
Graph Colorin
1239

Part
E
|63.1

63. Graph Coloring and Recombination

Rhyd Lewis

It is widely acknowledged that some of the most
powerful algorithms for graph coloring involve the
combination of evolutionary-based methods with
exploitative local search-based techniques. This
chapter conducts a review and discussion of such
methods, principally focussing on the role that re-
combination plays in this process. In particular we
observe that, while in some cases recombination
seems to be usefully combining substructures in-
herited from parents, in other cases it is merely
acting as a macro perturbation operator, helping
to reinvigorate the search from time to time.

63.1 Graph Coloring 1239

63.2 Algorithms for Graph Coloring 1240
63.2.1 EAs for Graph Coloring 1241

63.3 Setup 1244
63.3.1 Problem Instances 1245

63.4 Experiment 1 1246

63.5 Experiment 2 1249

63.6 Conclusions and Discussion 1251

References ... 1252

63.1 Graph Coloring

Graph coloring is a well-known NP-hard combinato-
rial optimization problem that involves using a minimal
number of colors to paint all vertices in a graph such
that all adjacent vertices are allocated different col-
ors. The problem is more formally stated as follows:
given an undirected simple graph GD .V;E/, with ver-
tex set V and edge set E, our task is to assign each vertex
v 2 V an integer c.v/ 2 f1; 2; : : : ; kg so that:

� c.v/¤ c.u/8fv; ug 2 E� k is minimal.

Though essentially a theoretical problem, graph
coloring is seen to underpin a wide variety of
seemingly unrelated operational research problems,
including satellite scheduling [63.1], educational
timetabling [63.2, 3], sports league scheduling [63.4],
frequency assignment problems [63.5, 6], map color-
ing [63.7], airline crew scheduling [63.8], and compiler
register allocation [63.9]. The design of effective algo-
rithms for graph coloring thus has positive implications
for a large range of real-world problems.

Some common terms used with graph coloring are
as follows:

� A coloring of a graph is called complete if all ver-
tices v 2 V are assigned a color c.v/ 2 f1; : : : ; kg;
else it is considered partial.� A clash describes a situation where a pair of adja-
cent vertices u; v 2 V are assigned the same color
(that is, fu; vg 2 E and c.v/D c.u/). If a coloring
contains no clashes, then it is considered proper;
else it is improper.� A coloring is feasible if and only if it is both com-
plete and proper.� The chromatic number of a graph G, denoted �.G/,
is the minimal number of colors required in a feasi-
ble coloring. If a feasible coloring uses �.G/ colors,
it is considered optimal.� An independent set is a subset of vertices I � V
that are mutually non-adjacent. That is, 8u; v 2 I,
fu; vg … E. Similarly, a clique is a subset of ver-
tices C � V that are mutually adjacent: 8u; v 2 C,
fu; vg 2 E.

Given these definitions, we might also view graph
coloring as a type of partitioning/grouping problem
where the aim is to split the vertices into a set of subsets
UD fU1; : : : ;Ukg such thatUi\Uj D ;.1� i< j � k/.

Part
E
|63.2

1240 Part E Evolutionary Computation

v1

v3
v4 v5

v8v7v6

v9 v10

v2 v1

v3
v4 v5

v8v7v6

v9 v10

v2 Colors

= 1

= 2

= 3

= 4

= 5

Fig. 63.1 A simple graph (left) and a feasible five-coloring (right)

If
Sk

iD1 Ui D V, then the partition represents a com-
plete coloring. Moreover, if all subsets U1; : : : ;Uk are
independent sets, the coloring is also feasible.

To exemplify these concepts, Fig. 63.1 shows an
example graph with ten vertices, together with a cor-
responding coloring. In this case the presented color-
ing is both complete and proper, and therefore fea-
sible. It is also optimal because it uses just five
colors, which happens to be the chromatic number
in this case. The graph also contains one clique
of size 5 (vertices v1; v3; v4; v6, and v7), and nu-
merous independent sets, such as vertices v2; v3; v8,

and v9. As a partition, this coloring is represented UD
ffv1; v10g; fv7; v8g; fv3; v5g; fv2; v4; v9g; fv6gg.

It should be noted that various subsidiary prob-
lems related to the graph coloring problem are also
known to be NP-hard. These include computing the
chromatic number itself, identifying the size of the
largest clique, and determining the size of the largest
independent set in a graph [63.10, 11]. In addition,
the decision variant of the graph coloring prob-
lem, which asks: given a fixed positive integer k, is
there a feasible k-coloring of the vertices? is NP-
complete.

63.2 Algorithms for Graph Coloring

Graph coloring has been studied as an algorithmic prob-
lem since the late 1960s and, as a result, an abundance
of methods have been proposed. Loosely speaking,
these methods might be grouped into two main classes:
constructive methods, which build solutions step-by-
step, perhaps using various heuristic and backtracking
operators; and stochastic search-based methods, which
attempt to navigate their way through a space of can-
didate solutions while optimizing a particular objective
function.

The earliest proposed algorithms for graph coloring
generally belong to the class of constructive meth-
ods. Perhaps the simplest of these is the first-fit (or
greedy) algorithm. This operates by taking each ver-
tex in turn in a specified order and assigning it to the
lowest indexed color where no clash is induced, creat-
ing new colors when necessary [63.12]. A development
on this method is the DSATUR algorithm [63.13, 14] in

which the ordering of the vertices is determined dy-
namically – specifically, by choosing at each step the
uncolored vertex that currently has the largest number
of different colors assigned to adjacent vertices, break-
ing ties by taking the vertex with the largest degree.
Other constructive methods have included backtracking
strategies, such as those of Brown [63.15] and Kor-
man [63.16], which may ultimately perform complete
enumerations of the solution space given excess time.
A survey of backtracking approaches was presented by
Kubale and Jackowski [63.17] in 1985.

Many of the more recent methods for graph coloring
have followed the second approach mentioned above,
which is to search a space of candidate solutions and
attempt to identify members that optimize a specific
objective function. Such methods can be further classi-
fied according to the composition of their search spaces,
which can comprise:

Graph Coloring and Recombination 63.2 Algorithms for Graph Coloring 1241
Part

E
|63.2

(a) The set of all feasible solutions (using an undefined
number of colors)

(b) The set of complete colorings (proper and im-
proper) for a fixed number of colors k

(c) The set of proper solutions (partial and complete),
also for a fixed number of colors k.

Algorithms following scheme (a) have been con-
sidered by, among others, Culberson and Luo [63.18],
Mumford [63.19], Erben [63.20], and Lewis [63.21].
Typically, these methods consider different permuta-
tions of the vertices, which are then fed into a construc-
tive method (such as first-fit) to form feasible solutions.
An intuitive cost function in such cases is simply the
number of colors used in a solution, though other more
fine-grained functions have been suggested, such as the
following due to Erben [63.20]

f1 D
P

Ui2U
�P

v2Ui
deg.v/

�2
jUj : (63.1)

Here, the term .
P

v2Ui
deg.v// gives the sum of the de-

grees of all vertices assigned to a color classUi. The aim
is to maximize f1 by making increases to the numerator
(by forming large color classes that contain high-degree
vertices), and decreases to the denominator (by reduc-
ing the number of color classes).

