
Parallel Evolu
929

Part
E
|46

46. Parallel Evolutionary Algorithms

Dirk Sudholt

Evolutionary algorithms (EAs) have given rise to
many parallel variants, fuelled by the rapidly
increasing number of CPU cores and the ready
availability of computation power through GPUs
and cloud computing. A very popular approach
is to parallelize evolution in island models, or
coarse-grained EAs, by evolving different popula-
tions on different processors. These populations
run independently most of the time, but they
periodically communicate genetic information to
coordinate search. Many applications have shown
that island models can speed up computation
significantly, and that parallel populations can
further increase solution diversity.

The aim of this book chapter is to give a gen-
tle introduction into the design and analysis of
parallel evolutionary algorithms, in order to un-
derstand how parallel EAs work, and to explain
when and how speedups over sequential EAs can
be obtained.

Understanding how parallel EAs work is a
challenging goal as they represent interacting
stochastic processes, whose dynamics are deter-
mined by several parameters and design choices.
This chapter uses a theory-guided perspective to
explain how key parameters affect performance,
based on recent advances on the theory of paral-
lel EAs. The presented results give insight into the
fundamental working principles of parallel EAs, as-
sess the impact of parameters and design choices
on performance, and contribute to an informed
design of effective parallel EAs.

46.1 Parallel Models 931
46.1.1 Master–Slave Models 931
46.1.2 Independent Runs 931

46.1.3 Island Models 931
46.1.4 Cellular EAs 933
46.1.5 A Unified Hypergraph Model

for Population Structures 935
46.1.6 Hybrid Models 935

46.2 Effects of Parallelization. 935
46.2.1 Performance Measures

for Parallel EAs 935
46.2.2 Superlinear Speedups 937

46.3 On the Spread of Information
in Parallel EAs...................................... 938
46.3.1 Logistic Models

for Growth Curves 938
46.3.2 Rigorous Takeover Times 939
46.3.3 Maximum Growth Curves 940
46.3.4 Propagation 941

46.4 Examples Where Parallel
EAs Excel ... 943
46.4.1 Independent Runs 943
46.4.2 Offspring Populations 945
46.4.3 Island Models 945
46.4.4 Crossover Between

Islands 948

46.5 Speedups by Parallelization. 949
46.5.1 A General Method

for Analyzing Parallel EAs 949
46.5.2 Speedups in Combinatorial

Optimization 953
46.5.3 Adaptive Numbers

of Islands 955

46.6 Conclusions ... 956
46.6.1 Further Reading 956

References ... 957

Recent years have witnessed the emergence of a huge
number of parallel computer architectures. Almost ev-

ery desktop or notebook PC, and even mobile phones,
come with several CPU cores built in. Also GPUs

Part
E
|46

930 Part E Evolutionary Computation

have been discovered as a source of massive com-
putation power at no extra cost. Commercial IT so-
lutions often use clusters with hundreds and thou-
sands of CPU cores and cloud computing has become
an affordable and convenient way of gaining CPU
power.

With these resources readily available, it has be-
come more important than ever to design algorithms
that can be implemented effectively in a parallel ar-
chitecture. Evolutionary algorithms (EA) are popular
general-purpose metaheuristics inspired by the natural
evolution of species. By using operators like mutation,
recombination, and selection, a multi-set of solutions –
the population – is evolved over time. The hope is that
this artificial evolution will explore vast regions of the
search space and yet use the principle of survival of
the fittest to generate good solutions for the problem
at hand. Countless applications as well as theoretical
results have demonstrated that these algorithms are ef-
fective on many hard optimization problems.

One of many advantages of EAs is that they are
easy to parallelize. The process of artificial evolution
can be implemented on parallel hardware in various
ways. It is possible to parallelize specific operations, or
to parallelize the evolutionary process itself. The latter
approach has led to a variety of search algorithms called
island models or cellular evolutionary algorithms. They
differ from a sequential implementation in that evo-
lution happens in a spatially structured network. Sub-
populations evolve on different processors and good
solutions are communicated between processors. The
spread of information can be tuned easily via key pa-
rameters of the algorithm. A slow spread of information
can lead to a larger diversity in the system, hence in-
creasing exploration.

Many applications have shown that parallel EAs can
speed up computation and find better solutions, com-
pared to a sequential EA. This book chapter reviews
the most common forms of parallel EAs. We highlight
what distinguishes parallel EAs from sequential EAs.
We also we make an effort to understand the search dy-
namics of parallel EA. This addresses a very hot topic
since, as of today, even the impact of the most basic pa-
rameters of a parallel evolutionary algorithms are not
well understood.

The chapter has a particular emphasis on theoretical
results. This includes runtime analysis, or computa-

tional complexity analysis. The goal is to estimate the
expected time until an EA finds a satisfactory solution
for a particular problem, or problem class, by rigorous
mathematical studies. This area has led to very fruit-
ful results for general EAs in the last decade [46.1,
2]. Only recently have researchers turned to investigat-
ing parallel evolutionary algorithms from this perspec-
tive [46.3–7]. The results help to get insight into the
search behavior of parallel EAs and how parameters
and design choices affect performance. The presenta-
tion of these results is kept informal in order to make
it accessible to a broad audience. Instead of present-
ing theorems and complete formal proofs, we focus on
key ideas and insights that can be drawn from these
analyses.

The outline of this chapter is as follows. In
Sect. 46.1 we first introduce parallel models of evo-
lutionary algorithms, along with a discussion of key
design choices and parameters. Section 46.2 considers
performance measures for parallel EAs, particularly no-
tions for speedup of a parallel EA when compared to
sequential EAs.

Section 46.3 deals with the spread of information
in parallel EAs. We review various models used to de-
scribe how the number of good solutions increases in a
parallel EA. This also gives insight into the time until
the whole system is taken over by good solutions, the
so-called takeover time.

In Sect. 46.4 we present selected examples
where parallel EAs were shown to outperform se-
quential evolutionary algorithms. Drastic speedups
were shown on illustrative example functions. This
holds for various forms of parallelization, from in-
dependent runs to offspring populations and island
models.

Section 46.5 finally reviews a general method for
estimating the expected running time of parallel EAs.
This method can be used to transfer bounds for a se-
quential EA to a corresponding parallel EA, in an
automated fashion. We go into a bit more detail here,
in order to enable the reader to apply this method
by her-/himself. Illustrative example applications are
given that also include problems from combinatorial
optimization.

The chapter finishes with conclusions in Sect. 46.6
and pointers to further literature on parallel evolution-
ary algorithms.

Parallel Evolutionary Algorithms 46.1 Parallel Models 931
Part

E
|46.1

46.1 Parallel Models

46.1.1 Master–Slave Models

There are many ways how to use parallel machines.
A simple way of using parallelization is to execute
operations on separate processors. This can concern
variation operators like mutation and recombination as
well as function evaluations. In fact, it makes most
sense for function evaluations as these operations can be
performed independently and they are often among the
most expensive operations. This kind of architecture is
known as master–slave model. One machine represents
the master and it distributes the workload for executing
operations to several other machines called slaves. It is
well suited for the creation of offspring populations as
offspring can be created and evaluated independently,
after suitable parents have been selected.

The system is typically synchronized: the master
waits until all slaves have completed their operations
before moving on. However, it is possible to use asyn-
chronous systems where the master does not wait for
slaves that take too long.

The behavior of synchronized master–slave mod-
els is not different from their sequential counterparts.
The implementation is different, but the algorithm – and
therefore search behavior – is the same.

46.1.2 Independent Runs

Parallel machines can also be used to simulate differ-
ent, independent runs of the same algorithm in parallel.
Such a system is very easy to set up as no communica-
tion during the runtime is required. Only after all runs
have been stopped, do the results need to be collected
and the best solution (or a selection of different high-
quality solutions) is output.

Alternatively, all machines can periodically com-
municate their current best solutions so that the system
can be stopped as soon as a satisfactory solution has
been found. As for master–slave models, this pre-
vents us from having to wait until the longest run has
finished.

Despite its simplicity, independent runs can be quite
effective. Consider a setting where a single run of
an algorithm has a particular success probability, i. e.,
a probability of finding a satisfactory solution within
a given time frame. Let this probability be denoted p.
By using several independent runs, this success prob-
ability can be increased significantly. This approach is
commonly known as probability amplification.

The probability that in � independent runs no run is
successful is .1� p/�. The probability that there is at
least one successful run among these is, therefore,

1� .1� p/� : (46.1)

Figure 46.1 illustrates this amplified success probability
for various choices of � and p.

We can see that for a small number of proces-
sors the success probability increases almost linearly.
If the number of processors is large, a saturation effect
occurs. The benefit of using ever more processors de-
creases with the number of processors used. The point
where saturation happens depends crucially on p; for
smaller success probabilities saturation happens only
with a fairly large number of processors.

Furthermore, independent runs can be set up with
different initial conditions or different parameters. This
is useful to effectively explore the parameter space and
to find good parameter settings in a short time.

46.1.3 Island Models

Independent runs suffer from obvious drawbacks: once
a run reaches a situation where its population has be-
come stuck in a difficult local optimum, it will most
likely remain stuck forever. This is unfortunate since
other runs might reach more promising regions of the
search space at the same time. It makes more sense to

p = 0.3
p = 0.1
p = 0.05

0 5 10 15 20 25

Amplified success probability

Number of independent runs

1

0.8

0.6

0.4

0.2

0

Fig. 46.1 Plots of the amplified success probability
1� .1� p/� of a parallel system with � independent runs,
each having success probability p

Part
E
|46.1

932 Part E Evolutionary Computation

establish some form of communication between the dif-
ferent runs to coordinate search, so that runs that have
reached low-quality solutions can join in on the search
in more promising regions.

In island models, also called distributed EAs, the
coarse-grained model, or the multi-deme model, the
population of each run is regarded an island. One of-
ten speaks of islands as subpopulations that together
form the population of the whole island model. Is-
lands evolve independently as in the independent run
model, for most of the time. However, periodically solu-
tions are exchanged between islands in a process called
migration.

The idea is to have a migration topology, a directed
graph with islands as its nodes and directed edges con-
necting two islands. At certain points of time selected
individuals from each island are sent off to neighbored
islands, i. e., islands that can be reached by a directed
edge in the topology. These individuals are called mi-
grants and they are included in the target island after
a further selection process. This way, islands can com-
municate and compete with one another. Islands that
get stuck in low-fitness regions of the search space can
be taken over by individuals from more successful is-
lands. This helps to coordinate search, focus on the
most promising regions of the search space, and use the
available resources effectively. An example of an island
model is given in Fig. 46.2. Algorithm 46.1 shows the
general scheme of a basic island model.

Algorithm 46.1 Scheme of an island model with
migration interval �
1: Initialize a population made up of subpopulations

or islands, P.0/ D fP.0/
1 ; : : : ;P.0/

m g.
2: Let t WD 1.
3: loop
4: for each island i do in parallel
5: if t mod � D 0 then

Fig. 46.2 Sketch of an island model with six islands and
an example topology

6: Send selected individuals from island P.t/
i

to selected neighbored islands.
7: Receive immigrants I.t/i from islands for

which island P.t/
i is a neighbor.

8: Replace P.t/
i by a subpopulation resulting

from a selection among P.t/
i and I.t/i .

9: end if
10: Produce P.tC1/

i by applying reproduction op-
erators and selection to P.t/

i .
11: end for
12: Let t WD tC 1.
13: end loop

There are many design choices that affect the be-
havior of such an island model:

� Emigration policy. When migrants are sent, they
can be removed from the sending island. Alter-
natively, copies of selected individuals can be
emigrated. The latter is often called pollina-
tion. Also the selection of migrants is impor-
tant. One might select the best, worst, or random
individuals.� Immigration policy. Immigrants can replace the
worst individuals in the target population, random
individuals, or be subjected to the same kind of se-
lection used within the islands for parent selection
or selection for replacement. Crowdingmechanisms
can be used, such as replacing the most similar
individuals. In addition, immigrants can be recom-
bined with individuals present on the island before
selection.� Migration interval. The time interval between mi-
grations determines the speed at which information
is spread throughout an island model. Its reciprocal
is often calledmigration frequency. Frequent migra-
tions imply a rapid spread of information, while rare
migrations allow for more exploration. Note that
a migration interval of 1 yields independent runs
as a special case.� Number of migrants. The number of migrants, also
called migration size, is another parameter that de-
termines how quickly an island can be taken over by
immigrants.� Migration topology. Also the choice of the migra-
tion topology impacts search behavior. The topol-
ogy can be a directed or undirected graph – after
all, undirected graphs can be seen as special cases
of directed graphs. Common topologies include
unidirectional rings (a ring with directed edges

Parallel Evolutionary Algorithms 46.1 Parallel Models 933
Part

E
|46.1

Fig. 46.3 Sketches of common
topologies: a unidirectional ring,
a torus, and a complete graph. Other
common topologies include bidi-
rectional rings where all edges are
undirected and grid graphs where the
edges wrapping around the torus are
removed

only in one direction), bidirectional rings, torus or
grid graphs, hypercubes, scale-free graphs [46.8],
random graphs [46.9], and complete graphs. Fig-
ure 46.3 sketches some of these topologies. An
important characteristic of a topology T D .V;E/
is its diameter: the maximum number of edges on
any shortest path between two vertices. Formally,
diam.T/Dmaxu;v2V dist.u; v/, where dist.u; v/ is
the graph distance, the number of edges on a short-
est path from u to v. The diameter gives a good
indication of the time needed to propagate infor-
mation throughout the topology. Rings and torus
graphs have large diameters, while hypercubes,
complete graphs, and many scale-free graphs have
small diameters.

Island models with non-complete topologies are
also called stepping stone models. The impact of these
design choices will be discussed in more detail in
Sect. 46.3.

If all islands run the same algorithm under identical
conditions, we speak of a homogeneous island model.
Heterogeneous island models contain islands with dif-
ferent characteristics. Different algorithms might be
used, different representations, objective functions, or
parameters. Using heterogeneous islands might be use-
ful if one is not sure what the best algorithm is for
a particular problem. It also makes sense in the context
of multiobjective optimization or when a diverse set of
solutions is sought, as the islands can reflect different
objective functions, or variations of the same objective
functions, with an emphasis on different criteria.

Skolicki [46.10] proposed a two-level view of search
dynamics in island models. The term intra-island evolu-
tion describes the evolutionary process that takes place
within each island. On a higher level, inter-island evolu-
tion describes the interaction between different islands.
He argues that islands can be regarded as individuals in
a higher-level evolution. Islands compete with one an-
other and islands can take over other islands, just like

individuals can replace other individuals in a regular
population. One conclusion is that with this perspective
an island models looks more like a compact entity.

