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Many different types of fuzzy sets have appeared in the
literature since Zadeh introduced the concept of fuzzy
set (or type-1 fuzzy set) [6.1]. Roughly speaking, the
basic characteristics of all those definitions are the fol-
lowing:

i) They are particular instances of the L-fuzzy sets de-
fined by Goguen [6.2].

ii) They arise from theoretical problems and are very
efficient to solve such theoretical problems.

iii) The specific characteristics of the new definitions
do not use to play a formal role, quite often becom-
ing an easy adaptation of Zadeh’s fuzzy sets.

iv) It is not always shown to what extent the new pro-
posal implies a practical advantage when compared
to Zadeh’s fuzzy sets.

The last point gives rise to a key criticism when ad-
ditional information is needed for the management of
a new kind of fuzzy sets, but the improvement we ob-
tain in practice cannot be justified by the effort required
to obtain such an information. But more important than
that is the previous criticism (iii), about the difficulty
of building the best family of sets for the application
we are considering. Surprisingly, this key issue has not
captured the attention of too many researchers.

In this paper, we shall focuss on those sets con-
ceived to address the problem stated by Zadeh in 1971
in order to address the difficulty of finding the mem-
bership degree of each element (we shall refer to these
sets as extensions of the fuzzy sets), and then we shall
point out applications that can be found in the litera-
ture in which the use of some extensions provides better

results than the use of type-1 fuzzy sets, according to
the comparison carried out in the papers where this im-
provement is shown. Once the definition of extension of
fuzzy sets has been introduced, we shall describe some
of its properties and remark the structural problems of
the different types of these extensions. Among those
extensions we shall consider type-2 fuzzy sets, interval-
valued fuzzy sets, Atanassov’s intuitionistic fuzzy sets
or type-2 bipolar fuzzy sets and Atanassov’s interval-
valued fuzzy sets.

We have organized this chapter as follows. In
Sect. 6.2 we start recalling the reasons that led Zadeh
to introduce fuzzy sets. We also remind the basic no-
tions in Brouwer’s intuitionistic theory to later justify
the terminological problems linked to the sets defined
by Atanassov. In Sect. 6.3 we present the origin of the
extensions of fuzzy sets as well as the definitions. Sec-
tion 6.4 is devoted to type-2 fuzzy sets. We stress the
problems related to the definition of the basic operations
and the terminology. In Sect. 6.5 we analyze a particular
case of the previous sets, namely, interval-valued fuzzy
sets. We present their properties and different construc-
tion methods, depending on the application that we are
dealing with. We also refer to the papers in which it
is shown that the results that we obtain with these sets
are better than those obtained with other techniques.
In Sects. 6.6 and 6.7 we describe the sets defined by
Atanassov. Section 6.8 explains the links between the
considered extensions. In Sect. 6.9 we exhibit some
other definitions of fuzzy sets in the literature that do
not fall into the scope of our notion of extension. We
finish with some conclusions and references.

6.1 Considerations Prior to the Concept of Extension of Fuzzy Sets

In classical logic, propositions can only be either true
or false. Aristotle formulated the basic principles of
this logic: the noncontradiction principle (a statement
cannot be true and false at the same time) and the
middle-excluded principle (every statement is either
true or false).

It is easy to note that there are many situations
for which more than two truth values are needed.
This fact led C.S. Peirce to say that Aristotle’s for-
mulation is the simplest hypothesis we can work with.
In fact, meanwhile human knowledge representation
is based upon concepts [6.3], and these concepts are
not crisp in nature, we should not expect that hu-
man beings use binary logic so often in their daily
life.

Everyday situations such as taste, meaning of ad-
jectives, etc., can only be studied precisely if gradings
more complex than true or false are considered. Even
very widely used mathematical models can lead to
paradoxes. For instance, quite often we are forced to
establish arbitrary cuts in order to make reality fit our
binary model.

These considerations led to propose different log-
ical formulations which allowed for more than two
truth values, like Brouwer’s intuitionistic logic (par-
tially caught by the so-called intuitionistic propositional
calculus modeled by Heyting algebras), multivalued
logics presented by Lukasiewicz, or Zadeh’s fuzzy logic
(which replaces the set {0, 1} by the set [0, 1]), for
example.



The Origin of Fuzzy Extensions

6.1 Considerations Prior to the Concept of Extension of Fuzzy Sets

6.1.1 Brouwer's Intuitionistic Logic

In 1907, the Dutch mathematician L.E.J. Brouwer
(1881-1966) introduced the intuitionistic logic. Be-
tween the precursors of intuitionistic logic, we can
include Kronecker, Poincare, Borel, or Weyl.

For intuitionistic researchers, the objects of study in
Mathematics are just some intuitions of the mind and
the constructions that can be made with them. Hence,
the intuitionistic mathematics only handles built objects
and only recognizes the properties assigned to these ob-
jects in their construction. In particular, the negation of
the impossibility of a fact is not a construction of such
a fact, and so both the double negation principle and
the reduction ad absurdum method are not acceptable
for the intuitionist. In the same way, it may happen that
it is impossible to build both a fact and its negation,
so also the middle-excluded principle is excluded by
intuitionism.

In 1930 Heyting, a Brouwer’s disciple, went one
step ahead and defined a propositional calculus in terms
of axioms and rules in Hilbert’s style. This calculus
is known as intuitionistic propositional calculus (intu-
itionistic logic). For several decades, the research in
intuitionism was almost stopped. But it has reappeared
with strength in the logic of categories and topos [6.4,
5]. In this sense, the studies by Takeuti and Titani in
1984 [6.6] on intuitionistic fuzzy logic and intuitionis-
tic fuzzy set theory are of special interest for us. In [6.7],
it is settled that

Takeuti and Titani’s intuitionitic fuzzy logic is sim-
ply an extension of intuitionistic logic, i.e., all
formulas provable in the intuitionistic logic are
provable in their logic. They give a sequent calculus
which extends Heyting intuitionistic logic, an exten-
sion that does not collapse to classical logic and
keeps the flavor of intuitionism.

6.1.2 Lukasiewicz's Multivalued Logics

In 1920s, Jan Lukasiewicz (1878-1956) along with
Lesniewski founded a school of logic in Warsaw that
became one of the most important mathematical teams
in the world, and among whose members was Alfred
Tarski.

Lukasiewicz’s idea consists in distributing the truth
values uniformly on the [0, 1] interval: if n values are
considered, they should be 0, ﬁ ﬁ el H 1; if

they are infinite, we should take Q N[0, 1]. Negation is

defined as n(x) = 1 —x, and the following operation is
also defined: x ® y = min(1, x + y).

6.1.3 Zadeh's Fuzzy Logic.
First Generalization by Goguen

Consistently to Lukasiewicz’s studies, Zadeh [6.1] in-
troduced fuzzy logic in his 1965 paper, Fuzzy Sets.
Born in Azerbaijan in 1921, he moved to the Univer-
sity of California at Berkeley in 1959. His ideas on
fuzzy sets were soon applied to different areas such as
artificial intelligence, natural language, decision mak-
ing, expert systems, neural networks, control theory,
etc.

In mathematics, every subset of a given referential
universe U can be identified with its characteristic func-
tion f; that is, the function f: U — {0, 1} which takes the
value 1 if the element belongs to the considered subset
and O in other case. In contrast, a fuzzy set is a mapping
from the universe U to [0, 1]; that is,

Definition 6.1
A fuzzy set (or type-1 fuzzy set) A over a referential
set U is an object

A = {(u;, pa(u;)) |lu; € U},

where us: U — [0, 1].

