
Integration o
1225

Part
E
|62.1

62. Integration of Metaheuristics
and Constraint Programming

Luca Di Gaspero

A promising research line in the optimiza-
tion community regards the hybridization of
exact and heuristics methods. In this chap-
ter we survey the specific integration of two
complementary optimization paradigms, namely
Constraint Programming, for the exact part, and
metaheuristics.

62.1 Constraint Programming
and Metaheuristics 1225

62.2 Constraint Programming Essentials 1226
62.2.1 Modeling 1226
62.2.2 Solution Methods 1227
62.2.3 Systems 1229

62.3 Integration of Metaheuristics and CP 1230
62.3.1 Local Search and CP 1230
62.3.2 Genetic Algorithms and CP 1233
62.3.3 ACO and CP................................ 1233

62.4 Conclusions ... 1234

References ... 1235

62.1 Constraint Programming and Metaheuristics

Constraint programming (CP) [62.1, 2] is an effective
methodology for the solution of combinatorial prob-
lems that has been successfully applied in many do-
mains. In a nutshell, CP is a declarative programming
paradigm based on the idea of describing the relations
(i. e., constraints) between variables that must hold in all
solutions of the combinatorial problem at hand. For ex-
ample, in the solution to a Sudoku puzzle, the numbers
to be placed must be unique with respect to columns,
rows, and blocks of the board.

CP has an interdisciplinary nature, since it re-
lies on contributions and methods from the communi-
ties of logic programming (LP), artificial intelligence
(AI), and operations research (OR). Indeed, the sim-
ple declarative modeling language of CP, consisting
of variables and constraints, is very similar to those
available in classical LP languages such as Prolog.
The solution method features constraint propagation
which, in its essence, is a reasoning or inference proce-
dure typical of AI. Finally, especially for optimization
problems, the solution process makes use of OR in-
spired branch and bound procedures and/or of dedicated
OR solvers for specific types of variables/constraints
(e.g., the simplex method for real variables and linear
constraints).

A CP model is an encoding of the problem state-
ment using the basic CP building blocks, i. e., variables
and constraints. Once a CP model of the problem un-
der consideration has been stated, a CP solver is used to
systematically search the solution space by alternating
deterministic phases (constraint propagation) and non-
deterministic phases (variable assignment, tree search),
thus exploring implicitly or explicitly the whole search
space. To this respect, CP belongs to the family of com-
plete (or exact) solution methods. In other words, CP
guarantees finding the (optimal) solution of the prob-
lem or proving that the problem is not satisfiable.

A different approach is usually taken bymetaheuris-
tics [62.3], such as local search [62.4], evolutionary
algorithms [62.5], and ant colony optimization [62.6],
just to name a few. These methods are incomplete, since
they rely on heuristic information to focus on inter-
esting areas of the search space and, in general, do
not explore it entirely but are stopped after a given
time limit. As a consequence, these algorithms do not
guarantee finding the (optimal) solution, trading com-
pleteness for a (possibly) greater (empirical) efficiency
in the solution process.

Just looking at completeness, it seems that the
clear choice for solving combinatorial problems would

Part
E
|62.2

1226 Part E Evolutionary Computation

be to always prefer CP over metaheuristics as the
solution method. However, in practice completeness
is hindered by the high computational effort due to
the worst case complexity of the problems consid-
ered (usually NP-complete or NP-hard). Therefore, for
practical purposes, also the execution of CP solvers
is terminated before the whole search space has been
explored and a number of heuristics is used to focus
the search in the regions where it is more likely to
find the solutions of the problem. Consequently, CP
and metaheuristics could be seen as complementary
approaches.

Although these two kinds of methods are have been
individually studied by separated scientific communi-
ties (for historical reasons), in recent years we have
witnessed an increasing interest in the integration of the
methods. In many cases, indeed, each approach has its
own strengths and weaknesses, and the general aim of
method integration is to create hybrid algorithms that
enhance the strengths of both approaches and (possi-
bly) overcome some of the weaknesses. To this respect,
Yunesmaintains a web page listing a number of success
stories of hybrid solution methods [62.7], that is, papers
describing integrated approaches that outperform single
optimization methods.

A number of conferences and workshops specifi-
cally aiming at bringing together researchers working
on the integration of solution techniques for combinato-
rial problems have also recently started. Notable exam-
ples are the series of CP-AI-OR conferences [62.8, 9],
started in 1999, and the Hybrid Metaheuristics work-
shops [62.10–16], started in 2004. The scope of these
conferences is not limited to the integration of CP

techniques with metaheuristics, but they also consider
hybridization among other methods.

Additionally, a few surveys on the integration of
complete methods with metaheuristics have appeared in
the literature [62.17–19]. However, these surveys either
deal with a particular class of metaheuristics (i. e., local
search) [62.17, 19] and/or with a different class of com-
plete methods (integer linear programming) [62.17,
18]. Jourdan et al. [62.20] also took CP methods into
account, but they provide mostly a taxonomy of coop-
eration between optimization methods rather than sur-
veying the specific integrations. Wallace and Azevedo
et al. [62.21, 22] surveys hybrid algorithms, but from
a constraint programming viewpoint and mainly in the
settings of hybrid exact methods. In their recent review
of hybrid metaheuristics Blum et al. [62.23] include
a section on the integration of CP with local search and
ant colony optimization (ACO). However, to the best
of our knowledge, at present no specific survey on the
integration of metaheuristics and constraint program-
ming has been published in the literature. This work
tries to overcome this lack and to review the different
approaches specifically employed in the integration of
CP methods within metaheuristics.

The chapter is organized as follows. In Sect. 62.2
the basic concepts of the constraint programming
paradigm are introduced. They include modeling
(Sect. 62.2.1), solution methods (Sect. 62.2.2), and CP
systems (Sect. 62.2.3). The integration of CPwith meta-
heuristics is presented in Sect. 62.3, which is organized
on the basis of the metaheuristic type involved in the
integration. Finally, in Sect. 62.4 some conclusions are
drawn.

62.2 Constraint Programming Essentials

In this section, we will briefly describe the essential
concepts of CP, which are needed to understand the
following sections. The readers interested in a more de-
tailed introduction to CP are referred to the book of
Apt [62.1] and to the recent comprehensive Handbook
of Constraint Programming [62.2].

In order to apply constraint programming to a com-
binatorial problem one first needs to model it through
the specific formalism of constraint satisfaction or con-
strained optimization problems. Afterwards, the model
can be solved by a CP solver, which alternates the anal-
ysis of constraints with tree search. Let us review these
basic concepts.

62.2.1 Modeling

Constraint satisfaction problems (CSPs) are a useful
formalism for modeling many real-world problems, ei-
ther discrete or continuous. Remarkable examples are
planning, scheduling, timetabling, just to name a few.

A CSP is generally defined as the problem of associ-
ating values (taken from a set of domains) to variables
subject to a set of constraints. A solution of a CSP is
an assignment of values to all the variables so that the
constraints are satisfied. In some cases not all solutions
are equally preferable and we can associate a cost func-
tion to the variable assignments. In these cases, we talk

Integration of Metaheuristics and Constraint Programming 62.2 Constraint Programming Essentials 1227
Part

E
|62.2

about constrained optimization problems (COPs), and
we are looking for a solution that (without loss of gen-
erality) minimizes the cost value. These concepts are
formally introduced in the following.

