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57. Computational Intelligence
in Industrial Applications

Ekaterina Vladislavleva, Guido Smits, Mark Kotanchek

In this chapter, we review the progress and the
impact of computational intelligence for indus-
trial applications sampled from the last 10 years
of our personal careers and areas of research (all
authors of this chapter do computational mod-
eling for a living). This chapter is structured as
follows. Section 57.2 introduces a classification of
data-driven predictive analytics problems into
three groups based on the goals and the infor-
mation content of the data. Section 57.3 briefly
covers most frequently used methods for predic-
tive modeling and compares them in the context of
available a priori knowledge and required execu-
tion time. Section 57.4 focuses on the importance of
good workflows for successful predictive analytics
projects. Section 57.5 provides several examples of
suchworkflows. Section 57.6 concludes the chapter.
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57.1 Intelligence and Computation

Developments in computational intelligence (CI) are
driven by real-world applications. Over the years a lot
of CI has become ubiquitous to the average user and
is deeply interwoven into the way modern design, re-
search and development is done.

In our view, CI is human intelligence assisted and
(dramatically) enhanced by computational modeling.
Intelligence is the capability to predict, and, in theory,
there are two directions to get to prediction through
computing – data-driven modeling and first principle
modeling. In reality though, since even fundamental
models and theories have to be validated by data, ev-
erything is data driven. For this reason, from now on
we will focus on data-driven computational modeling,
and say that it exists to enhance predictive capabilities

of the human or business. While prediction is the ulti-
mate goal and computational modeling is the means to
achieve this goal, we will use concepts of predictive an-
alytics and (data-driven) computational modeling as if
they were the same.

Computational modeling methods allow us to gen-
erate various hypotheses about a specific problem based
on observations in an objective way. The mental mod-
els that the scientists develop during this process help
them to filter through these hypotheses and come up
with new experiments that either support or falsify
some of the previous hypotheses or lead to new ones.
This process supports the scientific method and sig-
nificantly accelerates technological development and
innovation.
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There are many examples of new computational
methods empowering problem solving in the areas of
material science, energy management, plant optimiza-
tion, sensory evaluation science, broadband technology,
social science (economic modeling), infectious disease
prevention, etc. And while success in many cases is un-
deniable, two main challenges still remain.

First, there is an education gap to bridge before
modern CI techniques can reach their full potential, are
widely accepted, and become as natural as performing
experiments in the lab. While many engineering edu-
cational programs are embracing these techniques and
help raise awareness of the useful methods in data-
driven modeling and computational statistics, the ma-
jority of programs in pure sciences tend to ignore them
for the most part. There is still a considerable (psycho-
logical, cognitive, educational) barrier for experimental
scientists – biologists, chemists, physicists, computer
scientists – to fully exploit the potential of CI. People
will happily save an hour of computing time by spend-

ing an additional week in the lab, while in some cases it
makes much more sense to spend a week of computing
time to spare one experiment in the lab (consider, e.g.,
an expensive car crash-test). We appeal to educational
programs to nurture the interest in computation among
graduates and facilitate the joint projects of academia
with industry targeted at the use and further develop-
ment of computational intelligence methods for real-
world problems.

Second, there is a development gap in the pro-
duction of scalable off-the-shelf CI algorithms. The
parallelization bottleneck seems to affect most CI
methods when they are executed on massively par-
allel architectures. The fact that computational ad-
vances in hardware (exa-scale computing) happen at
a much faster pace than advances in the design of
scalable CI algorithms raises the question: Up to
which moment can we get more intelligence, i. e.,
more predictive capability, with more computational
power?

57.2 Computational Modeling for Predictive Analytics

While many barriers remain in improving the incorpo-
ration of CI in classical education, in solving the new
(previously unthinkable) challenges, and in further in-
novating CI technology, the current time is a perfect
moment to make this happen.

First of all, the realization for the indispensability of
CI across all industries and all sciences grows as does
the number of required CI practitioners (computational
statisticians, data scientists, modelers). The report of
Manyika et al. on Big Data [57.1] predicts a potential
gap of 50�60% (300 000 people) in demand relative to
the supply of well-educated analytical talent in the USA
by 2018. The data science and big datamovement have
grown in the last decade to become a buzz-word om-
nipresent in scientific magazines, technology reviews,
and business offerings.

While we are happy that the attention of the aver-
age user is being focused on the importance and impact
of computational modeling, we are also concerned with
the fact that too many details are omitted and almost
everything (business strategies, CI methods, targets for
predictive analytics, etc.) gets thrown onto one pile.

While Big Data is occupying the minds of future
engineers, data scientists, and business majors as a next
big thing to watch and a synonym of predictive analyt-
ics, we want to balance the story somemore and provide
a full picture of what we think constitutes predictive an-

alytics by computational modeling. While business and
industry is striving to become data driven these days,
it seeks CI strategies to compete, innovate, and capture
value. Success and impact of CI will be generated only
if the right strategies are used in the right place.

