
Genetic Prog
845

Part
E
|43.1

43. Genetic Programming

James McDermott, Una-May O’Reilly

Genetic programming (GP) is the subset of evolu-
tionary computation in which the aim is to create
executable programs. It is an exciting field with
many applications, some immediate and practical,
others long-term and visionary. In this chapter,
we provide a brief history of the ideas of genetic
programming. We give a taxonomy of approaches
and place genetic programming in a broader tax-
onomy of artificial intelligence. We outline some
current research topics and point to successful use
cases. We conclude with some practical GP-related
resources including software packages and venues
for GP publications.

43.1 Evolutionary Search for Executable
Programs... 845

43.2 History .. 846

43.3 Taxonomy of AI and GP 848
43.3.1 Placing GP in an AI Context 848
43.3.2 Taxonomy of GP 849

43.3.3 Representations 849
43.3.4 Population Models 852

43.4 Uses of GP ... 853
43.4.1 Symbolic Regression 853
43.4.2 Machine Learning 853
43.4.3 Software Engineering................. 854
43.4.4 Design 855

43.5 Research Topics 857
43.5.1 Bloat .. 857
43.5.2 GP Theory 858
43.5.3 Modularity 860
43.5.4 Open-Ended Evolution

and GP 860

43.6 Practicalities. 861
43.6.1 Conferences and Journals 861
43.6.2 Software 861
43.6.3 Resources

and Further Reading.................. 861

References ... 862

43.1 Evolutionary Search for Executable Programs

There have been many attempts to artificially emulate
human intelligence, from symbolic artificial intelli-
gence (AI) [43.1] to connectionism [43.2, 3], to subcog-
nitive approaches like behavioral AI [43.4] and statisti-
cal machine learning (ML) [43.5], and domain-specific
achievements like web search [43.6] and self-driving
cars [43.7]. Darwinian evolution [43.8] has a type of
distributed intelligence distinct from all of these. It has
created lifeforms and ecosystems of amazing diversity,
complexity, beauty, facility, and efficiency. It has even
created forms of intelligence very different from itself,
including our own.

The principles of evolution – fitness biased selec-
tion and inheritance with variation – serve as inspiration
for the field of evolutionary computation (EC) [43.9],
an adaptive learning and search approach which is

general-purpose, applicable even with black-box per-
formance feedback, and highly parallel. EC is a trial-
and-error method: individual solutions are evaluated
for fitness, good ones are selected as parents, and
new ones are created by inheritance with variation
(Fig. 43.1).

GP is the subset of EC in which the aim is to create
executable programs. The search space is a set of pro-
grams, such as the space of all possible Lisp programs
within a subset of built-in functions and functions com-
posed by a programmer or the space of numerical C
functions. The program representation is an encoding of
such a search space, for example an abstract syntax tree
or a list of instructions. A program’s fitness is evaluated
by executing it to see what it does. New programs are
created by inheritance and variation of material from

Part
E
|43.2

846 Part E Evolutionary Computation

Empty population

Children Parents

Population

Crossover and
mutation

Replacement Fitness evaluation
and selection

Random
initialization

Fig. 43.1 The fundamental loop of EC

parent programs, with constraints to ensure syntactic
correctness.

We define a program as a data structure capable
of being executed directly by a computer, or of being
compiled to a directly executable form by a compiler,
or of interpretation, leading to execution of low-level
code, by an interpreter. A key feature of some pro-
gramming languages, such as Lisp, is homoiconicity:
program code can be viewed as data. This is essential in
GP, since when the algorithm operates on existing pro-
grams to make new ones, it is regarding them as data;
but when they are being executed in order to determine
what they do, they are being regarded as the program
code. This double meaning echoes that of DNA (de-
oxyribonucleic acid), which is both data and code in
the same sense.

GP exists in many different forms which differ
(among other ways) in their executable representation.
As in programming by hand, GP usually considers and
composes programs of varying length. Programs are

also generally hierarchical in some sense, with nesting
of statements or control. These representation proper-
ties (variable length and hierarchical structure) raise
a very different set of technical challenges for GP com-
pared to typical EC.

GP is very promising, because programs are so gen-
eral. A program can define and operate on any data
structure, including numbers, strings, lists, dictionaries,
sets, permutations, trees, and graphs [43.10–12]. Via
Turing completeness, a program can emulate any model
of computation, including Turing machines, cellular
automata, neural networks, grammars, and finite-state
machines [43.13–18].

A program can be a data regression model [43.19]
or a probability distribution. It can express the growth
process of a plant [43.20], the gait of a horse [43.21],
or the attack strategy of a group of lions [43.22]; it
can model behavior in the Prisoner’s Dilemma [43.23]
or play chess [43.24], Pacman [43.25], or a car-racing
game [43.26]. A program can generate designs for
physical objects, like a space-going antenna [43.27], or
plans for the organization of objects, like the layout of
a manufacturing facility [43.28]. A program can imple-
ment a rule-based expert system for medicine [43.29],
a scheduling strategy for a factory [43.30], or an
exam timetable for a university [43.31]. A program
can recognize speech [43.32], filter a digital sig-
nal [43.33], or process the raw output of a brain-
computer interface [43.34]. It can generate a piece
of abstract art [43.35], a 3-D (three-dimensional) ar-
chitectural model [43.36], or a piece of piano mu-
sic [43.37].

A program can interface with natural or man-made
sensors and actuators in the real world, so it can both
act and react [43.38]. It can interact with a user or with
remote sites over the network [43.39]. It can also intro-
spect and copy or modify itself [43.40]. A program can
be nondeterministic [43.41]. If true AI is possible, then
a program can be intelligent [43.42].

43.2 History

GP has a surprisingly long history, dating back to very
shortly after von Neumann’s 1945 description of the
stored-program architecture [43.43] and the 1946 cre-
ation of ENIAC [43.44], sometimes regarded as the
first general-purpose computer. In 1948, Turing stated
the aim of machine intelligence and recognized that
evolution might have something to teach us in this re-
gard [43.45]:

Further research into intelligence of machinery will
probably be very greatly concerned with searches.
Œ: : :� There is the genetical or evolutionary search
by which a combination of genes is looked for, the
criterion being survival value. The remarkable suc-
cess of this search confirms to some extent the idea
that intellectual activity consists mainly of various
kinds of search.

Genetic Programming 43.2 History 847
Part

E
|43.2

However, Turing also went a step further. In 1950, he
more explicitly stated the aim of automatic program-
ming (AP) and a mapping between biological evolution
and program search [43.46]:

We have Œ: : :� divided our problem [automatic pro-
gramming] into two parts. The child-program [Tur-
ing machine] and the education process. These two
remain very closely connected. We cannot expect to
find a good child-machine at the first attempt. One
must experiment with teaching one such machine
and see how well it learns. One can then try another
and see if it is better or worse. There is an obvious
connection between this process and evolution, by
the identifications:

� Structure of the child machineD Hereditary mate-
rial� ChangesDMutations� Natural selectionD Judgment of the experimenter.

This is an unmistakeable, if abstract, description of GP
(though a computational fitness function is not envis-
aged).

Several other authors expanded on the aims and vi-
sion of AP and machine intelligence. In 1959 Samuel
wrote that the aim was to be able to Tell the computer
what to do, not how to do it [43.47]. An important early
attempt at implementation of AP was the 1958 learning
machine of Friedberg [43.48].

In 1963, McCarthy summarized [43.1] several rep-
resentations with which machine intelligence might
be attempted: neural networks, Turing machines, and
calculator programs. With the latter, McCarthy was re-
ferring to Friedberg’s work. McCarthy was prescient
in identifying important issues such as representations,

x

a) b) c)

y x

* +

–

3 y

*

2x y ?

* +

–

? x yx

y +

–

3 *

*

2 xx

y +

–

y sin

–

2

Fig. 43.2a–c The StdGP representation is an abstract syntax tree. The expression that will be evaluated in the sec-
ond tree from left is, in inorder notation, .x� y/� .xC 2/. In preorder, or the notation of Lisp-style S-expressions, it is
.� .� x y/ .C x 2//. GP presumes that the variables x and y will be already bound to some value in the execution environ-
ment when the expression is evaluated. It also presumes that the operations � and �, etc. are also defined. Note that, all
interior tree nodes are effectively operators in some computational language. In standard GP parlance, these operators
are called functions and the leaf tree nodes which accept no arguments and typically represent variables bound to data
values from the problem domain are referred to as terminals

operator behavior, density of good programs in the
search space, sufficiency of the search space, appro-
priate fitness evaluation, and self-organized modularity.
Many of these remain open issues in GP [43.49].

Fogel et al.’s 1960s evolutionary programmingmay
be the first successful implementation of GP [43.50].
It used a finite-state machine representation for pro-
grams, with specialized operators to ensure syntactic
correctness of offspring. A detailed history is available
in Fogel’s 2006 book [43.51].

In the 1980s, inspired by the success of genetic al-
gorithms (GAs) and learning classifier systems (LCSs),
several authors experimented with hierarchically struc-
tured and program-like representations. Smith [43.52]
proposed a representation of a variable-length list of
rules which could be used for program-like behavior
such as maze navigation and poker.Cramer [43.53] was
the first to use a tree-structured representation and ap-
propriate operators. With a simple proof of concept, it
successfully evolved a multiplication function in a sim-
ple custom language. Schmidhuber [43.54] describes
a GP system with the possibility of Turing complete-
ness, though the focus is on meta-learning aspects.
Fujiki and Dickinson [43.55] generated Lisp code for
the prisoner’s dilemma, Bickel and Bickel [43.56] used
a GA to create variable-length lists of rules, each of
which had a tree structure. An artificial life approach
using machine-code genomes was used by Ray [43.57].
All of these would likely be regarded as on-topic in
a modern GP conference.

However, the founding of the modern field of GP,
and the invention of what is now called standard GP,
are credited to Koza [43.19]. In addition to the abstract
syntax tree notation (Sect. 43.3.3), the key innovations
were subtree crossover (Sect. 43.3.3) and the descrip-
tion and set-up of many test problems. In this and

Part
E
|43.3

848 Part E Evolutionary Computation

later research [43.10, 58, 59] symbolic regression of
synthetic data and real-world time series, Boolean prob-
lems, and simple robot control problems such as the
lawnmower problem and the artificial ant with Santa
Fe trail were introduced as benchmarks and solved
successfully for the first time, demonstrating that GP
was a potentially powerful and general-purpose method
capable of solving machine learning-style problems
albeit conventional academic versions of them. Mu-
tation was minimized in order to make it clear that
GP was different from random search. GP took on
its modern form in the years following Koza’s 1992
book: many researchers took up work in the field, new
types of GP were developed (Sect. 43.3), successful

applications appeared (Sect. 43.4), key research top-
ics were identified (Sect. 43.5), further books were
written, and conferences and journals were established
(Sect. 43.6).

Another important milestone in the history of GP
was the 2004 establishment of the Humies, the awards
for human-competitive results produced by EC meth-
ods. The entries are judged for matching or exceeding
human-produced solutions to the same or similar prob-
lems, and for criteria such as patentability and pub-
lishability. The impressive list of human-competitive
results [43.60] again helps to demonstrate to researchers
and clients outside the field of GP that it is powerful and
general purpose.

43.3 Taxonomy of AI and GP

In this section, we present a taxonomy which firstly
places GP in the context of the broader fields of EC,
ML, and artificial intelligence (AI). It then classifies GP
techniques according to their representations and their
population models (Fig. 43.3).

43.3.1 Placing GP in an AI Context

GP is a type of EC, which is a type of ML,
which is itself a subset of the broader field of AI
(Fig. 43.3). Carbonell et al. [43.61] classify ML tech-
niques according to the underlying learning strategy,
which may be rote learning, learning from instruc-
tion, learning by analogy, learning from examples, and
learning from observation and discovery. In this classi-
fication, EC and GP fit in the learning from examples
category, in that an (individual, fitness) pair is an ex-

EPIP

AP

GA ACOPGM StdGP

GE PSO ESSVM PushGP

CGP DENN

ECGPMLAI

LGP

Fig. 43.3 A taxonomy of AI, EC,
and GP

ample drawn from the search space together with its
evaluation.

It is also useful to see GP as a subset of another
field, AP. The term automatic programming seems to
have had different meanings at different times, from
automated card punching, to compilation, to template-
driven source generation, then generation techniques
such as universal modeling language (UML), to the am-
bitious aim of creating software directly from a natural-
language English specification [43.62]. We interpret AP
to mean creating software by specifying what to do
rather than how to do it [43.47]. GP clearly fits into this
category. Other nonevolutionary techniques also do so,
for example inductive programming (IP). The main dif-
ference between GP and IP is that typically IP works
only with programs which are known to be correct,
achieving this using inductive methods over the spec-

Genetic Programming 43.3 Taxonomy of AI and GP 849
Part

E
|43.3

ifications, [43.63]. In contrast, GP is concerned mostly
with programs which are syntactically correct, but be-
haviorally suboptimal.

43.3.2 Taxonomy of GP

It is traditional to divide EC into four main subfields:
evolution strategies (ES) [43.64, 65], evolutionary pro-
gramming (EP) [43.50], GAs [43.66], and GP. In this
view, ES is chiefly characterized by real-valued opti-
mization and self-adaptation of algorithm parameters;
EP by a finite-state machine representation (later gen-
eralized) and the absence of crossover; GA by the
bitstring representation; and GP by the abstract syn-
tax tree representation. While historically useful, this
classification is not exhaustive: in particular it does
not provide a home for the many alternative GP rep-
resentations which now exist. It also separates EP and
GP, though they are both concerned with evolving pro-
grams. We prefer to use the term GP in a general sense
to refer to all types of EC which evolve programs. We
use the term standard GP (StdGP) to mean Koza-style
GP with a tree representation. With this view, StdGP
and EP are types of GP, as are several others discussed
below. In the following, we classify GP algorithms ac-
cording to their representation and according to their
population model.

43.3.3 Representations

Throughout EC, it is useful to contrast direct and indi-
rect representations. Standard GP is direct, in that the
genome (the object created and modified by the genetic
operators) serves directly as an executable program.
Some other GP representations are indirect, meaning
that the genome must be decoded or translated in
some way to give an executable program. An example
is grammatical evolution (GE, see below), where the
genome is an integer array which is used to generate
a program. Indirect representations have the advantage
that they may allow an easier definition of the genetic
operators, since they may allow the genome to exist
in a rather simpler space than that of executable pro-
grams. Indirect representations also imitate somewhat
more closely the mechanism found in nature, a mapping
from DNA (deoxyribonucleic acid) to RNA (ribonu-
cleic acid) to mRNA (messenger RNA) to codons to
proteins and finally to cells. The choice between direct
and indirect representations also affects the structure
of the fitness landscape (Sect. 43.5.2). In the follow-
ing, we present a nonexhaustive selection of the main

representations used in GP, in each case describing ini-
tialization and the two key operators: mutation, and
crossover.

Standard GP
In Standard GP (StdGP), the representation is an ab-
stract syntax tree, or can be seen as a Lisp-style
S-expression. All nodes are functions and all arguments
are the same type. A function accepts zero or more
arguments and returns a single value. Trees can be ini-
tialized by recursive random growth starting from a null
node. StdGP uses parameterized initialization methods
that diversify the size and structure of initial trees. Fig-
ure 43.2a shows a tree in the process of initialization.