Constraint Satisfaction Problems
Given:

� X D fx1; : : : ; xkg is a set of variables.� DD fD1; : : : ;Dkg is a set of domains associated to
the variables. In other words, each variable xi can
assume value di if and only if di 2 Di.� C is a set of constraints, i. e., mathematical relations
over DomD D1 � 	 	 	 �Dk.

We say that a tuple hd1; : : : ; dki 2 Dom satisfies
a constraint C 2 C if and only if hd1; : : : ; dki 2 C.

A constraint satisfaction problem (CSP) P, de-
scribed by the triple hX;D;Ci, is the problem of
finding the tuples Nd D hd1; : : : ; dki 2 Dom that satisfy
every constraint C 2 C. Such tuples are called solutions
of the CSP, and the set of solutions of P is denoted
by sol.P/.

P is said to be consistent or satisfiable if and only if
sol.P/¤ ;.

Notice that, depending on the modeling of the com-
binatorial problem at hand, we could be interested in
determining different properties of the CSP. In the ex-
treme case, for example, one could just want to know
whether the problem is satisfiable, regardless of the ac-
tual solutions. The most common case is to search and
provide a single solution to the problem, whereas some-
times one could be interested in all the solutions.

Constrained Optimization Problems
A constrained optimization problem (COP) OD
hX;D;C; f i is a CSP P D hX;D;Ci with an associ-
ated objective function f W sol.P/! E, where hE;�i
is a well-ordered set (typically, E is one of the sets
N;Z;R).

Differently from the previous case, the tuples Nd 2
sol.O/ that satisfy every constraint are called feasible
solutions, and the set of these tuples is usually assumed
to be non-empty. A solution of the COP O is a feasible
solution Ne 2 sol.O/ for which the value of the objective
function f is minimized, i. e.,

8Nd 2 sol.O/ f .Ne/� f . Nd/ :

Observations
A few observations about this formalism are worth not-
ing. First, notice that the general framework does not

impose any restriction on either the type of domains
and constraints or on the form of the objective func-
tion that can be used to express the problem. The basic
type of domain is a finite set of integer values (also
known as a finite domain), but there are other possibili-
ties that enhance the expressive power of the modeling
framework and capture some combinatorial substruc-
tures of the problem more naturally. For example, it
is possible to deal with variables whose values are fi-
nite (multi)sets, (hyper)graphs, real valued intervals, or
resources of a scheduling problem. Moreover, also the
kind of constraints that can be employed is quite rich
and includes arithmetic constraints, set constraints, per-
mutation, counting and other types of combinatorial
constraints, resource scheduling constraints, path con-
straints on graphs, and constraints expressible through
regular expressions, just to name a few possibilities
(see [62.24] for a comprehensive set of constraints and
their implementation in actual CP systems).

These features clearly make the modeling phase
easier and more precise with respect to other for-
malisms such as integer linear programming. Indeed,
part of the combinatorial structure of the problem
can be directly captured by the use of complex do-
mains/constraints and, as for the objective function,
there is no general limitation on its form, in particular,
there is no assumption of linearity.

Another important point to be noticed regards the
role of constraints. Differently from other modeling
formalisms, which distinguish between constraints that
must be satisfied (called hard constraints) and that
should preferably be satisfied (soft constraints), in the
original CSP/COP framework constraints are all hard
and the solution methods, described in the following
section, consider it mandatory to satisfy all of them.
There have been several attempts in the CP literature to
include soft constraints in the general framework (see,
e.g., [62.25] for a review) but the most common way to
handle them is to include a measure of their violation in
the objective function of the problem.

62.2.2 Solution Methods

CP solution methods basically exploit a form of tree
search that interleaves a branching phase with an anal-
ysis of constraints called constraint propagation. These
two components are described in the following.

Branching and Tree Search
Once the combinatorial problem has been modeled as
a CSP or a COP, CP solves it by constructing a solution

Part
E
|62.2

1228 Part E Evolutionary Computation

by a process that exploits a non-deterministic variable
assignment, where one value is selected together with
one value in its current domain. This phase is also called
labeling using (constraint) logic programming termi-
nology, and a solution to the problem is a complete
labeling. The process proceeds by recursively checking
whether the current labeling can be extended to a con-
sistent solution or, in the negative case, undoing the
current assignment.

The pseudocode of the procedure, called (chrono-
logical) backtracking, is given in Algorithm 62.1.
The procedure is at first called with the full
set of variables and empty labeling as follows
Backtracking.X;;;C;Dom/. The procedure performs
an implicit form of tree search, where a branch is iden-
tified by the selection of one variable (a node of the
search tree) and all the possible values for that variable
(the edges).

Note that, at each step of the recursive procedure,
the choice of the variable and the value to branch on is
non-deterministic. Therefore, these choices are suscep-
tible to heuristics to enhance performances.

In addition, there are also other possibilities to de-
fine a branching rule. For example, instead of selecting
a possible value for the variable selected (i. e., the as-
signment xi WD v), the branching rule could split the
domain of a given variable xi in two by selecting a value
v 2 Di and adding the constraint xi � v on one branch
and xi > v on the other.

Consistency and Constraint Propagation
The check for solution consistency does not need all
the variables to be instantiated, in particular for de-
tecting the unsatisfiability of the CSP with respect
to some constraint. For example, in Algorithm 62.2,
the most straightforward implementation of the proce-
dure Consistent.L;C;Dom/ is reported. The procedure
simply checks whether the satisfiability of a given con-
straint can be ascertained according to the current label-
ing (i. e., if all of the constraint variables are assigned).
However, the reasoning about the current labeling with
respect to the constraints of the problem and the do-
mains of the unlabeled variables does not necessarily
need all the variables appearing in a constraint to be in-
stantiated. Moreover, the analysis can prune (as a side
effect) the domains of the unlabeled variables while
preserving the set of solutions sol.P/, making the ex-
ploration of the subtree more effective. This phase is
called constraint propagation and is interleaved with
the variable assignment. In general, the analysis of each
constraint is repeated until a fixed point for the current

situation is achieved. In the case that one of the do-
mains becomes empty consistency cannot be achieved
and, consequently, the procedure returns a fail.

Different notions of consistency can be employed.
For example, one of the most common and most stud-
ied notions is hyper-arc consistency [62.26]. For a k-ary
constraint C it checks the compatibility of a value v in
the domain of one of the variables with the currently
possible combinations of values for the remaining k�1
variables, pruning v from the domain if no support-
ing combination is found. The algorithms that maintain
hyper-arc consistency have a complexity that is polyno-
mial in the size of the problem (measured in terms of
number of variables/constraints and size of domains).
Other consistency notions have been introduced in the
literature, each having different pruning capabilities and
computational complexity, which are, usually, propor-
tionally related to their effectiveness.