Success of CI in industry will be awarded to meth-
ods that create impact measured in attaining the new
level of understanding and knowledge, in units of dol-
lars. In Fig. 57.1 we sketch a relation between the
degree of intelligence and the level of competitive ad-
vantage from [57.2]. Further on, we will use the terms
predictive analytics and computational modeling (for
predictive analytics to sustain human intelligence) as if
they were the same.

We distinguish three pillars of computational mod-
eling for predictive analytics: business analytics applied
to big data (millions to billions of records, dozens
to hundreds of variables), process analytics applied to
medium-sized data (tens of thousands of records, hun-
dreds of variables), and research analytics applied to
precious data (tens to thousands of records, dozens to
hundreds to thousands of variables) (Fig. 57.2).

57.2.1 Business Analytics

Business analytics is the part of predictive analytics
associated with big data. In recent years, other sci-
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ences also created big data problems, so the field could
be called big data analytics. The distinguishing fea-
ture of business analytics is the fact that it is used
to inspect big data streams to provide a quick and
simple analysis with immediate value reliably and con-
sistently. Because of the size, big data already offers
tremendous challenges in stages preceding analytics –
in storage, retrieval, and visualization. These imply that
the predictive goals can only be modest, except when
big computing facilities and specialized data bases are
available (like it happens in environmental and biolog-
ical research, Internet search, smart grids, etc.). Main
goals here are:

� Visualization (e.g., dashboards).� Recommendation (e.g., studying customer habits
and preferences to recommend a new suitable prod-
uct item). Recommendation uses network analysis
to select relevant or similar items.� Identification of (simple) trends to enhance cus-
tomer experience and increase surplus. Trends are
typically found using time series analysis.� Binary classification to distinguish out-of-the-ordi-
nary data points from the prototypes following the
trends (credit risk analysis, fraud detection, spam
identification).

Because of the memory limitations, the challenge
in business analytics is to quickly give an answer to
simple questions with the main focus on algorithms for
in- and out-of-memory computation and visualization.
Industries benefitting most from business analytics are
retail, banking, insurance, health-care, telecommunica-
tions, and social networks.

For example, at large multinational manufactur-
ing companies, business analytics predominantly re-
volves around the multivariate forecasting of sup-
ply and demand. The expected prices and volumes
of feedstocks and raw materials as well as the ex-
pected demand for various products are important
to minimize risk and optimize production as well
as the supply chain. Classical statistical forecasting
techniques are the main workhorse for this area and
the main challenges consist of being able to gather
the required data, dealing with possibly large num-
bers of candidate inputs and outputs for the models
and properly dealing with the hierarchies that exist,
e.g., products-markets-industry resulting in an explo-
sion in the number of models that have to be built and
maintained.

Competitive advantage

Optimization

Analytics

Access &
reporting

Degrees of intelligence

What’s the best that can
happen?

Predictive modeling What will happen
next?

Forecasting/extrapolation What if these trends
continue?

Statistical analysis Why is this happening?

Alerts What actions are needed?

Query/drill down Where exactly is the problem?

Ad hoc reports How many? How often?
Where?

Standard reports What happened?

Fig. 57.1 Davenport and Harris [57.2] have wonderfully adapted
the graphics from SAS software. The graph above eloquently ex-
plains why to use predictive modeling to excel, compete, and
capture value

Business analytics

Process analytics

Research analytics

Predictive
modeling

Big data
High data redundancy
Immediate value

Medium-sized data
High deployment
constraints
Immediate value

Precious data,
context matters
Customized solutions
Long-term value

Fig. 57.2 Predictive modeling has three components: Business an-
alytics, predictive analytics, and research analytics

57.2.2 Process Analytics

Process analytics exploits medium-size data to gener-
ate time-sensitive prediction of an industrial process
(e.g., manufacturing, process monitoring, remote sens-
ing, etc.) with immediate value.

Process analytics models must be very robust, sim-
ple (mostly linear), and concise to be deployed in real
industrial processes.

This well understood and probably most conserva-
tive area of predictive analytics has experienced a big
change in the last years. A couple of decades ago, pro-
cess optimization and control groups had more people
and less pressure. Nowadays, pressure for integrating
production workflows has increased together with the
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need to meet tighter quality specifications, much tighter
emission thresholds, requirements to reduce produc-
tion, operation, and energy costs, and to maximize
throughput. The sensor’s side has changed – sensors
have become much more sophisticated and much more
abundant. The human interference has also decreased
due to (sometimes exaggerated) drive to automation,
and cost reduction.

All these factors have dramatically increased the de-
mand for reliable optimization and control. In general,
process analytics models must be very robust, simple
(mostly linear) and concise to be deployed in real in-
dustrial processes. The main challenge for this industry
is to integrate more sophisticated models and adopt new
computational methods for process analytics to adapt to
the changing world of new requirements while main-
taining robustness over a wide process range. At the
time when this chapter was written data-driven mod-
eling was still considered exotic for the field of process
analytics, and model deployment is still heavily con-
strained.

The main goals in process analytics are process
forecasting and process optimization and control.

