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40. Evolving Connectionist Systems:
From Neuro-Fuzzy-, to Spiking- and Neuro-Genetic

Nikola Kasabov

This chapter follows the development of a class of
neural networks (NN) called evolving connectionist
systems (ECOS). The term evolving is used here in its
meaning of unfolding, developing, changing, re-
vealing (according to the Oxford dictionary) rather
than evolutionary. The latter represents processes
related to populations and generations of them. An
ECOS is a neural network-basedmodel that evolves
its structure and functionality through incremen-
tal, adaptive learning and self-organization during
its lifetime. In principle, it could be a simple NN or
a hybrid connectionist system. The latter is a sys-
tem based on neural networks that also integrate
other computational principles, such as linguis-
tically meaningful explanation features of fuzzy
rules, optimization techniques for structure and
parameter optimization, quantum-inspiredmeth-
ods, and gene regulatory networks. The chapter
includes definitions and examples of ECOS such as:
evolving neuro-fuzzy and hybrid systems; evolving
spiking neural networks, neurogenetic systems,
quantum-inspired systems, which are all dis-
cussed from the point of view of the structural
and functional development of a connectionist-
basedmodel and the knowledge that it represents.
Applications for knowledge engineering across do-
main areas, such as in bioinformatics, brain study,
and intelligent machines are presented.

40.1 Principles of Evolving Connectionist
Systems (ECOS) ..................................... 771

40.2 Hybrid Systems and Evolving
Neuro-Fuzzy Systems ........................... 772
40.2.1 Hybrid Systems.......................... 772
40.2.2 Evolving Neuro-Fuzzy Systems .... 773
40.2.3 From Local to Transductive

(Individualized) Learning
and Modeling ........................... 775

40.2.4 Applications. ............................. 775

40.3 Evolving Spiking Neural Networks
(eSNN) ................................................. 775
40.3.1 Spiking Neuron Models .............. 775
40.3.2 Evolving Spiking Neural Networks

(eSNN) . ..................................... 775
40.3.3 Extracting Fuzzy Rules

from eSNN ................................ 777
40.3.4 eSNN Applications ..................... 777

40.4 Computational Neuro-Genetic Modeling
(CNGM) ................................................ 778
40.4.1 Principles ................................. 778
40.4.2 The NeuroCube Framework ......... 778
40.4.3 Quantum-Inspired Optimization

of eSNN and CNGM ..................... 779
40.4.4 Applications of CNGM ................. 779

40.5 Conclusions and Further Directions....... 779

References ................................................... 780

40.1 Principles of Evolving Connectionist Systems (ECOS)

Everything in Nature evolves, develops, unfolds, re-
veals, and changes in time. The brain is probably
the ultimate evolving system, which develops during
a lifetime, based on genetic information (Nature) and
learning from the environment (nurture). Inspired by
information principles of the developing brain, ECOS
are adaptive, incremental learning and knowledge rep-
resentation systems that evolve their structure and func-

tionality from incoming data through interaction with
the environment, where in the core of a system is
a connectionist architecture that consists of neurons (in-
formation processing units) and connections between
them [40.1]. An ECOS is a system based on neural net-
works and the use of also other techniques of computa-
tional intelligence (CI), which operates continuously in
time and adapts its structure and functionality through
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continuous interaction with the environment and with
other systems. The adaptation is defined through:

1. A set of evolving rules.
2. A set of parameters (genes) that are subject to

change during the system operation.
3. An incoming continuous flow of information, pos-

sibly with unknown distribution.
4. Goal (rationale) criteria (also subject to modifica-

tion) that are applied to optimize the performance
of the system over time.

ECOS learning algorithms are inspired by brain-like
information processing principles, e.g.:

1. They evolve in an open space, where the dimensions
of the space can change.

2. They learn via incremental learning, possibly in an
on-line mode.

3. They learn continuously in a lifelong learning
mode.

4. They learn both as individual systems and as an evo-
lutionary population of such systems.

5. They use constructive learning and have evolving
structures.

6. They learn and partition the problem space locally,
thus allowing for a fast adaptation and tracing the
evolving processes over time.

7. They evolve different types of knowledge represen-
tation from data, mostly a combination of memory-
based and symbolic knowledge.

Many methods, algorithms, and computational in-
telligence systems have been developed since the con-
ception of ECOS and many applications across disci-
plines. This chapter will review only the fundamental
aspects of some of these methods and will highlight
some principal applications.