1 (u;) represents the degree of membership of the el-
ement u; € U to the set A. The elements for which
ua(u;)) =1 belong to the set A; those for which
Ha(u;) =0 do not belong to A and there are elements
with a greater or smaller degree of membership to A
depending on s (u;).

We are going to denote by FS(U) the class of fuzzy
sets defined over U; that is, FS(U) = [0, 1]V. The mem-
bership degree of an element u; € U to the fuzzy set A
is usually denoted by A(u;) instead of s (u;).

From the classical definition of union and inter-
section for crisp sets, Zadeh proposes the following
definitions:

AU B(u;) = max(A(u;), B(w;)) , (6.1)
AN B(u;) = min(A(w;), B(u;)) . ’

A key concept in the following developments is that
of lattice. We review now its definition, that can be
found for instance in [6.8].
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Recall that an order relationship over a set L is a re-
lation <; such that

i) x <p x for all x € L (reflexivity);

ii) if x <;y and y <; z then x <, z for any x,y,z€ L
(transitivity);

iii) if x <; yand y <; x, then x =y, for any x, y € L (an-
tisymmetry).

If <, is an order relationship over L then (L, <)
is called a partially ordered set. Now, in order to de-
fine a lattice we need first to introduce the following
definition.

Definition 6.2

Let (L, <;) be a partially ordered set and A C L (in the
sense of the usual set theory). The greatest lower bound
of A (if it exists) is the element x;j,; € L such that:

1) Xinr <, zforall z € A and
ii) forany y € L such that y <; z for all z € A it follows
that y <; Xin¢.

Analogously, the least upper bound of A (if it exists) is
the element x,, € L such that

1) 7 <[ Xep forall z € A and
ii) forany y € L such that z <; y for all z € A it follows
that xg,p <g y.

Now we can introduce the notion of lattice.

Definition 6.3

A lattice is a partially ordered set (L, <;) such that any
two elements x, y € L have the greatest lower bound or
meet, denoted by x Ay and the lowest upper bound or
join, denoted by x Vv y. A lattice L is called complete
if any subset of L has the lowest upper bound and the
greatest lower bound.

Given a lattice (L <;), we will call supremum of
L and denote by 1 the lowest upper bound of L (if it
exists). Analogously, we will call the infimum of L and
denote by 0, the greatest lower bound of L. In case both
1, and O, exist, L is called a bounded lattice.

Observe that if we know how the join and meet op-
erations are defined for any two elements of a set L,
we can recover the ordering <; just by defining for any
x,yeL

x<pyifandonlyifxAy=x

ifandonlyifxvy=y

Taking into account (6.1) and Definition 6.3, it is easy
to prove the following theorem.

Theorem 6.1
(FS(U), U, N) is a complete lattice.

From Theorem 6.1 and the concept of lattice, we
can define the following partial order relation: For
A,B € FS(U)

A <pg B if and only lfA(I/t,) < B(l/t,)

foreveryu; e U.

The first criticism to fuzzy sets theory arises from
this order relation <gg. Since Zadeh presented fuzzy
sets to represent uncertainty, it comes out that <gg is
a crisp relation. Note that the following may happen:
Let U be a referential set with 1000 elements and let A
and B be two fuzzy sets over U such that for every
element except for one A(u;) < B(u;). Then, from the
previous relation, A is not less than B. This fact led
Willmott [6.9], Bandler and Kohout [6.10] and others
to consider the concept of inclusion measure. These
measures have been widely used in fuzzy morphologic
mathematics [6.11], in image processing [6.12], etc.

It is easy to see that with the operations defined
in (6.1) and the standard negation, n(x) =1 —x for
all x € [0, 1], neither the noncontradiction principle nor
the middle excluded principle hold. Nowadays, op-
erations in (6.1) are given in terms of f-norms and
t-conorms [6.13-16].

Definition 6.1 can be clearly extended to consider
mappings valued over any kind of set. In particular,
for our future developments and following Goguen’s
work [6.2], it is interesting to consider the case of map-
pings that take values over a lattice L. In this case, we
speak of L-fuzzy sets.

Taking into account Definition 6.3 Goguen presents
the concept of L-fuzzy set as follows:

Definition 6.4
Let (L, Vv, A) be a lattice. An L-fuzzy set over the refer-
ential set U is a mapping

A:U—L.
For a given lattice L, we will denote by L-FS(U),

the space of L-fuzzy sets over the referential U. That is,
L-FS(U)=LY.
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Union and intersection of L-fuzzy sets can be easily
defined as follows.

Definition 6.5
Let L be a lattice, and let Vv and A be its join and meet
operators respectively. Then intersection and union are
defined, respectively, by:
i)
Np: L-FS(U) x L-FS(U) — L-FS(U) given by
N (A, B)(u;) = Au;) A B(u;) -

In order to recover the usual notation for fuzzy sets,
we will write N, (A, B) as A N, B;
ii)
Up: L-FS(U) x L-FS(U) — L-FS(U) given by
UL (A, B) (l/t,) = A(u,) \% B(l/t,) .

In order to recover the usual notation for fuzzy sets,
we will write Uy (A, B) as A Uy B.

We can state the following result for L-fuzzy sets.

Proposition 6.1

Let L be a bounded lattice with a supremum given by
1. and an infimum given by 0. Let v and A be the
join and meet operators of L, respectively. Then, the set

6.2 Origin of the Extensions

In 1971, Zadeh in his paper [6.17] settled that the con-
struction of the fuzzy sets, that is, the determination of
the membership degree of each element to the set, is
the biggest problem for using fuzzy sets theory in ap-
plications. This fact led him to introduce the concept of
type-2 fuzzy set.

Later, in December 11, 2008, in the bisc-group mail
list Zadeh proposes the following definitions.

Definition 6.6

Fuzzy logic is a precise system of reasoning, deduction,
and computation in which the objects of discourse and
analysis are associated with information which is, or is
allowed to be, imperfect.

Definition 6.7

Imperfect information is defined as information which
in one or more respects is imprecise, uncertain, vague,
incomplete, partially true, or partially possible.

(L-FS(U), <prs(u)) is a bounded lattice, where the or-
der is defined as

A <[ ps) Bifandonlyif AU, B=B
or equivalently

A <[ ps) Bifandonlyif AN, B=A.
That is

A =<L-FS(U) B if and OIlly lfA(M,) \ B(M,) = B(M,)
forall u; € U

or equivalently

A <rrsv) B if and only 1fA(u,) A B(u,) = A(u,)
forallu; e U.

The supremum of this lattice is given by

lL-FS(U) U—L ,

u; — lL
and the infimum is given by

OL—FS(U) :U— L

u; — 0y .

On the same date and place, Zadeh made the fol-
lowing remarks:

1. In fuzzy logic everything is or is allowed to be
a matter of degree. Degrees are allowed to be
fuzzy.

2. Fuzzy logic is not a replacement for bivalent logic
or bivalent-logic-based probability theory. Fuzzy
logic adds to bivalent logic and bivalent-logic-
based probability theory a wide range of concepts
and techniques for dealing with imperfect informa-
tion.

