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59. Modeling and Optimization
of Machining Problems

Dirk Biermann, Petra Kersting, Tobias Wagner, Andreas Zabel

In this chapter, applications of computational
intelligence methods in the field of production en-
gineering are presented and discussed. Although
a special focus is set to applications in machining,
most of the approaches can be easily transferred to
respective tasks in other fields of production engi-
neering, e.g., forming and coating. The complete
process chain of machining operations is consid-
ered: The design of the machine, the tool, and the
workpiece, the computation of the tool paths, the
model selection and parameter optimization of the
empirical or simulation-based surrogate model,
the actual optimization of the process parameters,
the monitoring of important properties during the
process, as well as the posterior multicriteria de-
cision analysis. For all these steps, computational
intelligence techniques provide established tools.
Evolutionary and genetic algorithms are commonly
utilized for the internal optimization tasks. Model-
ing problems can be solved using artificial neural
networks. Fuzzy logic represents an intuitive way
to formalize expert knowledge in automated de-
cision systems.
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In production engineering and particularly in the field
of machining, improvements in materials, coatings,
tools, and machines continuously provide potentials for
improving the processes. In order to exploit these poten-
tials, however, optimal setups of the changing processes
have to be found. Since modern production processes
involve many complex subsystems, as well as preced-
ing and subsequent steps, all these systems and steps
have to be adapted for achieving the optimal result.

In this chapter, it is shown that computational intel-
ligence (CI) provides methods to assist in achieving this
ambitious aim. A particular focus is on the applications
of evolutionary computation (EC) in machining, but
also artificial neural networks (NN) and fuzzy logic are
considered. A comprehensive overview is presented by

considering several subsystems, as well as the preced-
ing and subsequent steps in the operating sequence. In
this aspect, the chapters contribute to common surveys
in the literature [59.1–5], which are often only focused
on the modeling and optimization of the actual process.

In order to assist interested engineers in choosing
a suitable method for their problem, the solutions of-
fered by CI are structured according to the specific
subproblems to be solved in a machining problem. To
keep the big picture still apparent, these subproblems
are integrated into the complete operating sequence in
the following section. They are then discussed accord-
ing to their chronological order in the sequence. The
chapter is concluded with summarizing remarks on CI
applications in the field of production engineering.
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59.1 Elements of a Machining Process

An overview of the elements and steps to be consid-
ered when optimizing a machining process is shown
in Fig. 59.1. In the focus of the considerations is the
actual process. The results of this process, however,
significantly depend on its elements, in particular on
the mechanical properties and the dynamic character-
istics of the machine, geometry, and the properties of
the tools, as well as the layout of the workpiece which
determines the required machining operations. All these
elements can be individually optimized to improve the
results of the process. For the latter, often complex
numerical control (NC) paths for the machines have
to be generated using computer-assisted manufactur-
ing (CAM) software. To accomplish this, a model of
the final workpiece geometry is required. If no such
model is available, e.g., after manual modifications of
a prototype, CI-based methods can assist in computing
an optimized workpiece model for the CAM software.
However, even if a model is available, the NC paths
computed by the CAM software can be far from opti-
mal due to the complexity of the process, e.g., in five-
axis milling operations. In this case, the subsequent op-
timization of the position-dependent parameters of the
NC code, such as the inclination angles ˛ and ˇ, and
the feed rate f [59.6], can significantly increase the ef-
ficiency of the process.

When all the components of the actual process are
selected and fixed therewith, the optimization of the
adjustable process parameters can begin. Thereby, CI-
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Fig. 59.1 Overview of the elements and steps of an arbitrary ma-
chining process

based techniques are usually based on a self-organiz-
ing process. In order to let the self-organization take
effect, a high number of experiments is required. Since
a real-world experiment involves high costs, it can be-
come necessary to use a surrogate model on which
the method is applied. In this case, however, additional
problems have to be solved. It has to be selected which
kind of model (empirical, analytical, physical, numeri-
cal) is applied and which type or realization of this kind
of model is implemented, e.g., an empirical model can
be computed using artificial neural networks, Gaussian
processes, or regression techniques. As soon as a model
is chosen, the parameters of this model (internal coeffi-
cients, material constants, etc.) have to be adapted with
respect to the given application. This often represents an
additional nonlinear optimization problem which can
be solved using techniques of EC.

