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65. Evolutionary Computation
and Constraint Satisfaction

Jano I. van Hemert

In this chapter we will focus on the combination
of evolutionary computation (EC) techniques and
constraint satisfaction problems (CSPs). Constraint
programming (CP) is another approach to deal
with constraint satisfaction problems. In fact, it is
an important prelude to the work covered here as
it advocates itself as an alternative approach to
programming [65.1]. The first step is to formulate
a problem as a CSP such that techniques from
CP, EC, combinations of the two, often referred to
as hybrids [65.2, 3], or other approaches can be
deployed to solve the problem. The formulation
of a problem has an impact on its complexity in
terms of effort required to either find a solution or
that proof no solution exists. It is, therefore, vital
to spend time on getting this right.

CP defines search as iterative steps over a search
tree where nodes are partial solutions to the prob-
lem where not all variables are assigned values.
The search then maintains a partial solution that
satisfies all variables with assigned values. Instead,
in EC algorithms sample a space of candidate so-
lutions where for each sample point variables are
all assigned values. None of these candidate so-
lutions will satisfy all constraints in the problem
until a solution is found. Such algorithms are often
classified as Davis–Putnam–Logemann–Loveland
(DPLL) algorithms, after the first backtracking al-
gorithm for solving CSP [65.4].

Another major difference is that many con-
straint solvers from CP are sound, whereas EC
solvers are not. A solver is sound if it always finds
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a solution if it exists. Furthermore, most constraint
solvers from CP can easily be made complete, al-
though this is often not a desired property for
a constraint solver. A constraint solver is complete
if it can find every solution to a problem.

65.1 Informal Introduction to CSP

For a formal definition please skip to the next sec-
tion. A constraint satisfaction problem consists of a set
of variables and each variable must be assigned one
value from its finite set of values, called its domain.

A set of constraints restricts certain simultaneous as-
signments. In most CSPs, the objective is to search
for a simultaneous assignment of all the variables such
that all constraints are satisfied, i. e., no forbidden si-
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multaneous assignment from the set of constraints is
used.

A famous example is the SEND MORE MONEY
puzzle, where each letter must be replaced by a unique
number such that the following sum holds [65.5]

S E N D
+ M O R E
= M O N E Y:

In this CSP, the variables are S;E;N;D;M;O;R; Y
and the domains are f1; : : : ; 9g for S;M and f0; : : : ; 9g
for E;N;D;O;R;Y . The constraint can be also writ-
ten as 1000� SC100�EC10�NCDC1000�MC
100�OC10�RCED 10 000�MC1000�OC100�
NC 10�ECY . Every CSP A can be rewritten into
an another CSP B where a bijective mapping ex-
ists between the solutions of A and B, which follows

from the reducibility theorem from complexity the-
ory [65.6]. The solution to this CSP is the assign-
ment SD 9;ED 5;N D 6;DD 7;M D 1;OD 0;RD
8;Y D 2, which uniquely satisfies the constraint.

Other very well-known constraint satisfaction prob-
lems are map coloring, more commonly known as
vertex coloring (Sect. 65.5.2), and the recreational game
Sudoku, which is equivalent to completing a graph
9-coloring problem on a given specific graph with
81 vertices. A specific EC solution is provided by
Lewis [65.7]. Quite a lot of constraint satisfaction
problems exist; we will first look at CSP in general
within the context of EC as problem solvers. Then
we will discuss several specific constraint satisfaction
problems and the particular EC approaches applied to
these problems. Last, we will provide a brief overview
on using EC for generating problem instances for
CSP.

65.2 Formal Definitions

Slightly different, but equivalent, formal definitions of
CSP exist. The most common definition is:

Definition 65.1 (Constraint Satisfaction Problem)
is a triple hV;D;Ci:
� V is an n-tuple of variables V D hv1; v2; : : : ; vni,� Each v 2 V has a corresponding m-tuple of values

called its domains, Dv D hd1; d2; : : : ; dmi of which
it can be assigned one and� CD hC1; : : : ;Cti is a t-tuple of constraints where
each c 2 C restricts certain simultaneous variable
assignments to occur.

The definition of a constraint is often reversed in the
literature, where generic CSP is discussed in that con-
straints are defined as the set of assignments that are
allowed rather than restricted. Note, in generic CSP lit-
erature, variables are often denoted with X, whereas in
graph-oriented problem domains such as graph coloring
and maximum clique, V is adopted.

Definition 65.2 (Solution to a CSP)
is an assignment of variables .d1; : : : ; dn/ 2 D1 � 	 	 	 �
Dn such that for every constraint c 2 C on xi1 ; : : : ; xim :
.di1 ; : : : ; dim/ … c.

In the context of one constraint c, we say an as-
signment of variables satisfies the constraint c if the

assignment is in c or violates the constraint c if the
assignment is not in c. A CSP can be insoluble –
more commonly written as insolvable, which means
every assignment of variables will violate at least one
constraint.

A constraint solver is an algorithm that takes as in-
put a CSP and produces as output either a solution or
a proof that no solution exists or a notification of failure.
The input is often referred to as a problem instance, as
a CSP is often defined to cover a class of problems such
as, 3-satisfiability. The output can be more than one so-
lution, in fact it could be every solution. However, as
EC techniques are based on sampling, in principle they
cannot proof that every solution has been found, which
is referred to as not complete. Moreover, they cannot
proof no solution exists, which is referred to as not
sound. Therefore, constraint solvers based on EC and
other heuristic approaches often terminate after a cer-
tain criterion is met, e.g., a predefined elapsed time is
reached in terms of the number of solutions evaluated,
the computation time spent, or a certain convergence of
the population reached.