3. Fuzzy logic is designed to address problems in rea-
soning, deduction, and computation with imperfect
information which are beyond the reach of tradi-
tional methods based on bivalent logic and bivalent-
logic-based probability theory.

4. In fuzzy logic the writing instrument is a spray pen
(Fig. 6.1) with a precisely known adjustable spray
pattern. In bivalent logic the writing instrument is
a ballpoint pen.
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5. The importance of fuzzy logic derives from the fact
that in much of the real-world imperfect informa-
tion is the norm rather than exception.

All these considerations justify the use of fuzzy sets
theory whenever objects are linked to soft concepts,
those that do not show clear boundaries. Of course, ap-
plications might require tools other than fuzzy [6.18]. In
any case, if we decide to use fuzzy sets and it is hard for
us to build the characteristic functions of the involved
sets, then we must use set representations that take into
account these difficulties, and focus on those fuzzy sets
that we call extensions.

6.3 Type-2 Fuzzy Sets

The idea of taking into account the experts’ uncertainty
when they build the membership degrees of the ele-
ments to a given fuzzy sets led Zadeh to present in
1971 the notion of type-2 fuzzy set [6.17] as follows:
A type-2 fuzzy set is a fuzzy set over a referential set U
for which the membership degrees of the elements are
given by fuzzy sets defined over the referential set [0, 1].

The mathematical formalization of this concept was
made in 1976 by Mizumoto and Tanaka in [6.19] and in
1979 by Dubois and Prade in [6.20] as follows:

Definition 6.8
A type-2 fuzzy set is a mapping A: U — FS([0, 1]).

In Fig. 6.2 we show an example of type-2 fuzzy set.
We denote by T2FS(U) the set of all type-2 fuzzy
sets over U. That is

T2FS(U) = (FS([0,1]))Y .
6.3.1 Type-2 Fuzzy Sets as a Lattice
From Definition 6.8, the following result is obvious.
Corollary 6.1
Type-2 fuzzy sets are a particular type of Goguen’s L-
fuzzy sets.

Taking into account Corollary 6.1, it is clear that we
can define the following operations over type-2 fuzzy

sets [6.21].

Definition 6.9
The operations of union Uz, and intersection Ny, of

So the origin of the concept of extension of fuzzy
sets is directly associated with the idea of building fuzzy
sets that allow us to represent objects that are described
through imperfect information, and that also allow us to
represent the lack of knowledge or uncertainty associ-
ated with the membership degrees that are given by the
experts.

It is clear that working with extensions implies that
we need to use more information than in the basic
model of Zadeh. As already pointed out, in order to jus-
tify the use of these extensions in practice, the results
obtained with them must be better than those obtained
with usual fuzzy sets.

A,B € T2FS(U) (in the sense of lattices) are defined,
respectively, as

Uz (A, B): U — FS(]0, 1]) given by
AU B(u;) = A(u;) U B(u;)

and

Nr2 (A,B): U — FS([0, 1)),
AN72 B(u;) = A(u;) N B(u;) .

Proposition 6.2
The set (T2FS(U), Ur,, Nry) is a bounded lattice with
respect to the order

A <pps) Bif and only if AUp, B=B
or equivalently

A <pps) Bifandonlyif ANy, B=A.
That is

A 57‘21:5([/) B if and only lfA(M,) (@] B(M,) = B(M,)
forallu; € U

or equivalently

A =<T2Fs(U) B if and only 1fA(u,) n B(u,) = A(u,)
forallu; € U.

The supremum of this lattice is given by 17pswy:
U — FS(U) where, for every u; € U, 1pps)(u;) is
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Fig. 6.1 The writing instrument is a spray pen

the fuzzy sets that assigns to every ¢ € [0, 1] member-
ship equal to 1. The infimum is given by Orpps(p): U —
FS(U) where, for every u; € U, Oraps(v) (4;) is the fuzzy
sets that assigns to every ¢ € [0, 1] membership equal
to 0.

6.3.2 Remarks on the Notation

Mizumoto and Tanaka in 1976 [6.19] and Mendel and
John in 2000 [6.22] used the following notation:

[ ][5

uelU tel,

J.C[0,1],

where J, is the primary membership of u € U and, for
each fixed u = u, the fuzzy set '[tejug A(ug, 1)/t is the
secondary membership of u.

From our point of view, this notation is not the most
appropriate one, SO now we try to introduce a more
clarifying notation. Observe that a type-2 fuzzy set as-
signs to an element in the referential U a mapping
A(u):[0, 1] — [0, 1]. To represent fuzzy sets (or type-1
fuzzy sets) defined by a mapping A it is quite usual the
notation

{(ui, A(uy)) |lue U} . (6.2)

In this type-1 case, A(u) is a real number in [0, 1] for ev-
ery u; € U. In the case of type-2 fuzzy sets, if we imitate
this notation, we formally lead to {(u;, A(«;)) | u; € U}.
But now for each u; € U, we have that A(u;) is not a real
number but a mapping (a type-1 fuzzy set)

A(u):[0,1] — [0, 1],
t—>A(u)(r) .

Fig. 6.2 Example of a type-2 fuzzy set

Taking into account these considerations Harding
et al. [6.21] and Aisbett et al. [6.23] suggested the fol-
lowing notation for a type-2 fuzzy set A:

A= {(u;, (t,A(u;) (1)) |u; € U ,t € [0, 1]} .
But an easier one to use one could be the following.
Definition 6.10
Let A: U — FS([0, 1]) be a type-2 fuzzy set. Then A is
denoted as

L, A(ug, ) |u; € U, 1 €0, 1]} .
where A(u;,-):[0,1] — [0, 1] is defined as A(u;, 1) =
Au;) (7).

6.3.3 A First Definition of Operations
Between Type-2 Fuzzy Sets:
Lattice-Based Approach

With Definition 6.10, if we have two type-2 fuzzy sets
A= {(u;, (Aup, 1) [u; € U, 1 €[0, 1]}
and
B = {(uj B(u;.1) |u; € U, 1 €0, 1]}
we have (Fig. 6.3)
AUrps B={(u;,AUB(u;, 1)) lu; € U, 1 €[0,1]},
where, for each u; € U and each ¢ € [0, 1], we have

AU B(u;, 1) = max(Aus, 1), B(uy, 1))
= max(A(w;) (1), B(u;) (1)) (6.3)
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Analogously,
A mrzpsB = {(u,-,A ﬂB(u,-,t)) | u; € U, te [O, 1]} s
where, for each u; € U and each ¢ € [0, 1], we have

AN B(u;, ) = min(A(u;. 1), Bus, 1))

= min(A(u) (1), B(u) (1)) (6.4)
Observe that this notation is very similar to that pro-
posed by Deschrijver and Kerre [6.24,25].

6.3.4 Problems with the Lattice-Based
Definitions. Operations Based
on Zadeh's Extension Principle

Although meaningful from a mathematical point of
view, as pointed out by Dubois and Prade in [6.26],
from these definitions we do not recover the usual ones
for fuzzy sets. To see it, just consider a finite referential
set U = {uy, uy, uz} with three elements, and consider
the following two fuzzy sets over U. We use the nota-
tion of (6.2) for the sake of brevity.

