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69. An Intelligent Swarm of Markovian Agents

Dario Bruneo, Marco Scarpa, Andrea Bobbio, Davide Cerotti, Marco Gribaudo

We define a Markovian agent model (MAM) as an
analytical model formed by a spatial collection of
interacting Markovian agents (MAs), whose prop-
erties and behavior can be evaluated by numerical
techniques. MAMs have been introduced with the
aim of providing a flexible and scalable frame-
work for distributed systems of interacting objects,
where both the local properties and the interac-
tions may depend on the geographical position.
MAMs can be proposed to model biologically in-
spired systems since they are suited to cope with
the four common principles that govern swarm
intelligence: positive feedback, negative feedback,
randomness, and multiple interactions. In the
present work, we report some results of a MAM for
a wireless sensor network (WSN) routing protocol
based on swarm intelligence, and some prelim-
inary results in utilizing MAs for very basic ant
colony optimization (ACO) benchmarks.
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69.1 Swarm Intelligence: A Modeling Perspective

Swarm intelligent (SI) algorithms are variously inspired
from the way in which colonies of biological organ-
isms self-organize to produce a wide diversity of func-
tions [69.1, 2]. Individuals of the colony have a limited
knowledge of the overall behavior of the system and
follow a small set of rules that may be influenced by the
interaction with other individuals or by modifications
produced in the environment. The collective behavior of
large groups of relatively simple individuals, interacting
only locally with few neighboring elements, produces
global patterns. Even if many approaches have been
proposed that differentiate in many respects, four ba-
sic common principles have been isolated that govern
SI:

� Positive feedback� Negative feedback

� Randomness� Multiple interactions.

The same four principles also govern a class of al-
gorithms inspired by the expansion dynamics of slime
molds in the search for food [69.3, 4], that have been
utilized as the base for the generation of routing proto-
cols in wireless sensor networks (WSNs).

Through the adoption of the above four principles,
it is possible to design distributed, self-organizing, and
fault tolerant algorithms able to self-adapt to the en-
vironmental changes, that present the following main
properties [69.1]:

i) Single individuals are assumed to be simple with
low computational intelligence and communication
capabilities.
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ii) Individuals communicate indirectly, through modi-
fication of the environment (this property is known
as stigmergy [69.2]).

iii) The range of the interaction may be very short; nev-
ertheless, a robust global behavior emerges from the
interaction of the nodes.

iv) The global behavior adapts to topological and envi-
ronmental changes.

The usual way to study such systems is through
simulation, due to the large number of involved in-
dividuals that lead to the well-known state explosion
problem. Analytical techniques are preferable if, start-
ing from the peculiarities of SI systems, they allow to
realize effective and scalable models. Along this line,
new stochastic entities, called Markovian agents (MAs)
[69.5, 6] have been introduced with the aim of pro-
viding a flexible, powerful, and scalable technique for
modeling complex systems of distributed interacting
objects, for which feasible analytical and numerical so-
lution algorithms can be implemented. Each object has
its own local behavior that can be modified by the mu-
tual interdependences with the other objects. MAs are
scattered over a geographical area and retain their spa-
tial position so that the local behavior and the mutual
interdependencies may be related to their geographical
positions and other features like the transmittance char-
acteristics of the interposed medium. MAs are modeled
by a discrete-state continuous-time finite Markov chain
(CTMC) whose infinitesimal generator is influenced by
the interaction with other MAs. The interaction among
agents is represented by a message passing model com-
bined with a perception function. When residing in
a state or during a transition, an MA is allowed to
send messages that are perceived by the other MAs,
according to a spatial-dependent perception function,
modifying their behavior. Messages may model real

physical messages (as in WSNs) or simply the mutual
influences of an MA over the other ones.

The flexibility of the MA representation, the spatial
dependency, and the mutual interaction through mes-
sage passing and perception function, makeMAmodels
suited to cope with various biologically inspired mech-
anisms governed by the four aforementioned principles.
In fact, the MAM, whose constituent elements are the
MAs, was specifically studied to cope with the follow-
ing needs [69.6]:

i) Provide analytical models that can be solved by nu-
merical techniques, thus avoiding the need of long
and expensive simulation runs.

ii) Provide a flexible and scalable modeling framework
for distributed systems of interacting objects.

iii) Provide a framework in which local properties can
be coupled with global properties.

iv) Local and global properties and interactions may
depend on the position of the objects in the space
(space-sensitive models).

v) The solution algorithm self-adapts to variations in
the system topology and in the interaction mecha-
nisms.

Interactive Markovian agents have been first in-
troduced in [69.5, 7] for single class MAs and then
extended to multiclass multimessage Markovian agent
model in successive works [69.8–10]. In [69.9, 11, 12],
MAs have been applied to routing algorithms in WSNs,
adopting SI principles [69.13].

This work describes the structure of MAMs and
the numerical solution algorithms in Sect. 69.2. Then,
applications derived from biological models are pre-
sented: a swarm intelligent algorithm for routing pro-
tocols in WSNs (Sect. 69.3) and a simple ant colony
optimization (ACO) example (Sect. 69.4).