The challenge in process forecasting is to build
models that hit the tradeoffs between model inter-
pretability and their long-term (real-time) predictive
power. The technological challenge of successful CI
methods is the capability to identify driving features
in a large set of correlated features. For example,
think of a problem of predicting the quality of a man-
ufactured plastic using the smallest subset of avail-
able factors controlling the production process – pres-
sures, temperatures, flows. Robust feature selection is
as important as good prediction accuracy – models
that are too bulky will never be accepted by process
engineers.

The main challenge in process control is the mul-
tiobjective nature of control specifications and subse-
quent optimization problems. Consider an example of
manufacturing and wholesaling thin sheets of metal.
The thickness of the sheet is an important quality
characteristic that should not fall below a predefined
minimum, or the product will be considered off-spec. If
due to the processing condition the thickness variabil-
ity is high (sheets are several meters wide and tens of
meters long, rolled at high speeds, high temperatures),
penalty for off-spec material is high, and costs for raw
steel are also high – the manufacturer faces a delicate
problem of making the sheet thicker than the allowed
minimum to keep the clients happy but not too thick
to keep the production costs down. These competing

objectives usually require a multiobjective approach to
process optimization.

Process analytics relies on a rich data set coming
from the many sensors in a typical plant. Mature plat-
forms exist that store this, often high-frequency, sensor
data in databases and plant information systems. The
primary intent for this data is to run the various plant
control and quality control systems but archived data
are often available for predictive modeling as well. The
use of models that predict the aging and lifetime of cat-
alysts and the associated changes in optimal settings for
the plant are good examples.

Another example is the building of the so-called
soft sensors that link difficult measurements, such as,
e.g., grab samples that need to be brought to the lab
for analysis with results only becoming available af-
ter some time to some of the easier high-frequency
measurements, such as, e.g., temperatures, flows, and
pressures. These models then serve as substitutes for
the difficult measurements at a high frequency and
can be calibrated if needed when the slow measure-
ments become available. There are also many opportu-
nities to use the demand and supply forecasting models
from the business analytics side to optimize produc-
tion and product mix that is most optimal for a given
scenario. As an extreme example, it may be cheaper
to shutdown a plant for a while vs continued pro-
duction when demand is forecasted to be very weak.
The level and amount of coupling that is possible be-
tween demand–supply forecasts and actual production
can vary significantly and depends on many factors,
but it is clear that much more is possible in this
area.

Examples of industries employing process analytics
are manufacturing, chemical engineering, energy, envi-
ronmental science.

57.2.3 Research Analytics

Research analytics is used to accelerate the devel-
opment of new products and systems. This task is
fundamentally different from all the ones mentioned
previously as it is usually applied to small, com-
plex, and precious data, is heavily dependent on
problem context and provides long-term value with-
out immediate rewards. (By small we mean any
data set where the number of record is compara-
ble or even smaller than the number of features.
In this way, gene expression data with thousands
of variables taken over dozens of individuals is
small.)
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Research analytics provides very customized solu-
tions and requires a close collaboration between ana-
lysts/modelers and subject matter experts.

Research analytics is by nature much less generic
and becomes very dependent on the specific product
that is being developed. In research, once you have pre-
dictive analytics, then there is only a small step to make
from optimization of existing products to the design of
new ones. One example of a research analytics success
story is the development of an application to predict
the exact color of a plastic part based on the compo-
sition of the colorants and the specific grade a plastic
being used, see [57.3]. Robust color prediction mod-
els led to the capability of actually designing colorant
compositions in silico directly from customer specifica-
tions. The models also provided the specifications that
were necessary to even let the customer produce that
part himself.

How far one is able to take this depends on the fi-
delity of the models as well as the quality of the data
that is available. Another example of research analyt-
ics at work is the design of new coatings and catalysts
based on high throughput experimentation where all

the available data is being used to build models on
the fly. These models are than used to design the next
experiments such that the information gain is maxi-
mum. The requirements for the modeling process are
quite high because everything is embedded in a high-
throughputworkflow but the benefits are also huge. Sig-
nificant speedups in the total design time as well as
the performance of new products can be achieved this
way.

We stress that because research analytics is an en-
hancement to human intelligence for the development
of new products and systems, the benefits of its appli-
cation scale proportionally with the size of the problem
and the impact of that particular product or system. For
big enough problems the benefits quickly get into the
hundreds of thousands to millions of dollars.

Research analytics can help drive innovation in all
industry segments, particularly in materials science,
formulation design, pharmaceuticals, engineering, sim-
ulation-based optimization in research, bio-engineer-
ing, healthcare, telecommunications, etc. In the coming
10 years, we will continue to see the trend of innovation
enabled to a large extent by predictive modeling.

57.3 Methods

Over many years of exercising process and research
analytics, we built up a practice of using predictive
modeling as the integration technology for real-world
problem solving. In the last 8–10 years, predictive mod-
eling for computational intelligence has evolved from
the solution of last resort to the main stream approach
to industrial problem solving (prediction, control, and
optimization). It is technology that glues together fun-
damental modeling and domain expertise, high-per-
formance computing and computer science, empirical
modeling and mathematics – a heaven for an inquiring
mind and interdisciplinary enthusiast.

