach is to share
mating partners instead of populations. The members
of populations across the parallel cores select to mate
their fittest members with the fittest found in a neigh-
boring node’s population. Then, the offspring of the
selected individuals are distribuited. The distribution
of this next generation can go to one of the parents’
populations, both parents’ population, or all cores’ pop-
ulations, based on the means of distribution.

Figure 76.4 shows a six-core architecture design
for the Virtex 5. Here, we can make fine or coarse-
grained implementations of an EA. For example, for
coarse-grained implementation, the island model with
one processor per island can be used.

76.7.2 GA Hardware Implementations

Figure 76.11 shows a high-level view of the architec-
ture of a GA for hardware implementation. The system
has eight basic modules: selection module, crossover
module, mutation module, fitness evaluation module,
control module, observer module, four random gener-
ation number (RGN) modules, and two random access
memory modules.

The control module is a Mealy state machine de-
signed to feed all other modules with the necessary
control signals to synchronize the algorithm execution.
The selection module can have any existing method
of selection, for example the Roulette Wheel Selec-
tion Algorithm. This method picks the genes of the
parents of the current population, and the parents are
processed to create new individuals. At the current
generation, the crossover and genetic modules achieve
the corresponding genetic operation on the selected
parents. The fitness evaluation module computes the
fitness of each offspring and applies elitism to the pop-
ulation. The observer module determines the stopping
criterion and observes its fulfilment. RNGs are indis-
pensable to provide the randomness that EAs require.
Additionally, RAM 1 is necessary to store the current
population and RAM 2 to store the selected parents of
each generation.
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76.8 Evolving Fuzzy Controllers

In Sect. 76.1 the general structure of an EFRBS was
presented. It was mentioned that the common denom-
inator in most learning systems is their capability of
making structural changes to themselves over time to
improve their performance for defined tasks. It also was
mentioned that the two classical approaches for fuzzy
learning systems are the Michigan and Pittsburgh ap-
proaches, and there exist newer proposals with the same
target. Although to programm a learning system in
a computer using high-level language, such as C/C++,
requires some skill, system knowledge, and experimen-
tation, there are no technical problems with achieving
a system with such characteristics. This can be also
true for hardware implementation, if the EFRBS was
developed in C/C++ and executed by a hard or soft pro-
cessor such as PowerPC or Microblaze, it is similarly
as it is done in a computer. How to develop a coproces-
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Fig. 76.12 The FPGA is divided into two regions: static and recon-
figurable. The soft processor and peripherals are in the static region.
Different fuzzy controller architectures are in the reconfigurable re-
gion. The bus macro are fixed data paths for signals going between
a reconfigurable module and another module

sor was explained in Sect. 76.6. The coprocessor was
developed in the FPGA’s static (base) region, which
cannot be changed during a partial reconfiguration pro-
cess. Therefore, such coprocessors cannot suffer any
structural change. Achieving an EFRBS in hardware is
quite different to achieving it using high-level language,
because it is more difficult to change the circuitry than
to modify programming lines.

FPGAs are reprogrammable devices that need a de-
sign methodology to be successfully used as reconfig-
urable devices. Since there are several vendors with dif-
ferent architectures, the methodology usually change
from vendor to vendor and devices. For the Xilinx
FPGAs the configurationmemory is volatile, so, it needs
to be configured every time that it is powered by upload-
ing the configuration data known as bitstream. Configur-
ing FPGA this way is not useful for many applications
that need to change its behavior while they still work-
ing online. A solution to overcome such a limitation is
to use partial reconfiguration, which splits the FPGA
into two kinds of regions. The static (base) region is
the portion of the design that does not change during
partial reconfiguration, it may include logic that con-
trols the partial reconfiguration process. In other words,
partial reconfiguration (PR) is the ability to reconfigure
select areas of an FPGA any time after its initial con-
figuration [76.64]. It can be divided into two groups:
dynamic partial reconfiguration (DPR) and static par-
tial reconfiguration (SPR). DPR is also known as active
partial reconfiguration. It allows changing a part of the
device while the rest of the FPGA is still running. DPR
is accomplished to allow the FPGA to adapt to chang-
ing algorithms and enhance performance, or for critical
missions that cannot be disrupted while some subsys-
tems are being defined. On the other hand, in SPR the
static section of the FPGA needs to be stopped, so auto-
reconfiguration is impossible (Fig. 76.12).