Trees can be crossed over by cutting and swap-
ping the subtrees rooted at randomly chosen nodes, as
shown in Fig. 43.2b. They can be mutated by cutting
and regrowing from the subtrees of randomly cho-
sen nodes, as shown in Fig. 43.2c. Another mutation
operator, HVL-Prime, is shown later in Fig. 43.11.
Note that crossover or mutation creates an offspring
of potentially different size and structure, but the off-
spring remains syntactically valid for evaluation. With
these variations, a tree could theoretically grow to
infinite size or height. To circumvent this, as a prac-
ticality, a hard parameterized threshold for size or
height or some other threshold is used. Violations to
the threshold are typically rejected. Bias may also
be applied in the randomized selection of crossed-
over subtree roots. A common variation of StdGP
is strongly typed GP (STGP) [43.67, 68], which sup-
ports functions accepting arguments and returning val-
ues of specific types by means of specialized mu-
tation and crossover operations that respect these
types.

Executable Graph Representations
A natural generalization of the executable tree rep-
resentation of StdGP is the executable graph. Neural
networks can be seen as executable graphs in which
each node calculates a weighted sum of its inputs and
outputs the result after a fixed shaping function such
as tanh./. Parallel and distributed GP (PDGP) [43.69]
is more closely akin to StdGP in that nodes calculate
different functions, depending on their labels, and do
not perform a weighted sum. It also allows the topol-
ogy of the graph to vary, unlike the typical neural
network. Cartesian GP (CGP) [43.70] uses an integer-
array genome and a mapping process to produce the
graph. Each block of three integer genes codes for
a single node in the graph, specifying the indices of

Part
E
|43.3

850 Part E Evolutionary Computation

its inputs and the function to be executed by the node
(Fig. 43.4).

Neuro-evolution of augmenting topologies
(NEAT) [43.71] again allows the topology to vary,
and allows nodes to be labelled by the functions they
perform, but in this case each node does perform
a weighted sum of its inputs. Each of these represen-
tations uses different operators. For example, CGP
uses simple array-oriented (GA-style) initialization,
crossover, and mutation operators (subject to some
customizations).

Finite-State Machine Representations
Some GP representations use graphs in a different way:
the model of computation is the finite-state machine
rather than the executable functional graph (Fig. 43.5).
The original incarnation of evolutionary programming
(EP) [43.72] is an example. In a typical implementa-
tion [43.72], five types of mutation are used: adding
and deleting states, changing the initial state, changing
the output symbol attached to edges, and changing the
edges themselves. In this implementation, crossover is
not used.

[012 210 102 231 040 353]

[01* 21+ 10* 23– 04+ 35/]

–

2 3

6

+

0 4

7

/

3 5

8

+

2 1

4

*
1 0

5

*
0 1

3

y

1

z

2

x

0

–

6

+

7

/

8

+ **

y zx

Fig. 43.4 Cartesian GP. An integer-array genome is di-
vided into blocks: in each block the last integer specifies
a function (top-left). Then one node is created for each in-
put variable .x; y; z/ and for each genome block. Nodes
are arranged in a grid and outputs are indexed sequen-
tially (bottom-left). The first elements in each block specify
the indices of the incoming links. The final graph is cre-
ated by connecting each node input to the node output
with the same integer label (right). Dataflow in the graph
is bottom to top. Multiple outputs can be read from the
topmost layer of nodes. In this example node 6 outputs
xy� zC y, node 7 outputs xC zC y, and node 8 out-
puts xy=xy

Grammatical GP
In grammatical GP [43.73], the context-free grammar
(CFG) is the defining component of the representation.
In the most common approach, search takes place in
the space defined by a fixed nondeterministic CFG. The
aim is to find a good program in that space. Often the
CFG defines a useful subset of a programming language
such as Lisp, C, or Python. Programs derived from the
CFG can then be compiled or interpreted using either
standard or special-purpose software. There are sev-
eral advantages to using a CFG. It allows convenient
definition of multiple data-types which are automati-
cally respected by the crossover and mutation operators.
It can introduce domain knowledge into the problem
representation. For example, if it is known that good
programs will consist of a conditional statement in-
side a loop, it is easy to express this knowledge using
a grammar. The grammar can restrict the ways in which
program expressions are combined, for example mak-
ing the system aware of physical units in dimensionally
aware GP [43.74, 75]. A grammatical GP system can
conveniently be applied to new domains, or can incor-
porate new domain knowledge, through updates to the
grammar rather than large-scale reprogramming.

In one early system [43.76], the derivation tree is
used as the genome: initial individuals’ genomes are
randomly generated according to the rules of the gram-
mar. Mutation works by randomly generating a new
subtree starting from a randomly chosen internal node
in the derivation tree. Crossover is constrained to ex-
change subtrees whose roots are identical. In this way,
new individuals are guaranteed to be valid derivation
trees. The executable program is then created from the
genome by reading the leaves left to right. A later sys-
tem, grammatical evolution (GEs) [43.77] instead uses
an integer-array genome. Initialization, mutation and
crossover are defined as simple GA-style array opera-
tions. The genome is mapped to an output program by
using the successive integers of the genome to choose

1

0

a

c

b

b

d

2

1

0

a

c

b

b

d

2

Fig. 43.5 EP representation: finite-state machine. In this
example, a mutation changes a state transition

Genetic Programming 43.3 Taxonomy of AI and GP 851
Part

E
|43.3

among the applicable production choices at each step
of the derivation process. Figure 43.6 shows a sim-
ple grammar, integer genome, derivation process, and
derivation tree. At each step of the derivation process,
the left-most nonterminal in the derivation is rewritten.
The next integer gene is used to determine, using the
mod rule, which of the possible productions is chosen.
The output program is the final step of the derivation
tree.

Although successful and widely used, GE has also
been criticized for the disruptive effects of its operators
with respect to preserving the modular functionality
of parents. Another system, tree adjoining grammar-
guided genetic programming (TAG3P) has also been
used successfully [43.78]. Instead of a string-rewriting
CFG, TAG3P uses the tree-rewriting tree adjoining
grammars. The representation has the advantage, rel-
ative to GE, that individuals are valid programs at
every step of the derivation process. TAGs also have
some context-sensitive properties [43.78]. However, it
is a more complex representation.

Another common alternative approach, surveyed
by Shan et al. [43.79], uses probabilistic models over
grammar-defined spaces, rather than direct evolutionary
search.

Linear GP
In Linear GP (LGP), the program is a list of instructions
to be interpreted sequentially. In order to achieve com-
plex functionality, a set of registers acting as state or
memory are used. Instructions can read from or write to

<e>

<e>

<v>

y

<e>

<v>

<o>4 1 17 61 11 8 ... 28

*

x

<e> : := <o><e><e> | <v>
<o> : := + | *
<v> : := x | y

-> <o><e><e> [4 % 2 = 0·]
-> * <e><e> [1 % 2 = 1]
-> * <v><e> [17 % 2 = 1]
-> * y <e> [61 % 2 = 1]
-> * y <v> [11 % 2 = 1]
-> * y x [8 % 2 = 0·]

<e> [start]

Fig. 43.6 GE representation. The grammar (top-left)
consists of several rules. The genome (center-left) is
a variable-length list of integers. At each step of the deriva-
tion process (bottom-left), the left-most nonterminal is
rewritten as specified by a gene. The resulting derivation
tree is shown on the right: reading just the leaves gives the
derived program

the registers. Several registers, which may be read-only,
are initialized with the values of the input variables. One
register is designated as the output: its value at the end
of the program is taken as the result of the program.
Since a register can be read multiple times after writ-
ing, an LGP program can be seen as having a graph
structure. A typical implementation is that of [43.80].
It uses instructions of three registers each, which typi-
cally calculate a new value as an arithmetic function of
some registers and/or constants, and assign it to a regis-
ter (Fig. 43.7).

It also allows conditional statements and looping. It
explicitly recognizes the possibility of nonfunctioning
code, or introns. Since there are no syntactic constraints
on how multiple instructions may be composed to-
gether, initialization can be as simple as the random
generation of a list of valid instructions. Mutation can
change a single instruction to a newly generated instruc-
tion, or change just a single element of an instruction.
Crossover can be performed over the two parents’ list
structures, respecting instruction boundaries.

Stack-Based GP
A variant of linear GP avoids the need for registers
by adding a stack. The program is again a list of in-
structions, each now represented by a single label. In
a simple arithmetic implementation, the label may be
one of the input variables .xi/, a numerical constant, or
a function (�;C, etc.). If it is a variable or constant,
the instruction is executed by pushing the value onto
the stack. If a function, it is executed by popping the
required number of operands from the stack, execut-
ing the function on them, and pushing the result back
on. The result of the program is the value at the top of

x0 x1 Read-only

r0

x0 + x1

r1

r0 =

r0 * 2r1 =

r1 * r1r0 =

Read-write

Fig. 43.7 Linear GP representation. This implementation
has four registers in total (top). The representation is a list
of register-oriented instructions (bottom). In this example
program of three instructions, r0 is the output register, and
the formula 4.x0 C x1/2 is calculated

Part
E
|43.3

852 Part E Evolutionary Computation

the stack after all instructions have been executed. With
the stipulation that stack-popping instructions become
no-ops when the stack is empty, one can again imple-
ment initialization, mutation, and crossover as simple
list-based operations [43.81]. One can also constrain the
operations to work on what are effectively subtrees, so
that stack-based GP becomes effectively equivalent to
a reverse Polish notation implementation of standard
GP [43.82]. A more sophisticated type of stack-based
GP is PushGP [43.83], in which multiple stacks are
used. Each stack is used for values of a different type,
such as integer, boolean, and float. When a function
requires multiple operands of different types, they are
taken as required from the appropriate stacks. With the
addition of an exec stack which stores the program
code itself, and the code stack which stores items of
code, both of which may be both read and written,
PushGP gains the ability to evolve programs with self-
modification, modularity, control structures, and even
self-reproduction.

Low-Level Programming
Finally, several authors have evolved programs di-
rectly in real-world low-level programming languages.
Schulte et al. [43.84] automatically repaired programs
written in Java byte code and in x86 assembly. Orlov
and Sipper [43.85] evolved programs such as trail nav-
igation and image classification de novo in Java byte
code. This work made use of a specialized crossover
operator which performed automated checks for com-
patibility of the parent programs’ stack and control flow
state. Nordin [43.86] proposed a machine-code repre-
sentation for GP. Programs consist of lists of low-level
register-oriented instructions which execute directly,
rather than in a virtual machine or interpreter. The re-
sult is a massive speed-up in execution.

43.3.4 Population Models

It is also useful to classify GP methods according
to their population models. In general the population
model and the representation can vary independently,
and in fact all of the following population can be ap-
plied with any EC representation including bitstrings
and real-valued vectors, as well as with GP represen-
tations.

The simplest possible model, hill-climbing, uses
just one individual at a time [43.87]. At each iteration,
offspring are created until one of them is more highly fit
than the current individual, which it then replaces. If at
any iteration it becomes impossible to find an improve-

ment, the algorithm has climbed the hill, i. e. reached
a local optimum, and stops. It is common to use a ran-
dom restart in this case. The hill-climbing model can
be used in combination with any representation. Note
that it does not use crossover. Variants include ES-style
.�; �/ or .�C�/ schemes, in which multiple parents
each give rise to multiple offspring by mutation.

The most common model is an evolving popula-
tion. Here a large number of individuals (from tens to
many thousands) exist in parallel, with new genera-
tions being created by crossover and mutation among
selected individuals. Variants include the steady-state
and the generational models. They differ only in that
the steady-state model generates one or a few new indi-
viduals at a time, adds them to the existing population
and removes some old or weak individuals; whereas the
generational model generates an entirely new popula-
tion all at once and discards the old one.

The island model is a further addition, in which
multiple populations all evolve in parallel, with infre-
quent migration between them [43.88].

In coevolutionary models, the fitness of an individ-
ual cannot be calculated in an endogenous way. Instead
it depends on the individual’s relationship to other in-
dividuals in the population. A typical example is in
game-playing applications such as checkers, where the
best way to evaluate an individual is to allow it to play
against other individuals. Coevolution can also use fit-
ness defined in terms of an individual’s relationship to
individuals in a population of a different type. A good
example is the work of [43.89], which uses a type of
predator–prey relationship between populations of pro-
grams and populations of test cases. The test cases
(predators) evolve to find bugs in the programs; the pro-
grams (prey) evolve to fix the bugs being tested for by
the test suites.

Another group of highly biologically inspired pop-
ulation models are those of swarm intelligence. Here
the primary method of learning is not the creation of
new individuals by inheritance. Instead, each individ-
ual generally lives for the length of the run, but moves
about in the search space with reference to other indi-
viduals and their current fitness values. For example, in
particle swarm optimization (PSO) individuals tend to
move toward the global best and toward the best point in
their own history, but tend to avoid moving too close to
other individuals. Although PSO and related methods
such as differential evolution (DE) are best applied in
real-valued optimization, their population models and
operators can be abstracted and applied in GP methods
also [43.90, 91].

Genetic Programming 43.4 Uses of GP 853
Part

E
|43.4

Finally, we come to estimation of distribution algo-
rithms (EDAs). Here the idea is to create a population,
select a subsample of the best individuals, model that
subsample using a distribution, and then create a new
population by sampling the distribution. This approach
is particularly common in grammar-based GP [43.73],

though it is also used with other representations [43.92–
94]. The modeling-sampling process could be regarded
as a type of whole-population crossover. Alternatively
one can view EDAs as being quite far from the biolog-
ical inspiration of most EC, and in a sense they bridge
the gap between EC and statistical ML.

43.4 Uses of GP

Our introduction (Sect. 43.1) has touched on a wide ar-
ray of domains in which GP has been applied. In this
section, we give more detail on just a few of these.

43.4.1 Symbolic Regression

Symbolic regression is one of the most common tasks
for which GP is used [43.19, 95, 96]. It is used as a com-
ponent in techniques like data modeling, clustering, and
classification, for example in the modeling application
outlined in Sect. 43.4.2. It is named after techniques
such as linear or quadratic regression, and can be seen
as a generalization of them. Unlike those techniques
it does not require a priori specification of the model.
The goal is to find a function in symbolic form which
models a data set. A typical symbolic regression is im-
plemented as follows.

It begins with a dataset which is to be regressed,
in the form of a numerical matrix (Fig. 43.8, left).
Each row i is a data-point consisting of some input (ex-
planatory) variables xi and an output (response) variable
yi to be modeled. The goal is to produce a function
f .x/ which models the relationship between x and y as
closely as possible. Figure 43.8 (right) plots the existing
data and one possible function f .

Typically StdGP is used, with a numerical language
which includes arithmetic operators, functions like si-
nusoids and exponentials, numerical constants, and the
input variables of the dataset. The internal nodes of each
StdGP abstract syntax tree will be operators and func-
tions, and the leaf nodes will be constants and variables.

To calculate the fitness of each model, the explana-
tory variables of the model are bound to their values
at each of the training points xi in turn. The model is
executed, and the output f .xi/ is the model’s predicted
response. This value Oyi is then compared to the response
of the training point yi. The error can be visualized as
the dotted lines in Fig. 43.8 (right). Fitness is usually
defined as the root-mean-square error of the model’s
outputs versus the training data. In this formulation,

therefore, fitness is to be minimized

fitness.f /D
sPn

iD1.f .xi/� yi/2

n
:

Over the course of evolution, the population moves to-
ward better and better models f of the training data.
After the run, a testing data set is used to confirm that
the model is capable of generalization to unseen data.