We recommend the following books for further
reading on constraint satisfaction. For the foundations
of the problem and basic algorithms, Tsang [65.8]; for
an introduction with comprehensive overview of con-
straint programming techniques, Dechter [65.9] and
Lecoutre [65.10]; and for a more theoretical approach
Apt [65.1] and Chen [65.11].
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65.3 Solving CSP with Evolutionary Algorithms

In this chapter we will restrict ourself to covering
the conceptual mapping required to solve a CSP with
an evolutionary algorithm. This mapping will con-
sist of choosing a representation for the problem and
a corresponding fitness function to determine the qual-
ity of a solution. Once this mapping is complete,
the evolutionary algorithm will require other compo-
nents, such as appropriate variation operators, selection
mechanisms, and a suitable initialization method for
the population and termination criteria. All these, and
other optional variants can be found elsewhere in the
handbook.

We will explain the two most common mappings
using the well-known n-queens on an n� n-chessboard
problem. These mappings are direct encoding and in-
direct encoding. First we introduce a conceptual defini-
tion of the problem.

The n-queens problem requires the placing of n
queens on an n� n chessboard such that no queen at-
tacks any of the other n� 1 queens. Thus, a solution
requires that no two queens share the same row, col-
umn, or diagonal. Several common formal definitions
of the problem exist. The most common is to define n
variables fq1; : : : ; qng, where each variable q has a do-
main that consists of the row position the queen will
be placed on in its corresponding unique column, i. e.,
q 2 f1; : : : ; ng8iD 1; : : : ; n. The set of constraints con-
sists of qi ¤ qj (i. e., not in the same row) and jqi�qjj ¤
ji� jj8i; jD 1; : : : ; n (i. e., not in the same diagonal).

The n-queens problem is no longer considered
a challenging problem as it has a structure that can be
exploited to solve very large problems of over 9 million
queens by repeating a pattern [65.12]. It is, however, an
excellent problem for explaining characteristics of con-
straint satisfaction problems and their solvers due to the
simple 2-D spatial nature of the problem. For instance,
to explain symmetry in CSP, the 8-queens problem can
be used to show it has 12 unique solutions, as shown in
Fig. 65.1 out of the 92 distinct solutions when removing
variants due to rotational and reflection symmetry.

65.3.1 Direct Encoding

With a direct encoding the genotype consists of a vec-
tor Eg where each element corresponds uniquely to one
variable of the CSP; an element gi contains values di-
rectly from the domain of its corresponding variableDi.
A wide variety of genetic operators both for mutation
and recombination are applicable to this encoding and

can be found in [65.13]. Most of these operators will be
called discrete or mixed-integer operations.

The genotype is mapped to the phenotype by taking
into consideration the constraints; it requires a measure-
ment for determining the quality of candidate solutions.
Thus, we need to introduce a fitness function. The most
common fitness function takes the sum of all constraints
violated by a candidate solution

fitness.Eg/D
X
c2C

violated.c/ ;

where violated.c/D
(
1 if c violated by Eg
0 if c satisfied by Eg :

The fitness should be minimized and once it reaches
zero, a solution has been found.

65.3.2 Indirect Encoding

With an indirect encoding the genotype first needs to be
transformed into a full or partial assignment of the vari-
ables of the CSP. It is also referred to as local search
depending on the level of sophistication; these transfor-
mations range from as simple as a greedy assignment all
the way to sound search algorithms evaluating a small
part of the CSP.

The most common approach for this representa-
tion takes as a genotype the permutation of variables
of the CSP. Many genetic operators are designed to
maintain a permutation and several are explained in the
Handbook of Evolutionary Computation [65.13]. The
permutation is the input to the local search and de-
termines the order in which variables are processed;
processing a variable involves trying to assign a value
such that no constraint is violated and perhaps further
steps if no value can be assigned without violating at
least one constraint.

More advanced encodings may also include the or-
dering in which to consider values from each variable’s
domain. From constraint programming we know that
the order in which variables and values are considered
has a huge impact on the efficiency of search algo-
rithms [65.14]; more often it is the search method that
determines the order using a particular heuristics such
as choosing the next vertex with the maximum satura-
tion degree, as is used in DSatur [65.15]. The saturation
degree for a vertex is defined as the total number of
colors used for coloring its neighbors. The principle
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Fig. 65.1 The 12 unique solutions under symmetry via rotations and reflections for the 8-queens problem

has been used in many algorithms since its introduction
in 1979.

The most common fitness function used with indi-
rect encoding simply counts the number of unassigned
variables after the local search terminates. Note that
two different strategies will influence the resolution of
this function. If the local search terminates after it first
encounters a variable it cannot assign, then many candi-
date solutions will have the same fitness but can still be
very different. On the other hand, terminating after all
variables have been considered will give a richer land-
scape to consider but may incur more computational
effort. See [65.16] for a comprehensive theoretical and
empirical analysis of sampling in EC.

65.3.3 General Techniques
to Improve Performance

Over the past two decades, many techniques were de-
veloped to improve the efficiency and/or the effective-
ness of EC for solving constraint satisfaction problems.

Only a handful of these techniques were evaluated on
more than one problem. Hence, we cannot draw any
general conclusions about the success of these tech-
niques. Even worse is that many studies will show
improvement only compared to their previous results
or compare their results with an algorithm that has
already been superseded in terms of performance by
many other techniques. Often the set of competitor al-
gorithms is chosen to fall within EC, which severely
limits the strength of the competition. Therefore, we
will discuss techniques for improving performance in
the context of the problems they were developed for.
Section 65.5 reviews several popular CSPs used for
developing more efficient and effective evolutionary
algorithms.

One approach that has been applied to several CSPs
with varying success is that of assigning weights to
constraints to allow biasing the search towards satis-
fying certain constraints; in the first experiments this
approach was referred to as penalty functions [65.17].
Moreover, the search can be influenced dynamically
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by adapting weights according to heuristics, such as
increasing the weight of the constraint that has been sat-
isfied the least number of times recently [65.18]. The
origin of this idea can be found in the self-adaptation
used in evolution strategies [65.19].