Predictive modeling is a bridge that connects theory
and facts (data) to enable insight and system under-
standing. The theory for poorly understood problems
is often based on simplifying assumptions, on which
the fundamental models are built. The facts, or empiri-
cal evidence, are often affected by high uncertainty and
a limited observability of the system’s behavior.

Predictive modeling applied iteratively to a grow-
ing set of facts tests the theory against the data and
extrapolates models build on the data to confirm or ad-
just the theory until the theory and facts start to agree.

The validation always lies in the hands of a subject mat-
ter expert who in the case of success accepts both the
theory and the designed predictive models as plausible
and interesting. While the real validation comes when
models are deployed and keep generating value, with-
out the first step of intriguing the subject matter expert
the project does not have a chance to succeed.

To clear any obstacles toward the acceptance of
models by the domain expert the models should be:

1. Interpretable
2. Parsimonious
3. Accurate
4. Extrapolative
5. Trustable, and
6. Robust.

In an industrial setting, the capability of having
a trustable prediction of the output within and outside
the training range is as important as interpretability and
the possibility of integrating information from first prin-
ciples, low maintenance and development costs with no
(or negligible) operator interference, robustnesswith re-
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spect to the variability in data, and the ability to detect
novelties in data to attune itself toward changes in sys-
tem’s behavior.

There is no single technique producing models that
are guaranteed to fulfill all of the requirements above,
but rather there is a continuum of methods (and hybrids)
offering different tradeoffs in these competing objec-
tives.

Commonly used predictive modeling techniques in-
clude linear regression, and nonlinear regression [57.4],
boosting, regression random forests [57.5], radial-ba-
sis functions [57.6], neural networks [57.7], support
vector machines (SVM) [57.8, 9], and symbolic regres-
sion [57.10, 11] (see more in [57.12]).

In Fig. 57.3, we place some of the most common
methods for predictive modeling for process and re-
search analytics in the objective space of development
time versus the level of a priori knowledge about the
problem. When identifying which methods to use other
objectives (like interpretability and extrapolative capa-
bility) must also be taken into account. The time axis is
depicted on a log scale, and the exact development time
depends on implementation and a particular algorithm
flavor.

Support vector machines and ensemble-based neu-
ral networks lose to linear, nonlinear, and regularized
regression in interpretability, but have advantages for
problems where little a priori information is known
about the system, and no assumptions on model struc-
tures can be made (see Fig. 57.3).

Regression random forests, and symbolic regres-
sion [57.13–15] have further advantages for problems
where not only model structures but also the variable
drivers (significant factors) are unknown.

A priori knowledge

Linear regression

Non-linear regression

Random forests

Symbolic regression

SVMs, NNs

Time

Variables are
known, model
structure is
known

Variables are
known, model
structure is
NOT known

Variables are
NOT known,
model structure
is NOT known

Fig. 57.3 Predictive modeling methods as competing
tradeoffs in development time versus the level of a priori
knowledge about the problem

Random forests proved to be robust and very ef-
ficient for predicting the response within the training
range and for identifying the most significant variables,
but because they do not possess extrapolative properties
they can only be used in problems where no extrap-
olation is necessary. Recent studies [57.16] indicate
that variable selection information obtained by random
forests can loose meaning if correlated variables are
present in the data and affect the response differently.

In business analytics, when the speed of model
development is the main goal, linear regression and reg-
ularized learning are the only remaining options. (Re-
cent developments for predictive modeling for big data
are also focusing on the feature generation problem,
where the set of original data variables gets expanded
to a much larger set of new features – transformations
of the original variables, for which regularized linear
regression is applied. Much like in support vector re-
gression).

In process analytics when the driving input factors
are known – ensemble-based neural networks, support
vector regression, and ensemble-based symbolic regres-
sion are the modeling alternatives.

If very little is known about the process or sys-
tem, experiments are demonstrating correlations among
input variables, and concise interpretable models are
required – symbolic regression is the only resort,
which comes at a price of a higher development time
(Fig. 57.3).

We stress the importance of using ensembles of pre-
dictive models irrespective of which modeling method
is used. Ensemble disagreement used as a trustability
measure defines the confidence of prediction and is cru-
cial for reliable extrapolation. (It cannot be stressed
enough that all prediction in a space of dimensionality
above 3 is mostly extrapolation, even when evaluated
inside the training range.)

We deal mostly with process and research analyt-
ics. In our experience, the aspect of trustablility via
ensembles of global transparent models, coupled with
the massive algorithmic efficiency gains and the abil-
ity to easily handle real-world data with spurious and
correlated inputs has led to symbolic regression largely
replacing neural networks and support vector machines
in our industrial modeling. Our experience also is that
symbolic regression models tend to extrapolate well as
well as provide warning of that extrapolation.