A= {(m %) , (Mz, %) s (u3, 1)}

and

ool )

Then we have, for instance,

AUB = {(m %) , (Mz, %) s (us, 1)}

On the other hand, we can also see A and B as type-2
fuzzy sets, that we denote by A, and By, respectively,
just taking

[ |
1 lft—i

. )
0 in other case

A (uy) (1) = {

e 1
1 lf = 3
0 in other case

Ara(up) (1) = {

Ar(uz) (1) = )
r2(u3)(0) 0 in other case

%1 ifr=1

and
Bra@=1" 1=

u = ,
2 0 in other case

1 ifr=1
Br(un) (1) = 2 s
r2(u2) (1) %0 in other case

o1
Bra(u3)(1) = {(1) if1=7

in other case
Then we have

1 ift=rtort=1
Ary Urops Bra (uy) (1) = ) 4 2
0 in other case

1 ifr=Llorr=1
A1y Urops Bra(up) (1) = § 2 3

0 in other case
and

1 ift=1Lorr=1
Ary Urops Bro (u3) (1) = . !
0 in other case

which does not coincide with our previous result. More-
over, observe that we do not even recover a fuzzy set but
a true type-2 fuzzy set.

In order to solve this problem, several authors [6.19,
22,26] proposed the following definitions of the opera-
tions of union and intersection.

6.3.5 Second Definition of the Operations:
Zadeh's Extension Principle Approach

Definition 6.11
Given two type-2 fuzzy sets

A={(u;, Au;. 1) |u; € U, 1€ [0, 1]}
and

B = {(ui,B(u;, 1)) |ui € U, 1€[0,1]}
we can define (Fig. 6.4)

ANB={(u;, ANB(u;,1)) |u; €U, t]0, 1]}
with

AN B(u;,t) = sup min(A(y;, z), B(u;, w))

min(z,w)=t
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and
AUB = {(u;,AUB(u;,t)) |u;e U, t€[0,1]}
with
AUB(u;,t) =  sup  min(A(u;, 2), B(u;, w)) .
max(z,w)=t
For instance, let us recover our previous example.

Consider the type-2 fuzzy sets Ay, and Br,. Then we
have that

Ay UBpy(uy,t) =
0 ifr¢{].1
sup  (min(Ar(u1,2), Bra(ui, w))) .
max(z.w)=t

in other case

Butifr = %, then, as % > i and since Ar; (11, z) = 0 for
all z < %, it follows that min(A7z(uy, 2), Bra (41, w)) =

0 whenever max(z,w) = L Finally, if t= %, then

1
min(Az, (uy, %),BTz(ul, %)) = 1, so we finally arrive at
0 ifr#1

A UBra(uy, 1) = . * T
1 ift= 2

Since for u; and u3 the same arguments work, we see
that we indeed recover the fuzzy case. In particular, with
respect to these new operations, we have the following
result [6.21].

Proposition 6.3
Let U be a referential set. (T2FS(U), LI, M) is not a lat-
tice.

In fact, the problem is that the absorption laws
AM(AUB)=A

and
AUANB)=A

do not hold. Nevertheless, it is also possible to provide
a positive result [6.21].

Proposition 6.4
Let U be a referential set. Then for any A,B,C €
T2FS(U) the following properties hold:

i) AUA=AandANA=A4A;
ii) AUB=BUAand ANNB=BMA;
iii) AUBUC)=(AUB)UC.

That is, (T2FS(U), LU, M) is a bisemilattice.

Fig. 6.3a-c Two different type 2 fuzzy sets (a) AUgrpsB (b)

(4}

ANgaps B ()

Remark 6.1
We should remark the following:

1.

If we work with the operations defined in Egs. (6.3)
and (6.4), and consider fuzzy sets as particu-
lar instances of type-2 fuzzy sets, then we do
not recover the classical operations defined by
Zadeh.

If we use the operations in Definition 6.11, then
we recover Zadeh’s classical operations for fuzzy
sets, but we do not have a lattice structure. This
fact makes that the use of type-2 fuzzy sets in many
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ANB(u; ty= sup

min(z, )=

Fig. 6.4 Example of intersection of two membership sets A(u;, 1)
and B(u;, t). Green line is the set obtained
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applications, such as decision making, is very com-
plicate.

Obviously, an interesting problem is to analyze
which further conclusions and results can be obtained
from this new formulation of the operations between
type-2 fuzzy sets.

6.3.6 About Computational Efficiency

Note also that although the computational complexity
and the efficiency in time of type-2 fuzzy sets are not as
high as used to be a few years ago, it is clear that the use

6.4 Interval-Valued Fuzzy Sets

These sets were introduced in the 1970s. In May 1975,
Sambuc [6.37] presented, in his doctoral thesis, the
concept of an interval-valued fuzzy set named a @-
fuzzy set. That same year, Jahn [6.38] wrote about
these sets. One year later, Grattan-Guinness [6.39] es-
tablished a definition of an interval-valued membership
function. In that decade interval-valued fuzzy sets ap-
peared in the literature in various guises and it was not
until the 1980s, with the work of Gorzalczany and Tiirk-
sen [6.40-45], that the importance of these sets, as well
as their name, was definitely established.

Let us denote by L(]0, 1]) the set of all closed subin-
tervals in [0, 1], that is,

L0, 1]) = {x - [f, E] | (E’ ;) c [0, 1]?

B (6.5)
and X< x} .

of these kinds of sets introduces additional complex-
ity in any given problem. For this reason, many times
the possible improvement of results is not as big as re-
placing type-1 fuzzy sets by type-2 fuzzy sets in many
applications.

On the other hand, we can also define type-3 fuzzy
sets as those fuzzy sets whose membership of each ele-
ment is given by a type-2 fuzzy set [6.27]. Even more,
it is possible to define recursively type-n fuzzy sets as
those fuzzy sets whose membership values are type-
(n—1) fuzzy sets. The computational efficiency of these
sets decreases as the complexity level of the building in-
creases. From a theoretical point of view, we consider
that it is necessary to carry out a complete analysis of
type-n fuzzy sets structures and operations. But up to
now no applications has been developed on the basis of
a type-n fuzzy sets.

6.3.7 Applications

It is worth to mention the works by Mendel in comput-
ing with words and perceptual computing [6.28-31], of
Hagras [6.32,33], of Sepulveda et al. [6.34] in control,
of Xia et al. in mobiles [6.35] and of Wang in neural
networks [6.36]. We will see in the next section that
the advantage of using these kinds of sets versus usual
fuzzy sets has been shown only for a particular type
of them, namely, the so-called interval-valued fuzzy
sets.

Definition 6.12
An interval-valued fuzzy set (or interval type-2 fuzzy
set) A on the universe U # @ is a mapping

AU — L([0,1]) .

such that the membership degree of u € U is given
by A(u) = [A(u),A(u)] € L([0, 1]), where A: U — [0, 1]

and A: U — [0, 1] are mappings defining the lower and
the upper bounds of the membership interval A(u), re-
spectively (Fig. 6.5).

From Definition 6.12, it is clear that for these sets
the membership degree of each element u; € U to A is
given by a closed subinterval in [0, 1]; that is, A(x;) =
[A(u;), A(u;)]. Obviously, if for every u; € U, we have
A(u;) = A(u;), then the considered set is a fuzzy set. So
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0.8

0.6

0.4

0.2

0
0 1 2 3 4 5 6 7 8

Fig. 6.5 Example of interval valued fuzzy set

fuzzy sets are particular cases of interval-valued fuzzy
sets.

In 1989, Deng [6.46] presented the concept of Grey
sets. Later Dubois proved that these are also interval-
valued fuzzy sets.

