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68. Ant Colony Optimization for the Minimum-Weight
Rooted Arborescence Problem

Christian Blum, Sergi Mateo Bellido

The minimum-weight rooted arborescence prob-
lem is an NP-hard combinatorial optimization
problem which has important applications, for
example, in computer vision. An example of such
an application is the automated reconstruction of
consistent tree structures from noisy images. In this
chapter, we present an ant colony optimization
approach to tackle this problem. Ant colony op-
timization is a metaheuristic which is inspired by
the foraging behavior of ant colonies. By means of
an extensive computational evaluation, we show
that the proposed approach has advantages over
an existing heuristic from the literature, especially
for what concerns rather dense graphs.
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68.1 Introductiory Remarks

Solving combinatorial optimization problems with ap-
proaches from the swarm intelligence field has al-
ready a considerably long tradition. Examples of
such approaches include particle swarm optimization
(PSO) [68.1] and artificial bee colony (ABC) optimiza-
tion [68.2]. The oldest – and most widely used – algo-
rithm from this field, however, is ant colony optimiza-
tion (ACO) [68.3]. In general, the ACO metaheuristic
attempts to solve a combinatorial optimization prob-
lem by iterating the following steps: (1) Solutions to
the problem at hand are constructed using a pheromone
model, that is, a parameterized probability distribution
over the space of all valid solutions, and (2) (some
of) these solutions are used to change the pheromone
values in a way being aimed at biasing subsequent sam-
pling toward areas of the search space containing high
quality solutions. In particular, the reinforcement of
solution components depending on the quality of the
solutions in which they appear is an important aspect
of ACO algorithms. It is implicitly assumed that good
solutions consist of good solution components. To learn

which components contribute to good solutions most
often helps assembling them into better solutions.

In this chapter, ACO is applied to solve the
minimum-weight rooted arborescence (MWRA) prob-
lem, which has applications in computer vision such as,
for example, the automated reconstruction of consistent
tree structures from noisy images [68.4]. The structure
of this chapter is as follows. Section 68.2 provides a de-
tailed description of the problem to be tackled. Then,
in Sect. 68.3 a new heuristic for the MWRA problem
is presented which is based on the deterministic con-
struction of an arborescence of maximal size, and the
subsequent application of dynamic programming (DP)
for finding the best solution within this constructed ar-
borescence. The second contribution is to be found in
the application of ACO [68.3] to the MWRA prob-
lem. This algorithm is described in Sect. 68.4. Finally,
in Sect. 68.5 an exhaustive experimental evaluation of
both algorithms in comparison with an existing heuris-
tic from the literature [68.5] is presented. The chapter is
concluded in Sect. 68.6.
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68.2 The Minimum-Weight Rooted Arborescence Problem

As mentioned before, in this work we consider the
MWRA problem, which is a generalization of the prob-
lem proposed by Venkata Rao and Sridharan in [68.5,
6]. The MWRA problem can technically be described
as follows. Given is a directed acyclic graphGD .V;A/
with integer weights on the arcs, that is, for each a 2
A exists a corresponding weight w.a/ 2 Z. Moreover,
a vertex vr 2 V is designated as the root vertex. Let A
be the set of all arborescences in G that are rooted
in vr. In this context, note that an arborescence is a di-
rected, rooted tree in which all arcs point away from
the root vertex (see also [68.7]). Moreover, note thatA
contains all arborescences, not only those with max-
imal size. The objective function value (that is, the
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a)  Example input graph b)  Optimal solution, value: –19

Fig. 68.1a,b (a) An input DAG with eight vertices and 14
arcs. The uppermost vertex is the root vertex vr. (b) The op-
timal solution, that is, the arborescence rooted in vr which
has the minimum weight among all arborescence rooted
in vr that can be found in the input graph

a) b)

Fig. 68.2a,b (a) A 2D image of the retina of a human eye.
The problem consists in the automatic reconstruction (or
delineation) of the vascular structure. (b) The reconstruc-
tion of the vascular structure as produced by the algorithm
proposed in [68.4]

weight) f .T/ of an arboresence T 2A is defined as
follows:

f .T/ WD
X
a2T

w.a/ : (68.1)

The goal of the MWRA problem is to find an ar-
boresence T� 2A such that the weight of T� is
smaller or equal to all other arborescences in A. In
other words, the goal is to minimize objective func-
tion f .	/. An example of the MWRA problem is shown
in Fig. 68.1.

