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58. Solving Phase Equilibrium Problems
by Means of Avoidance-Based Multiobjectivization

Mike Preuss, Simon Wessing, Günter Rudolph, Gabriele Sadowski

Phase-equilibrium problems are good examples
for real-world engineering optimization prob-
lems with a certain characteristic. Despite their
low dimensionality, finding the desired optima
is difficult as their basins of attraction are small
and surrounded by the much larger basin of the
global optimum, which unfortunately resembles
a physically impossible and therefore unwanted
solution. We tackle such problems by means of
a multiobjectivization-assisted multimodal opti-
mization algorithm which explicitly uses problem
knowledge concerning where the sought solu-
tions are not in order to find the desired ones.
The method is successfully applied to three phase-
equilibrium problems and shall be suitable also for
tackling difficult multimodal optimization prob-
lems from other domains.
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58.1 Coping with Real-World Optimization Problems

A multitude of methods from within and beyond evo-
lutionary computation (EC) has been applied to real-
valued multimodal optimization problems. These are
generally considered the harder, the more basins of
attraction they contain, and the less smooth the fit-
ness landscape is. Additionally, a search space that
extends over a large number of dimensions is said to
complicate search for the desired global or good local
optima [58.1].

However, in a real-world setting, even a low-
dimensional problem may turn out to be quite difficult.
This can stem from different factors, one of which
would be a very small extent of the basins that con-
tain the sought optima. Figure 58.1 visualizes the fitness
landscape of an optimization problem that possesses
this property. The application background will be de-
tailed in Sect. 58.2, but for now it suffices to know

that there are only two variables a and b, and that the
desired minima (function values do not depend on vari-
able order and are thus symmetric to the main diagonal)
are located near (0:650,0:001) and (0:001,0:650), re-
spectively. It is easy to see that the appropriate basins
are small; in the figure, they are hardly recognizable at
all.

Another complicating factor would be uncertainty
about the relative target function value of the sought
optima. If it is not a priori known whether we are look-
ing for a global or only a certain local optimum, there
is no way around enumerating all existing optima and
choosing the right solution out of these afterward. Such
difficulties may occur in cases where it is not possi-
ble to integrate the whole available application specific
knowledge into the established target function, i. e., if
its value must be obtained by simulation and the exist-
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Fig. 58.1a,b Visualizations of the two-dimensional exam-
ple problem. In the bottom panel, the search space is
transformed by a square root. The desired optima are
marked with white dots. Note that the diagonal consists of
globally optimal but undesired (trivial) solutions

ing simulation tool is not able to represent all important
features of the real system.

Obviously, there are several workarounds to over-
come the difficulties imposed by this problem:

� Applying a transformation to the search space, so
that the local optima at the lower boundaries occupy
more space. This is shown in Fig. 58.1.� Only initializing the optimization algorithmwith so-
lutions on the boundaries of the search space. In this
case, we sometimes start from very near to the local
optima, and thus have a higher chance to find them.� Exploiting the symmetry of the landscape by a spe-
cial representation. This can be done by enforcing

a� b and would help, e.g., recombination operators
of evolutionary algorithms (EAs).

However, all these approaches are dependent on
the location of the desired optima. Any algorithm ex-
ploiting this expert knowledgewould neccessarily show
a worse performance on problems without these spe-
cial features, as predicted by the no free lunch theo-
rem [58.2]. Instead, a more general method, which uses
information on where the desired optima is not, will be
discussed and evaluated in this chapter.

Many different EAs may be used to tackle this
global or multimodal optimization problem because
they are able to detect several optima simultaneously
or subsequently. The latter may be achieved by multi-
start approaches as sequential niching [58.3], whereas
the former is established by means of diversity mainte-
nance. That is, candidate solutions of the search popula-
tions are prevented from converging to the same region
by implicitly or explicitly keeping them apart [58.4].
Prominent examples are crowding [58.5] and fitness
sharing [58.6], and their successors. More recent ap-
proaches include, but are not limited to UEGO [58.7],
clearing [58.8], species conservation [58.9], clustering-
based niching [58.10], and cellular EA (CEA) [58.11].
Although there is no commonly accepted formal defini-
tion of what a niching method is [58.12], most of these
algorithms may be subsumed under the term niching
EA. They all use the distance between candidate solu-
tions (diversity) as an implicit criterion which shall be
maximized.