One of the major drawbacks of (practical) consis-
tency notions is that they are local in nature, that is, they
just look at the current situation (partial labeling and
current domains). This means that it would be impossi-
ble to detect future inconsistencies due to the interaction
of variables. A basic technique, called forward check-
ing, can be used to mitigate this problem. This method
exploits a one-step look-ahead with respect to the cur-
rent assignment, i. e., it simulates the assignment of pair
of variables, instead of a single one, thus evaluating the
next level of the tree through a consistency notion. This
technique can be generalized to several other problems.

Algorithm 62.1 Backtracking (U, L, C, Dom)
1: if U D ; then
2: return L
3: end if
4: pick variable xi 2 U

/*possibly xi is selected non-deterministically*/
5: for v 2 Di /*Try to label xi with value v*/ do
6: Dom0 Dom
7: if Consistent.L[fx WD vg;C;Dom0/

/*consistency notions can be different and have
side effects on Dom*/ then

8: r Backtracking.U n fxg;L[fx WD
vg;C;Dom0/

9: if r¤ fail then
10: return r /*a consistent assignment has

been found for the variables in U nfxig with
respect to xi WD v*/

11: end if
12: end if
13: end for

Integration of Metaheuristics and Constraint Programming 62.2 Constraint Programming Essentials 1229
Part

E
|62.2

14: return fail /*backtrack to the previous variable (no
consistent assignment has been found for xi)*/

Algorithm 62.2 Consistent (L, C, Dom)
1: for C 2 C do
2: if all variables in C are labeled in L^C is not

satisfied by L then
3: return fail
4: end if
5: end for
6: return true

Algorithm 62.3 BranchAndBound (U, L, C, Dom, f ,
b, Lb)
1: if U D ; then
2: if f .L/ < b then
3: b f .L/ Lb L
4: end if
5: else
6: pick variable xi 2 U

/*possibly xi is selected non-deterministically*/
7: for v 2 Di /*Try to label xi with value v*/ do
8: Dom0 Dom
9: if Consistent.L[fx WD vg;C;Dom0/^

bound.f ;L[fx WD vg;Dom0/ < b
/*additionally verify whether the current

solution is bounded*/ then
10: BranchAndBound(U n fxg, L[fx WD vg, C,

Dom0, f , b, Lb)
11: end if
12: end for
13: end if

Branch and Bound
In the case of a COP, the problem is solved by exploring
the set sol.O/ in the way above, storing the best value
for f found as sketched in Algorithm 62.3. However,
a constraint analysis (bound.f ;L[fx WD vg;Dom0/)
based on a partial assignment and on the best value
already computed, might allow to sensibly prune the
search tree. This complete search heuristic is called
(with a slight ambiguity with respect to the same con-
cept in operations research) branch and bound.

62.2.3 Systems

A number of practical CP systems are available.
They mostly differ with regards to the targeted pro-

gramming language and modeling features available.
For historical reasons, the first constraint program-
ming systems were built around a Prolog system.
For example, SICStus Prolog [62.27], was one of
the first logic programming systems supporting con-
straint programming which is still developed and re-
leased under a commercial license. Another Prolog-
based system specifically intended for constraint pro-
gramming is ECLiPSe [62.28], which differently from
SICStus Prolog is open source. Thanks to their
longevity, both systems cover many of the model-
ing features described in the previous sections (such
as different type of domains, rich sets of constraints,
etc.).

Another notable commercial system specifically de-
signed for constraint programming is the ILOG CP
optimizer, now developed by IBM [62.29]. This sys-
tem offers modeling capabilities either by means of
a dedicated modeling language (called OPL [62.30]) or
by means of a callable library accessible from differ-
ent imperative programming languages such as C/C++,
Java, and C#. The modeling capabilities of the system
are mostly targeted to scheduling problems, featuring
a very rich set of constructs for this kind of prob-
lems. Interestingly, this system is currently available
at no cost for researchers through the IBM Academic
Initiative.

Open source alternatives that can be interfaced with
the most common programming languages are the C++
libraries of Gecode [62.31], and the Java libraries of
Choco [62.32]. Both systems are well documented and
constantly developed.

A different approach has been taken by other au-
thors, who developed a number of modeling languages
for constraint satisfaction and optimization problems
that can be interfaced to different type of general
purpose CP solvers. A notable example is MiniZinc
[62.33], which is an expressive modeling language for
CP. MiniZinc models are translated into a lower level
language, called FlatZinc, that can be compiled and ex-
ecuted, for example, by Gecode, ECLiPSe or SICStus
prolog.

Finally, a mixed approach has been taken by the
developers of Comet [62.34]. Comet is a hybrid CP
system featuring a specific programming/modeling lan-
guage and a dedicated solver. The system has been
designed with hybridization in mind and, among other
features, it natively supports the integration of meta-
heuristics (especially in the family of local search
methods) with CP.

Part
E
|62.3

1230 Part E Evolutionary Computation

62.3 Integration of Metaheuristics and CP

Differently from Wallace [62.21], we will review the
integration of CP with metaheuristics from the perspec-
tive of metaheuristics, and we classify the approaches
on the basis of the type of metaheuristic employed.
Moreover, following the categorization of Puchinger
and Raidl [62.18], we are mostly interested in review-
ing the integrative combinations of metaheuristics and
constraint programming, i. e., those in which constraint
programming is embedded as a component of a meta-
heuristic to solve a subproblem or vice versa.

Indeed, the types of collaborative combinations are
either straightforward (e.g., collaborative-sequential ap-
proaches using CP as a constructive algorithm for
finding a feasible initial solution of a problem) or rather
uninvestigated (e.g., parallel or intertwined hybrids of
metaheuristics and CP).

62.3.1 Local Search and CP

Local search methods [62.4] are based on an iterative
scheme in which the search moves from the current so-
lution to an adjacent one on the basis of the exploration
of a neighborhood obtained by perturbing the current
solutions.

The hybridization of constraint programming with
local search metaheuristics is the most studied one and
there is an extensive literature on this subject.

CP Within Local Search
The integration of CP within local search methods is
the most mature form of integration. It dates back
to the mid 1990s [62.35], and two main streams are
identifiable to this respect. The first one consists in
defining the search of the candidate neighbor (e.g.,
the best one) as a constrained optimization problem.
The neighborhoods induced by these definitions can
be quite large, therefore, a variant of this technique
is known by the name of large neighborhood search
(LNS) [62.36]. The other kind of integration, lately
named constraint-based local search (CBLS) [62.34],
is based on the idea of expressing local search algo-
rithms by exploiting constraint programming primitives
in their control (e.g., for constraint checks during the
exploration of the neighborhood) [62.37]. In fact, the
two streams have a non-empty intersection, since the
CP primitives employed in CBLS could be used to
explore the neighborhood in a LNS fashion. In the fol-
lowing sections we review some of the work in these
two areas.

A few surveys on the specific integration between
local search and constraint programming exist, for ex-
ample [62.38, 39].

Large Neighborhood Search. In LNS [62.36, 40] an
existing solution is not modified just by applying small
perturbations to solutions but a large part of the prob-
lem is perturbed and searched for improving solutions
in a sort of re-optimization approach. This part can be
represented by a setF �X of released variables, called
fragment, which determines the neighborhood relation
N . Precisely, given a solution NsD hd1; : : : ; dki and a set
F � fX1; : : : ;Xkg of free variables, then

N .s;F/D fhe1; : : : ; eki 2 sol.O/
W .Xi …F/! .ei D di/g :

Given F , the neighborhood exploration is performed
through CP methods (i. e., propagation and tree search).

