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56. How to Create Generalizable Results

Thomas Bartz-Beielstein

Basically, this chapter tries to find answers for the
following fundamental questions in experimental
research.

(Q-1) How can problem instances be generated?
(Q-2) How can experimental results be generalized?

The chapter is structured as follows. Sec-
tion 56.2 introduces real-world and artificial
optimization problems. Algorithms are described
in Sect. 56.3. Objective functions and statistical
models are introduced in Sect. 56.4; these models
take problem and algorithm features into con-
sideration. Section 56.5 presents case studies that
illustrate our methodology. The chapter closes with
a summary and an outlook.
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56.1 Test Problems in Computational Intelligence

Computational intelligence (CI) methods have gained
importance in several real-world domains such as pro-
cess optimization, system identification, data mining,
or statistical quality control. Tools to determine the ap-
plicability of CI methods in these application domains
in an objective manner are missing. Statistics provide
methods for comparing algorithms on certain data sets.
In the past, several test suites were presented and con-
sidered as state of the art. However, these test suites
have several drawbacks, namely:

� Problem instances are mostly artificial and have no
direct link to real-world settings.� Since there is a fixed number of test instances,
algorithms can be fitted or tuned to this specific
and very limited set of test functions. As a conse-
quence, studies (benchmarks) provide insight how
these algorithms perform on this specific set of test

instances, but no insight on how they perform in
general.� Statistical tools for comparisons of several algo-
rithms on several test problem instances are rela-
tively complex and not easy to analyze.

We propose a methodology to overcome these dif-
ficulties. This methodology, which generates problem
classes rather than uses one instance, is constructed as
follows:

1. First, we pre-process the underlying real-world
data.

2. In a second step, features from these data are ex-
tracted. This extraction relies on the assumption
that mathematical variables can be used to represent
real-world features. For example, decomposition
techniques can be applied to model the underlying
data structures, if we are using time-series data. The
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original time series is deconstructed into a number
of component series, where each of these reflects
a certain type of behavior, e.g., a trend or seasonal-
ity [56.1]. We obtain an analytical model of the data.

3. Then, we parameterize this model. Based on
this parametrization and randomization, we can
generate infinitely many new problem instances.

4. If no real-world data are available, problem in-
stances can be generated using test-problem gen-
erators. The generation of test problems, which
are well-founded and have practical relevance, has
been an on-going field of research for several
decades.

5. From this infinite set, we can draw a limited num-
ber of problem instances which will be used for the
comparison.

6. Since problem instances are selected randomly, we
apply random and mixed models for the analy-
sis [56.2]. Mixed models include fixed and ran-
dom effects. A fixed effect is an unknown con-
stant. Its estimation from the data is a common
practice in analysis of variance (ANOVA) or re-
gression. A random effect is a random variable.
We estimate the parameters that describe its dis-
tribution, because – in contrast to fixed effects –

it makes no sense to estimate the random effect
itself.

This chapter combines ideas from two approaches:
problem generation and statistical analysis of com-
puter experiments. The work presented by Chiarandini
and Goegebeur [56.3] provides the basis of our sta-
tistical analysis. They present a systematic and well-
developed framework for mixed models. Related mod-
eling approaches were suggested by McGeoch [56.4]
and Birattari [56.5]. Gallagher and Yuan [56.6] present
a problem instance (landscape) generator that is pa-
rameterized by a small number of parameters, and the
values of these parameters have a direct and intuitive
interpretation in terms of the geometric features of the
landscapes that they produce. Castiñeiras et al. [56.7]
present a parameterizable benchmark generator for bin
packing instances based on the well-knownWeibull dis-
tribution. Using the shape and scale parameters of the
Weibull distribution, the authors generate benchmarks
that contain a variety of item size distributions. They
report that for all bin capacities, the number of bins re-
quired in an optimal solution increases as the Weibull
shape parameter increases. Using this feature, scalabil-
ity is enabled.

56.2 Features of Optimization Problems

56.2.1 Problem Classes and Instances

Nowadays, it is common practice in optimization to
choose a fixed set of problem instances in advance and
to apply classical ANOVA or regression analysis. In
many experimental studies a few problem instances �i

(iD 1; 2; : : : ; q) are used and the results of some runs of
the algorithms j̨ (jD 1; 2; : : : ; h) on these instances are
collected. The instances can be treated as blocks and all
algorithms are run on each single instance. Results are
grouped per instance �i. Analyses of these experiments
shed some light on the performance of the algorithms
on those specific instances. However, the interest of the
researcher should not be just the performance of the al-
gorithms on those specific instances chosen, but rather
on the generalization of the results to the entire class˘ .
Generalizations about the algorithm’s performance on
new problem instances are difficult or impossible in this
setting.

Based on ideas from Chiarandini and Goege-
beur [56.3], to overcome this difficulty, we propose
the following approach: a small set of problem in-

stances f�i 2˘ jiD 1; 2; : : : ; qg is chosen at random
from a large set, or class ˘ , of possible instances of
the problem. Problem instances are considered as factor
levels. However, this factor is of a different nature from
the fixed algorithmic factors in the classical ANOVA
setting. Indeed, the levels are chosen at random and the
interest is not in these specific levels but in the prob-
lem class ˘ from which they are sampled. Therefore,
the levels and the factor are random. Consequently,
our results are not based on a limited, fixed number of
problem instances. They are randomly drawn from an
infinite set, which enables generalization.