The differences to the problem proposed in [68.5]
are as follows. The authors of [68.5] require the root
vertex vr to have only one single outgoing arc. More-
over, numbering the vertices from 1 to jVj, the given
acyclic graph G is restricted to contain only arcs ai; j
such that i < j. These restrictions do not apply to the
MWRA problem. Nevertheless, as a generalization of
the problem proposed in [68.5], the MWRA prob-
lem is NP-hard. Concerning the existing work, the
literature only offers the heuristic proposed in [68.5],
which can also be applied to the more general MWRA
problem.

The definition of the MWRA problem as previ-
ously outlined is inspired by a novel method which
was recently proposed in [68.4] for the automated re-
construction of consistent tree structures from noisy
images, which is an important problem, for example,
in Neuroscience. Tree-like structures, such as den-
dritic, vascular, or bronchial networks, are pervasive
in biological systems. Examples are 2D retinal fun-
dus images and 3D optical micrographs of neurons.
The approach proposed in [68.4] builds a set of can-
didate arborescences over many different subsets of
points likely to belong to the optimal delineation and
then chooses the best one according to a global ob-
jective function that combines image evidence with
geometric priors (Fig. 68.2, for example). The so-
lution of the MWRA problem (with additional hard
and soft constraints) plays an important role in this
process. Therefore, developing better algorithms for
the MWRA problem may help in composing bet-
ter techniques for the problem of the automated re-
construction of consistent tree structures from noisy
images.
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68.3 DP-Heur: A Heuristic Approach to the MWRA Problem
In this section, we propose a new heuristic approach
for solving the MWRA problem. First, starting from
the root vertex vr, a spanning arborescence T 0 in G is
constructed as outlined in lines 2�9 of Algorithm 68.1.
Second, a DP algorithm is applied to T 0 in order
to obtain the minimum-weight arborescence T that
is contained in T 0 and rooted in vr. The DP algo-
rithm from [68.8] is used for this purpose. Given an
undirected tree T D .VT ;ET / with vertex and/or edge
weights, and any integer number k 2 Œ0; jVT j � 1�, this
DP algorithm provides – among all trees with exactly k
edges in T – the minimum-weight tree T�. The first step
of the DP algorithm consists in artificially converting
the input tree T into a rooted arborescence. Therefore,
the DP algorithm can directly be applied to arbores-
cences. Morever, as a side product, the DP algorithm
also provides the minimum-weight arborescences for
all l with 0� l � k, as well as the minimum-weight
arborescences rooted in vr for all l with 0� l � k.
Therefore, given an arborescence of maximal size T 0,
which has jVj � 1 arcs (where V is the vertex set
of the input graph G), the DP algorithm is applied
with jVj � 1. Then, among all the minimum-weight ar-
borescences rooted in vr for l� jVj � 1, the one with
minimum weight is chosen as the output of the DP

algorithm. In this way, the DP algorithm is able to gen-
erate the minimum-weight arborescence T (rooted in vr)
which can be found in arborescence T 0. The heuristic
described above is henceforth labeled DP-HEUR. As
a final remark, let us mention that for the description
of this heuristic, it was assumed that the input graph is
connected. Appropriate changes have to be applied to
the description of the heuristic if this is not the case.