On the other hand, algorithms following scheme (b)
operate by first proposing a fixed number of colors k. At
the start of a run, each vertex will be assigned to one of
the k colors using heuristics, or randomly. However, this
may involve the introduction of one or more clashes,
resulting in a complete, improper k-coloring. The cost
of such a solution might then be evaluated using the
following cost function, which is simply a count on the
number of clashes

f2 D
X

8fv;ug2E

g.v;u/ where

g.v;u/D
�
1 if c.v/D c.u/
0 otherwise :

(63.2)

The strategy in such approaches is to make alterations
to a solution such that the number of clashes is re-
duced to zero. If this is achieved k can be reduced;
alternatively if all clashes cannot be eliminated, k can
be increased. This strategy has been quite popular in
the literature, involving the use of various stochas-
tic search methodologies, including simulated anneal-
ing [63.22, 23], tabu search [63.24], greedy randomized
adaptive search procedure (GRASP) methods [63.25],

iterated local search [63.26, 27], variable neighborhood
search [63.28], ant colony optimization [63.29], and
evolutionary algorithms (EA) [63.30–35].

Finally, scheme (c) also involves using a fixed
number of colors k; however in this case, rather than
allowing clashes to occur in a solution, vertices that
cannot be feasibly assigned to a color are placed into
a set of uncolored vertices S. The aim is, therefore, to
make changes to a solution so that these vertices can
eventually be feasibly colored, resulting in SD ;. This
approach has generally been less popular in the litera-
ture than scheme (b), though some prominent examples
include the simulated annealing approach of Morgen-
stern [63.36], the tabu search method of Blochliger and
Zufferey [63.37], and the EA ofMalaguti et al. [63.38].
More recently, Hertz et al. [63.39] also suggested an
algorithm that searches different solution spaces dur-
ing different stages of a run. The idea is that when the
search is deemed to have stagnated in one space, a pro-
cedure is used to alter the current solution so that it
becomes a member of another space (e.g., clashing ver-
tices are uncolored by transferring them to S). Once this
has been done, the search can then be continued in this
new space where further improvements might be made.

63.2.1 EAs for Graph Coloring

In this section we now examine the ways in which EAs
have been applied to the graph coloring problem, partic-
ularly looking at issues surrounding the recombination
of solutions.

Assignment-Based Operators
Perhaps the most intuitive way of applying EAs to
the graph coloring problem is to view the task as one
of assignment. In this case, a candidate solution can
be viewed as a mapping of vertices to colors c W V !
f1; : : : ; kg, and a natural chromosome representation is
a vector .c.v1/; c.v2/; : : : ; c.v

jVj

//, where c.vi/ gives the
color of vertex vi (the solution given in Fig. 63.1 would
be represented by .1;4; 3; 4; 3; 5; 2; 2; 4; 1/ under this
scheme). However, it has long been argued that this
sort of approach brings disadvantages, not least because
it contradicts a fundamental design principle of EAs:
the principle of minimum redundancy [63.40], which
states that each member of the search space should be
represented by as few distinct chromosomes as possi-
ble. To expand upon this point, we observe that under
this assignment-based representation, if we are given
a solution using l� k colors, the number of different
chromosomes representing this solution will be kPl due

Part
E
|63.2

1242 Part E Evolutionary Computation

to the arbitrary way in which colors are allocated labels.
(For example, swapping the labels of colors 2 and 4
in Fig. 63.1’s solution would give a new chromosome
(1,2,3,2,3,5,4,4,2,1), but the same solution.) Of course,
this implies a search space that is far larger than neces-
sary.

Furthermore, authors such as Falkenauer [63.41]
and Coll et al. [63.42] have also argued that tradi-
tional recombination schemes such as 1, 2, and n-point
crossover with this representation have a tendency to
recklessly break up building-blocks that we might want
promoted in a population. As an example, consider a re-
combination of the two example chromosomes given
in the previous paragraph using two-point crossover:
(1,4,3,4,3,5,2,2,4,1) crossed with (1,2,3,2,3,5,4,4,2,1)
would give (1,4,3,4,3,5,4,4,4,1) as one of the offspring.
Here, despite the fact that the two parent chromosomes
actually represent the same feasible solution, the resul-
tant offspring seems to have little in common with its
parents, having lost one of its colors, and seen a number
of clashes having been introduced. Thus, it is concluded
by these authors that such operations actually consti-
tute more of a random perturbation operator, rather than
a mechanism for combining meaningful substructures
from existing solutions. Nevertheless, recent algorithms
following this scheme are still reported in the litera-
ture [63.43].

In recognition of the proposed disadvantages of
the assignment-based representation, Coll et al. [63.42]
proposed a procedure for relabeling the colors of one
of the parent chromosomes before applying crossover.
Consider two (not necessarily feasible) parent solutions
represented as partitions: U1 D fU1;1; : : : ;U1;kg, and
U2 D fU2;1; : : : ;U2;kg. Now, usingU1 andU2, a com-
plete bipartite graph Kk;k is formed. This bipartite graph
has k vertices in each partition, and the weights between
two vertices i; j from different partitions are defined as
wi;j D jU1;i \U2;jj. Given Kk;k, a maximum weighted
matching can then be determined using any suitable
algorithm (e.g., the Hungarian algorithm [63.44] or auc-

1
2
3
4
5

1
0
0
2
0
0

2
0
0
0
2
0

3
2
0
0
0
0

4
0
2
0
1
0

5
0
0
0
0
1

|U1, i U2, j|Parent 1
(1, 4, 3, 4, 3, 5, 2, 2, 4, 1)
Partition
U1,1 = {v1, v10}
U1,2 = {v7, v8}
U1,3 = {v3, v5}
U1,4 = {v2, v4, v9}
U1,5 = {v6}

Parent 2
(3, 2, 1, 2, 1, 5, 4, 4, 4, 3)
Partition
U2,1 = {v3, v5}
U2,2 = {v2, v4}
U2,3 = {v1, v10}
U2,4 = {v7, v8, v9}
U2,5 = {v6}

Parent 2 relabelled
(1, 4, 3, 4, 3, 5, 2, 2, 2, 1)

Fig. 63.2 Example of the relabel-
ing procedure proposed by Coll
et al. [63.42]. Here, parent 2 is rela-
beled as 1! 3; 2! 4; 3! 1; 4!
2, and 5! 5

tion algorithm [63.45]), and this matching can be used
to re-label the colors in one of the chromosomes.

Figure 63.2 gives an example of this procedure and
shows how the second parent can be altered so that
its color labelings maximally match those of parent 1.
In this case, we note that the color classes fv1; v10g,
fv3; v5g, and fv6g occur in both parents and will be
preserved in any offspring produced via a traditional
crossover operator. However, this will not always be the
case and will depend very much on the best matching
that is available in each case.

A further scheme for color relabeling that also ad-
dresses the issue of redundancy was proposed by Tucker
et al. [63.46]. This method involves representing solu-
tions using the assignment-based scheme, but under the
following restriction

c.v1/D 1 ; (63.3)

c.viC1/�maxfc.v1/; : : : ; c.vi/gC 1 : (63.4)

Chromosomes obeying these labeling criteria might,
therefore, be considered as being in their canonical
form such that, by definition, vertex v1 is always col-
ored with color 1, v2 is always colored with color 1 or 2,
and so on. (The solution given in Fig. 63.1 would be
represented by (1,2,3,2,3,4,5,5,2,1) under this scheme.)
However, although this ensures a one-to-one correspon-
dence between the set of chromosomes and the set of
vertex partitions (thereby removing any redundancy),
research by Lewis and Pullin [63.47] demonstrated that
this scheme is not particularly useful for graph color-
ing, not least because minor changes to a chromosome
(such as the recoloring a single vertex) can lead to major
changes to the way colors are labeled, making the prop-
agation of useful solution substructures more difficult to
achieve when applying traditional crossover operators.