56.2.2 Feature Extraction
and Instance Generation

A problem class ˘ can be generated in different man-
ners. We will consider artificial and natural problem
class generators. Artificially generated problems allow
feature generation based on some predefined charac-
teristics. They are basically theory driven, i. e., the
researcher defines certain features such as linearity or
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multi modality. Based on these features, a model (for-
mula) is constructed. By integrating parameters into this
formula, many problem instances can be generated by
parameter variation. We will exemplify this approach
in the following paragraph. The second way, which will
generate natural problem classes, uses a three-stage ap-
proach. First, the real-word system and its components
are described. Then, features are extracted from a real-
world system. Based on this feature set, a model is
defined. Adding parameters to this model, new problem
instances can be generated. There is also a third way to
generate test instances: if we are lucky, many data are
available. In this case, we can sample a limited number
of problem instances from the larger set of real-world
data. The statistical analysis is similar for these three
cases.

Artificial Test Functions
Several problem instance generators have been pro-
posed over the last years. For example, Gallagher and
Yuan present a landscape test generator, which can be
used to set up problem instances for continuous, bound-
constrained optimization problems [56.6]. The Max-set
of Gaussian landscape generator (MSG) uses the max-
imum of m weighted Gaussian functions

G.x/D max
i21;2;:::;m

.wigi.x// ;

where g WRn !R denotes an n-dimensional Gaussian
function

g.x/D
 
exp

�� 1
2 .x��/˙�1.x��/T

�
.2�/n=2j˙ j1=2

!1=n

;

� is an n-dimensional vector of means, and ˙ is an
.n� n/ covariance matrix. The mean of each Gaussian
corresponds to an optimum on the landscape and the
location of all optima is known. The global optimum
is the one with the largest value. We will use the MSG
problem instance generator in Sect. 56.5 to demonstrate
our approach.

Natural Problem Classes
This section exemplifies the three fundamental steps for
generating real-world problem instances, namely:

1. Describing the real-world system and its data
2. Feature extraction and model construction
3. Instance generation.

We will illustrate this procedure by using the classic
Box and Jenkins airline data [56.8]. These data contain

the monthly totals of international airline passengers
from 1949 to 1961. The feature extraction is based on
methods from time-series analysis. Because of its sim-
plicity the Holt–Winters method is popular in many
application domains. It is able to adapt to changes in
trends and seasonal patterns. The Holt–Winters predic-
tion function requires the estimation of three param-
eters, i. e., ˛, ˇ and � , which can be estimated from
original time-series data. Their optimal values are deter-
mined by minimizing the squared one-step prediction
error. To generate new problem instances, these param-
eters can be slightly modified. Based on these modified
values, the model is re-fitted. Finally, we can extract the
new time series. One typical result from this instance
generation is shown in Fig. 56.1.Bartz-Beielstein [56.9]
describes this procedure in detail.

To illustrate the wide applicability of this approach,
we will list further real-work problem domains, which
are subject of our current research:

� Smart metering: The development of accurate fore-
casting methods for electrical energy consumption
profiles is an important task. We consider time se-
ries collected from a manufacturing process. Each
time series contains quarter-hourly samples of the
energy consumption of a bakery. A detailed data de-
scription can be found in [56.10].� Water industry: Canary is a software developed by
the United States Environmental Protection Agency
(US EPA) and Sandia National Laboratories. Its
purpose is to detect events in the context of wa-
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Fig. 56.1 Holt–Winters problem instance generator. The solid line
represents the real data, the dotted line predictions from the Holt–
Winters model and the fine dotted linemodified predictions, respec-
tively
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ter contamination. An event is in this context de-
fined as a certain time period where a contaminant
significantly deteriorates the water quality. Dis-
tinguishing events from (i) background changes,
(ii) maintenance and modification due to operation,
and (iii) outliers is an essential task, which was
implemented in the Canary software. Therefore,
deviations are compared to regular patterns and
short term changes. The corresponding data con-
tains multi-variate time-series data. It is a selection
from a larger dataset shipped with the open source
event-detection software CANARY developed by
US EPA and Sandia National Laboratories [56.11].� Finance: The data are real-world data from intra-
day foreign exchange (FX) trading. The FX market
is a financial market for trading currencies to en-
able international trade and investment. It is the
largest and most liquid financial market in the
world. Currencies can be traded via a wide variety
of different financial instruments, ranging from sim-
ple spot trades over to highly complex derivatives.

We use three foreign exchange (currency rate) time
series collected from Bloomberg. Each time series
contains hourly samples of the change in currency
exchange rate [56.12].

One typical goal in forecasting is the minimiza-
tion of the forecast errors or the differences between
real (observed) values, say yi, and predicted values,
say Oyi. This goal can be considered as an optimization
problem.

As stated in Sect. 56.2.2, the statistical analysis
is similar for artificial and natural problem classes.
Our goal can be stated as follows: For a given prob-
lem class ˘ , which can be artificial or natural, we
try to determine if an optimization algorithm ˛ or
several algorithm instances ˛i show similar behavior
on randomly selected problem instances �i 2˘ . This
question will be formulated as a statistical hypothesis.
Based on the related statistical framework, we can de-
termine confidence intervals for the performance of the
algorithm on unseen problem instances.

56.3 Algorithm Features

56.3.1 Factors and Levels

Evolutionary algorithms (EA) belong to the large class
of bio-inspired search heuristics. They combine specific
components, which may be qualitative, like the recom-
bination operator or quantitative, like the population
size. Our interest is in understanding the contribution
of these components. In statistical terms, these compo-
nents are called factors. The interest is in the effects
of the specific levels chosen for these factors. Hence,
we say that the levels and, consequently, the factors
are fixed. Although modern search techniques like se-
quential parameter optimization or Pareto genetic pro-
gramming [56.13] allow multi-objective performance
measures (solution quality versus variability or descrip-
tion length), we restrict ourselves to analyzing the effect
of these factors on a univariate measure of performance.
We will use the quality of the solutions returned by the
algorithm at termination as the performance measure.