We denote by IVFS(U) the class of all interval-
valued fuzzy sets over U; that is, IVFS(U) = L([0, 1]).
From Zadeh’s definitions of union and intersections,
Sambuc proposed the following definition:

Definition 6.13
Given A, B € IVFS(U).

AUpqo,17) B(u;) = [max(A(u;), B(u;)),
max(A(w;), B(u;))]
ANgqo,17) Bu;) = [min(A(w;), B(w;)),
min(A(u;), B(;))]

These operations can be generalized by the use of
the widely analyzed concepts of IV z-conorm and IV
t-norm [6.47-49].

Corollary 6.2
Interval valued fuzzy sets are a particular case of
L-fuzzy sets.

Proof: Just note that L([0, 1]) with the operations in
Definition 6.13 is a lattice. |

Proposition 6.5
The set (IVFS(U), UL(0.17)- Nr([0.17)) is a bounded lat-
tice, where the order is defined as

A <pyrsw) Bifand only if AUy o.1y B=B

or equivalently
A SIVFS(U) B if and Ol'lly if A ﬂL([O,l]) B=A.
That is

A SIVFS(U) B if and Ollly if
max(A(u;), B(u;)) = B(u;) and
max(A(u;), B(u;)) = B(u;)

for all u; € U, or equivalently

A SIVFS(U) B if and Ollly if
min(A(u;), B(u;)) = A(u;) and
min(A(w;), B(u;)) = A(u;)

for all u; € U.

From Proposition 6.5, we deduce that the order
A SIVFS(U) B if and OIlly if A(H,) < E(H,) and Z(l/{l) <
B(u;) for all u; € U is not linear. The use of these
sets in decision making has led several authors to
consider the problem of defining total orders between
intervals [6.50]. In this sense, in [6.51] a construction
method for such orders by means of aggregation func-
tions can be found.

6.4.1 Two Interpretations
of Interval-Valued Fuzzy Sets

4°9 | v 1ed

From our point of view, interval-valued fuzzy sets can
be understood in two different ways [6.52]:

1. The membership degree of an element to the set
is a value that belongs to the considered interval.
The interval representation is used since we can-
not say precisely which that number is. For this
reason, we provide bounds for that number. We
think this is the correct interpretation for these
sets.

2. The membership degree of each element is the
whole closed subinterval provided as membership.
From a mathematical point of view, this interpre-
tation is very interesting, but, in our opinion, it is
very difficult to understand it in the applied field.
Moreover, in this case, we find the following para-
dox [6.53]:

For fuzzy sets and with the standard negation it
holds that min(A(x;), 1 —A(;)) < 0.5 forall u; € U.
But for interval-valued fuzzy sets, if we use the stan-



100 PartA

Foundations

/

/

L

up Uy U

Fig. 6.6 Construction of type-2 fuzzy sets from interval-valued
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dard negation N(A(x;)) = [1 —A(w;), 1 —A(u;)], we
have that there is no equivalent bound for

min [é(”i)’x(ui)] , [1 _K(“i)’ 1 —A(Mi)] .

6.4.2 Shadowed Sets Are a Particular Case
of Interval-Valued Fuzzy Sets

The so-called shadow sets were suggested by
Pedrycz [6.54] and developed later together with
Vukovic [6.55,56]. A shadowed set B induced by
a given fuzzy set A defined in U is an interval-valued
fuzzy set in U that maps elements of U into 0,1
and the unit interval [0,1], i.e., B is a mapping
B:U — {0, 1,0, 1]}, where 0, 1, [0, 1] denote complete
exclusion from B, complete inclusion in B and complete
ignorance, respectively. Shadow sets are isomorphic
with a three-valued logic.

6.4.3 Interval-Valued Fuzzy Sets
Are a Particular Case of Type-2
Fuzzy Sets

In 1995, Klir and Yuan proved in [6.27] that from an
interval-valued fuzzy set, we can build a type-2 fuzzy
set as pointed out in Fig. 6.6.

Later in 2007 Deschrijver and Kerre [6.24,25] and
Mendel [6.57], proved that interval-valued fuzzy sets
are particular cases of type-2 fuzzy sets.

6.4.4 Some Problems
with Interval-Valued Fuzzy Sets

1. Taking into account the definition of interval-valued
fuzzy sets, we follow Gorzalczany [6.41] and de-

fine the compatibility degree between two interval-
valued fuzzy sets as an element in L([0, 1]). The
other information measures [6.58-62] (interval-
valued entropy, interval-valued similarity, etc.)
should also be given by an interval. However, in
most of the works about these measures, the results
are given by a number, and not by an interval. This
consideration leads us to settle that, from a theoret-
ical point of view, we should distinguish between
two different types of information measures: those
which give rise to a number and those which give
rise to an interval. Obviously, the problem of inter-
preting both types of measures arises. Moreover, if
the result of the measure is an interval, we should
consider its amplitude as a measure of the lack of
knowledge [6.63] linked to the considered measure.
2. In[6.57], Mendel writes:

It turns out that an interval type-2 fuzzy set is the
same as an interval-valued fuzzy set for which there
is a very extensive literature. These two seemingly
different kinds of fuzzy sets were historically ap-
proached from very different starting points, which
as we shall explain next has turned out to be a very
good thing.

Nonetheless, we consider that interval-valued fuzzy
sets are a particular case of interval type-2 fuzzy sets
and therefore they are not the same thing.

3. Due to the current characteristics of computers, we
can say that the computational cost of working with
these sets is not much higher than the cost of work-
ing with type-1 fuzzy sets [6.64].

4. We have already said that the commonly used
order is not linear. This is a problem for some
applications, such as decision making. In [6.65],
it is shown that the choice of the order should
depend on the considered application. Often ex-
perts do not have enough information to choose
a total order. This is a big problem since the
choice of the order influences strongly the final
outcome.

6.4.5 Applications

We can say that there already exist applications of
interval-valued fuzzy sets that provide results which are
better than those obtained with fuzzy sets. For instance:

1. In classification problems. Specifically, in [6.66—
69] a methodology to enhance the performance of
fuzzy rule-based classification systems (FRBCSs)
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is presented. The methodology used in these papers

has the following structure:

1) An initial FRBCS is generated by using a fuzzy
rule learning algorithm.

2) The linguistic labels of the learned fuzzy rules
are modeled with interval-valued fuzzy sets in
order to take into account the ignorance degree
associated with the assignment of a number as
the membership degree of the elements to the
sets. These sets are constructed starting from the
fuzzy sets used in the learning process and their
shape is determined by the value of one or two
parameters.

3) The fuzzy reasoning method is extended so as
to take into account the ignorance represented
by the interval-valued fuzzy sets throughout the
inference process.

4) The values of the system’s parameters, for in-
stance the ones determining the shape of the
interval-valued fuzzy sets, are tuned applying
evolutionary algorithms. See [6.66-69] for de-
tails about the specific features of each proposal.

The methodology allows us to statistically out-

performing the performance of the following ap-

proaches:

a) In [6.66], the performance of the initial FR-
BCS generated by the Chi et al. algorithm [6.70]
and the fuzzy hybrid genetics-based machine
learning method [6.71] are outperformed. In ad-
dition, the results of the GAGRAD (genetic
algorithm gradient) approach [6.72] are notably
improved.

b) A new tuning approach is defined in [6.67],
where the results obtained by the tuning of the
lateral position of the linguistic labels ([6.73])
and the performance provided by the tuning
approach based on the linguistic 3-tuples repre-
sentation [6.74] are outperformed.

