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4. Aggregation Functions on [0,1]

Radko Mesiar, Anna Kolesárová, Magda Komorníková

After a brief presentation of the history of aggrega-
tion, we recall the concept of aggregation functions
on Œ0;1� and on a general interval I � Œ�1;1�.
We give a list of basic examples as well as some
peculiar examples of aggregation functions. Af-
ter discussing the classification of aggregation
functions on Œ0;1� and presenting the prototyp-
ical examples for each introduced class, we also
recall several construction methods for aggrega-
tion functions, including optimization methods,
extension methods, constructions based on given
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aggregation functions, and introduction of
weights. Finally, a remark on aggregation of more
general inputs, such as intervals, distribution
functions, or fuzzy sets, is added.

Aggregation (fusion, joining) of several input values
into one, in some sense the most informative value,
is a basic processing method in any field dealing with
quantitative information. We only recall mathematics,
physics, economy, sociology or finance, among others.

Basic arithmetical operations of addition and multipli-
cation on Œ0;1� are typical examples of aggregation
functions. As another example let us recall integration
and its application to geometry allowing us to compute
areas, surfaces, volumes, etc.

4.1 Historical and Introductory Remarks

Just in the field of integration one can find the first
historical traces of aggregation known in the written
form. Recall the Moscow mathematical papyrus and
its problem no. 14, dating back to 1850 BC, concern-
ing the computation of the volume of a pyramidal
frustum [4.1], or the exhaustive method allowing to
compute several types of areas proposed by Eudoxus
of Cnidos around 370 BC [4.2]. The roots of a re-
cent penalty-based method of constructing aggregation
functions [4.3] can be found in books of Appolonius
of Perga (living in the period about 262–190 BC) who
(motivated by the center of gravity problems) proposed
an approach leading to the centroid, i. e., to the arith-
metic mean, minimizing the sum of squares of the
Euclidean distances of the given n points from an un-
known but fixed one. Generalization of the Appolonius

of Perga method based on a general norm is known as
the Fréchet mean, or also as the Karcher mean, and it
was deeply discussed in [4.4].

Another type of mean, the Heronian mean of two
nonnegative numbers x and y is given by the formula

He.x; y/D 1

3

�
xCp

xyC y
�
: (4.1)

It is named after Hero of Alexandria (10–70 AD) who
used this aggregation function for finding the volume of
a conical or pyramidal frustum. He showed that this vol-
ume is equal to the product of the height of the frustum
and the Heronian mean of areas of parallel bases.

Another interesting historical example can be found
in multivalued logic. Already Aristotle (384–322 BC)
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was a classical logician who did not fully accept the
law of excluded middle, but he did not create a system
of multivalued logic to explain this isolated remark (in
the work De Interpretatione, chapter IX). Systems of
multivalued logics considering 3, n (finitely many), and
later also infinitely many truth degrees were introduced
by Łukasiewicz [4.5], Post [4.6], Gödel [4.7], respec-
tively, and in each of these systems the aggregation
of truth values was considered (conjunction, disjunc-
tion).

Though several particular aggregation functions (or
classes of aggregation functions) were discussed in
many earlier works (we only recall means discussed
around 1930 by Kolmogorov [4.8] and Nagumo [4.9],
or later by Aczél [4.10], triangular norms and copu-
las studied by Schweizer and Sklar in 1960s of the
previous century and summarized in [4.11]), an inde-
pendent theory of aggregation can be dated only about
20 years back and the roots of its axiomatization can
be found in [4.12–14]. Probably the first monograph
devoted purely to aggregation is the monograph by
Calvo et al. [4.15]. As a basic literature for any scientist
interested in aggregation we recommend the mono-
graphs [4.16–18].