56.3.2 Example: Evolution Strategy

Evolution strategies (ES) are prominent representatives
of evolutionary algorithms, which includes genetic al-
gorithms and genetic programming as well [56.15].

They can be classified as generic population-based
metaheuristic optimization algorithms for global opti-
mization that in some sense mimics the natural evo-
lution. Evolution strategies are applied to hard real-
valued optimization problems. Mutation is performed
by adding a normally distributed random value to each
vector component. The standard deviation of these ran-
dom values is modified by self-adaptation. Evolution

Initialization
and evaluation

Recombination
crossover

Mating selection

MutationEvaluation

Test for termination

Environmental
selection

replacement

Fig. 56.2 The evolutionary cycle, basic working scheme
of all ES and EA. Terms common for describing evolution
strategies are used, alternative terms are added below in
brown
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Table 56.1 Settings of exogenous parameters of an ES. Recombination operators are labeled as follows: 1D no, 2D
dominant, 3D intermediate, 4D intermediate as in [56.14]. Mutation uses the following encoding: 1D no mutation,
2D self adaptive mutation

Parameter Symbol Name Range Value
mue � Number of parent individuals N 5
nu � D �=� Offspring–parent ratio R

C

2:0

sigmaInit �
.0/
i Initial standard deviations R

C

1:0
nSigma n� Number of standard deviations. d denotes the problem dimension f1; dg 1

c� Multiplier for individual and global mutation parameters R
C

1:0
tau0 R

C

0:0
tau R

C

1:0
rho � Mixing number f1; �g 2
sel � Maximum age R

C

1:0
mutation Mutation f1; 2g 2
sreco r� Recombination operator for strategy variables f1; 2; 3; 4g 3
oreco rx Recombination operator for object variables f1; 2; 3; 4g 2

strategies can use a population of several solutions.
Each solution is considered as individual and consists
of object and strategy variables. Object variables repre-
sent the position in the search space, whereas strategy
variables store the step sizes, i. e., the standard devia-
tions for the mutation. We analyze the ES basic variant,
which was proposed in [56.14].

Mutation means neighborhood-based movement in
search space, which includes the exploration of the
outer space currently not covered by a population,
whereas recombination rearranges existing information
and so focuses on the inner space. Selection is meant
to introduce a bias towards better fitness values. A con-
crete ES may contain specific mutation, recombination,
or selection operators, or call them only with a cer-
tain probability, but the control flow is usually left

unchanged. Each of the consecutive cycles is termed
a generation. The control flow is shown in Fig. 56.2.

Concerning the representation, it should be noted
that most empiric studies are based on canonical forms
as binary strings or real-valued vectors, whereas many
real-world applications require specialized, problem-
dependent ones. Table 56.1 summarizes important ES
parameters. This chapter presents two case studies. The
first case study is based on a fixed ES parameter setting,
whereas the second case study modifies the recombi-
nation operator for object variables. We are convinced
that the applicability of the methods presented in this
chapter goes far beyond the simplified case studies. Our
main contribution is a framework, which allows conclu-
sions that are not limited to a small number of problem
instances but to problem classes.

56.4 Objective Functions

We will use the following optimization framework:
an ES is applied as a minimizer on the test func-
tion f .x/. Formally speaking, let S denote some set,
e.g., S�Rn. We are seeking for values f� and x�,
such that minx2S f .x/ with f� Dminx2S f .x/ and x� D
argmin f .x/. This approach can be extended in many
ways. For example, if S denotes times-series data, then
an optimization algorithm can be applied to minimize
the empirical mean squared prediction error.

Test problem instances will be drawn from Gal-
lagher’s and Yuan’s MSG test function generator. The
following parameters can be used to specify the MSG
generator:

� The number of Gaussian components m.� The mean vector � of each component.� The covariance matrix ˙ of each component.� The weight of each component wi.� A maximum threshold t 2 Œ0I 1� can be specified for
local optima and the fitness value of the global op-
timum G�. Local optima are randomly generated
within Œ0I t�G��.

The following tuple can be used to specify an MSG
generator

˘ WD �
Œ�c; c�n; n;m;D; fD˙ g; ft;G�g� ; (56.1)
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Fig. 56.3a-i Nine test problem instances from ˘MSG, generated with the MSG landscape generator as specified in (56.2). These
figures exemplify how numbers and locations of the randomly generated optima can vary. Usually, the optima are evenly dis-
tributed in the search space. In some settings, there are a few dominating optima as can be seen in part (g)

where c 2R defines the boundary constraints of the
search space, n the search space dimensionality, m
the number of Gaussian components, D the distribu-
tion used to generate the mean vectors of components,
D˙ the distribution or procedures used to generate co-
variances of components, t 2 Œ0I 1� the threshold for
local optima, and G� the function value of the global
optimum.

Based on (56.1), we have specified the following
MSG landscape generator for our experiments

˘MSG WD �
Œ�1I 1�2; 2; 10;UŒ�1I 1� ;
fUŒ0:05I 0:15�;UŒ��=4; �=4�g ; f0:8; 1g/ :

(56.2)

With this setting, the mean vector of each component
is generated randomly within Œ�1; 1�2. The covariance
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matrix of each component is generated with the proce-
dure D˙ in three steps:

1. A diagonal matrix S with eigenvalues is generated.
2. An orthogonal matrix T is generated through n.n�

1/=2 rotations with random angles between
Œ��=4; �=4�.

