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5. Monotone Measures-Based Integrals

Erich P. Klement, Radko Mesiar

The theory of classical measures and integral re-
flects the genuine property of several quantities
in standard physics and/or geometry, namely the
�-additivity. Though monotone measure not as-
suming �-additivity appeared naturally in models
extending the classical ones (for example, inner
and outer measures, where the related integral
was considered by Vitali already in 1925), their
intensive research was initiated in the past 40
years by the computer science applications in ar-
eas reflecting human decisions, such as economy,
psychology, multicriteria decision support, etc. In
this chapter, we summarize basic types of mono-
tone measures together with the basic monotone
measures-based integrals, including the Choquet
and Sugeno integrals, and we introduce the con-
cept of universal integrals proposed by Klement
et al. to give a common roof for all mentioned
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integrals. Benvenuti’s integrals linked to semicop-
ulas are shown to be a special class of universal
integrals. Up to several other integrals, we also in-
troduce decomposition integrals due to Even and
Lehrer, and show which decomposition integrals
are inside the framework of universal integrals.

Before Cauchy, there was no definition of the integral
in the actual sense of the word definition, though the
integration was already well established and in many ar-
eas applied method. Recall that constructive approaches
to integration can be traced as far back as the ancient
Egypt around 1850 BC; the Moscow Mathematical Pa-
pyrus (Problem 14) contains a formula of a frustum
of a square pyramid [5.1]. The first documented sys-
tematic technique, capable of determining integrals, is
the method of exhaustion of the ancient Greek as-
tronomer Eudoxus of Cnidos (ca. 370 BC) [5.2] who
tried to find areas and volumes by approximating them
by a (large) number of shapes for which the area or vol-
ume was known. This method was further developed
by Archimedes in third-century BC who calculated the
area of parabolas and gave an approximation to the
area of a circle. Similar methods were independently
developed in China around third-century AD by Liu
Hui, who used it to find the area of the circle. This

was further developed in the fifth century by the Chi-
nese mathematicians Zu Chongzhi and Zu Geng to find
the volume of a sphere. In the same century, the In-
dian mathematician Aryabhata used a similar method
in order to find the circumference of a circle. More
than 1000 years later, Johannes Kepler invented the
Kepler’sche Fassregel [5.3] (also known as Simpson
rule) in order to compute the (approximative) volume
of (wine) barrels.

Based on the fundamental work of Isaac New-
ton and Gottfried Wilhelm Leibniz in the 18th century
(see [5.4, 5]), the first indubitable access to integration
was given by Bernhard Riemann in his Habilitation
Thesis at the University of Göttingen [5.6]. Note that
Riemann has generalized the Cauchy definition of in-
tegral defined for continuous real functions (of one
variable) defined on a closed interval Œa; b�.

Among several other developments of the inte-
gration theory, recall the Lebesgue approach covering
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measurable functions defined on a measurable space
and general �-additive measures. Here we recall the
final words of H. Lebesgue from his lecture held at
a conference in Copenhagen on May 8, 1926, entitled
The Development of the Notion of the Integral (for the
full text see [5.7]):

: : : if you will, that a generalization made not for
the vain pleasure of generalizing, but rather for the
solution of problems previously posed, is always
a fruitful generalization. The diverse applications
which have already taken the concepts which we
have just examine prove this super-abundantly.

All till nowmentioned approaches to integration are
related to measurable spaces, measurable real functions
and (�-)additive real-valued measures. Though there
are many generalizations and modifications concerning
the range and domain of considered functions and mea-
sures (and thus integrals), in this chapter we will stay in
the above-mentioned framework, with the only excep-
tion that the (�-)additivity of measures is relaxed into
their monotonicity, thus covering many natural general-
izations of (�-)additive measures, such as outer or inner
measures, lower or upper envelopes of systems of mea-
sures, etc.

Maybe the first approach to integration not deal-
ing with the additivity was due to Vitali [5.8]. Vitali
was looking for integration with respect to lower/upper
measures and his approach is completely covered by
the later, more general, approach of Choquet [5.9],
see Sect. 5.1. Note that the Choquet integral is a gen-
eralization of the Lebesgue integral in the sense

that they coincide whenever the considered measure
is �-additive (i. e., when the Lebesgue integral is
meaningful).

A completely different approach, influenced by the
starting development of fuzzy set theory [5.10], is due
to Sugeno [5.11]. Sugeno even called his integral as
fuzzy integral (and considered set functions as fuzzy
measures), though there is no fuzziness in this con-
cept (Sect. 5.1). Later, several approaches generalizing
or modifying the above-mentioned integrals were in-
troduced. In this chapter, we give a brief overview
of these integrals, i. e., integrals based on monotone
measures. In the next section, some preliminaries and
basic notions are recalled, as well as the Choquet and
Sugeno integrals. Section 5.2 brings a generalization
of both Choquet and Sugeno integrals, now known as
the Benvenuti integral. In Sect. 5.3, universal integrals
as a rather general framework for monotone measures-
based integral is given and discussed, including copula-
based integrals, among others. In Sect. 5.4, we bring
some integrals not giving back the underlying measure.
Finally, some possible applications are indicated and
some concluding remarks are added. Note that we will
not discuss integrals defined only for some special sub-
classes of monotone measures, such as pseudoadditive
integrals [5.12, 13] or t-conorms-based integrals ofWe-
ber [5.14]. Moreover, we restrict our considerations to
normed measures satisfyingm.X/D 1, and to functions
with range contained in Œ0; 1�. This is done for the sake
of higher transparentness and the generalizations for
m.X/ 2 �0;1� and functions with different ranges will
be covered by the relevant quotations only.