However, nothing prevents us from utilizing a diver-
sity criterion directly. A step into this direction has been
taken in the shifting balance GA [58.13]. But although
it employs a separate diversity evaluation via subpopu-
lation distance computation, it finally resorts to a single
objective by weighting the distance and target function
values.

In [58.14], we established a more radical approach
and employ diversity in search space as an additional
objective and treat the resulting combined problem by
an evolutionary multiobjective algorithm (EMOA). The
expected benefit is twofold:

� It enables placing solution candidates in basins that
would otherwise go unnoticed due to their small
size.� We obtain a good overview of the available interest-
ing search space regions in a single run.

As we presume that this approach is not only ap-
plicable to the thermodynamic problems treated in



Solving Phase Equilibrium Problems 58.2 The Phase-Equilibrium Calculation Problem 1161
Part

E
|58.2

this work but also to real-valued engineering problems
with similar properties, it is also followed and further
extended here. Other related multiobjectivization ap-

proaches are discussed in Sect. 58.3 after introducing
the problem context.

58.2 The Phase-Equilibrium Calculation Problem

The knowledge of phase equilibria is required for the
design and optimization of separation processes which
are essential parts of typical chemical plants. The aim of
a phase-equilibrium calculation is to quantitatively re-
late the variables (in particular, temperature T , pressure
p, and mole fraction x) which describe the state of equi-
librium of two or more homogenous phases [58.15].

In any problem concerning the equilibrium distri-
butions of k components between two phases, one must
always begin with the equality of the chemical potential
� as

8i 2 f1; : : : ; kg W �0

i D �00

i : (58.1)

To establish the relation of �0

i (We use the domain-
specific notation with upper index denoting different
phases and lower index standing for separate sub-
stances.) to T , p, and x0

i , it is convenient to introduce
a certain auxiliary function such as the fugacity coeffi-
cient '0

i .T; p; x
0

i/, which can be calculated by a thermo-
dynamic model. Then, (58.1) can be rewritten as

8i 2 f1; : : : ; kg W x0

i 	 '0

i D x00

i 	 '00

i : (58.2)

Typically, the calculation is performed at constant tem-
perature and pressure, and the remaining concentrations
x0

i and x
00

i , respectively, are to be found. The fugacity co-
efficient 'i of component i in the mixture is calculated
as

ln'i D �res
i

RT
� ln Z ; (58.3)

with Z being the compressibility factor, defined as

Z 
 pv

RT
; (58.4)

where v is the molar volume, and R is the gas constant.
The residual chemical potential �res

i is given by

�res
i D ares CRT.Z� 1/

C @ares

@xi
�
X

x`

�
@ares

@x`

�
;

(58.5)

where (@ares=@xi) is a partial derivative of the resid-
ual Helmholtz energy with respect to the mole fraction
stated in the denominator, while all other mole fractions
are considered constant.

The residual Helmholtz energy according to the
perturbed chain statistical associating fluid theory
(PC-SAFT) is considered as the sum of different con-
tributions resulting from repulsion (hard chain), van
der Waals attraction (dispersion), and hydrogen bond-
ing (association)

ares D ahcC adispC aassoc : (58.6)

The detailed equations for each contribution can be
found in [58.16] and [58.17].

Solving phase-equilibrium problems according
to (58.2) may lead to trivial solutions, i. e., x0

i D x00

i ,
which are mathematically correct but have no physi-
cal meaning (except at the so-called critical demixing
point). To avoid obtaining them, the initial guesses for
the minimization procedure may not be too far away
from the correct solutions, provided that the correct so-
lutions are known.

In the case of polymer solutions, initialization is
very critical, because the concentration of the polymer
in the solvent-rich phase can be in the magnitude of
10�20, which is a numerical challenge for simulation
programs [58.18]. Another difficulty arises as the num-
ber of components in the mixture increases. All these
challenges point out the need for a robust algorithm to
solve the phase-equilibrium calculation for an arbitrary
number of components and phases, and which is also
applicable to polymer solutions.