69.2 Markovian Agent Models

The structure of a single MA is represented in Fig. 69.1.
States i; j; : : : ; k are the states of the CTMC representing
the MA. The transitions among the states are of two
possible types and are drawn in a different way:

� Solid lines (like the transition from i to j or the
self-loops in i or in j) indicate the fixed compo-
nent of the infinitesimal generator and represent the
local or autonomous behavior of the object that is

independent of the interaction with the other MAs
(like, for instance, the time-to-failure distribution,
or the reaction to an external stimulus). Note that
we include in the representation also self-loop tran-
sitions that require a particular notation since they
are not visible in the infinitesimal generator of the
CTMC [69.14].� Dashed lines (like the transition from i to k or the
transitions entering into i or j from other states
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not shown in the figure) represent the transitions
induced by the interaction with the other MAs.
The way in which the rates of the induced tran-
sitions are computed is explained in the following
section.

During a local transition (or a self-loop) an MA can
emit a message of any type with an assigned probabil-
ity, as represented by the dotted arrows in Fig. 69.1
emerging from the solid transitions. The pair hgij;mi
denotes both the message generation probability and
the message type. Messages generated by an MA may
be perceived by other MAs with a given probability,
according to a suitable perception function, and the
interaction mechanism between emitted messages and
perceived messages generates the induced transitions
(dashed lines). The pair hm; aiki denotes both the type
of the perceived message and the corresponding accep-
tance probability.

An MAM is a collection of interacting MAs defined
over a geographical space V . Given a position v inside
V , �.v/ denotes the density of MAs in v. According
to the definition of the density �.v/, we can classify
a MAM with the following taxonomy:

� An MAM is static if �.v/ does not depend on time,
and dynamic if it does depend on time.� An MAM is discrete if the geographical area on
which the MAs are deployed is discretized and �.v/
is a discrete function of the space or it is continuous
if �.v/ is a continuous function of the space.

Further, MAs may belong to a single class or to
different classes with different local behaviors and in-
teraction capabilities, and messages may belong to dif-
ferent types where each type induces a different effect
on the interaction mechanism. The perception function
describes how a message of a given type emitted by an
MA of a given class in a given position in the space

<gij, m'>

qij

<gjj, m >

<m, aik>

<gii, m'>
λj

λi

k

. . .
. . .

j

i

Fig. 69.1 Schematic structure of a Markovian agent

is perceived by an MA of a given class in a different
position.

69.2.1 Mathematical Formulation

A multiple agent class, multiple message type MAM is
defined by the tuple [69.12]

MAMD fC;M;V ;U;Rg ; (69.1)

where C D f1; : : : ;Cg is the set of agent classes. We de-
note withMAc an agent of class c 2 C.MD f1; : : : ;Mg
is the set of message types. Each agent (independently
of its class) can send or receive messages of type m 2
M. V is the finite space over which Markovian agents
are spread. UD fu1.	/; : : : ; uM.	/g is a set of M per-
ception functions (one for each message type). RD
f�1.	/; : : : ; �C.	/g is a set of C agent density functions
(one for each agent class). Each agent MAc of class c
is characterized by a state space with nc states, and it is
defined by the tuple

MAc D fQc.v/;	c.v/;Gc.v;m/;Ac.v;m/; �c
0.v/g ;
(69.2)

where Qc.v/ is the local component of the infinitesimal
generator; 	c.v/ is the vector of the self-jump transition
rates;Gc.v;m/ is the matrix containing the probabilities
of generating a message of type m; Ac.v;m/ is the ma-
trix containing the probabilities of accepting a message
of type m; �c

0.v/ is the initial probability vector.
Note that even if the structure of the CTMC associ-

ated to each MA of a given class is the same for all the
objects, the values of the parameters may depend on po-
sition v and, therefore, may vary from MAs belonging
to the same class.

An MAM can be analyzed solving a set of coupled
differential equations. Let us call �ci .t; v/ the density of
agents of class c, in state i, located in position v at time
t. In the following, we will focus on static MAMs thus
assuming that the total density of agents in position v
remains constant over the time; we have that

ncX
iD1

�ci .t; v/D �c.v/ ; 8v;8t � 0 : (69.3)

We collect the state densities into a vector �c.t; v/D
Œ�ci .t; v/� and we are interested in computing the tran-
sient evolution of �c.t; v/.

From the above definitions, we can compute the
total rate ˇc

j .v;m/ at which messages of typem are gen-
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erated by an agent of class c in state j in position v

ˇc
j .v;m/D �c

j .v/ g
c
jj.v;m/

C
X
k¤j

qcjk.v/ g
c
jk.v;m/ ; (69.4)

where the first term on the right-hand isde is the con-
tribution of the messages of type m emitted during
a self-loop from j and the second term is the contribu-
tion of messages of type m emitted during a transition
from j to any k .¤ j/.

The interdependences amongMAs are ruled by a set
of perception functions whose general form is

um.c; v; i; c0; v0; j/ : (69.5)

The perception function um.	/ in (69.5) represents how
an MA of class c in position v in state i perceives the
messages of type m emitted by an MA of class c0 in
position v0 in state j. The functional form of um.	/ iden-
tifies the perception mechanisms and must be specified
for any given application since it determines how an
MA is influenced by the messages emitted by the other
MAs. The transition rates of the induced transitions are
primarily determined by the structure of the perception
function.