In this chapter, not only we summarize some earlier,
but also some recent results concerning aggregation,
including classification, construction methods, and sev-
eral examples. We will deal with inputs and outputs
from the unit interval Œ0; 1�. Note that though, in gen-
eral, we can consider an arbitrary interval I � Œ�1;1�,
there is no loss of generality (up to the isomorphism)
when restricting our considerations to I D Œ0; 1�. As
an example, consider the aggregation of nonnegative
inputs, i. e., fix I D Œ0;1Œ. Then any aggregation func-
tion A on Œ0;1Œ can be seen as an isomorphic transform
of some aggregation function B on Œ0; 1�, restricted
to Œ0; 1Œ and satisfying two constraints:

i) B.x/D 1 if and only if xD .1; : : : ; 1/,
ii) sup fB.x/ j x 2 Œ0; 1Œng D 1, n 2N.

Note that any increasing bijection ' W Œ0; 1Œ! Œ0;1Œ
can be applied as the considered isomorphism. For
more details about aggregation on a general interval
I � Œ�1;1� refer to [4.17].

We can consider either aggregation functions with
a fixed number n 2N, n � 2, of inputs or extended ag-
gregation functions defined for any number n 2N of
inputs. The number n is called the arity of the aggrega-
tion function.

Definition 4.1
For a fixed n 2N, n� 2, a function A W Œ0; 1�n ! Œ0; 1�
is called an (n-ary) aggregation function whenever it is
increasing in each variable and satisfies the boundary
conditions

A.0; : : : ; 0/D 0 and A.1; : : : ; 1/D 1 :

A mapping A WSn2N Œ0; 1�n ! Œ0; 1� is called an ex-
tended aggregation function whenever A.x/D x for
each x 2 Œ0; 1�, and for each n 2N, n� 2, A j Œ0; 1�n is
an n-ary aggregation function.

The framework of extended aggregation functions
is rather general, not relating different arities, and thus
some additional constraints are often considered, such
as associativity, decomposability, neutral element, etc.

The Heronian mean He given in (4.1) is an example
of a binary aggregation function. Prototypical examples
of extended aggregation functions on Œ0; 1� are:

� The smallest extended aggregation function As

given by

As.x/D
(
1 if xD .1; : : : ; 1/

0 else :

� The greatest extended aggregation function Ag

given by

Ag.x/D
(
0 if xD .0; : : : ; 0/

1 else :

� The arithmetic mean M given by

M.x1; : : : ; xn/D 1

n

nX
iD1

xi :

� The geometric mean G given by

G.x1; : : : ; xn/D
 

nY
iD1

xi

! 1
n

:

� The product˘ given by

˘.x1; : : : ; xn/D
nY

iD1

xi :

� The minimum Min given by

Min.x1; : : : ; xn/Dmin fx1; : : : ; xng :
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� The maximumMax given by

Max.x1; : : : ; xn/Dmax fx1; : : : ; xng :

� The truncated sum SL (also known as the
Łukasiewicz t-conorm) given by

SL.x1; : : : ; xn/Dmin

(
1;

nX
iD1

xi

)
;

� The 3-˘ -operator E introduced in [4.19] and given
by

E.x1; : : : ; xn/D
Qn

iD1 xiQn
iD1 xiC

Qn
iD1.1� xi/

;

with some convention covering the case 0
0 ,� The Pascal weighted arithmetic mean WP given by

WP.x1; : : : ; xn/D 1

2n�1

nX
iD1

 
n� 1

i� 1

!
xi :

As distinguished examples of n-ary aggregation
functions for a fixed arity n� 2, recall the projections
Pi and order statistics OSi, iD 1; : : : ; n, given by

Pi.x1; : : : ; xn/D xi

and

OSi.x1; : : : ; xn/D x�.i/ ;

where � is an arbitrary permutation of .1; : : : ; n/ such
that x�.1/ � x�.2/ � 	 	 	 � x�.n/. Observe that the first
projection PF D P1 and the last projection PL D Pn can
be seen as instances of extended aggregation functions
PF and PL, respectively. On the other hand, for any fixed
n� 2, OS1 is just Min j Œ0; 1�n and OSn DMax j Œ0; 1�n.