Moreover, the robustness of the process can be
increased by a monitoring-based process control. To
accomplish this, dynamic characteristics of the pro-
cess, such as acoustic emission signals and force
measurements, are analyzed online and control op-
erations are initiated as soon as these characteristics
show suspicious patterns. In this kind of applica-
tion, however, it is necessary to automatically detect
what indeed is a suspicious pattern. Fuzzy logic and
NNs have proven to be capable of performing these
tasks.

A lot of information can be obtained in order to
analyze the process and its results. This information
can either be achieved by measurements during and
after the process or by performing simulation stud-
ies. They usually build the basis for the calculation
of the actual objectives. In this context, machining
processes have to be optimized with respect to sev-
eral conflicting aims, e.g., a simultaneous minimiza-
tion of tool wear and maximization of the material
removal rate. Even if multiobjective optimization tech-
niques are used, a lot of details can be lost in this
formulization step. Often the first version of the objec-
tives does not result in the desired results. Additional
objectives have to be defined or preferences have to
be integrated. In order to allow a deeper understand-
ing of the process to be obtained and a refinement
of the objectives to be made, an intuitive visualiza-
tion and exploration of the detail information is re-
quired. For this task, again CI-based techniques can be
used.
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59.2 Design Optimization

The optimal design of a machine, tool, or workpiece
is a great challenge in the field of production engi-
neering. The optimization task is often conducted as
an iterative manual process which is based on expert
knowledge and which can be very cost and time con-
suming. Roy et al. [59.7] gave an extensive overview of
the recent advances in automated and interactive design
optimization. They presented a classification of the op-
timization problems and discussed the most important
optimization approaches and techniques. In the follow-
ing subsections, examples of successful applications of
CI for the optimization of machine, tool, and workpiece
designs are provided.

59.2.1 Optimal Design of Machines

Designing machines necessitates the consideration of
multiple objectives, such as geometric accuracy and
costs. Liu and Liang [59.8], for instance, presented an
approach combining a modified Chebyshev program-
ming method for the scalarization of these objectives
and a particle swarm optimization algorithm for evolv-
ing the machine designs. They were dealing with re-
configurable machine tools, so not only the process
accuracy and investment costs of the machine layouts,
but also the configurability was considered. Signifi-
cant changes in the shape of the product could thus be
easily adapted. Mekid and Khalid [59.9] discussed an
optimization method based on a multiobjective genetic
algorithm for the design of three-axis micromilling
machines. They took user requirements (for example
the workspace volume), axis positions, and geomet-
ric errors of the machine into account. For the latter,
they used a mathematical error model of the three-axis
milling machines.

59.2.2 Tool Optimization

Designing machining tools is a very difficult optimiza-
tion task since not only complex geometries, but also
different machining criteria have to be taken into ac-
count [59.10]. Abele andFujara, for example, presented
a simulation approach for optimizing the drill geometry
based on a genetic algorithm [59.11]. They consid-
ered not only the structural stiffness of the tool during
their optimization run, but also took the coolant flow
resistance and the chip evacuation capability into ac-

count. They also defined the machinability, especially
the grindability of the chip flute, as constraint. In order
to take all these criteria into account, different simu-
lation approaches have to be used (Sect. 59.4). Abele
and Fujara used, for example, the finite element method
in order to analyze the structural stiffness. The cutting
forces were computed using a semiempirical cutting
force model. Additionally, a model of the grinding
wheel had to be determined in order to evaluate the
grindability of the optimized drill geometry. Another
application was presented by Jared et al. [59.12] who
integrated GA into the computer-aided design software
CATIA. In one of their case studies, the volume and the
tip deflection of a cutting tool were minimized by au-
tomatically parameterizing length and angles between
segments of a 2-D (two-dimensional) profile which
were then extruded to the actual tool.