A pictorial and intuitive representation of how the
perception function um.c; v; i; c0; v0; j/ acts, is given in
Fig. 69.2. The MA in the top right portion of the figure
in position v0 broadcasts a message of typem from state
j that propagates in the geographical area until reaches
the MA in the bottom left portion of the figure in po-
sition v and in state i. Upon acceptance of the message
according to the acceptance probability aik.v;m/, an in-
duced transition from state i to state k (represented by
a dashed line) is triggered in the model.
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Fig. 69.2 Message passing mecha-
nism ruled by a perception function

With the above definitions we are now in the po-
sition to compute the components of the infinitesimal
generator of an MA that depends on the interaction with
the other MAs and that constitutes the original and in-
novative part of the approach.

We define � c
ii.t; v;m/ the total rate at which mes-

sages of type m coming from the whole volume V are
perceived by an MA of class c in state i in location v.

� c
ii.t; v;m/D

Z
V

CX
c0

D1

nc0X
jD1

um.c; v; i; c0; v0; j/

�ˇc0

j .m/�c
0

j .t; v
0/dv0 ; (69.6)

where � c
ii.t; v;m/ is computed by taking into account

the total rate of messages of type m emitted by all
the MAs in state j and in a given position v0 (the
term ˇc

j .v;m/) times the density of MAs in v0 (the
term �j.t; v0/) times the perception function (the term
um.c; v; i; c0; v0; j/) summed over all the possible states
j and class c0 of each MA and integrated over the whole
space V . From an MA of class c in position v and in
state i an induced transition to state k (drawn in dashed
line) is triggered with rate � c

ii.t; v;m/ aik.v;m/ where
aik.v;m/ is the appropriate entry of the acceptance ma-
trix A.v;m/.

We collect the rates (69.6) in a diagonal ma-
trix 
 c.t; v;m/D diag.� c

ii.t; v;m//. This matrix can be
used to compute Kc.t; v/, the infinitesimal generator of
a class c agent at position v at time t

Kc.t; v/DQcC
X
m


 c.t; v;m/ŒAc.m/� I� : (69.7)

The first term on the right-hand side is the local transi-
tion rate matrix and the second term contains the rates
induced by the interactions.
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The evolution of the entire model can be studied by
solving 8v; c the following differential equations:

�c.0; v/D �c.v/�c
0 ; (69.8)

d�c.t; v/
dt

D �c.t; v/Kc.t; v/ : (69.9)

From the density of agents in each state, we can com-
pute the probability of finding a class c agent at time t
in position v in state i as

�c
i .t; v/D

�ci .t; v/
�c.v/

: (69.10)

We collect all the terms in a vector �c.t; v/D Œ�c
i .t; v/�.

Note that the definition of (69.10) together with (69.3)
ensures that

P
i �

c
i .t; v/D 1;8t;8v.

Note that each equation in (69.9) has the dimen-
sion nc of the CTMC of a single MA of class c. In this
way, a problem defined over the product state space of
all the MAs is decomposed into several subproblems,
one for each MA, having decoupled the interaction
by means of (69.6). Equation (69.9) provides the ba-
sic time-dependent measures to evaluate more complex
performance indices associated to the system. Equation
(69.9) is discretized both in time and space and are
solved by resorting to standard numerical techniques
for differential equations.

69.3 A Consolidated Example: WSN Routing

In this section, we present our first attempt to model
swarm intelligence inspired mechanisms through the
MAM formalism. This application describes an MAM
model for the analysis of a swarm intelligence rout-
ing protocol in WSNs and was first proposed in [69.9]
and then enriched in [69.12]. In this work, we show
new experiments to illustrate the self-adaptability of the
MAM model to the changing of environmental condi-
tions.

WSNs are large networks of tiny sensor nodes that
are usually randomly distributed over a geographical
region. The network topology may vary in time in an
unpredictable manner due to many different causes.
For example, in order to reduce power consumption,
battery-operated sensors undergo cycles of sleeping –
active periods; additionally, sensors may be located in
hostile environments increasing their likelihood of fail-
ure; furthermore, data might also be collected from dif-
ferent sources at different times and directed to different
sinks. For this reason, multihop routing algorithms used
to route messages from a sensor node to a sink should
be rapidly adaptable to the changing topology. Swarm
intelligence has been successfully used to face these
problems thanks to its ability in converging to a single
global behavior starting from the interaction of many
simple local agents.

69.3.1 A Swarm Intelligence Based Routing

In [69.15], a new routing algorithm, inspired by the
biological process of pheromone emission (a chemi-
cal substance produced and layed down by ants and
other biological entities), has been proposed. The rout-

ing table in each node stores the pheromone level owned
by each neighbor, coded as a natural integer quan-
tity [69.15]; when a data packet has to be sent it is
forwarded to the neighbor with the highest pheromone
level. This approach correctly works only if a sequence
of increasing values of pheromone levels toward the
sinks exists; in other words, the sinks must have the
maximum pheromone level in the WSN and a decreas-
ing pheromone gradient must be established around the
sinks covering all the net.

To build the pheromone gradient, the initial setting
of the WSN is as follows: the sinks are set to a fixed
maximum pheromone level, whereas the sensor nodes’
pheromone levels are set to 0. When the WSN is oper-
ating, each node periodically sends a signaling packet
with its pheromone level and updates its value based on
the level of its neighbors.