¢) Fuzzy decision trees (FDTs) are used as the
learning method in [6.68]. In this contribu-
tion, numerous decision trees are enhanced, in-
cluding crisp decision trees, FDTs, and FDTs
constructed using genetic algorithms. For in-
stance, the well-known C4.5 decision tree
([6.75]) or the fuzzy decision tree proposed by
Janikow [6.76] is outperformed.

d) The proposal presented in [6.69] is the most
remarkable one, since it allows outperforming
two state-of-the-art fuzzy classifiers, namely,
the FARC-HD method [6.77] and the unordered
fuzzy rule induction algorithm (FURIA) [6.78].

Furthermore, the performance of the fuzzy
counterpart of the presented approach is outper-
formed as well.

2. Image processing. In [6.63,79-85], it has been
shown that if we use interval-valued fuzzy sets to
represent those areas of an image for which the ex-
perts have problems to build the fuzzy membership
degrees, then edges, segmentation, etc., are much
better.

3. In some decision-making problems, it has also been
shown that the results obtained with interval-valued
fuzzy sets are better than the ones obtained with
fuzzy sets [6.86]. They have also been used in
Web problems [6.87], pattern recognition [6.88],
medicine [6.89], etc., see also [6.90,91].

Construction of Interval-Valued Fuzzy Sets

In many cases, it is easier for experts to give the mem-
bership degrees by means of numbers instead of by
means of intervals. In this case it may happen that the
obtained results are not the best ones. If this is so, we
should build intervals from the numerical values pro-
vided by the experts. For this reason, we study methods
to build intervals from real numbers. For any such meth-
ods, we require the following:

i) The numerical value provided by the expert should
be interior to the considered interval. We require
this property since we assume that the membership
degree for the expert is a number but he or she is
not able to fix it exactly so he or she provides two
bounds for it.

ii) The amplitude of the built interval is going to repre-
sent the degree of ignorance of the expert to fix the
numerical value he or she has provided us.

The previous considerations have led us to define
in [6.63] the concept of ignorance degree G; associated
with the value given by an expert. In such definition, it
is settled that if the degree of membership given by the
expert is equal to O or 1, then the ignorance is equal to
0, since the expert is sure of the fact that the element be-
longs or does not belong to the considered set. However,
if the provided membership degree is equal to 0.5, then
ignorance is maximal, since the expert does not know
at all whether the element belongs or not to the set.
Different considerations and construction methods for
such ignorance functions using overlap functions can
be found in [6.92].

Taking into account the previous argumentation, in
Fig. 6.7 we show the schema of construction of an in-
terval from a membership degree 1 given by the expert
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membership function of FS

G(ux)
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u(x)

[«—ux)——]

Length = G (u(x))

Fig. 6.7 Construction with ignorance functions

and from an ignorance function G; chosen for the con-
sidered problem [6.63]:

There exist other methods for constructing interval-
valued fuzzy sets. The choice of the method depends
on the application we are working in. One of the
most used methods in magnetic resonance image pro-
cessing (for fuzzy theory) is the following: several
doctors are asked for building, for an specific region
of an image, a fuzzy set representing that region. At
the end, we will have several fuzzy sets, and with
them we build an interval-valued fuzzy set as fol-
lows. For each element’s membership, we take as lower
bound the minimum of the values provided by the
doctors, and as the upper bound, the maximum. This
method has shown itself very useful in particular im-
ages [6.83]. In Fig. 6.8, we represent the proposed
construction.

0.9

0.85

0.8

0.75 >
0 50 100 150 200 250

Fig. 6.8 Construction with different experts

In [6.63], it is shown that for some specific ultra-
sound images, if we use fuzzy theory to obtain the
objects in the image, results are worse than if we use
interval-valued fuzzy sets using the method proposed
by Tizhoosh in [6.84]. Such method consists of the fol-
lowing (see Fig. 6.9): from the numerical membership
degree 14 given by the expert and from a numerical co-
efficient o« > 1, associated with the doubt of the expert
when he or she constructs 14 we generate the member-
ship interval

[Mﬁ‘, (@), /L/;%, (q)] .

Fuzzy set Interval-valued
0.8 0.8 fuzzy set
Upper limit
0.6 0.6
0.4 Membership 0.4
0.2 0.2
f Lower limit J j
0 0

Fig. 6.9 Tizhoosh’s construction
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6.5 Atanasssov's Intuitionistic Fuzzy Sets or Bipolar Fuzzy Sets of Type 2

or IF Fuzzy Sets

In 1983, Atanassov presented his definition of intu-
itionistic fuzzy set [6.93]. This paper was written in
Bulgarian, and in 1986 he presented his ideas in English
in [6.94].

Definition 6.14
An intuitionistic fuzzy set over U is an expression A
given by

A = {(u, pa (i), va(uy)) |u; € U,
where py: U — [0, 1]
v U—[0,1]
such that 0 < s (u;) + va(u;) < 1 for every u; € U.

Atanassov also introduced the following two essen-
tial characteristics of these sets:

1. The complementary of
A = {(ui, pa(u;), va(u;))|u; € U}
is
Ac = {(ui va(ui), pa(ui))[u; € U}

2. For each u; € U, the intuitionistic or hesitance index
of such element in the considered set A is given by

ma (i) = 1 — pa(u;) —va () .

s (u;) is a measure of the hesitance of the expert to as-
sign a numerical value to us(u;) and vs(;). For this
reason, we consider that these sets are an extension of
fuzzy sets. It is clear that if for each u; € U we take
va(u;) = 1 — ua(u;), then the considered set A is a fuzzy
set in Zadeh’s sense. So fuzzy sets are a particular case
of those defined by Atanassov.

In 1993, Gau and Buehre [6.95] introduced the con-
cept of vague set and later in 1994 it was shown that
these are the same as those introduced by Atanassov in
1983 [6.96].

We denote by A—IFS(U) the class of all intu-
itionistic sets (in the sense of Atanassov) defined over
the referential U. Atanassov also gave the following
definition:

Definition 6.15
Given A, B e A—IFS(U).

AUp—rrs B = {(u;, max(pa (u;), ip(u;)),
min(va (), vp(u;)))|u; € U}

A Ma—rrs B = {(u;, min(pa (u;), pp(u:)),
max(va(u;), vp(u;))|u; € U} .

Definitions of connectives for Atanassov’s sets in
terms of -norms, etc. can be found in [6.49, 97].

Corollary 6.3
Atanassov’s intuitionistic fuzzy sets are a particular
case of L-fuzzy sets.

Proof: Just note that L = {(x;,x2)|x; +x <1 with
x1,X; € [0, 1]} with the operations in Definition 6.15 is
a lattice. |

Proposition 6.6
The set (A —IFS(U), Us—rs, Na—rs) is a bounded lat-
tice, where the order is defined as

A <jp—_jsBifandonly if AUs_jps B=B
or equivalently

A <s—_jsBifandonlyif ANy_jpsB=A.

From Proposition 6.6, we see that the order

A <4—jps Bif and only if pa(1;) < pp(u;) and
vA(u,-) > VB(Lti) forallu; € U

is not linear. Different methods to get linear orders
for these sets can be found in [6.50, 51].