For Xilinx FPGAs, there are basically three ways
to achieve DPR for devices that support this feature.
The two basic styles are difference-based partial re-
configuration and module-based partial reconfiguration.
The first one can be used to achieve small changes to
the design, the partial bitstream only contains infor-
mation about differences between the current design
structure that resides in the FPGA and the new con-
tent of the FPGA. Since the bitstream differences are
usually small, the changes can be made very quickly.
Module-based partial reconfiguration is useful for re-
configuring large blocks of logic using modular design
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concepts. The third style is also based on modular de-
sign but is more flexible and less restrictive. This new
style was introduced by Xilinx in 2006 and it is known
as early access partial reconfiguration (EAPR) [76.65,
66]. There are two key differences between the de-
sign flow EAPR and the module-based one. (1) In the
EAPR flow the shape and size of partially reconfig-
urable regions (PRRs) can be defined by the user. Each
PRR has at least one, and usually multiple, partially re-
configurable modules (PRMs) that can be loaded into
the PRR. (2) For modules that communicate with each
other, a special bus macro allows signals to cross over
a partial reconfiguration boundary. This is an important
consideration, since without this feature intermodule
communication would not be feasible, as it is impos-
sible to guarantee routing between modules. The bus
macro provides a fixed bus of inter-design communi-
cation. Each time partial reconfiguration is performed,
the bus macro is used to establish unchanging routing
channels between modules, guaranteeing correct con-
nections [76.65].

An important core that enables embeddedmicropro-
cessors such as MicroBlaze and PowerPC to achieve
reconfiguration at run time is HWICAP (hardware in-
ternal configuration access point) for the OPB. The
HWICAP allows the processors to read and write the
FPGA configuration memory through the ICAP (in-
ternal configuration access point). Basically it allows
writing and reading the configurable logic block (CLB)
look-up table (LUT) of the FPGA.

The process to achieve reconfigurable computing
with application to IT2FC will be explained with more
detail in Sect. 76.8.2. Moreover, how to evolve an
IT2FC embedded into an FPGA, whether it resides in
the static or in the reconfigurable region, will be also
explained in therein.

76.8.1 EAPR Flow for Changing
the Controller Structure

Figure 76.12 shows the basic idea of using EAPR flow
for reconfigurable computing to change from one IT2FC
structure to a different one. In this figure the Microb-
laze soft processor can evaluate each controller structure
according to single or multiobjective criteria. The pro-
cessor communicates with a PR region using the bus
macro, which provides a means of locking the routing
between the PRM and the base design. The system can
achieve fast reconfiguration operations since partial bit-
stream are transferred between the FPGA and the com-
pact flash memory (CF) where bitstreams are stored.

In general, the EAPR design flow is as fol-
lows [76.64, 67, 68]:

1. Hardware description language design and synthe-
sis. The first steps in the EAPR design flow are very
similar to the standard modular design flow. We can
summarize this in three steps:
(a) Top-level design. In this step, the design de-

scription must only contain black-box instanti-
ations of lower-level modules. Top-level design
must contain: I/O instantiations, clock primi-
tives instantiations, static module instantiations,
PR module instantiations, signal declarations,
and bus macro instantiations, since all non-
global signals between the static design and the
PRMs must pass through a bus macro.

(b) Base design. Here, the static modules of the
system contain logic that will remain constant
during reconfiguration. This step is very simi-
lar to the design flow explained in Sect. 76.4.2.
However, the designer must consider input and
output assignment rules for PR.

(c) PRM design. Similarly to static modules, PR
modules must not include global clock sig-
nals either, but may use those from top-level
modules. When designing multiple PRMs to
take advantage of the same reconfigurable area,
for each module, the component name and
port configuration must match the reconfig-
urable module instantiation of the top-level
module.

2. Set design constraints. In this step, we need to
place constraints in the design for place and route
(PAR). The constraints included are: area group,
reconfiguration mode, timing constraint, and loca-
tion constraints. The area group constraint specifies
which modules in the top-level module are static
and which are reconfigurable. Each module instanti-
ated by the top-level module is assigned to a group.
The reconfiguration mode constraint is only applied
to the reconfigurable group, which specifies that the
group is reconfigurable. Location constraints must
be set for all pins, clocking primitives, and bus
macros in top-level design. Bus macros must be lo-
cated so that they straddle the boundary between the
PR region and the base design.