43.4.2 Machine Learning

Like other ML methods, GP is successful in quantita-
tive domains where data is available for learning and
both approximate solutions and incremental improve-
ments are valued. In modeling or supervised learning,
GP is preferable to other ML methods in circumstances
where the form of the solution model is unknown a pri-
ori because it is capable of searching among possible
forms for the model. Symbolic regression can be used
as an approach to classification, regression modeling,
and clustering. It can also be used to automatically
extract influential features, since it is able to pare
down the feature set it is given at initialization. GP-
derived classifiers have been integrated into ensemble

x
0· .1
0· .2
0· .3
0· .4
0· .5
.
.

y
0· .3
0· .6
0· .5
0· .7
0· .5
.
.

x

y
f

Fig. 43.8 Symbolic regression: a matrix of data (left) is
to be modeled by a function. It is plotted as dots in the
figure on the right. A candidate function f (solid line) can
be plotted, and its errors (dotted lines) can be visualized

Part
E
|43.4

854 Part E Evolutionary Computation

learning approaches and GP has been used in reinforce-
ment learning (RL) contexts. Figure 43.9 shows GP as
a means of ML which allows it to address problems
such as planning, forecasting, pattern recognition, and
modeling.

For the sensory evaluation problem described
in [43.97], the authors use GP as the anchor of a ML
framework (Fig. 43.10). A panel of assessors provides
liking scores for many different flavors. Each flavor
consists of a mixture of ingredients in different pro-
portions. The goals are to discover the dependency of
a liking score on the concentration levels of flavors’
ingredients, identifying ingredients that drive liking,
segmenting the panel into groups with similar liking
preferences and optimizing flavors to maximize liking
per group. The framework uses symbolic regression and
ensemble methods to generate multiple diverse expla-
nations of liking scores, with confidence information. It
uses statistical techniques to extrapolate from the genet-
ically evolved model ensembles to unobserved regions
of the flavor space. It also segments the assessors into
groups which either have the same propensity to like
flavors, or whose liking is driven by the same ingredi-
ents.

Sensory evaluation data is very sparse and there
is large variation among the responses of different
assessors. A Pareto-GP algorithm (which uses multi-
objective techniques to maximise model accuracy and
minimise model complexity; [43.98]) was therefore
used to evolve an ensemble of models for each assessor
and to use this ensemble as a source of robust vari-

Source signal observations

Genetic programming symbolic regression

Forecasting Planing ModelingAnomaly
detection

Pattern
recognition

Ensemple
techniques RL OptimizationStatistical

analysis
Feature

extraction

Regression ClusteringClassification

Problems

Machine learning
techniques

Structure free
modeling

Fig. 43.9 GP as a component in ML. Symbolic regression can be
used as an approach to many ML tasks, and integrated with other
ML techniques

able importance estimation. The frequency of variable
occurrences in the models of the ensemble was inter-
preted as information about the ingredients that drive
the liking of an assessor. Model ensembles with the
same dominance of variable occurrences, and which
demonstrate similar effects when the important vari-
ables are varied, were grouped together to identify
assessors who are driven by the same ingredient set and
in the same direction. Varying the input values of the
important variables, while using the model ensembles
of these panel segments, provided a means of conduct-
ing focused sensitivity analysis. Subsequently, the same
model ensembles when clustered constitute the black
box which is used by an evolutionary algorithm in its
optimization of flavors that are well liked by assessors
who are driven by the same ingredient.

43.4.3 Software Engineering

At least three areas of software engineering have
been tackled with remarkable success by GP: bug-
fixing [43.99], parallelization [43.100, 101], and op-
timization [43.102–104]. These three areas are very
different in their aims, scope, and methods; however,
they all need to deal with two key problems in this do-
main: the very large and unconstrained search space,
and the problem of program correctness. They therefore
do not aim to evolve new functionality from scratch, but
instead use existing code as material to be transformed
in some way; and they either guarantee correctness of
the evolved programs as a result of their representa-
tions, or take advantage of existing test suites in order
to provide strong evidence of correctness.

Le Goues et al. [43.99] show that automatically fix-
ing software bugs is a problem within the reach of GP.
They describe a system called GenProg. It operates
on C source code taken from open-source projects. It
works by forming an abstract syntax tree from the orig-
inal source code. The initial population is seeded with
variations of the original. Mutations and crossover are
constrained to copy or delete complete lines of code,
rather than editing subexpressions, and they are con-
strained to alter only lines which are exercised by the
failing test cases. This helps to reduce the search space
size. The original test suites are used to give confi-
dence that the program variations have not lost their
original functionality. Fixes for several real-world bugs
are produced, quickly and with high certainty of suc-
cess, including bugs in HTTP servers, Unix utilities,
and a media player. The fixes can be automatically pro-
cessed to produce minimal patches. Best of all, the fixes

Genetic Programming 43.4 Uses of GP 855
Part

E
|43.4

Consistently-well
liked flavors

Flavors that maximize
an assessors liking

Assessor with same
propensity to like
the flavor space

Assessors who
like the same thing?

Model similarity
by behavior

Model similarity
by feature importance

Model
ensembleA

ss
es

so
r

3 Ωs

Flavor optimization

Robust modeling of each assessor

√x1 + x3
3

exp(x2)

Model
ensembleA

ss
es

so
r

1 Ωs

√x1 + x3
3

exp(x2)

Model
ensembleA

ss
es

so
r

69 Ωs

√x1 + x3
3

exp(x2)

Fig. 43.10 GP symbolic regression is unique and useful as an ML technique because it obviates the need to define the
structure of a model prior to training. Here, it is used to form a personalized ensemble model for each assessor in a flavor
evaluation panel

are demonstrated to be rather robust: some even gener-
alize to fixing related bugs which were not explicitly
encoded in the test suite.

Ryan [43.100] describes a system, Paragen, which
automatically rewrites serial Fortran programs to par-
allel versions. In Paragen I, the programs are directly
varied by the genetic operators, and automated tests
are used to reward the preservation of the program’s
original semantics. The work of Williams [43.101] was
in some ways similar to Paragen I. In Paragen II,
correctness of the new programs is instead guaran-
teed, using a different approach. The programs to
be evolved are sequences of transformations defined
over the original serial code. Each transformation is
known to preserve semantics. Some transformations
however directly transform serial operations to paral-
lel, while other transformations merely enable the first
type.

A third goal of software engineering is optimization
of existing code. White et al. [43.104] tackle this task
using a multiobjective optimization method. Again, an
existing program is used as a starting point, and the
aim is to evolve a semantically equivalent one with im-
proved characteristics, such as reduced memory usage,
execution time, or power consumption. The system is

capable of finding nonobvious optimizations, i. e. ones
which cannot be found by optimizing compilers. A pop-
ulation of test cases is coevolved with the population of
programs. Stephenson et al. [43.102, 103] in the Meta
Optimization project improve program execution speed
by using GP to refine priority functions within the
compiler. The compiler generates better code which ex-
ecutes faster across the input range of one program and
across the program range of a benchmark set.

A survey of the broader field of search-based soft-
ware engineering is given by Harman [43.105].

43.4.4 Design

GP has been successfully used in several areas of de-
sign. This includes both engineering design, where the
aim is to design some hardware or software system
to carry out a well-defined task, and aesthetic design,
where the aim is to produce art objects with subjective
qualities.

Engineering Design
One of the first examples of GP design was the synthe-
sis of analog electrical circuits by Koza et al. [43.106].
This work addressed the problem of automatically cre-

Part
E
|43.4

856 Part E Evolutionary Computation

ating circuits to perform tasks such as a filter or an
amplifier. Eight types of circuit were automatically
created, each having certain requirements, such as out-
putting an amplified copy of the input, and low dis-
tortion. These functions were used to define fitness.
A complex GP representation was used, with both
STGP (Sect. 43.3.3) and ADFs (Sect. 43.5.3). Exe-
cution of the evolved program began with a trivial
embryonic circuit. GP program nodes, when executed,
performed actions such as altering the circuit topol-
ogy or creating a new component. These nodes were
parameterized with numerical parameters, also under
GP control, which could be created by more typical
arithmetic GP subtrees. The evolved circuits solved
significant problems to a human-competitive standard
though they were not fabricated.

Another significant success story was the space-
going antenna evolved by Hornby et al. [43.27] for the
NASA (National Aeronautics and Space Administra-
tion) Space Technology 5 spacecraft. The task was to
design an antenna with certain beamwidth and band-
width requirements, which could be tested in simulation
(thus providing a natural fitness function). GP was used
to reduce reliance on human labor and limitations on
complexity, and to explore areas of the search space
which would be rejected as not worthy of exploration
by human designers. Both a GA and a GP representa-
tion were used, producing quite similar results. The GP
representation was in some ways similar to a 3-D turtle
graphics system. Commands included forward which
moved the turtle forward, creating a wire component,
and rotate-x which changed orientation. Branching of
the antenna arms was allowed with special markers
similar to those used in turtle graphics programs. The
program composed of these primitives, when run, cre-
ated a wire structure, which was rotated and copied four
times to produce a symmetric result for simulation and
evaluation.

Aesthetic Design
There have also been successes in the fields of graphical
art, 3-D aesthetic design, and music. Given the aesthetic
nature of these fields, GP fitness is often replaced by
an interactive approach where the user performs direct
selection on the population. This approach dates back
to Dawkins’ seminal Biomorphs [43.107] and has been
used in other forms of EC also [43.108]. Early suc-
cesses were those of Todd and Latham [43.109], who
created pseudo-organic forms, and Sims [43.35] who
created abstract art. An overview of evolutionary art is
provided by Lewis [43.110].

A key aim throughout aesthetic design is to avoid
the many random-seeming designs which tend to be
created by typical representations. For example, a naive
representation for music might encode each quarter-
note as an integer in a genome whose length is the
length of the eventual piece. Such a representation will
be capable of representing some good pieces of music,
but it will have several significant problems. The vast
majority of pieces will be very poor and random sound-
ing. Small mutations will tend to gradually degrade
pieces, rather than causing large-scale and semantically
sensible transformations [43.111].

As a result, many authors have tried to use rep-
resentations which take advantage of forms of reuse.
Although reuse is also an aim in nonaesthetic GP
(Sect. 43.5.3), the hypothesis that good solutions will
tend to involve reuse, even on new, unknown problems,
is more easily motivated in the context of aesthetic de-
sign.

In one strand of research, the time or space to be
occupied by the work is predefined, and divided into
a grid of 1, 2, or 3 dimensions. A GP function of 1, 2 or
3 arguments is then evolved, and applied to each point
in the grid with the coordinates of the point passed as
arguments to the function. The result is that the func-
tion is reused many times, and all parts of the work
are felt to be coherent. The earliest example of such
work was that of Sims [43.35], who created fascinat-
ing graphical art (a 2-D grid) and some animations
(a 3-D grid of two spatial dimensions and 1 time di-
mension). The paradigm was later brought to a high
degree of artistry by Hart [43.112]. The same gener-
ative idea, now with a 1-D grid representing time, was
used by Hoover et al. [43.113], Shao et al. [43.114] and
McDermott and O’Reilly [43.115] to produce music as
a function of time, and with a 3-D grid by Clune and
Lipson [43.116] to produce 3-D sculptures.

Other successful work has used different ap-
proaches to reuse. L-systems are grammars in which
symbols are recursively expanded in parallel: after sev-
eral expansions (a growth process), the string will by
highly patterned, with multiple copies of some sub-
strings. Interpreting this string as a program can then
yield highly patterned graphics [43.117], artificial crea-
tures [43.118], and music [43.119]. Grammars have
also been used in 3-D and architectural design, both
in a modified L-system form [43.36] and in the stan-
dard GE form [43.120]. The Ossia system of Dahlst-
edt [43.37] uses GP trees with recursive pointers to
impose reuse and a natural, gestural quality on short
pieces of art music.

Genetic Programming 43.5 Research Topics 857
Part

E
|43.5

43.5 Research Topics

Many research topics of interest to GP practitioners
are also of broader interest. For example, the self-
adaptation of algorithm parameters is a topic of interest
throughout EC. We have chosen to focus on four re-
search topics of specific interest in GP: bloat, GP
theory, modularity, and open-ended evolution.

43.5.1 Bloat

Most GP-type problems naturally require variable-
length representations. It might be expected that se-
lection pressure would effectively guide the popula-
tion toward program sizes appropriate to the problem,
and indeed this is sometimes the case. However, it
has been observed that for many different represen-
tations [43.121] and problems, programs grow over
time without apparent fitness improvements. This phe-
nomenon is called bloat. Since the time complexity for
the evaluation of a GP program is generally propor-
tional to its size, this greatly slows the GP run down.
There are also other drawbacks. The eventual solu-
tion may be so large and complex that is unreadable,
negating a key advantage of symbolic methods like GP.
Overly large programs tend to generalize less well than
parsimonious ones. Bloat may negatively impact the
rate of fitness improvement. Since bloat is a significant
obstacle to successful GP, it is an important topic of re-
search, with differing viewpoints both on the causes of
bloat and the best solutions.

The competing theories of the causes of bloat are
summarized by Luke and Panait [43.122] and Silva
et al. [43.123]. A fundamental idea is that adding ma-
terial rather than removing material from a GP tree
is more likely to lead to a fitness improvement. The
hitchhiking theory is that noneffective code is carried
along by virtue of being attached to useful code. De-
fense against crossover suggests that large amounts of
noneffective code give a selection advantage later in GP
runs when crossover is likely to highly destructive of
good, fragile programs. Removal bias is the idea that it
is harder for GP operators to remove exactly the right
(i. e., noneffective) code than it is to add more. The fit-
ness causes bloat theory suggests that fitness-neutral
changes tend to increase program size just because
there are many more programs with the same func-
tionality at larger sizes than at smaller [43.124]. The
modification point depth theory suggests that children
formed by tree crossover at deep crossover points are
likely to have fitness similar to their parents and thus

more likely to survive than the more radically different
children formed at shallow crossover points. Because
larger trees have more very deep potential crossover
points, there is a selection pressure toward growth. Fi-
nally, the crossover bias theory [43.125] suggests that
after many crossovers, a population will tend toward
a limiting distribution of tree sizes [43.126] such that
small trees are more common than large ones – note
that this is the opposite of the effect that might be
expected as the basis of a theory of bloat. However,
when selection is considered, the majority of the small
programs cannot compete with the larger ones, and
so the distribution is now skewed in favour of larger
programs.

Many different solutions to the problem of bloat
have been proposed, many with some success. One sim-
ple method is depth limiting, imposing a fixed limit on
the tree depth that can be produced by the variation op-
erators [43.19].

Another simple but effective method is Tarpeian
bloat control [43.127]. Individuals which are larger than
average receive, with a certain probability, a constant
punitively bad fitness. The advantage is that these in-
dividuals are not evaluated, and so a huge amount of
time can be saved and devoted to running more genera-
tions (as in [43.122]). The Tarpeian method does allow
the population to grow beyond its initial size, since the
punishment is only applied to a proportion of individu-
als – typically around 1 in 3. This value can also be set
adaptively [43.127].