40.2 Hybrid Systems and Evolving Neuro-Fuzzy Systems

40.2.1 Hybrid Systems

A hybrid computational intelligent system integrates
several principles of computational intelligence to en-
hance different aspects of the performance of the sys-
tem. Here we will discuss only hybrid connectionist
systems that integrate artificial neural networks (NN)
with other techniques utilizing the adaptive learning
features of the NN.

Early hybrid connectionist systems combined NN
with rule-based systems such as production rules [40.3]
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Fig. 40.1 A hybrid NN-fuzzy rule-based expert system for financial
decision support (after [40.2])

or predicate logic [40.4]. They utilized NN modules
for a lower level of information processing and rule-
based systems for reasoning and explanation at a higher
level.

The above principle is applied when fuzzy rules
are used for higher-level information processing and
for approximate reasoning [40.5–7]. These are expert
systems that combine the learning ability of NN with
the explanation power of linguistically plausible fuzzy
rules [40.8–11]. A block diagram of an exemplar sys-
tem is shown in Fig. 40.1, where at a lower level
a neural network (NN) module predicts the level of
a stock index and at a higher level a fuzzy reason-
ing module combines the predicted values with some
macro-economic variables representing the political
and the economic situations using the following types
of fuzzy rules [40.2]

IF <the predicted by the NN module stock value

in the future is high> AND

<the economic situation is good> AND

<the political situation is stable>

THEN <buy stock> : (40.1)

Along with the integration of NN and fuzzy rules
for a better decision support, the system from Fig. 40.1
includes an NN module for extracting recent rules form
data that can be used by experts to analyze the dy-



Evolving Connectionist Systems 40.2 Hybrid Systems and Evolving Neuro-Fuzzy Systems 773
Part

D
|40.2

Rule (case)
nodes

Inputs Outputs

Fig. 40.2 A simple, feedforward EFuNN structure. The
rule nodes evolve from data to capture cluster centers in the
input space, while the output nodes evolve local models to
learn and approximate the data in each of these clusters

namics of the stock and to possibly update the trading
fuzzy rules in the fuzzy rule-based module. This NN
module uses a fuzzy neural (FNN) network for the rule
extraction.

Fuzzy neural networks (FNN) integrate NN and
fuzzy rules into a single neuronal model tightly cou-
pling learning and fuzzy reasoning rules into a con-
nectionist structure. One of the first FNN models was
initiated by Yamakawa and other Japanese scientists
and promoted at a series of IIZUKA conferences in
Japan [40.12, 13]. Many models of FNNs were devel-
oped based on these principles [40.2, 14, 15].

40.2.2 Evolving Neuro-Fuzzy Systems

The evolving neuro-fuzzy systems further extended the
principles of hybrid neuro-fuzzy systems and the FNN,
where instead of training a fixed connectionist structure,
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Fig. 40.3 An EFuNN structure with
feedback connections (after [40.16])

the structure and its functionality evolve from incom-
ing data, often in an on-line, one-pass learning mode.
This is the case with evolving connectionist systems
(ECOS) [40.1, 16–19].

ECOS are modular connectionist-based systems
that evolve their structure and functionality in a contin-
uous, self-organized, on-line, adaptive, and interactive
way from incoming information [40.17]. They can pro-
cess both data and knowledge in a supervised and/or
unsupervised way. ECOS learn local models from data
through clustering of the data and associating a local
output function for each cluster represented in a connec-
tionist structure. They can learn incrementally single
data items or chunks of data and also incrementally
change their input features [40.18].

Elements of ECOS have been proposed as part of
the early, classical NN models, such as Kohonen’s self
organising maps (SOM) [40.20], redical basis func-
tion(RBF) [40.21], FuzyARTMap [40.22] byCarpenter
et al. and Fritzke’s growing neural gas [40.23], Platt’s
resource allocation networks (RAN) [40.24].

Some principles of ECOS are:

� Neurons are created (evolved) and allocated as cen-
ters of (fuzzy) data clusters. Fuzzy clustering, as
a means to create local knowledge-based systems,
was stimulated by the pioneering work of Bezdek,
Yager and Filev [40.27–30].� Local models are evolved and updated in these clus-
ters.