5.1 Preliminaries, Choquet, and Sugeno Integrals

For a fixed measurable space .X;A/, where A is a �-
algebra of subsets of the universe X, we denote by
F.X;A/ the set of all A-measurable functions f W X !
Œ0; 1�, and byM.X;A/ the set of all monotone measures
m WA! Œ0; 1� (i. e., m.;/D 0, m.X/D 1 and m.A/�
m.B/ whenever A� B� X). Note that functions f from
F.X;A/ can be seen as membership functions of fuzzy
events on .X;A/, and that monotone measures are in
different references also called fuzzy measures, capaci-
ties, pre-measures, etc. Moreover, if X is finite, we will
always considerAD 2X only. In such case, any mono-
tone measure m 2M.X;A/ is determined by 2jXj � 2
weights from Œ0; 1� (measures of proper subsets of X)
constraint by the monotonicity condition only, and to

each monotone measure m WA! Œ0; 1� we can assign
its Möbius transformMm WA!R given by

Mm.A/D
X
B�A

.�1/jAnBj 	m.B/: (5.1)

Then

m.A/D
X
B�A

Mm.B/: (5.2)

Moreover, dual monotone measure md WA! Œ0; 1� is
given by md.A/D 1�m.Ac/.
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Among several distinguished subclasses of mono-
tone measures from M.X;A/ we recall these classes,
supposing the finiteness of X:

� Additivemeasures, m.A[B/D m.A/Cm.B/when-
ever A\BD ;;� Maxitivemeasures, m.A[B/Dm.A/_m.B/ (these
measures are called also possibility measures [5.15,
16]);� k-additive measures, Mm.A/D 0 whenever jAj> k
(hence additive measures are 1-additive);� Belief measures,Mm.A/� 0 for all A� X;� Plausibility measures, md is a belief measure;� Symmetric measures,Mm.A/ depends on jAj only.
For more details on monotone measures, we recom-

mend [5.17–19] and [5.20].
Concerning the functions, for any c 2 Œ0; 1�;A 2A

we define a basic function b.c;A/ W X ! Œ0; 1� by

b.c;A/.x/D
�

c if x 2 A ;

0 else :

Obviously, basic functions can be related to the char-
acteristic functions, 1A D b.1;A/ and b.x;A/D c 	 1A.
However, as we are considering more general types of
multiplication as the standard product, in general, we
prefer not to depend in our consideration on the stan-
dard product.

The first integral introduced for monotonemeasures
was proposed by Choquet [5.9] in 1953.

Definition 5.1
For a fixed monotone measure m 2M.X;A/, a func-
tional Chm WF.X;A/ ! Œ0; 1� given by

Chm.f /D
1Z

0

m.f � t/dt (5.3)

is called theChoquet integral (with respect tom), where
the right-hand side of (5.3) is the classical Riemann in-
tegral.

Note that the Choquet integral is well defined be-
cause of the monotonicity of m. Observe that if m is
�-additive, i. e., if it is a probability measure on .X;A/,
then the function h W Œ0; 1�! Œ0; 1� given by h.t/D
m.f � t/ is the standard survival function of the random
variable f , and then Chm.f /D

R 1
0 h.t/dt D R

X f dm is the
standard expectation of f (i. e., Lebesgue integral of f
with respect to m).

Due to Schmeidler [5.21, 22], we have the following
axiomatization of the Choquet integral.

Theorem 5.1
A functional I WF.X;A/ ! Œ0; 1�, I.1X/D 1, is the Cho-
quet integral with respect to monotone measure m 2
M.X;A/ given by m.A/D I.1A/ if and only if I is
comonotone additive, i. e., if I.f C g/D I.f /C I.g/ for
all f ; g 2F.X;A/ such that f C g 2 F.X;A/ and f and g
are comonotone, .f .x/� f .y//	.g.x/� g.y//� 0 for any
x; y 2 X.

We recall some properties of the Choquet integral.
It is evident that the Choquet integral Chm is an

increasing functional, Chm.f /� Chm.g/ for any m 2
M.X;A/, f ; g 2 F.X;A/ such that f � g. Moreover, for
each A 2A it holds Chm .b.c;A//D c 	m.A/, and espe-
cially Chm.1A/D m.A/.

Remark 5.1
i) Due to results of Šipoš [5.23], see also [5.24],

the comonotone additivity of the functional I in
Theorem 5.1, which implies its positive homogene-
ity, I.c f /D c 	 I.f / for all c> 0 and f 2 F.X;A/

such that c f 2 F.X;A/ can be replaced by the pos-
itive homogeneity of I and its horizontal additivity,
i. e.,

I.f /D I.f ^ a/C I.f � f ^ a/

for all f 2 F.X;A/ and a 2 Œ0; 1�.
ii) Choquet integral Chm WF.X;A/ ! Œ0; 1� is continu-

ous from below,

lim
n!1

Chm.fn/D Chm.f /

whenever for .fn/n2N 2FN
.X;A/

we have fn � fnC1

for all n 2N and f D limn!1

fn, if and only if m is
continuous from below,

lim
n!1

m.An/Dm.A/

whenever for .An/n2N 2AN we have An � AnC1

for all n 2N and ADS
n2N An.

iii) Choquet integral Chm W F.X;A/ ! Œ0; 1� is subaddi-
tive (superadditive),

I.fCg/� I.f /CI.g/ .I.f C g/� I.f /C I.g//
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for all f ; g; f C g 2 F.X;A/, if and only if m is sub-
modular (supermodular),

m.A[B/Cm.A\B/ � m.A/Cm.B/ ;

.m.A[B/Cm.A\B/ � m.A/Cm.B//

for all A;B 2A.
iv) For any m 2M.X;A/ and f 2F.X;A/ it holds

Chmd .f /D 1�Chm.1� f / ;

i. e., in the framework of aggregation func-
tions [5.25] the dual to a Choquet integral (with
respect to a monotone measure m) is again the Cho-
quet integral (with respect to the dual monotone
measure md).