3. Implement base design. Before the implementation
of the static modules, the top level is translated
to ensure that the constraints file has been created
properly. The information generated by implement-
ing the base design is used for the PRM implemen-
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tation step. Base design implementation follows
three steps: translate, map, and PAR.

4. Implement PRMs. Each of the PRMs must be
implemented separately within its own directory,
and follows base design implementation steps: i. e.,
translate, map and PAR.

5. Merge. The final step in the partial reconfiguration
flow is to merge the top level, base, and PRMs. Dur-
ing the merge step, a complete design is built from
the base design and each PRM. In this step, many
partial bitstreams for each PRM and initial full bit-
streams are created to configure the FPGA.

Partial dynamic reconfigurable computing allows us
to achieve online reconfiguration. By selecting a cer-
tain bitstream is possible to change the full controller
structure, or any of the stages (fuzzification, inference
engine, type reduction, and defuzzification), as well
as any individual section of each stage, for example,
different membership functions for the fuzzification
stage, etc. However, we need to have all the reconfig-
urable modules previously synthesized because they are
loaded using partial bitstreams. Therefore, to have the
capability to evolve reconfigurable modules we need to
provide them with a control register (CR) to change the
desired parameters.

Next, a flexible coprocessor (FlexCo) prototype of
an IT2FC (FlexCo IT2FC) that can be implemented
either in the static region as well as in the PR is
presented.

76.8.2 Flexible Coprocessor Prototype
of an IT2FC

Figure 76.13 illustrates the FlexCo IT2FC, which con-
tains the four stages (fuzzification, inference engine,
type reduction, and defuzzification). They are con-
nected depending on the target region, to the PLB
or to the OPB through a 32 bits command register
(CR), which is formed by four 8 bit registers named
R1 to R4 (Fig. 76.14). The parameters of each stage
can be changed by the programmer since they are not
static as they were defined previously for the FT2KM
(Sect. 76.5). Now, they are volatile registers connected
through signals to save parameter values. The proces-
sor (MicroBlaze) can send through the PLB or the OPB,
two kinds of commands to the CR: control words (CWs)
and data words (DWs). The state machine of the FlexCo
IT2FC interprets the command.

Figure 76.14 illustrates the CR coding for static
and reconfigurable FC. This register is used to perform
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31 24

SG-bits: States 0 to 4

00: Fuzzification
01: Inference engine
10: Type reduction
11: Defuzzification

DC/AD-bit:
1 = Default method
0 = Change method
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1 = Lingustic var/activate
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1 = Input MF
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Fig. 76.14 The control register is used for both styles of
implementation, in the static region or in the reconfig-
urable region

parameter modification in both modes, static and recon-
figurable. In general, bit 7 of R4 is used to differentiate
between a CW or a DW, 1 means a CW, whereas 0
means a DW. The StaGe bits (SG-bits) serves to iden-
tify the IT2FC stage that is to be modified.
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Fig. 76.15 In the static region of the FPGA a multiproces-
sor system (MPS) with operating system. The GA resides
in the program memory, it is executed by the MPS. The
IT2FC may be implemented in the reconfigurable region,
Fig. 76.16, or in the static region, Fig. 76.13 I