More specifically, the algorithm for establishing the
pheromone gradient is based on two types of nodes in
theWSN, called sinks and sensors, respectively, and the
pheromone is assumed discretized into P different lev-
els, ranging from 0 to P� 1. In this way, routing paths
toward the sink are established through the exchange
of pheromone packets containing the pheromone level
p.0� p� P� 1/ of each node.

Sink nodes, once activated, set their internal
pheromone level to the highest value pD P� 1. Then,
they, at fixed time interval, broadcast a pheromonemes-
sage to their neighbors with the value p. We assume T1
is the time interval incurring between two consecutive
sending of pheromone message.

Instead, the pheromone level of a sensor node is
initially set to 0 and then it is periodically updated ac-
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cording to two distinct actions – excitation action (the
positive feedback) and evaporation action (the negative
feedback):

� Excitation action: Sensor nodes periodically broad-
cast to the neighbors a pheromone message con-
taining their internal pheromone level p. Like the
sink node, sensor nodes perform the sending at reg-
ular time interval T1. When a sensor node receives
a pheromone level pn sent by a neighbor it com-
pares pn with its own level p and updates the latter
if pn > p. The new value is computed as a func-
tion of the current and the received pheromone level
update.p;pn/. In this context, we use the average
of the sender and the receiver level as the new up-
dating value, thus the function is assumed to be
update.p;pn/D round..pC pn/=2/.� Evaporation action: it is triggered at regular time
interval T2 and it simply decreases the current value
of p by one unit assuring it maintains a value greater
or equal to 0.

We note that, despite all nodes perform their exci-
tation action with the same mean time interval T1, no
synchronization activity is required among the nodes;
all of them act asynchronously in accordance with the
principles of biological systems where each entity acts
autonomously with respect to the others.

The excitation–evaporation process, like in biologi-
cal systems, assures the stability of the system and the
adaptability to possible changes in the environment or
in some nodes. Any change in the network condition
is captured by an update of the pheromone level of
the involved nodes that modifies the pheromone gradi-
ent automatically driving the routing decisions toward
the new optimal solution. In this way, the network can
self-organize its topology and adapt to environmen-
tal changes. Moreover, when link failures occur, the
network reorganization task is accomplished by those
nodes near the broken links. This results in a robust and
self-organized architecture.

The major drawback of this algorithm is the dif-
ficulty in appropriately setting the parameter T1 and
T2: as shown in [69.12, 15], the stability of the sys-
tem and the quality of the produced pheromone gradient
is strictly dependent on the parameters ratio. When
T1 decreases and T2 is fixed, pheromone messages
are exchanged more rapidly among the nodes and
their pheromone level tends to the maximum level be-
cause the sink node always sends the same maximum
value. Without an appropriate balancing action, the
pheromone level saturates all the nodes of the WSN.

At the opposite, let us suppose T1 is fixed and T2 de-
creases; in this case the pheromone level in each sensor
node decreases more quickly than its updating accord-
ing to the value of the neighbors. As a result all the
levels will be close to zero. From this behavior, we note
that: (1) both timers are necessary to ensure that the al-
gorithm could properly work, and (2) a smart setting of
both timers is necessary in order to have the best gra-
dient shape all over the network. The MAM model we
are going to describe in the next section helps us to de-
termine the best parameter values.

69.3.2 The MAM Model

The MAM model used to study the gradient forma-
tion is based on two agent classes: the class sink node
denoted by a superscript s and the class sensor node
denoted by a superscript n. The message exchange is
modeled by using M different message types. As we
will explain later, since each message is used to send
a pheromone level, we set M D P, where P is the num-
ber of different pheromone intensities considered in the
model.

Geographical Space
The geographical space V where the N agents are lo-
cated is modeled as a nh�nw rectangular grid, and each
cell has a square shape with side ds. Sensors can only be
located in the center of each cell and we allow at most
one node per cell: i. e., some cell might be empty, and
N � nh � nw. Moreover, sink nodes are very few with
respect to the number of sensor nodes.

Agent’s Structure and Behavior
Irrespective of the MA class considered, we model the
pheromone level of a node with a state and this choice
determines two different MA structures.

The sink class (Fig. 69.3a) is very simple and is
characterized by a single state labeled P�1 with a self-
loop of rate �D 1

T1 . The sink has always the same
maximum pheromone level, and emits a single message
of type P� 1 with rate �.

Instead, the sensor class (Fig. 69.3b) has P states
identifying the range of all the possible pheromone
levels. Each state is labeled with the pheromone in-
tensity i .iD 0; : : : ;P� 1/ in the corresponding node
and has a self-loop of rate �D 1

T1 that represents the
firing of timer at regular intervals equal to T1. This
event causes the sending of a message (Sect. 69.3.2).
The evaporation phenomenon is modeled by the solid
arcs (local transitions) connecting state i with state i�1
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Fig. 69.3a,b Markovian agent mod-
els. (a) Agent classD sink, (b) Agent
classD sensor

(0< i � P� 1). The evaporation rate is set to �D 1
T2 ;

in such a way we represent the firing of timer T2.

