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7. F-Transform

Irina Perfilieva

The theory of the F-transform is presented and
discussed from the perspective of the latest devel-
opments and applications. Various fuzzy partitions
are considered. The definition of the F-transform
is given with respect to a generalized fuzzy parti-
tion, and the main properties of the F-transform
are listed. The applications to image processing,
namely imagecompression, fusionandedgedetec-
tion, are discussed with sufficient technical details.

7.1 Fuzzy Modeling ..................................... 113

7.2 Fuzzy Partitions .................................... 114
7.2.1 Fuzzy Partition

with the Ruspini Condition ........... 114
7.2.2 Fuzzy Partitions with the

Generalized Ruspini Condition ...... 115
7.2.3 Generalized Fuzzy Partitions ......... 116

7.3 Fuzzy Transform .................................... 117
7.3.1 Direct F-Transform ....................... 117
7.3.2 Inverse F-Transform ..................... 118

7.4 Discrete F-Transform ............................. 119

7.5 F-Transforms of Functions
of Two Variables.................................... 120

7.6 F1-Transform ........................................ 121

7.7 Applications ......................................... 122
7.7.1 Image Compression

and Reconstruction ...................... 122
7.7.2 Image Fusion............................... 125
7.7.3 F1-Transform Edge Detector .......... 127

7.8 Conclusions .......................................... 129

References ................................................... 129

7.1 Fuzzy Modeling

Fuzzy modeling is still regarded as a modern technique
with a nonclassical background. The goal of this chap-
ter is to bridge standard mathematical methods and
methods for the construction of fuzzy approximation
models. We will present the theory of the fuzzy trans-
form (the F-transform), which was introduced in [7.1]
for the purpose of encompassing both classical (usu-
ally, integral) transforms and approximation models
based on fuzzy IF–THEN rules (fuzzy approximation
models). We start with an informal characterization of
integral transforms, and from this discussion, we ex-
amine the similarities and differences among integral
transforms, the F-transform, and fuzzy approximation
models. An integral transform is performed using some
kernel. The kernel is represented by a function of two
variables and can be understood as a collection of lo-
cal factors or closeness areas around elements of an
original space. Each factor is then assigned an aver-

age value of a transforming object (usually, a function).
Consequently, the transformed object is a new function
defined on a space of local factors. The F-transform
can be implicitly characterized by a discrete kernel that
is associated with a finite collection of fuzzy subsets
(local factors or closeness areas around chosen nodes)
of an original space. We say that this collection estab-
lishes a fuzzy partition of the space. Then, similar to
integral transforms, the F-transform assigns an aver-
age value of a transforming object to each fuzzy subset
from the fuzzy partition of the space. Consequently,
the F-transformed object is a finite vector of average
values.

Similar to the F-transform, a fuzzy approximation
model can also be implicitly characterized by a discrete
kernel that establishes a fuzzy partition of an original
space. Each element of the established fuzzy partition
is a fuzzy set in the IF part (antecedent) of the re-
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spective fuzzy IF–THEN rule. The rule characterizes
a correspondence between an antecedent and an aver-
age value of a transforming object (singleton model) or
a fuzzy subset of a space of object values (fuzzy set
model).

To emphasize the differences among integral trans-
forms, the F-transform, and fuzzy approximation mod-
els, we note that the last two are actually finite collec-
tions of local descriptions of a considered object. Each
collection produces a global description of the consid-
ered object in the form of the direct F-transform or the
system of fuzzy IF–THEN rules.

The idea of producing collections of local descrip-
tions by fuzzy IF–THEN rules originates from the
early works of Zadeh [7.2–5] and from the Takagi–
Sugeno [7.6] approximation models.

Similar to the conventional integral transforms (the
Fourier and Laplace transforms, for example), the F-
transform performs a transformation of an original
universe of functions into a universe of their skeleton

models (vectors of F-transform components) for which
further computations are easier (see, e.g., an application
to the initial value problem with fuzzy initial condi-
tions [7.7]). In this respect, the F-transform can be as
useful in applications as traditional transforms (see ap-
plications to image compression [7.8, 9] and time series
processing [7.10–14], for example). Moreover, some-
times the F-transform can be more efficient than its
counterparts; see the details below.

The structure of this chapter is as follows. In
Sect. 7.2, we consider various fuzzy partitions: uniform
and with and without the Ruspini condition, among oth-
ers; in Sect. 7.3, definitions of the F-transforms (direct
and inverse) and their main properties are considered;
in Sect. 7.4, the discrete F-transform is defined; in
Sect. 7.5, the direct and inverse F-transform of a func-
tion of two variables is introduced; in Sect. 7.6, a higher
degree F-transform is considered; in Sect. 7.7, appli-
cations of the F-transform and F1-transform to image
processing are discussed.

7.2 Fuzzy Partitions

In this section, we present a short overview of various
fuzzy partitions of a universe in which transforming
objects (functions) are defined. As we learned from
Sect. 7.1, a fuzzy partition is a finite collection of fuzzy
subsets of the universe that determines a discrete kernel
and thus a respective transform. Therefore, we have as
many F-transforms as fuzzy partitions.

7.2.1 Fuzzy Partition
with the Ruspini Condition

The fuzzy partition with the Ruspini condition (7.1)
(simply, Ruspini partition) was introduced in [7.1].
This condition implies normality of the respective
fuzzy partition, i. e., the partition-of-unity. It then leads
to a simplified version of the inverse F-transform.
In later publications [7.15, 16], the Ruspini condition
was weakened to obtain an additional degree of free-
dom and a better approximation by the inverse F-
transform.

Definition 7.1
Let x1 < 	 	 	< xn be fixed nodes within Œa; b� such
that x1 D a; xn D b and n� 2. We say that the fuzzy
sets A1; : : : ;An, identified with their membership func-
tions defined on Œa; b�, establish a Ruspini partition of

Œa; b� if they fulfill the following conditions for kD
1; : : : ; n:

1. Ak W Œa; b�! Œ0; 1� ; Ak.xk/D 1
2. Ak.x/D 0 if x 62 .xk�1; xkC1/, where for uniformity

of notation, we set x0 D a and xnC1 D b
3. Ak.x/ is continuous
4. Ak.x/, for kD 2; : : : ; n, strictly increases on

Œxk�1; xk� and Ak.x/ for kD 1; : : : ; n�1, strictly de-
creases on Œxk; xkC1�

5. for all x 2 Œa; b�,

nX
kD1

Ak.x/D 1 : (7.1)

The condition (7.1) is known as the Ruspini condi-
tion. The membership functions A1; : : : ;An are called
the basic functions. A point x 2 Œa; b� is covered by the
basic function Ak if Ak.x/ > 0.