3. The covariance matrix is generated as TTST.

The weight wi of the component correspond-
ing to the global optimum is set to 1 while other
weights are randomly generated within Œ0I 0:8�. The
nine problem instances, �i 2˘MSG, .iD 1; : : : ; 9/

from Fig. 56.3 were generated with this parametriza-
tion.

Note that we are using the distance to the op-
timum as an objective function in our experiments.
Our objective function reads G� � f .x/, because we are
considering minimization problems. Other measures of
interest might be the gap percent of optimality

.G� � f .x//

G�

� 100 ;

or computation time, etc., see, e.g., [56.16].

56.5 Case Studies

Bartz-Beielstein [56.9] introduced the acronyms:

� SASP: one single algorithm and one single problem
instance� SAMP: one single algorithm and multiple problems
instances� MASP: multiple algorithms and one single problem
instance� MAMS: multiple algorithms and multiple problem
instances

for classifying optimization designs [56.17].

56.5.1 Single Problem Designs:
SASP and MASP

In SASP we analyze the performance of an optimiza-
tion algorithm ˛ on a single problem instance � . An
optimization problem has a set of input data which
instantiate the problem. This might be a function in
continuous optimization or the location and distances
between cities in a traveling salesman problem. In the
following, we will use Y to denote the random per-
formance measure obtained by r runs of algorithm ˛
on problem instance � . Because many optimization
algorithms such as evolutionary algorithms are random-
ized, their performance Y on one instance is a random
variable. It might be described by a probability den-
sity/mass function p.yj�/. Running the algorithm with
different random seeds on one problem instance, we
collect sample data y1; : : : ; yr, which are independent
and identically distributed (i.i.d.).

There are situations, in which SASP is the method
of first choice. Real-world problems, which have to be
solved only once in a very limited time, are good ex-

amples for using SASP optimizations. MASP shares
several characteristics with SASP. Because of their lim-
ited capacities for generalization, SASP andMASP will
not be investigated further in this study.

56.5.2 SAMP: Single Algorithm, Multiple
Problems

Fixed-Effects Models
This setup is commonly used for testing an algorithm
on a given (fixed) set of problem instances. Standard
assumptions from analysis of variance (ANOVA) lead
us to propose the following fixed-effects model [56.2]

Yij D �C �i C "ij ; (56.3)

where � is an overall mean, �i is a parameter unique
to the i-th treatment (problem instance factor), and "ij
is a random error term for replication j on problem in-
stance i. Usually, the model errors "ij are assumed to be
normally and independently distributed with mean zero
and variance �2. If problem instance factors are con-
sidered fixed, i. e., non random, the stochastic behavior
of the response variable originates from the algorithm.
This implies the experimental results

Yij � N.�C �i; �
2/ ; iD 1; : : : ; q; jD 1; : : : ; r ;

(56.4)

and that the Yij are mutually independent. Results
from statistical analyses remain valid only on the spe-
cific instances. Furthermore, SAMP with a fixed set of
problem instances is subject to criticism, e.g., that algo-
rithms are trained for this specific set up test instances
(over fitting).

In order to make the results of the analysis inde-
pendent of the specific instances and dependent instead
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on the class of instances from which the specific in-
stances are drawn, Chiarandini and Goegebeur propose
randomized and mixed models for the experimental
analysis of optimization algorithms as an extension of
(56.3) [56.3]. In contrast to model (56.3), these mod-
els allow generalizations of results to the whole class of
instances.

Randomized Models
In the following, we consider a population or class of
instances ˘ . The class ˘ consists of a large, possi-
bly an infinite, number of problem instances �i; iD
1; 2; 3; : : : Let p.�/ denote the probability of sampling
instance � . The performance Y of the algorithm ˛ on
the class ˘ is described by the probability function

p.y/D
X
�2˘

p.yj�/p.�/ : (56.5)

If we run an algorithm ˛ r times on instance � , then
we receive r replicates of ˛’s performance, denoted
by Y1; : : : ;Yr. These r observations are i.i.d., i. e.,

p.y1; : : : ; yrj�/D
rY

jD1

p.yjj�/ : (56.6)

So far, we have considered r replicates of the perfor-
mance measure Y on one problem instance � . Now we
consider several, randomly sampled problem instances.
Over all the instances the joint probability distribution
of the observed performance measures is obtained by
marginalizing over all instances

p.y1; : : : ; yr/D
X
�2˘

p.y1; : : : ; yrj�/p.�/ : (56.7)

Extending the model (56.7) to the case where one
algorithm with several parameter settings or several al-
gorithms are analyzed leads to mixed models, which
will be discussed in Sect. 56.5.3.

Example SAMP: ES on ˘1
(Random-Effects Design)

The simplest random-effects experiment is performed
as follows. For iD 1; : : : ; q a problem instance �i is
drawn randomly from the class of problem instances˘ .
On each of the sampled �i, the algorithm ˛ is run r
times using different seeds for ˛. Due to ˛’s stochastic
nature, we obtain, conditionally on the sampled in-
stance, r replications of the performance measure that
are i.i.d.

Let Yij (iD 1; : : : ; q; jD 1; : : : ; r) denote the ran-
dom performance measure obtained in the j-th replica-
tion of ˛ on �i. We are interested in drawing conclu-
sions about ˛’s performance on a larger set of problem
instances from ˘ and not just on those q problem
instances included in the experiment. A systematic
approach to accomplish this task comprehends the fol-
lowing steps:

� SAMP-1 algorithm and problem instances� SAMP-2 ANOVA and restricted maximum likeli-
hood estimator (REML) model building� SAMP-3 validation of the model assumptions� SAMP-4 hypothesis testing� SAMP-5 Confidence intervals and prediction.