Message Types
The types of messages in the model correspond to the
different levels of pheromone a node can store, thus we
define MD f0; 1; : : : ;P� 1g. Any self-loop transition
in state i emits a message of the corresponding type i at
a constant rate �, both in sink and in sensor nodes. The
sink message is always of type P� 1, representing the
maximum pheromone intensity, whereas the messages
emitted by a sensor node corresponds to the state where
it actually is.

When a message of type m is emitted, neighbor-
ing nodes are able to receive it changing their state
accordingly. This behavior is implemented through the
dashed arcs (whose labels are defined through (69.11))
that model the transitions induced by the reception of
a message. In particular, when a node in state i receives
a message of type m, it immediately jumps to state j if
m 2M.i; j/, with

M.i; j/D fm 2 Œ0; : : : ;P� 1� W round..mC i/=2/D jg
8i; j 2 Œ0; : : : ;P� 1� W j > i : (69.11)

In other words, an MA in state i jumps to the state j
that represents the pheromone level equal to the mean
between the current level i and the level m encoded in
the perceived message.

Perception Function
Messages of any type sent by a node are characterized
by the same transmission range tr that defines the radius
of the area in which an MA can perceive a message pro-
duced by another MA. This property is reflected in the
perception function um.	/ that, 8m 2 Œ1; : : : ;M�, is de-
fined as

um.v; c; i; v0; c0; i0/D
(
0 dist.v; v0/ > tr

1 dist.v; v0/� tr ;
(69.12)

where dist.v;v0/ represents the Euclidean distance be-
tween the two nodes at position v and v0.

As can be observed, the perception function in
(69.12) is defined irrespective of the message type,
because in this kind of application the reception of
a message of any type i depends only on the distance
between the emitting and the perceiving node. The
transmission range tr depends on the properties of the
sensor and it influences the number � of neighbors per-
ceiving the message. In the numerical experimentation,
we consider ds � tr4 <

p
2 ds corresponding to �D 4.

Generation and Acceptance Probabilities
In this application, messages are only generated dur-
ing self-loop transitions with probability 1, so that 8i; j,
gcii.m/D 1 and gcij.m/D 0, .i¤ j/. Similarly, we assume
either acij.m/D 0 or acij.m/D 1, that is incoming mes-
sages are always accepted or always ignored.

69.3.3 Numerical Results

In order to analyze the behavior of the WSN model, the
main measure of interest is the evolution of �n

i .t; v/ i. e.,
the distribution of the pheromone intensity of a sensor
node over the entire area V as a function of the time.
The value of �n

i .t; v/ can be computed from (69.10) and
allows us to obtain several performance indices like the
average pheromone intensity 	.t; v/ at time t for each
cell v 2V

	.t; v/D
P�1X
iD0

i 	�n
i .t; v/ : (69.13)

The distribution of the pheromone intensity over the en-
tire area V depends both on the pheromone emission
rate � and on the pheromone evaporation rate �; fur-
thermore, the excitation–evaporation process depends
on the transmission range tr that determines the number
of neighboring cells � perceived by an MA in a given
position. To take into account this physical mechanism,
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Fig. 69.4a–c Distribution of the pheromone intensity varying r. (a) rD 1:2, (b) rD 1:8, (c) r D 2:4
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Fig. 69.5a–f Distribution of the pheromone intensity with respect to t when two sinks are alternately activated. The
change is applied at time tD 17:5 s. (a) tD 0 s, (b) tD 17 s, (c) tD 17:5 s, (d) tD 19 s, (e) tD 24 s, (f) tD 29 s

we define the following quantity,

rD � 	 �
�

; (69.14)

which regulates the balance between the pheromone
emission and evaporation in the SI routing algorithm.
For a complete discussion about the performance in-
dices that can be derived and analyzed using the de-
scribed MAM, refer to [69.12].

The numerical results have been obtained with the
following experimental setting. The geographical space
is a square grid of sizes nh D nw D 31, where N D 961
sensors are uniformly distributed with a spatial density
equal to 1 (one sensor per cell). Further, we set �D 4:0,
PD 20, and �D 4. The first experiment aims at investi-
gating the formation of the pheromone gradient around

the sink as a function of the model parameters. To this
end, a single sink node is placed at the center of the area
and the pheromone intensity distribution is evaluated as
a function of the parameter r, by varying � being � and
� fixed.

Figure 69.4 shows the distribution of the pheromone
intensity 	.t; v/ measured in the stable state for three
different values of r. If the value of r is small (rD
1:2) or high (r D 2:4), the quality of the gradient is
poor. This is due to the prevalence of one of the two
feedbacks: negative (with r D 1:2 evaporation prevails)
or positive (with rD 2:4 excitation prevails and all
sensors saturate). On the contrary, intermediate values
(r D 1:8) generate well-formed pheromone gradients
able to cover the whole area, thanks to the correct
balance between the two feedbacks. Then, an oppor-
tune evaluation of the value of r has to be carried
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Fig. 69.6 The 100�100 grid with 10 000 cells and 50 ran-
domly scattered sinks

out in order to generate a pheromone gradient that fits
with the topological specification of the WSN under
study.