6.5.1 Relation Between Interval-Valued
Fuzzy Sets and Atanassov's
Intuitionistic Fuzzy Sets:

Two Different Concepts

In 1989, Atanassov and Gargov [6.98] and later De-
schrijver and Kerre [6.24] proved that from an interval-
valued fuzzy set we can build an intuitionistic fuzzy set
and vice-versa.
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Theorem 6.2
The mapping

®: IVFS(U) — A —IFS(U) ,
A— A,

where A’ = {(u;, A(1;), 1 —A(u;))|u; € U}, is a bijec-
tion.

Theorem 6.2 shows that interval-valued fuzzy sets
and Atanassov’s intuitionistic fuzzy sets, are equivalent
from a mathematical point of view. But, as pointed out
in [6.52], the absence of a structural component in their
description might explain this result, since from a con-
ceptual point of view they very different models:

a) The representation of the membership of an ele-
ment to a set using an interval means that the expert
doubts about the exact value of such membership,
so such an expert provides two bounds, and we
never consider the representation of the nonmem-
bership to a set.

b) By means of the intuitionistic index we, repre-
sent the hesitance of the expert in simultaneously
building the membership and the nonmembership
degrees.

From an applied point of view, the conceptual dif-
ference between both concepts has also been clearly
displayed in [6.99]. On page 204 of this paper, Ye
adapts an example by Herrera and Herrera-Viedma
appeared in 2000 [6.100]. Ye’s example runs as fol-
lows: n experts are asked about a money investment in
four different companies. Ye considers that the mem-
bership to the set that represents each company is
given by the number of experts who would invest their
money in that company (normalized by n), and the non-
membership is given by the number of experts who
would not invest their money in that company. Clearly,
the intuitionistic index corresponds to the experts that
do not provide either a positive or a negative answer
about investing in that company. In this way, Ye proves
that:

1. The results obtained with this representation are
more realistic than those obtained in [6.100] using
Zadeh’s fuzzy sets.

2. In the considered problem, the interval interpreta-
tion does not make much sense besides its use as
a mathematical tool.

6.5.2 Some Problems with the Intuitionistic
Sets Defined by Atanassov

Besides the missed structural component pointed out
in [6.52]:

1. In these sets, each element has two associated
values. For this reason, we consider that the in-
formation measures as entropy [6.59,61], similar-
ity [6.101, 102], etc. should also be given by two
numerical values. That is, in our opinion, we should
distinguish between those measures that provide
a single number and those others that provide two
numbers. This fact is discussed in [6.103] where the
two concepts of entropy given in [6.59] and [6.61]
are jointly used to represent the uncertainty linked
to Atanassov’s intuitionistic fuzzy set. So we think
that it is necessary to carry out a conceptual revi-
sion of the definitions of similarity, dissimilarity,
entropy, comparability, etc., given for these sets.
Even more since nowadays working with two num-
bers instead of a single one does not imply a much
larger computational cost.

2. Asin the case of interval-valued fuzzy sets, in many
applications, there is a problem to choose the most
appropriate linear order associated with that appli-
cation [6.50, 51]. We should remark that the chosen
order directly influences the final outcome, so it is
necessary to study the conditions that determine the
choice of one order or another [6.65].

6.5.3 Applications

Extensions have shown themselves very useful in prob-
lems of decision making [6.99, 104-108]. In general,
they work very well in problems for which we have to
represent the difference between the positive and the
negative representation of something [6.109], in par-
ticular in cognitive psychology and medicine [6.110].
Also in image processing they have been used often, as
in [6.111, 112]. We should remark that the mathemati-
cal equivalence between these sets and interval-valued
fuzzy sets makes that in many applications in which
interval-valued fuzzy sets are useful, so are Atanassov’s
intuitionistic fuzzy sets [6.113].

6.5.4 The Problem of the Name

From Sect. 6.1.1, it is clear that the term intuitionistic
was used in 1907 by Brouwer, in 1930 by Heyting, etc.
So, 75 years before Atanassov used it, it already had
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a specific meaning in logic. Moreover, one year after
Atanassov first used it in Bulgarian, Takeuti and Titani
(1984) presented a set representation for Heyting ideas,
using the expression intuitionistic fuzzy sets. From our
point of view, this means that in fact the correct termi-
nology is that of Takeuti and Titani. Nevertheless, all
these facts have originated a serious notation problem
in the literature about the subject.

In 2005, in order to solve these problems, Dubois
et al. published a paper [6.7] on the subject and, they
proposed to replace the name intuitionistic fuzzy sets
by bipolar fuzzy sets, justifying this change. Later,
Atanassov has answered in [6.114], where he defends
the reasons he had to choose the name intuitionistic and
states a clear fact: the sets he defined are much more
cited and used than those defined by Takeuti and Titani,
so in his opinion the name must not change.

In Dubois and Prade’s works about bipolarity
types [6.115, 116], these authors stated that Atanassov’s
sets are included in the type-2 bipolar sets, so they call
these sets fuzzy bipolar sets of type-2.

But we must say that nine years before Dubois
et al.’s paper about the notation, Zhang in [6.117,118]
used the word bipolar in connection with the fuzzy
sets theory and presented the concept of bipolar-valued
set.

All these considerations have led some authors to
propose the name Atanassov’s intuitionistic fuzzy sets.
However, Atanassov himself disagrees with this nota-
tion and asserts that his notation must be hold; that is,
intuitionistic fuzzy sets. Other authors use the name IF-
sets (intuitionistic fuzzy) [6.119].

In any case, only time will fix the appropriate
names.

6.6 Atanassov's Interval-Valued Intuitionistic Fuzzy Sets

In 1989, Atanassov and Gargov presented the following
definition [6.98]:

Definition 6.16
An Atanassov’s interval-valued intuitionistic fuzzy set
over U is an expression A given by

A = {(us, Ma(u;), Na(u;) |u; € U}
where My: U — L([0, 1]),
Ny: U — L(]0, 1])
such that 0 < My (1;) + Na(u;) < 1 for every u; € U.

In this definition, authors adapt Atanassov’s in-
tuitionistic sets to Zadeh’s ideas on the problem of
building the membership degrees of the elements to the
fuzzy set. Moreover, if for every u; € U, we have that
My (u;) = My (u;) and Ny (u;) = Ny (u;), then we recover
an Atanassov’s intuitionistic fuzzy set, so the latter
are a particular case of Atanassov’s interval-valued in-
tuitionistic fuzzy sets. As in the case of Atanassov’s
intuitionistic fuzzy sets, the complementary of a set is
obtained by interchanging the membership and non-
membership intervals.

We represent by A—IVIFS(U) the class of all
Atanassov’s interval-valued intuitionistic fuzzy sets
over a referential set U.

Definition 6.17
Given A, B € A—IVIFS(U).

AUp—pvirs B = {(ui, A Us—pvirs B(w;)) |u; € U}
where A Us—virs B(u;)
= [ (max (My (u;), Mp(u;)) , max (Ma (), Mp(u:))) ]
[min (Na(u;). Np(u;)) . min (Na(;). Np(u;)) ] .
A Ma—virs B = {(ui, A Da—pvirs B(u;)) |u; € U}
where A My —virs B(u;)
= ([min (Ma ;). Mg (w;)) . min (My (u;). M (u;)) |
[max (N (u;). Ng(u;)) . max (Nx (u;), Ng () ])

Corollary 6.4
Atanassov’s interval-valued intuitionistic fuzzy sets are
a particular case of L-fuzzy sets.