With penalty functions, the optimization objectives
replacing the constraints are traditionally viewed as
penalties for constraint violation, hence to be mini-
mized [65.20]. There are two basic types of penalties:

1. Penalty for violated constraints
2. Penalty for wrongly instantiated variables.

Formally, let us assume that we have constraints
ci .iD f1; : : : ;mg/ and variables vj .jD f1; : : : ; ng/.
Let Cj be the set of constraints involving variable vj.
Then the penalties relative to the two options described
above can be expressed as follows:

1. f1.s/D
Pm

iD1 wi ��.s; ci/, where

�.s; ci/D
(
1 if s violates ci

0 otherwise
;

2. f2.s/DPn
jD1 wj ��.s;Cj/, where

�.s;Cj/D
(
1 if s violates at least one c 2 Cj

0 otherwise ;
;

where the wi and wj are weights that correspond to
a constraint and a variable, respectively. These will
be important later on, for now we assume all these
weights equal to 1.

Obviously, for each of the above functions f 2
ff1; f2g and for each s 2 S we have that 	.s/D true
if and only if f .s/D 0. For instance, in the graph 3-
coloring problem the vertices of a given graph GD
.V;E/, E � V �V, have to be colored by three colors
in such a way that no neighboring vertices, i. e., graph
nodes connected by an edge, have the same color. This
problem can be formalized by means of a CSP with nD
jVj variables, each with the same domain DD f1; 2; 3g.
Furthermore, we havemD jEj constraints, one for each
edge eD .k; l/ 2 E, with ce.s/D true if and only if sk ¤
sl. Then the corresponding CSP is hS; 	i, where SD
Dn and 	.s/DV

e2E ce. Using the constraint-oriented
penalty function f1 with wi D 1 for all iD f1; : : : ;mg
we count the incorrect edges that connect two vertices
with the same color. The variable-oriented penalty func-
tion f2 with wi D 1 for all iD f1; : : : ;mg amounts to
counting the incorrect vertices that have a neighbor with
the same color.

Advantages of indirect encoding:

� Introduces in general, e.g., f1; f2 are problem-
independent penalty functions� Reduces problem to simple optimization� Allows user preferences by weights.

Disadvantages of indirect encoding:

� Loss of information by packing everything in a sin-
gle number� In the case of constrained optimization (as opposed
to CSP as we are handling here) f1; f2 are reported
to be weak [65.21].

65.4 Performance Indicators

An understanding of the efficiency and effectiveness is
vital when choosing which solver to use or when de-
veloping an algorithm to deal with a specific CSP. In
this section we briefly explain measures for determining
these properties in the context of solving CSP. How-
ever, these properties must be measured using a suite
of benchmark instances and, as EAs are generally ran-
domized algorithms, with multiple independent runs of
the algorithm on each instance. Choosing an appro-
priate suite of benchmark instances is paramount to
making decisions on which algorithm, parameter set-
ting, or next algorithmic feature to add.

In a sense, the search for a good algorithm is in
itself an optimization problem. The suite of bench-
mark instances represents only the problem, just like
training data in a machine learning problem represents
all data possibly encountered. Changing an algorithm
and tuning its parameters on the same small suite of
instances could lead to over-fitting [65.22, 23], which
in turn means the algorithm will have a poorer per-
formance in the general case. Therefore, the first step
should be to characterize the problem well and have
a good representation, e.g., spread, of the instances pos-
sibly encountered when deployed.
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65.4.1 Efficiency

The time taken by an algorithm to provide a solution is
an important factor. Even more so in situations where
solutions are required in real time. Much research is
devoted to speeding up algorithms, either by cleverly
exploiting properties of the problem, by parallelization,
or by balancing aspects of the quality of the solution.

The most common approach to measuring the ef-
ficiency of evolutionary algorithms is by counting the
number of evaluations, i. e., the number of times the
fitness function is executed. This approach has several
drawbacks. First, the approach allows comparison only
with algorithms that use the exact same fitness func-
tion and spend the most significant part of their time
on computing that function. Second, the computational
complexity of the evolutionary algorithm may not be
dependent on the fitness function. For instance, with the
indirect encoding described in Sect. 65.3.2, much com-
putational effort will go into the local search, whereas
the computation of the fitness is trivial.

Another common approach is to measure time spent
as reported by the operating system. This has even
more drawbacks as the reported numbers will depend
on the computer programming language used for im-
plementing the algorithm, the compiler and its setting
for translating the implementation into machine code,
the architecture of the computer for executing the ma-
chine code, and the operating system for hosting the
execution environment. Variations of these will have an
affect on the reported results and, moreover, as these
environments themselves change over time, future stud-
ies will find it hard to reproduce results accurately
or even create meaningful comparisons to reported
results.

A more meaningful solution is to count all the
atomic operations that are directly related to the prob-
lem. The operations that must be included should be
those that in theory increase exponentially in numbers
with larger problems, as CSP fall under the class of non-
polynomial deterministic problems. The most common
operation will be a conflict check; this is also referred
to as a constraint check, but in the strictest sense, a con-
straint check consists of multiple conflict checks [65.8].
For example, when solving the n-queens problem, ev-
ery time the algorithm checks qi ¤ qj for any qi and qj,
this should be recorded as one check. The same proce-

dure should be followed for the constraint concerning
diagonal attacks jqi�qjj ¤ ji� jj. The sum of all checks
when the algorithm terminates is the computational ef-
fort spent.

By reporting the number of conflict checks we as-
sure future studies can compare with current results as
this measurement will not be affected by future changes
in hardware and software environments. We are mea-
suring a property of the algorithm here as opposed to
a property of one implementation of the algorithm run-
ning in one particular environment.