As a peculiar example of an extended aggre-
gation function we can introduce the mapping V WS

n2NŒ0; 1�n ! Œ0; 1� given by

V.x1; : : : ; xn/Dmin

8<
:
 

nX
iD1

xni

! 1
n

; 1

9=
; : (4.2)

4.2 Classification of Aggregation Functions

Let us denote by A the class of all extended aggrega-
tion functions, and byAn (for a fixed n� 2) the class of
all n-ary aggregation functions. Several classifications
of n-ary aggregation functions can be straightforwardly
extended to the class A. The basic classification pro-
posed by Dubois and Prade [4.20] distinguishes (both
for n-ary and extended aggregation functions):

� Conjunctive aggregation functions,
C D fA 2A j A�Ming,� Disjunctive aggregation functions,
DD fA 2A j A�Maxg,� Averaging aggregation functions,
AvD fA 2A jMin� A�Maxg,� Mixed aggregation functions,
MDA n .C[D[Av/.

Considering purely averaging aggregation func-
tions Avp DAv n fMin;Maxg, we can see that the set
fC;D;Avp;Mg forms a partition of A. Note that the
classesA, C,D,Av,Avp are convex, which is not the
case of the class M. For the previously introduced ex-

amples it holds:

� M;G;WP;PF ;PL 2Avp,� ˘ 2 C,� SL;V 2D,� E 2M.

Observe that n-ary aggregation functions Pi and
OSi, iD 1; : : : ; n, are averaging, so are their convex
sums, i. e., weighted arithmetic means

W D
nX

iD1

wiPi ;

and ordered weighted averages (OWA operators) [4.21],

OWAD
nX

iD1

wiOSi ;

with wi � 0 and
Pn

iD1 wi D 1. The binary Heronian
mean He given in (4.1) is a convex combination of
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Fig. 4.1 3D plot of the aggregation function A1 defined by
(4.3)

the arithmetic mean M and the geometric mean G,
HeD 2

3MC 1
3G, and thus it is also averaging.

Consider two binary aggregation functions A1;A2 W
Œ0; 1�2 ! Œ0; 1� given by

A1.x; y/DMed.0;1; xC y� 0:5/ (4.3)

and

A2.x; y/DMed.xC y; 0:5; xC y� 1/ ; (4.4)

where Med is the standard median operator. Then
A1;A2 2M but 1

2A1 C 1
2A2 DM 2Av. The 3D plots

of aggregation functions A1;A2 and M are depicted in
Figs. 4.1–4.3.

More refined classifications of n-ary aggrega-
tion functions are related to order statistics OSi,
iD 1; : : : ; n. The conjunctive classification [4.22]
deals with the partition of the class An given by
fC1; : : : ;Cn;RCg, where the class of i-conjunctive ag-
gregation functions, iD 1; : : : ; n, is defined by

Ci D fA 2An jminfcardfj j xj � A.x/g
j x 2 Œ0; 1�ng D ig

D fA 2An j A� OSn�iC1 but not A� OSn�ig ;

where formally OS0 
 0.
In other words, A is i-conjunctive if and only if the

aggregated value A.x/ is dominated by at least i input
values independently of x 2 Œ0; 1�n, but not by .iC 1/
values, in general.
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Fig. 4.2 3D plot of the aggregation function A2 defined by
(4.4)

Clearly, the classes C1; : : : ;Cn are pairwise disjoint
and the remaining aggregation functions are members
of the class RC DAn n

Sn
iD1 Ci. If we come back to

the above-mentioned basic classification of aggrega-
tion functions (applied to An), we obtain C D Cn and
WC DSn�1

iD1 Ci DAv n fMing. The classWC is called
weakly conjunctive [4.22].

Similarly, we have a disjunctive type of classifica-
tion of An related to the partition fD1; : : : ;Dn;RDg,
with

Di D fA 2An j A� OSi but not A� OSiC1g ;

iD 1; : : : ; n :

x

y

1

0.5

0
0

0.5

1 0

M(x, y)

0.5

1

Fig. 4.3 3D plot of the aggregation function 1
2A1 C 1
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Then Dn DD and for the class of weakly disjunc-
tive aggregation functions WD DSn�1

iD1 Di we have
WD DAvnfMaxg. HenceWC

TWD DAvp, and A 2Sn
iD1 Ci if and only if A�Max, while A 2Sn

iD1Di if
and only if A�Min.

