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71. Fundamental Collective Behaviors
in Swarm Robotics

Vito Trianni, Alexandre Campo

In this chapter, we present and discuss a num-
ber of types of fundamental collective behaviors
studied within the swarm robotics domain. Swarm
robotics is a particular approach to the design
and study of multi-robot systems, which empha-
sizes decentralized and self-organizing behavior
that deals with limited individual abilities, local
sensing, and local communication. The desired
features for a swarm robotics system are flexibility
to variable environmental conditions, robustness
to failure, and scalability to large groups. These
can be achieved thanks to well-designed collec-
tive behavior – often obtained via some sort of
bio-inspired approach– that relies on cooperation
among redundant components. In this chapter, we
discuss the solutions proposed for a limited num-
ber of problems common to many swarm robotics
systems – namely aggregation, synchronization,
coordinated motion, collective exploration, and
decision making. We believe that many real-word
applications subsume one or more of these prob-
lems, and tailored solutions can be developed
starting from the studies we review in this chapter.
Finally, we propose possible directions for future
research and discuss the relevant challenges to be
addressed in order to push forward the study and
the applications of swarm robotics systems.
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71.1 Designing Swarm Behaviours

Imagine the following scenario: in a large area there
are multiple items that must be reached, and possibly
moved elsewhere or processed in some particular way.
There is no map of the area to be searched, and the area
is rather unknown, unstructured, and possibly danger-
ous for the intervention of humans or any valuable asset.
The items must be reached and processed as quickly as
possible, as a timely intervention would correspond to
a higher overall performance. This is the typical sce-
nario to be tackled with swarm robotics. It contains all
the properties and complexity issues that make a swarm
robotics solution particularly appropriate. Parallelism,
scalability, robustness, flexibility, and adaptability to
unknown conditions are features that are required from
a system confronted with such a scenario, and exactly
those features are sought in swarm robotics research.

Put in other terms, swarm robotics promises the so-
lution of complex problems through robotic systems
made up of multiple cooperating robots. With respect to
other approaches in which multiple robots are exploited
at the same time, swarm robotics emphasizes aspects
like decentralization of control, limited individual abil-
ities, lack of global knowledge, and scalability to large
groups.

One important aspect that characterizes a swarm
robotics system concerns the robotic units, which are
unable to solve the given problem individually. The
limitation is given either by physical constraints that
would prevent the single robot to individually tackle
the problem (e.g., the robot has to move some items
that are too heavy), or by time constraints that would
make a solitary action very inefficient (e.g., there are
too many items to be collected in a limited time). An-
other source of limitation for the individual robot comes
from its inability to acquire a global picture of the prob-
lem, having only access to partial (local) information
about the environment and about the collective activity.
These limitations imply the need for cooperation to en-
sure task achievement and better efficiency. Groups of
autonomous cooperating robots can be exploited to syn-
ergistically achieve a complex task, by joining forces
and sharing information, and to distributedly undertake
the given task and achieve higher efficiency through
parallelism.

The second important aspect in swarm robotics is
redundancy in the system, which is intimately con-
nected with robustness and scalability. Swarm robotics
systems are made by homogeneous robots (or by rel-
atively few heterogeneous groups of homogeneous

robots). This means that the failure of a single or a few
robots is not a relevant fact for the system as a whole,
because the failing robot can easily be replaced by
another teammate. Differently from a centralized sys-
tem, in a swarm robotics system there is no single
point of failure, and every component is interchange-
able with other components. Redundancy, distributed
control, and local interactions also allow for scalabil-
ity, enabling the robotic system to seamlessly adapt to
varying group sizes. This is a significant advantage with
respect to centralized systems, which would present
an exponential increase in complexity for larger group
sizes.

Because all the above features are desiderata, the
problem remains as to how to design and implement
such a robotic system. The common starting point in
swarm robotics is the biological metaphor, for which
the fundamental mechanisms that govern the organiza-
tion of animal societies can be distilled in simple rules
to be implemented in the robotic swarm. This approach
allowed us to extract the basic working principles for
many types of collective behavior, and several examples
will be presented in this chapter. However, it is worth
noting that swarm robotics systems are not constrained
to mimicking nature. Indeed, in many cases there is
no biological example to be taken as reference, or the
mechanisms observed in the natural system are too dif-
ficult to be implemented in the robotic swarm (e.g.,
odor perception is an open problem in robotics, prevent-
ing easy exploitation of pheromone-based mechanisms
by using real chemicals). Still, even in those systems
that have no natural counterpart, the relevant property
that should be present is self-organization, for which
group behavior is the emergent result of the numer-
ous interactions among different individuals. Thanks to
self-organization, simple control rules repeatedly exe-
cuted by the individual robots may result in complex
group behavior.

If we consider the scenario presented at the begin-
ning of this chapter, it is possible to recognize a number
of problems common to many swarm robotics systems,
which need to be addressed in order to develop suitable
controllers. One first problem in swarm robotics is hav-
ing robots get together in some place, especially when
the robotic system is composed by potentially many
individuals. Getting together (i. e., aggregation) is the
precondition for many types of collective behavior, and
needs to be addressed according to the particular char-
acteristics of the robotic system and of the environment
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in which it must take place. The aggregation problem
is discussed in Sect. 71.2. Once groups are formed,
robots need some mechanism to stay together and to
keep a coherent organization while performing their
task. A typical problem is, therefore, how to maintain
such coherence, which corresponds to ensuring the syn-
chronization of the group activities (Sect. 71.3), and to
keep the group in coordinated motion when the swarm
must move across the environment (Sect. 71.4). An-
other common problem in swarm robotics corresponds
to searching together and processing some items in the
environment. To this aim, different strategies can be
adopted to cover the available space, and to identify
relevant navigation routes without resorting to maps

and global knowledge (Sect. 71.5). Finally, to maintain
coherence and efficiency, the swarm robotics system
is often confronted with the necessity to behave as
a single whole. Therefore, it must be endowed with
collective perception and collective decision mecha-
nisms. Some examples are discussed in Sect. 71.6.
For each of these problems, we describe some semi-
nal work that produced solutions in a swarm robotics
context. In each section, we describe the problem along
with some possible variants, the biological inspiration
and the theoretical background, the relevant studies in
swarm robotics, and a number of other works that are
relevant for some particular contribution given to the
specific problem.