The two levels of evolution obviously interact with
one another. Which level is more important is deter-
mined by the migration interval and the other parame-
ters of the system that affect the spread of information.

46.1.4 Cellular EAs

Cellular EAs represent a special case of island mod-
els with a more fine-grained form of parallelization.
Like in the island model we have islands connected
by a fixed topology. Rings and two-dimensional torus
graphs are the most common choice. The most striking
characteristic is that each island only contains a single
individual. Islands are often called cells in this context,
which explains the term cellular EA. Each individual is
only allowed to mate with its neighbors in the topology.
This kind of interaction happens in every generation.
This corresponds to a migration interval of 1 in the con-

Fig. 46.4 Sketch of a cellular EA on a 7� 7 grid graph.
The dashed line indicates the neighborhood of the high-
lighted cell

Part
E
|46.1

934 Part E Evolutionary Computation

text of island models. Figure 46.4 shows a sketch of
a cellular EA. A scheme of a cellular EA is given in
Algorithm 46.2.

Algorithm 46.2 Scheme of a cellular EA
1: Initialize all cells to form a population P.0/ D

fP.0/
1 ; : : : ;P.0/

m g. Let t WD 0.
2: loop
3: for each cell i do in parallel
4: Select a set Si of individuals from P.t/

i out of
all cells neighbored to cell i.

5: Create a set Ri by applying reproduction oper-
ators to Si.

6: Create P.tC1/
i by selecting an individual

from fP.t/
i g[Ri.

7: end for
8: Let t WD tC 1.
9: end loop

Cellular EAs yield a much more fine-grained sys-
tem; they have therefore been called fine-grained mod-
els, neighborhood models, or diffusion models. The
difference to island models is that no evolution takes
place on the cell itself, i. e., there is no intra-island
evolution. Improvements can only be obtained by cells
interacting with one another. It is, however, possible
that an island can interact with itself.

In terms of the two-level view on island models,
in cellular EAs the intra-island dynamics have effec-
tively been removed. After all, each island only contains
a single individual. Fine-grained models are well suited
for investigations of inter-island dynamics. In fact, the
first runtime analyses considered fine-grained island
models, where each island contains a single individ-
ual [46.4, 5]. Other studies dealt with fine-grained sys-
tems that use a migration interval larger than 1 [46.3, 6,
7].

For replacing individuals the same strategies as
listed for island models can be used. All cells can
be updated synchronously, in which case we speak of
a synchronous cellular EA. A common way of imple-
menting this is to create a new, temporary population.
All parents are taken from the current population and
new individuals are written into the temporary popula-
tion. At the end of the process, the current population is
replaced by the temporary population.

Alternatively, cells can be updated sequentially, re-
sulting in an asynchronous cellular EA. This is likely
to result in a different search behavior as individu-

als can mate with offspring of their neighbors. Alba
et al. [46.11] define the following update strategies. The
terms are tailored towards two-dimensional grids or
torus graphs as they are inspired by cellular automata.
It is, however, easy to adapt these strategies to arbitrary
topologies:

� Uniform choice: the next cell to be updated is cho-
sen uniformly at random.� Fixed line sweep: the cells are updated sequentially,
line by line in a grid/torus topology.� Fixed random sweep: the cells are updated sequen-
tially, according to some fixed order. This order
is determined by a permutation of all cells. This
permutation is created uniformly at random dur-
ing initialization and kept throughout the whole
run.� New random sweep: this strategy is like fixed ran-
dom sweep, but after each sweep is completed a new
permutation is created uniformly at random.

A time step or generation is defined as the time
needed to update m cells, m being the number of cells
in the grid. The last three strategies ensure that within
each time step each cell is updated exactly once. This
yields a much more balanced treatment for all cells.
With the uniform choice model is it likely that some
cells must wait for a long time before being updated. In
the limit, the waiting time for updates follows a Poisson
distribution. Consider the random number of updates
until the last cell has been updated at least once. This
random process is known as the coupon collector prob-
lem [46.12, page 32], as it resembles the process of
collecting coupons, which are drawn uniformly at ran-
dom. A simple analysis shows that the expected number
of updates until the last cell has been updated in the uni-
form choice model (or all coupons have been collected)
equals

m 	
mX

iD1

1=i�m 	 ln.m/ :

This is equivalent to

mX
iD1

1=i� lnm

time steps, which can be significantly larger than 1, the
time for completing a sweep in any given order.

Parallel Evolutionary Algorithms 46.2 Effects of Parallelization 935
Part

E
|46.2

Cellular EAs are often compared to cellular au-
tomata. In the context of the latter, it is common practice
to consider a two-dimensional grid and different neigh-
borhoods. The neighborhood in Fig. 46.2 is called the
von Neumann neighborhood or Linear 5. It includes
the cell itself and its four neighbors along the directions
north, south, west, and east. The Moore neighborhood
or Compact 9 in addition also contains the four cells
to the north west, north east, south west, and south
east. Also larger neighborhoods are common, contain-
ing cells that are further away from the center cell.

Note that using a large neighborhood on a two-
dimensional grid is equivalent to considering a graph
where, starting with a torus graph, for each vertex
edges to nearby vertices have been added. We will,
therefore, in the remainder of this chapter stick to the
common notion of neighbors in a graph (i. e., vertices
connected by an edge), unless there is a good reason
not to.

46.1.5 A Unified Hypergraph Model
for Population Structures

Sprave [46.13] proposed a unified model for popula-
tion structures. It is based on hypergraphs; an extension
of graphs where edges can connect more than two ver-
tices. We present an informal definition to focus on
the ideas; for formal definitions we refer to [46.13].
A hypergraph contains a set of vertices and a collec-
tion of hyperedges. Each hyperedge is a non-empty set
of vertices. Two vertices are neighbored in the hyper-
graph if there is a hyperedge that contains both vertices.
Note that the special case where each hyperedge con-
tains two different vertices results in an undirected
graph.

In Sprave’s model each vertex represents an indi-
vidual. Hyperedges represent the set of possible parents
for each individual. The model unifies various common
population models:

� Panmictic populations: for panmictic populations
we have a set of vertices V and there is a sin-
gle hyperedge that equals the whole vertex set.
This reflects the fact that in a panmictic popula-
tion each individual has all individuals as potential
parents.� Island models with migration: if migration is under-
stood in the sense that individuals are removed, the
set of potential parents for an individual contains all
potential immigrants as well as all individuals from
its own island, except for those that are being emi-
grated.� Island models with pollination: if pollination is
used, the set of potential parents contains all immi-
grants and all individuals on its own island.� Cellular EAs: For each individual, the potential par-
ents are its neighbors in the topology.

In the case of coarse-grained models, the hy-
pergraph may depend on time. More precisely, we
have different sets of potential parents when migration
is used, compared to generations without migration.
Sprave considers this by defining a dynamic population
structure: instead of considering a single, fixed hyper-
graph, we consider a sequence of hypergraphs over
time.

46.1.6 Hybrid Models

It is also possible to combine several of the above
approaches. For instance, one can imagine an island
model where each island runs a cellular EA to fur-
ther promote diversity. Or one can think of hierarchical
island models where islands are island models them-
selves. In such a system it makes sense that the inner-
layer island models use more frequent migrations than
the outer-layer island model. Island models and cellular
EAs can also be implemented as master–slave models
to achieve a better speedup.

46.2 Effects of Parallelization

An obvious effect of parallelization is that the computa-
tion time can be reduced by using multiple processors.
This section describes performance measured that can
be used to define this speedup. We also consider ben-
eficial effects of using parallel EAs that can lead to
superlinear speedups.

46.2.1 Performance Measures
for Parallel EAs

The computation time of a parallel EA can be defined
in various ways. It makes sense to use wall-clock time
as the performance measure as this accounts for the

Part
E
|46.2

936 Part E Evolutionary Computation

overhead by parallelization. Under certain conditions,
it is also possible to use the number of generations or
function evaluations. This is feasible if these measures
reflect the real running time in an adequate way, for in-
stance if the execution of a generation (or a function
evaluation) dominates the computational effort, includ-
ing the effort for coordinating different machines. It is
also feasible if one can estimate the overhead or the
communication costs separately.

We consider settings where an EA is run until a cer-
tain goal is fulfilled. Goals can be reaching a global or
local optimum or reaching a certain minimumfitness. In
such a setting the goal is fixed and the running time of
the EA can vary. This is in contrast to setups where the
running time is fixed to a predetermined number of gen-
erations and then the quality or accuracy of the obtained
solutions is compared. As Alba pointed out [46.14], per-
formance comparisons of parallel and sequential EAs
only make sense if they reach the same accuracy. In
the following, we focus on the former setting where the
same goal is used.

Still, defining speedup formally is far from trivial.
It is not at all clear against what algorithm a parallel al-
gorithm should be compared. However, this decision is
essential to clarify the meaning of speedup. Not clarify-
ing it, or using the wrong comparison, can easily yield
misleading results and false claims. We present a taxon-
omy inspired by Alba [46.14], restricted to cases where
a fixed goal is given:

� Strong speedup: the parallel run time of a par-
allel algorithm is compared against the sequen-
tial run time of the best known sequential algo-
rithm. It was called absolute speedup by Barr
and Hickman [46.15]. This measure captures in
how far parallelization can improve upon the
best known algorithms. However, it is often dif-
ficult to determine the best sequential algorithm.
Most researchers, therefore, do not use strong
speedup [46.14].� Weak speedup: the parallel run time of an algorithm
is compared against its own sequential run time.
This gives rise to two subcases where the notion of
its own sequential run time is made precise:
– Single machine/panmixia: the parallel EA is

compared against a canonical, panmictic ver-
sion of it, running on a single machine. For
instance, we might compare an island model
with m islands against an EA running a single
island. Thereby, the EA run on all islands is the
same in both cases.

– Orthodox: the parallel EA running on m ma-
chines is compared against the same parallel
EA running on a single machine. This kind of
speedup was called relative speedup by Barr
and Hickman [46.15].

In the light of these essential differences, it is essen-
tial for researchers to clarify their notion of speedup.

Having clarified the comparison, we can now de-
fine the speedup and other measures. Let Tm denote the
time for m machines to reach the goal. Let T1 denote
the time for a single machine, where the algorithm is
chosen according to one of the definitions of speedup
defined above.

The idea is to consider the ratio of Tm and the time
for a single machine, T1, as speedup. However, as we
are dealing with randomized algorithms, T1 and Tm are
random variables and so the ratio of both is a random
variable as well. It makes more sense to consider the
ratio of expected times for both the parallel and the se-
quential algorithm as speedup

sm D E.T1/

E.Tm/
:

Note that T1 and Tm might have very dissimilar prob-
ability distributions. Even when both are re-scaled ap-
propriately to obtain the best possible match between
the two, they might still have different shapes and dif-
ferent variances. In some cases it might make sense to
consider the median or other statistics instead of the ex-
pectation.

According to the speedup sm we distinguish the fol-
lowing cases:

� Sublinear speedup: if sm < m we speak of a sublin-
ear speedup. This implies that the total computation
time across all machines is larger than the total com-
putation time of the single machine (assuming no
idle times in the parallel algorithm).� Linear speedup: the case sm D m is known as linear
speedup. There, the parallel and the sequential al-
gorithm have the same total time. This outcome is
very desirable as it means that parallelization does
not come at a cost. There is no noticeable overhead
in the parallel algorithm.� Superlinear speedup: if sm > m we have a super-
linear speedup. The total computation time of the
parallel algorithm is even smaller than that of the
single machine. This case is considered in more de-
tail in the following section.

Parallel Evolutionary Algorithms 46.2 Effects of Parallelization 937
Part

E
|46.2

Sequential
Parallel

Sequential
Parallel

0 2 4 6 8 10 12 14 16

a) Total effort for operation

Number of processors m

400

300

200

0 2 4 6 8 10 12 14 16

b) Total effort for operation

Number of processors m

1

0.8

0.6

0.4

0.2

0

Fig. 46.5a,b Total effort for executing an operation on a single, panmictic population of size �D 100 (sequential al-
gorithm) and a parallel algorithm with m processors and m subpopulations of size �=mD 100=m each. The effort on
a population of size n is assumed to be n ln n (a) and n2 (b). Note that no overhead is considered for the parallel algorithm

Speedup is the best knownmeasure, but not the only
one used regularly. For the sake of completeness, we
mention other measures. The efficiency is a normaliza-
tion of the speedup

em D sm
m

:

Obviously, em D 1 is equivalent to a linear speedup.
Lower efficiencies correspond to sublinear speedups,
higher ones to superlinear speedups.

Another measure is called incremental efficiency
and it measures the speedup when moving from m� 1
processors to m processors

iem D .m� 1/ 	E.Tm�1/

m 	E.Tm/ :

There is also a generalized form where m� 1 is re-
placed by m0 < m in the above formula. This reflects
the speedup when going from m0 processors to m pro-
cessors.

46.2.2 Superlinear Speedups

At first glance superlinear speedups seem astonish-
ing. How can a parallel algorithm have a smaller
total computation time than a sequential counterpart?
After all, parallelization usually comes with signif-
icant overhead that slows down the algorithm. The
existence of superlinear speedups has been discussed

controversially in the literature. However, there are
convincing reasons why a superlinear speedup might
occur.

Alba [46.14] mentions physical sources as one pos-
sible reason. A parallel machine might have more
resources in terms of memory or caches. When moving
from a single machine to a parallel one, the algorithm
might – purposely or not – make use of these additional
resources. Also, each machine might only have to deal
with smaller data packages. It might be that the smaller
data fits into the cache while this was not the case for
the single machine. This can make a significant perfor-
mance difference.

When comparing a single panmictic population
against smaller subpopulations, it might be easier to
deal with the subpopulations. This holds even when the
total population sizes of both systems are the same. In
particular, a parallel system has an advantage if oper-
ations need time which grows faster than linearly with
the size of the (sub)population.

We give two illustrative examples. Compare a single
panmictic population of size � with m subpopulations
of size �=m each. Some selection mechanisms, like
ranking selection, might have to sort the individuals in
the population according to their fitness. In a straight-
forward implementation one might use well-known
sorting algorithms such as (randomized) QuickSort,
MergeSort, or HeapSort. All of these are known to take
time �.n ln n/ for sorting n elements, on average. Let
us disregard the hidden constant and the randomness of

Part
E
|46.3

938 Part E Evolutionary Computation

randomized QuickSort and assume that the time is pre-
cisely n ln n.