Partition-Based Operators
Given the proposed issues with the assignment-based
approach, the last 15 years or so have also seen a num-

Graph Coloring and Recombination 63.2 Algorithms for Graph Coloring 1243
Part

E
|63.2

ber of articles presenting recombination operators fo-
cussed on the partition (or grouping) interpretation of
graph coloring. The philosophy behind this approach
is that it is actually the color classes (and the vertices
that are assigned to them) that represent the underly-
ing building blocks of the graph coloring problem. In
other words, it is not the color of individual vertices
per se, but the way in which vertices are grouped that
form the meaningful substructures. Consequently, the
focus should be on the design of operators that are
successfully able to combine and promote these within
a population.

Perhaps the first major work in this area was due
to Falkenauer [63.48] in 1994 (and later [63.41]) who
argued in favor of the partition interpretation in the jus-
tification of his grouping genetic algorithm (GGA) –
an EA methodology specifically designed for use with
partitioning problems. Falkenauer applied this GGA
to two important operational research problems: the
bin-packing problem and bin-balancing problem, with
strong results being reported. In subsequent work, Er-
ben [63.20] also tailored the GGA for graph coloring.
Erben’s approach operates in the space of feasible col-
orings and allows the number of colors in a solution
to vary. Solutions are then stored as partitions, and
evaluated using (63.1). In this approach, recombination
operates by taking two parent solutions and randomly
selecting a subset of color classes from the second.
These color classes are then copied into the first par-
ent, and all color classes coming from the first parent
containing duplicate vertices are deleted. This opera-

Parent 1

U1 =
U2 =
U3 =

{v1, v2, v3}
{v4, v5, v6, v7}
{v8, v9, v10}

{v3, v4, v5, v7}
{v1, v6, v9}
{v2, v8, v10}

{}
{}
{}

Select the color with most vertices and copy to the
child (U2 from parent 1 here).
Delete copied vertices from both parents.

a)

Select the color with most vertices in parent 2 and
copy to child.
Delete copied vertices from both parents.

U1 =
U2 =
U3 =

{v1, v2, v3}
{}
{v8, v9, v10}

{v3}
{v1, v9}
{v2, v8, v10}

{v4, v5, v6, v7}
{}
{}

b)

Select the color with most vertices in parent 1 and
copy to the child.
Delete copied vertices from both parents.

U1 =
U2 =
U3 =

{v1, v3}
{}
{v9}

{v3}
{v1, v9}
{}

{v4, v5, v6, v7}
{v2, v8, v10}
{}

c)

Having formed k colors, assign any missing vertices
to random colors.

U1 =
U2 =
U3 =

{}
{}
{v9}

{}
{v9}
{}

{v4, v5, v6, v7}
{v2, v8, v10}
{v1, v3}

d)

A complete (though not necessarily proper) solution
results.

U1 =
U2 =
U3 =

{}
{v9}
{}

{v9}
{}
{}

{v4, v5, v6, v7}
{v2, v8, v10, v9}
{v1, v3}

e)

Parent 2 Offspring

Fig. 63.3 Demonstration of the GPX operator using kD 3

tion results in an offspring solution that is proper, but
most likely partial. Thus uncolored vertices are then
reinserted into the solution, in this case using the first-fit
algorithm. A number of other recombination operators
for use in the space of feasible solutions have also been
suggested by Mumford [63.19]. These operate on per-
mutations of vertices, which are again decoded into
solutions using the first-fit algorithm.

Another recombination operator that focusses on
the partition interpretation of graph coloring is due
to Galinier and Hao, who in 1999 proposed an EA
that, at the date of writing, is still understood to be
one of the best performing algorithms for graph color-
ing [63.33, 38, 49, 50]. Using a fixed number of colors k,
Galinier and Hao’s method operates in the space of
complete (proper and improper) k-colorings using cost
function f2 (63.2). A population of candidate solu-
tions is then evolved using local search (based on tabu
search) together with a specialized recombination oper-
ator called greedy partition crossover (GPX). The latter
is used as a global operator and is intended to guide the
search over the long term, gently directing it towards fa-
vorable regions of the search space (exploration), while
the local search element is used to identify high quality
solutions within these regions (exploitation).

The idea behind GPX is to construct offspring
using large color classes inherited from the parent so-
lutions. A demonstration of how this is done is given
in Fig. 63.3. As is shown, the largest (not necessarily
proper) color class in the parents is first selected and
copied into the offspring. Then, in order to avoid dupli-

Part
E
|63.3

1244 Part E Evolutionary Computation

cate vertices occurring in the offspring at a later stage,
these copied vertices are removed from both parents.
To form the next color, the other (modified) parent is
then considered and, again, the largest color class is
selected and copied into the offspring, before again re-
moving these vertices from both parents. This process
is continued by alternating between the parents until the
offspring’s k color classes have been formed. At this
point, each color class in the offspring will be a subset
of a color class existing in one or both of the parents.
That is

8Ui 2Uc 9Uj 2 .U1 [U2/ W Ui � Uj ; (63.5)

whereUc,U1, andU2 represent the offspring, and par-
ents 1 and 2, respectively.

One feature of the GPX operator is that on produc-
tion of an offspring’s k color classes, some vertices may
be missing (this occurs with vertex v9 in Fig. 63.3).
Galinier and Hao [63.33] suggest assigning these un-
colored vertices to random classes, which of course
could introduce further clashes. This element of the
procedure might, therefore, be viewed as a type of per-
turbation (mutation) operator in which the number of
random assignments (the size of the perturbation) is de-
termined by the construction stages of GPX. However,
Glass and Prugel-Bennett [63.49] observe that GPX’s
strategy of inheriting the largest available color class at
each step (as opposed to a random color class) generally
reduces the number of uncolored vertices. This means
that the amount of information inherited directly from
the parents is increased, reducing the potential for dis-
ruption. Once a complete offspring is formed, it is then
modified and improved via a local search procedure be-
fore being inserted into the population.

Since the proposal of GPX by Galinier and
Hao [63.33], further recombination schemes based on
this method have also been suggested, differing primar-
ily in the criteria used for selecting the color classes
that are inherited by the offspring. Lü and Hao [63.34],
for example, extended the GPX operator to allow more

than two parents to play a part in producing a single
offspring (Sect. 63.5). On the other hand, Porumbel
et al. [63.35] suggest that instead of choosing the largest
available color class at each stage of construction,
classes with the least number of clashes should be
prioritized, with class size (and information regarding
the degrees of the vertices) then being used to break
ties. Malaguti et al. [63.38] also use a modified version
of GPX with an EA that navigates the space of par-
tial, proper solutions. In all of these cases the authors
combined their recombination operators with a local
search procedure in the same manner as Galinier and
Hao [63.33] and, with the problem instances consid-
ered, the reported results are generally claimed to be
competitive with the state of the art.

Assessing the Effectiveness of EAs
for Graph Coloring

In recent work carried out by the author of this chap-
ter [63.50], a comparison of six different graph coloring
algorithms was presented. This study was quite broad
and used over 5000 different problem instances. Its con-
clusions were also rather complex, with each method
outperforming all others on at least one class of prob-
lems. However, a salient observation was that the GPX-
based EA of Galinier and Hao [63.33] was by far the
most consistent and high-performing algorithm across
the comparison.