Note that the conjunctive and disjunctive classifica-
tions can be applied to aggregation functions defined
on posets, too [4.22], and that this approach to the
classification of aggregation functions on Œ0; 1� was al-
ready proposed by Marichal in [4.23] as i-tolerant and
i-intolerant aggregation functions (Marichal’s approach
based on order statistics is applicable when considering
chains only).

Observe that this approach to classification has no
direct extension to extended aggregation functions. On
the other hand, we have the next classification valid for
extended aggregation functions only. We distinguish:

� Dimension decreasing aggregation functions form-
ing the class A

&

, satisfying A.x1; : : : ; xn; xnC1/�
A.x1; : : : ; xn/ for any n 2N, x1; : : : ; xnC1 2 Œ0; 1�,
but violating the equality, in general.� Dimension increasing aggregation functions form-
ing the class A

%

, satisfying A.x1; : : : ; xn; xnC1/�
A.x1; : : : ; xn/ for any n 2N, x1; : : : ; xnC1 2 Œ0; 1�,
but violating the equality, in general.� Dimension averaging aggregation functions form-

ing the class
$

A, satisfying A.x1; : : : ; xn; 0/�
A.x1; : : : ; xn/� A.x1; : : : ; xn; 1/ for any n 2N,
x1; : : : ; xn 2 Œ0; 1�, and attaining strict inequalities
for at least one x 2 Œ0; 1�n.

Evidently, the classes A
&

;A
%

, and
$

A are dis-
joint and they, together with their reminderAn .A

&

[
A

%

[$

A/, form a partition ofA. Let us note that each
associative conjunctive aggregation function is dimen-
sion decreasing, and thus, ˘;Min 2A

&

. Similarly,
each associative disjunctive aggregation function is di-
mension increasing, so, SL;Max 2A

%

.
Recently, Yager has introduced extended aggrega-

tion functions with the self-identity property [4.24]
characterized by the equality

A .x1; : : : ; xn;A.x1; : : : ; xn//D A.x1; : : : ; xn/

for any n 2N and x1; : : : ; xn 2 Œ0; 1� (e.g., the arith-
metic mean M or the geometric mean G satisfy this

property). Evidently, each such aggregation function
satisfies

A.x1; : : : ; xn; 0/� A.x1; : : : ; xn; xnC1/

� A.x1; : : : ; xn; 1/

for all n 2N; x1; : : : ; xnC1 2 Œ0; 1� and thus, if the strict
inequalities are attained for some n 2N and

x1; : : : ; xnC1 2 Œ0; 1� ;

A belongs to
$

A. So, for example, M;G 2$

A. The ex-

tended aggregation function V (4.2) also belongs to
$

A.
On the other hand, the first projection PF does not be-
long to

A
&

[A
%

[ $

A ;

and the last projection PL belongs to
$

A. Recall that if
A 2A

&

, it is also said to have the downward attitude
property [4.24]. Similarly, the upward attitude prop-
erty introduced in [4.24] corresponds to the classA

%

.
Dimension increasing aggregation functions were also
considered in [4.25].

Let us return to the basic classification of aggre-
gation functions and recall several distinguished types
of aggregation functions belonging to the classes C,D,
Avp, andM:

� Conjunctive aggregation functions: Triangular
norms [4.26, 27], copulas [4.27, 28], quasi-copulas
[4.29, 30], and semicopulas [4.31].� Disjunctive aggregation functions: Triangular
conorms [4.26, 27], dual copulas [4.28].� Averaging aggregation functions: (Weighted)
quasi-arithmetic means [4.10], idempotent uni-
norms [4.32], integrals based on capacities,
including the Choquet and Sugeno integrals [4.18,
33–36], also covering OWA [4.21], ordered
weighted maximum (OWMax) [4.37] and ordered
modular average (OMA) [4.38] operators, as well
as lattice polynomials [4.39].� Mixed aggregation functions: nonidempotent uni-
norms [4.40], gamma-operators [4.41], special con-
vex sums in fuzzy linear programming [4.42].