The shape of the basic functions is not predeter-
mined and therefore, it can be chosen according to
additional requirements (e.g., smoothness). Let us give
examples of various fuzzy partitions with the Ruspini
condition. In Fig. 7.1, two such partitions with triangu-
lar and cosine basic functions are shown. The following
formulas represent generic fuzzy partitions with the
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Ruspini condition and triangular functions

A1.x/D
8<
:1�

.x� x1/

h1
; x 2 Œx1; x2� ;

0 ; otherwise ;

Ak.x/D

8̂̂̂
<̂
ˆ̂̂̂:

.x� xk�1/

hk�1
; x 2 Œxk�1; xk� ;

1� .x� xk/

hk
; x 2 Œxk; xkC1� ;

0 ; otherwise ;

An.x/D
8<
:
.x� xn�1/

hn�1
; x 2 Œxn�1; xn� ;

0 ; otherwise ;

where kD 2; : : : n� 1 and hk D xkC1� xk.
We say that a Ruspini partition of Œa; b� is h-uniform

if its nodes x1; : : : ; xn, where n � 3, are equidistant,
i. e., xk D aCh.k�1/, for kD 1; : : : ; n, where hD .b�
a/=.n� 1/, and the two additional properties are met:

6. Ak.xk � x/D Ak.xk C x/, for all x 2 Œ0; h�, kD
2; : : : ; n� 1,

7. Ak.x/D Ak�1.x� h/, for all k D 2; : : : ; n� 1 and
x 2 Œxk; xkC1�, and AkC1.x/D Ak.x� h/, for all
kD 2; : : : ; n� 1 and x 2 Œxk; xkC1�.

7.2.2 Fuzzy Partitions with the
Generalized Ruspini Condition

Fuzzy partitions with the generalized Ruspini con-
dition were introduced in [7.15]. The generalization
consists in replacing partition-of-unity (7.1) by fuzzy r-
partition (7.2). This type of partition was investigated
in [7.15, 17], where the focus was on smoothing or
filtering data using the inverse F-transform. The follow-
ing definition is taken from [7.15].

Definition 7.2
Let r � 1 and n � 2 be fixed integers such that r � n.
Let aD x1 < 	 	 	< xn D b be nodes within Œa; b�, and
let x1�r < 	 	 	< x0 < a and b< xnC1 < 	 	 	 < xnCr be
nodes outside of Œa; b�. A fuzzy r-partition of Œa; b� is
a family of nC2r�2 continuous, normal, convex fuzzy
sets

A.r/
2�r; : : : ;A

.r/
1 ; : : : ;A.r/

n ; : : : ;A.r/
nCr�1

such that the following conditions are fulfilled:

0 1 2 3 4 5 6 7 8 9

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
a)

1

0.5

0

0 1 2 3 4 5 6 7 8 9

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
b)

1

0.5

0

Fig. 7.1a,b Two Ruspini partitions with triangular (a) and cosine
basic functions (b)

1. For kD 1; : : : ; n, A.r/
k is a continuous function on

Œa; b� such that A.r/
k .xk/D 1 and A.r/

k .x/D 0 for x 62
Œmax.xk�r; a/;min.xkCr; b/�

2. For kD 1; : : : ; n, A.r/
k is increasing on

Œmax.xk�r; a/; xk� and decreasing on
Œxk;min.xkCr; b/�

3. For kD�rC 2; : : : ; 0, A.r/
k is decreasing on

Œmax.xk; a/; xkCr�

4. For kD nC 1; : : : ; nC r� 1, A.r/
k is increasing on

Œxk�r;min.xk; b/�
5. For all x 2 Œa; b�, the following partition-of-r condi-

tion holds

nCr�1X
kD�rC2

A.r/
k .x/D r : (7.2)

If rD 1, then a fuzzy r-partition in the sense of Defi-
nition 7.2 becomes the standard fuzzy partition in the
sense of Definition 7.1, i. e., the partition-of-unity. In
Fig. 7.2, the fuzzy 2-partition with triangular basic
functions is shown.

0 1 2 3 4 5 6 7 8 9

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
1

0.5

0

Fig. 7.2 An example of a fuzzy 2-partition with triangular basic
functions
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7.2.3 Generalized Fuzzy Partitions

A generalized fuzzy partition appeared in [7.16] in
connection with the notion of the higher degree F-
transform. Its even weaker version was implicitly in-
troduced in [7.18] with the purpose of meeting the
requirements of image compression. We summarize
both these notions and propose the following definition.

Definition 7.3
Let Œa; b� be an interval on R, n� 2, and let
x0; x1; : : : ; xn; xnC1 be nodes such that

aD x0 � x1 < 	 	 	 < xn � xnC1 D b :

We say that the fuzzy sets

A1; : : : ;An W Œa; b�! Œ0; 1�

constitute a generalized fuzzy partition of Œa; b� if for
every kD 1; : : : ; n there exist h0

k; h
00

k � 0 such that

h0

k C h00

k > 0 ; Œxk � h0

k; xk C h00

k �� Œa; b�

and the following three conditions are fulfilled:

1. (locality) – Ak.x/ > 0 if x 2 .xk � h0

k; xk C h00

k /, and
Ak.x/D 0 if x 2 Œa; b� n Œxk � h0

k; xk C h00

k �
2. (continuity) – Ak is continuous on Œxk � h0

k; xk C h00

k �
3. (covering) – for x 2 Œa; b�,

Pn
kD1 Ak.x/ > 0.

It is important to remark that by conditions of local-
ity and continuity,

bZ
a

Ak.x/dx> 0 :

–1 1 x0 xk–2 xk–1 xn–1 xn+1xk+1

Ak–1 Ak

xkx2a

. . . . . . . . . . . . . . . . . . . . . .

h

1
A0 A1

b

An

Fig. 7.3 Generating function A0 of an h-uniform generalized fuzzy partition (after [7.19])

An .h; h0/-uniform generalized fuzzy partition of
Œa; b� is defined for equidistant nodes

xk D aC h.k� 1/ ; kD 1; : : : ; n ;

where hD .b�a/=.n�1/, h0 > h=2 and two additional
properties are satisfied:

4. Ak.x/D Ak�1.x� h/ for all kD 2; : : : ; n� 1 and
x 2 Œxk; xkC1�, and AkC1.x/D Ak.x� h/ for all kD
2; : : : ; n� 1 and x 2 Œxk; xkC1�.

5. h0

1 D h00

n D 0, h00

1 D h0

2 D 	 	 	 D h00

n�1 D h0

n D h0 and
for all kD 2; : : : ; n� 1 and all x 2 Œ0; h0�, Ak.xk �
x/D Ak.xk C x/.

An .h; h0/-uniform generalized fuzzy partition of
Œa; b� can also be defined using the generating function
A0 W Œ�1; 1�! Œ0; 1�, which is assumed to be even, con-
tinuous, and positive everywhere except for on bound-
aries, where it vanishes. (The function A0 W Œ�1; 1�!R
is even if for all x 2 Œ0; 1�, A0.�x/D A0.x/.) Then, ba-
sic functions Ak of an .h;h0/-uniform generalized fuzzy
partition are shifted copies of A0 in the sense that

A1.x/D
8<
:A0

�x� x1
h0

�
; x 2 Œx1; x1 C h0� ;

0 ; otherwise ;

and for kD 2; : : : ; n� 1,

Ak.x/D
8<
:A0

�x� xk
h0

�
; x 2 Œxk � h0; xk C h0� ;

0 ; otherwise ;
;

An.x/D
8<
: A0

�x� xn
h0

�
; x 2 Œxn � h0; xn� ;

0 ; otherwise :
(7.3)

As an example, we note that the function A0.x/D 1�jxj
is a generating function for all uniform triangular par-
titions. The difference between them is in parameters h
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and h0. An .h; h/-uniform generalized fuzzy partition is
simply called an h-uniform one (Fig. 7.3).