71.2 Getting Together: Aggregation

Aggregation is a task of fundamental importance in
many biological systems. It is the basic behavior for
the creation of functional groups of individuals, and
therefore, supports the emergence of various forms of
cooperation. Indeed, it can be considered a prerequi-
site for the accomplishment of many collective tasks.
In swarm robotics too, aggregation has been widely
studied, both as a standing-alone problem or within
a broader context. Speaking in general terms, aggrega-
tion is a collective behavior that leads a group of agents
to gather in some place. Therefore, from a (more or less)
uniform distribution of agents in the available space, the
system converges to a varied distribution, with the for-
mation of well recognizable aggregates. In other words,
during aggregation there is a transition from a homoge-
neous to a heterogeneous distribution of agents.

71.2.1 Variants of Aggregation Behavior

Aggregation can be achieved in many different ways.
The main issue to be considered is whether or not the
environment contains pre-existing heterogeneities that
can be exploited for aggregation: light or humidity gra-
dients (think of flies or sow bugs), corners, shelters, and
so forth represent heterogeneities that can be easily ex-
ploited. Their presence can, therefore, be at the basis
of a collective aggregation behavior, which, however,
may not exploit interactions between different agents.
Instead, whenever heterogeneities are not present (or
cannot be exploited for the aggregation behavior), the
problem is more complex. The agents must behave in
order to create the heterogeneities that support the for-
mation of aggregates. In this case, the basic mechanism

of aggregation relies on a self-organizing process based
on a positive feedback mechanism. Agents are sources
of some small heterogeneity in the environment (e.g.,
being the source of some signal that can be chemi-
cal, tactile or visual). The more aggregated agents, the
higher the probability to be attracted by the signal.
This mechanism leads to amplification of small hetero-
geneities, leading to the formation of large aggregates.

71.2.2 Self-Organized Aggregation
in Biological Systems

Several biological systems present self-organized ag-
gregation behavior. One of the best studied examples
is given by the cellular slime mold Dictyostelium
discoideum, in which aggregation is enabled by self-
generated biochemical signals that support the migra-
tion of cells and the formation of a multi-cellular
body [71.1, 2]. A similar aggregation process can be ob-
served in many other unicellular organisms [71.3]. So-
cial and pre-social insects also present multiple forms of
aggregation [71.4, 5]. In all these systems, it is possible
to recognize two main variants of the aggregation pro-
cess. On the one hand, the agents can emit a signal that
creates an intensity gradient in the surrounding space.
This gradient enables the aggregation process: agents
react by moving in the direction of higher intensity,
therefore aggregating with their neighbors (Fig. 71.1).
On the other hand, aggregation may result from agents
modulating their stopping time in response to social
cues. Agents have a certain probability to stop and re-
main still for some time. The vicinity to other agents
increases the probability of stopping and of remaining
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a) b) c) d)

Fig. 71.1a–d Aggregation process based on a diffusing signal that creates an intensity gradient. (a) Agents individually
emit a signal and move in the direction of higher concentration. (b) The individual signals sum up to form a stronger
intensity gradient in correspondence with forming aggregates. (c) A positive feedback loop amplifies the aggregation
process until all agents are in the same cluster (d)

within the aggregate, eventually producing an aggrega-
tion process mediated by social influences (Fig. 71.2).
In both cases, the same general principle is at work.
Aggregation is dependent on two main probabilities:
the probability to enter an aggregate, which increases
with the aggregate size, and the probability to leave
an aggregate, which decreases accordingly. This creates
a positive feedback loop that makes larger aggregates
more and more attractive with respect to small ones.
Some randomness in the system helps in breaking the
symmetry and reaching a stable configuration.

71.2.3 Self-Organized Aggregation
in Swarm Robotics

On the basis of the studies of aggregation in biologi-
cal systems, various robotic implementations have been
presented, based on either of the two behavioral mod-

a) b) c) d)

Fig. 71.2a–d Aggregation process based on variable probability of stopping within an aggregate. (a) Agents move ran-
domly and may stop for some time (gray agent). (b) When encountering a stopped agent, other agents stop as well,
therefore increasing the size of the aggregate. (c) The probability of meeting an aggregate increases with the aggregate
size for geometric reasons. Social interactions modulate the probability of leaving the aggregate, which diminishes with
the increasing number of individuals. (d) Eventually, all agents are in the same aggregate

els described above. Of particular interest is the work
presented in [71.6], in which the robotic system was de-
veloped to accurately replicate the dynamics observed
in the cockroach aggregation experiments presented
in [71.5]. In this work, a group of Alice robots [71.7]
was used and their controller was implemented by
closely following the behavioral model derived from
experiments with cockroaches. The behavioral model
consists of four main conditions:

i) Moving in the arena center
ii) Moving in the arena periphery
iii) Stopping in the center
iv) Stopping in the periphery.

When stopping, the mean waiting time is influenced
by the number of perceived neighbors (for more de-
tails, see [71.6]). The group behavior resulting from the
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interaction among Alice robots was analyzed with the
same tools used for cockroaches [71.5, 6]. The compar-
ison of the robotic system with the biological model
shows a very good correspondence, demonstrating that
the mechanisms identified by the behavioral model are
sufficient to support aggregation in a group of robots,
with dynamics that are comparable to that observed in
the biological system. Additionally, the robotic model
constitutes a constructive proof that the identified mech-
anisms really work as suggested.