SAMP-1 Algorithm and Problem Instances. The
goal of this case study is to analyze if one algorithm
shows a similar performance on a class of problem in-
stances, say ˘MSG. A random-effects design will be
used to model the results. We illustrate the decompo-
sition of the variance of the response values in (i) the
variance due to problem instance and (ii) the variance
due to the algorithm and derive results, which are based
on hypotheses testing as introduced in (56.12).

We consider one algorithm, an ES, which is run rD
10 times on a set of randomly generated problem
instances. The ES is parameterized with the default
setting from Table 56.1. These parameters are kept con-
stant during the experiment. Nine instances are drawn
from the set of problem instances ˘MSG. Problem in-
stances were generated with the MSG landscape gener-
ator as specified in (56.2). The corresponding problem
instances are shown in Fig. 56.3.

The null hypothesis reads There is no instance ef-
fect. Since we are considering the SAMP case, our
experiment is based on one ES instance only. There
are 90 observations, because 10 repeats were performed
on 9 problem instances. Figure 56.4 shows the perfor-
mance of the ES on these nine instances. The variable
fSeed is used to denote the problem instance num-
ber �i.

SAMP-2 ANOVA and REML Model Building.

ANOVA Model Building. The following analysis is
based on the linear statistical model

Yij D �C �i C "ij

(
iD 1; : : : ; q ;

jD 1; : : : ; r ;
(56.8)
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Fig. 56.4a,b Performance of the ES on nine test problem instances. (a) Problem instances plotted versus algorithm
performance. (b) Problem instances plotted against logarithmic performance. Smaller values are better

where � is an overall mean and "ij is a random er-
ror term for replication j on instance i. Note that in
contrast to the fixed-effects model from (56.3), �i is
a random variable representing the effect of instance i.
The stochastic behavior of the response variable orig-
inates from both the instance and the algorithm. This
is reflected in (56.8), where both �i and ij are random
variables. The model (56.8) is the so-called random-
effects model, cf. [56.2] or [56.3].

We assume that �1; : : : ; �q are i.i.d. N .0; �2
� / and

"ij, iD 1; : : : ; q, jD 1; : : : ; r, are i.i.d. N .0; �2/. If �i
is independent of ij and has variance V.�i/D �2

� , the
variance of any observation is V.Yij/D �2 C �2

� . Simi-
lar to the partition in classical ANOVA, the variability
in the observations can be partitioned into a compo-
nent that measures the variation between treatments
and a component that measures the variation within
treatments. Based on the fundamental ANOVA identity
SStotal D SStreat CSSerr, we define

MStreat D SStreat
q� 1

D r
Pq

iD1.
NYi: � NY::/2

q� 1
;

Table 56.2 ANOVA table for a one-factor fixed and random effects models

Source of variation Sum of squares Degrees of freedom Mean square EMS fixed EMS random

Treatment SStreat q� 1 MStreat �2 C r
Pq

iD1 �
2
i

q�1 �2 C r�2
�

Error SSerr q.r � 1/ MSerr �2 �2

Total SStotal qr � 1

and

MSerr D SSerr
q.r� 1/

D
Pq

iD1

Pr
jD1.Yij� NYi:/2

q.r� 1/
:

It can be shown that

E.MStreat/D �2 C r�2
� and E.MSerr/D �2 ;

(56.9)

cf. [56.2]. Therefore, the estimators of the variance
components are

O�2 DMSerr ; (56.10)

O�2
� D MStreat �MSerr

r
: (56.11)

The corresponding ANOVA table is shown in Ta-
ble 56.2. Based on ANOVA calculations, with (56.10)
we obtain an estimator of the first variance compo-
nent O�2 D�0:4848257, and from (56.11), we obtain
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the second component O�2
� D 11:32854. The model vari-

ance can be determined as O�2 C O�2
� D 10:84372. The

mean �D�12:05554 from (56.8) can be extracted. Fi-
nally, the p value in the ANOVA table is calculated
as 0:7979083.

Note that we have obtained a negative variance.
Since negative variances are not feasible, we can pro-
ceed by setting their values to zero and proceed with
these modified values. A more elegant way is presented
in the following.

Restricted Maximum Likelihood. In some cases, the
standard ANOVA, which was used in our example, pro-
duces a negative estimate of a variance component.
This can be seen in (56.11): if MSerr >MStreat, nega-
tive values occur. By definition, variance components
are positive. Methods that always yield positive vari-
ance components have been developed. Here, we will
use restricted maximum likelihood estimators (REML).
The ANOVA method of variance component estima-
tion, which is a method of moments procedure, and
REML estimation may lead to different results. Output
from an R-based analysis with the function lme from
the package lme4 reads as follows (fSeed denotes the
problem instance) [56.18]:

Linear mixed model fit by REML
Formula: yLog ~ 1 + (1 | fSeed)

Data: samp.df
AIC BIC logLik deviance REMLdev

475.6 483.1 -234.8 469.3 469.6
Random effects:
Groups Name Variance Std.Dev.
fSeed (Intercept) 0.000 0.0000
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Fig. 56.5a,b (a) Q–Q plot of the residuals for raw data. (b) Q–Q plot for the log-transformed responses

Residual 10.893 3.3004
Number of obs: 90, groups: fSeed, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) -12.0555 0.3479 -34.65

Compared to the ANOVA setting, different values
for O�2, O�2

� , and � were obtained. However, the REML-
based analysis also shows that the variability in the
response observations can be attributed to the variabil-
ity of the algorithm.