Now the effort of sorting the panmictic population
is � ln�. The total effort for sorting m populations of
size �=m each is

m 	�=m 	 ln.�=m/D � 	 ln.�=m/
D � ln.�/�� 	 ln.m/ :

So, the parallel system executes this operation faster,
with a difference of � 	 ln.m/ time steps in terms of the
total computation time.

This effect becomes more pronounced the more
expensive operations are used (with respect to the popu-
lation size). Assume that some selection mechanism or
diversity mechanism is used, which compares every in-
dividual against every other one. Then the effort for the
panmictic population is roughly �2 time steps. How-
ever, for the parallel EA and its subpopulations the total

effort would only be

m 	 .�=m/2 D �2=m :

This is faster than the panmictic EA by a factor of m.
The above two growth curves are actually very typ-

ical running times for operations that take more than
linear time. A table with time bounds for common
selection mechanisms can be found in Goldberg and
Deb [46.16]. Figure 46.5 shows plots for the total ef-
fort in both scenarios for a population size of �D 100.
One can see that even with a small number of pro-
cessors the total effort decreases quite significantly.
To put this into perspective, most operations require
only linear time. Also the overhead by paralleliza-
tion was not accounted for. However, the discussion
gives some hints as to why the execution time for
smaller subpopulations can decrease significantly in
practice.

46.3 On the Spread of Information in Parallel EAs

In order to understand how parallel EAs work, it is
vital to get an idea on how quickly information is
propagated. The spread of information is the most
distinguishing aspect of parallel EAs, particularly dis-
tributed EAs. This includes island models and cellular
EAs. Many design choices can tune the speed at which
information is transmitted: the topology, the migration
interval, the number of migrants, and the policies for
emigration and immigration.

46.3.1 Logistic Models for Growth Curves

Many researchers have turned to investigating the selec-
tion pressure in distributed EAs in a simplified model.
Assume that in the whole system we only have two
types of solutions: current best individuals and worse
solutions. No variation is used, i. e., we consider EAs
using neither mutation nor crossover. The question is
the following. Using only selection and migration, how
long does it take for the best solutions to take over the
whole system? This time, starting from a single best so-
lution, is referred to as takeover time.

It is strongly related to the study of growth curves:
how the number of best solutions increases over time.
The takeover time is the first point of time at which the
number of best solutions has grown to the whole popu-
lation.

Growth curves are determined by both inter-island
dynamics and intra-island dynamics: how quickly cur-
rent best solutions spread in one island’s population,
and how quickly they populate neighbored islands, un-
til the whole topology is taken over. Both dynamics are
linked: intra-island dynamics can have a direct impact
on inter-island dynamics as the fraction of best indi-
viduals can decide how many (if any) best individuals
emigrate.

For intra-island dynamics one can consider results
on panmictic EAs. Logistic curves have been proposed
and found to fit simulations of takeover times very well
for common selection schemes [46.16]. These curves
are defined by the following equation. If P.t/ is the pro-
portion of best individuals in the population at time t,
then

P.t/D 1

1C
�

1
P.0/ � 1

�
e�at

;

where a is called the growth coefficient. One can see
that the proportion of best individuals increases expo-
nentially, but then the curve saturates as the proportion
approaches 1.

Sarma and De Jong [46.17] considered growth
curves in cellular EAs. They presented a detailed em-
pirical study of the effects of the neighborhood size and

Parallel Evolutionary Algorithms 46.3 On the Spread of Information in Parallel EAs 939
Part

E
|46.3

the shape of the neighborhood for different selection
schemes. They showed that logistic curves as defined
above can model the growth curves in cellular EAs rea-
sonably well.

Alba and Luque [46.18] proposed a logistic model
called LOG tailored towards distributed EAs with pe-
riodic migration. If � denotes the migration interval
and m is the number of islands, then

PLOG.t/D
m�1X
iD0

1=m

1C a 	 e�b.t�� �i/
:

In this model a and b are adjustable parameters. The
model counts subsequent increases of the proportion of
best individuals during migrations. However, it does not
include any information about the topology and the au-
thors admit that it only works appropriately on the ring
topology [46.19, Section 4.2]. They, therefore, present
an even more detailed model called TOP, which in-
cludes the diameter diam.T/ of the topology T .

PTOP.t/D
diam.T/�1X

iD0

1=m

1C a 	 e�b.t�� �i/

C m� diam.T/=m

1C a 	 e�b.t�� �diam.T//
:

Simulations show that this model yields very accurate
fits for ring, star, and complete topologies [46.19, Sec-
tion 4.3].

Luque and Alba [46.19, Section 4.3] proceed by
analyzing the effect of the migration interval and the
number of migrants. With a large migration interval,
the growth curves tend to make jumps during migration
and flatten out quickly to form plateaus during periods
without migration. The resulting curves look like step
functions, and the size of these steps varies with the mi-
gration interval.

Varying the number of migrants changes the slope
of these steps. A large number of migrants has a bet-
ter chance of transmitting best individuals than a small
number of migrants. However, the influence of the num-
ber of migrants was found to be less drastic than the
impact of the migration interval. When a medium or
large migration frequency is used, the impact of the
number of migrants is negligible [46.19, Section 4.5].
The same conclusion was made earlier by Skolicki and
De Jong [46.20].

Luque and Alba also presented experiments with
a model based on the Sprave’s hypergraph formulation
of distributed EAs [46.13]. This model gave a better fit

than the simple logistic model LOG, but it was less ac-
curate than the model TOP that included the diameter.

For the sake of completeness, we also mention that
Giacobini et al. [46.21] proposed an improved model
for asynchronous cellular EAs, which is not based on
logistic curves.

46.3.2 Rigorous Takeover Times

Rudolph [46.22, 23] rigorously analyzed takeover times
in panmictic populations, for various selection schemes.
In [46.22] he also dealt with the probability that the best
solution takes over the whole population; this is not ev-
ident for non-elitistic algorithms. In [46.23] Rudolph
considered selection schemes made elitistic by undoing
the last selection in case the best solution would be-
come extinct otherwise. Under this scheme the expected
takeover time in a population of size � is O.� log�/.

In [46.24] Rudolph considered spatially structured
populations in a fine-grained model. Each population
has size 1, therefore vertices in the migration topology
can be identified with individuals.Migration happens in
every generation. Assume that initially only one vertex i
in the topology is a best individual. If in every gen-
eration each non-best vertex is taken over by the best
individual in its neighborhood, then the takeover time
from vertex i equals

max
j2V

dist.i; j/ ;

where V is the set of vertices and dist.i; j/ denotes the
graph distance, the number of edges on a shortest path
from i to j.

Rudolph defines the takeover time in a setting where
the initial best solution has the same chance of evolving
at every vertex. Then

1

jVj
X
i2V

max
j2V

dist.i; j/

is the expected takeover time if, as above, best solutions
are always propagated to their neighbors with probabil-
ity 1. If this probability is lower, the expected takeover
time might be higher. The above formula still represents
a lower bound. Note that in non-elitist EAs it is possible
that all best solutions might get lost, leading to a posi-
tive extinction probability [46.24].

Note that maxj2V dist.i; j/ is bounded by the diam-
eter of the topology. The diameter is hence a trivial
lower bound on the takeover times. Rudolph [46.24]

Part
E
|46.3

940 Part E Evolutionary Computation

conjectures that the diameter is more important than the
selection mechanism used in the distributed EA.

In [46.25] the author generalizes the above argu-
ments to coarse-grained models. Islands can contain
larger populations and migration happens with a fixed
frequency. In his model the author assumes that in
each island new best individuals can only be gener-
ated by immigration. Migration always communicates
best individuals. Hence, the takeover time boils down
to a deterministic time until the last island has been
reached, plus a random component for the time until
all islands have been taken over completely.

Rudolph [46.25] gives tight bounds for unidirec-
tional rings, based on the fact that each island with
a best individual will send one such individual to each
neighbored island. Hence, on the latter island the num-
ber of best individuals increases by 1, unless the island
has been taken over completely. For more dense topolo-
gies he gives a general upper bound, which may not be
tight for all graphs. If there is an island that receives
best individuals from k > 1 other islands, the number
of best individuals increases by k. (The number k could
even increase over time.) It was left as an open problem
to derive more tight bounds for interesting topologies
other than unidirectional rings.

Other researchers followed up on Rudolph’s sem-
inal work. Giacobini et al. [46.26] presented theoret-
ical and empirical results for the selection pressure
on ring topologies, or linear cellular EAs. Giacobini
et al. [46.27] did the same for toroidal cellular EAs.
In particular, they considered takeover times for asyn-
chronous cellular EAs, under various common update
schemes. Finally, Giacobini et al. investigated growth
curves for small-world graphs [46.9].

Unidirectional ring
Bidirectional ring
8×8-torus
6-dimensional hypercube
Complete graph

0 5 10 15 20 25 30

Fraction of global optima

Number of migrations

1

0.8

0.6

0.4

0.2

0

Fig. 46.6 Plots of growth curves
in an island model with 64 islands.
We assume that in between two
migrations all islands containing
a current best solution completely
take over all neighbored islands in
the topology. Initially, one island
contains a current best solution and
all other islands are worse. The
curves show the fraction of current
best solutions in the system for dif-
ferent topologies: a unidirectional
ring, a bidirectional ring, a square
torus, a hypercube, and a complete
graph

The assumption from Rudolph’s model that only
immigration can create new best individuals is not al-
ways realistic. If standard mutation operators are used,
there is a constant probability of creating a clone of a se-
lected parent simply by not flipping any bits. This can
lead to a rapid increase in the number of high-fitness
individuals.

This argument on the takeover of good solutions
in panmictic populations has been studied as part of
rigorous runtime analyses of population-based EAs.
Witt [46.28] considered a simple (�C 1) EA with
uniform parent selection, standard bit mutations, no
crossover, and cut selection at the end of the generation.
From his work it follows that good solutions take over
the population in expected time O.� log�/. More pre-
cisely, if currently there is at least one individual with
current best fitness i, then after O.� log�/ generations
all individuals in the population will have fitness i at
least.

Sudholt [46.29, Lemma 2] extended these argu-
ments to a (�C�) EA and proved an upper bound of
O.�=� 	 log�C log�/. Note that, in contrast to other
studies of takeover times, both results apply real EAs
that actually use mutation. Extending these arguments
to distributed EAs is an interesting topic for future
work.

46.3.3 Maximum Growth Curves

Now, we consider inter-island dynamics in more de-
tail. Assume for simplicity that intra-island takeover
happens quickly: after each migration transmitting at
least one best solution, the target island is completely
taken over by best solutions before the next migra-

Parallel Evolutionary Algorithms 46.3 On the Spread of Information in Parallel EAs 941
Part

E
|46.3

tion. We start with only one island containing a best
solution, assuming that all individuals on this island
are best solutions. We call such an island an optimal
island. If migrants are not subject to variation while
emigrating or immigrating, we will always select best
solutions for migration and, hence, successfully trans-
mit best solutions.

These assumptions give rise to a deterministic
spread of best solutions: after each migration, each opti-
mal island will turn all neighbored islands into optimal
islands. This is very similar to Rudolph’smodel [46.25],
but it also accounts for a rapid intra-island takeover in
between migrations.

We consider growth curves on various graph
classes: unidirectional and bidirectional rings, square
torus graphs, hypercubes, and complete graphs. Fig-
ure 46.6 shows these curves for all these graphs
on 64 vertices. The torus graph has side lengths
8� 8. The hypercube has dimension 6. Each vertex
has a label made of 6 bits. All possible values for
this bit string are present in the graph. Two vertices
are neighbored if their labels differ in exactly one
bit.

For the unidirectional ring, after i� 1 migrations
we have exactly i optimal islands, if i � m. The growth
curve is, therefore, linear. For the bidirectional ring in-
formation spreads twice as fast as it can spread in two
directions. After i�1 migrations we have 2i�1 optimal
islands if 2i� 1� m.

The torus allows communication in two dimensions.
After one migration there are 1C4D 5 optimal islands.
After two migrations this number is 1C4C8, and after
three migrations it is 1C 4C 8C 12. In general, after
i� 1 migrations we have

1C
i�1X
jD1

4jD 1C 2i.i� 1/D 1C 2i2� 2i

optimal islands, as long as the optimal islands can freely
spread out in all four directions, north, south, west, and
east. At some point the ends of the region of optimal is-
lands will meet, i. e., the northern tip meets the southern
one and the same goes for west and east. Afterwards, we
observe regions of non-optimal islands that constantly
shrink, until all islands are optimal. The growth curve
for the torus is hence quadratic at first and then it starts
to saturate. The deterministic growth on torus graphs
was also considered in [46.30].

For the hypercube, we can without loss of gener-
ality assume that the initial optimal island has a label

containing only zeros. After one migration all islands
whose label contains a single one become optimal. Af-
ter two migrations the same holds for all islands with
two ones, and so on. The number of optimal islands
after i migrations in a d-dimensional hypercube (i. e.,
mD 2d) is hence

Pi
jD0

�d
j

�
. This number is close to dj

during the first migrations and then at some point starts
to saturate. The complete graph is the simplest one to
analyze here as it will be completely optimal after one
migration.

These arguments and Fig. 46.6 show that the
growth curves can depend tremendously on the mi-
gration topology. For sparse topologies like rings or
torus graphs, in the beginning the growth is linear or
quadratic, respectively. This is much slower than the
exponential growth observed in logistic curves. Further-
more, for the ring there is no saturation; linear curves
are quite dissimilar to logistic curves.

This suggests that logistic curves might not be the
best models for growth curves across all topologies.
The plots by Luque and Alba [46.19, Section 4.3] show
a remarkably good overall fit for their TOP model.
However, this might be due to the optimal choice of
the parameters a and b and the fact that logistic curves
are easily adaptable to various curves of roughly sim-
ilar shape. We believe that it is possible to derive even
more accurate models for common topologies, based on
results by Giacobini et al. [46.9, 26, 27]. This is an in-
teresting challenge for future work.

46.3.4 Propagation

So far, we have only considered models where migra-
tion always successfully transmits best individuals. For
non-trivial selection of emigrants, this is not always
given. Also if crossover is used during migration, due
to disruptive effects migration is not always successful.
If we consider randomized migration processes, things
become more interesting.