Here we will briefly illustrate the concepts of
ECOS on two implementations: evolving fuzzy neu-
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tral networks (EFuNN) [40.16] and dynamic neuro-
fuzzy inference systems (DENFIS) [40.25]. Examples
of EFuNN are shown in Figs. 40.2 and 40.3 and of
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Fig. 40.4a,b Learning in DENFIS uses the evolving clustering
method illustrated on a simple example of 2 inputs and 1 output
and 11 data clusters evolved. The recall of the DENFIS for two
new input vectors x1 and x2 is illustrated with the use of the 3 clos-
ets clusters to the new input vector (after [40.25]). (a) Fuzzy role
group 1 for a DENFIS. (b) Fuzzy role group 2 for a DENFIS

Fig. 40.5 An example of the DENFIS model (after [40.26]) for
medical renal function evaluation

DENFIS in Figs. 40.4 and 40.5. In ECOS, clusters of
data are created (evolved) based on similarity between
data samples (input vectors) either in the input space
(this is the case in some of the ECOS models, e.g.,
DENFIS), or in both the input and output space (this
is the case, e.g., in the EFuNN models). Samples that
have a distance to an existing node (cluster center, rule
node, neuron) less than a certain threshold are allocated
to the same cluster. Samples that do not fit into existing
clusters, form (generate, evolve) new clusters. Cluster
centers are continuously adjusted according to new data
samples, others are created incrementally. ECOS learn
from data and automatically create or update a local
(fuzzy) model/function in each cluster, e.g.,

IF< data is in a (fuzzy) cluster Ci >

THEN< the model is Fi>; (40.2)

where Fi can be a fuzzy value, a linear or logistic re-
gression function (Fig. 40.5), or an NN model [40.25].

ECOS utilize evolving clustering methods. There
is no fixed number of clusters specified a priori,
but clusters are created and updated incrementally.
Other ECOS that use this principle are: evolving self-
organized maps (ESOM) [40.17], evolving classifica-
tion function [40.18, 26], evolving spiking neural net-
works (Sect. [40.4]).

As an example, the following are the major steps for
the training and recall of a DENFIS model:

Training:
1. Create or update a cluster from incoming data.
2. Create or update a Takagi–Sugeno fuzzy rule for

each cluster:
IF x is in cluster Cj THEN yjD fj (x),
where: yiD ˇ0Cˇ1 x1Cˇ2 x2C 	 	 	Cˇq.

The function coefficients are incrementally updated
with every new input vector or after a chunk of data.
Recall – fuzzy inference for a new input vector:

1. For a new input vector xD [x1, x2, : : : ; xq] DEN-
FIS chooses m fuzzy rules from the whole fuzzy
rule set for forming a current inference system.

2. The inference result is

yD ˙iD1;m Œ!i fi.x1; x2; : : : ; xq/�

˙iD1;m !i
; (40.3)

where i is the index of one of the m closets to
the new input vector x clusters, !iD 1� di is the
weighted distance between this vector the cluster
center, fi(x) is the calculated output for x according
to the local model fi for cluster i.
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40.2.3 From Local to Transductive
(Individualized) Learning
and Modeling

A special direction of ECOS is transductive reason-
ing and personalized modeling. Instead of building
a set of local models fi (e.g., prototypes) to cover the
whole problem space and then using these models to
classify/predict any new input vector, in transductive
modeling for every new input vector x a new model
fx is created based on selected nearest neighbor vec-
tors from the available data. Such ECOS models are
neuro-fuzzy inference systems (NFI) [40.31] and the
transductive weighted neuro-fuzzy inference system
(TWNFI) [40.32]. In TWNFI for every new input vector
the neighborhood of the closest data vectors is opti-
mized using both the distance between the new vector
and the neighboring ones and the weighted importance
of the input variables, so that the error of the model is
minimized in the neighborhood area [40.33]. TWNFI is
a further development of the weighted-weighted nearest
neighbor method (WWKNN) proposed in [40.34]. The
output for a new input vector is calculated based on the
outputs of the k-nearest neighbors, where the weighting
is based on both distance and a priori calculated impor-
tance for each variable using a ranking method such as
signal-to-noise ratio or the t-test.

Other ECOS were been developed as improvements
of EFuNN, DENFIS, or other early ECOS models by
Ozawa et al. and Watts [40.35–37], including ensem-
bles of ECOS [40.38]. A similar approach to ECOS

was used by Angelov in the development of the (ETS)
models [40.39].

40.2.4 Applications

ECOS have been applied to problems across domain ar-
eas. It is demonstrated that local incremental learning
or transductive learning are superior when compared
to global learning models and when compared in terms
of accuracy and new knowledge obtained. A review of
ECOS applications can be found in [40.26]. The appli-
cations include:

� Medical decision support systems (Fig. 40.5)� Bioinformatics, e.g., [40.40]� Neuroinformatics and brain study, e.g., [40.41]� Evolvable robots, e.g., [40.42]� Financial and economic decision support systems,
e.g., [40.43]� Environmental and ecological modeling, e.g.,
[40.44]� Signal processing, speech, image, and multimodal
systems, e.g., [40.45]� Cybersecurity, e.g., [40.46]� Multiple time series prediction, e.g., [40.47].