In the remainder of this chapter we pursue this mat-
ter further, particularly focussing on the role that GPX
plays in this performance. Under a common EA frame-
work, described in Sect. 63.3, we first evaluate the
performance of GPX by comparing it to two other re-
combination operators (Sect. 63.4). Using information
gained from these experiments, Sect. 63.5 then looks
at how the performance of the GPX-based EA might
be enhanced, particularly by looking at ways in which
population diversity might be prolonged during a run.
Finally, conclusions and a further discussion surround-
ing the virtues of recombination in this problem domain
are presented in Sect. 63.6.

63.3 Setup

The EA used in the following experiments operates in
the same manner as Galinier and Hao’s [63.33]. To
form an initial population, a modified version of the
DSATUR algorithm is used. Specifically, each individ-
ual is formed by taking the vertices in turn according to

the DSATUR heuristic and then assigning it to the lowest
indexed color i 2 f1; : : : ; kgwhere no clash occurs. Ver-
tices for which no clash-free color exists are assigned
to random colors at the end of this process. Ties in the
DSATUR heuristic are broken randomly, providing di-

Graph Coloring and Recombination 63.3 Setup 1245
Part

E
|63.3

Table 63.1 Details of the five problem instances used in our analysis

Vertex degree Best known
#: Name jVj Density min; med; max Mean SD (colors)
1: Random 1000 0.499 450; 499; 555 499.4 16.1 83
2: Flat(10) 500 0.103 36; 52; 61 51.7 4.4 10
3: Flat(100) 500 0.841 393; 421; 445 420.7 7.6 100
4: TT(A) 682 0.128 0; 77; 472 87.4 62.0 27
5: TT(B) 2419 0.029 0; 47; 857 71.3 92.3 32

versity in the initial population. Each individual is then
improved by the local search routine.

The EA evolves the population using recombina-
tion, local search, and replacement pressure. In each
iteration two parent solutions are selected at random,
and the selected recombination operator is used to pro-
duce one offspring. This offspring is then improved via
local search and inserted into the population by replac-
ing the weaker of its two parents.

The local search element of this EA makes use of
tabu search – specifically the TABUCOL algorithm of
Hertz and de Werra [63.24], run for a fixed number of
iterations. In this method, moves in the search space
are achieved by selecting a vertex v whose assignment
to color i is currently causing a clash, and moving it
to a new color j¤ i. The inverse of this move is then
marked as tabu for the next t steps of the algorithm
(meaning that v cannot be re-assigned to color i until
at least t further moves have been performed). In each
iteration, the complete neighborhood is considered, and
the non-tabu move that is seen to invoke the largest de-
crease in cost (or failing that, the smallest increase) is
performed. Ties are broken randomly, and tabu moves
are also carried out if they are seen to improve on the
best solution observed so far in the process. The tabu
search routine terminates when the iteration limit is
reached (at which case the best solution found during
the process is taken), or when a zero cost solution is
achieved. Further descriptions of this method, includ-
ing implementation details, can be found in [63.51].

In terms of parameter settings, in all cases we use
a population size of 20 (as in [63.34, 35]) and set the
tabu search iteration limit to 16jVj, which approximates
the settings used in the best reported runs in [63.33].
As with other algorithms that use this local search
technique [63.29, 33, 37], the tabu tenure t is made pro-
portional to the current solution cost: specifically, tD
d0:6f2eC r, where r is an integer uniformly selected
from the range 0�9 inclusive.

Finally, because this algorithm operates in the space
of complete k-colorings (proper and improper), values
for k must be specified. In our case, initial values are

determined by executing DSATUR on each instance and
setting k to the number of colors used in the resultant so-
lution. During runs, k is then decremented by 1 as soon
as a feasible k-coloring is found, and the algorithm is
restarted. Computational effort is measured by count-
ing the number of constraint checks carried out by the
algorithm, which occur when the algorithm requests in-
formation about a problem instance, including checking
whether two vertices are adjacent (by accessing an ad-
jacency list or matrix), and referencing the degree of
a vertex. In all trials a cut-off point of 5� 1011 checks
is imposed, which is roughly double the length of the
longest run performed in [63.33]. In our case, this led
to run times of� 1 h on our machines (algorithms were
coded in C++ and executed on a PC under Windows XP
using a 3:0GHz processor with 3:18GB of RAM).

63.3.1 Problem Instances

For our trials a set of five problem instances is con-
sidered. Though this set is quite small, its members
should be considered as case studies that have been
deliberately chosen to cover a wide range of graph
structure – a factor that we have found to be very im-
portant in influencing the relative performance of graph
coloring algorithms [63.50]. The first three graphs are
generated using the publicly available software of Cul-
berson [63.52], while the remaining two are taken from
a collection of real-world timetabling problems com-
piled by Carter et al. [63.53]. Names and descriptions
of these graphs now follow. Further details are also
given in Table 63.1:

#1: Random. This graph features jVj D 1000 and is
generated such that each of the

�
jVj

2

�
pairs of vertices

is linked by an edge with probability 0.5. Graphs of
this nature are nearly always considered in compar-
isons of coloring algorithms.

#2: Flat(10). Flat graphs are generated by partition-
ing the vertices into K equi-sized groups and then
adding edges between vertices in different groups
with probability p. This is done such that the vari-

Part
E
|63.4

1246 Part E Evolutionary Computation

ance in vertex degrees is kept to a minimum. It
is well known that feasible K-colored solutions
to such graphs are generally easy to achieve ex-
cept in cases where p is within a specific range of
values, which results in problems that are notori-
ously difficult. Such ranges are commonly termed
phase transition regions [63.54]. This particular in-
stance is generated so that it features a relatively
small number of large color classes (using V D
500 and K D 10, implying� 50 vertices per color).
A value of pD 0:115 is used, which has been ob-
served to provide very difficult instances for a range
of different graph coloring algorithms [63.50].

#3 Flat(100). This graph is generated in the same man-
ner as the previous one, using jVj D 500;K D 100,
and pD 0:85. Solutions thus feature a relatively
large number of small color classes (� 5 vertices
per color).

#4: TT(A). This graph is named car_s_91 in the original
dataset of Carter et al. [63.53]. It is chosen be-
cause it is quite large and, unlike the previous three
graphs, the variance in vertex degrees is quite high.
This problem’s structure is also much less regular
than the previous three graphs, which are generated
in a fairly regimented manner.

#5: TT(B). This graph, originally named pur_s_93, is
the largest problem in Carter’s dataset, with jVj D
2419. It is also quite sparse compared to the previ-
ous graph, though it still features a high variance in
vertex degrees (Table 63.1).

The rightmost column of Table 63.1 also gives in-
formation on the best solutions known for each graph.
These values were determined via extended runs of our
algorithms, or due to information provided by the prob-
lem generator.

63.4 Experiment 1

Our first set of experiments looks at the performance of
GPX by comparing it to two additional recombination
operators. To gauge the advantages of using a global op-
erator (recombination in this case), we also consider the
performance of TABUCOL on its own, which iterates on
a single solution until the run cut-off point is met.

Our first additional recombination operator follows
the assignment-based scheme discussed in Sect. 63.2.1
and, in each application, utilizes the procedure of Coll
et al. [63.42] (Fig. 63.2) to relabel the second parent.
Offspring are then formed using the classical n-point
crossover, with each gene being inherited from either
parent with probability 0:5.