The pseudocode of the general LNS procedure is
shown in Algorithm 62.4. Notice that in the proce-
dure there are a few hotspots that can be customized.
Namely, one of the key issues of this technique con-
sists in the criterion for the selection of the set F
given the current solution Ns, which is denoted by
SelectFragment.Ns/ in the algorithm. The most straight-
forward way to select it is to randomly release a per-
centage of the problem variables. However, the vari-
ables in F could also be chosen in a structured
way, i. e., by releasing related variables simultaneously.
In [62.41], the authors compare the effectiveness of
these two alternative choices in the solution of a job-
shop scheduling problem.

Also the upper bounds employed for the branch and
bound procedure can be subject to a few design alter-
natives. A possibility, for example, is to set the bound
value to f .Nsb/, the best solution value found that far, so
that the procedure is forced to search at each step only
for improving solutions. This alternative can enhance
the technique when the propagation on the cost func-
tions is particularly effective in pruning the domains
of the released variables. At the opposite extreme, in-
stead, the upper bound could be set to an infinite value
so that a solution is searched regardless whether or not
it is improving the cost function with respect to the cur-
rent incumbent.

Moreover, another design point is the solution
acceptance criterion, which is implemented by the
AcceptSolution function. In general, all the classical lo-

Integration of Metaheuristics and Constraint Programming 62.3 Integration of Metaheuristics and CP 1231
Part

E
|62.3

cal search solution acceptance criteria are applicable,
obviously in dependence on the neighborhood selec-
tion criterion employed. For example, in the case of
randomly released variables a Metropolis acceptance
criterion could be adequate to implement a sort of sim-
ulated annealing.

Finally, the TerminateSearch criterion is one of
those usually adopted in non-systematic search meth-
ods, such as the expiration of a time/iteration budget,
either absolute or relative, or the discovery of an opti-
mal solution.

Algorithm 62.4 LargeNeighborhoodSearch (X, C,
Dom, f)
1: create a (feasible) initial solution Ns0 D hd01; : : : ; d0k i

/*possibly random or finding the first feasible
solution of the full CP model*/

2: Nsb Ns0
3: i 0
4: while not TerminateSearch.i; Nsi; f .Nsi/; Nsb/ do
5: F SelectFragment.Nsi/

/*strategy for selecting the released variables*/
6: L fxj WD dij W xj 62Fg
7: U F
8: BranchAndBound.U; L;C;Dom; f ;

ChooseBounds.Nsi; Nsb//
/*neighborhood exploration*/

9: if AcceptSolution.L/ then
10: NsiC1 L
11: if f .NsiC1/ < f .Nsb/ then
12: Nsb NsiC1

13: end if
14: else
15: NsiC1 Nsi
16: end if
17: i iC 1
18: end while
19: return Nsb

LNS has been successfully applied to routing prob-
lems [62.36, 42–45], nurse rostering [62.46], university
course timetabling [62.47], protein structure predic-
tion [62.48, 49], and car sequencing [62.50].

Cipriano et al. propose GELATO, a modeling
language and a hybrid solver specifically designed for
LNS [62.51–53]. The system has been tested on a set
of benchmark problems, such as the asymmetric travel-
ing salesman problem, minimum energy broadcast, and
university course timetabling.

The developments of the LNS technique in the
wider perspective of very large neighborhood search

(VLNS) was recently reviewed by Pisinger and
Ropke [62.54]. Charchrae and Beck [62.55] also pro-
pose a methodological contribution to this area with
some design principles for LNS.

Constraint-Based Local Search. The idea of encod-
ing a local search algorithm by means of constraint
programming primitives was originally due to Pesant
and Gendreau [62.35, 56], although in their papers they
focus on a framework that allows neighborhoods to be
expressed by means of CP primitives. The basic idea
is to extend the original CP model of the problem with
a sort of surrogate model comprising a set of variables
and constraints that intentionally describe a neighbor-
hood of the current solution.

A pseudocode of CBLS defined along these lines
is reported in Algorithm 62.5. The core of the proce-
dure is at line 5, which determines the neighborhood
model on the basis of the current solution. The main
components of the neighborhood model are the new set
of variables Y and constraints CX;Y that act as an in-
terface of the neighborhood variables Y with respect to
those of the original problem X. For example, the classi-
cal swap neighborhood, which perturbs the value of two
variables of the problem by exchanging their values,
can be modeled by the set Y D fy1; y2g, consisting of the
variables to exchange, and with the interface constraints

.y1 D i^ y2 D j/ ” .xi D sj^ xj D si/

8i; j 2 f1; : : : ; ng :
Moreover, an additional component of the neighbor-

hood model is the evaluator of the move impact �f ,
which can be usually computed incrementally on the
basis of the single move.

It is worth noticing that the use of different mod-
eling viewpoints is common practice in constraint pro-
gramming. In classical CP modeling the different view-
points usually offer a convenient way to express some
constraint in a more concise or more efficient manner.
The consistency between the viewpoints is maintained
through the use of channeling constraints that link the
different modelings. Similarly, althoughwith a different
purpose, in CBLS the linking between the full problem
model and the neighborhood model is achieved through
interface constraints.

Algorithm 62.5 ConstraintBasedLocalSearch (X, CX ,
DomX , f)
1: create a (feasible) initial solution Ns0 D hd01; : : : ; d0k i

/*possibly random or finding the first feasible
solution of the original CP model*/

Part
E
|62.3

1232 Part E Evolutionary Computation

2: Nsb Ns0
3: i 0
4: while not TerminateSearch.i; Nsi; f .Nsi/; Nsb/ do
5: hY;CX;Y ;DomY ; �f i

NeighborhoodModel.Nsi/
6: L ;
7: U Y
8: BranchAndBound.U;L;CX;Y ;DomY ;�f /

/*neighborhood exploration*/
9: if AcceptSolution.L/ then
10: NsiC1 Apply.L; Nsi/
11: if f .NsiC1/ < f .Nsb/ then
12: Nsb NsiC1

13: end if
14: else
15: NsiC1 Nsi
16: end if
17: i iC 1
18: end while
19: return Nsb

This stream of research has been revamped thanks
to the design of the Comet language [62.34, 57], the aim
of which is specifically to support declarative compo-
nents inspired from CP primitives for expressing local
search algorithms. An example of such primitives are
differentiable invariants [62.58], which are declarative
data structures that support incremental differentiation
to effectively evaluate the effect of local moves (i. e., the

f in Algorithm 62.5). Moreover, Comet support con-
trol abstractions [62.59, 60] specifically designed for
local search such as the neighbors construct, which
aims at expressing the unions of heterogeneous neigh-
borhoods. Finally, Comet has been extended also to
support distributed computing [62.61].

The embedding of local search within a constraint
programming environment and the employment of
a common programming language makes it possible
to automatize the synthesis of CBLS algorithms from
a high-level model expressed in Comet [62.62, 63]. The
synthesizer analyzes the combinatorial structure of the
problem, expressed through the variables and the con-
straints, and combines a set of basic recommendations,
which are the basic constituents of the synthesized
algorithm.