It is important to note that there are subtle differ-
ences in the reporting used in different studies. Some
studies report the average number of operations over all
independent runs, including runs that are unsuccessful,
i. e., where no solution was found. Other studies report
the average number of operations to a solution, where
only the runs that yield a solution are taken into ac-
count. The former method will produce higher averages
than the latter if the success rate is less than 1.

65.4.2 Effectiveness

Efficiency is only one aspect of which to measure the
success of a constraint solver. The other most impor-
tant aspect is that of effectiveness, which measures how
successful an algorithm is in finding or approximating
a solution. The easiest and most commonly used mea-
surement is that of the success rate, which is defined
for an experiment as the number of runs in which an
algorithm finds a solution divided by the total of num-
ber of runs of the same algorithm in that experiment. As
no prior knowledge is required about whether problem
instances are insolvable, this measurement is straight-
forward to implement.

Another popular measurement in combinatorial op-
timization is distance to the optimal solution. This
measurement poses two challenges in the context of
constraint satisfaction. Unlike a combinatorial opti-
mization problem, which has the function to optimize,
a CSP has no such function. As an alternative we could
use the fitness function, but that is not an inherent
property of the problem. Also, we often do not know
whether a CSP has a solution and when it does not, then
we do not know the optimal fitness function. Distance
to the optimal solution is rarely used when solving CSP
due to these impracticalities.
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65.5 Specific Constraint Satisfaction Problems

Many specific constraint satisfaction problems have
been addressed in the literature. A full overview
of these would not provide much benefit, as the
most likely scenario is that one is looking for pa-
pers that provide descriptions of algorithms and re-
sults with those algorithms on a certain problem.
The exceptions to this are several problems that in
the literature are used to drive the development of
algorithms in terms of efficiency and effectiveness.
These core problems are used over and over to test
whether new algorithms are better than existing algo-
rithms.

Several reasons exist for the choice of these prob-
lems. Their compact definition means that the problem
is easy to replicate by everyone and quick to introduce
in papers. The most popular problems were used in the
1970s when the theory on non-polynomial determinis-
tic problems was developed, which were consequently
seen as important intelligent building blocks. Also, test
sets and later problem generators were released in the
public domain, thereby providing easy access to test
suites.

We will use several of these core problems to de-
scribe the progress of development in evolutionary
computation for constraint satisfaction problems. For
each problem we will provide a quick introduction,
a justification of its importance in terms of practical ap-
plications, and a set of pointers to problem suites before
describing the approaches used.

65.5.1 Boolean Satisfiability Problem

Given a Boolean formula 	 determine whether an as-
signment of the variables in 	 exists that makes it
TRUE. It is often referred to as satisfiability and ab-
breviated to SAT [65.24]. In SAT variables are often
referred to as literals. Most often the problem is studied
in conjunctive normal form (CNF) where 	 is a con-
junction of clauses where each clause is a disjunction
of variables. Every SAT problem can be reduced to
a 3-CNF-SAT (three variables/clause-conjunctive nor-
mal form-satisfiability) [65.25], where each clause has
three literals.

3-CNF-SAT was the first problem to be shown to
be NP-complete [65.26]. It serves as an important basis
to proving that other problems are NP-complete, such
as the maximal clique problem. Such a proof involves
a polynomial-time reduction from 3-CNF-SAT to the
other problem [65.6].

The following is an example of 3-CNF-SAT:

� 	 D .x1_:x3_ x4/^ .:x2_ x1_:x6/^ .x3_ x2 _
:x5/� A solution: x1 D 1, x2 D 0, x3 D 1, x4 D 0, x5 D 0,
x6 D 0.

Important practical applications of SAT are model
checking [65.27], for example, in mathematical proof
planning [65.28], generic planning problems, espe-
cially using the planning domain definition language
(PDDL) [65.29], test pattern generation [65.30], and
haplotyping in the scientific field of bioinformat-
ics [65.31].

As far as the development of efficient and effective
CSP solvers go, SAT is the most active field. It has
an annual conference – The International Conference
on Theory and Applications of Satisfiability Testing,
which also hosts an annual competition to determine
the current best solvers. The latter also ensures that new
problem instances are continuously added, which pre-
vents what is called overfitting [65.32] of the solvers to
an existing set of problem instances.

The general approach to solve satisfiability with EC
is to directly represent the variables in 	 and assign
these either TRUE or FALSE, i. e., these form the do-
main. The fitness function used is the number of clauses
violated, which should be minimized.

The earliest evolutionary algorithm for SAT was re-
ported in 1994 by [65.33] and was soon followed by
the work of Gottlieb and Voss [65.34, 35], who were
looking to improve its performance. Soon after, inde-
pendent efforts led to parallelized algorithms [65.36,
37]. In 2000, the first adaptive evolutionary algorithms
were applied [65.38], which was 3 years after they were
applied to graph coloring (Sect. 65.5.2).

The introduction of hybrid evolutionary algorithms
with local search created a real boost of research ac-
tivity [65.39–43]. However, a major issue remains with
research on solving satisfiability with EC, as all studies
include only local search and evolutionary algorithms
without comparing to the state-of-art DPLL and heuris-
tic solvers from the annual satisfiability community.
This holds true even for recent studies such as [65.44].
Due to this major gap between the two communities of
EC and CP, we do not comment on the comparison in
terms of effectiveness and efficiency.

New research [65.45] focusses on using EC to
evolve parameter settings for existing sound SAT
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solvers, mostly ones based on the Davis–Putnam–
Logemann–Loveland algorithm [65.46]. All modern
SAT solvers have many parameters to tune how the
search is organized. These parameters are often tuned
manually, which allows for only a small exploration.
Using EC, a much larger space can be explored in order
to create fast SAT solvers for a given benchmark.