The reason for symbolic regression being success-
ful for process and research analytics is the fact that all
real-world modeling problems we have seen up to now
contained only a dozen of relevant inputs (never more
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than 25 variables, in most cases less than 10) which
were truly significantly related to the response. Because
symbolic regression searches for plausible models in
a space of all possible structures from the given set of
potential inputs, and allowed functional transforms, the
computational complexity increases nonlinearly with
the dimensionality of the true design space. For this rea-
son, symbolic regression effortlessly identifies dozens
of driving variables among tens to hundreds of candi-
dates (albeit using hours of multicore computing time).
But it should not be used for problems where hundreds
of inputs are significantly related to the response and

should be filtered out of thousands of candidates. We
claim though that no methods are available to solve the
latter kind of problems because the necessary amount
of data capturing true input–output relationships will
never be collected.

Although tremendous progress has been made
over the past decade in terms of the efficiency and
quality of symbolic regression model development,
we also have made corresponding advances from
a holistic perspective encompassing the overall mod-
eling workflows from data collection through model
deployment.

57.4 Workflows

Although there is no universal solution for predictive
modeling and no size fits all, especially for research an-
alytics, nothing is as important for a successful solution
as a good modeling workflow.

We would like to make a case for the utmost impor-
tance of workflows and the need to nurture and actively
proliferate them through all CI projects. In the next
section, we give an example on how a successful work-
flow developed in a project from flavor science could be
seamlessly applied to a project in video quality predic-
tion. And because predictive modeling for CI will soon
be used in nearly all industry segments and research
domains, we believe that it is the responsibility of CI
practitioners to facilitate innovation through prolifer-
ation and popularization of (interpretable) workflows
allowing straightforward application in new domains.

The most general approach to practical predictive
modeling is depicted in Fig. 57.3.

We view this generic framework as an iterative feed-
back loop between three stages of problem solving (just
as it usually happens in real-life applications):

1. Data generation, analysis and adaptation
2. Model development, and
3. Problem analysis and reduction.

An important observation is made in the To-
ward 2020 Science report edited by Emmott and Ri-
son [57.17]:

What is surprising is that science largely looks at
data and models separately, and as a result, we miss
the principal challenge – the articulation of mod-
elling and experimentation. Put simply, models both
consume experimental data, in the form of the con-

text or parameters with which they are supplied, and
yield data in the form of the interpretations that are
the product of analysis or execution. Models them-
selves embed assumptions about phenomena that
are subject of experimentation. The effectiveness of
modeling as a future scientific tool and the value of
data as a scientific resource are tied into precisely
how modelling and experimentation will be brought
together.

This is exactly the challenge of predictive modeling
workflows – a holistic approach to bring together data,
models, and problem analysis into one generic frame-
work. Ultimately, we want to automate this iterative
feedback loop over data analysis and generation, model
development, and problem reduction as much as possi-
ble, not in order to eliminate the expert, but in order to
free as much thinking time for the expert as possible.

This philosophical shift away from human replace-
ment in the modeling workflow toward human aug-
mentation has been very important in the last decade.
A successful workflowmust offer suites which mine the
developed models to identify driving factors, variable
combinations, and key variable transforms that lead to
insight as well as robust prediction.

57.4.1 Data Collection and Adaptation

Very often, especially in big companies, and especially
for process analytics, CI practitioners do not have ac-
cess to data creation and experiment planning. This gap
is a typical example of a situation, where multivariate
data is given and there is no possibility to gather better
sampled data.
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In other situations, there is a possibility to plan the
experiments, and gather new observations of the re-
sponse for desired combinations of input variables, but
the assumption always is that these experiments are
very expensive, i. e., require long computation, simula-
tion, or experimentation time. Such a situation is most
common in research analytics and meta modeling for
the design and analysis of simulation experiments.

The questions to ask at the data collection and adap-
tation stage are: How to design experiments within the
available timing and cost budget to optimally cover
the design space (possibly containing spurious vari-
ables)? How can available data and developed models
guide design-space exploration in the next iterations?
Is available data well sampled? Is it balanced? What
is the information content of performed experiments?
Is there redundancy in the data and how to minimize
it?

57.4.2 Model Development

In model development, the focus is on automatic cre-
ation of collections of diverse data-driven models that
infer hidden dependencies on given data and pro-
vide insight into the problem, process, or system in
question.

Irrespective, of which modeling engines are used at
this stage, the questions on how to best generate, eval-
uate, select, and validate models given particular data
features (size and dimensionality) are of great impor-
tance. Model quality, in general, i. e., generalization,
interpretability, efficiency, trustworthiness, and robust-
ness is the main focus for model analysis leading to the
next stage.

57.4.3 Problem Analysis and Reduction

The stage of problem analysis and reduction supposes
that developed models are carefully scrutinized, fil-
tered, and validated, to infer preliminary conclusions
on problem difficulty. The focus is on driving inputs,
assessment of variable contribution, linkages among
variables, dimensionality analysis, and construction of
trustable model ensembles. The latter if defined well
will contribute to intelligent data collection in the style
of active learning.

With a goal to augment human intelligence by com-
putation, we emphasize the critical need for a human,
an inquiring mind who will test the theory, the facts
(data) and their interpretations (models) against each
other to iteratively develop a convincing story where all
elements fit and agree.