The parsimony pressure method evaluates all indi-
viduals, but imposes a fitness penalty on overly large
individuals. This assumes that fitness is commensurable
with size: the magnitude of the punishment establishes
a de facto exchange rate between the two. Luke and
Panait [43.122] found that parsimony pressure was ef-
fective across problems and across a wide range of
exchange rates.

The choice of an exchange rate can be avoided using
multiobjective methods, such as Pareto-GP [43.128],
where one of the objectives is fitness and the other
program length or complexity. The correct definition
for complexity in this context is itself an interesting
research topic [43.96, 129]. Alternatively, the pressure
against bloat can be moved from the fitness evalua-
tion phase to the the selection phase of the algorithm,
using the double tournament method [43.122]. Here
individuals must compete in one fitness-based tour-
nament and one size-based one. Another approach

Part
E
|43.5

858 Part E Evolutionary Computation

is to incorporate tree size directly into fitness eval-
uation using a minimum description length princi-
ple [43.130].

Another technique is called operator length equal-
ization. A histogram of program sizes is maintained
throughout the run and is used to set the popula-
tion’s capacity for programs of different sizes. A newly
created program which would cause the population’s
capacity to be exceeded is rejected, unless exception-
ally fit. A mutation-based variation of the method
instead mutates the overly large individuals using
directed mutation to become smaller or larger as
needed.

Some authors have argued that the choice of GP rep-
resentation can avoid the issue of bloat [43.131]. Some
aim to avoid the problem of bloat by speeding up fit-
ness evaluation [43.82, 132] or avoiding wasted effort
in evaluation [43.133, 134]. Sometimes GP techniques
are introduced with other motivations but have the side-
effect of reducing bloat [43.135].

In summary, researchers including Luke and
Panait [43.122], Poli et al. [43.127], Miller [43.131],
and Silva et al. [43.123] have effectively declared vic-
tory in the fight against bloat. However, their techniques
have not yet become standard for new GP research and
benchmark experiments.

43.5.2 GP Theory

Theoretical research in GP seeks to answer a variety of
questions, for example: What are the drivers of popula-
tion fitness convergence? How does the behavior of an
operator influence the progress of the algorithm? How
does the combination of different algorithmic mecha-
nisms steer GP toward fitter solutions? What mecha-
nisms cause bloat to arise? What problems are difficult
for GP? How diverse is a GP population? Theoretical
methodologies are based in mathematics and exploit
formalisms, theorems, and proofs for rigor. While GP
may appear simple, beyond its stochastic nature which
it shares with all other evolutionary algorithms, its
variety of representations each impose specific require-
ments for theoretical treatment. All GP representations
share two common traits which greatly contribute to
the difficulty it poses for theoretical analysis. First, the
representations have no fixed size, implying a complex
search space. Second, GP representations do not im-
ply that parents will be equal in size and shape. While
crossover accommodates this lack of synchronization,
it generally allows the exchange of content from any-
where in one parent to anywhere in the other parent’s

tree. This implies combinatorial outcomes and likes not
switching with likes. This functionality contributes to
complicated algorithmic behavior which is challenging
to analyze.

Here, we select several influential methods of theo-
retical analysis and very briefly describe them and their
results: schema-based analysis, Markov chain model-
ing, runtime complexity, and problem difficulty. We
also introduce the No Free Lunch Theorem and describe
its implications for GP.

Schema-Based Analysis
In schema-based analysis, the search space is con-
ceptually partitioned into hyperplanes (also known as
schemas) which represent sets of partial solutions.
There are numerous ways to do this and, as a con-
sequence, multiple schema definitions have been pro-
posed [43.136–139]. The fitness of a schema is esti-
mated as the average fitness of all programs in the
sample of its hyperplane, given a population. The pro-
cesses of fitness-based selection and crossover are for-
malized in a recurrence equation which describes the
expected number of programs sampling a schema from
the current population to the next. Exact formulations
have been derived for most types of crossover [43.140,
141]. These alternatively depend on making explicit the
effects and the mechanisms of schema creation. This
leads to insight; however, tracking schema equations
in actual GP population dynamics is infeasible. Also,
while schema theorems predict changes from one gen-
eration to the next, they cannot predict further into the
future to predict the long-term dynamics that GP prac-
titioners care about.

Markov Chain Analysis
Markov chain models are one means of describing such
long-term GP dynamics. They take advantage of the
Markovian property observed in a GP algorithm: the
composition of one generation’s population relies only
upon that of the previous generation. Markov chains
describe the probabilistic movement of a particular pop-
ulation (state) to others using a probabilistic transition
matrix. In evolutionary algorithms, the transition matrix
must express the effects of any selection and varia-
tion operators. The transition matrix, when multiplied
by itself k times, indicates which new populations can
be reached in k generations. This, in principle, allows
a calculation of the probability that a population with
a solution can be reached. To date a Markov chain for
a simplified GP crossover operator has been derived,
see [43.142]. Another interesting Markov chain-based

Genetic Programming 43.5 Research Topics 859
Part

E
|43.5

J3

Xk

J2

J4Xi Xj

X
–

iXj

J1

J3

X
–

j

J2

J4Xi Xj

X
–

iXj

J1

J4

Xj

J2

X
–

iXi Xj

J1

Chosen node Substitution to
chosen node

a) b) c) Fig. 43.11a–c HVL-prime mutation:
substitution and deletion (a) Original
parse tree, (b) Result of substitution
(c) Result of deletion

result has revealed that the distribution of functionality
of non-Turing complete programs approaches a limit
as length increases. Markov chain analysis has also
been the means of describing what happens with GP
semantics rather than syntax. The influence of sub-
tree crossover is studied in a semantic building block
analysis by [43.143]. Markov chains, unfortunately,
combinatorially explode with even simple extensions of
algorithm dynamics or, in GP’s case, its theoretically in-
finite search space. Thus, while they can support further
analysis, ultimately this complexity is unwieldy to work
with.

Runtime Complexity
Due to stochasticity, it is arguably impossible in most
cases to make formal guarantees about the number of
fitness evaluations needed for a GP algorithm to find
an optimal solution. However, initial steps in the run-
time complexity analysis of genetic programming have
been made in [43.144]. The authors study the runtime
of hill climbing GP algorithms which use a mutation
operator called HVL-Prime (Figs. 43.11 and 43.12).
Several of these simplified GP algorithms were ana-
lyzed on two separable model problems, Order and
Majority introduced in [43.145]. Order and Majority
each have an independent, additive fitness structure.
They each admit multiple solutions based on their ob-
jective function, so they exhibit a key property of
all real GP problems. They each capture a different
relevant facet of typical GP problems. Order repre-
sents problems, such as classification problems, where
the operators include conditional functions such as
an IF-THEN-ELSE. These functions give rise to con-
ditional execution paths which have implications for
evolvability and the effectiveness of crossover. Ma-
jority is a GP equivalent of the GA OneMax prob-
lem [43.146]. It reflects a general (and thus weak)
property required of GP solutions: a solution must
have correct functionality (by evolving an aggrega-
tion of subsolutions) and no incorrect functionality.
The analyses highlighted, in particular, the impact of
accepting or rejecting neutral moves and the impor-

tance of a local mutation operator. A similar finding,
[43.147], regarding mutation arose from the analy-
sis of the Max problem [43.148] and hillclimbing.
For a search process bounded by a maximally sized
tree of n nodes, the time complexity of the sim-
ple GP mutation-based hillclimbing algorithms using
HVL-Prime for the entire range of MAX variants are
O.n log2 n/when one mutation operation precedes each
fitness evaluation. When multiple mutations are succes-
sively applied before each fitness evaluation, the time
complexity is O.n2/. This complexity can be reduced
to O.n log n/ if the mutations are biased to replace
a random leaf with distance d from the root with prob-
ability 2�d.

Runtime analyses have also considered parsimony
pressure and multiobjective GP algorithms for general-
izations of Order and Majority [43.149].

GP algorithms have also been studied in the PAC
learning framework [43.150].

Problem Difficulty
Problem difficulty is the study of the differences be-
tween algorithms and problems which lead to differ-
ences in performance. Stated simply, the goal is to
understand why some problems are easy and some are
hard, and why some algorithms perform well on certain
problems and others do not. Problem difficulty work in
the field of GP has much in common with similar work
in the broader field of EC. Problem difficulty is nat-
urally related to the size of the search space; smaller
spaces are easier to search, as are spaces in which

J3

Xk

J2

J4Xi Xj

X
–

iXj

J1

J3

Xk

J2

J4J5 Xj

X
–

iXjX
–

iXi

J1

Chosen node
Chosen New

New

a) b)

Fig. 43.12a,b HVL-prime mutation: insertion (a) Original
parse tree, (b) Result of insertion

Part
E
|43.5

860 Part E Evolutionary Computation

the solution is over-represented [43.151]. Difficulty is
also related to the fitness landscape [43.152], which in
turn depends on both the problem and the algorithm
and representation chosen to solve it. Landscapes with
few local optima (visualized in the fitness landscape as
peaks which are not as high as that of the global opti-
mum) are easier to search. Locality, that is the property
that small changes to a program lead to small changes
in fitness, implies a smooth, easily searchable land-
scape [43.151, 153].

However, more precise statements concerning prob-
lem difficulty are usually desired. One important line of
research was carried out by Vanneschi et al. [43.154–
156]. This involved calculating various measures of the
correlation of the fitness landscape, that is the rela-
tionship between distance in the landscape and fitness
difference. The measures include the fitness distance
correlation and the negative slope coefficient. These
measures require the definition of a distance measure
on the search space, which in the case of standard GP
means a distance between pairs of trees. Various tree
distance measures have been proposed and used for this
purpose [43.157–160]. However, the reliable prediction
of performance based purely on landscape analysis re-
mains a distant goal in GP as it does in the broader field
of EC.

No Free Lunch
In a nutshell, the No Free Lunch Theorem [43.161]
proves that, averaged over all problem instances, no
algorithm outperforms another. Follow-up NFL anal-
ysis [43.162, 163] yields a similar result for problems
where the set of fitness functions are closed under per-
mutation. One question is whether the NFL theorem
applies to GP algorithms: for some problem class, is
it worth developing a better GP algorithm, or will this
effort offer no extra value when all instances of the
problem are considered? Research has revealed two
conditions under which the NFL breaks down for GP
because the set of fitness functions is not closed un-
der permutation. First, GP has a many-to-one syntax
tree to program output mapping because many differ-
ent programs have the same functionality while pro-
gram output functionality is not uniformly distributed
across syntax trees. Second, a geometric argument has
shown [43.164], that many realistic situations exist
where a set of GP problems is provably not closed un-
der permutation. The implication of a contradiction to
the No Free Lunch theorem is that it is worthwhile in-
vesting effort in improving a GP algorithm for a class
of problems.

43.5.3 Modularity

Modularity in GP is the ability of a representation
to evolve good building blocks and then encapsulate
and reuse them. This can be expected to make com-
plex programs far easier to find, since good building
blocks needed in multiple places in the program not
be laboriously re-evolved each time. One of the best-
known approaches to modularity is automatically de-
fined functions (ADFs), where the building blocks are
implemented as functions which are defined in one
part of the evolving program and then invoked from
another part [43.58]. This work was followed by au-
tomatically defined macros which are more powerful
than ADFs and allow control of program flow [43.165];
automatically defined iteration, recursion, and mem-
ory stores [43.10]; modularity in other representa-
tions [43.166]; and demonstrations of the power of
reuse, [43.167].

43.5.4 Open-Ended Evolution and GP

Biological evolution is a long-running exploration of
the enormously varied and indefinitely sized DNA
search space. There is no hint that a limit on new ar-
eas of the space to be explored will ever be reached.
In contrast, EC algorithms often operate in search
spaces which are finite and highly simplified in com-
parison to biology. Although GP itself can be used
for a wide variety of tasks (Sect. 43.1), each specific
instance of the GP algorithm is capable of solving
only a very narrow problem. In contrast, some re-
searchers see biological evolution as pointing the way
to a more ambitious vision of the possibilities for
GP [43.168]. In this vision, an evolutionary run would
continue for an indefinite length of time, always ex-
ploring new areas of an indefinitely sized search space;
always responding to changes in the environment; and
always reshaping the search space itself. This vision
is particularly well suited to GP, as opposed to GAs
and similar algorithms, because GP already works in
search spaces which are infinite in theory, if not in
practice.

To make this type of GP possible, it is necessary to
prevent convergence of the population on a narrow area
of the search space. Diversity preservation [43.169], pe-
riodic injection of new random material [43.170], and
island-structured population models [43.88] can help in
this regard.

Open-ended evolution would also be facilitated by
complexity and nonstationarity in the algorithm’s evo-

Genetic Programming 43.6 Practicalities 861
Part

E
|43.6

lutionary ecosystem. If fitness criteria are dynamic or
coevolutionary [43.171–173], there may be no natural

end-point to evolution, and so continued exploration un-
der different criteria can lead to unlimited new results.

43.6 Practicalities

43.6.1 Conferences and Journals

Several conferences provide venues for the publication
of new GP research results. The ACM Genetic and
Evolutionary Computation Conference (GECCO) alter-
nates annually between North America and the rest of
the world and includes a GP track. EuroGP is held an-
nually in Europe as the main event of Evo*, and focuses
only on GP. The IEEE Congress on Evolutionary Com-
putation is a larger event with broad coverage of EC
in general. Genetic Programming Theory and Practice
is held annually in Ann Arbor, MI, USA and provides
a focused forum for GP discussion. Parallel Problem
Solving from Nature is one of the older, general EC con-
ferences, held biennially in Europe. It alternates with
the Evolution Artificielle conference. Finally, Founda-
tions of Genetic Algorithms is a smaller, theory-focused
conference.

The journal most specialized to the field is prob-
ably Genetic Programming and Evolvable Machines
(published by Springer). The September 2010, 10-year
anniversary issue included several review articles on
GP. Evolutionary Computation (MIT Press) and the
IEEE Transactions on Evolutionary Computation also
publish important GP material. Other on-topic journals
with a broader focus include Applied Soft Computing
and Natural Computing.

43.6.2 Software

A great variety of GP software is available. We will
mention only a few packages – further options can be
found online.

One of the well-known Java systems is
ECJ [43.174, 175]. It is a general-purpose system
with support for many representations, problems, and
methods, both within GP and in the wider field of EC.
It has a helpful mailing list. Watchmaker [43.176] is
another general-purpose system with excellent out-
of-the-box examples. GEVA [43.177, 178] is another
Java-based package, this time with support only for
GE.

For users of C++ there are also several op-
tions. Some popular packages include Evolutionary

Objects [43.179], �GP [43.180–182], and OpenBea-
gle [43.183, 184]. Matlab users may be interested in
GPLab [43.185], which implements standard GP, while
DEAP [43.186] provides implementations of several al-
gorithms in Python. PushGP [43.187] is available in
many languages.

Two more systems are worth mentioning for their
deliberate focus on simplicity and understandability.
TinyGP [43.188] and PonyGE [43.189] implement stan-
dard GP and GE respectively, each in a single, readable
source file.

Moving on from open source, Michael Schmidt and
Hod Lipson’s Eureqa [43.190] is a free-to-use tool with
a focus on symbolic regression of numerical data and
the built-in ability to use cloud resources.