65.5.2 Graph Coloring

Graph coloring has several variants. The most com-
monly used definition is that of graph k-coloring, also
known as the vertex coloring problem. Given a graph of
vertices and edges hV;Ei the goal is to find a coloring
of the vertices V of the graph such that no two adja-
cent vertices have the same coloring. If c.v/ provides
the color assigned to v, then 8v;w 2 V W c.v/¤ c.w/ iff
.v;w/ 2 E. The objective is to make use of k or less col-
ors. The problem is known to be NP-complete for k � 3
and to be decidable in linear time for k � 2.

Graph coloring is an abstract problem that lies at
the core of many applications. Well-known applications
are scheduling, most specifically timetabling [65.47],
register allocation in compilers [65.48], and frequency
assignment in wireless communication [65.49]. It is
a well-studied problem as is shown by the number of
entries in the best-kept bibliography source until April
2010 with over 450 publications contributing to vertex
coloring [65.50].

The Second DIMACS Implementation Challenge
in 1992–1993 focused on maximum clique, graph col-
oring, and satisfiability. The challenge provided not
only a standard format for graph k-coloring prob-
lem instances, but also provided a set of problem
instances that is still popular today. Soon after, in
1994, Culberson and Luo [65.51] created a problem in-
stance generator, which can create problem instances
with a known k and various other properties. Sev-
eral other generators exist with specific goals, such as
to hide cliques [65.52], to create register-interference
graphs [65.53], and to create timetabling problems
(Sect. 65.5.4).

The most straightforward approach to solving graph
k-coloring with EC is to represent a genome as a vec-
tor of all variables of the problem. This vector can then
undergo genetic operators suitable for integer represen-
tations. The fitness function is simply the number of
violated constraints, which should be minimized until
a solution is found when the fitness is equal to zero. Un-
fortunately, this approach leads to algorithms that are
inefficient and ineffective [65.54].

To make EC more efficient and effective for solving
graph k-coloring, new algorithms have been developed;
these broadly fall into two categories. The first cate-
gory consists of adding mechanisms that prevent the
stagnation of search due to premature convergence.
The second category consists of alternative representa-
tions that make use of decoders to map genotypes to
phenotypes. The two categories are not mutually exclu-
sive, and studies have included algorithms that combine
mechanisms from both categories.

The earliest work on solving graph k-coloring with
EC includes the following. Fleurent and Ferland suc-
cessfully considered various hybrid evolutionary algo-
rithms [65.55] with Tabu search and extended their
work into a general implementation of heuristic search
methods in [65.56]. Von Laszewski looked at structured
operators and used adaption to improve the convergence
rate of a genetic algorithm [65.57]. Davis designed an
algorithm [65.58] to maximize the total of weights of
nodes in a graph colored with a fixed number of col-
ors. Coll et al. [65.59] discussed graph coloring and
crossover operators in a more general context.

Juhos and van Hemert introduced several heuris-
tics [65.60, 61] for guiding the search of an evolutionary
algorithm. All these heuristics depend on their novel
representation that collapses the graph by combining
nodes assigned with the same color into one hypernode,
which speeds up further constraint checking as edges
are merged into hyperedges [65.62]. This representation
benefits both complete and heuristic methods.

Moreover, as shown in the results in Fig. 65.2,
the evolutionary algorithms developed by Juhos and
van Hemert are able to outperform a complete method
(Backtracking-DSatur) on very difficult problem in-
stances where the chromatic number is 10 or 20. These
algorithms are unable to compete with the complete
method for smaller chromatic numbers of 3 and 5.

65.5.3 Binary Constraint
Satisfaction Problems

A binary constraint satisfaction problem (BINCSP) is
a CSP where every constraint c 2 C restricts at most
two variables [65.63]. Often, network graphs are used
to visualize (CSP) instances. In Fig. 65.3, we provide
an example of a restricting hypergraph of a BINCSP.
It consists of three variables V D fv1; v2; v3g, all of
which have domain DD fa; bg. In a hypergraph every
vertex corresponds to a possible variable assignment,
i. e., hv; di, where v 2 V and d 2 Dv. Every edge indi-
cates the variable assignments that are forbidden by the
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Fig. 65.2a-d Results of several evolutionary algorithms against the complete method Backtracking-DSatur; average
minimum number of colors used through the phase transition

set of constraints C. In the example, we show all the
edges that correspond to the following set of forbidden
value pairs CD f fhv1; ai; hv2; aig, fhv1; ai; hv3; big,
fhv1; bi; hv2; aig, fhv1; bi; hv2; big, fhv1; bi; hv3; aig,
fhv1; bi; hv3; big, fhv2; ai; hv3; aig, fhv2; ai; hv3; big g.

For problem instances, studies on BINCSP gener-
ally create large sets of instances using one of many
problem instance generators. Several models to ran-
domly create BINCSPs have been designed and an-
alyzed [65.63–65]. All of these incorporate a set of

x1, b

x1, a

x3, a

x2, a

x2, b

x3, b

Fig. 65.3 Example of a jVj-partite hypergraph of
a (BINCSP) with one solution: fhv1; ai; hv2 ; bi; hv3 ; aig

parameters that may be used to control the size and dif-
ficulty of the problems. Often, these parameters can be
used to create a set of problems that go through a phase
transition. That is, we order the set on the parameters
and observe how the algorithms behave when we move
through the parameter space. In most constraint satis-
faction problemswe observe that the performance drops
gradually until it reaches a minimum, after which it
rises again. Most researchers test their algorithms in the
region where the minimum is reached. Here the set of
most difficult to solve problem instances is found. We
will discuss these methods next.

The model most often used in empirical research on
binary constraint satisfaction problems is one that uses
four parameters to control, to some degree, the diffi-
culty of an instance. By varying these global parameters
one can characterize instances that are more likely to be
either more or less difficult to solve. These parameters
are: the number of variables nD jVj, the size of each
variable’s domain mD jDv1 j D jDv2 j D 	 	 	 D jDvn j, the
density of constraints p1, and the average tightness of
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all the constraints p2. There are two ways of looking at
parameters p1 and p2. We will use the following defini-
tions.