Remark 7.1
A generalized fuzzy partition can also be consid-
ered in connection with radial membership functions;

see [7.20]. In this case, every basic function has
a generic representation in terms of a kernel ' WRC !
R such that

Ak.x/D '.kx� xkk2/ ; kD 1; : : : ; n :

7.3 Fuzzy Transform

The F-transform establishes a correspondence between
a set of continuous functions on an interval of real num-
bers and the set of n-dimensional (real) vectors. Each
component of the resulting vector is a weighted local
mean of a corresponding function over an area covered
by a corresponding basic function. The vector of the
F-transform components is a simplified representation
of an original function that can be used instead of the
original function in many applications. Among them,
let us mention applications to image compression [7.8,
9], image fusion, image reduction, time series process-
ing [7.10–14], and the initial value problem with fuzzy
initial conditions [7.7].

7.3.1 Direct F-Transform

In this section, we give the definition of the F-transform
according to [7.1] and recall the main properties of
it. We assume that the universe is an interval Œa; b�
and x1 < 	 	 	< xn are fixed nodes from Œa; b� such that
x1 D a, xn D b and n� 2. Let us formally extend the
set of nodes by x0 D a and xnC1 D b. Let A1; : : : ;An

be the basic functions that form a fuzzy partition of
Œa; b� according to Definition 7.3. Let C.Œa;b�/ be the
set of continuous functions on the interval Œa; b�. The
following definition introduces the fuzzy transform of
a function f 2 C.Œa;b�/.

Definition 7.4
Let A1; : : : ;An be the basic functions that form a gen-
eralized fuzzy partition of Œa; b� and f be any function
from C.Œa;b�/. We say that the n-tuple of real num-
bers FŒf �D .F1; : : : ;Fn/ given by

Fk D
R b
a f .x/Ak.x/dxR b

a Ak.x/dx
; k D 1; : : : ; n ; (7.4)

is the (integral) F-transform of f with respect to
A1; : : : ;An.

The elements F1; : : : ;Fn are called the components of
the F-transform. If A1; : : : ;An is an h-uniform Ruspini
partition, then (7.4) may be simplified as follows,

F1 D 2

h

x2Z
x1

f .x/A1.x/dx ;

Fn D 2

h

xnZ
xn�1

f .x/An.x/dx ;

Fk D 1

h

xkC1Z
xk�1

f .x/Ak.x/dx ; kD 2; : : : ; n� 1 : (7.5)

The following is a list of some properties of the F-
transform of f with respect to a generalized fuzzy
partition of Œa; b�:

(a) If for all x 2 Œa; b�, f .x/D C, then
Fk D C; kD 1; : : : ; n.

(b) If f D ˛gCˇh, then
FŒf �D ˛FŒg�CˇFŒh�.

(c) If Œc; d�D ff .x/ j x 2 Œa; b�g, then
Fk DminŒc;d�

R b
a .f .x/� y/2Ak.x/dx, kD 1; : : : ; n.

(d) If f is twice continuously differentiable on Œa; b�,
then Fk D f .xk/CO.h2/; k D 1; : : : ; n. (This is true
for an h-uniform Ruspini partition of Œa; b� only.
A similar estimation of the F-transform compo-
nent Fk as a linear combination of f .xk � rC
1/; : : : ; f .xk/; : : : ; f .xk C r� 1/ can be established
for a fuzzy r-partition [7.15].)

(e) If a generalized fuzzy partition is .h;h0/-uniform,
then for each kD 1; : : : ; n� 1,

j f .t/�Fkj � 2!.Qh; f / ;
j f .t/�FkC1j � 2!.Qh; f / ;

where QhDmax.h;h0/, t 2 Œxk; xk C Qh�, and
!.Qh; f /D max

jıj	

Qh
max

x2Œa;b�ı�
j f .xC ı/� f .x/j :

(7.6)
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(f)

bZ
a

f .x/dxD h.
F1

2
C Fn

2
C

n�1X
kD2

Fk/ :

(This is true for an h-uniform Ruspini partition of
Œa; b� only.)

7.3.2 Inverse F-Transform

It is clear that an original nonconstant function f can-
not be precisely reconstructed from its F-transform FŒf �
because we lose information when passing from f to
FŒf �. However, the inverse F-transform Of that can be
reconstructed (using the inversion formula (7.7)) ap-
proximates f in such a way that universal convergence
can be established.

Definition 7.5
Let A1; : : : ;An be the basic functions that form a gener-
alized fuzzy partition of Œa; b� and f be a function from
C.Œa;b�/. Let FŒf �D .F1; : : : ;Fn/ be the F-transform
of f with respect to A1; : : : ;An. Then, the function Of W
Œa; b�!R represented by

Of .x/D
Pn

kD1 FkAk.x/Pn
kD1 Ak.x/

; (7.7)

is called the inverse F-transform.

Remark 7.2
If a fuzzy partition of Œa; b� fulfills the generalized
Ruspini condition (7.2) with r � 1, then the inversion
formula (7.7) can be simplified to

Of .x/D 1

r

nX
kD1

FkAk.x/

or to (in the case of the Ruspini partition for which
rD 1)

Of .x/D
nX

kD1

FkAk.x/ :

The following theorem demonstrates that the in-
verse F-transform Of can approximate a continuous
function f with arbitrary precision. Thus, it explains
why the F-transform has convincing applications in
various fields, including image and time series process-
ing, and data mining [7.21]. In Fig. 7.4, we illustrate

0 1 2 3 4 5 6

10.8

Fig. 7.4 The function f .x/D 10e�.x��/2 (gray) and its
inverse F-transform (brown) with respect to the uniform
Ruspini partition of Œ0; 6� by 29 triangular-shaped basic
functions. The F-transform components are marked by
small circles

how the inverse F-transform approximates the function
10e�.x��/2 .

Theorem 7.1
Let f be a continuous function on Œa; b�. Then, for any
" > 0, there exist n" and a generalized fuzzy partition
A1; : : : ;An" of Œa; b� such that for all x 2 Œa; b�,

eq8jf .x/� Of".x/j � " ; (7.8)

where Of" is the inverse F-transform of f with respect to
the fuzzy partition A1; : : : ;An" .

From Theorem 7.2, which is given below, we learn
that for a pointwise approximation (as in Theorem 7.1),
it is sufficient to compute the F-transform with respect
to the simplest triangular fuzzy partition. Therefore, al-
most all applications of the F-transform are based on
this type of partition.