This study demonstrates, in terms of simple rules,
the approach of distilling the relevant mechanisms that
produce a given self-organizing behavior. A different
approach consists in exploiting artificial evolution to
synthesize the controllers for the robotic swarm. This
allows the user to simply define some performance met-
ric for the group and let the evolutionary algorithm
find the controllers capable of producing the desired
behavior. This generic approach has been exploited to
evolve various self-organizing behaviors, including ag-
gregation [71.8]. In this case, robots were rewarded
to minimize their distance from the geometric cen-
ter of the group and to keep moving. The analysis of
the evolved behavior revealed that in all cases robots
are attracted by teammates and repelled by obstacles.
When a small aggregate forms, robots keep on moving
thanks to the delicate balance between attractive and re-
pulsive forces. This makes the aggregate continuously
expand and shrink, moving slightly across the arena.
This slow motion of the aggregate makes it possible to
attract other robots or other aggregates formed in the
vicinity, and results in a very good scalability of the ag-

gregation behavior with respect to the group size. This
experiment revealed a possible alternative mechanism
for aggregation, which is not dependent on the proba-
bility of joining or leaving an aggregate. In fact, robots
here never quit an aggregate to which they are attracted.
Rather, the aggregates themselves are dynamic struc-
tures capable of moving within the environment, and in
doing so they can be attracted by neighboring aggre-
gates, until all robots belong to the same group.

71.2.4 Other Studies

The seminal papers described above are representative
of other studies, which either exploit a probabilistic ap-
proach [71.9, 10], or rely on artificial evolution [71.11].
Approaches grounded on mathematical models and
control theory are also worth mentioning [71.12, 13].
Other variants of the aggregation behavior can be con-
sidered. The aggregate may be characterized by an
internal structure, that is, agents in the aggregate are
distributed on a regular lattice or form a specific shape.
In such cases, we talk about pattern/shape forma-
tion [71.14]. Another possibility is given by the admis-
sibility of multiple aggregates. In the studies mentioned
so far, multiple aggregates may form at the beginning
of the aggregation process, but as time goes by smaller
aggregates are disbanded in favor of larger ones, eventu-
ally leading to a single aggregate for the whole swarm.
However, it could be desirable to obtain multiple ag-
gregates forming functional groups of a specific size. In
this case, it is necessary to devise mechanisms for con-
trolling the group size [71.15].

71.3 Acting Together: Synchronization

Synchronization is a common phenomenon observed
both in the animate and inanimate world. In a syn-
chronous system, the various components present
a strong time coherence between the individual types of
behavior. In robotics, synchronization can be exploited
for the coordination of actions, both within a single or
a multi-robot domain. In the latter case, synchronization
may be particularly useful to enhance the system effi-
ciency and/or to reduce the interferences among robots.

71.3.1 Variants of Synchronization Behavior

Synchronization in a multi-agent system can be of
mainly two forms: loose and tight. In the case of loose

synchronization, we observe a generic coordination in
time of the activities brought forth by different agents.
In this case, single individuals do not present a periodic
behavior, but as a group it is possible to observe bursts
of synchronized activities. Often in this case there are
external cues that influence synchrony, such as the day-
light rhythm. On the other hand, it is possible to observe
tight synchronization when the individual actions are
perfectly coherent. To ensure tight synchronization in
a group, it is possible to rely on either a centralized or
a distributed approach. In the former, one agent acts as
a reference (e.g., a conductor for the orchestra or the
music theme for a ballet) and drives the behavior of the
other system components. In the latter, a self-organizing
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process is in place, and the system shows the ability
to synchronize without an externally-imposed rhythm.
It is worth noting that tight synchronization does not
necessitate individual periodic behavior, neither in the
centralized nor in the self-organized case. For instance,
synchronization has also been studied between cou-
pled chaotic systems [71.16]. In the following, we focus
on self-organized synchronization of periodic behavior,
which is the most studied phenomenon as it is com-
monly observed in many different systems.

71.3.2 Self-Organized Synchronization
in Biology

Although synchronization has always been a well-
known phenomenon [71.17], its study did not arouse
much interest until the late 1960s, when Winfree be-
gan investigating the mechanisms underlying biological
rhythms [71.18]. He observed that many systems in
biology present periodic oscillations, which can get
entrained when there is some coupling between the
oscillators. A mathematical description of this phe-
nomenon was first introduced by Kuramoto [71.19],
who developed a very influential model that was after-
wards refined and applied to various domains [71.17].

Similar mechanisms are at the base of the syn-
chronous signaling behavior observed in various animal
species [71.3]. Chorusing is a term commonly used to
refer to the coordinated emission of acoustic commu-
nication signals by large groups of animals. To cite
a few examples, chorusing has been observed in frogs,
crickets, and spiders. However, probably the most fasci-
nating synchronous display is the synchronous flashing
of fireflies from South-East Asia. This phenomenonwas
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Fig. 71.3 Synchronization between
pulse-coupled oscillators. The os-
cillator emits pulses each time its
state variable reaches the threshold
level (corresponding to 1 in the plot).
When one oscillator emits a pulse,
its state is reset while the state of the
other oscillator is advanced by a con-
stant amount, which corresponds
to a phase shift, or to the oscillator
firing if it overcomes the threshold

thoroughly studied until a self-organizing explanation
was proposed to account for the emergence of syn-
chrony [71.20].

A rather simple model describes the behavior of
fireflies as the interactions between pulse-coupled oscil-
lators [71.21]. In Fig. 71.3, the activity of two oscilla-
tors is represented as a function of time. Each oscillator
is of the integrate-and-fire type, which well represents
a biological oscillator such as the one of fireflies. The
oscillator is characterized by a voltage-like variable that
is integrated over time until a threshold is reached. At
this point, a pulse is fired and the variable is reset to the
base level (Fig. 71.3). Interactions between oscillators
take the form of constant phase shifts induced by in-
coming pulses, which bring other oscillators close to the
firing state, or make them directly fire. These simple in-
teractions are sufficient for synchronization; in a group
of similarly pulse-coupled oscillators, constant adjust-
ments of the phase made by all the individuals lead to
a global synchronization of pulses (for a detailed de-
scription of this model, see [71.21]).