For the proofs and more details about the above re-
sults on Choquet integral, we recommend [5.18, 19, 24,
26].

Restricting our considerations to finite universes,
we have also the next evaluation formula due to
Chateauneuf and Jaffray [5.27]

Chm.f /D
X
A�X

Mm.A/ 	min .f .x/ j x 2 A/ : (5.4)

In the Dempster–Shafer theory of evidence [5.28, 29],
belief measures are considered, and then the Möbius
transform Mm W 2X n f;g ! Œ0; 1� of a belief measure m
is called a basic probability assignment. Evidently, Mm

can be seen as a probability measure (of singletons)
on the finite space 2X n f;g (with cardinality 2jXj � 1),
and defining a function F W 2X n f;g ! Œ0; 1� by F.A/D
min .f .x/jx 2 A/, the formula (5.4) can be seen as the
Lebesgue integral of F with respect toMm (i. e., it is the
standard expectation of variable F)

Chm.f /D
X

A22Xnf;g

F.A/ 	Mm.A/ :

Another genuine relationship of Choquet and
Lebesgue integrals in the framework of the Dempster–
Shafer theory is based on the fact that each belief
measure m can be seen as a lower envelope of the
class of dominating probability measures, i. e., for each
A� X (X is finite)

m.A/D inf fP.A/jP� mg :

Then

Chm.f /D inf

8<
:
Z
X

f dPjP� m

9=
; :

Similarly, for the related plausibility measure md , it
holds

Chmd .f /D sup

8<
:
Z
X

f dPjP� md

9=
;

D sup

8<
:
Z
X

f dPjP� m

9=
; :

For interested readers, we recommend the collec-
tion [5.30].

In general, for any monotone measure m 2M.X;A/

and any measurable (continuous from below) func-
tion f 2 F.X;A/ there is a probability measure Pm;f on
.X;A/ so that

Chm.f /D
Z
X

f dPm;f ; (5.5)

see, e.g., [5.24, Theorem 2.6], where the right-hand
side of (5.5) is the standard Lebesgue integral. More-
over, if f ; g 2F.X;A/ are comonotone, one can find
unique probability measure P allowing to express the
Choquet integral of f and g with respect to m as
the Lebesgue integral of f and g with respect to P,
respectively. As an immediate consequence of (5.5),
Jensen’s inequality for Choquet integral can be shown
to be valid. Similarly, if f and g are comonotone,
based on the above observations, one can prove the
Minkowski and Chebyshev inequality. For more details,
see [5.31].

For k 2N, consider a probability measure P on
the product space .X;A/k, and define a set function
m WA! Œ0; 1� by m.A/D P.Ak/. Then m 2M.X;A/ is
a k-additive monotone measure (and belief measure, as
well), and for all f 2F.X;A/ it holds

Chm.f /D
Z
Xk

F dP ; (5.6)

where F W Xk ! Œ0; 1� is given by F.x1; : : : ; xk/D
min .f .x1/; : : : ; f .xk//. For more details see [5.32].
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The Sugeno integral (in the original sources
called fuzzy integral) was introduced by Sugeno in
1972 in Japanese in [5.33] and in English in 1974
in [5.11]. Inspired by the fuzzy set theory introduced
by Zadeh [5.10], Sugeno has proposed a way how to
formalize human subjectivity in spirit similar to the ran-
domness but based only on ordinal scales. His concept
is not fuzzy, though both fuzzy set theory and Sugeno’s
integral theory exploit the same aggregation functions
(sup and inf), and considering functions f 2F.X;A/ as
membership functions of fuzzy subsets of X, the corre-
sponding Sugeno integral can be seen as a version of
expectation of fuzzy sets.

Definition 5.2
For a fixed monotone measure m 2M.X;A/, a func-
tional Sum WF.X;A/ ! Œ0; 1� given by

Sum.f /D sup fmin .t;m.f � t// jt 2 Œ0; 1�g (5.7)

is called the Sugeno integral (with respect to m).

There is an equivalent formula for the Sugeno integral,
compare ([5.11, Definition 3.1]),

Sum.f /D sup fmin .m.A/; inf ff .x/jx 2 Ag/ jA 2Ag ;
(5.8)

which in the case of finite X (and using also lattice no-
tation supD_, minD^) can be rewritten as

Sum.f /D
_
A�X

�
M_

m .A/^min.f .x/jx 2 A/
�
; (5.9)

showing the striking similarity with the evaluation for-
mula (5.4) for the Choquet integral. Here the set func-
tionM_

m W 2X n f;g ! Œ0; 1� is the so-called possibilistic
Möbius transform introduced by Mesiar in [5.34] and
given by

M_

m .A/D
(
0 if m.A/D m.B/ for some B ¤ A ;

m.A/ else :

Sugeno integral has properties similar to the Choquet
integral. Indeed, it is nondecreasing functional such that
Sum.b.c;A//D c^m.A/, and in particular Sum.1A/D
m.A/. Moreover, Sum is comonotone maxitive, i. e.,
Sum.f _ g/D Sum.f /_ Sum.g/ for any comonotone
f ; g 2F.X;A/, and min-homogeneous, Sum.c^ f /D c^
Sum.f /. We have the next axiomatization of the Sugeno
integral due toMarichal [5.35] (compare with Theorem
5.1 for the Choquet integral).

Theorem 5.2
A functional I WF.X;A/ ! Œ0; 1�, I.1X/D 1, is the
Sugeno integral with respect to monotone measure
m 2M.X;A/ given by m.A/D I.1A/ if and only if I is
comonotone maxitive and min-homogeneous.