Rowe et al. [46.31] considered a model of propa-
gation in networks. Consider a network where vertices
are either informed or not. In each round, each in-
formed vertex tries to inform each of its neighbors.
Every such trial is successful with a given probability p,
and then the target island becomes informed. These
decisions are made independently. Note that an unin-
formed island might obtain a probability larger than p
of becoming informed, in case several informed islands
try to inform it. The model is inspired by models from
epidemiology; it can be used to model the spread of
a disease.

Part
E
|46.3

942 Part E Evolutionary Computation

The model of propagation of information directly
applies to our previous setting where the network is the
migration topology and p describes the probability of
successfully migrating a current best solution. Note that
when looking for estimations of growth curves and up-
per bounds on the takeover time, we can assume that p
is a lower bound on the actual probability of a success-
ful transmission. Then the model becomes applicable
to a broader range of settings, where islands can have
different transmission probabilities.

On some graphs like unidirectional rings, we can
just multiply our growth curves by p to reflect the ex-
pected number of optimal islands after a certain time. It
then follows that the time for taking over all m islands
is by a factor of 1=p larger than in the previous, deter-
ministic model.

However, this reasoning does not hold in general.
Multiplying the takeover time in the deterministic set-
ting by 1=p does not always give the expected takeover
time in the random model. Consider a star graph (or
hub), where initially only the center vertex is informed.
In the deterministic case pD 1, the takeover time is
clearly 1. However, if 0< p< 1, the time until the last
vertex is informed is given by the maximum of n� 1
independent geometric distributions with parameter p.
For constant p, this time is of order �.log n/, i. e., the
time until the last vertex is informed is much larger
than the expected time for any specific island to be
informed.

Rowe et al. [46.31] presented a detailed analysis of
hubs. They also show how to obtain a general upper
bound that holds for all graphs. For every graph G
with n vertices and diameter diam.G/ the expected
takeover time is bounded by

O

�
diam.G/C log n

p

�
:

Both terms diam.G/ and log n make sense. The diam-
eter describes what distance needs to be overcome in
order to inform all vertices in the network. The fac-
tor 1=p gives the expected time until a next vertex
is informed, assuming that it has only one informed
neighbor. We also obtain diam.G/ (without a fac-
tor 1=p) as a lower bound on the takeover time. The
additive term C log n is necessary to account for a po-
tentially large variance, as seen in the example for star
graphs.

If the diameter of the graph is at least ˝.log n/,
we can drop the C log n-term in the asymptotic bound,
leading to an upper bound of O.diam.G/=p/.

Interestingly, the concept of propagation also ap-
pears in other contexts. When solving shortest paths
problems in graphs, metaheuristics like evolutionary
algorithms [46.32–34] and ant colony optimization
(ACO) [46.35, 36] tend to propagate shortest paths
through the graph. In the single-source shortest paths
problem (SSSP) one is looking for shortest paths from
a source vertex to all other vertices of the graph. The
EAs and ACO algorithms tend to find shortest paths
first for vertices that are close to the source, in a sense
that their shortest paths only contain few edges. If
these shortest paths are found, it enables the algo-
rithm to find shortest paths for vertices that are further
away.

When a shortest paths to vertex u is found and there
is an edge fu; vg in the graph, it is easy to find a shortest
path for v. In the case of evolutionary algorithms, an EA
only needs to assign u as a predecessor of v on the short-
est path in a lucky mutation in order to find a shortest
path to v. In the case of ACO, pheromones enable an ant
to follow pheromones between the source and u, and so
it only has to decide to travel between u and v to find
a shortest path to v, with good probability.

Doerr et al. [46.34, Lemma 3] used tail bounds
to prove that the time for propagating shortest paths
with an EA is highly concentrated. If the graph has
diameter diam.G/� log n, the EA with high proba-
bility finds all shortest paths in time O.diam.G/=p/,
where pD�.n�2/ in this case. This result is similar
to the one obtained by Rowe et al. [46.31]; asymptot-
ically, both bounds are equal. However, the result by
Doerr et al. [46.33] also allows for conclusions about
growth curves.

Lässig and Sudholt [46.6, Theorem 3] introduced
yet another argument for the analysis of propagation
times. They considered layers of vertices. The i-th layer
contains all vertices that have shortest paths of at most i
edges, and that are not on any smaller layer. They bound
the time until information is propagated throughout all
vertices of a layer. This is feasible since all vertices
in layer i are informed with probability at least p if
all vertices in layers 1; : : : ; i� 1 are informed. If ni is
the number of vertices in layer i, the time until the last
vertex in this layer is informed is O.ni 	 log ni/. This
gives a bound for the total takeover time ofO.diam.G/ 	
ln.en=diam.G///. For small (diam.G/D O.1/) or large
(diam.G/D˝.n/) diameters, we get the same asymp-
totic bound as before. For other values it is slightly
worse.

However, the layering of vertices allows for inclu-
sion of intra-island effects. Assume that the transmis-

Parallel Evolutionary Algorithms 46.4 Examples Where Parallel EAs Excel 943
Part

E
|46.4

sion probability p only applies once islands have been
taken over (to a significantly large degree) by best indi-
viduals. This is a realistic setting as with only a single
best individual the probability of selecting it for emigra-
tion (or pollination, to be precise) might be very small.
If all islands need time Tintra in order to reach this stage

after the first best individual has reached the island, we
obtain an upper bound of

O.diam.G/ 	 ln.en=diam.G///C diam.G/ 	 Tintra
for the takeover time.

46.4 Examples Where Parallel EAs Excel

Parallel EAs have been applied to a very broad range
of problems, including many NP-hard problems from
combinatorial optimization. The present literature is
immense; already early surveys like the one by Alba
and Troya [46.37] present long lists of applications
of parallel EAs. Further applications can be found
in [46.38–40]. Research on and applications of paral-
lel metaheuristics has increased in recent years, due to
the emergence of parallel computer architectures.

Crainic and Hail [46.41] review applications of
parallel metaheuristics, with a focus on graph color-
ing, partitioning problems, covering problems, Steiner
tree problems, satisfiability problems, location and
network design, as well as the quadratic assignment
problems with its famous special cases: the travel-
ing salesman problem and vehicle routing problems.
Luque and Alba [46.19] present selected applications
for natural language tagging, the design of combina-
torial logic circuits, the workforce planning problem,
and the bioinformatics problem of assembling DNA
fragments.

The literature is too vast to be reviewed in this
section. Also, for many hard practical problems it is
often hard to determine the effect that parallelization
has on search dynamics. The reasons behind the suc-
cess of parallel models often remain elusive. We follow
a different route and describe theoretical studies of evo-
lutionary algorithms where parallelization was proven
to be helpful. This concerns illustrative toy functions
as well as problems from combinatorial optimization.
All following settings are well understood and allow
us to gain insights into the effect of parallelization.
We consider parallel variants of the most simple evolu-
tionary algorithm called .1C1/ evolutionary algorithm,
shortly .1C 1/ EA. It is described in Algorithm 46.3
and it only uses mutation and selection in a population
containing just one current search point. We are inter-
ested in the optimization time, defined as the number
of generations until the algorithm first finds a global
optimum. Unless noted otherwise, we consider pseudo-

Boolean optimization: the search space contains all bit
strings of length n and the task is to maximize a func-
tion f W f0; 1gn !R. We use the common notation xD
x1 : : : xn for bit strings.

Algorithm 46.3 .1C1/ EA for maximizing
f W f0;1gn ! R
1: Initialize x 2 f0; 1gn uniformly at random.
2: loop
3: Create x0 by copying x and flipping each bit in-

dependently with probability 1=n.
4: if f .x0/� f .x/ then x WD x0.
5: end loop

The presentation in this section is kept informal. For
theorems with precise results, including all precondi-
tions, we refer to the respective papers.

46.4.1 Independent Runs

Independent runs prove useful if the running time has
a large variance. The reason is that the optimization
time equals the time until the fastest run has found
a global optimum.

The variance can be particularly large in the case
when the objective function yields local optima that
are very hard to overcome. Bimodal functions contain
two local optima, and typically only one is a global
optimum. One such example was already analyzed the-
oretically in the seminal runtime analysis paper by
Droste et al. [46.42].

We review the analysis of a similar function that
leads to a simpler analysis. The function TwoMax was
considered by Friedrich et al. [46.43] in the context of
diversity mechanisms. It is a function of unitation: the
fitness only depends on the number of bits set to 1. The
function contains two symmetric slopes that increase
linearly with the distance to n=2. Only one of these
slopes leads to a global optimum. Formally, the function

Part
E
|46.4

944 Part E Evolutionary Computation

is defined as the maximum of OneMax WDPn
iD1 xi and

its symmetric cousin ZeroMax WDPn
iD1.1�xi/, with an

additional fitness bonus for the all-ones bit string

TwoMax.x/ WD max

(
nX

iD1

xi;
nX

iD1

.1� xi/

)
C

nY
iD1

xi :

See Fig. 46.7 for a sketch.
The .1C 1/ EA reaches either a local optimum or

a global optimum in expected time O.n log n/. Due to
the perfect symmetry of the function on the remainder
of the search space, the probability that this is the global
optimum is exactly 1=2. If a local optimum is reached,
the .1C 1/ EA has to flip all bits in one mutation in
order to reach the global optimum. The probability for
this event is exactly n�n.

The authors consider deterministic crowd-
ing [46.43] in a population of size � as a diversity
mechanism. It has the same search behavior as �
independent runs of the .1C 1/ EA, except that the
running time is counted in a different way. Their result
directly transfers to this parallel model. The only
assumption is that the number of independent runs is
polynomially bounded in n.

The probability of finding a global optimum af-
ter O.n log n/ generations of the parallel system is
amplified to 1� 2�. This means that only with prob-
ability 2� we arrive at a situation where the parallel
EA needs to escape from a local optimum. When all m
islands are in this situation, the probability that at least

0 5 10 15 20
Number of ones

22

20

18

16

14

12

10

Fig. 46.7 Plots of the bimodal function TwoMax as de-
fined in [46.43]

one island makes this jump in one generation is at most

1� .1� n�n/m D�.m 	 n�n/ ;

where the last equality holds since m is asymptotically
smaller than nn.

This implies that the expected number of genera-
tions of a parallel system with m independent runs is

O.n log n/C 2�m 	�
�
nn

m

�
:

We can see from this formula that the number of runs m
has an immense impact on the expected running time.
Increasing the number of runs by 1 decreases the sec-
ond summand by more than a factor of 2. The speedup
is, therefore, exponential, up to a point where the run-
ning time is dominated by the first term O.n log n/.
Note in particular that log.nn/D n log n processors
are sufficient to decrease the expected running time
to O.n log n/.

This is a very simple example of a superlinear
speedup, with regard to the optimization time.

The observed effects also occur in combinatorial
optimization. Witt [46.44] analyzed the .1C 1/ EA on
the NP-hard PARTITION problem. The task can be
regarded as scheduling on two machines: given a se-
quence of jobs, each with a specific effort, the goal is to
distribute the jobs on two machines to that the largest
execution time (the makespan) is minimized.

On worst-case instances the .1C 1/ EA has a con-
stant probability of getting stuck in a bad local op-
timum. The expected time to find a solution with
a makespan of less than .4=3�"/ 	OPT is n˝.n/, where
" > 0 is an arbitrary constant and OPT is the value of
the optimal solution.

However, if the .1C 1/ EA is lucky, it can, in-
deed, achieve a good approximation of the global
optimum. Assume we are aiming at a solution with
a makespan of at most .1C "/ 	OPT, for some " >
0 we can choose. Witt’s analysis shows that then
2.e log eCe/�d2="e ln.4="/CO.1="/ parallel runs output a so-
lution of this quality with probability at least 3=4. (This
probability can be further amplified quite easily by
using more runs.) Each run takes time O.n ln.1="//.
The parallel model represents what is known as
a polynomial-time randomized approximation scheme
(PRAS). The desired approximation quality .1C "/ can
be specified, and if " is fixed, the total computation
time is bounded by a polynomial in n. This was the
first example that parallel runs of a randomized search
heuristics constitute a PRAS for an NP-hard problem.

Parallel Evolutionary Algorithms 46.4 Examples Where Parallel EAs Excel 945
Part

E
|46.4

46.4.2 Offspring Populations

Using offspring populations in a master–slave architec-
ture can decrease the parallel running time and lead
to a speedup. We will discuss this issue further in
Sect. 46.5 as offspring populations are very similar to
island models on complete topologies. For now, we
present one example where offspring populations de-
crease the optimization time very drastically.

Jansen et al. [46.45] compared the .1C 1/ EA
against a variant (1C�) EA that creates � offspring in
parallel and compares the current search point against
the best offspring. They constructed a function Suf-
Samp where offspring populations have a significant
advantage. We refrain from giving a formal definition,
but instead describe the main ideas. The vast majority
of all search points tend to lead an EA towards the start
of a path through the search space. The points on this
path have increasing fitness, thus encouraging an EA to
follow it. All points outside the path are worse, so the
EA will stay on the path.

The path leads to a local optimum at the end. How-
ever, the function also includes a number of smaller
paths that branch off the main path, see Fig. 46.8. All
these paths lead to global optima, but they are diffi-
cult to discover. This makes a difference between the
.1C 1/ EA and the (1C�) EA for sufficiently large �.
The .1C1/ EA typically follows the main path without
discovering the smaller paths branching off. At the end
of the main path it thus becomes stuck in a local opti-
mum. The analysis in [46.45] shows that the .1C1/ EA
needs superpolynomial time, with high probability.

Contrarily, the (1C�) EA performs a more thor-
ough search as it progresses on the main path. The many
offspring tend to discover at least one of the smaller
branches. The fitness on the smaller branches is larger
than the fitness of the main path, so the EA will move
away from the main path and follow a smaller path. It
then finds a global optimum in polynomial time, with
high probability.

Interestingly, this construction can be easily adapted
to show an opposite result. We replace the local opti-
mum at the end of the main path by a global optimum

Main path

Global optima Local optima

Local
optima

Main path Local
optima

Fig. 46.8 Sketches of the functions
SufSamp (left) and SufSamp0 (right).
The fitness is indicated by the color

and replace all global optima at the end of the smaller
branches by local optima. This yields another function
SufSamp0, also shown in Fig. 46.8. By the same reason-
ing as above, the (1C�) EA will become stuck and the
.1C 1/ EA will find a global optimum in polynomial
time, with high probability.

While the example is clearly constructed and artifi-
cial, it can be seen as a cautionary tale. The reader might
be tempted to think that using offspring populations in-
stead of creating a single offspring can never increase
the number of generations needed to find the optimum.
After all, evolutionary search with offspring population
is more intense and improvements can be found more
easily. As we focus on the number of generations (and
do not count the effort for creating � offspring), it is
tempting to claim that offspring populations are never
disadvantageous.