Figure 58.1 actually shows a phase-equilibrium
problem, namely a simple two-component mixture of
water and pentanol. This type of liquid–liquid equi-
librium (LLE) data are necessary for the design and
optimization of liquid–liquid extractors and decanters.
The two variables correspond to the concentrations of
water in the water-rich phase (for the larger of the two)
and in the pentanol-rich phase (for the smaller one).
Under the assumption that a> b, and that w stands for
water and p for pentanol, we have aD x0

w, and bD x00

w.



Part
E
|58.3

1162 Part E Evolutionary Computation

The remaining mole fractions x0

p and x
00

p can be obtained
indirectly as x0

p D 1� x0

w and x00

p D 1� x00

w, because for
every phase, the following equality holds:

kX
iD1

x0

i D
kX

iD1

x00

i D 1 : (58.7)

For this two-component problem, two equations of type
(58.2) have to be satisfied, resulting in two error values
ew D jx0

w'
0

w � x00

w'
00

w j and ep D jx0

p'
0

p � x00

p '
00

p j. A feasi-
ble solution to the problem shall exhibit errors below
10�10 due to practical requirements. In the following,
ew and ep are aggregated into a single target function
value by using the sum of squares, which is to be mini-
mized (note the vector notation)

f1.x0; x00/D e2w C e2p : (58.8)

Table 58.1 The sought optima at different temperatures

Mole fraction 40 ıC 60 ıC 90 ıC
x0

w 0.74698 0.7097 0.65084
x00

w 0.00020913 0.00038142 0.00082809

In Fig. 58.1, (58.8) is modeled at a temperature of
90 ıC, for which the sought optimum is located near
the coordinates (0:650,0:001). As system properties
change with temperature and pressure, the pursued
optimum also moves through the search space. Ta-
ble 58.1 depicts approximate solutions for different
temperatures and constant pressure of 1:0132 bar.
The trivial solutions are the only feature representa-
tive for all phase-equilibrium problems. Thus, this is
the only information that shall be exploited in the
following.

58.3 Multiobjectivization-Assisted Multimodal Optimization: MOAMO

As seen in Sect. 58.1, the optimization problem at hand
is inherently multimodal. That is, local optimization
schemes are only successful if started from a region
near the desired nontrivial solution. To make things
worse, the basin of attraction of the undesired triv-
ial solutions may largely dominate the search space as
found for the very simple LLE problem (two phases,
two components: water/pentanol). Hitting the basin
of attraction of the desired solution can be very dif-
ficult, and if failing on this, the final outcome of
quasi-Newton or similar algorithms will be a trivial
solution.

Stochastic optimization methods like EAs and other
metaheuristics employ a more globally oriented opti-
mization scheme. Several attempts using these methods
have been tried on equilibrium detection problems in
recent years, namely genetic algorithms (GA) and simu-
lated annealing in [58.19] or differential evolution (DE)
and tabu search (TS) in [58.20]. The algorithms have
been mostly used in their canonical form with some
parameters tuning and a concluding local optimization
step by means of a quasi-Newton method. Alternative
approaches applied artificial neural networks for learn-
ing and predicting phase equilibria as in [58.21], the
authors of which evolve the neural networks by means
of genetic programming (GP), and [58.22], where the
authors employ a real-coded GA to optimize initial
weights and biases of the neural network before it is
further refined using a quasi-Newton method. Where

enough training data is available, the binodal curves of
equilibria can be learned and predicted for the missing
areas.

Some recent metaheuristic attempts concentrate on
the global (multimodal) nature of the optimization
problem to find equilibrium points for rather difficult
systems where global optima are located in relatively
small basins. [58.23] use tabu search, [58.24] a ran-
dom tunneling method, and [58.25] a DE hybrid with
TS components. While we agree that looking elsewhere
for even better solutions is mandatory for a multi-
modal problem, it may be even more rewarding to
obtain a good overview over large portions of the search
space before climbing down into the individual optima.
This has been attempted by using a refined version of
the algorithm of [58.26] which has been applied to
phase stability problems by [58.27]. The base algorithm
GLOBAL has been developed further in [58.28]. As the
latter methods start from a random sample, it may how-
ever happen that either the initial sample is too small so
that important optima are missed, or it is relatively large
and thus costly.