SAMP-3 Validation of the Model Assumptions. Be-
fore performing hypothesis testing based on the mod-
els introduced in SAMP-2, the validity of the model
assumptions has to be investigated. If the model is
adequate, the residuals should exhibit no structure.
Residuals are plotted against fitted values to check the
assumption of homoscedasticity and quantile–quantile
(Q–Q) plots are used to check if residuals meet the
normality assumption. Quantile–quantile plots of the
residuals are shown in Fig. 56.5 for the raw and the
log-transformed responses. These plots provide a good
way to compare the distribution of a sample with
a distribution. Large deviations from the line indicate
non-normality of the sample data. These Q–Q plots in-
dicate that a log transformation of the response might
be useful in our setting.

SAMP-4 Hypothesis Testing. Testing hypotheses
about individual treatments (instances) is useless be-
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cause the problem instances �i are here considered as
samples from some larger population of instances ˘ .
We test hypotheses about the variance component �2

� ,
i. e., the null hypothesis

H0 W �2
� D 0 versus H1 W �2

� > 0 : (56.12)

Under H0, the algorithm performance is identical on all
problem instances (all treatments are identical), i. e.,
r�2

� is very small. Based on (56.9), we conclude that
E.MStreat/D �2 C r�2

� and E.MSerr/D �2 are similar.
Under the alternative, variability exists between treat-
ments. Standard analysis shows that SSerr=�2 is dis-
tributed as chi-square with q.r�1/ degrees of freedom.
Let Fu;v denote the F distribution with u numerator
and v denominator degrees of freedom. Under H0, the
ratio

F0 D SStreat=q� 1

SSerr=q.r� 1/
D MStreat

MSerr

is distributed as Fq�1;q.r�1/. To test hypotheses in
(56.8), we require that �1; : : : ; �q are i.i.d. N .0; �2

� /,
"ij, iD 1; : : : ; q, jD 1; : : : ; r, are i.i.d. N .0; �2/, and
all �i and "ij are independent of each other. These con-
siderations lead to the decision rule to reject H0 at the
significance level ˛ if

f0 > F.1�˛I q� 1; q.r� 1// ; (56.13)

where f0 is the realization of F0 from the data observed.
An intuitive motivation for the form of statistic F0 can
be obtained from the expected mean squares. Under H0

both MStreat and MSerr estimate �2 in an unbiased way,
and F0 can be expected to be close to one. On the other
hand, large values of F0 give evidence against H0.

Regarding the SAMP case, we obtain the following
values: Based on (56.9) and (56.13), we can deter-
mine the F statistic and the p value. We get MStreat D
MSerr D 10:89275 and f0 D 1, which results in a large p
value: 0:4426363. The null hypothesis H0 W �2

� D 0
from (56.12) cannot be rejected, i. e., we conclude that
there is no instance effect. A similar conclusion was ob-
tained from the ANOVAmethod of variance component
estimation as introduced in Table 56.2.

SAMP-5 Confidence Intervals and Prediction. An
unbiased estimator of the overall mean � is

O�D Ny
��

D
qX

iD1

rX
jD1

yij
.qr/

:

Its variance is given by

V.Ny
��

/D V

0
@ qX

iD1

rX
jD1

yij
.qr/

1
AD r�2

� C �2

qr
:

With (56.9) and (56.10), we obtain an estimator of the
variance of the overall mean � as

OV.Ny
��

/D MStreat
qr

:

Since

NY
��

��q
MStreat

qr

� tq.r�1/ ;

the confidence limits for � can be derived as

Ny
��

˙ t1�˛=2Iq.r�1/

s
MStreat
qr

: (56.14)

We conclude the SAMP case study with predic-
tion of the algorithm’s performance on a new in-
stance from the same class. Based on (56.14), we
obtain the following 95% confidence interval: Œ2:6773�
10�6I 1:262� 10�5�. Again, confidence intervals from
the REML and ANOVA methods are very similar.
Summarizing, we can conclude that the ES performs
similarly on instances from ˘MSG, which were gener-
ated with (56.2).

56.5.3 MAMP: Multiple Algorithms, Multiple
Problems

In the MAMP case study, fixed effects are included
in the conditional structure of (56.6), which leads to
a mixed model. Instead of one fixed algorithm as in
the SAMP case, we consider either several algorithms
or algorithms with several parameters. Both situations
can be treated while considering algorithms as levels
of a fixed factor, whereas problem instances are drawn
randomly from the population of instances˘MSG:

� MAMP-1 algorithm and problem instances� MAMP-2 ANOVA and REML model building� MAMP-3 validation of the model assumptions� MAMP-4 hypothesis testing:
1. Random effects
2. Fixed effects� MAMP-5 confidence intervals and prediction.
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MAMP-1 Algorithm and Problem Instances
We aim at comparing the performance of the ES
with different recombination operators over an instance
class. More precisely, we have four ES instances using
recombination operators f1; 2;3; 4g and nine instances
randomly sampled from the class˘MSG as illustrated in
Fig. 56.3. Each run is repeated ten times. In this study
4� 9� 10D 360 data were used. We are interested in
the following questions:

� Is there an instance effect?� Do the mean performances of the ES with different
recombination operators differ?� Do the instance–algorithm interactions contribute to
the variability of the response?

A first visual inspection, which plots the perfor-
mance of the algorithm within each problem instance,
is shown in Fig. 56.6. In eight of the nine instances the
linear regression line has a negative slope and the inter-
cepts do not differ very much. This indicates that there
is no significant interaction between the fixed and the
random factors.