59.2.3 Workpiece Layout Optimization

The layout of products can usually be described as
multiobjective optimization problem. For example, the
design of aerospace structures always faces a trade-
off between the stiffness and the weight of the prod-
ucts [59.13]. The layout of a cooling system, e.g., for
a turbine blade [59.13] is a tradeoff between the ma-
chining quality, the cooling effect, and the production
costs. Weinert et al. [59.14–17] developed a simulation
system for optimizing the layout of mold temperature
control systems in order to minimize the production cy-
cle times and costs, and tomaximize the product quality.
They developed an efficient simulation system in order
to evaluate the effect and homogeneity of the tempering
of the design layout and to estimate the manufacturing
costs [59.18]. Using fast but sufficiently accurate eval-
uation methods, a computer-aided optimization of the
temperature control system based on multiobjective op-
timization methods, like NSGA-II [59.19] and SMS-
EMOA [59.20], became possible [59.21–24]. Neverthe-
less, this optimization task is very complex and the en-
gineer’s experience is still necessary. Due to this, Bier-
mann et al. [59.25] combined the computer-aided opti-
mization system with the possibility of user interaction
so that a visual real-time manipulation of target func-
tions is possible. Dürr and Jurklies [59.26] presented
a fuzzy expert system in order to use the expert knowl-
edge in a computer-assisted way.
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59.3 Computer-Aided Design and Manufacturing

In the modern construction process, computer-aided de-
sign (CAD) software is used for all design tasks – for
example for the model of the workpiece. This model
is the basis for the generation of the NC paths by
CAM software. However, if only a physical prototype
exists or manual modifications of the original model
have been performed, methods to compute a respec-
tive model are required. To accomplish this, the original
object is scanned and a point-based representation is ob-
tained. From this point data, a new CAD model has to
be calculated or the original model has to be adapted.
This process is called surface reconstruction or reverse
engineering.

When a model of the workpiece is available,
NC paths can be generated based on CAM software
for most machining processes. For complex five-axis
milling processes, however, the results of standard
CAM software are not always optimal with respect to
the requirements of the specific machine and process. In
this case, CI-based techniques can be used to improve
the NC paths generated by the CAM software.

59.3.1 Surface Reconstruction

The optimization of the visual quality of triangulations
with respect to different quality criteria was success-
fully performed using evolutionary algorithms byWein-
ert et al. [59.27]. Based on an initial triangulation, as
provided by the software of the scanning system, edges
were flipped in order to minimize the total length of all
edges, the surface area, the sum of angles between nor-
mals, and the total absolute curvature. It was found that
the latter is best suited for generating visually smooth
surfaces.

Small tolerances in the representation of the origi-
nal object, however, result in a huge number of required
scan points. Current scanners are able to provide this
dense and precise set of scan points, but the result-
ing triangulations become very large and difficult to
handle. Approximating triangulations tackle this prob-
lem. The number of control points for the triangles
is independent of the size of the point set and usu-
ally considerably smaller than the number of scan
points. Weinert et al. [59.28] documented the capabil-
ities of a standard evolution strategy to optimize the
control point positions of approximating triangulations.
In order to avoid an uncontrolled expansion of the tri-
angulation, balancing strategies based on mass–spring
systems were integrated.