Theorem 7.2
Let f be any continuous function on Œa; b�, and let
A0

1; : : : ;A
0

n and A
00

1 ; : : : ;A
00

n , for n � 3, be the basic func-
tions that form different .h;h0/-uniform generalized
fuzzy partitions of Œa; b�. Let Of 0 and Of 00 be the two in-
verse F-transforms of f with respect to different sets of
basic functions A0

1; : : : ;A
0

n or A
00

1 ; : : : ;A
00

n . Then, for ar-
bitrary x 2 Œa; b�,

jOf 0.x/� Of 00.x/j � 4!.Qh; f / ;
where hD b�a

n�1 ,
QhDmax.h; h0/ and !.Qh; f / is the mod-

ulus of continuity (7.6) of f on the interval Œa; b�.
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a)

b)

Fig. 7.5 (a) Function f .x/D 10e�.x��/2 (gray) and its in-
verse F-transform (brown) with respect to the Ruspini
partition given by the triangular-shaped basic functions
A1; : : : ;A5 (gray). (b) Noisy function f C s (gray), where
s.x/D sin.2x/C 0:6 sin.8x/C 0:3 sin.16x/, and its inverse
F-transform (brown) with respect to the same fuzzy par-
tition. Both inverse F-transforms Of and bf C s are equal on
Œx2; x4�

The proofs of Theorems 7.1 and 7.2 can be obtained
from the respective proofs in [7.22, Theorems 2 and 3]
after some necessary changes caused by the usage of
the generalized fuzzy partition.

Below, we list some properties of the inverse F-
transform Of of f that were considered and proved
in [7.1, 15, 23]. If not specially mentioned, it is assumed
that the F-transform is computed with respect to a gen-
eralized fuzzy partition of Œa; b�:

(a) If for all x 2 Œa; b� , f .x/D C, then Of .x/D C
(b) If f D ˛gCˇh , then Of D ˛ OgCˇ Oh
(c)

R b
a f .x/dxD R b

a
Of .x/dx (This is true for the fuzzy r-

partition .r � 1/ of Œa; b� only.)
(d) Let A1; : : : ;An be an h-uniform Ruspini partition of

Œa; b�, where hD .b� a/=.n� 1/ and n> 3. Let s W
Œa; b�!R be a continuous function such that one
of the following two conditions are fulfilled:

(i) s is 2h-periodical and for all x 2 Œ0; h�, s.xk �
x/D�s.xk C x/, where kD 2; : : : ; n� 1

(ii) s is h-periodical and
R xk
xk�1

s.x/dxD 0, where
kD 2; : : : ; n� 1.

Then, for x 2 Œx2; xn�1�,

Of D bf C s :

The last property is known as noise removal. This
phrase implies that both functions f (non-noisy) and fC
s (noisy) have the same inverse F-transform. The noise
is represented by s and characterized by conditions (i)
or (ii). We illustrate this property in Fig. 7.5.

7.4 Discrete F-Transform

The discrete case of the F-transform, for which an orig-
inal function f is defined (may be computed) on a finite
set PD fp1; : : : ; plg � Œa; b�, was introduced in [7.1].
We will adapt the mentioned definition to the case of
a generalized fuzzy partition of Œa; b�.

We assume that the domain P of the function f is
sufficiently dense with respect to the fixed partition, i. e.,

.8k/.9j/Ak.pj/ > 0 :

Then, the (discrete) F-transform of f is defined as fol-
lows.

Definition 7.6
Let A1; : : : ;An, for n> 2, be the basic functions that
form a generalized fuzzy partition of Œa; b�, and let func-

tion f be defined on the set PD fp1; : : : ; plg � Œa; b�,
which is sufficiently dense with respect to the partition.
We say that the n-tuple of real numbers .F1; : : : ;Fn/ is
the discrete F-transform of f with respect to A1; : : : ;An

if

Fk D
Pl

jD1 f .pj/Ak.pj/Pl
jD1 Ak.pj/

: (7.9)

It is not difficult to demonstrate that the components of
the discrete F-transform have similar properties to those
listed in Sect. 7.3.1.

In the discrete case, we define the inverse F-
transform on the same set P on which the original
function is defined.
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Definition 7.7
Let A1; : : : ;An, for n> 2, be the basic functions that
form a generalized fuzzy partition of Œa; b�, and let func-
tion f be defined on the set PD fp1; : : : ; plg � Œa; b�,
which is sufficiently dense with respect to the parti-
tion. Moreover, let FŒf �D .F1; : : : ;Fn/ be the discrete
F-transform of f w.r.t. A1; : : : ;An. Then, the function
Of W P!R represented by

Of .pj/D
Pn

kD1 FkAk.pj/Pn
kD1 Ak.pj/

(7.10)

is the inverse discrete F-transform of f .

Remark 7.3
If a fuzzy partition of Œa; b� fulfills the generalized
Ruspini condition (7.2) with r � 1, i. e., for all pj 2 P,Pn

kD1 Ak.pj/D r, then the inversion formula (7.10) can
be simplified to

Of .pj/D 1

r

nX
kD1

FkAk.pj/

or (in the case of Ruspini partition, i. e., rD 1) to

Of .pj/D
nX

kD1

FkAk.pj/ :

Analogous to Theorem 7.1, we can show that
the inverse discrete F-transform Of can approximate
the original discrete function f on P with arbi-
trary precision [7.1]. Moreover, the properties (a)–
(c) that are listed in Sect. 7.3.2 have valid discrete
analogies.

An interesting comparison between the discrete F-
transform and the least-square approximation was made
in [7.20]. It was demonstrated that the discrete F-
transform is invariant with respect to the interpolating
and least-squares approximation of the set f.pj; f .pj// j
jD 1; : : : ; lg. This means that the best approximation
of f on P in the form of

Pn
iD1 ˛iAi, where n� l,

has the same direct discrete F-transform as the origi-
nal f .

7.5 F-Transforms of Functions of Two Variables

The direct and inverse F-transform of a function of two
(and more) variables is a direct generalization of the
case of one variable. We introduce it briefly and refer
to [7.1] for more details.

Suppose that the universe is a rectangle Œa; b��
Œc; d��R�R and that x1 < 	 	 	< xn are the fixed nodes
of Œa; b� and y1 < 	 	 	 < ym are the fixed nodes of Œc; d�
such that x1 D a, xn D b, y1 D c, xm D d and n;m� 2.
Let us formally extend the set of nodes by setting
x0 D a, y0 D c, xnC1 D b, and ymC1 D d. Assume that
A1; : : : ;An are the basic functions that form a general-
ized fuzzy partition of Œa; b� and B1; : : : ;Bm are basic
functions that form a generalized fuzzy partition of
Œc; d�. Then, the rectangle Œa; b�� Œc; d� is partitioned
into fuzzy sets Ak �Bl with the membership functions
.Ak�Bl/.x; y/D Ak.x/Bl.y/, kD 1; : : : ; n, lD 1; : : : ;m.
Let C.Œa;b�� Œc; d�/ be the set of continuous functions
of two variables on the domain and f 2 C.Œa; b�� Œc; d�/.