In order to understand the dynamic behavior of the
SI algorithm, we carried out a transient analysis able to
highlight different phases of the gradient construction
process when the position of the sink changes in time.
In particular, in the following experiment (Fig. 69.5) we
analyzed how the algorithm self-adapts to topological
modifications by recalculating the pheromone gradient
when two different sinks are present in the network and
they are alternately activated. Figure 69.5a,b show how
the pheromone signal is spread on the space V until
the stable state is reached. At this point (tD 17:5 s), we
deactivated the old sink and we activated a new one
in a different position (Fig. 69.5c). Figure 69.5d,e de-
scribe the evolution of the gradient modification. It is
possible to observe that, thanks to the properties of the
SI algorithm, the WSN is able to rapidly discover the
new sink and to change the pheromone gradient by for-
getting the old information until a new stable state is
reached (Fig. 69.5f).
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Fig. 69.7 Distribution of the pheromone intensity when
the network is composed by a grid of 10 000 sensor nodes
with 50 sinks

Finally, in order to test the scalability of the MAM
in more complex scenarios, we have assumed a rectan-
gular grid with nh D nw D 100 hence with N D 100�
100D 10 000 sensors, and we have randomly scattered
50 sinks in the grid. The grid is represented in Fig. 69.6,
where the sinks are drawn as black spots. Since each
sensor is represented by an MA with PD 20 states
(Fig. 69.3b), the product state space of the overall sys-
tem has N D 2010 000 states!

The steady pheromone intensity distribution for the
geographical space represented in Fig. 69.6 is reported
in Fig. 69.7. Through this experiment, we can assess
that the pheromone gradient is also reached when no
symmetries are present in the network and that the pro-
posed model is able to capture the behavior of the pro-
tocol in generating a correct pheromone gradient also
in the presence of different maximums. Using the same
protocol configurations found for a simple scenario, the
SI algorithm is able to create a well-formed pheromone
gradient also in a completely different situation, making
such routing technique suitable in nonpredictable sce-
narios. This scenario also demonstrates the scalability
of the proposed analytical technique that can be easily
adopted in the analysis of very large networks.
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69.4 Ant Colony Optimization

The aim of this section is to show how MAMs
can be adopted to represent one of the more clas-
sical swarm intelligence algorithm known as ACO
[69.2], that was inspired by the foraging behav-
ior of ant colonies which, during food search, ex-
hibit the ability to solve simple shortest path prob-
lems. To this end, in this work, we simply show
how to build a MAM that solves the famous Dou-
ble Bridge Experiment which was first proposed by
Deneubourg et al. in the early 90s [69.16, 17], and that
has been proposed as an entry benchmark for ACO
models.

In the experiment, a nest of Argentine ants is con-
nected to a food source using a double bridge as shown
in Fig. 69.8. Two scenarios are considered: in the
first one the bridges have equal length (Fig. 69.8a),
in the second one the lengths of the bridges are dif-
ferent (Fig. 69.8b). The collective behavior can be
explained by the way in which ants communicate in-
directly among them (stigmergy). During the journey
from the nest to the food source and vice versa, ants
release on the ground an amount of pheromone. More-
over ants can perceive pheromone and they choose
with greater probability a path marked by a stronger
concentration of pheromone. As a results, ants releas-
ing pheromone on a branch, increase the probability
that other ants choose it. This phenomenon is the re-
alization of the positive feedback process described
in Sect. 69.1 and it is the reason for the conver-
gence of ants to the same branch in the equal length
bridge case. When lengths are different, the ants choos-
ing the shorter path reach the food source quicker
than those choosing the longer path. Therefore, the
pheromone trail grows faster on the shorter bridge
and more ants choose it to reach food. As a result,
eventually all ants converge to follow the shortest
path.

a) b)

FoodNest
FoodNest

Fig. 69.8a,b Experiment scenarios. Modified from Goss et al.
[69.17]. (a) Equal branches, (b) Different branches

69.4.1 The MAM Model

We represent the double bridge experiment through
a multiple agent class and multiplemessage typeMAM.
We model ants by messages, and locations that ants
traverse by MAs. Three different MA classes are intro-
duced: the class Nest denoted by superscript n, the class
Terrain denoted by superscript t, and the class Food de-
noted by superscript f. Two types of messages are used:
ants walking from the nest to the food source corre-
spond to messages of type fw (forward), whereas ants
coming back to the nest correspond to messages of type
bw (backward).

Geographical Space
Agents (either nest, terrain, or food source) are de-
ployed on a discrete geographical space V represented
as an undirected graph GD .V;E/, where the elements
in the set V are the vertices and the elements in the
set E are the edges of the graph. In Fig. 69.9a,b, we
show the locations of agents for the equal and the dif-
ferent length bridge scenarios, respectively. The squares
are the vertices of the graph and the labels inside them
indicate the class of the agent residing on the vertex.
In this model, we assume that only a single agent re-
sides on each vertex. Message passing from a node to
another is depicted as little arrows labeled by the mes-
sage type. As shown in Fig. 69.9, different lengths of the
branches are represented by a different number of hops
needed by a message to reach the food source starting
from the nest. Figure 69.9c represents a three branches
bridge with branches of different length.