Unfortunately, even approximating triangulations
produce a nonsmooth surface and are therefore not con-
venient for the later computation of NC paths. Nonuni-
form rational B-splines (NURBS) [59.29] are another
popular mathematical model for free-form surfaces
in CAD software. The most important advantages of
NURBS over triangulations are their smoothness, their
compact definition, the possibility for an intuitive local
manipulation, as well as the ability to combine NURBS
patches to larger structures. Mehnen et al. [59.30, 31]
applied an evolution strategy to the coordinates of the
NURBS’s control points in order to minimize the dis-
tance between the scan points and their projection to
the NURBS. Wagner et al. [59.32] did the same us-
ing a real-valued genetic algorithm. They also proposed
another distance indicator that is based on a sampling
of the NURBS and that is much cheaper to evaluate.
The use of the sampling-based distance measure in
combination with a equation-solver-based hybrid real-
valued genetic algorithm significantly reduced the run-
time of the optimization. This approach was further
enhanced [59.16] to a two-step approach, in which the
single-objectively optimized solution is used as initial
individual for a multiobjective optimization. As addi-
tional objective, the smoothness of the NURBS was
considered. This objective was also considered by Jared
et al. [59.12] in their GA-based optimization of NURBS
in CATIA.

In addition, Weinert et al. [59.33] combined
NURBS with constructive solid geometries [59.34]
in a hybrid evolutionary algorithm/genetic program-
ming approach. By these means, the construc-
tional logic behind the workpiece could also be
approximated.

59.3.2 Optimization of NC Paths

The five-axis milling process offers the possibilities
to tilt the milling tool and, thus, to use shorter and
therewith stiffer tools. This allows complex free-form
surfaces to be machined in one workpiece clamping,
and the engagement conditions to be adapted [59.35].
An improvement of the machining results and a reduc-
tion of the machining time can be achieved. However, in
contrast to the three-axis process, the generation of the
NC paths particularly for the machining of free-form
surfaces is much more complex [59.6].

Weinert and Stautner [59.36] presented an algo-
rithm for converting three- into five-axis milling paths
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in which the position of the tool tip is kept from
the three-axis NC program. An optimization approach
based on an evolutionary strategy was used to improve
the tool movement [59.37]. To accomplish this, they de-
veloped a fast simulation system of the five-axis milling
process based on a discrete dexel model of the work-
piece (Sect. 59.4) [59.38].

The NC paths generated for a five-axis milling pro-
cess are often not smooth enough since the kinematic
behavior of the specific milling machine is not taken
into account. Zabel et al. developed a simulation ap-
proach which is placed in the process chain between
the CAM system and the real-milling process [59.39].
The five-axis tool movement is optimized taking the
tool axis configuration and the dynamic behavior of
the milling machine into account. For this purpose,
methods of evolutionary computation and wavelet the-

ory were combined [59.35]. In 2007, Mehnen et al.
integrated a multiobjective optimization algorithm into
this simulation system which combined the variation
of a modern single-objective approach with the se-
lection mechanism of a classical multiobjective opti-
mization algorithm in order to optimize the tool move-
ment [59.40].

One challenging task during the optimization of
the five-axis milling process is the avoidance of col-
lisions between the milling tool and the workpiece.
Kersting and Zabel [59.6] developed an efficient sim-
ulation approach, which maps the high-dimensional
restriction area on a two-dimensional matrix struc-
ture. They showed that the use of a multipopula-
tion multiobjective evolutionary algorithm in the re-
striction-free area improved the corresponding Pareto
fronts [59.41].

59.4 Modeling and Simulation of the Machining Process

The optimization of real-world applications using CI-
based or classical optimization approaches requires that
a performance value or vector can be obtained for all
possible settings of the input parameters, whereby the
performance values are usually calculated based on
measurements during or after the actual process. In or-
der to achieve a near-optimal result, however, far more
than 100 different parameter vectors have to be evalu-
ated – even for low-dimensional problems. This amount
of real experiments is often impossible due to the costs
related to them. As a possible solution, the use of em-
pirical or physical (simulation) models can significantly
reduce the number of required experiments since most
of the evaluations can be performed on the model. For
both kinds of approaches, CI techniques have already
been successfully used. Some examples are presented
in the following subsections.