For alternative axiomatizations see [5.24].
Choquet and Sugeno integrals with respect to

a monotonemeasuremmay differ not more than 1
4 , i. e.,

for all f 2 F.X;A/ it holds

jChm.f /� Sum.f /j � 1

4
:

Moreover, Chm.f /D Sum.f / for all f 2F.X;A/ if and
only if m.A/ 2 f0; 1g for all A 2A, and then

Chm.f /D Sum.f /D sup finf ff .x/jx 2 Ag jm.A/D 1g ;
which in case X is finite turns out to be a lattice polyno-
mial.

Note that if X has cardinality n and m.A/ 2 f0; 1g
for all A� X, then Chm D Sum W Œ0; 1�n ! Œ0; 1� are
the only n-ary continuous aggregation functions in-
variant under each automorphism 	 W Œ0; 1�! Œ0; 1�,
i. e., 	 ıChm.f /D Chm.f ı	/ for each f Œ0; 1�n (for f D
.a1; : : : ; an/; f ı	 D .	.a1/; : : : ; 	.an//). For more de-
tails see [5.36].

Example 5.1
i) Let X D f1; 2; 3g and define m W 2X ! Œ0; 1� by

m.A/D
�

0 if card A� 1 ;
1 otherwise :

Then, for each f D .x; y; z/ 2 Œ0; 1�3,

Chm.f /D Sum.f /D .x^ y/_ .x^ z/_ .y^ z/

Dmed.x; y; z/

brings the classical median.
ii) Let X D f1; 2g and define m W 2X ! Œ0; 1� by

m.A/D card A
2 . Then, for each f D .x; y/ 2 Œ0; 1�2,

Chm.f /D xC y

2

(i. e., Chm is the standard arithmetic mean), while

Sum.f /D .x^ y/_
�
.x_ y/^ 1

2

�
:

For f1 D
�
1
2 ; 1

�
, Chm.f1/D 3

4 and Sum.f1/D 1
2 .

For f2 D
�
0; 1

2

�
, Chm.f2/D 1

4 and Sum.f2/D 1
2 .
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In general,

jChm.f /�Sum.f /j D 1

2
.jx� yj ^ jxC y� 1j/� 1

4
:

iii) Let X D Œ0; 1�, AD B .Œ0; 1�/ and let m WA!
Œ0; 1� be given by m.A/D �p.A/, where p 2 �0;1Œ
is a fixed constant and � WA! Œ0; 1� is the stan-
dard Lebesgue measure. For any Lebesgue measure
preserving function f W X ! Œ0; 1�, such as f .x/D x,
f .x/D 1� x, or f .x/D j2x� 1j, we have

Chm.f /D
1Z

0

m.f � t/ dtD
1Z

0

.1� t/pdt D 1

pC 1

and

Sum.f /D sup fmin .t; .1� t/p/ jt 2 Œ0; 1�g D cp ;

where cp is the unique solution of the equation tD
.1� t/p, t 2 �0; 1Œ. Hence,

if pD 1; Chm.f /D Sum.f /D 1

2
I

if pD 2; Chm.f /D 1

3

and Sum.f /D 3�p
5

2
:D 0:382 I

if pD 3; Chm.f /D 2

3

and Sum.f /D
p
5� 1

2
:D 0:618 :

5.2 Benvenuti Integral

Comparing Theorems 5.1 and 5.2, we see a striking
similarity in the axiomatic characterization of the Cho-
quet and Sugeno integrals. This similarity was gener-
alized under a common roof by Benvenuti et al. [5.24],
calling there introduced integral general fuzzy integral.
This integral is now also known as Benvenuti integral
(compare [5.25]).

Choquet integral is linked to the standard arithmetic
operations C and 	 on Œ0;1�, while the Sugeno inte-
gral deals with lattice operations ^ and _ on Œ0; 1�. To
generalize these two couples of operations, pseudoad-
dition ˚ and pseudomultiplication ˇ was introduced
in [5.24].

Definition 5.3
Let u 2 Œ1;1� be a fixed constant. An operation ˚ W
Œ0; u�2 ! Œ0; u� is called a pseudoaddition on Œ0; u�
whenever it is associative, nondecreasing in both
components, 0 is its neutral element, and ˚ is
continuous.

Observe that the structure .Œ0; u�;˚/ with˚ a pseu-
doaddition on Œ0; u� is just an I-semigroup of Mostert
and Shields [5.37] and hence ˚ is also commutative.
Moreover, considering the principles of Galois connec-
tions, we can introduce a pseudodifference� related to
˚ satisfying, for all a; b; c 2 Œ0; u�, .a� b/� c if and
only if a� b� c.

It is not difficult to see the link to the pseudodiffer-
ence considered already byWeber [5.14].

Lemma 5.1
Let ˚ W Œ0; u�2 ! Œ0; u� be a given pseudoaddition on
Œ0; u�. The related pseudo difference � W Œ0; u�2 ! Œ0; u�
is given by

a� bD inf fc 2 Œ0; u�jb˚ c� ag :

Considering the standard additionC on Œ0;1�, and
a � b, then the corresponding (pseudo-) difference is
the standard difference a� b. On the other hand, _ is
a pseudoaddition on any interval Œ0; u�, and its corre-
sponding pseudodifference�

_

is given by

a�
_

bD
�

0 if a� b ;
a otherwise :

Due to [5.37], each pseudoaddition ˚ on Œ0; u� can be
represented as an ordinal sum,

a˚ bD

8̂<
:̂
g�1
k .gk.ˇk/^ .gk.a/C gk.b///

if .a; b/ 2 �˛k; ˇkŒ
2 ;

a_ b otherwise ;

where .�˛k; ˇkŒ/k2K is a disjoint system of open subin-
tervals of Œ0; u�, and gk W Œ˛k; ˇk�! Œ0;1� is a con-
tinuous strictly increasing function such that gk.˛k/D
0; k 2K (K can be also empty). Two extremal
cases correspond to ˚D_ (when K is empty) and
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Archimedean pseudoaddition ˚ on Œ0; u� generated by
g W Œ0; u�! Œ0;1� (whenK is singleton, sayK D f1g,
and ˛1 D 0, ˇ1 D u),

a˚ bD g�1 .g.u/^ .g.a/C g.b/// :

Then g is called an additive generator of ˚ and it is
unique up to a positive multiplicative constant.