Algorithm 68.1 Heuristic DP-Heur for the MWRA
problem
1: input: a DAG GD .V;A/, and a root node vr
2: T 0

0 WD .V0

0 D fvrg;A0

0 D ;/
3: Apos WD faD .vq; vl/ 2 A j vq 2 V0

0; vl … V0

0g
4: for iD 1; : : : ; jVj � 1 do
5: a� D .vq; vl/ WD argminfw.a/ j a 2 Aposg
6: A0

i WD A0

i�1 [ fa�g
7: V0

i WD V0

i�1 [ fvlg
8: T 0

i WD .V0

i ;A
0

i/
9: Apos WD faD .vq; vl/ 2 A j vq 2 V0

i ; vl … V0

i g
10: end for
11: T WD Dynamic_Programming.T 0

jVj�1; kD
jVj � 1/

12: output: arborescence T

68.4 Ant Colony Optimization for the MWRA Problem

The ACO approach for the MWRA problem which is
described in the following is aMAX-MIN Ant Sys-
tem (MMAS) [68.9] implemented in the hyper-cube
framework (HCF) [68.10]. The algorithm, whose pseu-
docode can be found in Algorithm 68.2, works roughly
as follows. At each iteration, a number of na solutions
to the problem is probabilistically constructed based
on both pheromone and heuristic information. The sec-
ond algorithmic component which is executed at each
iteration is the pheromone update. Hereby, some of
the constructed solutions – that is, the iteration-best
solution T ib, the restart-best solution T rb, and the best-
so-far solution Tbs – are used for a modification of
the pheromone values. This is done with the goal of
focusing the search over time on high-quality areas
of the search space. Just like any other MMAS al-
gorithm, our approach employs restarts consisting of
a re-initialization of the pheromone values. Restarts are
controlled by the so-called convergence factor (cf) and

a Boolean control variable called bs_update. The main
functions of our approach are outlined in detail in the
following.

Algorithm 68.2 Ant Colony Optimization for the
MWRA Problem
1: input: a DAG GD .V;A/, and a root node vr
2: Tbs WD .fvrg;;/, T rb WD .fvrg; ;/, cf WD 0,

bs_update WD false
3: �a WD 0:5 for all a 2 A
4: while termination conditions not met do
5: S WD ;
6: for iD 1; : : : ; na do
7: T WD Construct_Solution.G; vr/
8: S WD S[ fTig
9: end for
10: T ib WD argminff .T/ j T 2 Sg
11: if T ib < T rb then T rb WD T ib

12: if T ib < Tbs then Tbs WD T ib
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13: ApplyPheromoneUpdate
(cf,bs_update,T ,T ib,T rb,Tbs)

14: cf WD ComputeConvergenceFactor(T )
15: if cf> 0:99 then
16: if bs_updateD true then
17: �a WD 0:5 for all a 2 A
18: T rb WD .fvrg;;/
19: bs_update WD false
20: else
21: bs_update WD true
22: end if
23: end if
24: end while
25: output: Tbs, the best solution found by the algo-

rithm

Construct_Solution.G; vr/: This function, first,
constructs a spanning arborescence T 0 in the way which
is shown in lines 2�9 of Algorithm 68.1. However, the
choice of the next arc to be added to the current ar-
borescence at each step (see line 5 of Algorithm 68.1)
is done in a different way. Instead of deterministically
choosing from Apos, the arc which has the small-
est weight value, the choice is done probabilistically,
based on pheromone and heuristic information. The
pheromone model T that is used for this purpose con-
tains a pheromone value �a for each arc a 2 A. The
heuristic information �.a/ of an arc a is computed as
follows. First, let

wmax WDmaxfw.a/ j a 2 Ag : (68.2)

Based on this maximal weight of all arcs in G, the
heuristic information is defined as follows:

�.a/ WD wmax C 1�w.a/ : (68.3)

In this way, the heuristic information of all arcs is a pos-
itive number. Moreover, the arc with minimal weight
will have the highest value concerning the heuristic
information. Given an arborescence T 0

i (obtained af-
ter the ith construction step), and the nonempty set of
arcs Apos that may be used for extending T 0

i , the prob-
ability for choosing arc a 2 Apos is defined as follows

p.a j T 0

i / WD
�a 	 �.a/P

Oa2Apos
�

Oa 	 �.Oa/
: (68.4)

However, instead of choosing an arc from Apos always
in a probabilistic way, the following scheme is applied
at each construction step. First, a value r 2 Œ0; 1� is cho-
sen uniformly at random. Second, r is compared to

a so-called determinism rate ı 2 Œ0; 1�, which is a fixed
parameter of the algorithm. If r � ı, arc a� 2 Apos is
chosen to be the one with the maximum probability,
that is

a� WD argmaxfp.a j T 0

i / j a 2 Aposg : (68.5)

Otherwise, that is, when r > ı, arc a� 2 Apos is chosen
probabilistically according to the probability values.