Agent’s Structure and Behavior
The structure of the three MA classes is described in the
following:

� MA Nest: The nest is represented by a single MA
of class n, shown in Fig. 69.10a. The nest MAn is
composed by a single state that emits messages of
type fw at a constant rate �, modeling ants leaving
the nest in search for food.� MA Terrain: An MA of class t (Fig. 69.10c) repre-
sents a portion of terrain on which an ant walks and
encodes in its state space the concentration of the
pheromone trail on that portion of the ground. We
assume that the intensity of the pheromone trail is
discretized in P levels numbered 0;1; : : :P� 1.
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Fig. 69.9a–c Graph used to model the experiment scenarios. (a) Equal branches, (b) two different branches, (c) three
different branches

With reference to Fig. 69.10c, the meaning of the
states is the following:

� t0 denotes no pheromone on the ground and no ant
walking on it;� ti denotes a concentration of pheromone of level i
and no ant on the ground;� tif denotes an ant of forward type residing on the ter-
rain while the pheromone concentration is at level i;� tib denotes an ant of backward type residing on
the terrain while the pheromone concentration is at
level i.

The behavior of the MAt agent at the reception of
the messages is the following:

� fw – forward ant: A message of type fw perceived
by an MAt in states ti, induces a transition to state
t.iC1/f meaning that the arrival of a forward ant in-
creases the pheromone concentration of one level
(positive feedback).� bw – backward ant: Amessage of type bw perceived
by an MAt in states ti, induces a transition to state
t.iC1/b meaning that the arrival of a backward ant
increases the pheromone concentration of one level
(positive feedback).

Ants remain on a single terrain portion for a mean
time of 1=� s, then they leave toward another destina-
tion. The local transitions from states tif to states ti and
the generation of message fw model this behavior for
forward ants. An analogous behavior is represented for
backward ants by local transitions from states tib to
states ti. The local transitions at constant rate � from
states ti to states ti�1 indicate the decreasing of one unit
of the concentration of pheromone due to evaporation
(negative feedback):

� MA Food source: An MA of class f represents the
food source (Fig. 69.10b). The reception of a mes-
sage of type fw in state f0 indicates that a forward
ant has reached the food source. After a mean time
of 1=� s, such an ant leaves the food and starts
the way back to the nest becoming a backward ant
(emission of message of type bw).

In order to keep model complexity low thus increas-
ing the model readability, we have chosen to limit to 1
the number of ants that can reside at the same time on
a portion of terrain (or in the food source). For this rea-
son, message reception is not enabled in states tif or tib
for MAs of class t and in the state f1 for MAs of class f .
In future works, we will study effective techniques (e.g.,
intervening on MA density) in order to release such an
assumption.

Perception Function
The perception function rules the interactions among
agents and, in this particular example, defines the prob-

mfw
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Fig. 69.10a–c Markovian agent models for the ACO experiment.
(a) MAn: Agent of class nest. (b) MAf : Agent of class food.
(c)MAt: Agent of class terrain
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ability that a message (ant) follows a specific path both
on the forward and backward direction. The defini-
tion of the perception function takes inspiration on the
stochastic model proposed in [69.16, 17] to describe the
dynamic of the ant colony. In such a model the proba-
bility of choosing the shorter branch is given by

pis.�/D .kC'is.�//
˛

.kC'is.�//˛ C .kC'il.�//˛
; (69.15)

where pis.�/ (respectively pil.�/) is the probability of
choosing the shorter (longer) branch, 'is.�/ ('il.�/) is
the total amount of pheromone on the shorter (longer)
branch at a time � . The parameter k is the degree of at-
traction attributed to an unmarked branch. It is needed
to provide a non-null probability of choosing a path not
yet marked by pheromone. The exponent ˛ provides
a nonlinear behavior.

In our MA model, the perception function um.	/ is
defined, 8m 2 ffw; bwg, as

um.v; c; i; v0; c0; j; �/

D .kCEŒ�c.�; v/�/˛P
.c00;v00/2Nextm.v0;c0/.kCEŒ�c00

.�; v00/�/˛
;

(69.16)

where k and ˛ have the same meaning as in (69.15),
EŒ�c.�; v/� gives the mean value of the concentra-
tion of pheromone at a time � in position v on the
ground, and corresponds to '.�/. The computation of
EŒ�c.�; v/� will be addressed in (69.18). The function
Nextm.v0; c0/ gives the set of pairs f.c00; v00/g such that
the agent of class c00 in position v00 perceives a message
of type m emitted by the agent of class c0 in posi-
tion v0. Figure 69.11a helps to interpret (69.16). The
multiple box stands for all the agents receiving a mes-
sage m sent by the agent of class c0 in position v0.
The value of um.v; c; i; v0; c0; j; �/ is proportional to the
mean pheromone concentration of the agent in class c

(c, v'' )

(c, v)

(c', v' )

mfw

mfw

m

m

(t, b1)

(t, b2)

(n, b0)

a) b)

Fig. 69.11a,b Perception function description. (a) General case,
(b) example of scenario in Fig. 69.9b

at position v with respect to the sum of the mean con-
centrations of all the agents that receive message m by
the agent in class c0 and position v0. For instance, we
consider the scenario depicted in Fig. 69.11b, where
a class n agent in position b0 sends messages of type
fw to two other class t agents at position b1 and b2,
and we compute ufw.b2; t; i; b0; n; j; �/. In such case,
the evaluation of function Nextfw.b0; n/ gives the set
of pair f.t;b1/; .t;b2/g and the value of the function
is

ufw.b2; t; i; b0; n; j; �/

D .kCEŒ� t.�;b2/�/˛

.kCEŒ� t.�;b1/�/˛ C .kCEŒ� t.�;b2/�/˛
:

(69.17)

As a final remark, we highlight that um.	/ does not
depend on the state variables i and j of the sender and
receiver agents even if these variables appear in the def-
inition of um.	/ ((69.16)). Instead, um.	/ depends on the
whole probability distribution �c.�; v/ needed to com-
pute the mean value EŒ�c.�;v/�.