Definition 65.3 (Density)
The density of a BINCSP is the ratio between the max-
imum number of constraints

�n
2

�
and the actual number

of constraints jCj,

p1 D jCj�n
2

� :

Definition 65.4 (Tightness)
The tightness of a constraint c� C over the variables
v;w 2 V of a BINCSP hV;D;Ci is the ratio between
the total number of forbidden variable assignments jcj
and the total number of combinations of variable as-
signments possible mD jDvjjDwj,

p2.c/D jcj
m2

:

Definition 65.5 (Average Tightness)
The average tightness of a BINCSP hV;D;Ci is the
sum of the tightness over all constraints divided by the
number of constraints,

p2 D
P

c2C p2.c/

jCj :

These definitions give the density and tightness in
terms of a ratio, or in other words, as the percent-
ages of the maximum. Another way of looking at these
two properties uses probabilities [65.66]. We could de-
fine the density of a BINCSP as the probability that
a constraint exists between two variables. The tight-
ness can be alternatively defined in an analogous way,
as the probability that a conflict exists between two in-
stantiations of two variables. The differences in these
viewpoints becomes apparent in the different imple-
mentations of algorithms that generate BINCSPs, as
with uniform generation the ratio in an instance is deter-
mined beforehand, while with probability the ratio will
vary according to a normal distribution. When compar-
ing studies it is important to know when probabilities
are used whether the results reported are against the
probability set or the actual measured ratio in the whole
instance.

Table 65.1 Different models for the general method for
generating binary constraint satisfaction problems

Nogoods
Probability Uniform

Constraints Probability Model A Model C
Uniform Model D Model B

The simplest way to empirically test the perfor-
mance of an algorithm on solving CSPs is by generating
instances using different settings for the four main pa-
rameters, n, m, p1, and p2. However, there are two ways
of choosing where to put constraints in a constraint net-
work. We can choose the number of constraints we want
to have beforehand and then uniformly distribute them
in the constraint network. Alternatively, we can choose
for each possible edge in the constraint network with
the probability p1 if this edge is inserted, i. e., a con-
straint is added. We will call the first model the uniform
model and the second the probability model. The same
categorization holds for nogoods. Given a constraint we
can either distribute p2m2 nogoods uniformly or with
probability p2 decide which value pairs become no-
goods. Now we can define four different models and
we will name them according to the models in [65.63,
65]. The models are shown in Table 65.1.

Definition 65.6 (Parameter Vector of a BINCSP)
A parameter vector of a binary constraint satisfaction
problem (BINCSP) with n variables and m as each vari-
able’s domain size is a 4-tuple hn;m; p1; p2i of four
parameters: the number of variables n, the domain size
of each variablem, the density p1, and the average tight-
ness p2.

We can also characterize a set of binary constraints
satisfaction problems using the parameter vector as a set
B of BINCSP instances where

8hn;m; p1; p2i; hn0;m0; p0

1; p2
0i 2 B

, nD n0 ^mDm0 ^ p1 D p0

1^ p2 D p2
0 :

Such a set we call a suite of problem instances.
Achlioptas et al. proves in [65.64] that as the num-

ber of variables becomes large almost all instances
created by Models A–D become unsolvable. The rea-
son lies in the existence of flawed variables. Whenever
a variable v is involved in a constraint and has all its val-
ues incompatible with a value of an adjacent variable w,
this variable is called flawed. In terms of compound la-
bels using the constraint c over variables v and w this is
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written as,

8v 2 Dv W6 9w 2 Dw W
satisfies..hv; vi; hw;wi/; c/^ c 2 C :

When the number of variables is increased without
changing the other parameters, the number of flawed
variables will increase, thus making it easy to prove
instances have no solution. To overcome the problems
a new model is proposed [65.64]:

Definition 65.7 (Model E)
The graphC˘ is a random n-partite graph withm nodes
in each part that is constructed by uniformly, indepen-
dently, and with repetitions selecting pe

�n
2

�
m2 edges out

of the
�n
2

�
m2 possible ones.

The idea behind this model is that the difficulty is
controlled by the tightness and not influenced by the
structure of the constraint network. The parameter pe
is responsible for the average tightness of the BINCSP.
However, it is not the same parameter as the average
tightness p2. Because we allow repetitions in the pro-
cess we end up with an average tightness smaller than
or at most equal to pe.

Parameter pe also influences the value of p1.
In [65.65] we find the proof that using Model E with
fairly small values .pe < 0:05/ will result in a fully
connected constraint network .p1 D 1/. This is seen as
a flaw in Model E, as many problems do not require
a fully connected constraint network. This has led to
yet another model.

MacIntyre et al. propose a more generalized version
of Model E called Model F [65.65]. This model starts
out the same way as Model E by generating p1p2m

�n
2

�
nogoods. Afterwards, a constraint network is gener-
ated with exactly p1

�n
2

�
edges in the uniform way. All

nogoods that are not in a constraint in the constraint
network are removed from the problem instance. Model
E is the special case of Model F where p1 D 1. The
benefit of Model F is the ability to generate problems
where p1 < 1, which is more realistic towards real-
world problems.

Craenen et al. [65.67] present the largest compari-
son study of EC and CP approaches for the BINCSP.
In this study they compare the success rate and av-
erage number of conflict checks to a solution of 11
evolutionary algorithms. The best four evolutionary al-
gorithms are compared with forward checking with
conflict-directed backjumping [65.68], and the authors

concluded the latter has a superior performance on ev-
ery problem instance in the benchmark.