The output T of the function Construct_Solu-
tion.G; vr/ is chosen to be the minimum-weight ar-
borescence which is encountered during the process of
constructing T 0, that is,

T WD argminff .T 0

i / j iD 0; : : : ; jVj � 1g :

ApplyPheromoneUpdate(cf , bs_update, T , T ib,
T rb, Tbs): The pheromone update is performed in the
same way as in allMMAS algorithms implemented in
the HCF. The three solutions T ib, T rb, and Tbs (as de-
scribed at the beginning of this section) are used for
the pheromone update. The influence of these three so-
lutions on the pheromone update is determined by the
current value of the convergence factor cf , which is de-
fined later. Each pheromone value �a 2 T is updated as
follows:

�a WD �a C � 	 .�a� �a/ ; (68.6)

where

�a WD �ib 	
.T ib; a/C�rb 	
.T rb; a/C�bs 	
.Tbs; a/ ;

(68.7)

where �ib is the weight of solution T ib, �rb the one of
solution T rb, and �bs the one of solution Tbs. Moreover,

.T; a/ evaluates to 1 if and only if arc a is a component
of arborescence T . Otherwise, the function evaluates
to 0. Note also that the three weights must be cho-
sen such that �ib C �rb C �bs D 1. After the application

Table 68.1 Setting of �ib, �rb, and �bs depending on the
convergence factor cf and the Boolean control variable
bs_update

bs_update D FALSE bs_update
cf < 0:7 cf 2

Œ0:7; 0:9/

cf � 0:9 TRUE

�ib 2/3 1/3 0 0
�rb 1/3 2/3 1 0
�bs 0 0 0 1
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of (68.6), pheromone values that exceed �max D 0:99
are set back to �max, and pheromone values that have
fallen below �min D 0:01 are set back to �min. This pre-
vents the algorithm from reaching a state of complete
convergence. Finally, note that the exact values of the
weights depend on the convergence factor cf and on
the value of the Boolean control variable bs_update.
The standard schedule as shown in Table 68.1 has been
adopted for our algorithm.

ComputeConvergenceFactor(T ): The conver-
gence factor (cf ) is computed on the basis of the

pheromone values

cf WD 2

��P
�a2T maxf�max � �a; �a � �ming

jT j 	 .�max� �min/

�
� 0:5

�
:

This results in cfD 0 when all pheromone values are set
to 0:5. On the other side, when all pheromone values
have either value �min or �max, then cfD 1. In all other
cases, cf has a value in .0; 1/. This completes the de-
scription of all components of the proposed algorithm,
which is henceforth labeled ACO.

68.5 Experimental Evaluation

The algorithms proposed in this chapter – that is, DP-
HEUR and ACO – were implemented in ANSI C++
using GCC 4.4 for compiling the software. Moreover,
the heuristic proposed in [68.5] was reimplemented. As
mentioned before, this heuristic – henceforth labeled
VENSRI – is the only existing algorithm which can
directly be applied to the MWRA problem. All three al-
gorithms were experimentally evaluated on a cluster of
PCs equipped with Intel Xeon X3350 processors with
2667MHz and 8Gb of memory. In the following, we
first describe the set of benchmark instances that have
been used to test the three algorithms. Afterward, the
algorithm tuning and the experimental results are de-
scribed in detail.