Finally, the authors are aware of two commercially
available GP tools, each fast and industrial-strength.
They have more automation and it just works function-
ality, relative to most free and open-source tools. Free
trials are available. DataModeler (Evolved Analytics
LLC) [43.191] is a notebook in Mathematica. It em-
ploys the ParetoGP method [43.128] which gives the
ability to trade program fitness off against complex-
ity, and to form ensembles of programs. It also exploits
complex population archiving and archive-based selec-
tion. It offers means of dealing with ill-conditioned data
and extracting information on variable importance from
evolved models. Discipulus (Register Machine Learn-
ing Technologies, Inc.) [43.192] evolves machine code
based on the ideas of Nordin et al. [43.193]. It runs
on Windows only. The machine code representation
allows very fast fitness evaluation and low memory us-
age, hence large populations. In addition to typical GP
features, it can: use an ES to optimise numerical con-
stants; automatically construct ensembles; preprocess
data; extract variable importance after runs; automat-
ically simplify results; and save them to high-level
languages.

43.6.3 Resources and Further Reading

Another useful resource for GP research is the GP
Bibliography [43.194]. In addition to its huge, regu-
larly updated collection of BibTeX-formatted citations,

Part
E
|43

862 Part E Evolutionary Computation

it has lists of researchers’ homepages [43.195] and co-
authorship graphs. The GP mailing list [43.196] is one
well-known forum for discussion.

Many of the traditional GP benchmark problems
have been criticized for being unrealistic in various
ways. The lack of standardization of benchmark prob-
lems also allows the possibility of cherry-picking of
benchmarks. Effort is underway to bring some stan-
dardization to the choice of GP benchmarks [43.197,
198].

Those wishing to read further have many good
options. The Field Guide to GP is a good introduc-
tion, walking the reader through simple examples,

scanning large amounts of the literature, and offering
practical advice [43.199]. Luke’s Essentials of Meta-
heuristics [43.200] also has an introductory style, but
is broader in scope. Both are free to download. Other
broad and introductory books include those by Fo-
gel [43.51] and Banzhaf et al. [43.201]. More special-
ized books include those by Langdon and Poli [43.202]
(coverage of theoretical topics), Langdon [43.11] (nar-
rower coverage of GP with data structures), O’Neill and
Ryan [43.77] (GE), Iba et al. [43.203] (GP-style ML),
and Sipper [43.204] (games). Advances in Genetic Pro-
gramming, a series of four volumes, contains important
foundational work from the 1990s.

References

43.1 J. McCarthy: Programs with Common Sense, Tech-
nical Report (Stanford University, Department of
Computer Science, Stanford 1963)

43.2 F. Rosenblatt: The perceptron: A probabilistic
model for information storage and organization
in the brain, Psychol. Rev. 65(6), 386 (1958)

43.3 D.E. Rumelhart, J.L. McClelland: Parallel Dis-
tributed Processing: Explorations in the Mi-
crostructure of Cognition, Volume 1: Foundations
(MIT, Cambridge 1986)

43.4 R.A. Brooks: Intelligence without representation,
Artif. Intell. 47(1), 139–159 (1991)

43.5 C. Cortes, V. Vapnik: Support-vector networks,
Mach. Learn. 20(3), 273–297 (1995)

43.6 L. Page, S. Brin, R. Motwani, T. Winograd: The
Pagerank Citation Ranking: Bringing Order to the
Web, Technical Report 1999-66 (Stanford InfoLab,
Stanford 1999), available online at http://ilpubs.
stanford.edu:8090/422/. Previous number = SIDL-
WP-1999-0120.

43.7 J. Levinson, J. Askeland, J. Becker, J. Dolson,
D. Held, S. Kammel, J.Z. Kolter, D. Langer, O. Pink,
V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Te-
ichma, M. Werling, S. Thrun: Towards fully au-
tonomous driving: Systems and algorithms, In-
tell. Veh. Symp. (IV) IEEE (2011) pp. 163–168

43.8 C. Darwin: The Origin of Species byMeans of Natu-
ral Selection: Or, the Preservation of Favored Races
in the Struggle for Life (John Murray, London 1859)

43.9 T. Bäck, D.B. Fogel, Z. Michalewicz (Eds.): Hand-
book of Evolutionary Computation (IOP Publ.,
Bristol 1997)

43.10 J.R. Koza, D. Andre, F.H. Bennett III, M. Keane: Ge-
netic Programming 3: Darwinian Invention and
Problem Solving (Morgan Kaufman, San Francisco
1999), available online at http://www.genetic-
programming.org/gpbook3toc.html

43.11 W.B. Langdon: Genetic Programming and Data
Structures: Genetic Programming C Data Struc-

tures D Automatic Programming! Genetic Pro-
gramming, Vol. 1 (Kluwer, Boston 1998), avail-
able online at http://www.cs.ucl.ac.uk/staff/W.
Langdon/gpdata

43.12 M. Suchorzewski, J. Clune: A novel generative
encoding for evolving modular, regular and scal-
able networks, Proc. 13th Annu. Conf. Genet. Evol.
Comput. (2011) pp. 1523–1530

43.13 J. Woodward: Evolving Turing complete rep-
resentations, Proc. 2003 Congr. Evol. Comput.
CEC2003, ed. by R. Sarker, R. Reynolds, H. Abbass,
K.C. Tan, B. McKay, D. Essam, T. Gedeon (IEEE,
Canberra 2003) pp. 830–837, available online at
http://www.cs.bham.ac.uk/~jrw/publications/
2003/EvolvingTuringCompleteRepresentations/
cec032e.pdf

43.14 J. Tanomaru: Evolving Turing machines from ex-
amples, Lect. Notes Comput. Sci. 1363, 167–180
(1993)

43.15 D. Andre, F.H. Bennett III, J.R. Koza: Discovery by
genetic programming of a cellular automata rule
that is better than any known rule for the ma-
jority classification problem, Proc. 1st Annu. Conf.
Genet. Progr., ed. by J.R. Koza, D.E. Goldberg,
D.B. Fogel, R.L. Riolo (MIT Press, Cambridge 1996)
pp. 3–11, available online at http://www.genetic-
programming.com/jkpdf/gp1996gkl.pdf

43.16 F. Gruau: Neural Network Synthesis Using Cellular
Encoding and the Genetic Algorithm, Ph.D. The-
sis (Laboratoire de l’Informatique du Parallilisme,
Ecole Normale Supirieure de Lyon, France 1994),
available online at ftp://ftp.ens-lyon.fr/pub/LIP/
Rapports/PhD/PhD1994/PhD1994-01-E.ps.Z

43.17 A. Teller: Turing completeness in the language
of genetic programming with indexed memory,
Proc. 1994 IEEE World Congr. Comput. Intell., Or-
lando, Vol. 1 (1994) pp. 136–141, available on-
line at http://www.cs.cmu.edu/afs/cs/usr/astro/
public/papers/Turing.ps

http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://www.genetic-programming.org/gpbook3toc.html
http://www.genetic-programming.org/gpbook3toc.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata
http://www.cs.bham.ac.uk/~jrw/publications/2003/EvolvingTuringCompleteRepresentations/cec032e.pdf
http://www.cs.bham.ac.uk/~jrw/publications/2003/EvolvingTuringCompleteRepresentations/cec032e.pdf
http://www.cs.bham.ac.uk/~jrw/publications/2003/EvolvingTuringCompleteRepresentations/cec032e.pdf
http://www.genetic-programming.com/jkpdf/gp1996gkl.pdf
http://www.genetic-programming.com/jkpdf/gp1996gkl.pdf
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/PhD/PhD1994/PhD1994-01-E.ps.Z
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/PhD/PhD1994/PhD1994-01-E.ps.Z
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Turing.ps
http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Turing.ps

Genetic Programming References 863
Part

E
|43

43.18 S. Mabu, K. Hirasawa, J. Hu: A graph-based evo-
lutionary algorithm: Genetic network program-
ming (GNP) and its extension using reinforcement
learning, Evol. Comput. 15(3), 369–398 (2007)

43.19 J.R. Koza: Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection
(MIT, Cambridge 1992)

43.20 P. Prusinkiewicz, A. Lindenmayer: The Algorith-
mic Beauty of Plants (The Virtual Laboratory)
(Springer, Berlin, Heidelberg 1991)

43.21 J. Murphy, M. O’Neill, H. Carr: Exploring grammat-
ical evolution for horse gait optimisation, Lect.
Notes Comput. Sci. 5481, 183–194 (2009)

43.22 T. Haynes, S. Sen: Evolving behavioral strategies in
predators and prey, Lect. Notes Comput. Sci. 1042,
113–126 (1995)

43.23 R. De Caux: Using Genetic Programming to Evolve
Strategies for the Iterated Prisoner’s Dilemma,
Master’s Thesis (University College, London 2001),
available online at http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/decaux.masters.zip

43.24 A. Hauptman, M. Sipper: GP-endchess: Using
genetic programming to evolve chess endgame
players, Lect. Notes Comput. Sci. 3447, 120–131
(2005), available online at http://www.cs.bgu.ac.
il/~sipper/papabs/eurogpchess-final.pdf

43.25 E. Galván-Lopéz, J.M. Swafford, M. O’Neill,
A. Brabazon: Evolving a Ms. PacMan controller us-
ing grammatical evolution, Lect. Notes Comput.
Sci. 6024, 161–170 (2010)

43.26 J. Togelius, S. Lucas, H.D. Thang, J.M. Garibaldi,
T. Nakashima, C.H. Tan, I. Elhanany, S. Be-
rant, P. Hingston, R.M. MacCallum, T. Haferlach,
A. Gowrisankar, P. Burrow: The 2007 IEEE CEC sim-
ulated car racing competition, Genet. Program.
Evol. Mach. 9(4), 295–329 (2008)

43.27 G.S. Hornby, J.D. Lohn, D.S. Linden: Computer-
automated evolution of an X-band antenna for
NASA’s space technology 5 mission, Evol. Comput.
19(1), 1–23 (2011)

43.28 M. Furuholmen, K.H. Glette, M.E. Hovin, J. Torre-
sen: Scalability, generalization and coevolution –
experimental comparisons applied to automated
facility layout planning, GECCO ’09: Proc. 11th
Annu. Conf. Genet. Evol. Comput., Montreal, ed.
by F. Rothlauf, G. Raidl (2009) pp. 691–698, avail-
able online at http://doi.acm.org/10.1145/1569901.
1569997

43.29 C.C. Bojarczuk, H.S. Lopes, A.A. Freitas: Ge-
netic programming for knowledge discovery in
chest-pain diagnosis, IEEE Eng. Med. Biol. Mag.
19(4), 38–44 (2000), available online at http://
ieeexplore.ieee.org/iel5/51/18543/00853480.pdf

43.30 T. Hildebrandt, J. Heger, B. Scholz-Reiter, M. Pe-
likan, J. Branke: Towards improved dispatching
rules for complex shop floor scenarios: A ge-
netic programming approach, GECCO ’10: Proc.
12th Annu. Conf. Genet. Evol. Comput., Portland,
ed. by J. Branke (2010) pp. 257–264

43.31 M.B. Bader-El-Den, R. Poli, S. Fatima: Evolving
timetabling heuristics using a grammar-based
genetic programming hyper-heuristic frame-
work, Memet. Comput. 1(3), 205–219 (2009),
10.1007/s12293-009-0022-y

43.32 M. Conrads, P. Nordin, W. Banzhaf: Speech sound
discrimination with genetic programming, Lect.
Notes Comput. Sci. 1391, 113–129 (1998)

43.33 A. Esparcia-Alcazar, K. Sharman: Genetic pro-
gramming for channel equalisation, Lect. Notes
Comput. Sci. 1596, 126–137 (1999), available
online at http://www.iti.upv.es/~anna/papers/
evoiasp99.ps

43.34 R. Poli, M. Salvaris, C. Cinel: Evolution of a brain-
computer interface mouse via genetic program-
ming, Lect. Notes Comput. Sci. 6621, 203–214 (2011)

43.35 K. Sims: Artificial evolution for computer graphics,
ACM Comput. Gr. 25(4), 319–328 (1991), available
online at http://delivery.acm.org/10.1145/130000/
122752/p319-sims.pdf SIGGRAPH ’91 Proceedings

43.36 U.-M. O’Reilly, M. Hemberg: Integrating gener-
ative growth and evolutionary computation for
form exploration, Genet. Program. Evol. Mach.
8(2), 163–186 (2007), Special issue on develop-
mental systems

43.37 P. Dahlstedt: Autonomous evolution of complete
piano pieces and performances, Proc. Music AL
Workshop (2007)

43.38 H. Iba: Multiple-agent learning for a robot navi-
gation task by genetic programming, Genet. Pro-
gram. Proc. 2nd Annu. Conf., Standord, ed. by
J.R. Koza, K. Deb, M. Dorigo, D.B. Fogel, M. Gar-
zon, H. Iba, R.L. Riolo (1997) pp. 195–200

43.39 T. Weise, K. Tang: Evolving distributed algorithms
with genetic programming, IEEE Trans. Evol. Com-
put. 16(2), 242–265 (2012)

43.40 L. Spector: Autoconstructive evolution: Push,
pushGP, and pushpop, Proc. Genet. Evol. Comput.
Conf. (GECCO-2001), ed. by L. Spector, E. Goodman
(Morgan Kaufmann, San Francisco 2001) pp. 137–
146, available online at http://hampshire.edu/
lspector/pubs/ace.pdf

43.41 J. Tavares, F. Pereira: Automatic design of ant al-
gorithms with grammatical evolution. In: Gnetic
Programming. 15th European Conference, Eu-
roGP, ed. by A. Moraglio, S. Silva, K. Krawiec,
P. Machado, C. Cotta (Springer, Berlin, Heidelberg
2012) pp. 206–217

43.42 M. Hutter: A Gentle Introduction To The Universal
Algorithmic Agent AIXI. Technical Report IDSIA-
01-03 (IDSIA, Manno-Lugano 2003)

43.43 J. Von Neumann, M.D. Godfrey: First draft of a re-
port on the EDVAC, IEEE Ann. Hist. Comput. 15(4),
27–75 (1993)

43.44 H.H. Goldstine, A. Goldstine: The electronic nu-
merical integrator and computer (ENIAC), Math.
Tables Other Aids Comput. 2(15), 97–110 (1946)

43.45 A.M. Turing: Intelligent machinery. In: Cybernet-
ics: Key Papers, ed. by C.R. Evans, A.D.J. Robert-

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/decaux.masters.zip
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/decaux.masters.zip
http://www.cs.bgu.ac.il/~sipper/papabs/eurogpchess-final.pdf
http://www.cs.bgu.ac.il/~sipper/papabs/eurogpchess-final.pdf
http://doi.acm.org/10.1145/1569901.1569997
http://doi.acm.org/10.1145/1569901.1569997
http://ieeexplore.ieee.org/iel5/51/18543/00853480.pdf
http://ieeexplore.ieee.org/iel5/51/18543/00853480.pdf
http://www.iti.upv.es/~anna/papers/evoiasp99.ps
http://www.iti.upv.es/~anna/papers/evoiasp99.ps
http://delivery.acm.org/10.1145/130000/122752/p319-sims.pdf
http://delivery.acm.org/10.1145/130000/122752/p319-sims.pdf
http://hampshire.edu/lspector/pubs/ace.pdf
http://hampshire.edu/lspector/pubs/ace.pdf