57.5 Examples

57.5.1 Hybrid Intelligent Systems
for Process Analytics

A good example of a unified workflow for process
analytics is the hybrid intelligent systems framework
popularized at the Core R&D department of the Dow
Chemical Company in the late 1990s.

The methodology was developed to improve soft
sensor performance (performance of predictive mod-
els), to shorten its development time, and minimize
maintenance. It employed different intelligent system
components – genetic programming, support vector
machines, and analytic neural networks [57.18].

The process analytics in this framework consists of
three steps following data collection:

1. Data preprocessing and compression. Support vector
regression using the 
-insensitive margin is used to
identify and remove data outliers and compress data
to a representative set of prototypes (support vec-
tors). The result is a clean and compressed data set.

2. Preliminary variable selection using ensemble-
based stacked analytic neural networks [57.19]. The
result of this step is a ranking of input variables and
quantification of variable contribution based on it-
erative input elimination and re-training.

3. Convolution parameter estimation to identify rele-
vant time-lags of significant inputs using appropri-
ate convolution functions.

4. Development of transparent predictive models us-
ing symbolic regression via genetic programming
and final variable selection using symbolic regres-
sion models.

5. Model selection and analytical function validation.
6. Online implementation.
7. Soft sensor maintenance to guarantee robustness of

process prediction.

Examples of the use of this workflow for reactor
modeling can be found in [57.18].

We all practiced the hybrid intelligent systems
workflow in the past, but the massive algorithmic effi-
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ciency gains in ensemble-based symbolic regression via
genetic programming of the last decade [57.14, 20] have
led us to simplify the workflow and largely eliminate
steps one and two to replace them by direct application
of symbolic regression.

57.5.2 Symbolic-Regression Workflow
for Process Analytics

The major modeling engine breakthrough was the in-
corporation of a multiobjective viewpoint; this intro-
duced orders of magnitude improvements in model
development speed while simultaneously allowing the
analyst to choose the proper balance between complex-
ity and accuracy post facto. In essence, the data could
now define the appropriate model structure and driving
inputs, which became the main reason for symbolic re-
gression’s success for predictive modeling.

Other conceptual advances ordinal genetic pro-
gramming, interval arithmetic, Lamarckian evolution
and secondary optimization objectives, such as age,
model dimensionality, nonlinearity, etc., have brought
us to the current situation where we can largely inject
data into a (properly designed) symbolic regression en-
gine and interesting and useful models will emerge.

The symbolic regression workflow has become as
depicted in Fig. 57.4, but with model development done
using Pareto-aware symbolic regression [57.14].

Distillation Tower Example
The dataset comes from an industrial problem on mod-
eling gas chromatography measurements of the compo-
sition of a distillation tower and is available online at
http://www.symbolicregression.com.

Model
development

Data
collection

&
adaptation

Problem
analysis

&
reduction

Fig. 57.4 Generic iterative model-based problem solving
workflow (after [57.15])

A chemical reaction typically generates a variety of
chemicals along with the one (or several) of interest.
One method of isolating the mixture coming from the
reactor into various purified components is to use a dis-
tillation column. The (hot gaseous) input stream is fed
into the bottom and on the way to the top goes through
a series of trays having successively cooler tempera-
tures. The temperature at the top is the coolest. Along
the way, different components will condense at different
temperatures and be isolated (with some statistical dis-
tribution on the actual components). With vapors rising
and liquids falling through the column, purified frac-
tions (different chemical compounds) can be retrieved
from the various trays. The distillation column is very
important for the chemical industry because it allows
continuous operation as opposed to a batch process and
is relatively efficient.

This distillation column problem contains nearly
7000 records and 23 potential input variables – mix-
ture of flows, pressures, and temperatures – in addition
to the quality metric and material balance. The response
variable is the concentration of a purified component at
the top of the distillation tower. This quality variable
needs to modeled as a function of relevant inputs only.
The range of the measured quality metric is very broad
and covers most of the expected operating conditions in
the distillation column.

To design the test data, we sorted the samples by
their response values and selected every third and sev-
enth samples for the validation set and every fourth
and eight samples for the test set. The remaining points
formed the training set.

Many input variables in the data are heavily cor-
related. Because symbolic regression can deal with
correlated variables, we used all 23 inputs in the first
round of modeling to perform initial variable impor-
tance analysis.

The workflow that follows exploratory data analysis
is described below:

1. Initial modeling: We allocated 2 hours of com-
puting time on a quad-core machine to perform
24 20-minute independent runs of symbolic re-
gression by genetic programming using Evolved-
Analytics’ DataModeler [57.14]. All symbolic re-
gression runs used basic arithmetic operators aug-
mented by a negation and a square as primitives. All
models were stored on disk, and all other settings set
to default settings of the symbolic regression func-
tion of [57.14]. In total, more than 3000 symbolic

http://www.symbolicregression.com
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regression models were generated during 24 inde-
pendent runs.