68.5.1 Benchmark Instances

A diverse set of benchmark instances was generated
in the following way. Three parameters are necessary
for the generation of a benchmark instance GD .V;A/.
Hereby, n and m indicate, respectively, the number of
vertices and the number of arcs of G, while q 2 Œ0; 1�
indicates the probability for the weight of any arc to be
positive (rather than negative). The process of the gen-
eration of an instance starts by constructing a random
arborescence T with n vertices. The root vertex of T is
called vr. Each of the remainingm�nC1 arcs was gen-
erated by randomly choosing two vertices vi and vj, and
adding the corresponding arc aD .vi; vj/ to T . In this
context, aD .vi; vj/may be added to T , if and only if by
its addition no directed cycle is produced, and neither
.vi; vj/ nor .vj; vi/ form already part of the graph. The
weight of each arc was chosen by, first, deciding with
probability q if the weight is to be positive (or nonpos-
itive). In the case of a positive weight, the weight value

was chosen uniformly at random from Œ1; 100�, while in
the case of a nonpositive weight, the weight value was
chosen uniformly at random from Œ�100; 0�.

In order to generate a diverse set of benchmark
instances, the following values for n,m, and qwere con-
sidered:

� n 2 f20;50; 100;500;1000;5000g;� m 2 f2n; 4n;6ng;� q 2 f0:25;0:5; 0:75g.

For each combination of n, m, and q, a total of 10
problem instances were generated. This resulted in a to-
tal of 540 problem instances, that is, 180 instances for
each value of q.

68.5.2 Algorithm Tuning

The proposed ACO algorithm has several parameters
that require appropriate values. The following parame-
ters, which are crucial for the working of the algorithm,
were chosen for tuning:

� na 2 f3; 5;10; 20g: the number of ants (solution
constructions) per iteration;� � 2 f0:05;0:1; 0:2g: the learning rate;� ı 2 f0:0; 0:4; 0:7; 0:9g: the determinism rate.

We chose the first problem instance (out of 10 prob-
lem instances) for each combination of n, m, and q for
tuning. A full factorial design was utilized. This means
that ACO was applied (exactly once) to each of the
problem instances chosen for tuning. The stopping cri-
terion was fixed to 20 000 solution evaluations for each
application of ACO. For analyzing the results, we used
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a rank-based analysis. However, as the set of problem
instances is quite diverse, this rank-based analysis was
performed separately for six subsets of instances. For
defining these subsets, we refer to the instances with
n 2 f20; 50; 100g as small instances, and the remaining
ones as large instances. With this definition, each of the
three subsets of instances concerning the three differ-
ent values for q, was further separated into two subsets
concerning the instance size. For each of these six sub-
sets, we used the parameter setting with which ACO
achieved the best average rank for the corresponding
tuning instances. These parameter settings are given in
Table 68.2.

68.5.3 Results

The three algorithms considered for the comparison
were applied exactly once to each of the 540 prob-
lem instances of the benchmark set. Although ACO is
a stochastic search algorithm, this is a valid choice, be-
cause results are averaged over groups of instances that
were generated with the same parameters. As in the
case of the tuning experiments, the stopping criterion
for ACO was fixed to 20 000 solution evaluations. Ta-
bles 68.3–68.5 present the results averaged – for each
algorithm – over the 10 instances for each combination
of n and m (as indicated in the first two table columns).
Four table columns are used for presenting the results
of each algorithm. The column with heading value pro-
vides the average of the objective function values of
the best solutions found by the respective algorithm for
the 10 instances of each combination of n and m. The
second column (with heading std) contains the corre-
sponding standard deviation. The third column (with
heading size) indicates the average size (in terms of the
number or arcs) of the best solutions found by the re-
spective algorithm (remember that solutions – that is,
arborescences – may have any number of arcs between
0 and jVj�1, where jVj is the number of the input DAG
GD .V;A/). Finally, the fourth column (with heading
time (s)) contains the average computation time (in sec-