1 2 3

130 131 132

127 128 129

124 125 126

4

y

1 2 3 4 1 2 3 4
Objreco

–5

–10

–5

–10

–5

–10

Fig. 56.6 Four algorithms (ES with modified recombination oper-
ators) on nine test problem instances. Each panel represents one
problem instance and problem instances are labeled from 124 to
130. Performance is plotted against the level of the recombination
operator

MAMP-2 ANOVA and REML Model Building
The variability in the performance measure can be
decomposed according to the following mixed-effects
ANOVA model

Yijk D �C j̨ C �i C �ij C "ijk ; (56.15)

where � is an overall performance level common to all
observations, j̨ is a fixed effect due to the algorithm j,
�i is a random effect associated with instance i, �ij is
a random interaction between instance i and algorithm j,
and "ijk is a random error for replication k of algorithm j
on instance i. We assume that the j̨’s are fixed effects
such that

Ph
jD1 j̨ D 0 and that the random elements �i

are i.i.d.N .0; �2
� /, �ij are i.i.d.N .0; �2

� /, "ijk are i.i.d.
N .0; �2/ and �i, �ij and "ijk are mutually independent
random variables. Similarly to (56.6) the conditional
distribution of the performance measure given the in-
stance and the instance–algorithm interaction is given
by

Yijkj�i; �ij �N
�
�C j̨ C �i C �ij; �

2
�
; (56.16)

with iD 1; : : : ; q; jD 1; : : : ; h; and kD 1; : : : ; r. The
marginal model reads (after integrating out the random
effects �i and �ij):

Yijk �N
�
�C j̨; �

2 C �2
� C �2

�

�
: (56.17)

Based on these statistical assumptions, hypothesis tests
can be performed about fixed and random factor effects.
Using the mixed model (56.16), we are interested in
testing whether there is a difference between the fac-
tor level means �C j̨ (jD 1; : : : ; h). The hypotheses
for testing the fixed effects can be formulated as

H0 W ˛i D 08i against H1 W 9 j̨ ¤ 0 : (56.18)

Regarding random effects, tests about particular levels
are useless. This is similar to the random-effects model
(56.8). Again, we perform tests on the variance compo-
nents �2

� and �2
� instead. These can be formulated as

follows

H0W �2
� D 0 ; and H0W �2

� D 0 ;

H1W �2
� > 0 ; and H1W �2

� > 0 ;
(56.19)

respectively. If all treatment (problem instances) com-
binations have the same number of observations, i. e.,
if the design is balanced, the test statistics for these hy-
potheses are ratios of mean squares that are chosen such
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Table 56.3 Expected mean squares and consequent appropriate test statistics for a mixed two-factor model with h fixed
factors, q random factors, and r repeats (after [56.3])

Effects Mean squares Df Expected mean squares Test statistics

Fixed factor MSA h� 1 �2 C r�2
� C rq

Ph
jD1˛

2
j

h�1 MSA=MSAB
Random factor MSB q� 1 �2 C r�2

� C rh�2
� MSB=MSAB

Interaction MSAB .h� 1/.q� 1/ �2 C r�2
� MSAB=MSE

Error MSE hq.r � 1/ �2

Table 56.4 ANOVA for the MAMP case

Mean squares Factors Df Sum Sq Mean Sq F value Pr(>F)
MSA objreco 3 154.59 51.53 11.05 0.0000
MSB fSeed 8 251.79 31.47 6.75 0.0000
MSAB objreco:fSeed 24 185.60 7.73 1.66 0.0288
MSE Residuals 324 1511.27 4.66

that the expected mean squares of the numerator dif-
fers from the expected mean squares of the denominator
only by the variance components of the random factor
under test. Chiarandini and Goegebeur [56.3] present
the resulting analysis of variance, which is shown in Ta-
ble 56.3.

ANOVA Model Building
The ANOVA table for the experiments from the MAMP
case study is shown in Table 56.4. Equating the ob-
served mean squares in the lines of the ANOVA table to
their expected values and solving for the variance com-
ponents leads to the following equations [56.2]

O�2
� D MSB�MSAB

hr
D 0:593502 ;

O�2
� D MSAB�MSE

r
D 0:306907 ;

O�2 DMSED 4:664423 :

Next, we will compare these results to the REML-
based analysis of the mixed model.

REML Model Building
We have specified sum contrasts instead of the default
treatment contrasts used in lmer(). Again, fSeed rep-
resents the problem instance, whereas the algorithm
instance j̨, jD 1; : : : ; 4, is represented by objreco.

Linear mixed model fit by REML
Formula: yLog ~ objreco + (1 | fSeed)

+ (1 | fSeed:objreco)

Random effects:
Groups Name Variance Std.Dev.
fSeed:objreco (Intercept) 0.30691 0.55399
fSeed (Intercept) 0.59351 0.77039

Residual 4.66442 2.15973
Number of obs: 360,
groups: fSeed:objreco, 36; fSeed, 9

Fixed effects:
Estimate Std. Error t value

(Intercept) -6.0222 0.2956 -20.370
objreco1 0.6176 0.2539 2.433
objreco2 0.6918 0.2539 2.725
objreco3 -0.6671 0.2539 -2.628

As can be seen from the Random effects sec-
tion of the REMLmodel output, the estimated variances
for the problem instance and the instance-interaction
random effects are O�2

� D 0:59351 and O�2
� D 0:30691,

respectively. The Random effects section presents
the estimates of the fixed effects model parameters, i. e.,
objreco.

MAMP-3 Validation of the Model Assumptions
Again, a check of the diagnostic plots (Fig. 56.7) reveals
that a log transformation of the response improves the
model adequacy.