59.4.1 Empirical Modeling

For the use of empirical models, real or simulated ex-
periments are still required in order to build up a data
base for the training of the model. In contrast to the
direct optimization of the process, however, these ex-
periments are performed as a block of moderate size in
the beginning of the optimization. Afterward, the model
allows new parameter settings to be predicted based on
the information obtained from training data. The deter-
mination of near-optimal solutions can be performed on
the model.

The number of empirical models is exhaus-
tive [59.42]. Nevertheless, NNs often showed their
capability to empirically model responses from ma-
chining processes. For instance, the material removal
rate of an abrasive jet drilling process was successfully
predicted by using an NN with back error propaga-
tion [59.43]. As input parameters, varying gas pres-
sure, nozzle inside diameter, abrasive flow rate, size of
the medium particle, and standoff distance were con-
sidered. Accordingly, the ablating depth obtained for
specific values of the peak power, pulsing frequency,
and overlapping in a laser drilling process could be
predicted using NN [59.44]. Casalino et al. [59.45]
showed that NN achieve higher prediction accuracies
than regression techniques in predicting surface rough-
ness and resultant forces for varying cutting speed,
feed rate, and radial depth in milling. In the same line,
NN were used for the prediction of the specific cut-
ting constants resulting from different cutting speeds,
feeds, inclination angles ˛ and ˇ, cutting depths, and
cutting widths [59.46]. With respect to tool wear, the
wheel life of a cylindrical grinding wheel was modeled
using a feedforward backpropagation NN. A direct pre-
diction of the tool wear was also accomplished using
NN [59.47, 48]. Moreover, the thermal expansion of the
Y-axis ball screw was predicted based on temperature
measurements at different points of the machine struc-
ture [59.49].

In addition, CI-based techniques can also indirectly
be used for empirical modeling. As soon as complex
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empirical models, such as Gaussian processes, sup-
port vector or other kernel machines, are used, the
determination of the optimal model parameters is an in-
dividual nonlinear optimization problem. Evolutionary
algorithms, in particular the covariance matrix adap-
tion evolution strategy (CMA-ES) [59.50], showed to
be suitable for solving these problems [59.51, 52].

59.4.2 Physical Modeling for Simulation

In cases where sufficient knowledge about the physi-
cal laws of the process is available, simulation models
based on equations representing these physical laws
are likely to be superior to the very general formula-
tions of the empirical models. Nevertheless, also these
models have parameters that are related to the prop-
erties of the material, tool, and machine. Since these
parameters can often not be measured, their values
are usually set by minimizing the error between the
predictions of the simulation and a training set of obser-
vations from real-world experiments. As consequence,
EC is a valuable tool for calibrating simulation models
which was shown to be superior to classical data fitting
tools [59.53].

In an exemplary application, the dynamic behav-
ior of manufacturing systems was characterized by its
frequency response function. This function can be mod-
eled by a superposition of decoupled damped harmonic

oscillators, whereby each oscillator has three parame-
ters (mass, natural frequency, and damping) [59.54]. In
order to minimize the deviation between the measured
frequency response function and one of the oscillators,
an interactive approach based on evolutionary algo-
rithms was successfully implemented [59.54].

An open issue in the simulation of machining pro-
cesses is the modeling of the extremely high strain
rates which can only rarely be covered by classical
material models and tensile tests. As a possible solu-
tion, EC can be used as a submodule of a simulation
in order to predict the deformation and flow charac-
teristics for high strain rates. For instance, Weinert
et al. used symbolic regression by means of a genetic
programming system to evolve mathematical formu-
lae that describe the trajectories of single particles of
steel based on recordings of a high-speed camera dur-
ing the turning process [59.55, 56]. Teti et al. [59.57]
employed NN to reconstruct the stress–strain curve of
the workpiece material from experimental data of ten-
sile tests. They found out that the learned NN is capable
of predicting workpiece material properties in a wide
range of temperature and strain rate values. A hybrid
simulation model based on physical equations and the
empirical stress–strain prediction was finally proposed.
Two recent overviews of hybrid models for simulation
which also incorporate CI techniques were provided by
Jawahir et al. [59.58, 59].