� SG-bitsD 00: The fuzzification stage has been cho-
sen, then it is necessary to set the bit Ant/Con to
1 to indicate that the antecedent MFs are going to
be modified. With the section-bit (S-bit) we indi-
cate which part of the FOU (upper or lower) will
be modified. The bit linguistic-variable-term/active
(LVT/Active) is to indicate whether we want to
modify a linguistic variable (LV) or the linguistic
term (LT), the Act option is for the inference engine
(IE). In accordance to the LV/LT bit value, in the
register R3 we set the number of the LV or the LT
that will be changed. Finally, with registers R1 and
R2, the parameter value of the LV or the LT is given,
R1 is the least significant byte.� SG-bitsD 01: With this setting, the state machine
identifies that the IE will be modified. It works
in conjunction with Ant/Con, S-bit, and the reg-
isters R1, R2, and R3. Set a 0 value in the
Ant/Con bit to change the consequent parameters
of a Mamdani inference system, in S-bit choose
the upper or lower MF, using R3 indicate the
number of MF, and with R1 and R2 set the cor-
responding value or static implementation. It is
possible to activate and deactivate rules using the
bit LVT/Active. With bit dynamic change/activate-
deactivate (DC/AD), it is possible to change the
combination of antecedents and consequents of
a specific rule provided that we have made this
part flexible by using registers. For an implemen-
tation in the reconfigurable region, it is possible
to add or remove rules. These two features need
to work in conjunction with registers R1, R2, and
R3.� SG-bitsD 10: This selection is to modify the type
reduction stage. It is possible to have more than
one type reducer. By setting the DC/AD-bit to 1,
we indicate that we wish to change the method
at running time without the necessity of achiev-
ing a reconfiguration process that implies uploading
partial bitstreams. The methods can be selected us-
ing register R3. By using a DC/AD-bit equal to 0
and LVT/Act equal to 0, in combination with regis-
ters R1 to R3 we can indicate that we wish to change
the preloaded values that the KM-algorithm needs
to achieve the TR.
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Fig. 76.16 Flexible coprocessor proposal of an IT2FC for
the reconfigurable region

� SG-bitsD 11: Similarly to the type reduction stage,
we can change the defuzzifier at running time.

With respect to the type reducer and defuzzifica-
tion stages, we give the option to have more than one
module, which has the advantage of making the process
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Fig. 76.17 This design may be implemented in both regions to have
a dynamic reconfigurable system. For a static implementation, the
system must have registers for all the variable parameters to make
possible to change their values, Fig. 76.13

easier and possible for static designs, but the disadvan-
tage is that the design will consume more macrocells,
increasing the cost of the required FPGAs, boards, and
power consumption. Next, we will explain the imple-
mentation of the FlexCo IT2FC for the static region and
the reconfigurable region.

Implementing the FlexCo IT2FC
on the Static Region

The IT2FC of is connected to the PLB. Although the
controller structure is static, this system can be evolved
for tuning and learning because it is possible to achieve
parametric modifications to all the IT2FC stages. Fig-
ure 76.13 shows the architecture of this system and
Fig. 76.15 a conceptual model of the possible imple-
mentation.

Implementing the FlexCo IT2FC on the PR
Figure 76.16 illustrates a more flexible architecture for
FlexCo IT2FC. The IT2FC is implemented in the recon-
figurable region, using a partially reconfigurable region
(PRR) for each stage. This is convenient since each re-
gion can have multiple modules that can be swapped

in and out of the device on the fly. This is the most rec-
ommended method to achieve the evolving IT2FC since
it is more flexible. One disadvantage is that at running
time it is slower than the static implementation because
more logic circuits are incorporated.

Figure 76.17 is an evolutive standalone system; as
it was mentioned, the IT2FC and the GA can be in the
static or in the reconfigurable region.

76.8.3 Conclusion and Further Reading

FPGAs combine the best parts of ASICs and processor-
based systems, since they do not require high volumes
to justify making a custom design. Moreover, they
also provide the flexibility of software, running on
a processor-based system, without being limited by the
number of cores available. They are one of the best
options to parallelize a system since they are parallel
in nature. In an IT2FC, a typical whole T2-inference,
computed using an industrial computer equipped with
a quad-core processor, lasts about 18�10�3 s. A whole
IT2FC (fuzzification, inference, KM-type reducer, and
defuzzification) lasts only four clock cycles, which for
a Spartan implementation using a 50MHz clock repre-
sents 80�10�9 s, and for a Virtex 5 FPGA-based system
represents 40�10�9 s. For the Spartan family the typi-
cal implementation speedup is 225 000, whereas for the
Virtex 5 it is 450 000. Using a pipeline architecture, the
speedup of the whole IT2 process can be obtained in
just one clock cycle, so using the same criteria to com-
pare, the speedup for Spartan is 90 000 and 2 400 000
for Virtex. Reported speedups of GAs implemented into
an FPGA, are at least 5 times higher than in a computer
system. For all these reasons, FPGAs are suitable de-
vices for embedding evolving fuzzy logic controllers,
especially the IT2FC, since they are computationally
expensive. There are some drawbacks with the use of
this technology, mostly with respect to the need to have
a highly experienced development team because its
implementation complexity. Achieving an evolving in-
telligent system using reconfigurable computing is not
as direct as it is using a computer system. It requires
the knowledge of FPGA architectures, VHDL cod-
ing, soft processor implementation, the development
of coprocessors, high-level languages, and reconfig-
urable computing bases. Therefore, people interested in
achieving such implementations require expertise in the
above fields, and further reading must focus on these
topics, FPGA vendor manuals and white papers, as well
as papers and books on reconfigurable computing.