71.3.3 Self-Organized Synchronization
in Swarm Robotics

The main purpose of synchronization in swarm robotics
is the coordination of the activities in a group. This can
be achieved in different ways, and mechanisms inspired
by the behavior of pulse-coupled oscillators have been
developed. In [71.15], synchronization is exploited to
regulate the size of traveling robotic aggregates. Robots
can emit a short sound signal (a chirp), and enter a re-
fractory state for a short time after signaling. Then,
robots enter an active state in which they may signal
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at any time, on the basis of a constant probability per
time-step. Therefore, the chirping period is not constant
and depends on the chirping probability. In this state,
robots also listen to external signals and react by im-
mediately emitting a chirp. This mechanism, similar to
chorusing in frogs and crickets, leads to synchronized
emission of signals. Thanks to this simple synchroniza-
tion mechanism, the size of an aggregate can somehow
be estimated. Given the probabilistic nature of chirping,
a robot has a probability of independently initiating sig-
naling that depends on the number of individuals in the
group; estimating this probability by listening to own
and others’ chirps allows an approximate group size
estimation. Synchronization, therefore, ensures a mech-
anism to keep coherence in the group, which is the
precondition for group size estimation.

In [71.22], synchronization is instead necessary to
reduce the interferences between robots, which pe-
riodically perform foraging and homing movements
in a cluttered environment. Without coordination, the
physical interferences between robots going toward and
away from the home location lead to a reduced overall
performance. Therefore, a synchronization mechanism
based on the firefly behavior was devised. Robots emit
a signal in correspondence to the switch from foraging
to homing. This signal can be perceived by neighboring
robots within a limited radius and induces a reset of the
internal rhythm that corresponds to a behavioral shift
to homing. Despite the limited range of communica-
tion among robots, a global synchronization is quickly
achieved, which leads the group to reduce interferences
and increase the system performance [71.22].

A different approach to the study of synchronization
is described in [71.23]. Here, artificial evolution is ex-
ploited to synthesize the behavior of a group of robots,
with the objective of obtaining minimal communication
strategies for synchronization. Robots were rewarded to
present an individual periodic movement and to signal
in order to synchronize the individual oscillations. The
results obtained through artificial evolution are then an-
alyzed to understand the mechanisms that can support

synchronization, showing that two types of strategies
are evolved: one is based on a modulation of the oscil-
lation frequency, the other relies on a phase reset. These
two strategies are also observed in biological oscilla-
tors: for instance, different species of fireflies present
different synchronization mechanisms, based on de-
layed or advanced phase responses [71.20].

71.3.4 Other Studies

While self-organized synchronization is a well-known
phenomenon, its application in collective and swarm
robotics has not been largely exploited. The coupled-
oscillator synchronization mechanism was applied to
a cleaning task to be performed by a swarm of micro
robots [71.24]. Another interesting implementation of
the basic model can be found in [71.25]. Here, syn-
chronization is exploited to detect and correct faults in
a swarm robotics system. It is assumed that robots can
synchronize a periodic flashing behavior while moving
in the arena and accomplishing their task. If a robot
incurs some fault, it will forcedly stop synchronizing.
This fault can be detected and recovered by neighboring
robots. Similar to the heartbeat in distributed com-
puting, correct synchronization corresponds to a well-
functioning system, while the lack of synchronization
corresponds to a faulty condition.

Finally, synchronization behavior may emerge
spontaneously in an evolutionary robotics setup, even
if they are not explicitly rewarded. In [71.26], synchro-
nization of group activities evolved spontaneously as
a result of the need to limit the interferences among
robots in a foraging task. In [71.27], robots were
rewarded to maximize the mean mutual information
between their motor actions. Mutual information is
a statistical measure derived in information theory, and
roughly corresponds to the correlation between the out-
put of two stochastic processes. Evolution, therefore,
produced synchronous movements among the robots,
which could actually maximize the mutual information
while maintaining a varied behavior.

71.4 Staying Together: Coordinated Motion

Another fundamental problem for a swarm is ensuring
coherence in space. This means that the individuals in
the swarm must display coordinated movement in order
to maintain a consistent spatial structure. Coordinated
motion is often observed in groups of animals. Flocks of

birds or schools of fish are fascinating examples of self-
organized behavior producing a collective motion of the
group. Similar problems need to be tackled in robotics,
for instance for moving in formation or for distributedly
deciding a common direction of motion.
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71.4.1 Variants of the Coordinated Motion
Behavior

The coordinated motion of a group of agents can be
achieved in different ways. Also in this case, we can
distinguish mainly between a centralized and a dis-
tributed approach. In a centralized approach, one agent
can be considered the leader and the other agents fol-
low (e.g., the mother duck with her ducklings). In the
distributed approach, instead, there is no single leader
and some coordination mechanism must be found to
let the group move in a common direction. Of par-
ticular interest for swarm robotics are the coordinated
motionmodels based on self-organization. Such models
consider multi-agent systems that are normally homo-
geneous and characterized by a uniform distribution of
information: no agent is more informed than the others,
and there exists no a priori preference for any direction
of motion (i. e., agents start being uniformly distributed
in space). However, through self-organization and am-
plification of shared information, the system can break
the symmetry and converge to a common direction
of motion. A possible variant of the self-organized
coordinated motion consists in having a non-uniform
distribution of information, which corresponds to hav-

a) b) c)

Fig. 71.4a–c Self-organized coordinated motion in a group of
agents. In the bottom part, a group of agents is moving in roughly
the same direction. According to the model presented in [71.28],
agents react to the closest neighbor within their perception range
and follow three main rules: (a) agents move toward a neighbor
when it is too far; (b) agents move away from a neighbor when it
is too close; (c) agents rotate and align with a neighbor situated at
intermediate distances. The iterated application of these rules leads
the group to move in a same direction

ing some agents that are more informed than the others
on a preferred direction of motion. In this case, a few
informed agents may influence the motion of the entire
group.