The second example shows that this claim – how-
ever obvious it may seem – does not hold for general
problem classes. Note that this statement is also implied
by the well-known no free lunch theorems [46.46], but
the above results are much stronger and more concrete.

46.4.3 Island Models

The examples so far have shown that a more thorough
search – by independent runs or increased sampling of
offspring – can lead to more efficient running times.
Lässig and Sudholt [46.3] presented a first example
where communication makes the difference between
exponential and polynomial running times, in a typi-
cal run. They constructed a family of problems called
LOLZn;z;b;` where a simple island model finds the op-
timum in polynomial time, with high probability. This
holds for a proper choice of the migration interval and
any migration topology that is not too sparse. The is-
lands run .1C1/EAs, hence the island model resembles
a fine-grained model.

Contrarily, both a panmictic population as well as
independent islands need exponential time, with high
probability. This shows that the weak speedup versus
panmixia is superlinear, even exponential (when con-
sidering speedups with respect to the typical running

Part
E
|46.4

946 Part E Evolutionary Computation

Table 46.1 Examples of solutions for the function LOLZ with four blocks and zD 3, along with their fitness values. All
blocks have to be optimized from left to right. The sketch shows in bold all bits that are counted in the fitness evaluation.
Note how in x3 in the third block only the first zD 3 zeros are counted. Further 0-bits are ignored. The only way to
escape from this local optimum is to flip all z 0-bits in this block simultaneously

x1 11110011 11010100 11010110 01011110 LOLZ.x1/ D 4
x2 11111111 11010100 11010110 01011110 LOLZ.x2/ D 10
x3 11111111 11111111 00000110 01011110 LOLZ.x3/ D 19

time instead of the expected running time). Unlike pre-
vious examples, it also shows that more sophisticated
means of parallelization can be better than independent
runs.

The basic idea of this construction is as follows. An
EA can increase the fitness of its current solutions by
gathering a prefix of bits with the same value. Gener-
ally, a prefix of i leading ones yields the same fitness as
a prefix of i leading zeros. The EA has to make a de-
cision whether to collect leading ones (LOs) or leading
zeros (LZs). This not only holds for the .1C 1/ EA but
also for a (not too large) panmictic population as genetic
drift will lead the whole population to either leading
ones or leading zeros.

In the beginning, both decisions are symmetric.
However, after a significant prefix has been gath-
ered, symmetry is broken: after the prefix has reached
a length of z, z being a parameter of the function, only
leading ones lead to a further fitness increase. If the EA
has gone for leading zeros, it becomes stuck in a local
optimum. The parameter z determines the difficulty of
escaping from this local optimum.

This construction is repeated on several blocks of
the bit string that need to be optimized one-by-one.
Each block has length `. Only if the right decision to-
wards the leading ones is made on the first block, can
the block be filled with further leading ones. Once the
first block contains only leading ones, the fitness de-
pends on the prefix in the second block, and a further
decision between leading ones and leading zeros needs
to be made. Figure 46.1 illustrates the problem defini-
tion.

So, the problem requires an EA to make several
decisions in succession. The number of blocks, b, is
another parameter that determines how many decisions
need to be made. Panmictic populations will sooner or
later make a wrong decision and become stuck in some
local optimum. If b is not too small, the same holds for
independent runs.

However, an island model can effectively commu-
nicate the right decisions on blocks to other islands.
Islands that have become stuck in a local optimum can

be taken over by other islands that have made the cor-
rect decision. These dynamics make up the success of
the island model as it can be shown to find global op-
tima with high probability. A requirement is, though,
that the migration interval is carefully tuned so that
migration only transmits the right information. If mi-
gration happens before the symmetry between leading
ones and leading zeros is broken, it might be that islands
with leading zeros take over islands with leading ones.
Lässig and Sudholt [46.3] give sufficient conditions un-
der which this does not happen, with high probability.

An interesting finding is also how islands can regain
independence. During migration, genetic information
about future blocks is transmitted. Hence, after migra-
tion all islands contain the same genotype on future
blocks. This is a real threat as this dependence might
imply that all islandsmake the same decision after mov-
ing on to the next block. Then all diversity would be
lost.

However, under the conditions given in [46.3] there
is a period of independent evolution following mi-
gration, before any island moves on to a new block.
During this period of independence, the genotypes of
future blocks are subjected to random mutations, inde-
pendently for each island. The reader might think of
moving particles in some space. Initially, all bits are in
the same position. However, then particles start moving
around randomly. Naturally, they will spread out and
separate from one another. After some time the distri-
bution of particles will resemble a uniform distribution.
In particular, an observer would not be able to distin-
guish whether the positions of particles were obtained
by this random process or by simply drawing them from
a uniform distribution.

The same effect occurs with bits of future blocks;
after some time all bits of a future block will be in-
distinguishable from a random bit string. This shows
that independence can not only be gained by indepen-
dent runs, but also by periods of independent evolution.
One could say that the island model combines the
advantages of two worlds: independent evolution and
selection pressure through migration. The island model

Parallel Evolutionary Algorithms 46.4 Examples Where Parallel EAs Excel 947
Part

E
|46.4

υ*

υ* υ*υ*

Fig. 46.9 Sketch of the graph G0. The top shows a configuration where a decision at v� has to be made. The three
configurations below show the possible outcomes. All these transitions occur with equal probability, but only the one on
the bottom right leads to a solution where rotations are necessary

is only successful because it can use both migration and
periods of independent evolution.

The theoretical results [46.3] were complemented
by experiments in [46.47]. The aim was to look at what
impact the choice of the migration topology and the
choice of the migration interval have on performance,
regarding the function LOLZ. The theoretical results
made a statement about a broad class of dense topolo-
gies, but required a very precise migration interval. The
experiments showed that the island model is far more
robust with respect to the migration interval than sug-
gested by theory.

Depending on the migration interval, some topolo-
gies were better than others. The topologies involved
were a bidirectional ring, a torus with edges wrapping
around, a hypercube graph, and the complete graph. We
considered the success rate of the island model, stop-
ping it as soon as all islands had reached local or global
optima. We then performed statistical tests comparing
these success rates. For small migration intervals, i. e.,
frequent migrations, sparse topologies were better than
dense ones. For large migration intervals, i. e., rare mi-
grations, the effect was the opposite. This effect was
expected; however, we also found that the torus was
generally better than the hypercube. This is surprising,
as both have a similar density. Table 46.2 shows the
ranking obtained for commonly used topologies.

Superlinear speedups with island models also oc-
cur in simpler settings. Lässig and Sudholt [46.6] also
considered island models for the Eulerian cycle prob-

lem. Given an undirected Eulerian graph, the task is to
find a Eulerian cycle, i. e., a traversal of the graph on
which each edge is traversed exactly once. This prob-
lem can be solved efficiently by tailored algorithms, but
it served as an excellent test bed for studying the per-
formance of evolutionary algorithms [46.48–51].

Instead of bit strings, the problem representation by
Neumann [46.48] is based on permutations of the edges
of the graph. Each such permutation gives rise to awalk:
starting with the first edge, a walk is the longest se-
quence of edges such that two subsequent edges in the
permutation share a common vertex. The walk encoded
by the permutation ends when the next edge does not
share a vertex with the current one. A walk that con-
tains all edges represents a Eulerian cycle. The length
of the walk gives the fitness of the current solution.

Neumann [46.48] considered a simple instance that
consists of two cycles of equal size, connected by one
common vertex v� (Fig. 46.9). The instance is interest-
ing as it represents a worst case for the time until an

Table 46.2 Performance comparison according to success
rates for commonly used migration topologies. The notion
A � B means that topology A has a significantly smaller
success rate than topology B

Migration interval Ranking
Small migration intervals K
 hypercube
 torus
 ring
Medium migration intervals hypercube
 K
 ring
 torus
High migration intervals ring
 torus
 hypercube
 K

Part
E
|46.4

948 Part E Evolutionary Computation

improvement is found. This is with respect to random-
ized local search (RLS) working on this representation.
RLS works like the .1C 1/ EA, but it only uses lo-
cal mutations. As the mutation operator it uses jumps:
an edge is selected uniformly at random and then it is
moved to a (different) target position chosen uniformly
at random. All edges in between the two positions are
shifted accordingly.

On the considered instance RLS typically starts
constructing a walk within one of these cycles, either by
appending edges to the end of the walk or by prepend-
ing edges to the start of the walk. When the walk
extends to v� for the first time, a decision needs to be
made. RLS can either extend the walk to the opposite
cycle, Fig. 46.9. In this case, RLS can simply extend
both ends of the walk until a Eulerian cycle is formed.
The expected time until this happens is�.m3/, wherem
denotes the number of edges.

However, if another edge in the same cycle is added
at v�, the walk will evolve into one of the two cycles
that make up the instance. It is not possible to add fur-
ther edges to the current walk, unless the current walk
starts and ends in v�. However, the walk can be rotated
so that the start and end vertex of the walk is moved to
a neighbored vertex. Such an operation takes expected
time �.m2/. Note that the fitness after a rotation is the
same as before. Rotations that take the start and end
closer to v� are as likely as rotations that move it away
from v�. The start and end of the walk hence performs
a fair random walk, and �.m2/ rotations are needed on
average in order to reach v�. The total expected time for
rotating the cycle is hence �.m4/.

Summarizing, if RLS makes the right decision then
expected time �.m3/ suffices in total. However, if ro-
tations become necessary the expected time increases
to �.m4/. Now consider an island model with m is-
lands running RLS. If islands evolve independently for
at least � � m3 generations, all mentioned decisions are
made independently, with high probability. The proba-
bility of making a wrong decision is 1=3, hence with m
islands the probability that all islands make the wrong
decision is 3�m. The expected time can be shown to be

�.m3 C 3�m 	m4/ :

The choicem WD log3 m yields an expectation of�.m3/,
and every value up to log3 m leads to a superlin-
ear speedup, asymptotically speaking. Technically, the
speedup is even exponential.

Interestingly, this good performance only holds if
migration is used rarely, or if independent runs are used.

If migration is used too frequently, the island model
rapidly loses diversity. If T is any strongly connected
topology and diam.T/ is its diameter, we have the fol-
lowing. If

� 	 diam.T/ 	mD O.m2/ ;

then there is a constant probability that the island that
first arrives at a decision at v� propagates this solution
throughout the whole island model, before any other
island can make an improvement. This results in an
expected running time of ˝.m4= log.m//. This is al-
most �.m4/, even for very large numbers of islands.
The speedup is, therefore, logarithmic at best, or even
worse. This natural example shows that the choice of
the migration interval can make a difference between
exponential and logarithmic speedups.

46.4.4 Crossover Between Islands

It has long been known that island models can also
be useful in the context of crossover. Crossover usu-
ally requires a good diversity in the population to work
properly. Due to the higher diversity between different
islands, compared to panmixia, recombining individu-
als from different islands is promising.

Watson and Jansen [46.52] presented and analyzed
a royal road function for crossover: a function where
crossover drastically outperforms mutation-based evo-
lutionary algorithms. In contrast to previous theoreti-
cally studied examples [46.53–57], their goal was to
construct a function with a clear building-block struc-
ture. In order to prove that a GA was able to assemble
all building blocks, they resorted to an island model
with a very particular migration topology. In their
single-receiver model all islands except one evolve
independently. Each island sends its migrants to a des-
ignated island called the receiver (Fig 46.10). This way,
all sending islands are able to evolve the right building
blocks, and the receiver is used to assemble all these
building blocks to obtain the optimum.

Fig. 46.10 The topology for Watson and Jansen’s single-
receiver model (after [46.52])

Parallel Evolutionary Algorithms 46.5 Speedups by Parallelization 949
Part

E
|46.5

Fig. 46.11 Vertex cover instance with bipartite graphs. The brown vertices denote selected vertices. In this configuration
the second component shows a locally optimal configuration while all other components are globally optimal

This idea was picked up later on by Neumann
et al. [46.7] in a more detailed study of crossover in is-
land models. We describe parts of their results, as their
problem is more illustrative than the one by Watson
and Jansen. The former authors considered instances of
the NP-hard Vertex cover problem. Given an undirected
graph, the goal is to select a subset of vertices such that
each vertex is either selected or neighbored to a selected
vertex. We say that vertices are covered if this property
holds for them. The objective is to minimize the num-
ber of selected vertices. The problem has a simple and
natural binary representation where each bit indicates
whether a corresponding vertex is selected or not.

Prior work by Oliveto et al. [46.58] showed that
evolutionary algorithms with panmictic populations
even fail on simply structured instance classes like
copies of bipartite graphs. An example is shown in
Fig. 46.11. Consider a single bipartite graph, i. e., two
sets of vertices such that each vertex in one set is con-
nected to every vertex in the other set. If both sets
have different sizes, the smaller set is an optimal Ver-
tex cover. The larger set is another Vertex cover. It is, in
fact, a non-optimal local optimumwhich is hard to over-
come: the majority of bits has to flip in order to escape.
If the instance consists of several independent copies of
bipartite graphs, it is very likely that a panmictic EA
will evolve a locally optimal configuration on at least
one of the bipartite graphs. Then the algorithm fails to
find a global optimum.

Island models perform better. Assume the topol-
ogy is the single-receiver model. In each migration
a 2-point crossover is performed between migrants and
the individual on the target island. All islands have
population size 1 for simplicity. We also assume that
the bipartite subgraphs are encoded in such a way
that each subgraph forms one block in the bit string.
This is a natural assumption as all subgraphs can be
clearly identified as building blocks. In addition, Jansen
et al. [46.59] presented an automated way of encoding
graphs in a crossover-friendly way, based on the degrees
of vertices.

The analysis in [46.7] shows the following. As-
sume that the migration interval is at least � � n1C"

for some positive constant " > 0. This choice implies
that all islands will evolve to configurations where
all bipartite graphs are either locally optimal or glob-
ally optimal. With probability 1� e�˝.m/ we have that
for each bipartite graph at least a constant fraction
of all sender islands will have the globally optimal
configuration.

All that is left to do for the receiver island is to
rely on crossover combining all present good building
blocks. As two-point crossover can select one block
from an immigrant and the remainder from the current
solution on the receiver island, all good building blocks
have a good chance to be obtained. The island model
finds a global optimum within a polynomial number of
generations, with probability 1� e�˝.minfn"=2;mg/.