Evolving Embedded Fuzzy Controllers References 1475
Part

G
|76

References

76.1 P.P. Angelov, X. Zhou: Evolving fuzzy-rule-based
classifiers from data streams, IEEE Trans. Fuzzy Syst.
16(6), 1462–1475 (2008)

76.2 O. Cordón, F. Herrera, F. Hoffman, L. Magdalena:
Genetic Fuzzy Systems: Evolutionary Tuning and
Learning of Fuzzy Knowledge Bases (World Scien-
tific, Singapore 2001)

76.3 P. Angelov, R. Buswell: Evolving rule-based mod-
els: A tool for intelligent adaptation, IFSA World
Congr. 20th NAFIPS Int. Conf. 2001. Jt. 9th, Vancou-
ver, Vol. 2 (2001) pp. 1062–1067

76.4 K. De Jong: Learning with genetic algorithms: An
overview, Mach. Learn. 3(2), 121–138 (1988)

76.5 J.H. Holland: Adaptation in Natural and Artificial
Systems: An Introductory Analysiswith Applications
to Biology, Control, and Artificial Intelligence (MIT
Press/Bradford Books, Cambridge 1998)

76.6 K.A. De Jong: Evolutionary Computation: A Unified
Approach (MIT Press, Cambridge 2006)

76.7 O. Cordón, F. Gomide, F. Herrera, F. Hoffmann,
L. Magdalena: Ten years of genetic fuzzy systems:
Current framework and new trends, Fuzzy Sets Syst.
141(1), 5–31 (2004)

76.8 V. Gilles: SIA: A supervised inductive algorithm
with genetic search for learning attributes based
concepts, Lect. Notes Comput. Sci. 667, 280–296
(1993)

76.9 J. Juan Liu, J. Tin-Yau Kwok: An extended genetic
rule induction algorithm, Proc. 2000 Congr. Evol.
Comput., Vol. 1 (2000) pp. 458–463

76.10 O. Cordón, M.J. del Jesus, F. Herrera, M. Lozano:
MOGUL A methodology to obtain genetic fuzzy rule
based systems under the iterative rule learning ap-
proach, Int. J. Intell. Syst. 14(11), 1123–1153 (1999)

76.11 G.D. Perry, F.S. Stephen: Competition-based in-
duction of decision models from examples, Mach.
Learn. 13, 229–257 (1993)

76.12 G.D. Perry, F.S. Stephen: Using coverage as a model
building constraint in learning classifier systems,
Evol. Comput. 2, 67–91 (1994)

76.13 A. Giordana, F. Neri: Searc-intensive concept in-
duction, Evol. Comput. 3, 375–416 (1995)

76.14 H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka:
Selecting fuzzy if-then rules for classification prob-
lems using genetic algorithms, IEEE Trans. Fuzzy
Syst. 3(3), 260–270 (1995)

76.15 A. Homaifar, E. McCormick: Simultaneous design of
membership functions and rule sets for fuzzy con-
trollers using genetic algorithms, IEEE Trans. Fuzzy
Syst. 3(2), 129–139 (1995)

76.16 D. Park, A. Kandel, G. Langholz: Genetic-based new
fuzzy reasoning models with application to fuzzy
control, IEEE Trans. Syst. Man Cybern. 24(1), 39–47
(1994)

76.17 O. Castillo, R. Sepúlveda, P. Melin, O. Montiel: Evo-
lutionary optimization of interval type-2 member-

ship functions, Proc. 2006 Int. Conf. Artif. Intell. ICAI
2006, Las Vegas (2006) pp. 558–564

76.18 R. Sepúlveda, O. Castillo, P. Melin, O. Montiel,
L.T. Aguilar: Evolutionary optimization of interval
type-2 membership functions using the human
evolutionary model, FUZZ-IEEE (2007) pp. 1–6

76.19 R. Sepúlveda, O. Montiel-Ross, O. Castillo, P. Melin:
Optimizing the MFs in type-2 fuzzy logic controllers,
using the human evolutionary model, Int. Rev. Au-
tom. Control 3(1), 1–10 (2010)