Proof: Just note that LL([0,1]) ={(x,y) €
L([0, 1])?|% + ¥} with the operations in Definition 6.17
is a lattice. |

Proposition 6.7
The set (A — IVIFS(U), Up—virs, Na—pvirs) is a bound-
ed lattice, where the order is defined as

A <a— s B if and only if AUs—vips B=B
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or equivalently

A <A—IVIFS B if and Ol'lly if A ﬂA_IV,FS B=A.

Note that A <4—yrs B if and only if My (u,) <IVES
MB(M;) and NA(Mi) > IVES NB(Mi) for all u; € U, that is,
A <s—virs B if and only if My (u;) < Mp(u;), Ma(ui) <
M (u;), Na(u) = Np(ui), and Ny(u;) > Np(u;) for all
u; € U is not linear.

We make the following remarks regarding these ex-
tensions:

1. Tt is necessary to study two different types of infor-
mation measures: those whose outcome is a single
number [6.120] and those whose outcomes are two

intervals in [0, 1] [6.120]. It is necessary a study of
both types.

2. Nowadays, there are many works using these
sets [6.121-123]. However none of them displays
an example where the results obtained with these
sets are better than those obtained with fuzzy sets or
other techniques. As it happened until recent years
with interval-valued fuzzy sets, it is necessary to
find an application that provides better results us-
ing these extensions rather than using other sets. To
do so, we should compare the results with those ob-
tained with other techniques, which is something
that it is not done for the moment in the papers that
make use of these sets. From the moment, most of
the studies are just theoretical [6.124—126].

6.7 Links Between the Extensions of Fuzzy Sets

Taking into account the study carried out in previous
sections, we can describe the following links between
the different extensions.

1. FSCIVFS = Grey Sets =A—IFS =
Vague sets CA—IVIFS CL—FS.

6.8 Other Types of Sets

In this section, we present the definition of other types
of sets that have arisen from the idea of Zadeh’s fuzzy
set. However, for us none of them should be considered
an extension of a fuzzy set, since we do not represent
with them the degree of ignorance or uncertainty of the
expert.

6.8.1 Probabilistic Sets

These sets were introduced in 1981 by Hirota [6.127].
Definition 6.18

Let (§2, B, P) be a probability space and let B(0, 1) de-

note the family of Borel sets in [0, 1]. A probabilistic set
A over the universe U is a function

A:Ux 22— ([0,1],B(0, 1)),

where A(u;, -) is measurable for each u; € U.

2. If we consider the operations in Definition 6.11, we
have the sequence of inclusions:

FS CIVFS = Grey Sets =A—1IFS
= Vaguesets CT2FSCL—FS.

6.8.2 Fuzzy Multisets and n-Dimensional
Fuzzy Sets

The idea of multiset was given by Yager in 1986 [6.128]
and later developed by Miyamoto [6.129]. In these mul-
tilevel sets, several degrees of membership are assigned
to each element.

Definition 6.19
Let U be a nonempty set and n € NT. A fuzzy multiset
A over U is given by

s Ma, (u) |lu; € Uy,

where ps,: U — [0, 1] is called the ith membership de-
gree of A.

A= {(ui, pa, (), pa, (i), .

If in Definition 6.19 we require that: py, < s, <
-++ < 4, we have an n-Dimensional fuzzy set [6.130,
131]. Nevertheless, it is worth to point out the rela-

tion of these families of fuzzy set with the classification
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model proposed in [6.132], and the particular model
proposed in [6.133], where fuzzy preference inten-
sity was arranged according to the basic preference
attitudes.

6.8.3 Bipolar Valued Set or Bipolar Set

In 1996, Zhang presented the concept of bipolar set as
follows [6.117]:

Definition 6.20
A bipolar-valued set or a bipolar set on U is an object

A= {(u, 0T (), ¢~ (u)))|u; € U}
withot: U —[0,1], ¢~: U — [-1,0].

In these sets, the value ¢~ (1;) must be understood as
how much the environment of the problem opposes to
the fulfillment of ¢ (u;). Nowadays interesting studies
exist about these sets [6.134—-138].

6.8.4 Neutrosophic Sets or Symmetric
Bipolar Sets

These sets were first studied by Smarandache in
2002 [6.139]. They arise from Atanassov’s intuitionis-
tic fuzzy sets ignoring the restriction on the sum of the
membership and the nonmembership degrees.

Definition 6.21

A neutrosophic set or symmetric bipolar set on U is an
object

A = {(u;, pta (i), va(u))lu; € U},

with ps: U — [0, 1], va: U — [0, 1].

6.8.5 Hesitant Sets

These sets were introduced by Torra and Naru-
kawa in 2009 to deal with decision-making
problems [6.140, 141].

Definition 6.22

Let ([0, 1]) be the set of all subsets of the unit interval
and U be a nonempty set. Let ps: U — ([0, 1]), then
a hesitant fuzzy set (HFS in short) A defined over U is
given by

A = {(u;, pa(u;)) |u; € U} . (6.6)

6.8.6 Fuzzy Soft Sets

Based on the definition of soft set [6.142], Maji et al.
present the following definition [6.143].

Definition 6.23
A pair (F,A) is called a fuzzy soft set over U, where F
is a mapping given by F: A — FP(U).

Where FP(U) denotes the set of all fuzzy subsets of U.
6.8.7 Fuzzy Rough Sets

From the concept of rough set given by Pawlak
in [6.144], Dubois and Prade in 1990 proposed
the following definition [6.145]. From different point
of views these sets could be considered as an ex-
tension of fuzzy sets in our sense, besides these
sets are being exhaustively studied, for this rea-
son we consider that these sets need another
chapter.

Definition 6.24

Let U be a referential set and R be a fuzzy similar-
ity relation on U. Take A € FS(U). A fuzzy rough
set over U is a pair (R | A,R1 A) € FS(U) x FS(U),
where

® R | A:U—|0,1]is given by

R | A(u) = inf,cy max(1 —R(v, u),A(v))
® R1A:U—|0,1]is given by

R 1 A(u) = sup, ey min(R(v, u),A(v)).
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6.9 Conclusions

In this chapter, we have reviewed the main types of
fuzzy sets defined since 1965. We have classified these
sets in two groups: those that take into account the
problem of building the membership functions, which
we have included in the so-called extensions of fuzzy
sets, and those that appear as an answer to such a key
issue.

We have introduced the definitions and first proper-
ties of the extensions, that is, type-2 fuzzy sets, interval-
valued fuzzy sets; Atanassov’s intuitionistic fuzzy sets
or type-2 bipolar fuzzy sets, and Atanassov’s interval-
valued fuzzy sets. We have described the properties and
problems linked to type-2 fuzzy sets, and we have pre-

sented several construction methods for interval-valued
fuzzy sets, depending on the application. We have also
referred to some papers where it is shown that the use of
interval-valued fuzzy sets improves the results obtained
with fuzzy sets.

In general, we have stated the main problem in
fuzzy sets extensions, namely, to find applications for
which the results obtained with these sets are better
than those obtained with other techniques. This has only
been proved, up to now, for interval-valued fuzzy sets.
We think that the great defy for some sets that are ini-
tially justified as a theoretical need is to prove their
practical usefulness.
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