59.5 Optimization of the Process Parameters

In this section, possible applications of EC methods for
the optimization of the actual process parameters are
discussed. Since a recent survey book for the model-
based optimization of process parameters exist [59.1],
only a short summary of possible applications is pro-
vided. In contrast to this survey, the following presen-
tation does not distinguish between different processes,
as the aspects related to the use of EC are independent
of the actual process, e.g., milling, turning, or grinding.

As already discussed in the previous section, it
is mandatory to approximate the process quality indi-
cators by means of analytical, empirical, or physical
models. In the literature, no direct application of EC
optimization techniques to machining processes was
reported until now. Instead, polynomial or process-
related equations were usually fitted to experimental
data [59.60–78]. Neural networks [59.63, 79–83], other
empirical models [59.51, 62, 84], and simulation mod-

els [59.85, 86] were also popular to accomplish this
task.

For the actual optimization, two important deci-
sions on the formulation of the problem have to be
taken in order to choose the EC method. These deci-
sions are concerned with the representation of the input
parameters and the objectives. In most cases, continu-
ously defined input parameters, such as feed and cutting
speed, are to be optimized. This relates to techniques
such as evolution strategies, particle swarm optimiza-
tion, and real-valued genetic algorithms (GAs). If also
discrete parameters, such as the cooling concept or
tool material, are considered, special evolution strate-
gies [59.65, 87] or binary GAs may better be suited.
With respect to the objectives, it has to be decided
whether a single optimal solution or a set of tradeoffs
is desired. In the former case, almost all EC tech-
niques can directly be used. Due to the complexity of
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production engineering problems, however, a suitable
scalarization of the different objectives has to be found
in order to achieve reasonable results. In the latter case
of searching for an approximation of the trade-off struc-
ture, it is important that the algorithm is capable of
coping with multiple objectives which have to be con-
sidered in parallel [59.51, 72, 74, 78, 79, 84, 86].

In the literature, the use of continuous input vari-
ables and single-objective formulations is established.
The most popular EC methods are particle swarm op-
timization (PSO) [59.63, 68, 75, 76, 81–83, 85, 88] and
standard GA or evolutionary algorithm (EA) [59.60,
62, 64, 67, 69, 77, 80]. The use of specifically designed
heuristics [59.71, 75, 89] is rather uncommon. Never-
theless, the formulation of the problem and the design
of the algorithm should aim at incorporating as much
knowledge as possible into the optimization [59.16].

Unfortunately, the generality of CI-based tech-
niques often results in problem formulations which are
not completely sophisticated. An important factor of-

ten neglected when optimizing production engineering
problems is the uncertainty about the external pro-
cess variables, e.g., properties of the tool or material.
Although modern algorithms are capable of incorpo-
rating them into the optimization [59.90], only a few
applications actually take these uncertainties into ac-
count [59.70]. More specifically, two sources of un-
certainty can be considered [59.91]: perturbations in
the input variables, e.g., due to online control, and
environmental uncertainties, such as outdoor temper-
ature, humidity, and the already mentioned external
process variables. A detailed overview of such factors
can be found in the literature [59.92]. A compre-
hensive survey of possible problem formulations and
respective optimization approaches was presented by
Beyer and Sendhoff [59.91]. In production-engineer-
ing applications, however, classical statistical methods
are usually used to cope with these problems. The
potential of CI-based techniques has not yet been
exploited.