The optimization concept suggested in this work
therefore relies on an evolutionary multiobjective algo-
rithm (EMOA) approach in order to generate a spec-
trum of possible near-optimal solutions before ap-
plying a local search method on these. We term
it multiobjectivization-assisted multimodal optimiza-
tion (MOAMO). The method was successfully applied
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Fig. 58.2 The general concept of
MOAMO and its influence on search
and objective space

onto the two-phase 2-component water/pentanol sys-
tem in [58.14]. Here, we demonstrate that it is viable
for more complicated equilibrium problems with more
phases and components. Although not yet tried on
polymer problems, this ultimate goal seems to be in
reach as very small basins of attraction can be attained
reliably.

Figure 58.2 shows the main concept of the
MOAMO approach. The key idea is to use a population-
based multiobjective algorithm as a preprocessing step
for generating search points in the different basins of
attraction of the tackled problem, the basin of the non-
trivial optimum being among them. To do this, the
practitioner first has to formulate an additional objec-
tive function. This second objective is then employed
to obtain good coverage of the search space despite
the high attraction of certain areas. We label this type
of multiobjectivization avoidance-based because appli-
cation knowledge about where the sought optimum is
not helps to transform the single-objective optimiza-
tion problem into a multiobjective one that is easier to
solve. More precisely, it enables detecting several dif-
ferent basins, among them many that would most likely
have gone unnoticed with the single-objective approach
alone.

For this specific application, the distance to the triv-
ial solution (equal concentrations) is taken into account.
From then on, the system can work autonomously. In
the next step, the multiobjective optimization is car-
ried out. The obtained search points then are fed one
by one into a local optimization method, until a satisfy-
ing nontrivial solution is found. For this local search,
only the original objective is relevant. We employed
the algorithm of [58.29] and the covariance matrix
adaptation evolution strategy (CMA-ES) of [58.30] for

this last step. The experimental results suggest that
especially the latter seems well suited for the task.
However, one may resort to another method here (e.g.,
quasi-Newton or similar standard optimization algo-
rithms as described in [58.31]) if it is deemed more
appropriate. To avoid superfluous local optimization
steps on candidate solutions that are close to each
other, this phase may be prepended with a clustering
step so that one tries a representative of each group
of solutions first and then proceeds in a round robin
fashion.

The idea of simplifying a difficult single-objective
problem by a multiobjective approach has some precur-
sors in evolutionary computation and has been coined
as multiobjectivization by [58.32]. The approach can
be divided into two general categories, namely mul-
tiobjectivization by adding objectives and multiobjec-
tivization by the decomposition of a scalar objective
function.

For the latter one, it can be proven that the ap-
proach can only decrease the number of local op-
tima [58.33]. It was for example successfully applied
to protein structure prediction problems in [58.34, 35].
MOAMO belongs to the category of multiobjectiviza-
tion by adding objectives. No theoretic guarantees of
benefits can be given [58.36] for this approach, but
nonetheless it has already been tried in several dif-
ferent ways [58.37–40]. However, these applications
somewhat remain in the tradition of evolutionary multi-
objective algorithms that already contain diversity pre-
serving mechanisms. The second objectives suggested
all refer to the current population or single individu-
als thereof and do not take characteristics of the actual
problem into account. MOAMO strongly differs as in-
stead of a population-relative, it employs an absolute
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distance objective, namely the distance to the known
trivial solutions. The MOAMO approach is therefore
especially well suited to phase equilibrium problems,
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Fig. 58.4 Working scheme of the SMS-EMOA. Termination is
done according to predefined conditions, e.g., a certain budget of
fitness evaluations

as the fugacity equations do not allow to directly con-
clude where the sought solution is, but at least they
provide information on where it is not. It has been
demonstrated in [58.14] that by using the multiob-
jective EA as preprocessing step, the important basin
can be located with a much smaller amount of func-
tion evaluations than would be needed by sampling
the search space randomly, even if the basin is very
small.

In the following, basic EMOA concepts are sum-
marized and the particular multiobjective optimization
algorithm employed in our experiments is introduced,
namely the SMS-EMOA by [58.41] and [58.42].