76.20 O. Castillo, P. Melin, A.A. Garza, O. Montiel,
R. Sepúlveda: Optimization of interval type-2 fuzzy
logic controllers using evolutionary algorithms, Soft
Comput. 15(6), 1145–1160 (2011)

76.21 C. Wagner, H. Hagras: A genetic algorithm based ar-
chitecture for evolving type-2 fuzzy logic controllers
for real world autonomous mobile robots, Fuzzy
Syst. Conf, Proc. 2007. FUZZ-IEEE 2007, London (2007)
pp. 1–6

76.22 J.E. Bonilla, V.H. Grisales, M.A. Melgarejo: Genetic
tuned FPGA based PD fuzzy LUT controller, 10th IEEE
Int. Conf. Fuzzy Syst. (2001) pp. 1084–1087

76.23 S. Sánchez-Solano, A.J. Cabrera, I. Baturone: FPGA
implementation of embedded fuzzy controllers
for robotic applications, IEEE Trans. Ind. Electron.
54(4), 1937–1945 (2007)

76.24 J.L. González, O. Castillo, L.T. Aguilar: FPGA as a tool
for implementing non-fixed structure fuzzy logic
controllers, IEEE Symp. Found. Comput. Intell. 2007.
FOCI 2007 (2007) pp. 523–530

76.25 O. Montiel, Y. Maldonado, R. Sepúlveda, O. Castillo:
Simple tuned fuzzy controller embedded into an
FPGA, Fuzzy Inf. Proc. Soc. 2008. NAFIPS 2008. Annu.
Meet. North Am. (2008) pp. 1–6

76.26 O. Montiel, J. Olivas, R. Sepúlveda, O. Castillo: De-
velopment of an embedded simple tuned fuzzy
controller, IEEE Int. Conf. Fuzzy Syst., FUZZ-IEEE
2008, IEEE World Congr. Comput. Intell. (2008)
pp. 555–561

76.27 Y. Maldonado, O. Montiel, R. Sepúlveda, O. Castillo:
Design and simulation of the fuzzification stage
through the Xilinx system generator. In: Soft
Computing for Hybrid Intelligent Systems, Stud-
ies in Computational Intelligence, Vol. 154, ed.
by O. Castillo, P. Melin, J. Kacprzyk, W. Pedrycz
(Springer, Berlin, Heidelberg 2008) pp. 297–305

76.28 J.A. Olivas, R. Sepúlveda, O. Montiel, O. Castillo:
Methodology to test and validate a VHDL infer-
ence engine through the Xilinx system generator.
In: Soft Computing for Hybrid Intelligent Systems,
Studies in Computational Intelligence, Vol. 154, ed.
by O. Castillo, P. Melin, J. Kacprzyk, W. Pedrycz
(Springer, Berlin, Heidelberg 2008) pp. 325–331

76.29 G. Lizárraga, R. Sepúlveda, O. Montiel, O. Castillo:
Modeling and simulation of the defuzzification
stage using Xilinx system generator and simulink.



Part
G
|76

1476 Part G Hybrid Systems

In: Soft Computing for Hybrid Intelligent Systems,
Studies in Computational Intelligence, Vol. 154, ed.
by O. Castillo, P. Melin, J. Kacprzyk, W. Pedrycz
(Springer, Berlin, Heidelberg 2008) pp. 333–343

76.30 M. Grégory, U. Andres, P. Carlos-Andres, S. Eduardo:
A dynamically-reconfigurable FPGA platform for
evolving fuzzy systems, Lect. Notes Comput. Sci.
3512, 296–359 (2005)

76.31 Y. Maldonado, O. Castillo, P. Melin: Optimiza-
tion of membership functions for an incremental
fuzzy PD control based on genetic algorithms. In:
Soft Computing for Intelligent Control and Mobile
Robotics, Studies in Computational Intelligence,
ed. by O. Castillo, J. Kacprzyk, W. Pedrycz (Springer,
Berlin Heidelberg 2011) pp. 195–211

76.32 R.M.A. Melgarejo, C.A. Peña-Reyes: Hardware ar-
chitecture and FPGA implementation of a type-2
fuzzy system, Proc. 14th ACM Great Lakes Symp. VLSI
(2004) pp. 458–461