46.5 Speedups by Parallelization

46.5.1 A General Method
for Analyzing Parallel EAs

We now finally discuss a method for estimating the
speedup by parallelization. Assume that, instead of run-
ning a single EA, we run an island model where each
island runs the same EA. The question is by how much
the expected optimization time (i. e., the number of gen-
erations until a global optimum is found) decreases,

compared to the single, panmictic EA. Recall that this
speedup is called weak orthodox speedup [46.14].

In the following we sometimes speak of the ex-
pected parallel optimization time to emphasize that
we are dealing with a parallel system. If the num-
ber of islands and the population size on each island
is fixed, we can simply multiply this time by a fixed
factor to obtain the expected number of function evalu-
ations.

Part
E
|46.5

950 Part E Evolutionary Computation

Lässig and Sudholt [46.4] presented a method for
estimating the expected optimization time of island
models. It combines growth curves with a well-known
method for the analysis of evolutionary algorithms.
The fitness-level method or method of f -based parti-
tions [46.60] is a simple, yet powerful technique. The
idea is to partition the search space into non-empty
sets A1, A2, : : :, Am such that the following holds:

� for each 1� i< m each search point in Ai has
a strictly worse fitness than each search point
in AiC1 and� Am contains all global optima.

The described ordering with respect to the fitness f
is often denoted

A1 <f A2 <f 	 	 	<f Am :

Note that Am can also be redefined towards containing
all search points of some desired quality if the goal is
not global optimization.

We say that a population-based algorithm A (in-
cluding populations of size 1) is in Ai or on fitness
level i if the best search point in the population is in Ai.
Now, assume that we know that si is a lower bound
on the probability that the algorithm finds a solution
in AiC1 [[Am if it is currently in Ai. Then the re-
ciprocal 1=si is an upper bound on the expected time
until this event happens. If the algorithm is elitist (i. e.,
it never loses the current best solution), then it will
never decrease its current fitness level. A sufficient con-
dition for finding an optimal solution is that all sets
A1;A2; : : : ;Am�1 are left in the described manner at
least once. This implies the following bound on the ex-
pected optimization time.

Theorem 46.1 Wegener [46.60]
Consider an elitist EA and assume a fitness-level par-
tition A1 <f 	 	 	<f Am where Am is the set of global
optima. Let si be a lower bound for the probability
that in one generation the EA finds a search point in
AiC1 [[Am if the best individual in the parent pop-
ulation is in Ai. Then the expected optimization time is
bounded by

m�1X
iD1

1

si
:

The above bound applies to all elitist algorithms.
It is generally applicable and often quite versatile, as

we can freely choose the partition A1; : : : ;Am. The
challenge is to find such a partition and to find cor-
responding probability bounds s1; : : : ; sm�1 for find-
ing improvements. Many papers have shown that this
method – applied explicitly or implicitly – yields tight
bounds on the expected optimization time of EAs for
various problems [46.32, 42, 48]. It can also be used as
part of a more general analysis [46.61, 62].

We are being pessimistic in assuming that every fit-
ness level has to be left. In reality, several fitness levels
might be skipped. The fitness-level method often yields
good bounds if not too many levels are skipped, and if
the probability bounds si are good estimates for the real
probabilities of finding a better fitness-level set. Note
that the lower bound si must apply regardless of the
precise search point(s) in Ai present in the population,
hence we need to consider the worst-case probability of
escaping from Ai.

Nevertheless, the fitness-level method often yields
tight bounds. Sudholt [46.63] recently developed
a lower-bound method based on fitness levels, which
in each case shows that the upper bound is tight. Also,
Lehre [46.64] recently presented an extension of the
method to non-elitist algorithms. Asymptotically, the
same bound as in Theorem 46.1 applies, if some ad-
ditional conditions on the selection pressure and the
population size are fulfilled. For the sake of simplicity,
we focus on elitist algorithms in the following.

If si denotes the probability of a single offspring
finding an improvement, this probability can be in-
creased by using � offspring in parallel. We have
already seen in Sect. 46.1 how � independent trials can
increase or amplify a success probability p to 1� .1�
p/�. The same reasoning applies to the probability si
for finding an improvement on the current best level.
Figure 46.1 has shown how this probability increases
with the number of trials. Figure 46.12 shows how the
expected time for having a success decreases with the
number of offspring. In fact, the curves in Fig. 46.12
are just reciprocals of those in the previous Fig. 46.1.

Figure 46.12 shows that the speedup can be close to
linear (in a strict, non-asymptotic sense), especially for
low success probabilities. As the probability of increas-
ing the current fitness level i is at least 1� .1� si/�, we
obtain the following.

Theorem 46.2
Consider an elitist EA creating � offspring indepen-
dently in each generation. Assume a fitness-level par-
tition A1 <f 	 	 	<f Am; where Am is the set of global
optima. Let si be a lower bound for the probability that

Parallel Evolutionary Algorithms 46.5 Speedups by Parallelization 951
Part

E
|46.5

in one generation a single offspring finds a search point
in AiC1 [[Am if the best individual in the parent
population is in Ai. Then the expected optimization time
is bounded by

m�1X
iD1

1

1� .1� si/�
� m� 1C 1

�

m�1X
iD1

1

si
:

Note that the first bound for �D 1 reproduces the
previous upper bound from Theorem 46.1. For the sec-
ond bound we used

1

1� .1� si/
� 1C 1

�
	 1
si
; (46.2)

where the inequality was proposed by Jon Rowe (per-
sonal communication, 2011); it can be proven by a sim-
ple induction.

Our estimate of the probability for an improvement
increases with the number of islands on the current best
fitness level. In a spatially structured EA these growth
curves are non-trivial. Especially with a sparse migra-
tion topology, information about the current best fitness
level is typically propagated quite slowly. The increased
exploration slows down exploitation. Still, even sparse
topologies lead to drastically improved upper bounds,
when compared to the simple bound for a sequential
EA from Theorem 46.1. The precise bounds crucially
depend on the particular topology.

p = 0.3
p = 0.1
p = 0.05

0 2 4 6 8 10

Expected parallel time

Number of independent trials

20

15

10

5

0

Fig. 46.12 Plots of the expected parallel time until an off-
spring population of size � has a success, if each offspring
independently has a success probability of p. The dashed
lines indicate a perfect linear speedup

We first consider a setting where migration always
transmits the current best fitness level and migration
occurs in every generation. It is possible to adapt the re-
sults to account for larger migration intervals. One way
of doing this is to redefine si to represent a lower bound
of finding an improvement in a time period between
migrations. Then we obtain an upper bound on the ex-
pected number of migrations. For the sake of simplicity,
we only consider the case � D 1 in the following.

The following theorem was presented in Lässig and
Sudholt [46.6]; it is a refined special case of previous
results [46.4]. The main proof idea is to combine the
investigation of growth curves with the consideration
of amplified success probabilities.

Theorem 46.3 Lässig and Sudholt [46.6]
Consider an island model with � islands where each is-
land runs an elitist EA. In every iteration each island
sends copies of its best individual to all neighbored is-
lands (i. e., � D 1). Each island incorporates the best out
of its own individuals and its immigrants.

For every partition A1 <f 	 	 	<f Am if si is a lower
bound for the probability that in one generation an is-
land in Ai finds a search point in AiC1 [[Am then
the expected parallel optimization time is bounded by:

1. 2
Pm�1

iD1
1

s1=2i

C 1

Pm�1
iD1

1
si
for every unidirectional

ring (a ring with edges in one direction) or any other
strongly connected topology,

2. 3
Pm�1

iD1
1

s1=3i

C 1

Pm�1
iD1

1
si
for every undirected grid

or torus graph with side lengths at least
p
��p

�,
3. m� 1C 1

Pm�1
iD1

1
si
for the complete topology K.

Note that the bound for the complete topology K is
equal to the upper bound for offspring populations, The-
orem 46.2. This makes sense as an island model with
a complete topology propagates the current best fitness
level like an offspring population.

All bounds in Theorem 46.3 consist of two additive
terms. The second term

1

�

m�1X
iD1

1

si

represents a perfect linear speedup, compared to the up-
per bound from Theorem 46.1. The larger we choose
the number of islands �, the smaller this term becomes.
The first additive term is related to the growth curves of
the current best fitness level in the island model. The

Part
E
|46.5

952 Part E Evolutionary Computation

denser the topology, the faster information is spread,
and the smaller this term becomes. Note that it is inde-
pendent of �. It can be regarded as the term limiting the
degree of parallelizability. We can increase the number
of islands in order to decrease the second term

1

�

m�1X
iD1

1

si
;

but we cannot decrease the first term by changing �.
This allows for immediate conclusions about cases

where we obtain an asymptotic linear speedup over
a single-island EA. For all choices of � where the sec-
ond term is asymptotically no smaller than the first
term, the upper bound is smaller than the upper bound
from Theorem 46.1 by a factor of order �. This is an
asymptotic linear speedup if the upper bound from The-
orem 46.1 is asymptotically tight. (If it is not, we can
only compare upper bounds for a sequential and a par-
allel EA.)

We illustrate this with a simple and well-known test
function from pseudo-Boolean optimization. The algo-
rithm considered is an island model where each island
runs a .1C1/ EA; the island model is also called paral-
lel .1C 1/ EA. The function

LO.x/ WD
nX

iD1

iY
jD1

xj (LeadingOnes)

counts the number of leading ones in the bit string.
We choose the canonic partition where Ai contains all
search points with fitness i, i. e., i leading ones. For any
set Ai, 0� i � n� 1 we use the following lower bound
on the probability for an improvement.

An improvement occurs if the first 0-bit is flipped
from 0 to 1 and no other bit flips. The probability
of flipping the mentioned 0-bit is 1=n as each bit is

Table 46.3 Upper bounds for expected parallel optimization times (number of generations) for the .1C 1/ EA and the
corresponding island model with � islands in pseudo-Boolean optimization. The last but one column is for any unimodal
function with d function values. The number of function evaluations in the island model is larger than the number of
generations by a factor of �

Algorithm ONEMAX LO Unimodal, d values Jumpk, k � 3

.1C 1/ EA O.n log n/ [46.42] O.n2/ [46.42] O.nd/ O.nk/ [46.42]

Island model on ring O
�
nC n log n

�
O
�
n3=2 C n2

�
O
�
dn1=2 C dn

�
O
�
nk=2 C nk

�
Island model on torus O

�
nC n log n

�
O
�
n4=3 C n2

�
O
�
dn1=3 C dn

�
O
�
nk=3 C nk

�
Island model on K=.1C�) EA O

�
nC n log n

�
O
�
nC n2

�
O
�
dC dn

�
O
�
nC nk

�

flipped independently with probability 1=n. The prob-
ability of not flipping any other bit is .1� 1=n/n�1. We
use the common estimate .1� 1=n/n�1 � 1=e, where
eD exp.1/D 2:718 : : :, so the probability of an im-
provement is at least si � 1=.en/ for all 0 � i � n� 1.
Plugging this into Theorem 46.3, the second term is
1

	 en2 for all bounds. The first terms are

2n 	 .en/1=2 D 2e1=2n3=2

for the ring,

3n 	 .en/1=3 D 3e1=3n4=3

for the torus, and n for the complete graph, respectively.
For the ring, choosing �D O.n1=2/ islands results

in an expected parallel time of O. 1

	 n2/ as the second

term is asymptotically not smaller than the first one.
This is asymptotically smaller by a factor of 1=� than
the expected optimization time of a single .1C 1/ EA,
�.n2/ [46.42]. Hence, each choice of � up to �D
O.n1=2/ gives a linear speedup. For the torus we obtain
a linear speedup for �D O.n2=3/ in the same fashion.
For the complete graph this even holds for �D O.n/.
One can see here that the island model can decrease the
expected parallel running time by significant polyno-
mial factors.

Table 46.3 lists expected parallel optimization time
bounds for several well-known pseudo-Boolean func-
tions. The above analysis for LO generalizes to all
unimodal functions. A function is called unimodal here
if every non-optimal search point has a better Ham-
ming neighbor, i. e., a better search point can be reached
by flipping exactly one specific bit. ONEMAX.x/DPn

iD1 xi counts the number of ones, hence modeling
a simple hill climbing task. Finally, Jumpk [46.42] is
a multimodal function of tunable difficulty. An EA

Parallel Evolutionary Algorithms 46.5 Speedups by Parallelization 953
Part

E
|46.5

typically has to make a jump by flipping k bits si-
multaneously, where 2� k � n. The .1C 1/ EA has an
expected optimization time of �.nk/, hence growing
rapidly with increasing k.

One can see that the island model leads to drasti-
cally reduced parallel optimization times. This particu-
larly holds for problems where improvements are hard
to find.

We remark that Lässig and Sudholt [46.4] also con-
sidered parallel EAs where migration is not always
successful in transmitting information about the cur-
rent best fitness level. This includes the case where
crossover is used during migration and crossover has
a certain probability of being disruptive. We do obtain
upper bounds on the expected optimization time if we
know a lower bound pC on the probability of a suc-
cessful transmission. The bounds depend on pC; the
degree of this dependence is determined by the topol-
ogy. For simplicity we only focus on the deterministic
case here.

46.5.2 Speedups in Combinatorial
Optimization

The techniques are also applicable in combinatorial op-
timization. We review two examples here, presented
in [46.6]. Scharnow et al. [46.32] considered the classi-
cal sorting problem as an optimization problem: given
a sequence of n distinct elements from a totally ordered
set, sorting is the problem of maximizing sortedness.
Without loss of generality the elements are 1; : : : ; n;
then the aim is to find the permutation �opt such that
.�opt.1/; : : : ; �opt.n// is the sorted sequence.

The search space is the set of all permutations �
on 1; : : : ; n. Two different operators are used for muta-
tion. An exchange chooses two indices i¤ j uniformly
at random from f1; : : : ; ng and exchanges the entries at
positions i and j. A jump chooses two indices in the
same fashion. The entry at i is put at position j and all
entries in between are shifted accordingly. For instance,

Table 46.4 Upper bounds for expected parallel optimization times for the .1C 1/ EA and the corresponding island
model with � islands for sorting n objects

Algorithm INV HAM, LAS, EXC

.1C 1/ EA O.n2 log n/ [46.32] O.n2 log n/ [46.32]

Island model on ring O
�
n2 C n2 log n

�
O
�
n3=2 C n2 log n

�
Island model on torus O

�
n2 C n2 log n

�
O
�
n4=3 C n2 log n

�
Island model on K=.1C�) EA O

�
n2 C n2 log n

�
O
�
nC n2 log n

�

a jump with iD 2 and jD 5 would turn .1;2; 3; 4; 5; 6/
into .1; 3;4; 5; 2; 6/.