58.3.1 Basics of Multiobjective Optimization

Multi-objective optimization fundamentally relies on
Pareto dominance. A point in the objective space of
two or more objective functions is dominated, if there
is at least one other that is not worse in all ob-
jectives and better in at least one (Fig. 58.3a). As
the optimization progresses, the population approaches
the Pareto front which resembles the set of optimal
compromises and consists of non-dominated points
only.

Several criteria exist to judge the quality of whole
populations within the algorithm run (as means to
determine the next search steps) and thereafter to as-
sess optimization success. One of the most popular
is the hypervolume, the amount of objective space
coverered by the population with regard to a ref-
erence point as documented in the right panel of
Fig. 58.3.

The S-metric selection evolutionary multiobjective
algorithm (SMS-EMOA) is a further development of
the popular NSGA2 (nondominated sorting genetic al-
gorithm 2) by [58.43]. Figure 58.4 displays its major
steps. Starting from a usually randomly placed popu-
lation, a loop begins with deriving one new individual
(search point) and adding it to the population. The
domination count of each individual is computed by
counting how many other individuals dominate it. If
such dominated individuals exist, the one with the
largest domination count is deleted. Otherwise, the
hypervolume contribution of each individual is deter-
mined (Fig. 58.3b), and the individual with the smallest
contribution is deleted. If the current state does not ful-
fill the termination criterion (e.g., a predefined budget
of function evaluations) the loop starts over. After ter-
minating, the remaining population is the result set.
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58.4 Solving General Phase-Equilibrium Problems

Wepresent the results of phase-equilibrium calculations
for the three-component system water/methanol/MMA
as well as for the three-phase systems water/MMA and
water/furfural. The corresponding optimization prob-
lems have four, three, and three decision variables.

PC-SAFT uses statistical mechanics for its sim-
ulation of thermodynamic systems and thus requires
a calibration of some pure-component parameters and
one binary parameter. The aim of this calibration is
to achieve a consistency between the calculated phase
equilibria and results of physical experiments. Car-
rying out this task manually for a single substance
takes up several days of work for a chemical engi-
neer, although the data of the physical experiments
are already available in the literature [58.44]. These
data contain series of measurements of temperature,
density, and pressure for the vapor and the liquid
phase of each substance. Among the several param-
eters that model the molecular properties, there are
five per substance that have to be estimated. These
are the number of sphere segments m, the segment
diameter ¢ , the segment energy parameter –=k, an
association energy –AiBi=k, and the effective associa-
tion volume ›AiBi. Two different association sites are
assigned to all the considered substances. If the sub-
stance is non-self-associating, then association energy
as well as association volume are set to zero. Be-
sides the five (three) parameters per substance, the

Table 58.2 PC-SAFT pure-component parameters for
considered components

Sub-
stance

m ¢ –=k –AiBi=k ›AiBi

Water 1.0656 3.0007 366.5121 2500.6706 0.0349
Methyl
methacry-
late
(MMA)

3.0632 3.6238 265.6874 0 0.0349

Methanol 1.5255 3.2300 188.9046 2899.4906 0.0352
Furfural 4.1604 3.0204 270.0700 0 0.0349

Table 58.3 PC-SAFT binary parameters

Binary system kij
Water/MMA 0
Water/methanol �0.05
Water/furfural �0.006
MMA/methanol 0

model requires one parameter kij that is characteris-
tic for each binary mixture. The respective values for
all these parameters were taken from [58.45, 46] and
are summarized in Tables 58.2 and 58.3. The appli-
cability of PC-SAFT to model the mentioned systems
in good agreement with experimental data has been
proved in [58.46].

The following experiments show that the MOAMO
approach provides a reliable and fast tool for the de-
tection of equilibrium points which are difficult to find
with standard optimization tools as a gradient or quasi-
Newton search.

58.4.1 Ternary Liquid–Liquid Equilibrium:
Water/Methanol/MMA

In Fig. 58.5, the ternary phase diagram of wa-
ter/methanol/MMA at 50 ıC and 1:013 bar with two
liquid phases is shown. The calculation of the tie-lines
was performed for different fixed concentrations of
MMA in one liquid phase (x0

MMA), see Table 58.4, at
constant temperature and pressure.