59.6 Process Monitoring
The analysis of different process variables – like for
example the cutting forces, acoustic emission, or tem-
peratures – allows conclusions about the process-
dependent state of the machining processes and its
components (tools, machines, workpieces, etc.) to be
drawn and provides the possibility for an adaptive
process control [59.93]. The idea of process monitor-
ing is to measure, visualize, and analyze the values
of these variables during the machining process. Teti
et al. [59.93] gave an extensive overview of advanced
monitoring of machining operations describing sensor

systems for machining, signal processing, monitor-
ing scopes, and the decision-making support systems.
In order to evaluate the measured values, cognitive
computing methods – for example genetic algorithms,
fuzzy logic, or NNs – can be used. In contrast to
the rule-based fuzzy logic approach, NNs do not store
the knowledge in an explicit form. A survey of the
successful applications of these techniques for the ad-
vanced monitoring of machining operations was pro-
vided by Teti et al. [59.93]. It is thus omitted in this
section.

59.7 Visualization

In the field of production engineering, the complex op-
timization problems are often characterized by multiple
objectives and restrictions. Additionally, the decision
space can be high dimensional – like for example in the
case of optimizing NC paths (Sect. 59.3.2) [59.6]. In
order to analyze the optimization problems and the ap-
plied optimization approach, an intuitive visualization
of the data resulting from the evolutionary process is
advisable [59.94]. For this purpose, Pohlheim [59.95]
reviewed several visualization techniques in order to

obtain a better understanding of the optimization pro-
cess of real-world problems. He recommended the
use of three diagrams in order to analyze the opti-
mization algorithm: A convergence diagram, visualiza-
tion of the change of the best individual during the
optimization approach, and a diagram of the objec-
tive values of all individuals in the population of all
generations.

Müller et al. discussed techniques for an intuitive
visualization and interactive analysis of Pareto sets ap-
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plied on production engineering systems [59.94]. They
analyzed different visualization and analysis methods
in order to gain insight into both the optimization prob-
lem and the optimization algorithm, and to support
an intuitive decision-making process. For this purpose,
they presented a simultaneous visualization of the deci-
sion and the objective space. An interactive navigation
through the solution sets supports the user to detect spe-
cific process characteristics [59.94]. This also helps to
redesign the objective formulation in cases where the
optimization results are not in agreement with the ac-
tual preferences of the decision maker.

In order to support the trade-off analysis in multi-
ple dimensions, Obayashi and Sasaki [59.96] presented
a visualization approach based on self-organizing maps
(SOMs). The idea is to map from the high-dimen-

sional objective function space to two-dimensional map
units. They showed the applicability of this approach
analyzing two multiobjective aerodynamic design prob-
lems [59.96].

The innovization approach of Deb [59.97] provides
an automated identification of design principles by
searching for common features of the optimal trade-
offs in a multiobjective optimization problem. These
features are provided by means of analytical rela-
tions between the design variables. A successful ap-
plication of innovization in machining was already
reported [59.78]. Another possibility to learn about
the structure of the objectives and the effect of the
input parameters is provided by visualizations and anal-
yses based on the surrogate models of the process
(Sect. 59.4) [59.51, 98].

59.8 Summary and Outlook
This chapter focused on applications of CI in the op-
timization of machining problems. For this purpose,
the whole process chain – from the design of a ma-
chine, tool, or workpiece, as well as the corresponding
optimization of process parameters, to the process mon-
itoring and subsequent analysis of the results – was
taken into account. Different modeling and simula-
tion techniques, which are necessary to optimize real-
world problems, were discussed. Successful examples
in the field of production engineering were compiled to
present the applicability of the CI methods. In conclu-
sion, evolutionary and genetic algorithms are general
and powerful solvers for nonlinear optimization tasks,

artificial neural networks can be used for continuous
modeling problems, and fuzzy logic provides an intu-
itive way to represent expert knowledge.

Unfortunately, the generality of CI-based tech-
niques often results in problem formulations which are
not completely sophisticated. For instance, possibili-
ties of creating good initial solutions, uncertainty in the
design variables, and specific aspects of the quality indi-
cators resulting in undesirable scalarizations, are often
neglected. EC provides the means to appropriately con-
sider these aspects. A proper analysis of the results can
assist in identifying such pitfalls and in improving the
problem formulation.
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