Our second recombination operator is based on
the grouping genetic algorithm (GGA) methodology
(Sect. 63.2.1), adapted for use in the space of k-
colorings. An example is given in Fig. 63.4. Given

Parent 1
U1 = {v1, v10}
U2 = {v7, v8}
U3 = {v3, v5}
U4 = {v2, v4, v9}
U5 = {v6}

Offspring
U1 = {v1, v10}
U2 = {v7, v=8–}
U3 = {v3, v5}
U4 = {v2, v4, v9}
U5 = {v6} Uncolored = {v9}

Parent 2
U1 = {v1, v9}
U2 = {v7}
U3 = {v3, v5}
U4 = {v2, v4, v9}
U5 = {v6, v10}

Fig. 63.4 Demonstration of the GGA recombination operator.
Here, color classes in parent 2 are labeled to maximally match those
of parent 1

two parents, the color classes in the second parent
are first relabeled using Coll et al.’s procedure. Using
the partition-based representations of these solutions,
a subset of colors in parent 2 is then chosen randomly,
and these replace the corresponding colors in a copy
of parent 1. Duplicate vertices are then removed from
color classes originating from parent 1 and uncolored
vertices are assigned to random color classes. Note that
like GPX, before uncolored vertices are assigned, the
property defined by (63.5) is satisfied by this operator;
however, unlike GPX there is no requirement to inherit
larger color classes or to inherit half of its color classes
from each parent.

A summary of the results achieved by the three
recombination operators (together with TABUCOL) is
given in Table 63.2. For each instance the same set of 20
initial populations was used with the EAs, and entries
in bold signify samples that are significantly different
to the non-bold EA entries according to a Wilcoxon
signed-rank test at the 0:01 significance level. For graph
#1 we see that GPX has clearly produced the best re-
sults – indeed, even its worst result features two fewer
colors than the next best solution. However, for graphs
#2 and #5, no significant difference between the EAs
is observed, while for #3 and #4, better results are pro-
duced by the GGA and the n-point crossover.

Figure 63.5 shows run profiles for two example
graphs. We see that in both cases TABUCOL provides

Graph Coloring and Recombination 63.4 Experiment 1 1247
Part

E
|63.4

GPX
n-point
GGA
TabuCol

GPX
n-point
GGA
TabuCol

0 1 2 3 4 5

a) Colors

Checks (×1011)

102

100

98

96

94

92

90

88

86

84
0 1 2 3 4 5

b) Colors

Checks (×1011)

114

112

110

108

106

104

Fig. 63.5a,b Run profiles for the instances (mean of 20 runs): (a) #1 (random). (b) #3 (Flat 100)

the fastest rates of improvement, though it is eventu-
ally overtaken by at least one of the EAs. Table 63.2,
however, also reveals that TABUCOL performs very
poorly with graphs #4 and #5. This seems due to the
high degree variance in these cases, which we observe
makes the cost of neighboring solutions in the search
space vary more widely. This suggests a more spiky cost
landscape in which the use of local search in isolation
exhibits a susceptibility for becoming trapped at local
optima (see also [63.50]).

An important factor behind the differing perfor-
mances of these EAs is the effect that recombination
has on the population diversity. To examine this, we first
define a metric for measuring the distance between two
solutions: Given a solutionU, let PU D ffu; vg W c.u/D
c.v/g, for 8u; v 2 V, u¤ v. The distance between two
solutionsU1 andU2 can then be defined,

D.U1;U2/D jPU1 [PU2 j � jPU1 \PU2 j
jPU1 [PU2 j

: (63.6)

This measure gives the proportion of vertex pair-
ings (assigned to the same color) that exist in
just one of the two solutions. Consequently, if U1

Table 63.2 Number of colors in the best feasible solution achieved at the cut-off point (mean (min; median; max) of 20
runs)

GPX n-point GGA TABUCOL

#1 87:00 .87I 87I 87/ 93:35 .93I 93I 94/ 91:55 .91I 92I 92/ 89:10 .89I 89I 90/
#2 12:95 .12I 13I 13/ 13:00 .13I 13I 13/ 13:00 .13I 13I 13/ 13:00 .13I 13I 13/
#3 105:60 .105I 106I 106/ 105:05 .105I 105I 106/ 105:05 .105I 105I 106/ 105:90 .105I 106I 106/
#4 29:05 .28I 29I 30/ 28:00 .28I 28I 28/ 27:90 .27I 28I 29/ 38:20 .32I 37:5I 46/
#5 33:30 .33I 33I 34/ 33:15 .32I 33I 34/ 33:10 .32I 33I 34/ 52:05 .47I 52I 56/

and U2 are identical, then PU1 [PU2 D PU1 \PU2 ,
giving D.U1;U2/D 0. Conversely, if no vertex pair
is assigned the same color, PU1 \PU2 D ;, imply-
ing D.U1;U2/D 1. Population diversity can also be
defined as the mean distance between each pair of so-
lutions in the population. That is, given a set of m
individuals UD fU1;U2; : : : ;Umg

Diversity.U/D 1�m
2

� X
8Ui;Uj2UWi<j

D.Ui;Uj/ :

(63.7)

Considering our results, the two scatter plots of
Fig. 63.6 demonstrate the positive correlation that exists
between parental distance and the number of uncol-
ored vertices that result in applications of the GPX and
GGA operators. This data was derived from graph #4,
though similar patterns were observed for the other in-
stances. Note that the correlation is weaker for GGA
due to two reasons. First, unlike GPX, which requires
half of the color classes to be inherited from each par-
ent, with GGA this proportion can vary. Thus if the
majority of color classes are inherited from just one par-

Part
E
|63.4

1248 Part E Evolutionary Computation

0 0.2 0.4 0.6 0.8 1

a) Vertices uncolored

Distance between parents

160

140

120

100

80

60

40

20

0

0 2 4 6 8 10

c) Vertices uncolored

Crossover (×1000)

160

140

120

100

80

60

40

20

0

0 0.2 0.4 0.6 0.8 1

b) Vertices uncolored

Distance between parents

160

140

120

100

80

60

40

20

0

0 2 4 6 8 10

d) Vertices uncolored

Crossover (×1000)

160

140

120

100

80

60

40

20

0

Fig. 63.6a–d Relationship between parental distance and number of uncolored vertices with the GPX (a) and GGA (b)
operators. Also shown is the number of uncolored vertices in the first 10 000 applications of GPX (c) and GGA (d)

ent, it is possible to have two very different parents, but
only a small number of uncolored vertices. Second, as
mentioned earlier GGA shows no bias towards inher-
iting larger color classes, meaning that the number of
uncolored vertices can also be higher than GPX, partic-
ularly when inheriting around half of the color classes
from each parent. An effect of these patterns is shown
in the lower graphs of Fig. 63.6, where throughout the
evolutionary process, the number of uncolored vertices
occurring during recombination is fewer and less varied
with GPX. In comparison to GGA, this behavior leads
to a more rapid loss of diversity, as is demonstrated in
Fig. 63.7 for two example graphs.

Whether sustained diversity is a help or hindrance
with these EAs thus seems to depend on the type of
graph being tackled. As can be seen in Fig. 63.7, for

graph #1 GPX is the only recombination operator that
leads to any sort of population convergence, and it is
also the algorithm that produces the best solutions given
sufficient time, suggesting that is suitably homing in on
high-quality regions of the search space. On the other
hand, for graphs #3 and #4, GGA’s more sustained di-
versity (caused and perpetuated by the greater number
of uncolored vertices that occur during recombination)
causes the operator to be more disruptive. However, in
these cases this factor also seems to provide a useful
diversification mechanism, allowing the algorithm to
sample wider areas of the search space, leading to better
results. An extreme case of diversity loss occurs with
graph #5, which we recall has a low density and high
degree variance. In this case, when using GPX large
color classes of low-degree vertices that are formed in

Graph Coloring and Recombination 63.5 Experiment 2 1249
Part

E
|63.5

GPX
n-point
GGA

GPX
n-point
GGA

0 2 4 6 8 10

a) Diversity

Crossover (×1000)

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

b) Diversity

Crossover (×1000)

1

0.8

0.6

0.4

0.2

0

Fig. 63.7a,b Population diversity during the first 10 000 recombinations with (a) the random (#1) and (b) TT(A) (#4)
instances

early stages of the algorithm quickly come to dominate
the population limiting the exploration that then takes
place – indeed, in many runs the algorithm was actu-
ally unable to improve on costs achieved in the initial
population.