While classical ECOS use a simple McCulloch
and Pitts model of a neuron and the Hebbian learning
rule [40.48], evolving spiking neural network (eSNN)
architectures use a spiking neuron model, applying the
same or similar ECOS principles.

40.3 Evolving Spiking Neural Networks (eSNN)

40.3.1 Spiking Neuron Models

A single biological neuron and the associated synapses
is a complex information processing machine that in-
volves short-term information processing, long-term in-
formation storage, and evolutionary information stored
as genes in the nucleus of the neuron. A spiking neuron
model assumes input information represented as trains
of spikes over time. When sufficient input spikes are ac-
cumulated in the membrane of the neuron, the neuron’s
post-synaptic potential exceeds a threshold and the neu-
ron emits a spike at its axon (Fig. 40.6a,b). Some of
the-state-of-the-art models of spiking neurons include:
early models by Hodgkin and Huxley [40.49], and Hop-
field [40.50]; and more recent models byMaass, Gerst-
ner, Kistler, Izhikevich, Thorpe and van Ruller [40.51–
54]. Such models are spike response models (SRMs),

the leaky integrate-and-fire model (LIFM) (Fig. 40.6),
Izhikevich models, adaptive LIFM, and probabilistic
IFM [40.55].

40.3.2 Evolving Spiking Neural Networks
(eSNN)

Based on the ECOS principles, an evolving spik-
ing neural network architecture (eSNN) was proposed
in [40.26], which was initially designed as a visual pat-
tern recognition system. The first eSNNs were based on
Thorpe’s neural model [40.54], in which the importance
of early spikes (after the onset of a certain stimu-
lus) is boosted, called rank-order coding and learning.
Synaptic plasticity is employed by a fast supervised
one-pass learning algorithm. An exemplar eSNN for
multimodal auditory-visual information processing on
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the case study problem of speaker authentication is
shown in Fig. 40.7.

Different eSNN models use different architec-
tures. Figure 40.8 shows a reservoir-based eSNN for
spatio-temporal pattern recognition where the reser-
voir [40.57] uses the spike-time-dependent plasticity
(STDP) learning rule [40.58], and the output classifier
that classifies spatio-temporal activities of the reservoir
uses rank-order learning rule [40.54].

40.3.3 Extracting Fuzzy Rules from eSNN

Extracting fuzzy rules from an eSNN would make
eSNN not only efficient learning models, but also
knowledge-based models. A method was proposed in
[40.59] and illustrated in Fig. 40.9a,b. Based on the con-
nection weights w between the receptive field layer L1
and the class output neuron layer L2 fuzzy rules are ex-
tracted.

40.3.4 eSNN Applications

Different eSNN models and systems have been devel-
oped for different applications, such as:

� eSNN for spatio- and spectro-temporal pattern
recognition – http://ncs.ethz.ch/projects/evospike� Dynamic eSNN (deSNN) for moving object recog-
nition – [40.60]� Spike pattern association neuron(SPAN) for gener-
ation of precise time spike sequences as a response
to recognized input spiking patterns – [40.61]� Environmental and ecological modeling – [40.44]� EEG data modeling – [40.62]� Neuromorphic SNN hardware – [40.63, 64]� Neurogenetic models (Sect. 40.4).
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Fig. 40.9 (a) A simple structure of an eSNN for 2-
class classification based on one input variable using six
receptive fields to convert the input values into spike trains.
(b) The connection weights of the connections to class Ci
and Cj output neurons, respectively, are interpreted as
fuzzy rules

W

IF(input variable v is SMALL) THEN class
Ci; IF(v is LARGE)THEN class Cj

A review of eSNN methods, systems and their ap-
plications can be found in [40.65].

http://ncs.ethz.ch/projects/evospike
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40.4 Computational Neuro-Genetic Modeling (CNGM)

40.4.1 Principles

A neuro-genetic model of a neuron was proposed
in [40.41, 66]. It utilizes information about how some
proteins and genes affect the spiking activities of a neu-
ron such as fast excitation, fast inhibition, slow exci-
tation, and slow inhibition. An important part of the
model is a dynamic gene/protein regulatory network
(GRN) model of the dynamic interactions between
genes/proteins over time that affect the spiking activity
of the neuron – Fig. 40.10.