The .1C1/ EA draws S according to a Poisson dis-
tribution with parameter �D 1 and then performs SC 1
elementary operations. Each operation is either an ex-
change or a jump, where the decision is made inde-
pendently and uniformly for each elementary operation.
The resulting offspring replaces its parent if its fitness
is not worse. The fitness function f�opt.�/ describes the
sortedness of .�.1/; : : : ; �.n//. As in [46.32], we con-
sider the following measures of sortedness:

� INV.�/ measures the number of pairs .i; j/; 1 � i<
j � n, such that �.i/ < �.j/ (pairs in correct order),� HAM.�/measures the number of indices i such that
�.i/D i (elements at the correct position),� LAS.�/ equals the largest k such that �.i1/ < 	 	 	<
�.ik/ for some ii < 	 	 	< ik (length of the longest as-
cending subsequence),� EXC.�/ equals the minimal number of exchanges
(of pairs �.i/ and �.j/) to sort the sequence, leading
to a minimization problem.

The expected optimization time of the .1C 1/ EA
is ˝.n2/ and O.n2 log n/ for all fitness functions. The
upper bound is tight for LAS, and it is believed to
be tight for INV, HAM, and EXC as well [46.32].
Theorem 46.3 yields the following. For INV, all topolo-
gies guarantee a linear speedup only in case �D
O.log n/ and the boundO.n2 log n/ for the .1C1/ EA is
tight. The other functions allow for linear speedups up
to �D O.n1=2 log n/ (ring), �D O.n2=3 log n/ (torus),
and �D O.n log n/ (K), respectively (again assuming
tightness, otherwise up to a factor of log n). Note how
the results improve with the density of the topology.
HAM, LAS, and EXC yield much better guarantees
for the island model than INV. This is surprising as
there is no visible performance difference for a single
.1C 1/ EA. Theorem 46.3 yields the following results
also shown in Tab. 46.4

Part
E
|46.5

954 Part E Evolutionary Computation

Table 46.5 Worst-case expected parallel optimization times for the .1C1/ EA and the corresponding island model with
� islands for the SSSP on graphs with n vertices and m edges. The value ` is the maximum number of edges on any
shortest path from the source to any vertex and `� WDmaxf`; ln ng. The second lines show a range of �-values yielding
a linear speedup, apart from a factor ln.en=`/

Algorithm Vertex-based mutation [46.32] Edge-based mutation [46.65]

.1C 1/ EA �.n2`�/ [46.34] �.m`�/ [46.65]

Island model on ring O
�
n3=2`1=2 C n2` ln.en=`/

�
�! � D O

�
.n`/1=2

� O
�
m1=2n1=2`1=2 C m` ln.en=`/

�
�! � D O

�
.m=n � `/1=2�

Island model on torus O
�
n4=3`1=3 C n2` ln.en=`/

�
�! � D O

�
.n`/2=3

� O
�
m1=3n2=3`1=3 C m` ln.en=`/

�
�! � D O

�
.m=n � `/2=3�

Island model on K=.1C�) EA O
�
nC n2` ln.en=`/

�
�! � D O .n`/

O
�
nC m` ln.en=`/

�
�! � D O .m=n � `/

An explanation is that INV leads to
�n
2

�
non-optimal

fitness levels that are quite easy to overcome. HAM,
LAS, and EXC have only n non-optimal fitness levels
that are more difficult. For a single EA both settings
are equally difficult, leading to asymptotically equal
expected times (assuming all upper bounds are tight).
However, the latter setting is easier to parallelize than
the former as it is easier to amplify small success prob-
abilities.

We also consider parallel variants of the .1C
1/ EA for the single source shortest path prob-
lem (SSSP) [46.32]. An SSSP instance is given
by an undirected connected graph with vertices
f1; : : : ; ng and a distance matrix DD .dij/1	i;j	n,
where dij 2RC

0 [f1g defines the length value for
given edges from node i to node j. We are searching
for shortest paths from a node s (without loss of gener-
ality sD n) to each other node 1� i � n� 1.

A candidate solution is represented as a shortest
paths tree, a tree rooted at s with directed shortest paths
to all other vertices. We define a search point x as
vector of length n� 1, where position i describes the
predecessor node xi of node i in the shortest path tree.
Note that infeasible solutions are possible if the prede-
cessors do not encode a tree. An elementary mutation
chooses a vertex i uniformly at random and replaces
its predecessor xi by a vertex chosen uniformly at ran-
dom from f1; : : : ; ngnfi; xig. We call this a vertex-based
mutation. Doerr et al. [46.65] proposed an edge-based
mutation operator. An edge is chosen uniformly at ran-
dom, and the edge is made a predecessor edge for its
end node.

The .1C 1/ EA uses either vertex-based mutations
or edge-based ones. It creates an offspring using S el-
ementary mutations, where S is chosen according to

a Poisson distribution with �D 1. The result of an off-
spring is accepted in case no distance to any vertex has
gotten worse.

Applying Theorem 46.3 along with a layering ar-
gument as described at the end of Sect. 46.3.4 yields
the bounds on the expected parallel optimization time
shown in Table 46.5.

The upper bounds for the island models with con-
stant � match the expected time of the .1C 1/ EA if
`D O.1/ or `D˝.n/ as then ` ln.en=`/D�.`�/. In
other cases, the upper bounds are off by a factor of
ln.en=`/. Table 46.5 also shows a range of �-values for
which the speedup is linear (if `DO.1/ or `D˝.n/)
or almost linear, that is, when disregarding the ln.en=`/
term.

Note how the possible speedups significantly in-
crease with the density of the topology. The speedups
also depend on the graph instance and the maxi-
mum number of edges ` on any shortest path. For
a single .1C 1/ EA edge-based mutations are more
effective than vertex-based mutations [46.65]. Island
models with edge-based mutations cannot be paral-

Table 46.6 Asymptotic bounds for expected parallel run-
ning times and expected sequential running times for the
parallel .1C 1/ EA with adaptive population models

Scheme Sequential Parallel
ONEMAX A �.n log n/ O.n log n/

B �.n log n/ O.n/
LO A �.n2/ �.n log n/

B �.n2/ O.n/
Unimodal f A O.dn/ O.d log n/
with d f -values B O.dn/ O.dC log n/
Jumpk A O.nk/ O.n log n/
with k � 2 B O.nk/ O.nC k log n/

Parallel Evolutionary Algorithms 46.5 Speedups by Parallelization 955
Part

E
|46.5

lelized as effectively for sparse graphs as those with
vertex-based mutations if the graph is sparse, i. e.,
mD o.n2/. Then the number of islands that guaran-
tees a linear speedup is smaller for edge-based mu-
tations than for vertex-based mutations. The reason
is that with a more efficient mutation operator there
is less potential for further speedups with a parallel
EA.

46.5.3 Adaptive Numbers of Islands

Theorem 46.3 presents a powerful tool for deter-
mining the number of islands that give an asymp-
totic linear speedup. However, it would be even more
desirable to have an adaptive system that automati-
cally finds the ideal number of islands throughout the
run.

In [46.5] Lässig and Sudholt proposed and analyzed
two simple adaptive schemes for choosing the number
of islands. Both schemes check whether in the cur-
rent generation some island has found an improvement
over the current best fitness in the system. If no is-
land has found an improvement, the number of islands
is doubled. This can be implemented, for instance, by
copying each island. New processors can be allocated
to host these islands in large clusters or by using cloud
computing.

If some island has found an improvement, the
number of islands is reduced by removing selected
islands from the system and de-allocating resources.
Both schemes differ in the way they decrease the
number of islands. The first scheme, simply called
Scheme A, only keeps one island containing a cur-
rent best solution. Scheme B halves the number of
islands. Both schemes use complete topologies, so all
remaining islands will contain current best individuals
afterwards.

Both mechanisms lead to optimal speedups in many
cases. Doubling the number of islands may seem ag-
gressive, but the analysis shows that the probability of
allocating far more islands than necessary is very very
small. The authors considered the expected sequential
optimization time, defined as the number of function
evaluations, to measure the total effort over time. With
both schemes it is guaranteed that the expected se-
quential time does not exceed the simple bound for
a sequential EA from Theorem 46.1, asymptotically.
The expected parallel times on each fitness level can,
roughly speaking, be replaced by their logarithms.

The following is a slight simplification of results
in [46.5].

Theorem 46.4 Lässig and Sudholt [46.5]
Given an f -based partition A1; : : : ;Am and lower
bounds s1; : : : ; sm�1 on the probability of a single is-
land finding an improvement, the expected sequential
times for island models using a complete topology and
either Scheme A or Scheme B are bounded by

3
m�1X
iD1

1

si
:

If each set Ai contains only a single fitness value then
also the expected parallel time is bounded by

4
m�1X
iD1

log

�
2

si

�
:

Actually, for Scheme A we can obtain slightly better
constants than the ones stated in Theorem 46.4. How-
ever, with a more detailed analysis one can show that
Scheme B can perform much better than Scheme A.
Lässig’s and Sundholt’s work [46.5] contains a more
refined upper bound for Scheme B.We only show a spe-
cial case where the fitness levels become increasingly
harder. Then it makes sense to only halve the number
of islands when an improvement is found, instead of re-
setting the number of islands to 1.

Theorem 46.5 Lässig and Sudholt [46.5]
Given an f -based partition A1; : : : ;Am, where each
set Ai contains only a single fitness value and for the
probability bounds it holds s1 � s2 � 	 	 	 � sm�1. Then
the expected parallel running time for an island model
using a complete topology and Scheme B is bounded by

3.m� 2/C log

�
1

sm�1

�
:

Example applications for a parallel .1C 1/ EA in
Table 46.6 show that Scheme B can automatically lead
to the same speedups as when using an optimal number
of islands. This holds for ONEMAX, LO, and the gen-
eral bound for unimodal functions. For Jumpk it also
holds in the most relevant cases, when kD O.n= log n/,
as then the expected parallel time is O.n/.

We conclude that simply doubling or halving the
number of islands represents a simple and effective
mechanism for finding optimal parameters adaptively.

Part
E
|46.6

956 Part E Evolutionary Computation

46.6 Conclusions
Parallel evolutionary algorithm can effectively reduce
computation time and at the same time lead to an in-
creased exploration and better diversity, compared to
sequential evolutionary algorithms.

We have surveyed various forms of parallel EAs,
from independent runs to island models and cellular
EAs. Different lines of research have been discussed that
give insight into the working principles behind parallel
EAs. This includes the spread of information, growth
curves for current best solutions, and takeover times.

A recurring theme was the possible speedup that can
be achieved with parallel EAs. We have elaborated on
the reasons why superlinear speedups are possible in
practice. Rigorous runtime analysis has given examples
where parallel EAs excel over sequential algorithms,
with regard to the number of generations or the num-
ber of function evaluations until a global optimum is
found. The final section has covered a method for esti-
mating the expected parallel optimization time of island
models. The method is easy to apply as we can auto-
matically transfer existing analyses for sequential EAs
to a parallel version thereof. Examples have been given
for pseudo-Boolean optimization and combinatorial op-
timization. The results have also led to the discovery of
a simple, yet surprisingly powerful adaptive scheme for
choosing the number of islands.

There are many possible avenues for future work. In
the light of the development in computer architecture, it
is important to develop parallel EAs that can run effec-
tively on many cores. It also remains a crucial issue to
increase our understanding of how design choices and
parameters affect the performance of parallel EAs. Rig-
orous runtime analysis has emerged recently as a new
line of research that can give novel insights in this re-
spect and opens new roads. The present results should
be extended towards further algorithms, further prob-
lems, and more detailed cost models that reflect the
costs for communication in parallel architectures. It
would also be interesting to derive further rigorous re-
sults on takeover times in settings where propagation
through migration is probabilistic. Finally, it is impor-
tant to bring theory and practice together in order to
create synergetic effects between the two areas.

46.6.1 Further Reading

This book chapter does not claim to be comprehen-
sive. In fact, parallel evolutionary algorithms represent

a vast research area with a long history. Early vari-
ants of parallel evolutionary algorithms were devel-
oped, studied, and applied more than 20 years ago.
We, therefore, point the reader to references that may
complement this chapter. Paz [46.66] presented a re-
view of early literature and the history of parallel
EAs. The survey by Alba and Troya [46.37] contains
detailed overviews of parallel EAs and their character-
istics.

This chapter does not cover implementation de-
tails of parallel evolutionary algorithms. We refer to
the excellent survey by Alba and Tomassini [46.38].
This survey also includes an overview of the theory
of parallel EAs. The emphasis is different from this
chapter and it can be used to complement this chap-
ter.

Tomassini’s text book [46.67] describes various
forms of parallel EAs like island models, cellular
EAs, and coevolution. It also presents many mathe-
matical and experimental results that help understand
how parallel EAs work. Furthermore, it contains an
appendix dealing with the implementation of parallel
EAs.

The book edited by Alba et al. [46.39] takes
a broader scope on parallel models that also in-
clude parallel evolutionary multiobjective optimization
and parallel variants of swarm intelligence algorithms
like particle swarm optimization and ant colony opti-
mization. The book contains a part on parallel hard-
ware as well as a number of applications of parallel
metaheuristics.

Alba’s edited book on parallel metaheuris-
tics [46.40] has an even broader scope. It covers
parallel variants of many common metaheuristics such
as genetic algorithms, genetic programming, evolu-
tion strategies, ant colony optimization, estimation-
of-distribution algorithms, scatter search, variable-
neighborhood search, simulated annealing, tabu
search, greedy randomized adaptive search procedures
(GRASPs), hybrid metaheuristics, multiobjective
optimization, and heterogeneous metaheuristics.

The most recent text book was written by Luque and
Alba [46.19]. It provides an excellent introduction into
the field, with hands-on advice on how to present results
for parallel EAs. Theoretical models of selection pres-
sure in distributed GAs are presented. A large part of
the book then reviews selected applications of parallel
GAs.