Part
E
|43

864 Part E Evolutionary Computation

son (Univ. Park Press, Baltimore 1968), Written
1948

43.46 A.M. Turing: Computing machinery and intelli-
gence, Mind 59(236), 433–460 (1950)

43.47 A.L. Samuel: Some studies in machine learning
using the game of checkers, IBM J. Res. Dev. 3(3),
210 (1959)

43.48 R.M. Friedberg: A learning machine: Part I, IBM
J. Res. Dev. 2(1), 2–13 (1958)

43.49 M. O’Neill, L. Vanneschi, S. Gustafson,
W. Banzhaf: Open issues in genetic program-
ming, Genet. Program. Evol. Mach. 11(3/4),
339–363 (2010), 10th Anniversary Issue: Progress
in Genetic Programming and Evolvable Ma-
chines

43.50 L.J. Fogel, A.J. Owens, M.J. Walsh: Artificial In-
telligence Through Simulated Evolution (Wiley,
Hoboken 1966)

43.51 D.B. Fogel: Evolutionary Computation: Toward
a New Philosophy of Machine Intelligence, Vol. 1
(Wiley, Hoboken 2006)

43.52 S.F. Smith: A Learning System Based on Genetic
Adaptive Algorithms, Ph.D. Thesis (University of
Pittsburgh, Pittsburgh 1980)

43.53 N.L. Cramer: A representation for the adaptive
generation of simple sequential programs, Proc.
Int. Conf. Genet. Algorithms Appl., Pittsburgh,
ed. by J.J. Grefenstette (1985) pp. 183–187, avail-
able online at http://www.sover.net/~nichael/
nlc-publications/icga85/index.html

43.54 J. Schmidhuber: Evolutionary Principles in Self-
Referential Learning. On Learning Now to Learn:
The Meta-Meta-Meta: : :-Hook, Diploma Thesis
(Technische Universität, München 1987), avail-
able online at http://www.idsia.ch/~juergen/
diploma.html

43.55 C. Fujiki, J. Dickinson: Using the genetic algo-
rithm to generate lisp source code to solve the
prisoner’s dilemma, Proc. 2nd Int. Conf. Genet.
Algorithms Appl., Cambridge, ed. by J.J. Grefen-
stette (1987) pp. 236–240

43.56 A.S. Bickel, R.W. Bickel: Tree structured rules in
genetic algorithms, Proc. 2nd Int. Conf. Genet.
Algorithms Appl., Cambridge, ed. by J.J. Grefen-
stette (1987) pp. 77–81

43.57 T.S. Ray: Evolution, Ecology and Optimization
of Digital Organisms. Technical Report Working
Paper 92-08-042 (Santa Fe Institute, Santa Fe
1992) available online at http://www.santafe.
edu/media/workingpapers/92-08-042.pdf

43.58 J.R. Koza: Genetic Programming II: Automatic
Discovery of Reusable Programs (MIT, Cambridge
1994)

43.59 J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec,
J. Yu, G. Lanza: Genetic Programming IV: Rou-
tine Human-Competitive Machine Intelligence
(Springer, Berlin, Heidelberg 2003), available
online at http://www.genetic-programming.org/
gpbook4toc.html

43.60 J. Koza: http://www.genetic-programming.org/
hc2011/combined.html

43.61 J.G. Carbonell, R.S. Michalski, T.M. Mitchell:
An overview of machine learning. In: Machine
Learning: An Artificial Intelligence Approach, ed.
by R.S. Michalski, J.G. Carbonell, T.M. Mitchell
(Tioga, Palo Alto 1983)

43.62 C. Rich, R.C. Waters: Automatic programming:
Myths and prospects, Computer 21(8), 40–51
(1988)

43.63 S. Gulwani: Dimensions in program synthesis,
Proc. 12th Int. SIGPLAN Symp. Princ. Pract. Declar.
Program. (2010) pp. 13–24

43.64 I. Rechenberg: Evolutionsstrategie – Optimierung
Technischer Systeme nach Prinzipien der Biologis-
chen Evolution (Frommann-Holzboog, Stuttgart
1973)

43.65 H.-P. Schwefel: Numerische Optimierung von
Computer-Modellen (Birkhäuser, Basel 1977)

43.66 J.H. Holland: Adaptation in Natural and Artificial
Systems (University of Michigan, Ann Arbor 1975)

43.67 D.J. Montana: Strongly typed genetic program-
ming, Evol. Comput. 3(2), 199–230 (1995), avail-
able online at http://vishnu.bbn.com/papers/
stgp.pdf

43.68 T. Yu: Hierachical processing for evolving recursive
and modular programs using higher order func-
tions and lambda abstractions, Genet. Program.
Evol. Mach. 2(4), 345–380 (2001)

43.69 R. Poli: Parallel distributed genetic programming.
In: New Ideas in Optimization, Advanced Topics
in Computer Science, ed. by D. Corne, M. Dorigo,
F. Glover (McGraw-Hill, London 1999) pp. 403–431,
Chapter 27, available online at http://citeseer.ist.
psu.edu/328504.html

43.70 J.F. Miller, P. Thomson: Cartesian genetic pro-
gramming, Lect. Notes Comput. Sci. 1802, 121–132
(2000), available online at http://www.elec.york.
ac.uk/intsys/users/jfm7/cgp-eurogp2000.pdf

43.71 K.O. Stanley: Compositional pattern producing
networks: A novel abstraction of development,
Genet. Program. Evol. Mach. 8(2), 131–162 (2007)

43.72 L.J. Fogel, P.J. Angeline, D.B. Fogel: An evolution-
ary programming approach to self-adaptation on
finite state machines, Proc. 4th Int. Conf. Evol.
Program. (1995) pp. 355–365

43.73 R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan,
M. O’Neill: Grammar-based genetic program-
ming: A survey, Genet. Program. Evol. Mach.
11(3/4), 365–396 (2010), September Tenth Anniver-
sary Issue: Progress in Genetic Programming and
Evolvable Machines

43.74 M. Keijzer, V. Babovic: Dimensionally aware ge-
netic programming, Proc. Genet. Evol. Comput.
Conf., Orlando, Vol. 2, ed. by W. Banzhaf, J. Daida,
A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela,
R.E. Smith (1999) pp. 1069–1076, available on-
line at http://www.cs.bham.ac.uk/~wbl/biblio/
gecco1999/GP-420.ps

http://www.sover.net/~nichael/nlc-publications/icga85/index.html
http://www.sover.net/~nichael/nlc-publications/icga85/index.html
http://www.idsia.ch/~juergen/diploma.html
http://www.idsia.ch/~juergen/diploma.html
http://www.santafe.edu/media/workingpapers/92-08-042.pdf
http://www.santafe.edu/media/workingpapers/92-08-042.pdf
http://www.genetic-programming.org/gpbook4toc.html
http://www.genetic-programming.org/gpbook4toc.html
http://www.genetic-programming.org/hc2011/combined.html
http://www.genetic-programming.org/hc2011/combined.html
http://vishnu.bbn.com/papers/stgp.pdf
http://vishnu.bbn.com/papers/stgp.pdf
http://citeseer.ist.psu.edu/328504.html
http://citeseer.ist.psu.edu/328504.html
http://www.elec.york.ac.uk/intsys/users/jfm7/cgp-eurogp2000.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/cgp-eurogp2000.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-420.ps
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-420.ps

Genetic Programming References 865
Part

E
|43

43.75 A. Ratle, M. Sebag: Grammar-guided genetic
programming and dimensional consistency:
Application to non-parametric identifica-
tion in mechanics, Appl. Soft Comput. 1(1),
105–118 (2001), available online at http://
www.sciencedirect.com/science/article/B6W86-
43S6W98-B/1/38e0fa6ac503a5ef310e2287be01eff8

43.76 P.A. Whigham: Grammatically-based genetic
programming, Proc. Workshop Genet. Program.:
From Theory Real-World Appl., Tahoe City, ed.
by J.P. Rosca (1995) pp. 33–41, available on-
line at http://divcom.otago.ac.nz/sirc/Peterw/
Publications/ml95.zip

43.77 M. O’Neill, C. Ryan: Grammatical Evolution: Evo-
lutionary Automatic Programming in a Arbitrary
Language, Genetic Programming, Vol. 4 (Kluwer,
Boston 2003), available online at http://www.
wkap.nl/prod/b/1-4020-7444-1

43.78 N. Xuan Hoai, R.I. McKay, D. Essam: Repre-
sentation and structural difficulty in genetic
programming, IEEE Trans. Evol. Comput. 10(2),
157–166 (2006), available online at http://sc.
snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/
Structdiff.pdf

43.79 Y. Shan, R.I. McKay, D. Essam, H.A. Abbass: A sur-
vey of probabilistic model building genetic pro-
gramming. In: Scalable Optimization via Prob-
abilistic Modeling: From Algorithms to Appli-
cations, Studies in Computational Intelligence,
Vol. 33, ed. by M. Pelikan, K. Sastry, E. Cantu-Paz
(Springer, Berlin, Heidelberg 2006) pp. 121–160,
Chapter 6

43.80 M. Brameier, W. Banzhaf: Linear Genetic
Programming, Genetic and Evolutionary Com-
putation, Vol. 16 (Springer, Berlin, Heidelberg
2007), available online at http://www.springer.
com/west/home/default?SGWID=4-40356-22-
173660820-0

43.81 T. Perkis: Stack-based genetic programming, Proc.
1994 IEEE World Congr. Comput. Intell., Orlando,
Vol. 1 (1994) pp. 148–153, available online at
http://citeseer.ist.psu.edu/432690.html

43.82 W.B. Langdon: Large scale bioinformatics data
mining with parallel genetic programming on
graphics processing units. In: Parallel and Dis-
tributed Computational Intelligence, Studies in
Computational Intelligence, Vol. 269, ed. by F. de
Fernandez Vega, E. Cantu-Paz (Springer, Berlin,
Heidelberg 2010) pp. 113–141, Chapter 5, available
online at http://www.springer.com/engineering/
book/978-3-642-10674-3

43.83 L. Spector, A. Robinson: Genetic programming
and autoconstructive evolution with the push
programming language, Genet. Program. Evol.
Mach. 3(1), 7–40 (2002), available online at http://
hampshire.edu/lspector/pubs/push-gpem-final.
pdf

43.84 E. Schulte, S. Forrest, W. Weimer: Automated pro-
gram repair through the evolution of assembly

code, Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng.
(2010) pp. 313–316

43.85 M. Orlov, M. Sipper: Flight of the FINCH through
the Java wilderness, IEEE Trans. Evol. Comput.
15(2), 166–182 (2011)

43.86 P. Nordin: A compiling genetic programming
system that directly manipulates the machine
code. In: Advances in Genetic Programming,
ed. by K.E. Kinnear Jr. (MIT Press, Cambridge
1994) pp. 311–331, Chapter 14, available on-
line at http://cognet.mit.edu/library/books/view?
isbn=0262111888

43.87 U.-M. O’Reilly, F. Oppacher: Program search with
a hierarchical variable length representation: Ge-
netic programming, simulated annealing and hill
climbing, Lect. Notes Comput. Sci. 866, 397–406
(1994), available online at http://www.cs.ucl.ac.
uk/staff/W.Langdon/ftp/papers/ppsn-94.ps.gz

43.88 M. Tomassini: Spatially Structured Evolutionary
Algorithms (Springer, Berlin, Heidelberg 2005)

43.89 A. Arcuri, X. Yao: A novel co-evolutionary ap-
proach to automatic software bug fixing, IEEE
World Congr. Comput. Intell., Hong Kong, ed. by
J. Wang (2008)

43.90 A. Moraglio, C. Di Chio, R. Poli: Geometric parti-
cle swarm optimization, Lect. Notes Comput. Sci.
4445, 125–136 (2007)

43.91 M. O’Neill, A. Brabazon: Grammatical differen-
tial evolution, Proc. Int. Conf. Artif. Intell. ICAI
2006, Las Vegas, Vol. 1, ed. by H.R. Arabnia (2006)
pp. 231–236, available online at http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.91.3012

43.92 R. Poli, N.F. McPhee: A linear estimation-of-
distribution GP system, Lect. Notes Comput. Sci.
4971, 206–217 (2008)

43.93 M. Looks, B. Goertzel, C. Pennachin: Learning
computer programs with the Bayesian optimiza-
tion algorithm, GECCO 2005: Proc. Conf. Genet.
Evol. Comput., Washington, Vol. 1, ed. by U.-
M. O’Reilly, H.-G. Beyer (2005) pp. 747–748, avail-
able online at http://www.cs.bham.ac.uk/~wbl/
biblio/gecco2005/docs/p747.pdf

43.94 E. Hemberg, K. Veeramachaneni, J. McDermott,
C. Berzan, U.-M. O’Reilly: An investigation of lo-
cal patterns for estimation of distribution ge-
netic programming, Philadelphia, Proc. GECCO
2012 (2012)

43.95 M. Schmidt, H. Lipson: Distilling free-form
natural laws from experimental data, Sci-
ence 324(5923), 81–85 (2009), available online
at http://ccsl.mae.cornell.edu/sites/default/files/
Science09_Schmidt.pdf

43.96 E.J. Vladislavleva, G.F. Smits, D. den Hertog: Order
of nonlinearity as a complexity measure for mod-
els generated by symbolic regression via Pareto
genetic programming, IEEE Trans. Evol. Comput.
13(2), 333–349 (2009)

43.97 K. Veeramachaneni, E. Vladislavleva, U.-
M. O’Reilly: Knowledge mining sensory

http://www.sciencedirect.com/science/article/B6W86-43S6W98-B/1/38e0fa6ac503a5ef310e2287be01eff8
http://www.sciencedirect.com/science/article/B6W86-43S6W98-B/1/38e0fa6ac503a5ef310e2287be01eff8
http://www.sciencedirect.com/science/article/B6W86-43S6W98-B/1/38e0fa6ac503a5ef310e2287be01eff8
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
http://divcom.otago.ac.nz/sirc/Peterw/Publications/ml95.zip
http://www.wkap.nl/prod/b/1-4020-7444-1
http://www.wkap.nl/prod/b/1-4020-7444-1
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://sc.snu.ac.kr/courses/2006/fall/pg/aai/GP/nguyen/Structdiff.pdf
http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
http://www.springer.com/west/home/default?SGWID=4-40356-22-173660820-0
http://citeseer.ist.psu.edu/432690.html
http://www.springer.com/engineering/book/978-3-642-10674-3
http://www.springer.com/engineering/book/978-3-642-10674-3
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://hampshire.edu/lspector/pubs/push-gpem-final.pdf
http://cognet.mit.edu/library/books/view?isbn=0262111888
http://cognet.mit.edu/library/books/view?isbn=0262111888
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ppsn-94.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/ppsn-94.ps.gz
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.3012
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.3012
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p747.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p747.pdf
http://ccsl.mae.cornell.edu/sites/default/files/Science09_Schmidt.pdf
http://ccsl.mae.cornell.edu/sites/default/files/Science09_Schmidt.pdf

Part
E
|43

866 Part E Evolutionary Computation

evaluation data: Genetic programming, sta-
tistical techniques, and swarm optimization,
Genet. Program. Evolvable Mach. 13(1), 103–133
(2012)