2. Variable importance analysis: For all models
presence-based importances were computed. Fig-
ure 57.5 demonstrates that only a handful of vari-
ables is identified as drivers ([57.14] suggests to use
importance threshold of 20%).

3. Variable combination analysis: All developed mod-
els were analyzed for dimensionality and most
frequent variable combinations. In Fig. 57.6, one
can see model subsets niched according to con-
stituting variable combinations. The bottom graph
suggests that variables colTemp1, colTemp3, and
colTemp5 might be sufficient for describing the re-
sponse, since they cover the knee of the Pareto front
in complexity vs. accuracy space.

4. Variable contribution analysis: Models were sim-
plified by identifying and eliminating the least con-
tributing variable. Variable combination analysis
was repeated for simplified models and resulted in
identifying colTemp1 and colTemp3 as new candi-
dates for a sufficient subspace.

5. New runs performed on a subset of input vari-
ables identified as drivers: The new batch of
independent symbolic regression runs was ap-
plied to the same data but only using colTemp1
and colTemp3 as the candidate input variables.
As expected, models generated in this experi-
ment demonstrated that the same complexity–
accuracy tradeoffs can be achieved in only two-

0 20 40 60 80 %

headPressure1
headPressure2

headTemp1
refluxFlow
headTemp2

feedFlow
bottomFlow1

colTemp1
colTemp2
colTemp3
colTemp4
colTemp5

matBalance
colTemp6
colTemp7
colTemp8
colTemp9

colTemp10
colTemp11

upstreamFlow1
upstreamFlow2

bottomFlow2
bottomTemp

Fig. 57.5 Variable presence in developed symbolic regression
models

dimensional rather than 23-dimensional input
space.

6. Ensemble generation using developed models and
a validation set: Final model ensemble was gen-
erated automatically using developed symbolic re-
gression models and validation data set. It was
augmented by quadratic and cubic models on two
variable drivers.

7. Ensemble prediction validation using test data:
Ensemble prediction and ensemble disagreement
were finally evaluated on the test data. Initial re-
quirements for prediction accuracy to not exceed
5�7% of standard deviation were met by all en-
semble models. Ensemble prediction is graphed in
Fig. 57.7.

This example demonstrates the use of a good model
development workflow. An ensemble similar to the
one described here has been deployed for controlling
a gas chromatography measurement in a real distilla-
tion column.

57.5.3 Sensory Evaluation Workflow
for Research Analytics

A flavor design case study is an example of a more
specialized workflow [57.21]. In sensory evaluation,
scientifically designed experiments are used to define
a small set of mixtures that can be presented aromati-
cally to evaluators to identify the ingredients that drive
hedonic response (positively or negatively) of a target
panel of consumers. Each panelist is asked how much
they like the flavor, ranging from like extremely to dis-
like extremely with 9 distinctions. Details of the study
can be found in [57.21]. Our focus here is the workflow
that allowed to evaluate the consistency of liking prefer-
ences in the target population and gain insight into how
to design or identify flavors that most consumers would
consistently like.

The data for this project was provided by the Gi-
vaudan Flavors Corp. It falls into a category of pre-
cious data. It consists of sensory evaluation scores of
36 mixed flavors containing seven ingredients evalu-
ated by 69 human panelists. In other words, data has
seven input variables (flavor ingredients), 36 records
(flavors), and 69 response measurements per record
(Fig. 57.8).

Because of the high variability of response values
per flavor, panelist responses were modeled individ-
ually. Because transparent and diverse input response
models were required to approximate this challeng-
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Fig. 57.6 Complexity–accuracy tradeoffs for most frequent variable combinations in the distillation column example
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Fig. 57.7 Prediction of the final ensemble of symbolic re-
gression models on test data. All models seem to agree on
unseen test data set. This should not be surprising, because
the training, validation, and the test set were designed to
cover the full range of operating conditions I

ing data set, modeling was done using ensemble-based
symbolic regression.

For each panelist, a standard workflow was applied
to identify driving ingredients which changes in pan-
elist’s liking [57.22].

When developed, model ensembles predicting in-
dividual responses could be bootstrapped to a richer
set of virtual mixtures (tens of thousands of flavors in-
stead of the available 36). The bootstrapped responses

0 2

Hard to
please

Neutral Easy to
please

Outliers

4 6 8 10 12

a) Probability density

Liking score

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
1 2 4

Panelists:
10, 15, 20, 28, 40, 62, 53,
8, 14, 19, 25, 32, 44, 59, 66,
12, 17, 23, 29, 42, 54, 64, 67

Panelists:
21, 46, 55, 68,
9, 43, 48, 58,
27, 47, 56, 69

Panelists:
2, 5, 11, 22, 34, 37, 45, 51, 61, 30,
7, 18, 26, 33, 36, 41, 50, 57, 4, 63,
1, 3, 6, 13, 24, 31, 35, 38, 52, 49, 65