Definition 7.8
Let A1; : : : ;An be the basic functions that form a gen-
eralized fuzzy partition of Œa; b� and B1; : : : ;Bm be the
basic functions that form a generalized fuzzy partition
of Œc; d�. Let f be any function from C.Œa; b�� Œc; d�/.
We say that the n�m-matrix of real numbers FŒf �D
.Fkl/n
m is the (integral) F-transform of f with respect

to A1; : : : ;An and B1; : : : ;Bm if for each kD 1; : : : ; n,
lD 1; : : : ;m,

Fkl D
R d
c

R b
a f .x; y/Ak.x/Bl.y/dxdyR d
c

R b
a Ak.x/Bl.y/dxdy

: (7.11)

The components Fkl (7.11) have properties (adapted
to the case of two variables) similar to those listed
in Sect. 7.3.1. For example, the property (e) has the
following form (we assume that A1; : : : ;An form an h1-
uniform Ruspini partition of Œa; b� and B1; : : : ;Bm form
an h2-uniform Ruspini partition of Œc; d�)

dZ
c

bZ
a

f .x; y/dxdy

D h1h2
4

.F11 CF1m CFn1 CFnm/

C h1h2
2

 
n�1X
kD2

Fk1 C
n�1X
kD2

Fkm C
m�1X
lD2

F1l C
m�1X
lD2

Fnl

!

C h1h2

n�1X
kD2

m�1X
lD2

Fkl :

In the discrete case, when an original function f is
known only at points .pi; qj/ 2 Œa; b�� Œc; d�, where iD
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1; : : : ;N and jD 1; : : : ;M, the (discrete) F-transform
of f can be introduced in a manner analogous to the
case of a function of one variable. This case is important
for applications of the F-transform to image process-
ing [7.8, 9, 18, 24–26].

Definition 7.9
Let a function f be given at nodes .pi; qj/ 2 Œa; b��
Œc; d�, for which iD 1; : : : ;N and jD 1; : : : ;M, and
A1; : : : ;An and B1; : : : ;Bm, where n< N andm<M, be
the basic functions that form generalized fuzzy parti-
tions of Œa; b� and Œc; d�, respectively. Suppose that setsP
and Q of these nodes are sufficiently dense with respect
to the chosen partitions. We say that the n�m-matrix of
real numbers FŒf �D .Fkl/nm is the discrete F-transform
of f with respect to A1; : : : ;An and B1; : : : ;Bm if

Fkl D
PM

jD1

PN
iD1 f .pi; qj/Ak.pi/Bl.qj/PM

jD1

PN
iD1 Ak.pi/Bl.qj/

(7.12)

holds for all kD 1; : : : ; n, lD 1; : : : ;m.

The inverse F-transform of a function of two vari-
ables is a simple extension of (7.7). It will be given
below for the continuous version of a function.

Definition 7.10
Let A1; : : : ;An and B1; : : : ;Bm be the basic func-
tions that form generalized fuzzy partitions of Œa; b�
and Œc; d�, respectively. Let f be a function from
C.Œa; b�� Œc; d�/ and FŒf � be the F-transform of f with
respect to A1; : : : ;An and B1; : : : ;Bm. Then, the func-
tion Of W Œa; b�� Œc; d�!R represented by

Of .x; y/D
Pn

kD1

Pm
lD1 FklAk.x/Bl.y/Pn

kD1

Pm
lD1 Ak.x/Bl.y/

(7.13)

is called the the inverse F-transform.

Similar to the case of a function of one variable, we
can prove that the inverse F-transform Of can approxi-
mate the original continuous function f with arbitrary
precision, and the (adapted) properties (a)–(c), which
are listed in Sect. 7.3.2, are fulfilled.

7.6 F1-Transform

In [7.16], a higher degree F-transform was introduced
for the purpose for advanced applications in time series
and image processing [7.26, 27]. In this section, we give
a description of the F1-transform, which has working
applications, and refer to [7.16] for the Fm-transform
for which m> 1.

Throughout this section, we assume that A1; : : : ;An,
n> 2 is an h-uniform generalized fuzzy partition of
Œa; b� such that there exists a generating function A0 W
Œ�1; 1�! Œ0; 1� such that for all kD 1; : : : ; n, Ak is de-
fined by (7.3) (the illustration is in Fig. 7.3).

Let k be a fixed integer from f1; : : : ; ng, and let
L2.Ak/ be a normed space of square-integrable func-
tions f W Œxk�1; xkC1�!R, where the norm kf kk is
given by

kf kk D
vuutR xkC1

xk�1
f 2.x/Ak.x/dxR xkC1

xk�1
Ak.x/dx

:

By L2.A1; : : : ;An/ we denote a set of functions f W
Œa; b�!R such that for all kD 1; : : : ; n, f jŒxk�1;xkC1� 2
L2.Ak/, where f jŒxk�1;xkC1� is the restriction of f on
Œxk�1; xkC1�.

For any function f from L2.A1; : : : ;An/ we define
the F1-transform of f with respect to A1; : : : ;An as the

vector of linear functions

F1Œf �D .c1;0Cc1;1.x�x1/; : : : ; cn;0Ccn;1.x�xn// ;

(7.14)

where for every kD 1; : : : ; n,

ck;0 D
R xkC1
xk�1

f .x/Ak.x/dx

hs0
;

ck;1 D
R xkC1
xk�1

f .x/.x� xk/Ak.x/dxR xkC1
xk�1

.x� xk/2Ak.x/dx
; (7.15)

and

s0 D
1Z

�1

A0.x/dx :

The kth component of the vector F1Œf � is denoted by
F1
k Œf �.
The following is a list of properties of the F1-

transform of f with respect to a generalized fuzzy
partition of Œa; b�. They are particular cases of the prop-
erties of the Fm-transform proved in [7.16]:

(a) Let Fk and ck;0 C ck;1.x� xk/, for kD 1; : : : ; n, be
respective kth components of F1Œf � and FŒf �. Then,
Fk D ck;0.
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x0 xk–2 xk–1 xn–1 xn+1xk+1
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Fig. 7.6 Function f , its F1-transform components F1
1 ; : : : ;F

1
k ; : : : ;F

1
n (linear segments) and its F

0-transform components
F0
1 ; : : : ;F

0
k ; : : : ;F

0
n (star nodes) (after [7.16])

(b) If for all x 2 Œa; b�, f .x/D dC cx, then all the com-
ponents of F1-transform of dC cx are equal to .dC
cxk/C c.x� xk/, kD 1; : : : ; n.

(c) If f D ˛gCˇh, then F1Œf �D ˛F1Œg�CˇF1Œh�.
(d) ck;0 C ck;1.x� xk/Dmin kf .x/� .dC c.x�

xk/kk; kD 1; : : : ; n, where min is considered
over the set of functions of the form .dC c.x� xk//.

(e) If f is four times continuously differentiable on
Œa; b�, then

ck;0 D f .xk/CO.h2/ ;

ck;1 D f 0.xk/CO.h/ ; kD 1; : : : ; n :

In Fig. 7.6, we show a schematic representation of
the F1-transform components of a generic function f .

Finally, we give simplified expressions of F1-
transform components with respect to an h-uniform
triangular fuzzy partition [7.16]

ck;0 D
R xkC1
xk�1

f .x/Ak.x/dx

h
; (7.16)

ck;1 D
12
R xkC1
xk�1

f .x/.x� xk/Ak.x/dx

h3
; (7.17)

where kD 1; : : : ; n.