Pre-Experimental Planning
The first objective (58.9) is generated from the error val-
ues output by PC-SAFT. These refer to the departure
from the equilibrium state between every two phases of

Exp. data
PC-SAFT
kij = 0 (MMA-water)
kij = 0 (MMA-methanol)
kij = 0.05 (water-methanol)

0 0.2 0.4 0.6 0.8 1
Water

MethanolMMA
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Fig. 58.5 Phase diagram of water/methanol/MMA system at 50 ıC
and 1:013 bar. The symbols are experimental data from [58.47]
and [58.48]. The line is the calculation result of PC-SAFT with
MOAMO-approach
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one component as given by (58.1).

f1.x0; x00/D
3X

iD1

jx0

i'
0

i � x00

i '
00

i j : (58.9)

Different formulations of the second objective for the
SMS-EMOA were tried and several of them work well.
Therefore, a generalization of the distance criterion for
the two-component two-phase case in Sect. 58.1 was
chosen. It measures the Euclidean norm of a vector
of concentration differences (slightly shifted to allow
for minimization) and is easily extendable for more
components

f2.x0; x00/Dp
2�kx0 � x00k2

Dp
2�

vuut 3X
iD1

.x0

i � x00

i /
2 :

(58.10)

Experimental Task
The task for MOAMO in this experiment is to reli-
ably reach the sought optimum for all indicated MMA
concentrations, that is the number of individuals con-
verging to the optimum in the local search phase shall
be considerably larger than 1 on average. Furthermore,
the MOAMO-based approach shall find the optimum
considerably faster than a naïve multistart local search
procedure.

Setup
For each of the concentrations indicated in Table 58.4,
MOAMO is run five times with 30 individuals in the

Table 58.4 MOAMO with 30 individuals, remaining pop-
ulation put into local optimization and rate of success and
convergence to trivial solution, averaged over five runs.
Where the sum of optimum and trivial is below 30, some
local searches did not converge. The last column gives the
empirical success probabilities for random start points of
the local search

x0

MMA Optimum Trivial Success rate (%)

0.05 25.2 3.8 45.0
0.15 0.0 30.0 2.7
0.25 5.8 24.0 3.6
0.35 19.6 10.2 3.9
0.45 25.8 4.0 3.5
0.55 29.4 0.6 2.9
0.65 28.8 0.0 3.1
0.75 29.0 0.6 3.1
0.85 23.2 0.6 2.3

multiobjective first step. Each search point contained in
the last population is then optimized by a local search
procedure (CMA-ES is employed for this second step).
For each local search, it is recorded if either the unde-
sired trivial solution or the sought optimum is obtained
or if the search did not converge. Other than population
size and run length (30 and 5000), the SMS-EMOA pa-
rameters are chosen as in [58.41].

In order to perform a comparison, the local search
procedure (CMA-ES) is started 1000 times for each
MMA concentration from a randomized start point and
the rate of success for converging to the sought opti-
mum is recorded. The CMA-ES terminates if progress
or adapted stepsizes decrease below 10�12 as usual.

Observations
Table 58.4 comprises the results for the MOAMO ap-
proach and in comparison the success rates for the
random start local search procedure. Run lengths of the
CMA-ES are not given in detail, but mostly range be-
tween 2600 and 5000 evaluations.

For the MMA concentrations from 0:25 to 0:85,
both methods are consistent: MOAMO obtains the
sought optimum from at least 60% of the last popu-
lation’s search points, while the success rates of the
random start local search vary between 2 and 4%. How-
ever, 0:05 and 0:15 are special cases: In the first case,
the problem is obviously not that hard as the random
start local search also detects the sought optimum often,
and in the second case, the MOAMO approach com-
pletely fails.

Discussion
The most striking result of the experiment is that hard-
ness of the problem for the two compared approaches
seems uncorrelated. An MMA concentration of 0:05
is much more easily solved by the random start lo-
cal search than any other, but the success rates for
MOAMO do not reflect this. For 0:15, the opposite hap-
pens as the problem poses average difficulties for the
random start local search procedure, but is very hard
for MOAMO. We conjecture that this is an exception as
we are almost at the critical point here, where concen-
trations in both phases differ less and less. Presumably,
trivial solution and sought optimum are too equal to
separate them in the SMS-EMOA phase via the dis-
tance objective. However, we can be satisfied with the
results for the other concentrations, where theMOAMO
approach reliably detects the sought optimum and is
much faster than the random start local search pro-
cedure, even if the effort for the first (multiobjective)
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phase is considered (which is on the order of one or two
local searches).