The following heuristic approaches are included in
the study. In [65.69, 70], Eiben et al. propose to incor-
porate existing CSP heuristics into genetic operators.
A study on the performance of these heuristic-based
operators when solving binary CSPs was published
in [65.71]. Two heuristic-based genetic operators are
specified: an asexual operator that transforms one in-
dividual into a new one and a multi-parent operator
that generates one offspring using a number of par-
ents. In [65.72–74], Riff-Rojas introduced an EA for
solving CSPs that uses information about the con-
straint network in the fitness function and in the genetic
operators (crossover and mutation). The fitness func-
tion is based on the notion of the error evaluation of
a constraint. Marchiori et al. introduced and investi-
gated EAs for solving CSPs based on pre-processing
and post-processing techniques [65.75–77]. Included
in the comparison is the variant form [65.75, 78] that
transforms constraints into a canonical form in such
a way that there is only one single (type of) primi-
tive constraint; we call this algorithm glass-box. This
approach is used in constraint programming, where
CSPs are given in implicit form by means of for-
mulas of a given specification language. In [65.79,
80] Handa et al. formulate a coevolutionary algorithm
where a population of schemata are parasitic on the host
population. Schemata in this algorithm are individuals
where a portion of variables in the individual has val-
ues while all other variables have do-not-care symbols
represented by asterisks.

The following approaches with emphasis on adap-
tive features are included in the comparison; a co-
evolutionary approach invented by Paredis and evalu-
ated on different problems, such as neural net learn-
ing [65.81], constraint satisfaction [65.81, 82], and
searching for cellular automata that solve the den-
sity classification task [65.83]. Furthermore, results
on the performance of the co-evolutionary approach
when facing the task of solving binary CSPs are
reported in [65.84, 85]. In the co-evolutionary ap-
proach for CSPs two populations evolve according to
a predator-prey model: a population of candidate solu-
tions and a population of constraints. In the approach
proposed by Dozier et al. in [65.86] and further re-
fined and applied in [65.87–89], information about
the constraints is incorporated both in the genetic op-
erators and in the fitness function. In the microge-
netic iterative descent algorithm the fitness function
is adaptive and employs Morris’ breakout creating
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mechanism [65.90] to escape from local optima. The
stepwise adaptation of weights mechanism was in-
troduced by Eiben and van der Hauw [65.91, 92] as
an improved version of the weight adaptation mech-
anism of Eiben et al. [65.93, 94]. The approach has
been studied in several comparisons and often proved
to be a robust technique for solving several specific
CSPs [65.95–97]. A comprehensive study of differ-
ent parameters and genetic operators can be found
in [65.98]. The basic idea is that constraints that are
not satisfied or variables causing constraint violations
after a certain number of steps must be hard, thus
must be given a high weight (penalty) in the fitness
function.

65.5.4 Examination Timetabling

Examination timetabling has been studied for many
years as it is a common problem in many organi-
zations. Already in 1986, Carter gave an extended
survey of work on automated timetabling [65.99]. He
is also responsible for providing problem instances,
which are still available and popular today [65.100],
although a more diverse benchmark is used in the
annual timetabling competition [65.101]. Burke et al.
provide the most extensive recent surveys of automated
timetabling in [65.102, 103]. Examination timetabling
is just one of many problems under the topic of
timetabling [65.104].

Timetabling as a problem has many different def-
initions due to different kinds of constraints and ob-
jectives. The definition that is most relevant for con-
straint satisfaction is often referred to as examination
timetabling. The most abstract definition simply con-
sists of a matrix C where Ci;j D 1 if exam i conflicts
with exam j by having common students that must take
both exams,Ci;j D 0 otherwise. This definition is equiv-
alent to a graph coloring problem if the objective is
to minimize the number of exam slots required, where
the number of slots equals the number of colors re-
quired for coloring the graph with incidence matrix C.
Hence, an appropriate approach to performance testing
is via graph coloring instances based on examination
timetabling, such as the problem instances labeled SCH
(school) in the graph coloring instances suite provided
by Lewandowski [65.105].

Many problem instances and problem instance gen-
erators exist. Infrequently, an International Timetabling
Competition is organized by The International Series
of Conferences on the Practice and Theory of Auto-
mated Timetabling. At each event, another definition
of timetabling problems is tackled. The differences be-
tween definitions are in the objectives and the soft
and hard constraints used. Hard constraints are treated
the same as in constraint satisfaction, whereas soft
constraints may be violated but will either incur an ad-
ditional penalty on the objective function or be used
to prioritize solutions otherwise, for instance, using
a Pareto front. Corne et al. [65.106] identified five cat-
egories of constraints, unary, binary, capacity, event
spread, and agent preference.

Three approaches exist to solving timetabling prob-
lems. The first approach is called one-stage optimiza-
tion. It aggregates all types of constraints of one prob-
lem, often by summation, into one objective function
where each type is assigned a weight. The advantage
is that, in principle, the approach can be applied to
any set of constraints. In practice, it may prove dif-
ficult to optimize such a function. Representations of
the problem fall into the two main categories direct en-
coding (Sect. 65.3.1) [65.107] and indirect encoding
(Sect. 65.3.2) [65.106, 108].

The second approach is called two-stage optimiza-
tion. It first solves the problem of finding a feasible
solution where all the hard constraints are satisfied. In
the second stage it searches within the space set with
these hard constraints and optimizes only against the
soft constraints. The benefits are that during search we
do not have to distinguish between feasible and infea-
sible constraints and, therefore, are not in danger of
the search wandering off into an infeasible part of the
search space. Thompson and Dowsland [65.109] were
the first to report on this approach using simulated an-
nealing, closely followed by the first EA by Yu and
Sung [65.110].

The third approach uses relaxation of constraints.
Typically, relaxation in timetabling is achieved by
not assigning events to slots or by adding addi-
tional time slots. An early example of an EA is by
Burke et al. [65.111], where an indirect encoding is
used and additional time slots are used to relax the
problem.
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65.6 Creating Rather than Solving Problems

So far we have covered evolutionary computation for
solving CSP. A contrasting idea proposed first for con-
straint satisfaction in [65.112] is to use evolutionary
computation to generate problem instances. Such an
approach allows a search for problem instances that
adhere to certain properties as long as these can be mea-
sured efficiently by a fitness function.