7.7 Applications

In this section, we consider applications of the F-
transform and F1-transform to image processing.

7.7.1 Image Compression
and Reconstruction

A method of lossy image compression and reconstruc-
tion using fuzzy relations was proposed in [7.19]. The

dominant idea was a choice of suitable granulation (rep-
resented by a fuzzy relation) of an image domain. We
will refer to this method as FEQ. F-transform image
compression (FTR) is based on the same idea of gran-
ulation but connects it with fuzzy partitions [7.1, 9]. In
the cited papers, two approaches were proposed: a uni-
form fuzzy partition of the entire domain [7.1] and
a two-step partition [7.9] in which initially the entire do-
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main is partitioned into blocks and second, each block is
uniformly partitioned into fuzzy sets. Both approaches
were compared with JPEG and other compression tech-
niques (including FEQ) [7.9], and the conclusion was
that the F-transform-based method is slightly worse
than JPEG but better than FEQ. Two further improve-
ments of the F-transform-based compression have been
proposed in [7.18, 28], where an advantage over JPEG
was achieved in many cases.

In this section, after reiterating the principles of
image compression and reconstruction using the F-
transform and its inverse, we explain how a proper
choice of a fuzzy partition improves the quality of the
reconstructed image. A detailed elaboration and com-
parison with other existing techniques is in [7.18, 28]
and will be presented in subsequent papers.

Principles of Image Compression
Using the F-Transform

Let a grayscale image of size N �M pixels be repre-
sented by a function of two variables u W N�M ! Œ0; 1�.
The value u.i; j/ represents the intensity range of each
pixel in the gray scale. The problem of image compres-
sion is to reduce the image’s size to save space or trans-
mission time. A desirable size n�m (where n< N and
m<M) of a compressed image can be obtained from
the compression ratio, �D nm=.NM/. If a compression
method is lossy (JPEG, FEQ, and the F-transform, for
example), then the respective reconstruction Ou to a full
size image is compared with the original image using
the two quality indices PSNR (peak signal-to-noise ra-
tio) and RMSE (root-mean-square error), where

PSNRD 20 ln
255

RMSE
;

and

RMSED
sPN

iD1

PM
jD1Œu.i; j/� Ou.i; j/�2

NM
:

Simple F-Transform Compression
In [7.1], we proposed representing a compressed image
by the n�m matrix U of F-transform components

UD

0
BB@
U11 : : : U1m

:::
:::

:::

Un1 : : : unm

1
CCA ;

computed over uniform fuzzy partitions (usually, trian-
gular) A1; : : : ;An and B1; : : : ;Bm of the entire domains

Œ1;N� and Œ1;M�, respectively

Ukl D
PM

jD1

PN
iD1 u.i; j/Ak.i/Bl.j/PM

jD1

PN
iD1 Ak.i/Bl.j/

;

kD 1; : : : ; n I lD 1; : : : ;m :

We proposed reconstructingU to a full-size image using
the inverse F-transform of u such that

Ou.i; j/D
nX

kD1

mX
lD1

UklAk.i/Bl.j/ :

This method does not take advantage of any property
of the original image and therefore, its quality is not
very high. Let us illustrate it on the image Camera-
man taken from the Corel Gallery. In Fig. 7.7, we
show the original image and its reconstruction using the
simple F-transform compression described above. The
compression ratio is �D 0:25, and PSNRD 25:422
(compare with PSNRD 38:8 for JPEG with a similar
compression ratio).

F-Transform Compression with Block
Decomposition

This F-transform-based compression [7.9] was inspired
by the JPEG method in which, at first, the entire domain
was decomposed into blocks and then, each block was
compressed according to a compression ratio. In [7.9],
the same principle is used. In the first step, a decompo-
sition into blocks of the same size is performed, where
the size (chosen experimentally) is such that a certain
quality of approximation by the inverse F-transform
should be guaranteed (Theorem 7.1). Each block is then
uniformly partitioned into cosine-shaped fuzzy sets and
compressed by the simple F-transform method accord-
ing to a compression ratio. In comparison with the
simple F-transform compression, this method consid-
ers the peculiarities of the original images when making

a) b)

Fig. 7.7a,b Original image Cameraman (a) and its reconstruc-
tion after applying the simple F-transform compression (b) with
PSNRD 25:422
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Fig. 7.8 The PSNR values of the image Cameraman com-
pressed using three methods: FEQ, the F-transform with
block decomposition, and JPEG (after [7.29])

Fig. 7.9 The quad tree algorithm and the generalized fuzzy
partition on its base

a) b)

Fig. 7.10a,b Two reconstructions of the image Cameraman after
applying the advanced F-transform compression (the ratio is 0:188)
with the histogram restoring (a) and without it (b). The PSNR val-
ues are 29 (a) and 30 (b)

the block decomposition. In Fig. 7.8, we show the
PSNR quality measure of the image Cameraman com-
pressed using three methods: FEQ, F-transform with
block decomposition and JPEG. It is easily observed
that the JPEGmethod is still better than the F-transform
with block decomposition, whereas the latter is better
than FEQ. However, for the particular image Camera-
man and the compression ratio �D 0:25, the value of
PSNR of the F-transform with block decomposition
is similar to that of the simple F-transform compres-
sion: 25:0676 versus 25:422, respectively. This means
that the uniform partition, even when applied to both
steps independently, is not effective with respect to
the quality estimated by PSNR. In the next subsection,
we propose an F-transform compression method [7.18]
that is almost nonlossy and is based on a nonuni-
form generalized partition adapted to each particular
image.

Advanced Image Compression
If we analyze the properties of the F-transform
(Sect. 7.3.1), then it is immediate from (a) that the
more the function behaves like a constant, the better is
the approximation quality of the inverse F-transform.
Thus, the following recommendation regarding the
choice of a proper generalized fuzzy partition can be
made:

� A generalized fuzzy partition of the domain Œ1;N��
Œ1;M� into fuzzy sets Ak �Bl, where kD 1; : : : ; n
and lD 1; : : : ;m, should guarantee that the differ-
ence between extremal values of the image over
each Ak �Bl is not greater than " > 0 or (if the
preceding condition cannot be fulfilled) the area of
Ak �Bl is not greater than ı > 0.

There are several algorithms that can produce a gen-
eralized fuzzy partition with the mentioned property.
In [7.18], we used the quad tree algorithm for this pur-
pose; see the illustration in Fig. 7.9.

Let us add that the advanced image compression al-
gorithm [7.18] uses the following two tricks to increase
the quality of the reconstructed image:

� Preserve sharp edges� Restore the histogram of the original image.

Figure 7.10 shows how the histogram restoration
influences the quality of the reconstructed image. In
Fig. 7.11, we see that the PSNR values of the advanced
F-transform and the JPEG are almost equal.
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7.7.2 Image Fusion

Image fusion aims to integrate complementary distorted
multisensor, multitemporal, and/or multiview scenes
into one new image that contains the best parts of each
scene. Thus, the primary problem in image fusion is to
find the least distorted scene for every pixel.