3 5 6 8 9 10107 12

b) Probability density

Liking score

1 2 43 5 6 8 9 10107 12
Liking score

c) Probability density

Liking score

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

d) Probability density

1 2 43 5 6 8 9 10107 12

Fig. 57.8a–d Example of panel segmentation by propensity to like from [57.22]: (a) Decision regions for evaluating
cumulative distribution for liking score density model (b) hard to please panelist (c) neutral panelists, (d) easy to please
panelists

0 0.5 1 1.5 2

Predicted

Observed

2

1.5

1

0.5

0



Computational Intelligence in Industrial Applications 57.6 Conclusions 1155
Part

E
|57.6

were used to cluster the target population into three
segments: easy to please – (cyber)individuals who con-
sistently give high ratings to most flavors, hard to
please – individuals that consistently use a low range of
scores for all flavors, and neutral panelists whose pref-
erential range is centered around the medium score –
neither like, nor dislike. Such segmentation of the tar-
get population by people’s propensity to like products
turned out to be very useful in several other applications
beyond flavor design. It focuses product development
by giving insight into the fundamental variability in the
preferences of the target audience.

The standard workflow for variable importance es-
timation applied to model ensembles forecasting the
scores of individual panelists also allowed to segment
the target population by ingredients that drive liking in
the same direction. Such segmentation of the consumer
market combined with the cost analysis for new prod-
uct design offers visualization and analysis of beneficial
tradeoffs for product specialization.

The third outcome of this study was the de-
velopment of a model-guided optimization workflow

for designing optimal virtual mixtures. Multi-objec-
tive optimization using swarm intelligence was used
to find tradeoffs in the flavor design space that
simultaneously maximize the average liking score
and minimize variance in the liking across virtual
panelists.

Such model-guided optimization workflow com-
bined with the standard ensemble-based modeling
workflow presents a strong motivation for the develop-
ment of a targeted data collection system for designing
new products.

We should point out that despite a very custom
design and specialized domain of sensory evaluation
in food science, the workflow could successfully be
applied in the very different domain of video qual-
ity prediction. Ensemble-based symbolic regression
was used to model the perceived quality of per-
turbed video frames and results were used to predict
customer satisfaction and segment the representative
population of video viewers by propensity to notice
perturbations and sensitivity to particular perturba-
tions [57.23].

57.6 Conclusions

In this chapter, we discussed how computational intel-
ligence leads to predictive analytics to produce busi-
ness impact. We identified three main areas of pre-
dictive analytics: business analytics that deals mainly
with visualization and forecasting, process analytics
which aims to improve optimization and control of
manufacturing processes, and research analytics which
aims at speeding up and improving product and pro-
cess design. All three areas have the potential to
save and earn many millions of dollars but deal with
very different data sources, context, information con-
tent, amount of available domain knowledge, and
time and prediction requirements for value genera-
tion. Driven by different motivations, the areas are
subsequently employing different predictive modeling
methods.

We presented several predictive modeling methods
in the context of different prediction requirements, so-
lution development, and deployment constraints. We
emphasized that there is no single method that fits all
problems, but rather there is a continuum of methods,
and each problem dictates selection of a method by
specific time requirements and the amount of available
a priori subject-matter knowledge (Fig. 57.3).

We stressed the importance of good and stable pre-
dictive modeling workflows for success in CI projects
and provided several examples of such workflows for
process and research analytics, illustrating that re-
search analytics projects require highly customized
approaches.

We point out that successful CI projects are am-
plifiers, that necessarily keep the human in the loop
and vastly enhance her/his capabilities. Because of this,
integrating CI in the various process and business work-
flows is essential!

It is clear that our ability to generate data as well as
our ability to analyze it and produce actionable knowl-
edge are quickly expanding. The challenge remains on
how to develop scalable CI algorithms that keep up with
the ever rising tide of data, given that computational ad-
vances in hardware (massive parallelization, exa-scale
computing) are developing at a much faster pace than
the CI algorithms.

A question that still puzzles us is: Can we get more
intelligence with more computational power, and where
(and whether) it stops? Undoubtedly, the right answer
lies in the development of new algorithms that can
tackle the new challenges – advanced material design,
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problems in bio-informatics, complex-system model-
ing in social sciences, and social networks. We expect
the largest impact of predictive modeling to happen in
the areas of research and process analytics – in design
of new products and new processes. Examples of de-
sign problems that can be assisted by data-driven CI
methods for research analytics are the development of
advanced materials – photovoltaic cells, alternative fu-
els, bio-degradable replacements for paints and plastics,
composite materials, sustainable food sources. From
the process analytics side, we would like to see CI
methods used for optimization of water purification,
emission control in combustion processes, simulation-

based optimization of social events on a world scale
(terror attacks, revolutions, pandemics spread), effi-
ciency optimization of manufacturing cycles, garbage
minimization, and recycling.

It cannot be stressed enough that the dynamics
around CI is changing – instead of CI being an op-
tional addition to the arsenal of problem solving tools
and methods, CI is becoming indispensable to deal and
make progress with this new breed of real-world prob-
lems. The only way for CI practitioners to bring CI
to prime time is to develop scalable algorithms, pro-
liferate good workflows, and implement them in great
applications.
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