71.4.2 Coordinated Motion in Biology

Many animal species present coordinated motion be-
havior, ranging from bacteria to fish and birds. Not all
animal species employ the same mechanisms, but in
general it is possible to recognize various types of in-
teractions among individuals that have a bearing on the
choice of the motion direction. Coordinated motion has
mainly been studied in various species of fish, in birds,
and in insect swarms [71.29, 30]. The most influential
model was introduced by Huth and Wissel to describe
the behavior of various species of fish observed [71.28].
In this model, it is assumed that each fish is influenced
solely by its nearest neighbor. Also, the movement of
each fish is based on the same behavioral model, which
also includes some inherent random fluctuation. Ac-
cording to the proposed behavioral model, each fish
follows essentially three rules:

i) Approach a far away individual
ii) Get away from individuals that are too close
iii) Align with the neighbor direction (Fig. 71.4).

When the nearest neighbor is within the closest re-
gion, the fish reacts by moving away. When the nearest
neighbor is in the farthest region, the fish reacts by
approaching. Otherwise, if the neighbor is within the
intermediate region, the fish reacts by aligning. These
simple rules are sufficient to produce collective group
motion, and the final direction emerges from the inter-
actions among the individuals.

Starting from the above model, a number of variants
have been proposed, which take into account differ-
ent parameters and different numbers of individuals.
In [71.31], a model including all individuals in the
perceptual range was introduced, and a broad analysis
of the parameters was performed, showing how minor
differences at the individual level correspond to large
differences at the group level. In [71.32], an experimen-
tal study on bird flocks in the field was performed, and
position and velocity data were obtained for each bird in
a real flock through stereo-photography and 3-D map-
ping. The data obtained data were used to verify the
assumption about the number of individuals that each
bird monitors during flocking, showing that this num-
ber is constant (and corresponds to about 7 individuals)
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notwithstanding the varying density of the flock. Fi-
nally, in [71.33], a model was developed in which some
of the group members have individual knowledge on
a preferential direction. The model describes the out-
come of a consensus decision in the flock as a result
of the interaction between informed and uninformed
individuals.

71.4.3 Coordinated Motion
in Swarm Robotics

The models introduced for characterizing the self-
organized behavior of fish schools or bird flocks have
also inspired a number of interesting studies. The most
influential work is definitely that of Reynolds, who de-
veloped virtual creatures called boids [71.34]. In this
work, each creature executes three simple types of be-
havior:

i) Collision avoidance, to avoid crashing with nearby
flockmates

ii) Velocity matching, to move in the same way of
nearby flockmates

iii) Flock centering, to stay close to nearby flockmates.

Notice that the behavioral model corresponds to the
models proposed in biological studies. The merit of this
work is that it is the first implementation of the rules
studied for real flocks in a virtual 3-D world, showing
a close correspondence of the behavior of boids with
that of flocks, herds, and schools. Reynolds’ research
has been taken as inspiration by many other studies on
coordinated motion, mainly in simulation. In [71.35],
an implementation of the flocking behavioral model
was proposed and tested on real robots. Robots use
infrared proximity sensors to recognize the presence
of other robots and their distance, which is necessary
for collision avoidance and flock centering behavior.
Additionally, a dedicated sensor to perceive the head-
ing of neighbors was developed to support aligning
behavior. This system, called the virtual heading sys-
tem (VHS), is based on a digital compass and wireless
communication. Despite the fact that a digital compass
cannot reliably work in an indoor environment, it is
assumed that neighboring robots have similar percep-
tions. The heading perceived with respect to the local
north is communicated over the wireless channel, and
it is exploited for alignment behavior. This system al-

lowed testing the flocking behavior of small robotic
groups in a physical setting and studying the dynam-
ics of flocking with up to 1000 simulated robots. This
work was later extended in [71.36], by having a sub-
group of informed individuals which could steer the
whole flock, following the model presented in [71.33].
The dynamics of steered flocking have been studied by
varying the percentage of informed robots in simula-
tion, and tests with real robots have been performed as
well.

71.4.4 Other Studies

As mentioned above, there exist numerous studies that
were inspired by the schooling/flocking models. All
these studies adopt some variants of the behavioral rules
described above, or analyze the group dynamics under
some particular perspective. A different approach to co-
ordinated motion can be found in [71.37]. In this work,
robots have to transport a heavy object and have imper-
fect knowledge of the direction of motion. They can,
however, negotiate the goal direction by displaying their
own preferred direction of motion and by adjusting it
on the basis of the direction displayed by others. On
the whole, this mechanism implements similar dynam-
ics to the alignment behavior of the classical flocking
model. Here, however, robots are connected together to
the object to be transported, adding a further constraint
to the system that obliges a good negotiation to allow
motion. A similar constraint characterizes the coordi-
nated motion studies with physically assembled robots
presented in [71.38, 39]. Here, robots form a physical
structure of varying shape and can rotate their chas-
sis in order to match the direction of motion of the
other robots. In this case, there is no direct detection
of the motion direction of neighbors. Instead, robots
can sense the pulling and pushing forces that are ex-
erted by the other connected robots through the physical
connections. These pulling/pushing forces are naturally
averaged by the force sensor, which returns their resul-
tant. Artificial evolution was exploited to synthesize an
artificial neural network that could transform the forces
sensed to motor commands. The results obtained show
the impressive capability of self-organized coordination
between the robots, as well as scalability and gener-
alization to different size and shapes [71.38], and the
ability to cope with obstacles and to avoid falling out-
side the borders of the arena [71.39].
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71.5 Searching Together: Collective Exploration

Exploring and searching the environment is an impor-
tant behavior for robot swarms. In many tasks, the
swarm must interact with the environment, sometimes
only to monitor it, but sometimes also to process ma-
terials or other kinds of resources. Usually, the swarm
cannot completely perceive the environment, and the
environment may also change during the operation of
the robots. Hence, robots need to explore and search
the environment to monitor for changes or in order to
detect new resources.