76.33 C. Lynch, H. Hagras, V. Callaghan: Parallel type-2
fuzzy logic co-processors for engine management,
IEEE Int. Conf. Fuzzy Syst., FUZZ-IEEE (2007) pp. 1–6

76.34 R. Sepúlveda, O. Montiel, O. Castillo, P. Melin: Em-
bedding a high speed interval type-2 fuzzy con-
troller for a real plant into an FPGA, Appl. Soft
Comput. 12(3), 988–998 (2012)

76.35 L.A. Zadeh: Fuzzy sets, Inf. Control 8(3), 338–353
(1965)

76.36 L.A. Zadeh: The concept of a linguistic variable and
its application to approximate reasoning -I, Inf.
Sci. 8(3), 199–249 (1975)

76.37 J.M.Mendel: Type-2 fuzzy sets: Some questions and
answers, IEEE Connect. Newsl. IEEE Neural Netw.
Soc. 1, 10–13 (2003)

76.38 J.S.R. Jang, C.T. Sun, E. Mizutani: Neuro-Fuzzy
and Soft Computing: A Computational Approach to
Learning and Machine Intelligence (Prentice Hall,
Upper Saddle River 1997)

76.39 J.M. Mendel: Uncertainty Rule-Based Fuzzy Logic
Systems: Introduction and New Directions (Prentice
Hall, Upper Saddle River 2001)

76.40 J.M. Mendel: Type-2 fuzzy sets and systems: An
overview, IEEE Comput. Intell. Mag. 2(2), 20–29
(2007)

76.41 J.M. Mendel, R.I.B. John: Type-2 fuzzy sets made
simple, IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

76.42 D. Wu: Approaches for reducing the computa-
tional cost of interval type-2 fuzzy logic controllers:
overview and comparison, IEEE Trans. Fuzzy Syst.
21(1), 80–99 (2013)

76.43 D. Wu: Approaches for Reducing the Computa-
tional Cost of Interval Type-2 Fuzzy Logic Systems:
Overview and Comparisons, IEEE Trans. Fuzzy Syst.
21(1), 80–99 (2013)

76.44 K. Duran, H. Bernal, M. Melgarejo: Improved it-
erative algorithm for computing the generalized
centroid of an interval type-2 fuzzy set, Fuzzy Inf.
Proc. Soc. 2008. NAFIPS 2008. Annu. Meet. North
Am. (2008) pp. 1–6

76.45 D. Wu, M. Nie: Comparison and practical imple-
mentation of type reduction algorithms for type-2
fuzzy sets and systems, Proc. IEEE Int. Conf. Fuzzy
Syst. (2008) pp. 2131–2138

76.46 L.T. Ngo, D.D. Nguyen, L.T. Pham, C.M. Luong: Speed
up of interval type-2 fuzzy logic systems based on
GPU for robot navigation, Adv. Fuzzy Syst. 2012,
475894 (2012), doi: 10.1155/2012/698062

76.47 P. Sundararajan: High Performance Computing Us-
ing FPGAs, Xilinx. White Paper: FPGA. WP375 (v1.0),
1–15 (2010)

76.48 IBM Redbooks: The Power4 Processor Introduction
and Tuning Guide, 1st edn. (IBM, Austin 2001)

76.49 J. Yiu: The Definitive Guide To The ARM CORTEX-M0
(Newnes, Oxford 2011)

76.50 S.P. Dandamudi: Fundamentals of Computer Orga-
nization and Design (Springer, Berlin, Heidelberg
2003)

76.51 T. Tauber, G. Runger: Parallel Programming: For
Multicore and Cluster Systems (Springer, Berlin,
Heidelberg 2010)

76.52 K.P. Abdulla, M.F. Azeem: A novel programmable
CMOS fuzzifiers using voltage-to-current converter
circuit, Adv. Fuzzy Syst. 2012, 419370 (2012), doi:
10.1155/2012/419370

76.53 D. Fikret, G.Z. Sezgin, P. Banu, C. Ugur: ASIC imple-
mentation of fuzzy controllers: A sampled-analog
approach, 21st Eur. Solid-State Circuits Conf. 1995
ESSCIRC ’95. (1995) pp. 450–453

76.54 L. Kourra, Y. Tanaka: Dedicated silicon solutions for
fuzzy logic systems, IEE Colloquium on 2 Decades
Fuzzy Contr. Part 1 3, 311–312 (1993)