MAMP-4a Hypothesis Testing: Random Effects
We will consider random effects first. Regarding prob-
lem instances, test about levels are meaningless. Hence,
we perform tests about the variance components �2

�

and �2
� , which were presented in (56.19). First, we

test the null hypothesis, which states that the com-
ponents of the random effects are zero. Based on
the ANOVA from Table 56.3, we obtain the values
for the MAMP case that are shown in Table 56.4.
The values reveal that there are main factor effects
(fixed and random), but no significant interaction
effects.
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Fig. 56.7a,b (a) Q–Q plot of the residuals for raw data. (b) Q–Q plot for the log-transformed responses

Alternatively, we can compute the likelihood ratios
of models with and without the factors under observa-
tion.

Data: mamp.df
Models:
mamp.lmer2: yLog ~ objreco + (1 | fSeed)
mamp.lmer3: yLog ~ objreco + (1 | fSeed)

+ (1 | fSeed:objreco)
Df AIC BIC logLik

mamp.lmer2 6 1616.7 1640.0 -802.35
mamp.lmer3 7 1616.6 1643.8 -801.31

Chisq Chi Df Pr(>Chisq)
2.0929 1 0.148

These tests indicate that there are also no significant
instance-algorithm interactions. Additional likelihood-
ratio tests show that the fixed factor and random factor
effects are significant.

MAMP-4b Hypothesis Testing:
Fixed Factor Effects

Regarding fixed factors, we are interested in testing for
differences in the factor level means �C˛i. These tests
were formulated in (56.18), i. e., we are testing H0: all
˛i are equal to 0 versus H1: at least one j̨ ¤ 0. Here,
we use the test statistic from [56.2, p. 523] for testing
that the means of the fixed factor effects are equal. The
appropriate test statistic for testing that the means of the
fixed factor effects are equal, i. e., H0 is true, is

F0 D MSA

MSAB
D 154:59=3

185:6=24
D 6:663 362 ;

with values taken from Table 56.4. The reference dis-
tribution is Fn�1;.n�1/.q�1/. We calculate the p value
for the test on the fixed-effect term. The p value ob-
tained is 0:002, hence the results collected indicate that
the factor recombination (objreco) has a statistically
significant impact on the performance of the algorithm.
Using sum of contrasts implies that

P
j̨ D 0. The

point estimates for the mean algorithm performance
with the j-th fixed factor setting can be obtained by
�

�j D �C j̨. The fixed factor effects can be estimated

–7 –6.5 –6 –5.5 –5
x

4

3

2

1

Fig. 56.8 Paired comparison plots. Results from four ES
instances with different recombination operators are shown
in this plot
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in the mixed model as

O�D y:::
Ǫj D yj: � y::: ;

which results in the following estimates: Ǫ1 D
0:6175519, Ǫ2 D 0:6918047, Ǫ3 D�0:6671266, and
Ǫ4 D�0:6423659.

The same estimates were obtained with the REML
analysis as can be seen from the REML model out-
put in Sect 56.5.3. The corresponding fixed effects are
shown in the Fixed effects section of the REML
output. For example, we obtain the following value:
objreco1 = Ǫ1 D 0:6176.

MAMP-5 Confidence Intervals and Prediction
We generate paired comparisons plots, which are
based on confidence intervals. The wrapper func-
tion intervals() from Chiarandini and Goege-
beur [56.3] was used for visualizing these confidence
intervals as shown in Fig. 56.8. When intervals over-
lap we conclude that there is no significant difference.
Here, we can conclude that the recombination op-
erators (1) and (2) show a similar performance,
whereas performances between (3) and (2) are
different.

Intermediate recombination of the object variables,
i. e., (3) and (4), results in a significant improvement
of the performance.

56.6 Summary and Outlook

In order to answer question (Q-1), we propose an ap-
proach to generate natural problem classes, which are
based on real-world data. If no such data are available,
artificial problem generators such as MSG can be used.
Since our approach uses a model, say M, to generate
new problem instances, one conceptual problem arises:
this approach is not applicable, if the final goal is the
determination of a model for the data, becauseM is per
definition the best model in this case, and the search for
good models will result in M. However, there is a sim-
ple solution to this problem. In this case, the feature
extraction and model generation should be skipped and
the original data should be modified by adding some
noise or performing transformations on the data. Nev-
ertheless, if applicable, the model-based approach is
preferred, because it sheds some light on the underly-
ing problem structure.

The model-based approach can be used to generate
infinitely many test-problem instances. Instead of using
a fixed number of problem instances, we propose:

1. Using randomly generated problem instances
2. Treating the problem instance as a random factor.

Algorithms with different parameterizations are
tested on this set of randomly generated problem in-
stances. This experimental setup requires modified
statistics, so-called random-effects models or mixed
models. This approach may lead to objective evalua-
tions and comparisons. If normality assumptions are

met, confidence intervals can be determined, which
forecast the behavior of an algorithm on unseen prob-
lem instances. Furthermore, results can be generalized
in real-world settings. This gives an answer to question
(Q-2).

In order to demonstrate the applicability of our ap-
proach, the performance of an evolution strategy was
analyzed. The first SAMP example illustrates that the
selection of the problem instance from the problem
class ˘MSG has no significant impact on the per-
formance of the optimization algorithm. Furthermore,
confidence intervals, which can be used to predict the
performance of the algorithm on a problem class, were
determined. The MAMP case exemplifies how to ana-
lyze the effect of different algorithm parameter settings
on the performance. Four variants of the recombina-
tion operator and nine problem instances were used.
The analysis reveals that the choice of the recombina-
tion operator has a significant effect on the algorithm’s
performance: the performance of the algorithm differs
with different recombination operators. Intermediate re-
combination of the object variables results in an perfor-
mance improvement.We demonstrated that the problem
instances contribute significantly to the variability in
the response and that there is no significant instance–
algorithm interaction.

The software that was used in this study will be inte-
grated into the R package SPOT (sequential parameter
optimization toolbox) [56.19].
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