Note that if g is a bijection, i. e., g.u/D1, then
a˚bD g�1.g.a/Cg.b// and˚ is called a strict pseu-
doaddition.

For a fixed pseudoaddition ˚ on Œ0; u�, Benvenuti
et al. [5.24] have introduced a ˚-fitting pseudomulti-
plicationˇ.

Definition 5.4
Fix u; v 2 Œ1;1� and let ˚ be a given pseudoaddition
on Œ0; u�. A mappingˇ W Œ0; u�� Œ0; v�! Œ0; u� is called
a ˚-fitting pseudomultiplication whenever it is nonde-
creasing in both components, 0 is its annihilator, i. e.,
0ˇ bD aˇ 0D 0 for all a 2 Œ0; u�, b 2 Œ0; v�, it is left
distributive over˚, i. e., .a˚b/ˇcD .aˇc/˚.bˇc/
for all a; b 2 Œ0; u�; c 2 Œ0; v�, and it is lower semicontin-
uous, i. e.,

._n2Nan/ˇ ._m2Nbm/D_n;m2N.anˇ bm/ :

The left distributivity of a pseudomultiplication ˇ
over _ simply means the nondecreasingness of ˇ in
the first coordinate, and thus there are several kinds
of _-fitting pseudomultiplication ˇ. On the other
hand, this is a rather restrictive constraint when ˚ is
Archimedean, i. e., generated by an additive generator
g W Œ0; u�! Œ0;1�.

Proposition 5.1
Let ˚ W Œ0; u�2 ! Œ0; u� be an Archimedean pseudoad-
dition generated by an additive generator g W Œ0; u�!
Œ0;1�. A mapping ˇ W Œ0; u�� Œ0; v�! Œ0; u� is a ˚-
fitting pseudomultiplication if and only if there is
a lower semicontinuous nondecreasing function h W
Œ0; v�! Œ0;1� such that h.w/D 0 for some w 2 Œ0; v�,
and g.u/ 	 h.a/� g.u/ for all a 2 �w; v�, so that

aˇ bD g�1 .g.u/^ g.a/ 	 h.b// :

In particular, if ˚ is a strict pseudoaddition, then
h W Œ0; v�! Œ0;1� is a lower semicontinuous nonde-
creasing function, satisfying h.0/D 0, and aˇ bD
g�1.g.a/ 	 h.b//.

Definition 5.5
Let u; v 2 Œ1;1� be fixed given constants and let ˚ W
Œ0; u�2 ! Œ0; u� be a given pseudoaddition, and ˇ W
Œ0; u�� Œ0; v�! Œ0; u� be a given ˚-fitting pseudomul-
tiplication such that 1ˇ 1� 1. For a fixed monotone
measure m 2M.X;A/, a functional B˚;ˇ

m WF.X;A/ !
Œ0; 1� given by

B˚;ˇ
m .f /D sup

(
nM

iD1

.aiˇm.Ai// jn 2N;

nM
iD1

b.ai;Ai/� f ; .Ai/
n
iD1 is a chain

)

is called Benvenuti integral (with respect tom, based on
˚ andˇ).

Observe that if s 2 F.X;A/ is a simple function,
range sD fb1; : : : ; bng ; b1 < b2 < 	 	 	< bn, then

B˚;ˇ
m .s/D

nM
iD1

..bi� bi�1/ˇm.s� bi// ;

with the convention b0 D 0. Then for any f 2F.X;A/,

B˚;ˇ
m .f /

D sup
n
B˚;ˇ

m .s/js 2 F.X;A/ is simple, s � f
o
:

Evidently,

B˚;ˇ
m .b.a;A//D aˇm.A/

and hence

B˚;ˇ
m .1A//D m.A/

for all m 2M.X;A/, A 2A only if 1ˇ bD b for all b 2
Œ0; 1�.

If˚ is a strict pseudoaddition on Œ0; u� generated by
an additive generator g, this means that ˇ restricted to
Œ0; 1�2 is given by

aˇ bD g�1

�
g.a/ 	 g.b/

g.1/

�
:

If ˚ is a nonstrict pseudoaddition, then there is no
˚-fitting pseudomultiplication ˇ such that 1ˇ bD b
for all b 2 Œ0; 1�.

Note that for the standard arithmetic operations C
and 	 on Œ0;1�, BC;�

m D Chm, i. e., the Choquet integral
is recovered. Similarly, B_;^

m D Sum.
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Example 5.2
i) Let uD vD 1, ˚D_ and ˇ W Œ0; 1�2 ! Œ0; 1�

be given by aˇ bD ap 	 bq, p; q 2 �0;1Œ. Then
B˚;ˇ

m .f //D sup ftp 	 .m.f � t//q jt 2 Œ0; 1�g for any
m 2M.X;A/ and f 2F.X;A/, and B˚;ˇ

m .1A/D
.m.A//q. Note that if pD qD 1, the Shilkret inte-
gral Shm D B˚;ˇ

m is recovered, see [5.19, 38]. In
general, B˚;ˇ

m .f /D Shmq.f p/ for any f 2 F.X;A/.
ii) For a strict pseudoaddition ˚ on Œ0; u� and a ˚-

fitting pseudomultiplicationˇ on Œ0; u�� Œ0; v�, see
Proposition 5.1, the constraint 1ˇ 1� 1 means
h.b/� 1, and thenB˚;ˇ

m .f /D g�1
�
Chh.m/ .g.f //

�
,

i. e., B˚;ˇ
m is obtained as a transformation of the

Choquet integral.