Generation and Acceptance Probabilities
As in Sect. 69.3, also in this ACO-MAM model we
only allow gci; j.m/D 0 or gci; j.m/D 1 and aci; j.m/D
0 or aci; j.m/D 1 8c;m. In particular, for the terrain
agent MAt, messages of type fw are sent with proba-
bility gtif; i.fw/D 1, and are accepted with probability
ati; .iC1/f.fw/D 1 only in a ti state inducing a transi-
tion to a t.iC1/f state. An analogous behavior is fol-
lowed during emission and reception of messages of
type bw.
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Fig. 69.12 Mean pheromone concentration with �D 1:0,
�D 1 and �D 1 for the equal branches experiment
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Fig. 69.13a–f Mean pheromone concentration for the case with two different branches. (a) Mean pheromone concen-
tration �D 1:0, �D 0 and �D 1, (b) mean pheromone concentration �D 1:0, �D 0 and �D 10, (c) mean pheromone
concentration �D 1:0, �D 0:5 and �D 1, (d) mean pheromone concentration �D 1:0, �D 0:5 and �D 10, (e) mean
pheromone concentration �D 1:0, �D 2 and �D 1, (f) mean pheromone concentration �D 1:0, �D 2 and �D 10

69.4.2 Numerical Results
for ACO Double
Bridge Experiment

We have performed several experiments on the ACO
model. In particular, we study the mean value of the
concentration of pheromone at a time � in position v

for a class c agent, EŒ�c.�; v/�, defined as

EŒ�c.�; v/�D
X
s2Sc

�s.v; c/I.s/ ; (69.18)

where Sc denotes the state space of a class c agent, I.s/
represents the pheromone level in state s, and it corre-
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Fig. 69.14a,b Mean pheromone concentration for the case
with three different branches. (a) �D 10, (b) �D 10

sponds to

I.s/D i; 8 s 2 ftig[ ftifg[ ftibg : (69.19)

This value is used in (69.16) to compute um.	/ which,
as previously said, rules the ant’s probability to follow
a specific path; therefore, such performance index pro-
vides useful insights of the modeled ant’s behavior.

We consider three scenarios depicted in Fig. 69.9,
the labels bi denote the positions where we compute
the mean value of the concentration of pheromone. In
all the experiments, the intensity of the pheromone trail
is discretized in PD 8 levels.

In Fig. 69.12, the mean pheromone concentration
EŒ�c.�;bi/� over the time for the equal branches experi-
ment is plotted. As it can be seen, both mean pheromone
concentrations have exactly the same evolution proving
that ants do not prefer one of the routes.

The case with two different branches is considered
in Fig. 69.13. The speed of the ants (i. e., parameter �) is
considered in the column (the left column corresponds
to �D 1:0 and the right column to �D 10), while the
evaporation of the pheromone is taken into account in
the rows (respectively with �D 0, �D 0:5, and �D
2). When no evaporation is considered (Fig. 69.13a,b),
both paths are equally chosen due to the finite amount
of the maximum pheromone level considered in this
work. However the shorter path reaches its maximum
level earlier than the longer route. In all the other cases,
it can be seen that the longer path is abandoned after
a while in favor of the shorter one. The evaporation of
the pheromone and the speed of the ants both play a role
in the time required to drop the longer path. Increasing
either of the two, reduces the time required to discover
the shorter route.

Finally, Fig. 69.14 considers a case with three
branches of different length and different evaporation
levels (�D 1 and �D 10). Also in this case the model
is able to predict that ants will choose the shortest
route. It also shows that longer paths are dropped in
an order proportional to their length: the longest route
is dropped first, and the intermediate route is dis-
carded second. Also in this case, the evaporation rates
determine the speed at which paths are chosen and
discarded.

69.5 Conclusions
In this work, we have presented how the Markovian
agents performance evaluation formalism can be used
to study swarm intelligent algorithms. Although the
formalism was developed to study largely distributed
systems like sensor networks, or physical propagation
phenomena like fire or earthquakes, it has been proven
to be very efficient in capturing the main features of
swarm intelligence.

Beside the two cases presented in this chap-
ter, routing in WSNs and ant colony optimiza-

tion, the formalism is capable of considering other
cases like Slime Mold models. Future research lines
will try to emphasize the relations between Marko-
vian agents and swarm intelligence, trying to in-
tegrate both approaches: using Markovian agents
to formally study new swarm intelligent algo-
rithms, and use swarm intelligent techniques to
study complex Markovian agents models in order
to find optimal operation points and best connection
strategies.
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