Other Integrations. The idea of exploring with lo-
cal search a space of incomplete solutions (i. e., those
where not all variables have been assigned a value)
exploiting constraint propagation has been pursued,
among others, by Jussien and Lhomme [62.64] for

an open-shop scheduling problem. Constraint prop-
agation employed in the spirit of forward checking
and, more in general, look-ahead has been effectively
employed, among others, by Schaerf [62.65] and Prest-
wich [62.66], respectively, for scheduling and graph
coloring problems.

Local Search Within CP
Moving to the integration of local search within con-
straint programming, the most common utilization of
local search-like techniques consists in limiting the ex-
ploration of the tree search only to paths that are “close”
to a reference one. An example of such a procedure is
limited discrepancy search (LDS) [62.67], an incom-
plete method for tree search in which only neighboring
paths of the search tree are explored, where the proxim-
ity is defined in terms of different decision points called
discrepancies. Only the paths (i. e., complete solutions)
with at most k discrepancies are considered, as outlined
in Algorithm 62.6.

Algorithm 62.6 LimitedDiscrepancySearch (X, C,
Dom, f , k)
1: Ns� FirstSolution.X;C;Dom; f /
2: Nsb Ns�

3: for i 2 f1; : : : ; kg do
4: for Nt 2 fNs W Ns differs w:r:t: Ns� for

exactly i variablesg do
5: if Consistent.Nt;Dom/^ f .Nt/ < f .Nsb/ then
6: Nsb Nt
7: end if
8: end for
9: end for
10: return Nsb

Another approach due to Prestwich [62.68] is called
incomplete dynamic backtracking. Differently from
LDS, in this approach proximity is defined among par-
tial solutions, and when backtracking needs to take
place it is executed by randomly unassigning (at most)
b variables. This way, the method could be intended as
a local search on partial solutions. In fact, the method
also features other CP machinery, such as forward
checking, which helps in boosting the search.

An alternative possibility is to employ local search
in constraint propagation. Local probing [62.69, 70] is
based on the partition of constraints into the set of
easy and hard ones. At each choice point in the search
tree the set of easy constraints is dealt with a lo-
cal search metaheuristic (namely simulated annealing),
while the hard constraints are considered by classi-

Integration of Metaheuristics and Constraint Programming 62.3 Integration of Metaheuristics and CP 1233
Part

E
|62.3

cal constraint propagation. This idea generalizes the
approach of Zhang and Zhang [62.71], who first pre-
sented such a combination. Another similar approach
was taken by Sellmann and Harvey [62.72], who used
local search to propagate redundant constraints.

In [62.73] the authors discuss the incorporation of
the tabu search machinery within CP tree search. In
particular, they look at the memory mechanisms for
limiting the size of the tree and the elite candidate list
for keeping the most promising choices in order to be
evaluated first.

62.3.2 Genetic Algorithms and CP

A genetic algorithm [62.5] is an iterative metaheuris-
tic in which a population of strings, which represent
candidate solutions, evolves toward better solutions in
a process that mimics natural evolution. The main com-
ponents of the evolution process are crossover and
mutation operators, which, respectively, combine two
parent solutions generating an offspring and mutate
a given solution. Another important component is the
strategy for the offspring selection, which determines
the population at the next iteration of the process.

To the best of our knowledge, one of the first at-
tempts to integrate constraint programming and genetic
algorithms is due to Barnier and Brisset [62.74]. They
employ the following genetic representation: given
a CSP with variables fX1; : : : ;Xkg, the i-th gene in
the chromosomes is related to the variable Xi and it
stores a subset of the domain Di that is allowed to be
searched. Each chromosome is then decoded by CP,
which searches for the best solution of the sub-CSP in-
duced by the restrictions in the domains. The genetic
operators used are a mutation operator that changes val-
ues on the subdomain of randomly chosen genes and
a crossover operator that is based on a recombination of
the set-union of the subdomains of each pair of genes.
The method was applied to a vehicle routing problem
and outperformed both a CP and a GA solver.

A different approach, somewhat similar to local
probing, was used in [62.75] for tackling a production
scheduling problem. In this case, the problem variables
are split into two sets, defining two coupled subprob-
lems. The first set of variables is dealt with by the
genetic algorithm, which determines a partial schedule.
This partial solution is then passed to CP for complet-
ing (and optimizing) the assignment of the remaining
variables.

Finally, CP has been used as a post-processing
phase for optimizing the current population in the spirit

of memetic algorithms. In [62.76] CP actually acts
as an unfeasibility repairing method for a university
course timetabling problem, whereas in [62.77] the op-
timization performed by CP on a flow-shop scheduling
problem is an alternative to the classical local search
applied in memetic algorithms. This approach is illus-
trated in Algorithm 62.7.

Algorithm 62.7 A Memetic Algorithm with CP for
Flow-Shop scheduling (adapted from [62.77])
1: generate an initial population PD fp1; : : : ; plg of

permutations of n jobs (each composed of k tasks
�ij whose start time and end time are denoted by �ij
and �ij respectively)

2: g 0
3: while not TerminateSearch.g;P;minp2Pf .p// do
4: select p1 and p2 from P by binary tournament
5: c p1˝ p2 /*apply crossover*/
6: if f .c/�minp2Pf .p/ then
7: mutate c under probability pm
8: end if
9: decode cD hc1; : : : ; cni to the set of precedence

constraints C D f�kcj � �1cjC1 W jD1; : : : ; n� 1 g
10: L ;
11: U f�ij; �ij W iD 1; : : : ; k; jD 1; : : : ; ng
12: BranchAndBound.U;L;C[f�ij � �iC1j W iD

1; : : : ; kg;Dom; f /
13: if f .c/�maxp2Pf .p/ then
14: discard c
15: else
16: select r by reverse binary tournament
17: c replaces r in P
18: end if
19: g gC 1
20: end while
21: return argminp2Pf .p/

62.3.3 ACO and CP

Ant colony optimization [62.6] is an iterative construc-
tive metaheuristic, inspired by ant foraging behavior.
The ACO construction process is driven by a proba-
bilistic model, based on pheromone trails, which are
dynamically adjusted by a learning mechanism.

The first attempt to integrate ACO and CP is due
to Meyer and Ernst [62.78], who apply the method for
solving a job-shop scheduling problem. The proposed
procedure employs ACO to learn the variable and value
ordering used by CP for branching in the tree search.
The solutions found by the CP procedure are fed back

Part
E
|62.4

1234 Part E Evolutionary Computation

to the ACO in order to update its probabilistic model.
In this approach, ACO can be conceived as a master
online-learning branching heuristic aimed at enhancing
the performance of a slave CP solver.

A slightly different approach was taken by
Khichane et al. [62.79, 80]. Their hybrid algorithm
works in two phases. At first, CP is employed to sample
the space of feasible solutions, and the information col-
lected is processed by the ACO procedure for updating
the pheromone trails according to the solutions found
by CP. In the second phase, the learned pheromone in-
formation is employed as the value ordering used for
CP branching. This approach, differently from the pre-
vious one, uses the learning capabilities of ACO in an
offline-learning fashion.