For more details, we recommend the original
source [5.24], but also [5.25, 39].

Remark 5.2
When considering uD 1, a pseudoaddition ˚ on Œ0; 1�

becomes a (continuous) t-conorm. Integrals based on
t-conorms closely related to Benvenuti integrals were
discussed by Murofushi and Sugeno [5.40], resulting
to the two classes of t-conorm based integrals. Those
based on the smallest t-conorm _ coincide with Ben-
venuti integral based on _, with stronger requirements
on the corresponding_-fitting pseudomultiplicationˇ.
The second one, based on continuous Archimedean t-
conorms, is a special transform of the Choquet integral,
compare Example 5.2 ii),

MSm.f /D k
�
Chh.m/.g.f //

�
;

with appropriately chosen functions k; h; g W Œ0; 1�!
Œ0;1�. Note that the Murofushi–Sugeno integral cov-
ers also the integral of Weber [5.14] based on strict
t-conorms. Another closely related approach to integra-
tion, fixing uD vD1, can be found in [5.41], where
Choquet-like integrals were introduced and discussed.
For more details on these types of integrals we refer
to [5.42, 43].

5.3 Universal Integrals

The concept of universal integrals on Œ0;1� was pro-
posed and discussed in [5.44]. As already mentioned,
we will restrict our considerations to the interval
Œ0; 1�.

Definition 5.6
Let S be the class of all measurable spaces. A mapping

I W
[

.X;A/2S

�
M.X;A/ �F.X;A/

�! Œ0; 1�

is called a universal integral whenever it satisfies

UI1 I is nondecreasing in both components;
UI2 there is a semicopula ˝ W Œ0; 1�2 ! Œ0; 1� (i. e., ˝

is nondecreasing in both components and 1˝ aD
a˝ 1 for all a 2 Œ0; 1�) such that I .m; b.a;E//D
a˝m.E/ for all a 2 Œ0; 1�, any .X;A/ 2 S;m 2
M.X;A/ and E 2A;

UI3 I.m1; f1/D I.m2; f2/ whenever .mi; fi/ 2 .Xi;Ai/,
iD 1; 2, and m1.f1 � t/D m2.f2 � t/ for all t 2
Œ0; 1�.

Observe that the axiom (UI1) reflects the stan-
dard monotonicity of integrals. On the other hand,

(UI2) expresses the fact that an integral of a basic
function b.a;E/ with respect to a monotone measure
m depends on the values a and m.E/ only, inde-
pendently of the considered measurable space .X;A/
and a monotone measure m 2M.X;A/ (compare the
truth values principle in the propositional logics). Fi-
nally, (UI3) generalizes the well-known fact from
the probability theory that two random variables (de-
fined possibly on two different probability spaces)
have the same expectation whenever their distribution
functions coincide (in fact, for a probability mea-
sure P, P.f � t/ defines a survival function which
is complementary to the related distribution func-
tion).

There are several construction methods for univer-
sal integrals. First of all, for any given semicopula ˝ W
Œ0; 1�2 ! Œ0; 1�, one can introduce the smallest univer-
sal integral I

˝

and the greatest universal integral I˝

related to˝ through (UI2):

I
˝

.m; f /D sup ft˝m.f � t/jt 2 Œ0; 1�g

and

I˝.m; f /D essupm.f /˝m.supp f / ;
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where

essupm.f /D sup ft 2 Œ0; 1�jm.f � t/ > 0g
and

supp f D fx 2 Xjf .x/ > 0g :

Observe that I
^

.m; 	/D Sum is the Sugeno integral,
I˘ .m; 	/D Shm is the Shilkret integral (˘ denotes the
product semicopula), while IT with T a strict t-norm is
an integral introduced byWeber in [5.45].

Considering the Benvenuti integral based on a pseu-
doaddition ˚ on Œ0; u� and a ˚-fitting pseudomulti-
plication ˇ W Œ0; u�� Œ0; v�! Œ0; u�, u; v;2 Œ1;1�, such
that ˝DˇjŒ0; 1�2 is a semicopula, one get a universal
integral given by

I˚;˝.m; f /DB˚;ˇ
m .f / :

Note that IC;�.m; f /D Chm.f / and I_;^.m; f /D
Sum.f /.

As an important class of universal integrals we
introduce copula-based integrals. Recall that a semicop-
ula C W Œ0; 1�2 ! Œ0; 1� is called a copula [5.46] when-
ever it is supermodular, i. e., for any x; y 2 Œ0; 1�2 it
holds

C.x_ y/CC.x^ y/� C.x/CC.y/ :

Note that there is a one-to-one correspondence between
copulas and probability measures on Borel subsets of
Œ0; 1�2 with uniformly distributed margins, this relation
is stated by the equality

PC .Œ0; a�� Œ0; b�/D C.a;b/; .a;b/ 2 Œ0; 1�2 :

The next result is extracted from [5.44], also com-
pare [5.47, 48].