Figure 63.7 also shows that n-point crossover tends
to maintain diversity for longer periods than GPX in this
case, allowing it to produce superior results for graphs
#3 and #4. However, the sustained diversity is not due

to uncolored vertices (which do not occur with this op-
erator); rather, it seems due to the naturally occurring
disruption that results from the color labeling issues
mentioned in Sect. 63.2.1.

Finally, we also mention that during our runs with
these EA’s, the local search element was observed to be
by far the most expensive part of the algorithm, with
none of the recombination operators consuming more
than 1:8% of the available run time.

63.5 Experiment 2

In this section we now consider ways in which the
results of the GPX operator might be improved, partic-
ularly looking at how we might encourage diversity to
be sustained in the population.

As mentioned in Sect. 63.2.1, Lü and Hao [63.34]
previously proposed extending the GPX operator to al-
low offspring to be produced using m� 2 parents. In
this operator, which we call MULTIX, offspring are
constructed in the same manner as GPX, except that at
each stage the largest color class from multiple parents
is chosen to be copied into the offspring. The intention
behind this increased choice is that larger color classes
will be identified, resulting in fewer uncolored vertices
once the k color classes have been constructed. In order
to prohibit too many colors being inherited from one
particular parent, Lü and Hao also make use of a pa-
rameter q, specifying that if the i-th color class in an
offspring is copied from a particular parent, then this

parent should not be considered for further q colors. In
our application of MULTIX we follow the recommenda-
tions of the Lü and Hao, choosingm randomly from the
set f2; : : : ; 6g in each application and using qD bm=2c.
Note also that GPX is simply an application of MULTIX
using mD 2 and qD 1.

Though having the potential to produce good re-
sults [63.34], an issue with MULTIX is that it could
result in diversity being lost even more rapidly than with
GPX, particularly if fewer vertices need to be randomly
recolored at the end of each application. In [63.34], Lü
and Hao attempt to deal with this using a mechanism
whereby offspring are only inserted into the population
if they are seen to be sufficiently different or better than
existing members. However, in our case, we suggest
two alternative methods.

The first of these involves altering the MULTIX
operator so that it works exclusively with proper col-

Part
E
|63.5

1250 Part E Evolutionary Computation

v1

v3
v4 v5

v8v7v6

v9 v10

v2 v1

v3
v4 v5

v8v7v6

v9 v10

v2 Colors

= 1

= 2

= 3

= 4

= 5

Fig. 63.8 Example Kempe chain involving, e.g., vertex v7 and color 4 (left), and the resultant coloring due to a color
interchange (right)

orings. As noted, GPX and MULTIX currently operate
on colorings in which clashes are permitted; however,
this could in theory result in large color classes that
feature many clashes being unduly promoted in the pop-
ulation, when perhaps the real emphasis should be on
the promotion of large color classes that are indepen-
dent sets. The ISETS approach thus operates by first
iteratively removing clashing vertices from each parent
(in a random order, until proper colorings are achieved),
and then using the MULTIX operator to produce an off-
spring as before. This implies that, before recoloring
missing vertices, offspring will also be proper, since
subsets of independent sets are themselves independent
sets. A further effect is that a greater number of vertices
might need to be recolored, since vertices originally re-
moved from the parents could also be missing in the
resultant offspring.

Our second proposal for prolonging diversity is to
make changes directly to an offspring to try to increase
its distance from its parents before reinsertion into the
population. One way of doing this would be to in-
crease the iteration limit of the local search procedure,
as demonstrated by Galinier and Hao [63.33]. How-
ever, we find that such an approach can slow the algo-
rithm unnecessarily, particularly because as the proce-
dure progresses, movements in the search space (due
to improving or sideways moves) become less frequent.
An alternative in this case is to exploit the structure of
the graph coloring problem via the use of a Kempe chain
interchange operator. Kempe chains define connected
sub-graphs that involve exactly two colors, and can be
generated by taking an arbitrary vertex v and color i,
such that c.v/¤ i. An example is given in Fig. 63.8.
Note that when interchanging the colors of vertices in

a Kempe chain, if the original coloring is proper, then
so is the new coloring. Thus we have the opportunity
to quickly alter colorings without compromising their
quality.

Our KEMPE approach operates in the same man-
ner as ISETS, except that before reassigning uncolored
vertices, a series of randomly selected Kempe chain
interchanges are performed on the existing proper col-
oring. In our case, 2k such moves are applied.

The results achieved by our three modifications are
summarized in Table 63.3, where bold entries signify
samples that are significantly different to GPX at signif-
icance level 0:01. We see that improvements over GPX
were only obtained on graph #1, where all three vari-
ants were successful, and graph #4 using the KEMPE

variant. In practice, we found that MULTIX causes di-
versity to be lost more quickly than GPX with these
graphs – however, the ISETS mechanism did not seem
to alter this behavior a great deal, usually because the
number of clashing vertices needing to be removed was
quite small (less than 10).

Surprisingly, we also found that the KEMPE vari-
ant was only able to maintain higher levels of diversity
with instances #4 and #5. For graphs #1, #2, and #3,
it turns out that when using a suitably low number of
colors k, the bipartite graphs induced by most pairs of
color classes in a solution are connected. In these cases,
all of the vertices belonging to the two color classes are
included in the Kempe chain, meaning that a color inter-
change does not alter the structure of the solution, but
merely produces a relabeling of the two color classes.
(An example of such a Kempe chain would occur in
Fig. 63.8 using vertex v3 and color 2.) This is not the
case for the less structured graphs #4 and #5, where we

Graph Coloring and Recombination 63.6 Conclusions and Discussion 1251
Part

E
|63.6

Table 63.3 Number of colors in the best feasible coloring achieved at the cut-off point (mean (min; median; max) from
20 runs)

GPX MULTIX ISETS KEMPE

#1 87:00 .87I 87I 87/ 85:00 .85I 85I 85/ 85:05 .85I 85I 86/ 85:15 .85I 85I 86/
#2 12:95 .12I 13I 13/ 13:00 .13I 13I 13/ 13:00 .13I 13I 13/ 12:90 .12I 13I 13/
#3 105:60 .105I 106I 106/ 105:55 .105I 106I 106/ 105:85 .105I 106I 106/ 105:30 .105I 105I 106/
#4 29:05 .28I 29I 30/ 29:10 .29I 29I 30/ 29:00 .28I 29I 30/ 28:00 .28I 28I 28/
#5 33:30 .33I 33I 34/ 33:30 .33I 33I 34/ 33:30 .33I 33I 34/ 33:30 .33I 33I 34/

MultiX
ISets
Kempe

MultiX
ISets
Kempe

0 1 2 3 4 5

a) Colors

Checks (×1011)

29.5

29

28.5

28

27.5
0 2 4 6 8 10

b) Diversity

Crossover (×1000)

1

0.8

0.6

0.4

0.2

0

Fig. 63.9 (a) Run profile for TT(A) (graph #4, left), and (b) its diversity over the first 10 000 recombinations

found that diversity could be maintained for longer peri-
ods. However, this only led to significant improvements
in the results for graph #4, whose run profiles are shown

in Fig. 63.9. Also note that these enhanced results still
fail to beat those of the GGA and n-point operators, as
shown in Table 63.2.