76.55 M. Khosla, R.K. Sarin, M. Uddin: Design of an
analog CMOS based interval type-2 fuzzy logic con-
troller chip, Int. J. Artif. Intell, Expert Syst. 2(4),
167–183 (2011)

76.56 C. Bobda: Introduction to Reconfigurable Comput-
ing. Architectures, Algorithms, and Applications
(Springer, Berlin, Heidelberg 2007)

76.57 P.C. Pong: FPGA Prototyping by VHDL Examples (Wi-
ley, Hoboken 2008)

76.58 M. Oscar, S. Roberto, M. Yazmin, C. Oscar: De-
sign and simulation of the type-2 fuzzification
stage: Using active membership functions. In: Evo-
lutionary Design of Intelligent Systems in Model-
ing, Simulation and Control, Studies in Compu-
tational Intelligence, Vol. 257, ed. by O. Castillo,
W. Pedrycz, J. Kacprzyk (Springer, Berlin, Heidelberg
2009) pp. 273–293

76.59 S. Roberto, M. Oscar, O. José, C. Oscar: Methodol-
ogy to test and validate a VHDL inference engine
of a type-2 FIS, through the Xilinx system genera-
tor. In: Evolutionary Design of Intelligent Systems in
Modeling, Simulation and Control, Studies in Com-
putational Intelligence, Vol. 257, ed. by O. Castillo,
W. Pedrycz, J. Kacprzyk (Springer, Berlin/Heidelberg
2009) pp. 295–308

76.60 S. Roberto, M.-R. Oscar, C. Oscar, M. Patricia: Em-
bedding a KM type reducer for high speed fuzzy



Evolving Embedded Fuzzy Controllers References 1477
Part

G
|76

controller into an FPGA. In: Soft Computing in
Industrial Applications, Advances in Intelligent
and Soft Computing, Vol. 75, ed. by X.-Z. Gao,
A. Gaspar-Cunha, M. Köppen, G. Schaefer, J. Wang
(Springer, Berlin/Heidelberg 2010) pp. 217–228

76.61 S. Roberto, M. Oscar, L. Gabriel, C. Oscar: Mod-
eling and simulation of the defuzzification stage
of a type-2 fuzzy controller using the Xilinx sys-
tem generator and simulink. In: Evolutionary De-
sign of Intelligent Systems in Modeling, Simulation
and Control, Studies in Computational Intelligence,
Vol. 257, ed. by O. Castillo, W. Pedrycz, J. Kacprzyk
(Springer, Berlin/Heidelberg 2009) pp. 309–325

76.62 O. Montiel-Ross, J. Quiñones, R. Sepúlveda: De-
signing high-performance fuzzy controllers com-
bining ip cores and soft processors, Adv. Fuzzy Syst.
2012, 1–11 (2012)

76.63 D.B. Fogel, T. Back: An introduction to evolutionary
computation. In: Evolutionary Computation. The
Fossile Record, ed. by D.F. Fogel (IEEE, New York
1998)

76.64 W. Lie, W. Feng-yan: Dynamic partial reconfigura-
tion in FPGAs, 3rd Int. Symp. Intell. Inf. Technol.
Appl. (2009) pp. 445–448

76.65 D. Lim, M. Peattie: Two Flows for Partial Reconfig-
uration: Module Based or Small Bit Manipulations.
XAPP290. May 17, 2007

76.66 Emil Eto: Difference-Based Partial Reconfiguration.
XAPP290. December 3, 2007

76.67 Xilinx: Early Access Partial Reconfiguration User
Guide For ISE 8.1.01i, UG208 (v1.1). May 6, 2012

76.68 C.-S. Choi, H. Lee: A self-reconfigurable adaptive
FIR filter system on partial reconfiguration plat-
form, IEICE Trans. 90-D(12), 1932–1938 (2007)


	76 Evolving Embedded Fuzzy Controllers
	76.1 Overview
	76.2 Type-1 and Type-2 Fuzzy Controllers
	76.3 Host Technology
	76.4 Hardware Implementation Approaches
	76.5 Development of a Standalone IT2FC
	76.6 Developing of IT2FC Coprocessors
	76.7 Implementing a GA in an FPGA
	76.8 Evolving Fuzzy Controllers
	References