A straightforward use for such an approach is to
evolve problem instances that are difficult to solve for
a particular algorithm. By measuring the efficiency of
an algorithm to solve instances of a certain problem we
can then change the instances with the aim of decreas-
ing the efficiency. Measurements for efficiency of EC
for CSP are discussed in Sect. 65.4.1. It is important
to note that the algorithm we are evolving problem in-
stances for can be of any kind, as long as we can execute
it on problem instances generated and we can measure
its efficiency.

Such hard problem instances identify the weak
spots in the algorithm that tries to solve it. Moreover,
if we can characterize a set of problem instances where
all members of the set are hard for an algorithm, then we
can use that characterization to decide what algorithm
is suitable for solving a new problem instance. That is,
if the work required to obtain the characteristics of one
instance takes less effort than solving the actual prob-
lem instance itself [65.113].

65.6.1 Evolving Binary Constraint
Satisfaction Problem Instances

The first application to constrained problems was
for the binary constraint satisfaction problem
(Sect. 65.5.3), where problem instances are rep-
resented as a binary vector with each element
corresponding to the element of a conflict matrix
between two variables [65.114]. Even the small in-
stances investigated in the study led to large vectors,
i. e., with 15 variables each with a domain of size
15, the corresponding vector has

�15
2

� 	 152 D 23 625
elements. Results with problem instances of this size
show problem instances can be created that are far
more difficult to solve than when creating a much
larger set of randomly generated instances [65.112].
Furthermore, analysis of these instances provides
an insight as to what structure is responsible for
making instances difficult for the algorithm; two
well-known algorithms from constraint programming
were tested: chronological backtracking [65.115] and

forward checking with conflict-directed backjump-
ing [65.116].

65.6.2 Evolving Boolean Satisfiability
Problem Instances

In [65.114] an evolutionary algorithm is used to evolve
solvable Boolean satisfiability problem instances that
are in conjunctive normal form and have three variables
per clause. A 3-SAT problem is represented by a list
of natural numbers. A number in the list, i. e., a gene,
corresponds to a unique clause with three different lit-
erals. The number of possible unique clauses depends
on the number of variables and the size of the clause.
Here, the number of variables is set to 100 and the
size of the clause is 3, hence there are 1 313 400 unique
clauses. This representation has strong advantages over
a simple one gene for every literal approach. Most
importantly, it prevents duplicate variables in clauses,
which reduces the state space and could otherwise intro-
duce trivial clauses, e.g., .x_:x_y/, or 2-SAT clauses,
e.g., .x_ x_ y/. Also, the variation operators now sim-
ply become mutation and uniform crossover for lists of
natural numbers over a fixed domain.

Two problem solvers are used from the annual SAT
competition [65.117]; both are based on the Davis–
Putnum procedure [65.4]. zChaff [65.118] is based on
Chaff [65.119], a SAT solver that employs a partic-
ularly efficient implementation of Boolean constraint
propagation and a novel low overhead decision strat-
egy. Relsat [65.120] is explained in [65.121, 122]. In
both solvers, the number of states of instantiations are
enumerated to determine the search effort required.

The change of certain structural properties over the
duration of evolution was analyzed. Two established
properties were used: the number of solutions [65.123,
124] and the backbone size [65.125]. No clear relation-
ship was identified with these properties.

However, a new relationship was identified: when
problem instances are becoming more difficult to solve,
the variance in the frequency in variable usage de-
creases. In other words, the distribution of variables
throughout the instances is more uniform when prob-
lems are more difficult to solve.

65.6.3 Further Investigations

The application of evolutionary computation in
problem generation is widespread. Smith-Miles and
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Lopes [65.126] provide an extensive review in terms
of measuring instance difficulty in combinatorial op-
timization problems, which also discusses studies that
evolve problem instances for constrained optimization
as well as for constraint satisfaction problems.

The maximization of the effort required to solve
a problem instance highlights only one aspect of the
problem difficulty. Another aspect that looks at the ef-

fectiveness is to maximize the distance a solver is able
to reach to the optimal solution. To compute this dis-
tance, we require the fitness of the optimal solution
a priori. Note, however, we do not need to know what
the optimal solution is, only its fitness. Another ap-
proach is to directly compare solvers by maximizing the
difference in some aspect, e.g., efficiency or effective-
ness, between two solvers.

65.7 Conclusions and Future Directions
Research on solving constraint satisfaction problems
with evolutionary computation has produced a rich
set of research papers that contribute solvers, insights
into solvers and their performance, and heuristic sub-
routines. One major flaw in this research has re-
mained consistent over the past 20 years: most stud-
ies compare performance results only to other evo-
lutionary or closely associated techniques. Even re-
cent studies, such as [65.127–129], restrict themselves
to comparing only results from other heuristic meth-
ods or have not included alternative techniques at
all.

Many studies report on the promising performance
of a particular evolutionary algorithm over another ex-
isting heuristic technique. The few systematic studies
that do compare evolutionary and constraint program-
ming techniques conclude that constraint programming

is superior in terms of efficiency [65.60, 67]. Also, con-
straint programming techniques are generally sound
and, therefore, given sufficient time, always find a so-
lution or proof that none exists. Hence, these solvers
are more effective unless they are bounded by time. Re-
cent efforts have shown success in speeding up modern
DPLL-based techniques using heuristics for guiding the
search [65.130, 131].

In Sect. 65.5 we reviewed many techniques that
were developed and studied for the purpose of improv-
ing EC in terms of efficiency and effectiveness. The vast
majority of these techniques was applied to one prob-
lem only. A huge benefit would come from studies that
show the success of a technique across several CSPs.
Such studies would be especially opportune for the SAT
problem, which is still the most actively used CSP for
benchmarking algorithms [65.132].
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