63.6 Conclusions and Discussion

In this chapter we have examined the relative per-
formance of a number of different graph coloring
recombination operators. Using a common evolution-
ary framework, we have seen that this performance
varies, particularly due to the underlying structures of
the graphs being tackled.

A desirable property of recombination is that it
should be able to combine meaningful substructures of
existing candidate solutions (parents) in the production
of new, hopefully fitter, offspring. However, does that
process actually occur with any of these operators? Or,
by involving the random reassignment of some vertices,
do the operators simply provide a mechanism by which
large random perturbations are periodically applied to
a solution, helping to re-invigorate the search process?

Again, the answer to such a question seems to de-
pend on the problem instance at hand. In Table 63.4
we compare the costs of solutions achieved by the best
available recombination operator for each instance, to-
gether with those produced by a corresponding random
perturbation operator. Specifically, for each graph we
identified the best run from the EA’s sample of 20 and
recorded the number of uncolored vertices that resulted
in each application of recombination. We then used
these figures, together with the same k-value, to specify
the number of vertices that would be randomly selected
and reassigned in each corresponding application of our
random perturbation operator. In each iteration this al-
gorithm then operated by selecting two parents, making
a copy of parent 1, randomly perturbing this copy, ap-

Part
E
|63

1252 Part E Evolutionary Computation

Table 63.4 Comparison of the best EA and corresponding random perturbation operator. (Cost of best solutions using f2
(63.2); (mean, (min; median; max) from 20 runs), and proportion of runs where f2 D 0 (feasibility) was achieved)

EA Random
k Type Cost Feas. Cost Feas.

#1 85 MULTIX 0:00 .0I 0I 0/ 1:00 16:80 .4I 17:5I 31/ 0:00
#2 12 GPX 2:40 .0I 2I 4/ 0:05 7:60 .5I 8I 10/ 0.00
#3 105 GPX 0:90 .0I 1I 2/ 0.40 1:75 .0I 2I 3/ 0:15
#4 27 GGA 1:10 .0I 1I 2/ 0:15 1:35 .0I 1I 2/ 0:05
#5 32 GGA 1:75 .0I 2I 3/ 0:05 1:50 .0I 1:5I 3/ 0:15

plying local search, and finally replacing the weaker of
the two parents.

The results in Table 63.4 indicate that, for graph
#1, recombination is clearly doing more than just ran-
domly perturbing solutions since all runs have resulted
in feasible 85-colorings. However, although recombina-
tion has achieved significantly lower costs with graph
#2, the proportion of runs where feasibility has been
achieved shows no significant difference for any of the
graphs #2 to #5 (according to McNemar’s test at signif-
icance level 0:01). We find this observation compelling
as it might suggest that better results might ultimately
be achieved using schemes that make more informed
decisions about the size and frequency of perturbations.
Indeed, currently the size of random perturbations tends
to fall as the run progresses (Fig. 63.6); however, it may
be useful to allow this trend to be reversed, particularly
if improvements are not achieved for a lengthy period of
time. In addition, the way in which vertices are chosen
for random reassignment might also influence perfor-
mance – for example, we might target those belonging
to a specific color, those that are causing clashes, those
that have been assigned to a particular color for the
longest, and so on. This requires further research.

An interesting point regarding the structure of solu-
tions was raised previously by Porumbel et al. [63.35],
who considered the sizes of the color classes. Specifi-
cally, they propose that when solutions involve a small

number of large color classes (such as graph #2 in our
case), good quality colorings tend to result through the
identification of large independent sets. On the other
hand, if a solution involves many small color classes,
quality is determined more by the productive interac-
tion between classes. In other words, the proposal is
that small independent sets in isolation do not constitute
good features in these cases; rather, quality results from
appropriate combinations of these sets. Such an obser-
vation might provide evidence as to why the GGA re-
combination has outperformed GPX with graph #3 be-
cause, unlike GPX, it does not require half of the color
classes to be inherited from each parent, thus potentially
allowing more class-combinations to be considered.
However, this argument is countered by the fact that,
according to Table 63.4, GGA has not outperformed the
random perturbation operator, suggesting that it is actu-
ally this mechanism that influences the search. Clearly,
further research in this area is also required.

Given such observations, another important avenue
of future research will be to increase our understanding
of the links between a graph’s structure and the best al-
gorithms that can then be used to color it. This might,
for example, be derived by increasing our understand-
ing of the behavior, strengths, and weaknesses of the
various algorithmic operators available for graph col-
oring, and also via more empirical means such as data
mining, as discussed by Smith-Miles and Lopes [63.55].

References

63.1 N. Zufferey, P. Amstutz, O. Giaccari: Graph colouring
approaches for a satellite range scheduling prob-
lem, J. Sched. 11(4), 263–277 (2008)

63.2 M. Carter: A survey of practical applications of ex-
amination timetabling algorithms, Oper. Res. 34(2),
193–202 (1986)

63.3 R. Lewis: A survey of metaheuristic-based tech-
niques for university timetabling problems, OR
Spectrum 30(1), 167–190 (2008)

63.4 R. Lewis, J. Thompson: On the application of
graph colouring techniques in round-robin sports
scheduling, Comput. Oper. Res. 38(1), 190–204
(2010)

63.5 K. Aardel, S. van Hoesel, A. Koster, C. Man-
nino, A. Sassano: Models and solution tech-
niques for the frequency assignment problems,
4OR: Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(4), 1–40
(2002)

Graph Coloring and Recombination References 1253
Part

E
|63

63.6 C.M. Valenzuela: A study of permutation operators
for minimum span frequency assignment using an
order based representation, J. Heuristics 7, 5–21
(2001)

63.7 K. Appel, W. Haken: Solution of the four color map
problem, Sci. Am. 4, 108121 (1977)

63.8 M. Gamache, A. Hertz, J. Ouellet: A graph color-
ing model for a feasibility problem in monthly
crew scheduling with preferential bidding, Com-
put. Oper. Res. 34, 2384–2395 (2007)

63.9 G. Chaitin: Register allocation and spilling via
graph coloring, ACM SIGPLAN Notices 39(4), 66–74
(2004)

63.10 M.R. Garey, D.D. Johnson: Computers and In-
tractability – A guide to NP-completeness, 1st edn.
(W. H. Freeman, San Francisco 1979)

63.11 M. Karp: Reducibility among combinatorial prob-
lems. In: Complexity of Computer Computations,
The IBM Research Symposia Series, Vol. 1972, ed. by
R.E. Miller, J.W. Thatcher, J.D. Bohlinger (Plenum
Press, New York 1972) pp. 85–103

63.12 D. Welsh, M. Powell: An upper bound for the
chromatic number of a graph and its application
to timetabling problems, Comput. J. 12, 317–322
(1967)

63.13 D. Brélaz: New methods to color the vertices of
a graph, Commun. ACM 22(4), 251–256 (1979)

63.14 P. Spinrad, G. Vijayan: Worse case analysis of
a graph colouring algorithm, Discrete Appl. Math.
12, 89–92 (1984)

63.15 R. Brown: Chromatic scheduling and the chro-
matic number problem, Manag. Sci. 19(4), 451–463
(1972)

63.16 S. Korman: The graph-colouring problem. In: Com-
binatorial Optimization, ed. by N. Christofides,
A. Mingozzi, P. Toth, C. Sandi (Wiley, New York 1979)
pp. 211–235