Proposition 5.2
Let C W Œ0; 1�2 ! Œ0; 1� be a fixed copula. Then the map-
ping

KC W
[

.X;A/2S

�
M.X;A/ �F.X;A/

�! Œ0; 1�

given by

KC.m; f /D PC
�˚
.u; v/ 2 Œ0; 1�2jv� m.f � u/


�
is a universal integral (with C being the corresponding
semicopula).

Note that for the product copula ˘ , K˘ .m; 	/D
Chm is the Choquet integral, while for the greatest cop-
ula ^DMin, K

^

.m; 	/D Sum is the Sugeno integral.
For the smallest copulaW W Œ0; 1�2 ! Œ0; 1� given by

W.a;b/Dmax.0; aC b� 1/ ;

KW was called opposite Sugeno integral in [5.49] and it
is given by

KW.m; f /D � .ft 2 Œ0; 1�jm.f � t/� 1� tg/ ;

where � is the standard Lebesgue measure on Borel
subsets of Œ0; 1�.

Remark 5.3
The class of universal integrals is convex, i. e., for I1; I2
universal integrals and a constant c 2 Œ0; 1�, also

I D cI1 C .1� c/I2

is a universal integral (related to the semicopula ˇD
c 	 ˇ1 C .1� c/ 	ˇ2).

Though the class of semicopulas is also convex, for
the weakest universal integrals we can ensure only the
inequality

Ic�ˇ1C.1�c/�ˇ2 � cI
ˇ1 C .1� c/I

ˇ2 :

On the other hand, for the convex class of copulas it
holds

KcC1C.1�c/C2 D cKC1 C .1� c/KC2 ;

i. e., the class of copula-based integrals is convex.
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5.4 General Integrals Which Are Not Universal

There are several integrals defined on any measurable
space .X;A/, for any monotone measure m 2M.X;A/

and any function f 2F.X;A/ which are not universal.
We recall two of them based on the standard arithmetic
operationsC and 	.

Definition 5.7
A mapping

G W
[

.X;A/2S

�
M.X;A/ �F.X;A/

�! Œ0;1�

given by

G.m; f /D sup

(
nX

iD1

ai 	m.Ai/jn 2N; a1; : : : ; an � 0 ;

nX
iD1

b.ai;Ai/� f and .Ai/
n
iD1

is a disjoint subsystem ofA
)

is called a PAN-integral.

Note that this integral was introduced by
Yang [5.50], see also [5.51] in more general set-
ting on Œ0;1� involving operations ˚ and ˇ. Due to
the results of [5.52], each PAN-integral on Œ0; 1� is ei-
ther a transformation of integral given in Definition 5.7,
I.m; f /D g�1 .G.g.m/;g.f /// for some automorphism
g W Œ0; 1�! Œ0; 1�, or if ˚D_, it is a special instant
of integrals I

ˇ

discussed in Sect. 5.3. Also observe
that a deep discussion on PAN-integral G can be found
in [5.53].

PAN-integral allows one to recognize the under-
flying monotone measure m only if m is superad-
ditive. Moreover, as a major defect of this inte-
gral we recall that it does not exclude the equality
of integrals based on two different monotone mea-
sures, i. e., there are monotone measures m1;m2 2
M.X;A/;m1 ¤ m2, such that G.m1; f /DG.m2; f / for
all f 2 F.X;A/. Note that PAN-integral coincide
with the Lebesgue integral whenever m is �-
additive. A similar situation is linked to the con-
cave integral introduced by Lehrer [5.54], see
also [5.55].

Definition 5.8
A mapping

L W
[

.X;A/2S

�
M.X;A/ �F.X;A/

�! Œ0;1�

given by

L.m; f /D sup

(
nX

iD1

ai 	m.Ai/jn 2N;

a1; : : : ; an � 0;
nX

iD1

b.ai;Ai/� f

)

is called a concave integral.

Observe that this integral is concave in the sense that
for each m 2M.X;A/, f ; g 2F.X;A/ and c 2 Œ0; 1�,

L.m; c f C .1� c/ g/� c L.m; f /C .1� c/ L.m; g/ :

Concave integral coincides with the Choquet inte-
gral whenever m is supermodular. However, also here
L.m1; f /D L.m2; f / may hold for all f 2F.X;A/ for
some monotone measures m1;m2 2M.X;A/, m1 ¤ m2.
Finally, recall that it trivially holds

L.m; f /� G.m; f / and L.m; f /� Chm.f /

for all m 2M.X;A/ and f 2F.X;A/.

Example 5.3
i) Consider X D Œ0; 1�, AD B.Œ0;1�/ and � the stan-

dard Lebesgue measure on A. Let mD �p; p 2
�0; 1Œ. Then for any f 2F.X;A/ with nonvanishing
support (i. e., m.f > 0/ > 0) it holds

G.m; f /D L.m; f /DC1 :

On the other hand, for mD �2 (observe that m is
supermodular, and thus also superadditive) we get,
considering f D idX ,

G.m; f /D 2

13
while L.m; f /D Chm.f /D 1

3
:

ii) For X D f1; 2; 3g and AD 2X , let ma WA!R
be given by ma.;/D 0;ma.A/D 0:1 if card AD 1,
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ma.A/D a if card AD 2 and ma.X/D 1. Evidently,
ma 2M.X;A/ if and only if a 2 Œ0:1; 1�. Let f 2
F.X;A/ be given by f .1/D 1

3 ; f .2/D 2
3 ; f .3/D 1.