For more details concerning these aggregation func-
tions see [4.17] or references given above.
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4.3 Properties and Construction Methods

Properties of aggregation functions are mostly related
to the field of their application, such as multicriteria
decision aid, multivalued logics, or probability theory,
for example. Besides the standard analytical properties
of functions, such as continuity, the Lipschitz prop-
erty, and (perhaps adapted) algebraic properties, such
as symmetry, associativity, bisymmetry, neutral ele-
ment, annihilator, cancellativity, or idempotency [4.17,
Chapter 2], the above-mentioned applied fields have
brought into aggregation theory properties as decom-
posability, conjunctivity, or n-increasigness. Each of the
mentioned properties can be introduced for n-ary aggre-
gation functions (excepting decomposability), and thus
also for extended aggregation functions. However, in
the case of extended aggregation functions, some prop-
erties can be introduced in a stronger form, involving
different arities in a single formula.

For example, the (weak) idempotency of A 2A
means the idempotency of each A j Œ0; 1�n, which means
that for each n 2N and

x 2 Œ0; 1� ; A.x; : : : ; x„ ƒ‚ …
n-times

/D x :

Note that an extended aggregation function A is idem-
potent if and only if it is averaging, i. e., A 2Av. The
strong idempotency [4.15] of an extended aggregation
function A 2A means that

A.x; : : : ; x„ ƒ‚ …
k-times

/D A.x/

for each k 2N and x 2Sn2N Œ0; 1�n. For example, the
extended aggregation functionWP is idempotent but not
strongly idempotent.

Similarly, e 2 Œ0; 1� is a (weak) neutral element of
an extended aggregation function A 2A if and only if
for each n � 2 and x 2 Œ0; 1�n such that xj D e for j¤ i it
holds A.x/D xi. On the other hand, e is a strong neutral
element of an extended aggregation function A 2A if
and only if for any n� 2, x 2 Œ0; 1�n with xi D e, it holds

A.x1; : : : ; xi�1; e; xiC1; : : : ; xn/

D A.x1; : : : ; xi�1; xiC1; : : : ; xn/ :

Obviously, if e is a strong neutral element of A 2A then
it is also a (weak) neutral element of A. As an example,
consider the extended copula D 2A given by

D.x1; : : : ; xn/D x1 	min fx2; : : : ; xng :

Obviously, eD 1 is a weak neutral element of D. How-
ever D

�
1; 1

2 ;
1
2

�D 1
2 ¤ 1

4 D D
�
1
2 ;

1
2

�
, i. e., eD 1 is not

a strong neutral element of D. For a deeper discussion
and exemplification of properties of aggregation func-
tions we recommend [4.17].

Aggregation functions in many fields are con-
strained by the required properties – axioms in each
considered field. As a typical example recall multi-
valued logics (fuzzy logics) with truth values domain
Œ0; 1�, where conjunction is modeled by means of trian-
gular norms [4.26, 43, 44]. Recall that a binary aggre-
gation function T W Œ0; 1�2 ! Œ0; 1� is called a triangular
norm (t-norm for short) whenever it is symmetric,
associative and eD 1 is its neutral element. Due to as-
sociativity, there is a genuine extension of a t-norm T
into an extended aggregation function (we will also use
the same notation T in this case). Then eD 1 is a strong
neutral element for the extended T . However, without
some additional properties we still cannot determine
a t-norm convenient for our purposes. Requiring, for
example, the idempotency of T , we obtain that the
only solution is T DMin, the strongest triangular norm.
Considering continuous triangular norms satisfying the
diagonal inequalities 0< T.x; x/ < x for all x 2�0; 1Œ,
we can show that T is isomorphic to the product˘ , i. e.,
there is an automorphism ' W Œ0; 1�! Œ0; 1� such that
T.x; y/D '�1 .˘ .'.x/; '.y///, and in the extended
form, T.x1; : : : ; xn/D '�1 .˘ .'.x1/; : : : ; '.xn///. For
more details and several other results we recom-
mend [4.26].