58.4.2 Three Phase Equilibria:
Water/MMA and Water/Furfural

We now turn to an application of the MOAMO ap-
proach on 2 component/3 phase systems in order to
detect the heteroazeotrope point (a 3-phase equilib-
rium). The first objective is again obtained from the
phase equilibrium equations and differs from the one
chosen for the 3 component/2 phase system (58.9) in the
number of relevant phase equations. Due to transitivity,
four error values remain here. Additionally, a quadratic
form is chosen here instead of the absolute value form
used in the previous case, under the assumption that
the quadratic form simplifies the local optimization task
(Quasi-Newton as well as evolutionary optimization
methods usually perform better in this case).

f1.x0; x00; x000/D
2X

iD1

�
.x0

i'
0

i � x00

i '
00

i /
2

C .x0

i'
0

i � x000

i '000

i /2
�
: (58.11)

As for the previous system, it is necessary to determine
a suitable second (distance) criterion for the multiobjec-
tive first step. However, for three phases, the approach

PC-SAFT kij = 0
Exp. data VLE
Exp. data LLE
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Fig. 58.6 Phase diagram of water/MMA system at 1
bar. The symbols are experimental data from [58.49]
and [58.50]. Lines are calculation results of PC-SAFTwith
MOAMO-approach

taken in [58.14] has to be generalized in a different
way than done for three components. Interestingly, our
preliminary test showed that it is sufficient to consider
only one component and its three phases to create a dis-
tance criterion. We may use mutual phase concentration
differences of phases 1 and 2, 2 and 3, and 1 and
3 to aggregate an objective function. (Note that Eu-
clidean distances have been employed in the previous
section, however our tests show that for the multiob-
jective MOAMO step, the choice of the distance norm
itself is not very important and Manhattan distances as
used here are also sufficient.)

f2.x0; x00; x000/D 2�
2X

iD1

�jx0

i � x00

i j

C jx00

i � x000

i j C jx0

i � x000

i j� :
(58.12)

Alternatively, the phase concentration differences can
also be stated as three separate criteria, resulting in
a four-objective problem for the SMS-EMOA

f2.x0; x00; x000/D 1�
2X

iD1

jx0

i � x00

i j

f3.x0; x00; x000/D 1�
2X

iD1

jx00

i � x000

i j

f4.x0; x00; x000/D 1�
2X

iD1

jx0

i � x000

i j : (58.13)

The following experiment will show whether the ag-
gregated formulation or the separate criteria are more
advisable.

The binary system water/MMA in Fig. 58.6 exhibits
a heteroazeotrope behavior at 1 bar. According to the
phase rule, only one variable can be fixed to deter-
mine the heteroazeotrope, as in this case the pressure.
The temperature of the heteroazeotrope was found at
81:93 ıC and the concentrations of MMA in the three
phases were x0

MMA D 0:841826, x00

MMA D 0:488033, and
x000

MMA D 0:002577.
The identification of the heteroazeotrope point for

water/furfural at 1 bar was more complicated than the
previous system due to the fact that two sought wa-
ter concentrations are close to each other (x0

water D
0:911822 and x00

water D 0:973374), see Fig. 58.7. The
third water concentration was found at x000

water D
0:507017 and the heteroazeotrope temperature was de-
termined at 97:64 ıC.
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PC-SAFT kij = –0.006
Exp. data VLE
Exp. data LLE
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Fig. 58.7 Phase diagram of water/furfural system at 1 bar.
The symbols are experimental data from [58.51]. Lines are
calculation results of PC-SAFT with MOAMO-approach

Pre-Experimental Planning
Taking over the SMS-EMOA parameters (population
size and run length) from the previous experiment led
to an unreliable behavior for the two systems tested
here. Seemingly, they are more difficult to solve than
the given three-component/two-phase system. There-
fore, population size is doubled to 60 individuals and
run length is accordingly slightly increased to 6000
evaluations.