To cope with its partial perception of the environ-
ment, a swarm can move, for instance using flocking, in
order to explore new places (some locations may be un-
available, though). Hence, most of the environment can
be perceived, but not at the same time. As in many other
artificial systems, a tradeoff between exploration and
exploitation exists and requires careful design choices.

71.5.1 Variants of Collective Exploration
Behavior

There is no perfect exploration and search strategy be-
cause the structure of the environment in which the
swarm is placed can take many different shapes. Strate-
gies only perform more or less well as a function of
the situation with which they are faced [71.40]. For
instance, the swarm could be in a maze, in a open envi-
ronment with few obstacles, or in an environment with
many obstacles.

We identified a restricted number of environmen-
tal characteristics that play an important role in the
choice of searching behavior in swarm robotics. These
characteristics are commonly found in swarm robotics
scenarios, and are the presence of a central place, the
size of the environment, the presence of obstacles.

The central place is a specific location where robots
must come back regularly, for instance for maintenance
or to deposit foraged items. A scenario that involves
a central place requires a swarm able to either remem-
ber or keep track of that location.

If the environment is closed (finite area) and not too
large, the swarm may use random motion to explore,
with fair chances to rapidly locate resources (or even
the central place). In an open environment, robots can
get lost very quickly. In this type of environment, it is
necessary to use a behavior that allows robots to stay
together and maintain connectivity.

Obstacles are environmental elements that constrain
the motion of the swarm. If the configuration of the ob-

stacles is known in advance, the swarm can move in
the environment following appropriate patterns. In most
cases, however, obstacles are unexpected or might be
dynamic and may prevent the swarm from exploring
parts of the environment.

71.5.2 Collective Exploration in Biology

In nature, animals are constantly looking for resources
such as food, sexual partners, or nesting sites. Animals
living in groups may use several types of behavior to
explore their environment and locate these resources.

For instance, fish can take advantage of the number
of individuals in a shoal to improve their capabilities to
find food [71.41–43]. To do so, they move and maintain
large interdistances between individuals. In this way,
fish increase their perceptual coverage as well as their
chances to find new resources.

Animals also heavily rely on random motion to
explore their environment [71.44–46]. Usually the ex-
ploratory pattern is not fully random (that is, isotropic),
because animals use all possible environmental cues at
hand to guide themselves. Random motion can be bi-
ased towards a given direction, or it can be constrained
in a specific area, for instance around a previously
memorized location [71.47]. Some desert ants achieve
high localization performance with odometry (counting
their footsteps) and relying on gravity and the polariza-
tion of natural light. They may move randomly to look
for resources but they are able to quickly return to their
nest and also to return to an interesting location previ-
ously identified.

71.5.3 Collective Exploration
in Swarm Robotics

One of the most common exploration strategies used
in robotics is random exploration. In a typical imple-
mentation, robots wander in the environment until they
perceive a feature of interest [71.48–50]. By doing this,
robots possibly lose contact with each other and, there-
fore, their ability to work together. Hence this strategy
is not suited for large or open environments. Due to the
stochastic nature of the strategy, its performance can
only be evaluated statistically. On average, the time to
locate a feature is proportional to the squared distance
with robots [71.44].

Systematic exploration strategies are very different.
Robots use some a priori knowledge about the structure
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a) b) c) d)

Fig. 71.5a–d Gas expansion behavior to monitor the surroundings of a central place. (a) The swarm starts aggregated
around a central place (represented by a black spot). (b,c) Robots try to move as far as possible from their neighbors,
while maintaining some visual or radio connection. (d) As a result, the whole swarm expands in the environment, like
a gas, covering part of the environment

of the environment in order to methodically sweep it
and find features. To ensure that robots do not repeat-
edly cover the same places, they may need to memorize
which places have already been explored. This is often
implemented with localization techniques and mapping
of the environment [71.51]. The advantage of this tech-
nique is that an answer will be found with certainty, and
the time of exploration has a lower and upper bound if
the environment is not open. However, memory require-
ments may be excessive, and the strategy is not suited
for open environments.

Between the two extreme strategies reported in the
previous paragraph lie a number of more specialized
strategies that present advantages and drawbacks de-
pending on the structure of the environment and the
distribution of the resources.

a) b) c) d)

Fig. 71.6a–d Chaining behavior in action with a central place represented by a large black dot, bottom left. (a) Robots
start aggregated around the central place. (b) While maintaining visual or radio contact with neighbors, some robots
change role and become part of a chain (grayed out). (c) Other robots move around the central place and encounter the
early chain of robots. With some probability, they also turn into new parts of the chain. (d) At the end of the iterative
process, robots form a long chain that spans through the environment and maintains a physical link to the central place

Collective motion (which has already been detailed
in Sect. 71.4) allows swarms to maintain their cohesion
while moving through the environment. Flocking be-
havior can be employed in an open environment with
a limited risk of losing contact between robots. The
swarm behaves like a sort of physical mesh that covers
part of the environment; to maximize the area covered
during exploration robots can increase their interdis-
tance during motion as much as possible.

Gas expansion behavior (Fig. 71.5) allows robots to
quickly and exhaustively explore the surroundings of
a central place [71.52–55]. While one or several robots
keep track of a central place, other robots try to move
as far as possible from their neighbors, while still main-
taining direct line of sight with at least one of them.
The swarm behaves like a fluid or gas that penetrates
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the asperities of the environment. The exploration is
very effective and any change or new resource within
the perception range of the swarm is immediately per-
ceived. However, since robots are bound to the central
place, the area that they can explore is limited by the
number of robots in the swarm. If robots do not stick to
a central place, the resulting behavior shifts to a type of
flocking or moving formation.

With chaining behavior, swarms can form a chain
with one end that sticks to a central place and the
other end that freely moves through the environ-

ment (Fig. 71.6). In [71.56], minimalistic behavior
produces a static chain, but different types of chain
motions can be imagined. In [71.57], for instance,
chains can build up, move, and disaggregate until
a resource is found. Contrary to gas expansion behav-
ior, a chaining swarm may not immediately perceive
changes in the environment because it has to con-
stantly sweep the space. Chaining allows robots to
cover a more important area than gas expansion behav-
ior, ideally a disc of radius proportional to the number
of robots.