More standard approaches in which CP is used to
keep track of the feasibility of the solution constructed
by ACO and to reduce the domains through constraint
propagation have been used by a number of authors.
Khichane et al. apply this idea to job-shop schedul-
ing [62.78] and car sequencing [62.79, 81]. Their gen-
eral idea is outlined in Algorithm 62.8, where each ant
maintains a partial assignment of values to variables.
The choice to extend the partial assignment with a new
variable/value pair is driven by the pheromone trails
and the heuristic factors in lines 7–8 through a standard
probabilistic selection rule. Propagation is employed at
line 10 to prune the possible values for the variables not
included in the current assignment.

Another work along this line is due to Benedettini
et al. [62.82], who integrate a constraint propagation
phase for Boolean constraints to boost a ACO approach
for a bioinformatics problem (namely, haplotype infer-
ence). Finally, in the same spirit of the previous idea,
Crawford et al. [62.83, 84] employ a look-ahead tech-
nique within ACO and apply the method to solve set
covering and set partitioning problems.

Algorithm 62.8 Ant Constraint Programming
(adapted from [62.79])
1: initialize all pheromone trails to �max

2: g 0
3: repeat
4: for k 2 f1; : : : ; ng do
5: Ak ;
6: repeat
7: select a variable xj 2 X so that xj 62 var.Ak/

according to the pheromone trail �j
8: choose a value v 2 Dj according to the

pheromone trail �jv and a heuristic factor �jv
9: add fxj WD vg toAk

10: Propagate.Ak;C/
11: until var.Ak/D X or Failure
12: update pheromone trails using fA1; : : : ;Ang
13: end for
14: until var.Ai/D Xfor somei 2 f1; .: : :/;ng or

TerminateSearch.g;Ai/

62.4 Conclusions

In this chapter we have reviewed the basic concepts of
constraint programming and its integration with meta-
heuristics. Our main contribution is the attempt to give
a comprehensive overview of such integrations from the
viewpoint of metaheuristics.

We believe that the reason why these integrations
are very promising resides in the complementary mer-
its of the two approaches. Indeed, on the one hand,
metaheuristics are, in general, more suitable to deal
with optimization problems, but their treatment of con-
straints can be very awkward, especially in the case of
tightly constrained problems. On the other hand, con-
straint programming is specifically designed for finding

feasible solutions, but it is not particularly effective
for handling optimization. Consequently, a hybrid al-
gorithm that uses CP for finding feasible solutions and
metaheuristics to search among them has good chances
to outperform its single components.

Despite the important steps made in this field during
the last decade, there are still promising research oppor-
tunities, especially in order to investigate topics such
as collaborative hybridization of CP and metaheuristics
and validate existing integration approaches in the yet
uninvestigated area of multiobjective optimization. We
believe that further research should devote more atten-
tion to these aspects.

Integration of Metaheuristics and Constraint Programming References 1235
Part

E
|62

References

62.1 K.R. Apt: Principles of Constraint Programming
(Cambridge Univ. Press, Cambridge 2003)

62.2 F. Rossi, P. van Beek, T. Walsh: Handbook of Con-
straint Programming, Foundations of Artificial In-
telligence (Elsevier Science, Amsterdam 2006)

62.3 M. Dorigo, M. Birattari, T. Stützle: Metaheuristic. In:
Encyclopedia of Machine Learning, ed. by C. Sam-
mut, G.I. Webb (Springer, Berlin, Heidelberg 2010)
p. 662

62.4 H.H. Hoos, T. Stützle: Stochastic Local Search: Foun-
dations & Applications (Morgan Kaufmann, San
Francisco 2004)

62.5 C. Sammut: Genetic and evolutionary algorithms.
In: Encyclopedia of Machine Learning, ed. by
C. Sammut, G.I. Webb (Springer, Berlin, Heidelberg
2010) pp. 456–457

62.6 M. Dorigo, M. Birattari: Ant colony optimization. In:
Encyclopedia of Machine Learning, ed. by C. Sam-
mut, G.I. Webb (Springer, Berlin, Heidelberg 2010)
pp. 36–39

62.7 T. Yunes: Success stories in integrated optimiza-
tion (2005) http://moya.bus.miami.edu/~tallys/
integrated.php

62.8 W. J. van Hoeve: CPAIOR conference series (2010)
available online from http://www.andrew.cmu.
edu/user/vanhoeve/cpaior/

62.9 P. van Hentenryck, M. Milano (Eds.): Hybrid Op-
timization: The Ten Years of CPAIOR, Springer Op-
timization and Its Applications, Vol. 45 (Springer,
Berlin 2011)

62.10 C. Blum, A. Roli, M. Sampels (Eds.): Hybrid Meta-
heuristics, First International Workshop (HM 2004),
Valencia (2004)

62.11 M.J. Blesa, C. Blum, A. Roli, M. Sampels (Eds.):
Hybrid Metaheuristics: Second International Work-
shop (HM 2005), Lecture Notes in Computer Science,
Vol. 3636 (Springer, Berlin, Heidelberg 2005)

62.12 F. Almeida, M.J. Blesa Aguilera, C. Blum,
J.M. Moreno-Vega, M. Pérez, A. Roli, M. Sampels
(Eds.): Hybrid Metaheuristics: Third International
Workshop, Lecture Notes in Computer Science,
Vol. 4030 (Springer, Berlin, Heidelberg 2006)

62.13 T. Bartz-Beielstein, M.J. Blesa Aguilera, C. Blum,
B. Naujoks, A. Roli, G. Rudolph, M. Sampels (Eds.):
Hybrid Metaheuristics: 4th International Workshop
(HM 2007), Lecture Notes in Computer Science,
Vol. 4771 (Springer, Berlin, Heidelberg 2007)

62.14 M.J. Blesa, C. Blum, C. Cotta, A.J. Fernández,
J.E. Gallardo, A. Roli, M. Sampels (Eds.): Hybrid
Metaheuristics: 5th International Workshop (HM
2008), Lecture Notes in Computer Science, Vol. 5296
(Springer, Berlin, Heidelberg 2008)

62.15 M.J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sam-
pels, A. Schaerf (Eds.): Hybrid Metaheuristics: 6th
International Workshop (HM 2009), Lecture Notes in

Computer Science, Vol. 5818 (Springer, Berlin, Hei-
delberg 2009)

62.16 M.J. Blesa, C. Blum, G.R. Raidl, A. Roli, M. Sam-
pels (Eds.):Hybrid Metaheuristics: 7th International
Workshop (HM 2010), Lecture Notes in Computer
Science, Vol. 6373 (Springer, Berlin, Heidelberg
2010)

62.17 I. Dumitrescu, T. Stützle: Combinations of local
search and exact algorithms, Lect. Notes Comput.
Sci. 2611, 211–223 (2003)

62.18 J. Puchinger, G. Raidl: Combining metaheuristics
and exact algorithms in combinatorial optimiza-
tion: A survey and classification, Lect. Notes Com-
put. Sci. 3562, 113–124 (2005)