As another example consider probability theory,
namely the relationship between the joint distribu-
tion function FZ of a random vector Z D .X1; : : : ;Xn/,
and the corresponding marginal one-dimensional dis-
tribution functions FX1 ; : : : ;FXn . By the Sklar theo-
rem [4.45], for all .x1; : : : ; xn/ 2R we have

FZ.x1; : : : ; xn/D C .FX1.x1/; : : : ;FXn.xn//

for some n-ary aggregation function C. Obviously,
constrained by the basic properties of probabil-
ities, C should possess a neutral element eD
1 and annihilator (zero element) aD 0, and the
function C should be n-increasing (i. e., proba-
bility P .Z 2 Œu1; v1�� 	 	 	 � Œun; vn�/� 0 for any n-
dimensional box Œu1; v1��	 	 	� Œun; vn�), which yields an
axiomatic definition of copulas. More details for inter-
ested readers can be found in [4.28]. Considering some
additional constraints, we obtain special subclasses of
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copulas. For example, if we fix nD 2 and consider
the stability of copulas with respect to positive pow-
ers, i. e., the property C.x�; y�/D .C.x; y//� for each
� 2�0;1Œ and each .x; y/ 2 Œ0; 1�2, then we obtain ex-
treme value copulas (EV copulas) [4.46, 47]. Recall that
a copula C W Œ0; 1�2 ! Œ0; 1� is an EV copula if and only
if there is a convex function d W Œ0; 1�! Œ0; 1� such that
for each t 2 Œ0; 1�, max ft; 1� tg � d.t/� 1 and for all
.x; y/ 2�0; 1Œ2,

C.x; y/D .xy/d
�

log x
log xy

�

(observe that on Œ0; 1�2n�0; 1Œ2 for each copula it holds
C.x; y/Dmin fx; yg).

Our third example comes from economics. In mul-
ticriteria decision problems, we often meet the require-
ment of the comonotone additivity of the considered
n-ary (extended) aggregation function A, i. e., we expect
that A.xC y/D A.x/CA.y/ for all x; y 2 Œ0; 1�n such
that xCy 2 Œ0; 1�n and .xi�xj/.yi�yj/� 0 for any i; j 2
f1; : : : ; ng. The comonotonicity of x and y means that
the ordering on f1; : : : ; ng induced by x is not contradic-
tory to that one induced by y. Due to Schmeidler [4.48],
we know that then A is necessarily the Choquet inte-
gral based on the fuzzy measure m W 2f1;:::;ng ! Œ0; 1�,
m.E/D A.1E/, given by (4.6).

The axiomatic approach to aggregation character-
izes some special classes of aggregation functions.
Another important look at aggregation involves con-
struction methods. We can roughly divide them into the
next four groups:

� Optimization methods,� Extension methods,� Constructions based on the given aggregation func-
tions,� Introduction of weights.

An exhaustive overview of constructionmethods for
aggregation functions can be found in [4.17, Chapter 6].
Here we briefly recall the most distinguished ones.

A typical optimization method is the penalty-based
approach proposed in [4.49] and generalized in [4.3],
where dissimilarity functions were introduced, see
also [4.50].

Definition 4.2
A function D W Œ0; 1�2 ! Œ0;1Œ given by

D.x; y/D K .f .x/� f .y// ;

where f W Œ0; 1�!R is a continuous strictly mono-
tone function and K WR! Œ0;1Œ is a convex function

attaining the unique minimum K.0/D 0, is called a dis-
similarity function.

Theorem 4.1
Let D W Œ0; 1�2 ! Œ0;1� be a dissimilarity function.
Then for any n 2N, x1; : : : ; xn 2 Œ0; 1�, the function
h W Œ0; 1�!R given by h.t/DPn

iD1 D.xi; t/ attains its
minimal value exactly on a closed interval Œa; b� and the
formula

A.x1; : : : ; xn/D aC b

2

defines a strongly idempotent symmetric extended ag-
gregation function A on Œ0; 1�.