Table 68.2 Parameter setting (concerning ACO) used for
the final experiments

q D 0:25 q D 0:5 q D 0:75
Small instances na D 20 na D 20 na D 5

� D 0:2 � D 0:2 � D 0:05
ı D 0:7 ı D 0:7 ı D 0:4

Large instances na D 20 na D 20 na D 20
� D 0:2 � D 0:2 � D 0:2
ı D 0:9 ı D 0:9 ı D 0:9

onds). For all three algorithms, the computation time
indicates the time of the algorithm termination. In the
case of ACO, an additional table column (with heading
evals) indicates at which solution evaluation, on aver-
age, the best solution of a run was found. Finally, for
each combination of n and m, the result of the best-
performing algorithm is indicated in bold font.
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Fig. 68.3a-c Average improvement (in %) of ACO and
DP-HEUR over VENSRI. Positive values correspond to
an improvement, while negative values indicate that the
respective algorithm is inferior to VENSRI. The improve-
ment is shown for the three different arc-densities that are
considered in the benchmark set, that is, mD 2n, mD 4n,
and mD 6n
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Concerning the 180 instances with qD 0:25, the
results allow us to make the following observations.
First, ACO is for all combinations of n and m the
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Fig. 68.4 These graphics show, for each combination of n and m,
information about the average size – in terms of the number of
arcs – of the solutions produced by DP-HEUR, ACO, and VENSRI

best-performing algorithm. Averaged over all prob-
lem instances ACO obtains an improvement of 29:8%
over VENSRI. Figure 68.3a shows the average im-
provement of ACO over VENSRI for three groups
of input instances concerning the different arc den-
sities. It is interesting to observe that the advantage
of ACO over VENSRI seems to grow when the arc
density increases. On the downside, these improve-
ments are obtained at the cost of a significantly in-
creased computation time. Concerning heuristic DP-
HEUR, we can observe that it improves over VEN-
SRI for all combinations of n and m, apart from
.nD 100;mD 2n/ and .nD 500;mD 2n/. This seems
to indicate that, also for DP-HEUR, the sparse in-
stances pose more of a challenge than the dense
instances. Averaged over all problem instances, DP-
HEUR obtains an improvement of 18:6% over VENSRI.
The average improvement of DP-HEUR over VEN-
SRI is shown for the three groups of input instances
concerning the different arc-densities in Fig. 68.3a.
Concerning a comparison of the computation times,
we can state that DP-HEUR has a clear advan-
tage over VENSRI especially for large-size problem
instances.

Concerning the remaining 360 instances (qD 0:5
and qD 0:75), we can make the following additional
observations. First, both ACO and DP-HEUR seem to
experience a downgrade in performance (in compari-
son to the performance of VENSRI) when q increases.
This holds especially for rather large and rather sparse
graphs. While both algorithms still obtain an aver-
age improvement over VENSRI in the case of qD
0:5 – that is, 19:9% improvement in the case of ACO

and 7:3% in the case of DP-HEUR – both algorithms
are on average inferior to VENSRI in the case of
qD 0:75.

Finally, Fig. 68.4 presents the information which
is contained in column size of Tables 68.3–68.5 in
graphical form. It is interesting to observe that the
solutions produced by DP-HEUR consistently seem
to be the smallest ones, while the solutions pro-
duced by VENSRI seem generally to be the largest
ones. The size of the solutions produced by ACO

is generally in between these two extremes. More-
over, with growing q the difference in solution size
as produced by the three algorithms seems to be
more pronounced. We currently have no explana-
tion for this aspect, which certainly deserves further
examination.
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68.6 Conclusions and Future Work
In this work, we have proposed a heuristic and an ACO
approach for the minimum-weight rooted arboresence
problem. The heuristic makes use of dynamic program-
ming as a subordinate procedure. Therefore, it may be
regarded as a hybrid algorithm. In contrast, the pro-
posed ACO algorithm is a pure metaheuristic approach.
The experimental results show that both approaches are
superior to an existing heuristic from the literature in
those cases in which the number of arcs with positive
weights is not too high and in the case of rather dense
graphs. However, as far as sparse graphs with a rather

large fraction of positive weights are concerned, the
existing heuristic from the literature seems to have ad-
vantages over the algorithms proposed in this chapter.

Concerning future work, we plan to develop a hy-
brid ACO approach which makes use of dynamic pro-
gramming as a subordinate procedure, in a way similar
to the proposed heuristic. Moreover, we plan to im-
plement an integer programming model for the tackled
problem – in the line of the model proposed in [68.11]
for a related problem – and to solve the model with an
efficient integer programming solver.
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