71.6 Deciding Together: Collective Decision Making

Decision making is a behavior used by any artificial
system that must produce an adapted response when
facing new or unexpected situations. Because the best
action depends on the situation encountered, a swarm
cannot rely on a pre-programmed and systematic re-
action. Monolithic artificial systems make decisions all
the time, by gathering information and then evaluating
the different options at hand. However, when it comes to
swarms, each group member might have its own opin-
ion about the correct decision. If all individuals perceive
the same information and process it in the same way,
then they might independently make the same decision.
However, in practice, the more common case is that in-
dividuals perceive partial and noisy information about
the situation. Thus, if no coordination among group
members occurs, a segregation based on differing opin-
ions might take place, thereby removing the advantages
of being a swarm. Therefore, the challenge is to have
the whole group collaborate to make a collective deci-
sion and take action accordingly.

71.6.1 Variants of Collective Decision Making
Behavior

There are mainly three mechanisms reported in the
literature that allow swarms to make collective deci-
sions. The first and most simple mechanism is based
on opinion propagation. As soon as a group member
has enough information about a situation to make up its
mind, it propagates its opinion through the whole group.

The second mechanism is based on opinion averag-
ing. All individuals constantly share their opinion with
their neighbors and also adjust their own opinion in con-
sequence. This iterative process leads to the emergence
of a collective decision. The adjustment of the opinion

is typically achieved with an average function, espe-
cially if opinions are about quantitative values such as
a location, a distance, or a weight, for instance.

The third and last mechanism relies on amplifi-
cation to produce a collective decision. In a nutshell,
all individuals start with an opinion, and may decide
to change their opinion to another one. The switch to
a new opinion happens with a probability calculated on
the basis of the frequency of this opinion in the swarm.
Practically, this means that if an opinion is represented
often in the group, it has also more chances of being
adopted by an individual, which is why the term ampli-
fication is used.

Each of the three aforementioned mechanisms has
some advantages over the others and may be preferred,
depending on the situation faced. The factors that play
an important role in collective decision processes in-
clude the speed and the accuracy needed to make the
choice, the robustness of communication, and the relia-
bility of individual information.

In terms of speed, opinion propagation allows
fast collective decisions, in contrast with the two
other mechanisms, which require numerous interac-
tions among individuals. However, this speed generally
comes at the cost of robustness or accuracy [71.58–60].
If communication is not robust enough, messages can
be corrupted. The mechanism of opinion propagation
is particularly sensitive to such effects, and a wrong or
random collective decision might be made by a swarm
in that case.

The averaging mechanism would produce a more
robust decision because wrong information from erro-
neous messages is diluted in the larger amount of infor-
mation present in the swarm [71.61]. However, opinion
averaging works best if all individuals have roughly
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identical knowledge. If a small proportion of individ-
uals have excellent knowledge to make the decision,
while the remaining individuals have poor information,
opinion propagation may produce better results than
opinion averaging [71.33].

Lastly, the amplification mechanism is the main
choice for a gradually emerging collective decision if
opinions cannot be merged with some averaging func-
tion. Instead of adjusting opinions, individuals simply
adopt new opinions with some probability. It is worth
noting that this mechanism can produce good decisions
even if individuals have poor information.

71.6.2 Collective Decision Making in Biology

The powerful possibilities of decision making in groups
were already suggested byGalton back in 1905 [71.62].
In that paper, Galton reports the results of a weight-
judging competition in which competitors had to esti-
mate the weight of a fat ox. With slightly less than 800
independent estimates, Galton observed that the aver-
age estimate was accurate to 1% of the real weight of
the ox. This early observation opened interesting per-
spectives about the accuracy of collective estimations,
but it did not describe a collective decision mechanism,
since Galton himself had to gather the estimates and
apply some calculation to evaluate the estimate of the
crowd.

More recent studies about group navigation have
shown that groups of animals cohesively moving to-
gether towards a goal direction reach their objective
faster than independent individuals [71.63, 64]. The
mechanism of collective navigation not only allows the
individuals to move and stay together, but it also acts
as a distributed averaging function that locally fuses the
opinions of individuals about the direction of motion,
allowing them to improve their navigation performance.

In the last decades, the amplification mechanism
has been identified as a source of collective decision in
a broad range of animal species such as ants [71.65,
66], honeybees [71.67, 68], spiders [71.69], cock-
roaches [71.70], monkeys [71.71], and sheep [71.72].

Ants that choose one route to a resource probably
constitute the most well-known example of the amplifi-
cation mechanism. In [71.66], an ant colony is offered
two paths to two identical resource sites. Initially, the
two resources are exploited equally, but after a short
time ants focus on a single resource. This collective
choice happens because ants that have found the re-
source come back to the nest, marking the ground with
a pheromone trail. The next ants that try to reach the

resource are sensitive to this odor and have higher
chances of following the path with higher pheromone
concentration. As a result of this amplified response,
a collective decision rapidly emerges. In addition, it
was shown in [71.73] that when ants are presented two
paths of different lengths to the same resource, the same
pheromone-based mechanism allows them to choose
the shortest path. This can be explained by the fact
that ants using the shortest path need less time to make
round trips, making the pheromone concentration on
this path grow faster.

Quorum sensing is a special case of the ampli-
fication mechanism which has been notably used to
explain nest site selection in ants and bees [71.74–
76]. The most basic example of quorum sensing uses
a threshold to dictate if individuals should change their
opinion. If an individual perceives enough neighbors
(above the threshold) that already share the opposite
opinion, then it will in turn adopt this opinion. It has
been shown that this threshold makes quorum sensing
more robust to the propagation of erroneous infor-
mation during the decision process. In addition, the
accuracy of collective decisions made with quorum
sensing may improve with group size, and cognitive ca-
pabilities of groups may outperform the ones of single
individuals [71.77, 78]. In the case of nest site selection,
cohesion is mandatory for the group. A cross inhibition
mechanism complementing amplification was identi-
fied as a key feature to ensure that groups do not
split [71.79].