Construction given in Theorem 4.1 covers:

� the arithmetic mean
�
D.x; y/D .x� y/2

�
,

� quasi-arithmetic means
�
D.x; y/D .f .x/� f .y//2

�
,� the median .D.x; y/D jx� yj/,

among others. This method is a generalization of the
Appolonius of Perga method. Note that in general,
a function D need not be symmetric, i. e., K need not
be an even function (compare with the symmetry of
metrics). As a typical example, let us recall the dissim-
ilarity function Dc W Œ0; 1�2 ! Œ0;1�; c 2�0;1Œ, given
by

Dc.x; y/D
(
x� y if x� y ;

c.y� x/ if x< y ;

yielding by means of Theorem 4.1 the ˛-quantile of
a sample .x1; : : : ; xn/ with ˛ D 1

1Cc .
As a possible generalization of Theorem 4.1, one

can consider different dissimilarity functions Di (which
violates the symmetry of the constructed aggregation
function A). Consider, for example, D1.x; y/D jx�
yj and D2.x; y/D 	 	 	 D Dn.x; y/D 	 	 	 D .x� y/2. Then
the minimization of the sum

Pn
iD1 Di.xi; t/ results in

the extended aggregation function A WSn2N Œ0; 1�n !
Œ0; 1� given by

A.x1; : : : ; xn/D
Med .x1;M.x2; : : : ; xn/� 0:5;M.x2; : : : ; xn/C 0:5/ ;

(4.5)

whenever n > 1.
Some other generalizations based on a generalized

approach to dissimilarity (penalty) functions can be
found in [4.16].
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Extension methods are based on a partial informa-
tion that is available about an aggregation function. As
a typical example, we recall integral-based aggregation
functions. Suppose that for a fixed arity n the values of
an aggregation function A are known at Boolean inputs
only, i. e., we know A j f0; 1gn only. Identifying sub-
sets of the space X D f1; : : : ; ng with the corresponding
characteristic functions, we get the set function m W
2X ! Œ0; 1� given by m.E/D A.1E/. Obviously, m is
monotone, i. e.,m.E1/� m.E2/whenever E1 � E2 � X,
and m.;/D A.0; : : : ; 0/D 0, m.X/D A.1; : : : ; 1/D 1.
Note that m is often called a fuzzy measure [4.51, 52] or
a capacity [4.17].

Among several integral-based extension methods
we recall:

� The Choquet integral [4.53], Chm W Œ0; 1�n ! Œ0; 1�,

Chm.x/D
nX

iD1

x�.i/ 	 .m.E�;i/�m.E�;iC1// ;

(4.6)

where � W X ! X is a permutation such that x�.1/ �
x�.2/ � 	 	 	 � x�.n/, E�;i D f�.i/; : : : ; �.n/g for iD
1; : : : ; n, and E�;nC1 D ;. Note that the Choquet in-
tegral can be seen as a weighted arithmetic mean
with the weights dependent on the ordinal structure
of the input vector x. If the capacity m is additive,
i. e., m.E/DP

i2E m.fig/, then

Chm.x/D
nX

iD1

wixi ;

where for the weights it holds wi D m.fig/, i 2 X
(hence

Pn
iD1 wi D 1).� The Sugeno integral [4.51], Sum W Œ0; 1�n ! Œ0; 1�,

Sum.x/Dmax fmin fx�.i/;m.E�;i/g j i 2 Xg :

If m is maxitive, i. e., m.E/Dmax fm.fig/ j i 2 Eg,
then we recognize the weighted maximum
Sum.x/Dmax fmin fxi; vig j i 2 Xg, with weights
vi D m.fig/ (hence max fvi j i 2 Xg D 1).� The copula-based integral [4.34], IC;m W Œ0; 1�n !
Œ0; 1�, where C W Œ0; 1�2 ! Œ0; 1� is a binary copula,

IC;m.x/D
nX

iD1

�
C
�
x�.i/;m.E�;i/

�
�C �x�.i/;m.E�;iC1/

��
:

This integral covers the Choquet integral if C is
equal to the product copula˘ , I˘;m D Chm, as well
as the Sugeno integral in the case of the greatest
copula Min, IMin;m D Sum. Observe that if the ca-
pacity m is symmetric, i. e., m.E/D vcardE, where
0D v0 � v1 � 	 	 	 � vn D 1, then IC;m turns to OMA
operator introduced in [4.38]. Its special instances
are the OWA operators [4.21] based on the Choquet
integral,