A local focus measure is traditionally used for the
selection of an undistorted scene. The scene that maxi-
mizes the focus measure is selected. Usually, the focus
measure is a measure of high-frequency occurrences
in the image spectrum. This measure is used when
a source of distortion is connected with blurring, which
suppresses high frequencies in an image. In this case,
it is desirable that a focus measure decreases with an
increase in blurring.

There are various fusion methodologies that are cur-
rently in use. They can be classified according to the
primary technique: aggregation operators [7.22], fuzzy
methods [7.30], optimization methods (e.g., neural net-
works and genetic algorithms [7.29]), and multiscale
decomposition methods based on various transforms
(e.g., discrete wavelet transforms; [7.31]).

The F-transform approach to image fusion was
proposed in [7.32, 33]. The primary idea is a com-
bination of (at least) two fusion operators, both of
which are based on the F-transform. The first fu-
sion operator is applied to the F-transform compo-
nents of scenes and is based on a robust partition
of the scene domain. The second fusion operator is
applied to the residuals of scenes with respect to

FEQ
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Fig. 7.11 The PSNR values of the image Cameraman
compressed using four methods: FEQ, the F-transform
with block decomposition, the advanced F-transform, and
JPEG

inverse F-transforms with fused components and is
based on a finer partition of the same domain. Al-
though this approach is not explicitly based on focus
measures, it uses the fusion operator, which is able
to choose an undistorted scene among the available
blurred scenes.

Principles of Image Fusion
Using the F-Transform

In this subsection, we present a short overview of the
two methods of fusion that were proposed in [7.32, 33]
and introduce a new method [7.34] that is a weighted
combination of those two. We will demonstrate that the
new method is computationally more effective than the
first two.

The F-transform fusion is based on a certain decom-
position of an image. We assume that the image u is
a discrete real function uD u.x; y/ defined on theN�M
array of pixels PD f.i; j/ j iD 1; : : : ;N; jD 1; : : : ;Mg
such that u W P!R. Moreover, let fuzzy sets A1; : : : ;An

and B1; : : : ;Bm, where 2� n� N; 2� m�M, estab-
lish uniform Ruspini partitions of Œ1;N� and Œ1;M�,
respectively. We begin with the following representa-
tion of u on P,

u.x; y/D unm.x; y/C e.x; y/ ; (7.18)

e.x; y/D u.x; y/� unm.x; y/ ; (7.19)

where unm is the inverse F-transform of u and e is the
respective first difference. If we replace e in (7.18) by
its inverse F-transform eNM with respect to the finest
partition of Œ1;N�� Œ1;M�, the above representation can
then be rewritten as follows,

u.x; y/D unm.x; y/C eNM.x; y/ : (7.20)

We call (7.20) a one-level decomposition of u on P.
If u is smooth, then the function eNM is small (this
claim follows from the property (e) in Sect. 7.3.1),
and we can stop at this level. In the opposite case,
we continue with the decomposition of the first dif-
ference e in (7.18). We decompose e into its inverse
F-transform en0m0 (with respect to a finer fuzzy parti-
tion of Œ1;N�� Œ1;M� with n0 W n< n0 � N and m0 W m<
m0 �M basic functions) and the second difference e0.
Thus, we obtain the second-level decomposition of u
on P

u.x; y/D unm.x; y/C en0m0.x; y/C e0.x; y/ ;

e0.x; y/D e.x; y/� en0m0.x; y/ :
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In the same manner, we can obtain a higher level de-
composition of u on P

u.x; y/D un1m1.x; y/C e.1/n2m2
.x; y/C 	 	 	

C e.k�2/
nk�1mk�1

.x; y/C e.k�1/.x; y/ ; (7.21)

where

0< n1 � n2 � 	 	 	 � nk�1 � N ;

0< m1 � m2 � 	 	 	 � mk�1 �M ;

e.1/.x; y/D u.x; y/� un1m1.x; y/ ;

e.i/.x; y/D e.i�1/.x; y/� e.i�1/
nimi

.x; y/ ;

iD 2; : : : ; k� 1 : (7.22)

Three Algorithms for Image Fusion
In [7.33], we proposed two algorithms:

1. The simple F-transform-based fusion algorithm
(SA) and

2. The complete F-transform-based fusion algorithm
(CA).

The principal role in the fusion algorithms CA and
SA is played by the fusion operator � WRK !R, which
is defined as follows:

�.x1; : : : ; xK/D xp ; if jxpj Dmax.jx1j; : : : ; jxKj/ :
(7.23)

The Simple F-Transform-Based Fusion
Algorithm

In this subsection, we present a block description of
the SA without technical details, which can be found
in [7.33]. We assume that K � 2 input (channel) images
c1; : : : ; cK with various types of degradation are given.
Our aim is to recognize undistorted parts in the given
images and to fuse them into one image. The algorithm
is based on the decompositions given in (7.20), which
are applied to each channel image:

1. Choose values n and m such that 2� n� N; 2�
m�M and create a fuzzy partition of Œ1;N�� Œ1;M�
by fuzzy sets Ak �Bl, where kD 1; : : : ; n and lD
1; : : : ;m.

2. Decompose the input images c1; : : : ; cK into inverse
F-transforms and error functions according to the
one-level decomposition (7.20).

3. Apply the fusion operator (7.23) to the respective F-
transform components of c1; : : : ; cK , and obtain the
fused F-transform components of a new image.

4. Apply the fusion operator to the respective F-
transform components of the error functions ei, iD
1; : : : ;K, and obtain the fused F-transform compo-
nents of a new error function.

5. Reconstruct the fused image from the inverse F-
transforms with the fused components of the new
image and the fused components of the new error
function.

The SA-based fusion is very efficient if we can
guess values n and m that characterize a proper fuzzy
partition. Usually, this is performed manually according
to the user’s skills. The dependence on fuzzy partition
parameters can be considered as a primary shortcoming
of this otherwise effective algorithm. Two recommen-
dations follow from our experience:

� For complex images (with many small details),
higher values of n and m yield better results.� If a triangular shape for a basic function is chosen,
than the generic choice of n and m is such that the
corresponding values of np andmp are equal to 3 (re-
call that np is the number of points that are covered
by every full basic function Ak).

The Complete F-Transform-Based Fusion
Algorithm

The CA-based fusion does not depend on the choice
of only one fuzzy partition (as in the case of the SA)
because it runs through a sequence (7.22) of increasing
values of n andm. The algorithm is based on the decom-
position presented in (7.21), which is applied to each
channel image. The description of the CA is similar to
that of the SA except for step 4, which is repeated in
a cycle. Therefore, the quality of fusion is high, but the
implementation of the CA is rather slow and memory
consuming, especially for large images. For an illustra-
tion, Fig. 7.12, Tables 7.1 and 7.2.