63.17 M. Kubale, B. Jackowski: A generalized implicit
enumeration algorithm for graph colouring, Com-
munications ACM 28(28), 412–418 (1985)

63.18 J. Culberson, F. Luo: Exploring the k-colorable
landscape with iterated greedy, Proc. 2nd DIMACS
Implement. Chall. (1996), pp. 245–284

63.19 C. Mumford: New order-based crossovers for the
graph coloring problem, Lect. Notes Comput. Sci.
4193, 880–889 (2006)

63.20 E. Erben: A grouping genetic algorithm for graph
colouring and exam timetabling, Lect. Notes Com-
put. Sci. 2079, 132–158 (2001)

63.21 R. Lewis: A general-purpose hill-climbing method
for order independent minimum grouping prob-
lems: A case study in graph colouring and bin
packing, Comput. Oper. Res. 36(7), 2295–2310
(2009)

63.22 M. Chams, A. Hertz, O. Dubuis: Some experiments
with simulated annealing for coloring graphs, Eur.
J. Oper. Res. 32, 260–266 (1987)

63.23 D. Johnson, C. Aragon, L. McGeoch, C. Schevon:
Optimization by simulated annealing: An ex-

perimental evaluation; part II, graph coloring
and number partitioning, Oper. Res. 39, 378–406
(1991)

63.24 A. Hertz, D. de Werra: Using tabu search techniques
for graph coloring, Computing 39(4), 345–351 (1987)

63.25 M. Laguna, R. Marti: A GRASP for coloring sparse
graphs, Comput. Optim. Appl. 19, 165–178 (2001)

63.26 M. Chiarandini, T. Stützle: An application of iterated
local search to graph coloring, Proc. Comput. Symp.
Graph Color. Gen. (2002) pp. 112–125

63.27 L. Paquete, T. Stützle: An experimental investiga-
tion of iterated local search for coloring graphs,
applications of evolutionary computing, Lect. Notes
Comput. Sci. 2279, 121–130 (2002)

63.28 C. Avanthay, A. Hertz, N. Zufferey: A variable neigh-
borhood search for graph coloring, Eur. J. Oper. Res.
151, 379–388 (2003)

63.29 J. Thompson, K. Dowsland: An improved ant colony
optimisation heuristic for graph colouring, Discrete
Appl. Math. 156, 313–324 (2008)

63.30 R. Dorne, J.-K. Hao: A new genetic local search al-
gorithm for graph coloring, Lect. Notes Comput. Sci.
1498, 745–754 (1998)

63.31 A.E. Eiben, J.K. van der Hauw, J.I. van Hemert:
Graph coloring with adaptive evolutionary algo-
rithms, J. Heuristics 4(1), 25–46 (1998)

63.32 C. Fleurent, J. Ferland: Genetic and hybrid algo-
rithms for graph colouring, Ann. Oper. Res. 63,
437–461 (1996)

63.33 P. Galinier, J.-K. Hao: Hybrid evolutionary algo-
rithms for graph coloring, J. Comb. Optim. 3, 379–
397 (1999)

63.34 Z. Lü, J.-K. Hao: Amemetic algorithm for graph col-
oring, Eur. J. Oper. Res. 203(1), 241–250 (2010)

63.35 D. Porumbel, J.-K. Hao, P. Kuntz: An evolution-
ary approach with diversity guarantee and well-
informed grouping recombination for graph color-
ing, Comput. Oper. Res. 37, 1822–1832 (2010)

63.36 C. Morgenstern: Distributed coloration neighbor-
hood search, Discrete Math. Theor. Comput. Sci. 26,
335–358 (1996)

63.37 I. Blochliger, N. Zufferey: A graph coloring heuristic
using partial solutions and a reactive tabu scheme,
Comput. Oper. Res. 35, 960–975 (2008)

63.38 E. Malaguti, M. Monaci, P. Toth: Ametaheuristic ap-
proach for the vertex coloring problem, INFORMS
J. Comput. 20(2), 302–316 (2008)

63.39 A. Hertz, M. Plumettaz, N. Zufferey: Variable space
search for graph coloring, Discrete Appl. Math.
156(13), 2551–2560 (2008)

63.40 N.J. Radcliffe: Forma analysis and random respect-
ful recombination, Proc. 4th Int. Conf. Genet. Algo-
rithms (1991) pp. 222–229

63.41 E. Falkenauer: Genetic Algorithms and Grouping
Problems, 1st edn. (Wiley, New York 1998)

63.42 E. Coll, G. Duran, P. Moscato: A discussion on some
design principles for efficient crossover operators
for graph coloring problems, An. XXVII Simp. Bras.
Pesqui. Oper. (1995)

Part
E
|63

1254 Part E Evolutionary Computation

63.43 R. Abbasian, M. Mouhoub, A. Jula: Solving graph
coloring problems using cultural algorithms, Proc.
24th Florida Artif. Intell. Res. Soc. Conf. (2011)

63.44 J. Munkres: Algorithms for the assignment and
transportation problems, J. Soc. Ind. Appl. Math.
5(1), 32–38 (1957)

63.45 D. Bertsekas: Auction algorithms for network flow
problems: A tutorial introduction, Comput. Optim.
Appl. 1, 7–66 (1992)

63.46 A. Tucker, J. Crampton, S. Swift: RGFGA: An efficient
representation and crossover for grouping genetic
algorithms, Evol. Comput. 13(4), 477–499 (2005)

63.47 R. Lewis, E. Pullin: Revisiting the restricted growth
function genetic algorithm for grouping problems,
Evol. Comput. 19(4), 693–704 (2011)

63.48 E. Falkenauer: A new representation and operators
for genetic algorithms applied to grouping prob-
lems, Evol. Comput. 2(2), 123–144 (1994)

63.49 C. Glass, A. Prugel-Bennett: Genetic algorithms
for graph coloring: Exploration of Galnier and

Hao’s algorithm, J. Comb. Optim. 7, 229–236
(2003)

63.50 R. Lewis, J. Thompson, C. Mumford, J. Gillard:
A wide-ranging computational comparison of
high-performance graph colouring algorithms,
Comput. Oper. Res. 39(9), 1933–1950 (2012)

63.51 P. Galinier, A. Hertz: A survey of local search algo-
rithms for graph coloring, Comput. Oper. Res. 33,
2547–2562 (2006)

63.52 J. Culberson: Graph coloring page, http://web.cs.
ualberta.ca/~joe/Coloring/ (2010)

63.53 M. Carter, G. Laporte, S.Y. Lee: Examination
timetabling: Algorithmic strategies and applica-
tions, J. Oper. Res. Soc. 47, 373–383 (1996)

63.54 T. Hogg, B. Huberman, C. Williams: Refining the
phase transition in combinatorial search, Artif. In-
tell. 81(1/2), 127–154 (1996)

63.55 K. Smith-Miles, L. Lopes: Measuring instance dif-
ficulty for combinatorial optimization problems,
Comput. Oper. Res. 39(5), 875–889 (2012)

http://web.cs.ualberta.ca/~joe/Coloring/
http://web.cs.ualberta.ca/~joe/Coloring/

	63 Graph Coloring and Recombination
	63.1 Graph Coloring
	63.2 Algorithms for Graph Coloring
	63.3 Setup
	63.4 Experiment 1
	63.5 Experiment 2
	63.6 Conclusions and Discussion
	References