62.19 S. Fernandes, H. Ramalhinho Dias Lourenço: Hy-
brids combining local search heuristics with exact
algorithms, V Congr. Esp. Metaheurísticas, Algoritm.
Evol. Bioinspirados (MAEB2007), Tenerife, ed. by
F. Rodriguez, B. Mélian, J.A. Moreno, J.M. Moreno
(2007) pp. 269–274

62.20 L. Jourdan, M. Basseur, E.-G. Talbi: Hybridizing ex-
act methods and metaheuristics: A taxonomy, Eur.
J. Oper. Res. 199(3), 620–629 (2009)

62.21 M. Wallace: Hybrid algorithms in constraint pro-
gramming, Lect. Notes Comput. Sci. 4651, 1–32
(2007)

62.22 F. Azevedo, P. Barahona, F. Fages, F. Rossi (Eds.):
Recent Advances in Constraints: 11th Annual ERCIM
International Workshop on Constraint Solving and
Contraint Logic Programming (CSCLP 2006), Lec-
ture Notes in Computer Science, Vol. 4651 (Springer,
Berlin, Heidelberg 2007)

62.23 C. Blum, J. Puchinger, G.R. Raidl, A. Roli: Hy-
brid metaheuristics in combinatorial optimization:
A survey, Appl. Soft Comput. 11(6), 4135–4151 (2011)

62.24 N. Beldiceanu, H. Simonis: Global constraint cata-
log (2011), available online from http://www.emn.
fr/z-info/sdemasse/gccat/

62.25 P. Meseguer, F. Rossi, T. Schiex: Soft constraints.
In: Handbook of Constraint Programming, Foun-
dations of Artificial Intelligence, ed. by F. Rossi,
P. van Beek, T. Walsh (Elsevier, Amsterdam
2006)

62.26 A.K. Mackworth: Consistency in networks of rela-
tions, Artif. Intell. 8(1), 99–118 (1977)

62.27 SICStus prolog homepage, available online from
http://www.sics.se/isl/sicstuswww/site/index.html

62.28 K.R. Apt, M.Wallace: Constraint Logic Programming
Using Eclipse (Cambridge Univ. Press, Cambridge
2007)

62.29 ILOG CP optimizer, available online from
http://www-01.ibm.com/software/integration/
optimization/cplex-cp-optimizer/

62.30 P. van Hentenryck: The OPL Optimization Program-
ming Language (MIT Press, Cambridge 1999)

http://moya.bus.miami.edu/~tallys/integrated.php
http://moya.bus.miami.edu/~tallys/integrated.php
http://www.andrew.cmu.edu/user/vanhoeve/cpaior/
http://www.andrew.cmu.edu/user/vanhoeve/cpaior/
http://www.emn.fr/z-info/sdemasse/gccat/
http://www.emn.fr/z-info/sdemasse/gccat/
http://www.sics.se/isl/sicstuswww/site/index.html
http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-cp-optimizer/

Part
E
|62

1236 Part E Evolutionary Computation

62.31 Gecode Team: Gecode: Generic constraint devel-
opment environment (2006), available online from
http://www.gecode.org

62.32 CHOCO Team: Choco: An open source java constraint
programming library, Res. Rep. 10-02-INFO (Ecole
des Mines de Nantes, Nantes 2010)

62.33 N. Nethercote, P.J. Stuckey, R. Becket, S. Brand,
G.J. Duck, G. Tack: Minizinc: Towards a standard CP
modelling language, Lect. Notes Comput. Sci. 4741,
529–543 (2007)

62.34 P.V. Hentenryck, L. Michel: Constraint-Based Local
Search (MIT Press, Cambridge 2005)

62.35 G. Pesant, M. Gendreau: A view of local search in
constraint programming, Lect. Notes Comput. Sci.
1118, 353–366 (1996)

62.36 P. Shaw: Using constraint programming and local
search methods to solve vehicle routing problems,
Lect. Notes Comput. Sci. 1520, 417–431 (1998)

62.37 B.D. Backer, V. Furnon, P. Shaw, P. Kilby, P. Prosser:
Solving vehicle routing problems using constraint
programming and metaheuristics, J. Heuristics
6(4), 501–523 (2000)

62.38 F. Focacci, F. Laburthe, A. Lodi: Local search
and constraint programming. In: Handbook of
Metaheuristics, ed. by F. Glover, G. Kochenberger
(Kluwer, Boston 2003) pp. 369–403

62.39 P. Shaw: Constraint programming and local search
hybrids. In: Hybrid Optimization, Springer Opti-
mization and Its Applications, Vol. 45, ed. by P. van
Hentenryck, M. Milano (Springer, Berlin, Heidelberg
2011) pp. 271–303

62.40 L. Perron, P. Shaw, V. Furnon: Propagation guided
large neighborhood search, Lect. Notes Comput.
Sci. 3258, 468–481 (2004)

62.41 E. Danna, L. Perron: Structured vs. unstructured
large neighborhood search: A case study on job-
shop scheduling problems with earliness and tar-
diness costs, Lect. Notes Comput. Sci. 2833, 817–821
(2003)

62.42 Y. Caseau, F. Laburthe, G. Silverstein: A meta-
heuristic factory for vehicle routing problems, Lect.
Notes Comput. Sci. 1713, 144–158 (1999)

62.43 L.M. Rousseau, M. Gendreau, G. Pesant: Using
constraint-based operators to solve the vehicle
routing problem with time windows, J. Heuristics
8(1), 43–58 (2002)

62.44 S. Jain, P. van Hentenryck: Large neighborhood
search for dial-a-ride problems, Lect. Notes Com-
put. Sci. 6876, 400–413 (2011)

62.45 J.H.-M. Lee (Ed.): Principles and Practice of Con-
straint Programming – CP 2011 – 17th International
Conference, CP 2011, Perugia, Italy, September 12-
16, 2011, Proceedings, Lecture Notes in Computer
Science, Vol. 6876 (Springer, Berlin, Heidelberg
2011)

62.46 R. Cipriano, L. Di Gaspero, A. Dovier: Hybrid ap-
proaches for rostering: A case study in the integra-
tion of constraint programming and local search,
Lect. Notes Comput. Sci. 4030, 110–123 (2006)

62.47 H. Cambazard, E. Hebrard, B. O’Sullivan, A. Pa-
padopoulos: Local search and constraint pro-
gramming for the post enrolment-based course
timetabling problem, Ann. Oper. Res. 194(1), 111–135
(2012)

62.48 I. Dotu, M. Cebrián, P. van Hentenryck, P. Clote: Pro-
tein structure prediction with large neighborhood
constraint programming search. In: Principles and
Practice of Constraint Programming, ed. by I. Dotu,
M. Cebrián, P. van Hentenryck, P. Clote (Springer,
Berlin, Heidelberg 2008) pp. 82–96

62.49 R. Cipriano, A. Dal Palù, A. Dovier: A hybrid ap-
proach mixing local search and constraint pro-
gramming applied to the protein structure pre-
diction problem, Proc. Workshop Constraint Based
Methods Bioinform. (WCB 2008), Paris (2008)

62.50 L. Perron, P. Shaw: Combining forces to solve the
car sequencing problem, Lect. Notes Comput. Sci.
3011, 225–239 (2004)