Experimental Task
As the last paragraph indicated that the problems in
this section are even more difficult than the that of
Sect. 58.4.1, there is no point in testing against random
start local search again. Instead, it shall be determined if
the aggregated (58.12) or the separate criteria approach
(58.13) is more suitable for solving the problems with
MOAMO. To enable a decision between the two, a sig-
nificant difference in success rates is required.

Setup
For each of the two systems (water/MMA and wa-
ter/furfural) and each of the problem formulations (ag-
gregated/separate), 30 MOAMO runs are performed
and the number of successes is recorded. A run is
successful if at least one of the local search steps ob-
tains the sought optimum the number of successful
local searches is not recorded. As before, we employ
the combination of SMS-EMOA and CMA-ES. The

Table 58.5 Success rates for detecting the heteroazeotrope
point via MOAMO approach under different formulation
of the distance criterion

System Distance criterion Success rate (%)
Water/MMA Aggregated 100.0

Separate 50.0
Water/furfural Aggregated 93.3

Separate 36.7

resulting values for the first objective function (com-
puted from the error values output by PC-SAFT) shall
be below 10�15 in this case, requiring to modify the
CMA-ES internal stopping criteria accordingly. Its ini-
tial step size is set to 0:01. The SMS-EMOA parameters
are set as in the previous experiment except population
size and run length which are modified as documented
above.

Observations
The number of successful runs is given in Table 58.5.
The aggregated approach seems to consistently perform
better than the one with separate criteria, and success
rates hint to the fact that the second system poses more
difficulty than the first one.

Discussion
Fortunately, the much simpler (aggregated) approach is
also the more reliable for both systems. The much larger
objective space in the first phase (four instead of two ob-
jective functions) obviously outweights the benefits of
a correct mapping by far. Furthermore, for higher num-
bers of phases, the number of objectives would grow
faster than linear, so that in conclusion, the aggregated
approach is much more suitable than the one with sep-
arate objective functions.

58.4.3 Obtaining the Phase Diagrams

Once the heteroazeotrope point is detected, a phase di-
agram of the system may be obtained by systematic
exploration of the two-phase equilibria at different tem-
peratures. We simply increase or decrease the temper-
ature (which is a free variable for two-phase systems)
by 1 ıC and take the solution for the last tempera-
ture step as initial point for a local search (executed
by the CMA-ES) on every binodal curve. Figures 58.6
and 58.7 have been generated by means of this method.
(Note that this is different from the common approach
of detecting several two-phase equilibria by means of
a quasi-Newton method first and then to conclude on
the heteroazeotrope point from these.)
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58.5 Conclusions and Outlook
In this chapter, a multistage method named MOAMO
(multiobjectivization-assisted multimodal optimiza-
tion) was presented. It is especially designed for
difficult multimodal direct search problems as arising
in phase equilibrium detection. However, the method
is very well applicable whenever some problem
knowledge is available concerning where the global
optimum is not. The experimental analysis, performed
on three different systems with either three compo-
nents and two phases or two components and three
phases, has shown that the approach is reliable and
fast. It outperforms random multistart local search
by a large margin under nearly all tested conditions.
Two important properties of the approach need to be
emphasized:

� Unlike many attempts to solve phase-equilibrium
problems by means of evolutionary or related al-
gorithms, MOAMO utilizes known features of the
problem to direct the search and thereby avoids
spending too much effort in repeatedly approaching

trivial solutions. However, it does not make any as-
sumptions about the location of the sought optima
and is thus still a generic approach.� Unlike in some other multiobjectivization ap-
proaches, the second objective is population in-
dependent. Moving a single individual does not
change the objective function values of any other.
This prevents unwanted feedback loops. The op-
timization focuses on the problem and not on the
current population.

Our results indicate the MOAMO approach as re-
markably independent of the actual formulation of the
second objective. Performance increases or decreases
only gradually for alternative objectives, the over-
all concept remains intact. However, obtaining better
guidelines for setting up a matching second objective is
an area for future research, as is the comparison with
more different algorithms and the adoption for other
problems, not necessarily restricted to phase equilib-
rium detection.
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