Then

G.ma; f /D sup

�
1

3
	 1; 1

3
	 0:1C 2

3
	 a
	

D
(

1
3 if a 2 Œ0:1; 0:45� ;
0:1C2a

3 if a 2 �0:45; 1� ;

and

L.ma; f /D sup
�
1

3
	 1C 1

3
	 aC 1

3
	 0:1; 1

3
	 1

C1

3
	 0:1C 2

3
	 0:1; 1

3
	 aC 2

3
	 a
	

D

8̂<
:̂

1:3
3 if a 2 Œ0:1; 0:2Œ ;
1:1Ca

3 if a 2 Œ0:2; 0:55� ;
a if a 2 �0:55; 1� :

Moreover,

Chma.f /D
1:1C a

3
:

Observe that ma is supermodular if and only if a 2
Œ0:2; 0:55� and then

L.ma; f /D Chma.f /D
1:1C a

3
:

iii) For X finite and m 2M.X;A/ such that m.A/ 2
f0; 1g for all A� X, all universal integrals coin-
cide, independently of the underlying semicopula
˝, Im.f /D sup fmin .f .x/jx 2 A/ jm.A/D 1g. How-
ever, this does not hold for PAN-integral G.m; 	/
neither for the concave integral L.m; 	/. Consider
as an example the greatest monotone measure m� 2
M.X;2X/ given by

m�.A/D
�

0 if AD ; ;

1 else :

Then for any universal integral I it holds
I.m�; f /Dmax .f .x/jx 2 X/, but G.m�; f /D
L.m�; f /DP

x2X f .x/.
iv) The only monotone measures m 2M.X;2X/; X fi-

nite, such that all universal integrals as well as the

PAN and concave integrals coincide, are so-called
unanimity measures

mB; B� X; B¤ ;; mB.A/D
�

1 if B� A ;

0 else :

Then

I.mB; f /DG.mB; f /D L.mB; f /

Dmin .f .x/jx 2 B/ :

Recently, a new concept of decomposition integrals
was proposed in [5.56], unifying the PAN integral G,
the concave integral L, the Choquet integral Ch, and the
Shilkret integral Sh.

Definition 5.9
Let .X;A/ be a measurable space and letH be a sys-
tem of some finite subsystems (i. e., of collections) from
A. Then the mapping

DH WM.X;A/ �F.X;A/ ! Œ0;1�

given by

DH .m; f /D sup

(X
i2I

ai 	m.Ai/jai � 0; i 2 I;

X
i2I

b.ai;Ai/� f ; .Ai/i2I 2H
)

is called aH -decomposition integral.

Consider the next decomposition systems

H .n/ D ˚
.Ai/

n
iD1 is a chain inA



; n 2N I

HG D f.Ai/i2I is a finite measurable partition of Xg I
HL DA I
HCh D fBjB is a finite chain inAg :

Then

DH .1/.m; 	/D Shm I
DHG D G I
DHL D L I

DHCh.m; 	/D Chm :
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0

Fig. 5.1a-c The function � .idX � t/ with shaded areas expressing the corresponding integrals DH .1/ .�; idX/ (a),
DH .2/ .�; idX/ (b), Ch�.idX/ (c)

Further, the only decomposable integrals which are also
universal integrals are the Choquet integral and H .n/-
decomposition integrals DH .n/ and they satisfy

ShD DH .1/ � DH .2/ � 	 	 	 � DH .n/ � 	 	 	 � Ch :

Observe that if X is finite, card X D n, then DH .n/ D Ch
and that

ChD lim
n!1

DH .n/ D sup fDH .n/ jn 2Ng :

For more details and further discussion about decom-
position integrals, we recommend [5.56–58].

Example 5.4
Using the notation from Example 5.3 i), it holds

DH .n/ .�; idX/D n

2.nC 1/

and

lim
n!1

n

2.nC 1/
D 1

2
D Ch�.idX/ :

For better understanding, see Fig. 5.1 with the graph of
the function � .idX � t/ and with shaded areas express-
ing the corresponding integrals.

5.5 Concluding Remarks, Application Fields

We have recalled and discussed several kinds of inte-
grals defined on any measurable space for any mono-
tone measure and any nonnegative measurable func-
tions, restricting our considerations to the unit interval
Œ0; 1�. There are several possible extensions of these in-
tegrals to the bipolar scale Œ�1; 1�, i. e., for integrating
functions with range in Œ�1; 1�. Recall only the case of
the Choquet integral with bipolar extensions of different
kinds, such as:

� Asymmetric Choquet integral,

Chasm .f /D Chm.f
C/�Chmd .f�/ ;

where fC W X ! Œ0; 1� is given by fC.x/D
max .0; f .x//, f� W X ! Œ0; 1� is given by f�.x/D
max .0;�f .x//, and md WA! Œ0; 1� is a monotone
measure dual to m. For more details see [5.18, 19,
26];

� Symmetric (Šipoš) Choquet integral,

Chsymm .f /D Chm.f
C/�Chm.f

�/ ;

see [5.18, 19, 23, 26];� In the case when X is finite, two another exten-
sions called a balanced Choquet integral [5.59] and
a merging Choquet integral [5.60] reflecting (par-
tial) compensation of positive and negative inputs
were also introduced and discussed. Further gen-
eralizations yield the background of cummulative
prospect theory CPT (Cummulative Prospect The-
ory) of Tversky and Kahneman [5.61, 62], however,
then two monotone measures are considered,

Chm1;m2.f /D Chm1.f
C/�Chm2.f

�/ :

Observe that economical applications of CPT have
resulted into Nobel Prize for Tversky and Kahneman in
2002.
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Some of introduced integrals were introduced be-
cause of solving some practical problems. For example,
concave integral of Lehrer [5.54] is a solution of an
optimization problem looking for a maximal global
performance.

Among many fields where integrals discussed in
this chapter are an important tool, we recall decision
making under multiple criteria, multiobjective opti-
mization, multiperson decision making, pattern recog-
nition and classification, image analysis, etc. For more
details, we recommend [5.25, Appendix B] or [5.19].
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