71.6.3 Collective Decision Making
in Swarm Robotics

In swarm robotics, opinion averaging has been used
to improve the localization capabilities of robots.
In [71.50], a swarm of robots carries out a foraging task
between a central place and a resource site. The robots
have to navigate back and forth between the two places
and use odometry to estimate their location. As odom-
etry provides noisy estimates, robots using solely this
technique may quickly get lost. Here, robots can share
and merge their localization opinions when they meet,
by means of local infrared communication. By doing
so, robots manage better localization and improve their
performance in the foraging task. Moreover, robots as-
sociate a confidence level to their estimates, which is
used to decide how information is merged. If a robot
advertises an opinion with very high confidence, then
the mechanism produces opinion propagation. Hence
the two mechanisms of averaging and propagation are
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a) b) c) d)Site 2

Site 1

Fig. 71.7a–d A swarm of robots is presented with two resource sites in its environment and must collectively choose
one. (a) Initially, robots are randomly scattered. (b) Using a random walk, they move until a resource site is found. On
average, the swarm is split in the two sites. (c) The more neighbors they perceive, the longer the robots stay. A competition
between the two sites takes place and any random event may change the situation. Here a robot just left the top right site,
further reducing the chances that other robots stay there. (d) The swarm has made a choice in favor of the bottom left
site. The choice is stable, although some robots may frequently leave the site for exploration

blended in a single behavior, and the balance between
them is tuned by the user with a control parameter.

The aggregation behavior previously mentioned in
Sect. 71.2.3 can be exploited to trigger collective de-
cision making in situations where there are several en-
vironmental heterogeneities. In [71.80], the robots are
presented two shelters and they choose one of them as
a resting site by aggregating there. The behavior of the
robots closely follows the one observed in cockroaches
(Fig. 71.7). In [71.81], both robots and cockroaches
are introduced in an arena with two shelters, demon-
strating the influence of the two groups on each other
when making the collective decision. The collective
decision is the result of an amplification mechanism,
implemented via the probability of a robot leaving an
aggregate. This probability diminishes with the number
of perceived neighbors, allowing larger aggregates to
attract more robots.

71.6.4 Other Studies

The opinion averaging mechanism was deeply investi-
gated with a general mathematical approach in [71.82,

83]. These studies demonstrate convergence of the
mechanism and emphasize the importance of the topol-
ogy of the communication network through which in-
teractions take place.

Another amplification mechanism inspired from the
behavior of honeybees was implemented in [71.84].
With this mechanism, it was shown that robots are able
to make a collective decision and between two sites
reliably choose the one offering the best illumination
conditions.

The amplification mechanism based on pheromone
trails, which is used by ants, has also inspired
several swarm robotics studies. In [71.85, 86], the
pheromone is replaced by light projected by a beamer.
This implementation is limited to laboratory stud-
ies, but it allowed demonstrating path selection with
robot swarms. In [71.87], the process is abstracted
inside a network of robots that are deployed in
the environment. Virtual ants hop from robots to
robots and deposit pheromone inside them. Even-
tually, the shortest path to a resource is marked
out by robots with high and sustained levels of
pheromone.

71.7 Conclusions

In this chapter, we have presented a broad overview
of the common problems faced in a swarm robotics
context, and we pointed to possible approaches to
obtain solutions based on a self-organizing process.
We have discussed aggregation, synchronization, co-

ordinated motion, collective exploration, and decision
making, and we argued that many application scenarios
could be solved by a mix of the above solutions. So,
are we done with swarm robotics research? Definitely
not.
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First of all, the fact that possible solutions exist does
not mean that they are the most suitable for any possible
application scenario. Hardware constraints, miniatur-
ization, environmental contingencies, and performance
issues may require the design of different solutions,
which may strongly depart from the examples given
above. Still, the approaches we presented constitute
a logical starting point, as well as a valid benchmark
against which novel approaches can be compared.

Another important research direction consists in
characterizing the self-organizing behavior we pre-
sented in terms of abstract properties, such as the time
of convergence toward a stable state, sensitivity to pa-
rameter changes, robustness to failures, and so forth.
From this perspective, the main problem is to ensure
a certain functionality of the system with respect to
the needs of the application and to predict the sys-
tem features before actual development and testing. In
many cases, a precise characterization of the system is
not possible, and only a statistical description can be
achieved. Still, such an enterprise would bring swarm
robotics closer to an engineering practice, eventually
allowing us to guarantee a certain performance of the
developed system, as well as other properties that engi-
neering commonly deals with.

The examples we presented all refer to homoge-
neous systems, in which all individuals are physically

identical and follow exactly the same rules. This is,
however, a strong simplification, which follows the
tradition of biological modeling of self-organizing be-
havior. However, instead of being a limitation, het-
erogeneity is potentially a richness to be exploited
in a swarm robotics system, which can lead to more
complex group behavior. For instance, different indi-
vidual reactions to features in the environment can be
at the basis of optimal decision making at the group
level [71.88]. Otherwise, heterogeneity between groups
of individuals can be exploited for performing tasks that
require specialized abilities, but maintaining an overall
redundancy of the system that ensures robustness and
scalability [71.89].

In conclusion, swarm robotics research still has
many challenges to address, which range from the
need for a more theoretical understanding of the rela-
tion between individual behavior and group dynamics,
to the autonomy and adaptation to varied real-world
conditions in order to face complex application scenar-
ios (e.g., due to harsh environmental conditions such
as planetary or underwater exploration, or to strong
miniaturization down to the micro scale). Whatever the
theoretical or practical driver is, we believe that the
studies presented in this chapter constitute fundamen-
tal reference points that teach us how self-organization
can be achieved in a swarm robotics system.
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