43.98 M. Kotanchek, G. Smits, E. Vladislavleva: Pursu-
ing the Pareto paradigm tournaments, algorithm
variations & ordinal optimization. In: Genetic
Programming Theory and Practice IV, Genetic and
Evolutionary Computation, Vol. 5, ed. by R.L. Ri-
olo, T. Soule, B. Worzel (Springer, Berlin, Heidel-
berg 2006) pp. 167–186, Chapter 12

43.99 C. Le Goues, T. Nguyen, S. Forrest, W. Weimer:
GenProg: A generic method for automated soft-
ware repair, IEEE Trans. Softw. Eng. 38(1), 54–72
(2011)

43.100 C. Ryan: Automatic Re-Engineering of Software
Using Genetic Programming, Genetic Program-
ming, Vol. 2 (Kluwer, Boston 2000), available on-
line at http://www.wkap.nl/book.htm/0-7923-
8653-1

43.101 K.P. Williams: Evolutionary Algorithms for Auto-
matic Parallelization, Ph.D. Thesis (University of
Reading, Reading 1998)

43.102 M. Stephenson, S. Amarasinghe, M. Martin, U.-
M. O’Reilly: Meta optimization: Improving com-
piler heuristics with machine learning, Proc. ACM
SIGPLAN Conf. Program. Lang. Des. Implement.
(PLDI ’03), San Diego (2003) pp. 77–90

43.103 M. Stephenson, U.-M. O’Reilly, M.C. Martin,
S. Amarasinghe: Genetic programming applied to
compiler heuristic optimization, Lect. Notes Com-
put. Sci. 2610, 238–253 (2003)

43.104 D.R. White, A. Arcuri, J.A. Clark: Evolutionary im-
provement of programs, IEEE Trans. Evol. Comput.
15(4), 515–538 (2011)

43.105 M. Harman: The current state and future of search
based software engineering, Proc. Future of Soft-
ware Engineering FOSE ’07, Washington, ed. by
L. Briand, A. Wolf (2007) pp. 342–357

43.106 J.R. Koza, F.H. Bennett III, D. Andre, M.A. Keane,
F. Dunlap: Automated synthesis of analog elec-
trical circuits by means of genetic program-
ming, IEEE Trans. Evol. Comput. 1(2), 109–128
(1997), available online at http://www.genetic-
programming.com/jkpdf/ieeetecjournal1997.pdf

43.107 R. Dawkins: The Blind Watchmaker (Norton, New
York 1986)

43.108 H. Takagi: Interactive evolutionary computation:
Fusion of the capabilities of EC optimization and
human evaluation, Proc. IEEE 89(9), 1275–1296
(2001)

43.109 S. Todd, W. Latham: Evolutionary Art and Com-
puters (Academic, Waltham 1994)

43.110 M. Lewis: Evolutionary visual art and design. In:
The Art of Artificial Evolution: A Handbook on
Evolutionary Art and Music, ed. by J. Romero,
P. Machado (Springer, Berlin, Heidelberg 2008)
pp. 3–37

43.111 J. McDermott, J. Byrne, J.M. Swafford, M. O’Neill,
A. Brabazon: Higher-order functions in aesthetic
EC encodings, 2010 IEEE World Congr. Comput. In-
tell., Barcelona (2010), pp. 2816–2823, 18-23 July

43.112 D.A. Hart: Toward greater artistic control for inter-
active evolution of images and animation, Lect.
Notes Comput. Sci. 4448, 527–536 (2007)

43.113 A.K. Hoover, M.P. Rosario, K.O. Stanley: Scaffold-
ing for interactively evolving novel drum tracks for
existing songs, Lect. Notes Comput. Sci. 4974, 412
(2008)

43.114 J. Shao, J. McDermott, M. O’Neill, A. Brabazon:
Jive: A generative, interactive, virtual, evolution-
ary music system, Lect. Notes Comput. Sci. 6025,
341–350 (2010)

43.115 J. McDermott, U.-M. O’Reilly: An executable graph
representation for evolutionary generative music,
Proc. GECCO 2011 (2011) pp. 403–410

43.116 J. Clune, H. Lipson: Evolving three-dimensional
objects with a generative encoding inspired by
developmental biology, Proc. Eur. Conf. Artif. Life
(2011), available online at http://endlessforms.
com

43.117 J. McCormack: Evolutionary L-systems. In: Design
by Evolution: Advances in Evolutionary Design,
ed. by P.F. Hingston, L.C. Barone, Z. Michalewicz,
D.B. Fogel (Springer, Berlin, Heidelberg 2008)
pp. 169–196

43.118 G.S. Hornby, J.B. Pollack: Evolving L-systems to
generate virtual creatures, Comput. Graph. 25(6),
1041–1048 (2001)

43.119 P. Worth, S. Stepney: Growing music: Musical in-
terpretations of L-systems, Lect. Notes Comput.
Sci. 3449, 545–550 (2005)

43.120 J. McDermott, J. Byrne, J.M. Swafford, M. Hem-
berg, C. McNally, E. Shotton, E. Hemberg,
M. Fenton, M. O’Neill: String-rewriting grammars
for evolutionary architectural design, Environ.
Plan. B 39(4), 713–731 (2012), available online at
http://www.envplan.com/abstract.cgi?id=b38037

43.121 W. Banzhaf, W.B. Langdon: Some considera-
tions on the reason for bloat, Genet. Program.
Evol. Mach. 3(1), 81–91 (2002), available online
at http://web.cs.mun.ca/~banzhaf/papers/genp_
bloat.pdf

43.122 S. Luke, L. Panait: A comparison of bloat control
methods for genetic programming, Evol. Comput.
14(3), 309–344 (2006)

43.123 S. Silva, S. Dignum, L. Vanneschi: Operator equal-
isation for bloat free genetic programming and
a survey of bloat control methods, Genet. Pro-
gram. Evol. Mach. 3(2), 197–238 (2011)

43.124 W.B. Langdon, R. Poli: Fitness causes bloat.
In: Soft Computing in Engineering Design and
Manufacturing, ed. by P.K. Chawdhry, R. Roy,
R.K. Pant (Springer, London 1997) pp. 13–22, avail-
able online at http://www.cs.bham.ac.uk/~wbl/
ftp/papers/WBL.bloat_wsc2.ps.gz

http://www.wkap.nl/book.htm/0-7923-8653-1
http://www.wkap.nl/book.htm/0-7923-8653-1
http://www.genetic-programming.com/jkpdf/ieeetecjournal1997.pdf
http://www.genetic-programming.com/jkpdf/ieeetecjournal1997.pdf
http://endlessforms.com
http://endlessforms.com
http://www.envplan.com/abstract.cgi?id=b38037
http://web.cs.mun.ca/~banzhaf/papers/genp_bloat.pdf
http://web.cs.mun.ca/~banzhaf/papers/genp_bloat.pdf
http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.bloat_wsc2.ps.gz
http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.bloat_wsc2.ps.gz

Genetic Programming References 867
Part

E
|43

43.125 S. Dignum, R. Poli: Generalisation of the limit-
ing distribution of program sizes in tree-based
genetic programming and analysis of its effects
on bloat, GECCO ’07 Proc. 9th Annu. Conf. Genet.
Evol. Comput., London, Vol. 2, ed. by H. Lipson,
D. Thierens (2007) pp. 1588–1595, available on-
line at http://www.cs.bham.ac.uk/~wbl/biblio/
gecco2007/docs/p1588.pdf

43.126 W.B. Langdon: How many good programs are
there? How long are they?, Found. Genet. Algo-
rithms VII, San Francisco, ed. by K.A. De Jong,
R. Poli, J.E. Rowe (2002), pp. 183–202, avail-
able online at http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/papers/wbl_foga2002.pdf

43.127 R. Poli, M. Salvaris, C. Cinel: Evolution of an effec-
tive brain-computer interface mouse via genetic
programming with adaptive Tarpeian bloat con-
trol. In: Genetic Programming Theory and Practice
IX, ed. by R. Riolo, K. Vladislavleva, J. Moore
(Springer, Berlin, Heidelberg 2011) pp. 77–95

43.128 G. Smits, E. Vladislavleva: Ordinal pareto genetic
programming, Proc. 2006 IEEE Congr. Evol. Com-
put., Vancouver, ed. by G.G. Yen, S.M. Lucas,
G. Fogel, G. Kendall, R. Salomon, B.-T. Zhang,
C.A. Coello Coello, T.P. Runarsson (2006) pp. 3114–
3120, available online at http://ieeexplore.ieee.
org/servlet/opac?punumber=11108

43.129 L. Vanneschi, M. Castelli, S. Silva: Measuring bloat,
overfitting and functional complexity in genetic
programming, GECCO ’10: Proc. 12th Annu. Conf.
Genet. Evol. Comput., Portland (2010) pp. 877–
884

43.130 H. Iba, H. de Garis, T. Sato: Genetic program-
ming using a minimum description length prin-
ciple. In: Advances in Genetic Programming, ed.
by K.E. Kinnear Jr. (MIT Press, Cambridge 1994)
pp. 265–284, available online at http://citeseer.
ist.psu.edu/327857.html, Chapter 12

43.131 J. Miller: What bloat? Cartesian genetic pro-
gramming on boolean problems, 2001 Genet.
Evol. Comput. Conf. Late Break. Pap., ed. by
E.D. Goodman (2001) pp. 295–302, available on-
line at http://www.elec.york.ac.uk/intsys/users/
jfm7/gecco2001Late.pdf

43.132 R. Poli, J. Page, W.B. Langdon: Smooth uni-
form crossover, sub-machine code GP and demes:
A recipe for solving high-order Boolean par-
ity problems, Proc. Genet. Evol. Comput. Conf.,
Orlando, Vol. 2, ed. by W. Banzhaf, J. Daida,
A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela,
R.E. Smith (1999) pp. 1162–1169, available on-
line at http://www.cs.bham.ac.uk/~wbl/biblio/
gecco1999/GP-466.pdf

43.133 M. Keijzer: Alternatives in subtree caching for
genetic programming, Lect. Notes Comput.
Sci. 3003, 328–337 (2004), available online at
http://www.springerlink.com/openurl.asp?
genre=article&issn=0302-9743&volume=3003&
spage=328

43.134 R. Poli, W.B. Langdon: Running genetic program-
ming backward. In: Genetic Programming Theory
and Practice III, Genetic Programming, Vol. 9, ed.
by T. Yu, R.L. Riolo, B. Worzel (Springer, Berlin,
Heidelberg 2005) pp. 125–140, Chapter 9, avail-
able online at http://www.cs.essex.ac.uk/staff/
poli/papers/GPTP2005.pdf

43.135 Q.U. Nguyen, X.H. Nguyen, M. O’Neill, R.I. McKay,
E. Galván-López: Semantically-based crossover in
genetic programming: Application to real-valued
symbolic regression, Genet. Program. Evol. Mach.
12, 91–119 (2011)

43.136 L. Altenberg: Emergent phenomena in genetic
programming, Evol. Progr. — Proc. 3rd Annu.
Conf., San Diego, ed. by A.V. Sebald, L.J. Fo-
gel (1994) pp. 233–241, available online at http://
dynamics.org/~altenber/PAPERS/EPIGP/

43.137 U.-M. O’Reilly, F. Oppacher: The troubling aspects
of a building block hypothesis for genetic pro-
gramming, Working Paper 94-02-001 (Santa Fe
Institute, Santa Fe 1992)

43.138 R. Poli, W.B. Langdon: A new schema theory for
genetic programming with one-point crossover
and point mutation, Proc. Second Annu. Conf.
Genet. Progr. 1997, Stanford, ed. by J.R. Koza,
K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba,
R.L. Riolo (1997) pp. 278–285, available online at
http://citeseer.ist.psu.edu/327495.html

43.139 J.P. Rosca: Analysis of complexity drift in genetic
programming, Proc. 2nd Annu. Conf. Genet. Pro-
gram. 1997, Stanford, ed. by J.R. Koza, K. Deb,
M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, R.L. Riolo
(1997), pp. 286–294, available online at ftp://ftp.
cs.rochester.edu/pub/u/rosca/gp/97.gp.ps.gz

43.140 R. Poli, N.F. McPhee: General schema theory
for genetic programming with subtree-swapping
crossover: Part I, Evol. Comput. 11(1), 53–66
(2003), available online at http://cswww.essex.
ac.uk/staff/rpoli/papers/ecj2003partI.pdf

43.141 R. Poli, N.F. McPhee: General schema theory
for genetic programming with subtree-swapping
crossover: Part II, Evol. Comput. 11(2), 169–206
(2003), available online at http://cswww.essex.
ac.uk/staff/rpoli/papers/ecj2003partII.pdf

43.142 R. Poli, N.F. McPhee, J.E. Rowe: Exact schema
theory and Markov chain models for genetic
programming and variable-length genetic algo-
rithms with homologous crossover, Genet. Pro-
gram. Evol. Mach. 5(1), 31–70 (2004), avail-
able online at http://cswww.essex.ac.uk/staff/
rpoli/papers/GPEM2004.pdf

43.143 N.F. McPhee, B. Ohs, T. Hutchison: Semantic
building blocks in genetic programming, Lect.
Notes Comput. Sci. 4971, 134–145 (2008)

43.144 G. Durrett, F. Neumann, U.-M. O’Reilly: Compu-
tational complexity analysis of simple genetic
programming on two problemsmodeling isolated
program semantics, Proc. 11th Workshop Found.
Genet. Algorithm. (ACM, New York 2011) pp. 69–

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1588.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1588.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_foga2002.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_foga2002.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=11108
http://ieeexplore.ieee.org/servlet/opac?punumber=11108
http://citeseer.ist.psu.edu/327857.html
http://citeseer.ist.psu.edu/327857.html
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.elec.york.ac.uk/intsys/users/jfm7/gecco2001Late.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-466.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco1999/GP-466.pdf
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3003&spage=328
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3003&spage=328
http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=3003&spage=328
http://www.cs.essex.ac.uk/staff/poli/papers/GPTP2005.pdf
http://www.cs.essex.ac.uk/staff/poli/papers/GPTP2005.pdf
http://dynamics.org/~altenber/PAPERS/EPIGP/
http://dynamics.org/~altenber/PAPERS/EPIGP/
http://citeseer.ist.psu.edu/327495.html
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/97.gp.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/97.gp.ps.gz
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partI.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partI.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/GPEM2004.pdf
http://cswww.essex.ac.uk/staff/rpoli/papers/GPEM2004.pdf

Part
E
|43

868 Part E Evolutionary Computation

80, available online at http://arxiv.org/pdf/1007.
4636v1 arXiv:1007.4636v1

43.145 D.E. Goldberg, U.-M. O’Reilly: Where does the
good stuff go, and why? How contextual seman-
tics influence program structure in simple genetic
programming, Lect. Notes Comput. Sci. 1391, 16–
36 (1998), available online at http://citeseer.ist.
psu.edu/96596.html

43.146 D.E. Goldberg: Genetic Algorithms in Search,
Optimization, and Machine Learning (Addison-
Wesley, Reading 1989)

43.147 T. Kötzing, F. Neumann, A. Sutton, U.-M. O’Reilly:
The max problem revisited: The importance of
mutation in genetic programming, GECCO ’12 Proc.
14th Annu. Conf. Genet. Evolut. Comput. (ACM,
New York 2012) pp. 1333–1340