Table 7.1 Basic characteristics of the three algorithms ap-
plied to the image Balls

Image Resolution Time (s) Memory (MB)
CA SA ESA CA SA ESA

Balls 1600� 1200 340 1.2 36 270 58 152

Table 7.2 MSE (mean-square error) and PSNR character-
istics of the three fusion methods applied to the image
Balls

Image set MSE PSNR
CA SA ESA CA SA ESA

Balls 1.28 6.03 0.86 48.91 43.81 52.57
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a) b) c)

Fig. 7.12a–c The SA (a), CA (b) and
ESA (c) fusions of the image Balls.
The ESA fusion has the best quality
(Table 7.2)

Enhanced Simple Fusion Algorithm
In [7.34], we proposed an algorithm that is as fast as the
SA and as efficient as the CA. We aimed at achieving
the following goals:

� Avoid running through a long sequence of possible
partitions (as in the case of CA).� Automatically adjust the parameters of the fusion
algorithm according to the level of blurring and the
location of blurred areas in input images.

The algorithm adds another run of the F-transform
over the first difference (7.18). The explanation is as fol-
lows: the first run of the F-transform is aimed at edge
detection in each input image, whereas the second run
propagates only sharp edges (and their local areas) to
the fused image. We refer to this algorithm as to en-
hanced simple algorithm (ESA) and give its informal
description:
for all input (channel) images do
Compute the inverse F-transform
Compute the first absolute difference between the
original image and the inverse F-transform of it
Compute the second absolute difference between
the first one and its inverse F-transform and set
them as the pixel weights

end for
for all pixels in an image do
Compute the value of sow – the sum of the weights
over all input images
for all input images do
Compute the value of wr – the ratio between the
weight of a current pixel and sow

end for
Compute the fused value of a pixel in the resulting
image as a weighted (by wr) sum of input image
values

end for
The primary advantages of the ESA are:

� Time – the execution time is smaller than for the CA
(Table 7.1).

� Quality – the quality of the ESA fusion is better than
that of the SA and for particular cases (Table 7.2), it
is better than that of the CA.

Because of space limitations, we present only one
illustration of the F-transform fusion performed using
the three algorithms, SA, CA, and ESA. We chose the
image Balls with geometric figures to demonstrate that
our fusion methods are able to reconstruct edges. In
Fig. 7.13, two (channel) inputs of the image Balls are
given, and in Fig. 7.12, three fusions of the same image
are demonstrated.

In Table 7.1, we demonstrate that the complexity
(measured by the execution time or by the memory
used) of the ESA is greater than the complexity of the
SA and less than the complexity of the CA.

In Table 7.2, we demonstrate that for the particular
image Balls, the quality of fusion (measured by the val-
ues of MSE and PSNR) of the ESA result is better (the
MSE value is smaller) than the quality of the SA result
and even than the quality of the CA result.

7.7.3 F1-Transform Edge Detector

Edge detection is inevitable in image processing. In par-
ticular, it is a first step in feature extraction and image
segmentation. We focused on the Canny edge detec-
tor [7.35], which is widely used in computer vision.
It was developed to ensure three basic criteria: good
detection, good localization, and minimal response. In

a) b)

Fig. 7.13a,b Two inputs for the image Balls. The central
ball is blurred in (a), and conversely, it is the only sharp
ball in (b)



Part
A
|7.7

128 Part A Foundations

a) b)

c) d)

Fig. 7.14a–d Original images (a,c) and their F1-transform
edges (b,d)

these aspects, the Canny detector can be considered an
optimal edge detector. In [7.26], we proposed using the
F1-transform with the purpose of simplifying the first
two steps of the Canny algorithm. Below, we provide
the details of our proposal.

The Canny algorithm is a multistep procedure for
detecting edges as the local maxima of the gradient
magnitude. The first step, performed using a Gaus-
sian filter, is image smoothing and filtering noise.
The second step is computation of a gradient of the
image function to find the local maxima of the gra-
dient magnitude and the gradient’s direction at each
point. This step is performed using a convolution of
the original image with directional masks (edge de-
tection operators, such as those of Roberts, Prewitt,
and Sobel, are some examples of these filters). The
next step is called nonmaximum suppression [7.36],
and it selects those points whose gradient magnitudes
are maximal in the corresponding gradient direction.
The final step is tracing edges and hysteresis thresh-
olding, which leads to preserving the continuity of
edges.

In our experiment, we removed the first two steps in
the Canny algorithm and replaced them by computation
of approximate gradient values using the F1-transform.
The reason is that the F1-transform (similar to the
ordinary F-transform) filters out noise when comput-
ing approximate values of the first partial derivatives
given by (7.15). We assume that the image is repre-
sented by a discrete function u W P!R of two vari-

ables, where PD f.i; j/ j iD 1; : : : ;N; jD 1; : : : ;Mg is
an N �M array of pixels, and the fuzzy sets A1; : : : ;An

and B1; : : : ;Bm establish a uniform triangular fuzzy par-
tition of Œ1;N� and Œ1;M�, respectively.

Let x1; : : : ; xn 2 Œ1;N� and y1; : : : ; ym 2 Œ1;M� be
the hx and hy-equidistant nodes of Œ1;N� and Œ1;M�, re-
spectively.

According to property (e) in Sect. 7.6, the coeffi-
cients ck;1 of the linear polynomials of the F1-transform
components are approximate values of the first par-
tial derivatives of the image function at nodes .xk; yl/
(for simplicity, we assume kD 2; : : : ; n� 1 and lD
2; : : : ;m), where by (7.17) and (7.5) the following
hold,

ck;1.yl/D 12

h3xhy

NX
iD1

MX
jD1

u.i; j/.i� xk/Ak.i/Bl.j/ ;

cl;1.xk/D 12

hxh3y

NX
iD1

MX
jD1

u.i; j/.j� yl/Ak.i/Bl.j/ :

Then, we can write approximations of the first par-
tial derivatives as the respective inverse F-transforms

Gx.i; j/�
nX

kD1

mX
lD1

ck;1.yl/Ak.i/Bl.j/ ;

and

Gy.i; j/�
nX

kD1

mX
lD1

cl;1.xk/Ak.i/Bl.j/ :

All other steps of the Canny algorithm – namely,
finding the local maxima of the gradient magnitude and
its direction, nonmaximum suppression, tracing edges
through the image and hysteresis thresholding – are the
same as in the original procedure.

In the two examples in Fig. 7.14, we demonstrate
the results of the F1-transform edge detector on
images chosen from the dataset available at ftp://
figment.csee.usf.edu/pub/ROC/edge_comparison_
dataset.tar.gz.

We observe that many thin edges/lines are detected
as well as their connectedness and smoothness. More-
over, the following properties are retained:

� Smoothness of circular lines� Concentricness circles� Smoothness of sharp connections.

ftp://figment.csee.usf.edu/pub/ROC/edge_comparison_dataset.tar.gz
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7.8 Conclusions
In this chapter, the theory of the F-transform has been
discussed from the perspective of the latest develop-
ments and applications. The importance of a proper
choice of fuzzy partition has been stressed. Various
fuzzy partitions have been considered, including the
most general partition (currently known). The definition

of the F-transform has been adapted to the general-
ized fuzzy partition, and the main properties of the
F-transform have been re-established. The applications
to image processing, namely image compression, fu-
sion and edge detection, have been discussed with
sufficient technical details.
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