62.51 R. Cipriano, L. Di Gaspero, A. Dovier: A hybrid solver
for Large Neighborhood Search: Mixing Gecode and
EasyLocal++, Lect. Notes Comput. Sci. 5818, 141–155
(2009)

62.52 R. Cipriano: On the hybridization of constraint pro-
gramming and local search techniques: Models and
software tools, Lect. Notes Comput. Sci. 5366, 803–
804 (2008)

62.53 R. Cipriano: On the Hybridization of Constraint Pro-
gramming and Local Search Techniques: Models
and Software Tools, Ph.D. Thesis (PhD School in
Computer Science – University of Udine, Udine 2011)

62.54 D. Pisinger, S. Ropke: Large neighborhood search.
In: Handbook of Metaheuristics, ed. by M. Gen-
dreau, J.-Y. Potvin (Springer, Berlin, Heidelberg
2010) pp. 399–420, 2nd edn., Chap. 13

62.55 T. Carchrae, J.C. Beck: Principles for the design of
large neighborhood search, J. Math. Model, Algo-
rithms 8(3), 245–270 (2009)

62.56 G. Pesant, M. Gendreau: A constraint programming
framework for local search methods, J. Heuristics
5(3), 255–279 (1999)

62.57 L. Michel, P. van Hentenryck: A constraint-based
architecture for local search, Proc. 17th ACM SIGPLAN
Object-oriented Program. Syst. Lang. Appl. (OOPSLA
’02), New York (2002) pp. 83–100

62.58 P. van Hentenryck, L. Michel: Differentiable in-
variants, Lect. Notes Comput. Sci. 4204, 604–619
(2006)

62.59 P. van Hentenryck, L. Michel: Control abstrac-
tions for local search, J. Constraints 10(2), 137–157
(2005)

62.60 P. van Hentenryck, L. Michel: Nondeterministic
control for hybrid search, Lect. Notes Comput. Sci.
3524, 863–864 (2005)

62.61 L. Michel, A. See, P. van Hentenryck: Distributed
constraint-based local search, Lect. Notes Comput.
Sci. 4204, 344–358 (2006)

62.62 P. van Hentenryck, L. Michel: Synthesis of
constraint-based local search algorithms from

http://www.gecode.org

Integration of Metaheuristics and Constraint Programming References 1237
Part

E
|62

high-level models, 22nd Natl. Conf. Artif. Intell.
AAAI, Vol. 1 (2007) pp. 273–278

62.63 S.A. Mohamed Elsayed, L. Michel: Synthesis of
search algorithms from high-level cp models, Lect.
Notes Comput. Sci. 6876, 256–270 (2011)

62.64 N. Jussien, O. Lhomme: Local searchwith constraint
propagation and conflict-based heuristic, Artif. In-
tell. 139(1), 21–45 (2002)

62.65 A. Schaerf: Combining local search and look-ahead
for scheduling and constraint satisfaction prob-
lems, 15th Int. Joint Conf. Artif. Intell. (IJCAI-97),
Nagoya (1997) pp. 1254–1259

62.66 S. Prestwich: Coloration neighbourhood search
with forward checking, Ann. Math. Artif. Intell. 34,
327–340 (2002)

62.67 W.D. Harvey, M.L. Ginsberg: Limited discrepancy
search, 14th Int. Joint Conf. Artif. Intell., Montreal
(1995) pp. 607–613

62.68 S. Prestwich: Combining the scalability of local
search with the pruning techniques of systematic
search, Ann. Oper. Res. 115(1), 51–72 (2002)

62.69 O. Kamarainen, H. Sakkout: Local probing applied
to scheduling, Lect. Notes Comput. Sci. 2470, 81–103
(2006)

62.70 O. Kamarainen, H. El Sakkout: Local probing ap-
plied to network routing, Lect. Notes Comput. Sci.
3011, 173–189 (2004)

62.71 J. Zhang, H. Zhang: Combining local search and
backtracking techniques for constraint satisfaction,
Proc. 13th Natl. Conf. Artif. Intell. (AAAI96) (1996)
pp. 369–374

62.72 M. Sellmann, W. Harvey: Heuristic constraint prop-
agation, Lect. Notes Comput. Sci. 2470, 319–325
(2006)

62.73 M. Dell’Amico, A. Lodi: On the integration of meta-
heuristic stratgies in constraint programming. In:
Metaheuristic Optimization Via Memory and Evo-
lution: Tabu Search and Scatter Search, Operations
Research/Computer Science Interfaces, Vol. 30, ed.
by C. Rego, B. Alidaee (Kluwer, Boston 2005)
pp. 357–371, Chap. 16

62.74 N. Barnier, P. Brisset: Combine & conquer: Ge-
netic algorithm and CP for optimization, Lect. Notes
Comput. Sci. 1520, 463–463 (1998)

62.75 H. Hu, W.-T. Chan: A hybrid GA-CP approach for
production scheduling, 5th Int. Conf. Nat. Comput.
(2009) pp. 86–91

62.76 S. Deris, S. Omatu, H. Ohta, P. Saad: Incorporat-
ing constraint propagation in genetic algorithm for
university timetable planning, Eng. Appl. Artif. In-
tell. 12(3), 241–253 (1999)

62.77 A. Jouglet, C. Oguz, M. Sevaux: Hybrid flow-
shop: a memetic algorithm using constraint-based
scheduling for efficient search, J. Math. Model Al-
gorithms 8(3), 271–292 (2009)

62.78 B. Meyer, A. Ernst: Integrating ACO and constraint
propagation, Lect. Notes Comput. Sci. 3172, 166–177
(2004)

62.79 M. Khichane, P. Albert, C. Solnon: CP with ACO.
In: Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimiza-
tion Problems, ed. by L. Perron, M.A. Trick (Springer,
Berlin, Heidelberg 2008) pp. 328–332

62.80 M. Khichane, P. Albert, C. Solnon: Strong combi-
nation of ant colony optimization with constraint
programming optimization, Lect. Notes Comput.
Sci. 6140, 232–245 (2010)

62.81 M. Khichane, P. Albert, C. Solnon: Integration of ACO
in a constraint programming language, Lect. Notes
Comput. Sci. 5217, 84–95 (2008)

62.82 S. Benedettini, A. Roli, L. Di Gaspero: Two-level
ACO for haplotype inference under pure parsimony,
Lect. Notes Comput. Sci 5217, 179–190 (2008)

62.83 B. Crawford, C. Castro: Integrating lookahead and
post processing procedures with ACO for solving
set partitioning and covering problems, Lect. Notes
Comput. Sci. 4029, 1082–1090 (2006)

62.84 B. Crawford, C. Castro, E. Monfroy: Constraint pro-
gramming can help ants solving highly constrained
combinatorial problems, ICSOFT 2008 – Proc. 3rd
Int. Conf. Software Data Technol., INSTICC, Porto
(2008) pp. 380–383

	62 Integration of Metaheuristics and Constraint Programming
	62.1 Constraint Programming and Metaheuristics
	62.2 Constraint Programming Essentials
	62.3 Integration of Metaheuristics and CP
	62.4 Conclusions
	References