Parallel Evolutionary Algorithms References 957
Part

E
|46

References

46.1 P.S. Oliveto, J. He, X. Yao: Time complexity of evolu-
tionary algorithms for combinatorial optimization:
A decade of results, Int. J. Autom. Comput. 4(3),
281–293 (2007)

46.2 F. Neumann, C. Witt: Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their
Computational Complexity (Springer, Berlin, Hei-
delberg 2010)

46.3 J. Lässig, D. Sudholt: The benefit of migration in
parallel evolutionary algorithms, Proc. Genet. Evol.
Comput. Conf. (GECCO 2010) (ACM, New York 2010)
pp. 1105–1112

46.4 J. Lässig, D. Sudholt: General scheme for analyzing
running times of parallel evolutionary algorithms,
11th Int. Conf. Parallel Probl. Solving Nat. (PPSN
2010) (Springer, Berlin, Heidelberg 2010) pp. 234–
243

46.5 J. Lässig, D. Sudholt: Adaptive population models
for offspring populations and parallel evolutionary
algorithms, Proc. 11th Workshop Found. Genet. Al-
gorithms (FOGA 2011) (ACM, Berlin, Heidelberg 2011)
pp. 181–192

46.6 J. Lässig, D. Sudholt: Analysis of speedups in
parallel evolutionary algorithms for combinatorial
optimization, 22nd Int. Symp. Algorithms Com-
put. (ISAAC ’11) (Springer, Berlin, Heidelberg 2011)
pp. 405–414

46.7 F. Neumann, P.S. Oliveto, G. Rudolph, D. Sudholt:
On the effectiveness of crossover for migration in
parallel evolutionary algorithms, Proc. Genet. Evol.
Comput. Conf. (GECCO 2011) (ACM, New York 2011)
pp. 1587–1594

46.8 M. De Felice, S. Meloni, S. Panzieri: Effect of
topology on diversity of spatially-structured evo-
lutionary algorithms, Proc. 13th Annu. Genet.
Evol. Comput. Conf. (GECCO ’11) (2011) pp. 1579–
1586

46.9 M. Giacobini, M. Tomassini, A. Tettamanzi: Takeover
time curves in random and small-world struc-
tured populations, Proc. Genet. Evol. Comput.
Conf. (GECCO ’05) (ACM, New York 2005) pp. 1333–
1340

46.10 Z. Skolicki: An Analysis of Island Models in Evolu-
tionary Computation, Ph.D. Thesis (George Mason
University, Fairfax 2000)

46.11 E. Alba, M. Giacobini, M. Tomassini, S. Romero:
Comparing Synchronous and Asynchronous Cellu-
lar Genetic Algorithms, Parallel Problem Solving
from Nature VII (Springer, Berlin, Heidelberg 2002)
pp. 601–610

46.12 M. Mitzenmacher, E. Upfal: Probability and Com-
puting (Cambridge Univ. Press, Cambridge 2005)

46.13 J. Sprave: A unified model of non-panmictic pop-
ulation structures in evolutionary algorithms, Proc.
1999 Congr. Evol. Comput. (IEEE, Bellingham 1999)
pp. 1384–1391

46.14 E. Alba: Parallel evolutionary algorithms can
achieve super-linear performance, Inf. Process.
Lett. 82(1), 7–13 (2002)

46.15 R.S. Barr, B.L. Hickman: Reporting computational
experiments with parallel algorithms: Issues, mea-
sures, and experts’ opinion, ORSA J. Comput. 5(1),
2–18 (1993)

46.16 D.E. Goldberg, K. Deb: A comparatative analysis
of selection schemes used in genetic algorithms.
In: Foundations of Genetic Algorithms, ed. by
G.J.E. Rawlins (Morgan Kaufmann, Burlington 1991)
pp. 69–93

46.17 J. Sarma, K. De Jong: An analysis of local selection
algorithms in a spatially structured evolutionary
algorithm, Proc. 7th Int. Conf. Genet. Algorithms
(Morgan Kaufmann, Burlington 1997) pp. 181–186

46.18 E. Alba, G. Luque: Growth curves and takeover
time in distributed evolutionary algorithms, Proc.
Genet. Evol. Comput. Conf. (Springer, Berlin, Hei-
delberg 2004) pp. 864–876

46.19 G. Luque, E. Alba: Parallel Genetic Algorithms –
Theory and Real World Applications, Studies in
Computational Intelligence, Vol. 367 (Springer,
Berlin, Heidelberg 2011)

46.20 Z. Skolicki, K.A. De Jong: The influence of migra-
tion sizes and intervals on island models, Proc.
Genet. Evol. Comput. Conf. (GECCO ’05) (ACM, New
York 2005) pp. 1295–1302

46.21 M. Giacobini, E. Alba, M. Tomassini: Selection in-
tensity in asynchronous cellular evolutionary algo-
rithms, Proc. Genet. Evol. Comput. Conf. (GECCO ’03)
(Springer, Berlin, Heidelberg 2003) pp. 955–966

46.22 G. Rudolph: Takeover times and probabilities of
non-generational selection rules, Proc. Genet.
Evol. Comput. Conf. (GECCO ’00) (Morgan Kaufmann,
Burlington 2000) pp. 903–910

46.23 G. Rudolph: Takeover times of noisy non-
generational selection rules that undo extinction,
Proc. 5th Int. Conf. Artif. Neural Nets Genet. Algo-
rithms (ICANNGA 2001) (Springer, Berlin, Heidelberg
2001) pp. 268–271

46.24 G. Rudolph: On takeover times in spatially struc-
tured populations: Array and ring, Proc. 2nd Asia-
Pac. Conf. Genet. Algorithms Appl. (Global-Link
Publishing, Hong Kong 2000) pp. 144–151

46.25 G. Rudolph: Takeover time in parallel populations
withmigration, Proc. 2nd Int. Conf. Bioinspired Op-
tim. Methods Appl. (BIOMA 2006), ed. by B. Filipic,
J. Silc (2006) pp. 63–72

46.26 M. Giacobini, M. Tomassini, A. Tettamanzi: Mod-
elling selection intensity for linear cellular evo-
lutionary algorithms, Proc. 6th Int. Conf. Artif.
Evol., Evol. Artif. (Springer, Berlin, Heidelberg 2003)
pp. 345–356

46.27 M. Giacobini, E. Alba, A. Tettamanzi, M. Tomassini:
Selection intensity in cellular evolutionary algo-

Part
E
|46

958 Part E Evolutionary Computation

rithms for regular lattices, IEEE Trans. Evol. Comput.
9, 489–505 (2005)

46.28 C. Witt: Runtime analysis of the .�C1/EA on sim-
ple pseudo-Boolean functions, Evol. Comput. 14(1),
65–86 (2006)

46.29 D. Sudholt: The impact of parametrization in
memetic evolutionary algorithms, Theor. Comput.
Sci. 410(26), 2511–2528 (2009)

46.30 M. Giacobini, E. Alba, A. Tettamanzi, M. Tomassini:
Modeling selection intensity for toroidal cellular
evolutionary algorithms, Proc. Genet. Evol. Com-
put. Conf. (GECCO ’04) (Springer, Berlin, Heidelberg
2004) pp. 1138–1149

46.31 J. Rowe, B. Mitavskiy, C. Cannings: Propaga-
tion time in stochastic communication networks,
2nd IEEE Int. Conf. Digit. Ecosyst. Technol. (2008)
pp. 426–431

46.32 J. Scharnow, K. Tinnefeld, I. Wegener: The analysis
of evolutionary algorithms on sorting and shortest
paths problems, J. Math. Model, Algorithms 3(4),
349–366 (2004)

46.33 B. Doerr, E. Happ, C. Klein: Crossover can prov-
ably be useful in evolutionary computation, Theor.
Comput. Sci. 425, 17–33 (2012)

46.34 B. Doerr, E. Happ, C. Klein: A tight analysis of the
.1C1/-EA for the single source shortest path prob-
lem, Proc. IEEE Congr. Evol. Comput. (CEC ’07) (IEEE,
Bellingham 2007) pp. 1890–1895

46.35 C. Horoba, D. Sudholt: Ant colony optimization for
stochastic shortest path problems, Proc. Genet.
Evol. Comput. Conf. (GECCO 2010) (ACM, New York
2010) pp. 1465–1472

46.36 D. Sudholt, C. Thyssen: Running time analysis of
ant colony optimization for shortest path prob-
lems, J. Discret. Algorithms 10, 165–180 (2012)

46.37 E. Alba, J.M. Troya: A survey of parallel distributed
genetic algorithms, Complexity 4, 31–52 (1999)

46.38 E. Alba, M. Tomassini: Parallelism and evolutionary
algorithms, IEEE Trans. Evol. Comput. 6, 443–462
(2002)

46.39 E. Alba, N. Nedjah, L. de Macedo Mourelle: Parallel
Evolutionary Computations (Springer, Berlin, Hei-
delberg 2006)

46.40 E. Alba: Parallel Metaheuristics: A New Class of Al-
gorithms (Wiley-Interscience, New York 2005)

46.41 T.G. Crainic, N. Hail: Parallel metaheuristics appli-
cations. In: Parallel Metaheuristics: A New Class of
Algorithms, (Wiley-Interscience, New York 2005)

46.42 S. Droste, T. Jansen, I. Wegener: On the analysis of
the .1C1/ evolutionary algorithm, Theor. Comput.
Sci. 276, 51–81 (2002)

46.43 T. Friedrich, P.S. Oliveto, D. Sudholt, C. Witt:
Analysis of diversity-preserving mechanisms for
global exploration, Evol. Comput. 17(4), 455–476
(2009)

46.44 C. Witt: Worst-case and average-case approxima-
tions by simple randomized search heuristics, Proc.
22nd Symp. Theor. Asp. Comput. Sci. (STACS ’05)
(Springer, Berlin, Heidelberg 2005) pp. 44–56

46.45 T. Jansen, K.A. De Jong, I. Wegener: On the
choice of the offspring population size in evo-
lutionary algorithms, Evol. Comput. 13, 413–440
(2005)

46.46 C. Igel, M. Toussaint: A no-free-lunch theorem
for non-uniform distributions of target func-
tions, J. Math. Model, Algorithms 3(4), 313–322
(2004)

46.47 J. Lässig, D. Sudholt: Experimental supplements
to the theoretical analysis of migration in the is-
land model, 11th Int. Conf. Parallel Probl. Solving
Nat. (PPSN 2010) (Springer, Berlin, Heidelberg 2010)
pp. 224–233

46.48 F. Neumann: Expected runtimes of evolutionary al-
gorithms for the Eulerian cycle problem, Comput.
Oper. Res. 35(9), 2750–2759 (2008)

46.49 B. Doerr, N. Hebbinghaus, F. Neumann: Speed-
ing up evolutionary algorithms through asymmet-
ric mutation operators, Evol. Comput. 15, 401–410
(2007)

46.50 B. Doerr, D. Johannsen: Adjacency list matchings –
An ideal genotype for cycle covers, Proc. Genet.
Evol. Comput. Conf. (GECCO ’07) (ACM, New York 2007)
pp. 1203–1210

46.51 B. Doerr, C. Klein, T. Storch: Faster evolutionary
algorithms by superior graph representation, 1st
IEEE Symp. Found. Comput. Intell. (FOCI ’07) (2007)
pp. 245–250

46.52 R.A. Watson, T. Jansen: A building-block royal road
where crossover is provably essential, Proc. Genet.
Evol. Comput. Conf. (GECCO ’07) (ACM, New York 2007)
pp. 1452–1459

46.53 T. Jansen, I. Wegener: On the analysis of evolution-
ary algorithms – A proof that crossover really can
help, Algorithmica 34(1), 47–66 (2002)

46.54 T. Jansen, I. Wegener: Real royal road functions –
Where crossover provably is essential, Discret. Appl.
Math. 149, 111–125 (2005)

46.55 T. Storch, I. Wegener: Real royal road functions for
constant population size, Theor. Comput. Sci. 320,
123–134 (2004)

46.56 S. Fischer, I. Wegener: The one-dimensional ising
model: Mutation versus recombination, Theor.
Comput. Sci. 344(2/3), 208–225 (2005)

46.57 D. Sudholt: Crossover is provably essential for the
ising model on trees, Proc. Genet. Evol. Comput.
Conf. (GECCO ’05) (ACM, New York 2005) pp. 1161–1167

46.58 P.S. Oliveto, J. He, X. Yao: Analysis of the .1C1/-EA
for finding approximate solutions to vertex cover
problems, IEEE Trans. Evol. Comput. 13(5), 1006–
1029 (2009)

46.59 T. Jansen, P.S. Oliveto, C. Zarges: On the analysis
of the immune-inspired B-cell algorithm for the
vertex cover problem, Proc. 10th Int. Conf. Artif.
Immune Syst. (ICARIS 2011) (Springer, Berlin, Heidel-
berg 2011) pp. 117–131

46.60 I. Wegener: Methods for the analysis of evolu-
tionary algorithms on pseudo-Boolean functions.
In: Evolutionary Optimization, ed. by R. Sarker,

Parallel Evolutionary Algorithms References 959
Part

E
|46

X. Yao, M. Mohammadian (Kluwer, Dordrecht 2002)
pp. 349–369

46.61 F. Neumann, I. Wegener: Randomized local search,
evolutionary algorithms, and the minimum span-
ning tree problem, Theor. Comput. Sci. 378(1), 32–
40 (2007)

46.62 D. Sudholt, C. Zarges: Analysis of an iterated local
search algorithm for vertex coloring, 21st Int. Symp.
Algorithms Comput. (ISAAC 2010) (Springer, Berlin,
Heidelberg 2010) pp. 340–352

46.63 D. Sudholt: General lower bounds for the run-
ning time of evolutionary algorithms, 11th Int. Conf.
Parallel Probl. Solving Nat. (PPSN 2010) (Springer,
Berlin, Heidelberg 2010) pp. 124–133

46.64 P.K. Lehre: Fitness-levels for non-elitist popu-
lations, Proc. 13th Annu. Genet. Evol. Comput.
Conf. (GECCO ’11) (ACM, New York 2011) pp. 2075–
2082

46.65 B. Doerr, D. Johannsen, C. Winzen: Drift analy-
sis and linear functions revisited, IEEE Congr. Evol.
Comput. (CEC ’10) (2010) pp. 1967–1974

46.66 E. Cantú Paz: A survey of parallel genetic algo-
rithms, Tech. Rep., Illinois Genetic Algorithms Lab-
oratory (University of Illinois at Urbana Champaign,
Urbana 1997)

46.67 M. Tomassini: Spatially Structured Evolutionary Al-
gorithms: Artificial Evolution in Space and Time
(Springer, Berlin, Heidelberg 2005)

	46 Parallel Evolutionary Algorithms
	46.1 Parallel Models
	46.2 Effects of Parallelization
	46.3 On the Spread of Information in Parallel EAs
	46.4 Examples Where Parallel EAs Excel
	46.5 Speedups by Parallelization
	46.6 Conclusions
	References