A CNGM is a dynamical model that has two dy-
namical sub-models:

� GRN, which models dynamical interaction between
genes/proteins over time scale T1� eSNN, which models dynamical interaction be-
tween spiking neurons at a time scale T2.

The two sub-models interact over time.

40.4.2 The NeuroCube Framework

A further development of the eSNN and the CNGM
was achieved with the introduction of the NeuroCube
framework [40.67]. The main idea is to support the cre-
ation of multi-modular integrated systems, where dif-
ferent modules, consisting of different neuronal types
and genetic parameters correspond in a way to dif-
ferent parts of the brain and different functions (e.g.,
vision, sensory information processing, sound recog-
nition, motor-control) and the whole system works in
an integrated mode for brain signal pattern recognition.
A concrete model built with the use of the NeuroCube
would have a specific structure and a set of algorithms
depending on the problem and the application condi-
tions, e.g., classification of EEG, recognition of func-

Fig. 40.10 A schematic diagram of a computational neuro-genetic
modeling (CNGM) framework consisting of a gene/protein regula-
tory network (GRN) as part of an eSNN (after [40.41])

tional magneto-resonance imaging (fMRI) data, brain
computer interfaces, emotional cognitive robotics, and
modeling Alzheimer’s disease.

A block diagram of the NeuroCube framework is
shown in Fig. 40.11. It consists of the following mod-
ules:

� An input information encoding module� A NeuroCube module� An output module� A gene regulatory network (GRN) module.

The main principles of the NeuroCube framework
are:

1. NeuroCube is a framework to model brain data (and
not a brain model or a brain map).

2. NeuroCube is a selective, approximate map of rel-
evant to the brain data brain regions, along with
relevant genetic information, into a 3-D spiking
neuronal structure.

3. An initial NeuroCube structure can include known
connections between different areas of the brain.

4. There are two types of data used for both training
a particular NeuroCube and to recall it on new data:
(a) data, measuring the activity of the brain when
certain stimuli are presented, e.g., (EEG, fMRI); (b)
direct stimuli data, e.g., sound, spoken language,
video data, tactile data, odor data, etc.

5. A NeuroCube architecture, consisting of a Neu-
roCube module, (GRN)s at the lowest level, and
a higher-level evaluation (classification) module.

6. Different types of neurons and learning rules can be
used in different areas of the architecture.

7. Memory of the system is represented as a combi-
nation of: (a) short-term memory, represented as
changes of the neuronal membranes and temporary
changes of synaptic efficacy; (b) long-termmemory,
represented as a stable establishment of synaptic ef-
ficacy; (c) genetic memory, represented as a change
in the genetic code and the gene/protein expression
level as a result of the above short-term and long-
term memory changes and evolutionary processes.

8. Parameters in the NeuroCube are defined by
genes/proteins that form dynamic GRN models.

9. NeuroCube can potentially capture in its internal
representation both spatial and temporal character-
istics from multimodal brain data.

10. The structure and the functionality of a NeuroCube
architecture evolve in time from incoming data.
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40.4.3 Quantum-Inspired Optimization
of eSNN and CNGM

A CNGM has a large number of parameters that
need to be optimized for an efficient performance.
Quantum-inspired optimization methods are suitable
for this purpose as they can deal with a large num-
ber of variables and will converge in much faster
time that any other optimization algorithms [40.68].
Quantum-inspired eSNN (QeSNN) use the principle of
superposition of states to represent and optimize fea-
tures (input variables) and parameters of the eSNN
including genes in a GRN [40.44]. They are optimized
through a quantum-inspired genetic algorithm [40.44]

or a quantum-inspired particle swarm optimization al-
gorithm [40.69]. Features are represented as qubits in
a superposition of 1 (selected), with a probability ˛, and
0 (not selected) with a probability ˇ. When the model
has to be calculated, the quantum bits collapse in 1 or 0.

40.4.4 Applications of CNGM

Various applications of CNGM have been developed
such as:

� Modeling brain diseases [40.41, 70]� EEG and fMRI spatio-temporal pattern recogni-
tion [40.67].

40.5 Conclusions and Further Directions
This chapter presented a brief overview of the main
principles of a class of neural networks called evolv-
ing connectionist systems (ECOS) along with their
applications for computational intelligence. ECOS fa-
cilitate fast and accurate learning from data and new
knowledge discovery across application areas. They

integrate principles from neural networks, fuzzy sys-
tems, evolutionary computation, and quantum comput-
ing. The future directions and applications of ECOS
are foreseen as a further integration of principles
from information science-, bio-informatics, and neuro-
informatics [40.71].
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