43.148 C. Gathercole, P. Ross: The Max Problem for
Genetic Programming – Highlighting an Ad-
verse Interaction Between the Crossover Oper-
ator and a Restriction on Tree Depth, Tech-
nical Report (Department of Artificial Intelli-
gence, University of Edinburgh, Edinburgh 1995)
available online at http://citeseer.ist.psu.edu/
gathercole95max.html

43.149 F. Neumann: Computational complexity analysis
of multi-objective genetic programming, GECCO
’12 Proc. 14th Annu. Conf. Genet. Evolut. Comput.
(ACM, New York 2012) pp. 799–806

43.150 T. Kötzing, F. Neumann, R. Spöhel: PAC learn-
ing and genetic programming, Proc. 13th Annu.
Conf. Genet. Evol. Comput. (ACM, New York 2011)
pp. 2091–2096

43.151 F. Rothlauf: Representations for Genetic and Evo-
lutionary Algorithms, 2nd edn. (Physica, Heidel-
berg 2006)

43.152 T. Jones: Evolutionary Algorithms, Fitness Land-
scapes and Search, Ph.D. Thesis (University of New
Mexico, Albuquerque 1995)

43.153 J. McDermott, E. Galván-Lopéz, M. O’Neill: A fine-
grained view of phenotypes and locality in ge-
netic programming. In: Genetic Programming
Theory and Practice, Vol. 9, ed. by R. Riolo,
K. Vladislavleva, J. Moore (Springer, Berlin, Hei-
delberg 2011)

43.154 M. Tomassini, L. Vanneschi, P. Collard, M. Clergue:
A study of fitness distance correlation as a dif-
ficulty measure in genetic programming, Evol.
Comput. 13(2), 213–239 (2005)

43.155 L. Vanneschi: Theory and Practice for Efficient Ge-
netic Programming, Ph.D. Thesis (Université de
Lausanne, Lausanne 2004)

43.156 L. Vanneschi, M. Tomassini, P. Collard, S. Verel,
Y. Pirola, G. Mauri: A comprehensive view of
fitness landscapes with neutrality and fitness
clouds, Lect. Notes Comput. Sci. 4445, 241–250
(2007)

43.157 A. Ekárt, S.Z. Németh: A metric for genetic pro-
grams and fitness sharing, Lect. Notes Comput.
Sci. 1802, 259–270 (2000)

43.158 S. Gustafson, L. Vanneschi: Crossover-based tree
distance in genetic programming, IEEE Trans. Evol.
Comput. 12(4), 506–524 (2008)

43.159 J. McDermott, U.-M. O’Reilly, L. Vanneschi,
K. Veeramachaneni: How far is it from here to
there? A distance that is coherent with GP op-
erators, Lect. Notes Comput. Sci. 6621, 190–202
(2011)

43.160 U.-M. O’Reilly: Using a distance metric on genetic
programs to understand genetic operators, Int.
Conf. Syst. Man Cybern. Comput. Cybern. Simul.
(1997) pp. 233–241

43.161 D.H. Wolpert, W.G. Macready: No free lunch the-
orems for optimization, Evol. Comput. IEEE Trans.
1(1), 67–82 (1997)

43.162 C. Schumacher, M.D. Vose, L.D. Whitley: The no
free lunch and problem description length, Proc.
Genet. Evol. Comput. Conf. GECCO-2001 (2001)
pp. 565–570

43.163 J.R. Woodward, J.R. Neil: No free lunch,
program induction and combinatorial prob-
lems, Lect. Notes Comput. Sci. 2610, 475–484
(2003)

43.164 R. Poli, M. Graff, N.F. McPhee: Free lunches for
function and program induction, FOGA ’09: Proc.
10th ACM SIGEVO Workshop Found. Genet. Algo-
rithms, Orlando (2009) pp. 183–194

43.165 L. Spector: Simultaneous evolution of pro-
grams and their control structures. In: Ad-
vances in Genetic Programming, Vol. 2, ed.
by P.J. Angeline, K.E. Kinnear Jr. (MIT, Cam-
bridge 1996) pp. 137–154, Chapter 7, available
online at http://helios.hampshire.edu/lspector/
pubs/AiGP2-post-final-e.pdf

43.166 L. Spector, B. Martin, K. Harrington, T. Hel-
muth: Tag-based modules in genetic program-
ming, Proc. Genet. Evol. Comput. Conf. GECCO-2011
(2011)

43.167 G.S. Hornby: Measuring, nabling and compar-
ing modularity, regularity and hierarchy in evo-
lutionary design, GECCO 2005: Proc. 2005 Conf.
Genet. Evol. Comput., Washington, Vol. 2, ed.
by H.-G. Beyer, U.-M. O’Reilly, D.V. Arnold,
W. Banzhaf, C. Blum, E.W. Bonabeau, E. Cantu-
Paz, D. Dasgupta, K. Deb, J.A. Foster, E.D. de
Jong, H. Lipson, X. Llora, S. Mancoridis, M. Pe-
likan, G.R. Raidl, T. Soule, A.M. Tyrrell, J.-P. Wat-
son, E. Zitzler (2005) pp. 1729–1736, available on-
line at http://www.cs.bham.ac.uk/~wbl/biblio/
gecco2005/docs/p1729.pdf

43.168 J.H. Moore, C.S. Greene, P.C. Andrews, B.C. White:
Does complexity matter? Artificial evolution,
computational evolution and the genetic anal-
ysis of epistasis in common human diseases. In:
Genetic Programming Theory and Practice Vol. VI,
ed. by R.L. Riolo, T. Soule, B. Worzel (Springer,
Berlin, Heidelberg 2008) pp. 125–145, Chap. 9

43.169 S. Gustafson: An Analysis of Diversity in Genetic
Programming, Ph.D. Thesis (School of Computer

http://arxiv.org/pdf/1007.4636v1
http://arxiv.org/pdf/1007.4636v1
http://citeseer.ist.psu.edu/96596.html
http://citeseer.ist.psu.edu/96596.html
http://citeseer.ist.psu.edu/gathercole95max.html
http://citeseer.ist.psu.edu/gathercole95max.html
http://helios.hampshire.edu/lspector/pubs/AiGP2-post-final-e.pdf
http://helios.hampshire.edu/lspector/pubs/AiGP2-post-final-e.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1729.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1729.pdf

Genetic Programming References 869
Part

E
|43

Science and Information Technology, University
of Nottingham, Nottingham 2004), available on-
line at http://www.cs.nott.ac.uk/~smg/research/
publications/phdthesis-gustafson.pdf

43.170 G.S. Hornby: A steady-state version of the age-
layered population structure EA. In: Genetic Pro-
gramming Theory and Practice, Vol. VII, Genetic
and Evolutionary Computation, ed. by R.L. Riolo,
U.-M. O’Reilly, T. McConaghy (Springer, Ann Arbor
2009) pp. 87–102, Chap. 6

43.171 J.C. Bongard: Coevolutionary dynamics of amulti-
population genetic programming system, Lect.
Notes Comput. Sci. 1674, 154 (1999), available
online at http://www.cs.uvm.edu/~jbongard/
papers/s067.ps.gz

43.172 I. Dempsey, M. O’Neill, A. Brabazon: Founda-
tions in Grammatical Evolution for Dynamic
Environments, Studies in Computational Intel-
ligence, Vol. 194 (Springer, Berlin, Heidelberg
2009), available online at http://www.springer.
com/engineering/book/978-3-642-00313-4

43.173 J. Doucette, P. Lichodzijewski, M. Heywood:
Evolving coevolutionary classifiers under large
attribute spaces. In: Genetic Programming The-
ory and Practice Vol. VII, ed. by R.L. Riolo, U.-
M. O’Reilly, T. McConaghy (Springer, Berlin, Hei-
delberg 2009) pp. 37–54, Chap. 3

43.174 S. Luke: http://cs.gmu.edu/~eclab/projects/ecj/
43.175 S. Luke: The ECJ Owner’s Manual – A User Man-

ual for the ECJ Evolutionary Computation Library,
0th edn. online version 0.2 edition, available on-
line at http://www.cs.gmu.edu/~eclab/projects/
ecj/docs/manual/manual.pdf

43.176 D.W. Dyer:
https://github.com/dwdyer/watchmaker

43.177 E. Hemberg, M. O’Neill: http://ncra.ucd.ie/Site/
GEVA.html

43.178 M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley,
J. McDermott, A. Brabazon: GEVA: Grammatical
evolution in Java, SIGEVOlution 3(2), 17–22 (2008),
available online at http://www.sigevolution.org/
issues/pdf/SIGEVOlution200802.pdf

43.179 J. Dréo: http://eodev.sourceforge.net/
43.180 G. Squillero: http://www.cad.polito.it/research/

Evolutionary_Computation/MicroGP/index.html
43.181 M. Schillaci, E.E. Sanchez Sanchez: A brief survey

of �GP, SIGEvolution 1(2), 17–21 (2006)
43.182 G. Squillero: MicroGP - an evolutionary assembly

program generator, Genet. Program. Evol. Mach.
6(3), 247–263 (2005), Published online: 17 August
2005.

43.183 C. Gagné, M. Parizeau: http://beagle.sourceforge.
net/

43.184 C. Gagné, M. Parizeau: Open BEAGLE A C++ frame-
work for your favorite evolutionary algorithm,
SIGEvolution 1(1), 12–15 (2006), available online at
http://www.sigevolution.org/2006/01/issue.pdf

43.185 S. Silva: http://gplab.sourceforge.net/

43.186 F.M. De Rainville, F.-A. Fortin: http://code.google.
com/p/deap/

43.187 L. Spector: http://hampshire.edu/lspector/push.
html

43.188 R. Poli: http://cswww.essex.ac.uk/staff/rpoli/
TinyGP/

43.189 E. Hemberg, J. McDermott: http://code.google.
com/p/ponyge/

43.190 H. Lipson: http://creativemachines.cornell.edu/
eureqa

43.191 M.E. Kotanchek, E. Vladislavleva, G.F. Smits:
http://www.evolved-analytics.com/

43.192 P. Nordin: http://www.rmltech.com/
43.193 P. Nordin, W. Banzhaf, F.D. Francone: Efficient

evolution of machine code for CISC architec-
tures using instruction blocks and homologous
crossover. In: Advances in Genetic Programming,
Vol. 3, ed. by L. Spector, W.B. Langdon, U.-
M. O’Reilly, P.J. Angeline (MIT, Cambridge 1999)
pp. 275–299, Chap. 12, available online at http://
www.aimlearning.com/aigp31.pdf

43.194 W.B. Langdon: http://www.cs.bham.ac.uk/~wbl/
biblio/

43.195 W.B. Langdon: http://www.cs.ucl.ac.uk/staff/W.
Langdon/homepages.html

43.196 Genetic Programming Yahoo Group: http://
groups.yahoo.com/group/genetic_programming/

43.197 J. McDermott, D. White: http://gpbenchmarks.org
43.198 J. McDermott, D.R. White, S. Luke, L. Manzoni,

M. Castelli, L. Vanneschi, W. Jaśkowski, K. Krawiec,
R. Harper, K. De Jong, U.-M. O’Reilly: Genetic pro-
gramming needs better benchmarks, Proc. GECCO
2012, Philadelphia (2012)

43.199 R. Poli, W.B. Langdon, N.F. McPhee: A Field Guide
to Genetic Programming (Lulu, Raleigh 2008),
Published via http://lulu.com and available at
http://www.gp-field-guide.org.uk (With contri-
butions by J. R. Koza)

43.200 S. Luke: Essentials of Metaheuristics, 1st edn.
(Lulu, Raleigh 2009), available online at http://cs.
gmu.edu/~sean/books/metaheuristics/

43.201 W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone:
Genetic Programming – An Introduction; On
the Automatic Evolution of Computer Programs
and Its Applications (Morgan Kaufmann, San
Francisco 1998), available online at http://www.
elsevier.com/wps/find/bookdescription.cws_
home/677869/description#description

43.202 W.B. Langdon, R. Poli: Foundations of Genetic
Programming (Springer, Berlin, Heidelberg 2002),
available online at http://www.cs.ucl.ac.uk/staff/
W.Langdon/FOGP/

43.203 H. Iba, Y. Hasegawa, T. Kumar Paul: Applied Ge-
netic Programming and Machine Learning, CRC
Complex and Enterprise Systems Engineering (CRC,
Boca Raton 2009)

43.204 M. Sipper: Evolved to Win (Lulu, Raleigh 2011),
available at http://www.lulu.com/

http://www.cs.nott.ac.uk/~smg/research/publications/phdthesis-gustafson.pdf
http://www.cs.nott.ac.uk/~smg/research/publications/phdthesis-gustafson.pdf
http://www.cs.uvm.edu/~jbongard/papers/s067.ps.gz
http://www.cs.uvm.edu/~jbongard/papers/s067.ps.gz
http://www.springer.com/engineering/book/978-3-642-00313-4
http://www.springer.com/engineering/book/978-3-642-00313-4
http://cs.gmu.edu/~eclab/projects/ecj/
http://www.cs.gmu.edu/~eclab/projects/ecj/docs/manual/manual.pdf
http://www.cs.gmu.edu/~eclab/projects/ecj/docs/manual/manual.pdf
https://github.com/dwdyer/watchmaker
http://ncra.ucd.ie/Site/GEVA.html
http://ncra.ucd.ie/Site/GEVA.html
http://www.sigevolution.org/issues/pdf/SIGEVOlution200802.pdf
http://www.sigevolution.org/issues/pdf/SIGEVOlution200802.pdf
http://eodev.sourceforge.net/
http://www.cad.polito.it/research/Evolutionary_Computation/MicroGP/index.html
http://www.cad.polito.it/research/Evolutionary_Computation/MicroGP/index.html
http://beagle.sourceforge.net/
http://beagle.sourceforge.net/
http://www.sigevolution.org/2006/01/issue.pdf
http://gplab.sourceforge.net/
http://code.google.com/p/deap/
http://code.google.com/p/deap/
http://hampshire.edu/lspector/push.html
http://hampshire.edu/lspector/push.html
http://cswww.essex.ac.uk/staff/rpoli/TinyGP/
http://cswww.essex.ac.uk/staff/rpoli/TinyGP/
http://code.google.com/p/ponyge/
http://code.google.com/p/ponyge/
http://creativemachines.cornell.edu/eureqa
http://creativemachines.cornell.edu/eureqa
http://www.evolved-analytics.com/
http://www.rmltech.com/
http://www.aimlearning.com/aigp31.pdf
http://www.aimlearning.com/aigp31.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.cs.ucl.ac.uk/staff/W.Langdon/homepages.html
http://www.cs.ucl.ac.uk/staff/W.Langdon/homepages.html
http://groups.yahoo.com/group/genetic_programming/
http://groups.yahoo.com/group/genetic_programming/
http://gpbenchmarks.org
http://lulu.com
http://www.gp-field-guide.org.uk
http://cs.gmu.edu/~sean/books/metaheuristics/
http://cs.gmu.edu/~sean/books/metaheuristics/
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
http://www.elsevier.com/wps/find/bookdescription.cws_home/677869/description#description
http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/
http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/
http://www.lulu.com/

	43 Genetic Programming
	43.1 Evolutionary Search for Executable Programs
	43.2 History
	43.3 Taxonomy of AI and GP
	43.4 Uses of GP
	43.5 Research Topics
	43.6 Practicalities
	References