OWA.x/D
nX

iD1

x�.i/ 	wi ;

with wi D vi � vi�1, and the OWMax opera-
tor [4.37],

OWMax.x/Dmax fmin fx�.i/; vig j i 2 Xg :

For better understanding, fix nD 2, i. e., consider
X D f1; 2g. Then m.f1g/D a and m.f2g/D b are any
constants from Œ0; 1�, and m.;/D 0, m.X/D 1 due to
the boundary conditions. The following equalities hold:

� Chm.x; y/D
(
axC .1� a/y if x� y;

.1� b/xC by else;
� Sum.x; y/Dmaxfminfa; xg ;minfb; yg ;minfx; ygg,
� IC;m.x; y/D

(
C.x; a/C y�C.y;a/ if x� y;

C.y; b/C x�C.x;b/ else:

The considered capacity m is symmetric if and only
if aD b, and then:

� Chm.x; y/DOWA.x; y/D .1� a/ 	min fx; ygC a 	
max fx; yg,� Sum.x; y/D OWMax.x; y/DMed.x; a; y/ is the so-
called a-median [4.54, 55],� IC;m.x; y/D OMA.x; y/D f1.min fx; yg/C
f2.max fx; yg/, where f1; f2 W Œ0; 1�! Œ0; 1� are
given by f1.t/D t�C.t; a/ and f2.t/D C.t;a/.

For more details concerning integral-based
constructions of aggregation functions we recom-
mend [4.34, 36, 56] or [4.34] by Klement, Mesiar, and
Pap.

Another kind of extension methods exploiting
capacities is based on the Möbius transform. Re-
call that for a capacity m W 2X ! Œ0; 1�, its Möbius
transform � W 2X !R is given by

�.E/D
X
L�E

.�1/card.EnL/m.L/ :
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Theorem 4.2
[4.57] Let C W Œ0; 1�n ! Œ0; 1� be an n-ary copula, and
m W 2X ! Œ0; 1� a capacity. Then the function AC;m W
Œ0; 1�n ! Œ0; 1� given by

AC;m.x/D
X
E�X

�.E/ 	C.x_ 1Ec/

is an aggregation function.

Special instances of Theorem 4.2 are the Lovász
extension [4.58] corresponding to the strongest cop-
ula Min (AMin;m D I˘;m D Chm is just the Cho-
quet integral), and the Owen extension [4.59] cor-
responding to the product copula ˘ (A˘;m.x/DP

E�X

�
�.E/

Q
i2E xi

�
).

Several extension methods were introduced for bi-
nary copulas, for example, in the case when only the
information about their diagonal section ıC W Œ0; 1�!
Œ0; 1�, ıC.x/D C.x; x/ is available. If ı W Œ0; 1�! Œ0; 1�
is any increasing 2-Lipschitz function such that
ı.0/D 0, ı.1/D 1, and ı.x/� x for each x 2 Œ0; 1�, then
the formula

D.x; y/Dmin

�
x; y;

ı.x/C ı.y/

2

	
; .x; y/ 2 Œ0; 1�2 ;

defines a binary copula with ıD D ı. Note that D is the
greatest symmetric copula with the given diagonal sec-
tion. Among numerous papers dealing with such types
of extensions we recommend the overview paper [4.60].
Similarly, one can extend horizontal or vertical sections
to copulas [4.61]. An overview of extension methods
for triangular norms can be found in [4.26].

The third group of construction methods involves
methods creating new aggregation functions from the
given ones. These methods are applied either to aggre-
gation functions with a fixed arity n, or to extended
aggregation functions. Some of them can be applied to
any kind of aggregation functions. As a typical exam-
ple, recall transformation of aggregation functions by
means of an automorphism ' W Œ0; 1�! Œ0; 1� (i. e., an
isomorphic transformation) given by

A'.x1; : : : ; xn/D '�1 .A .'.x1/; : : : ; '.xn/// :

(4.7)

Transformation (4.7) preserves all algebraic properties
as well as the classification of aggregation functions.
However, some analytical properties can be broken,
for example, the Lipschitz property or n-increasigness.
Some special classes of aggregation functions can be

characterized by a unique member and its isomorphic
transforms. Consider, for example, triangular norms.
Then strict triangular norms are isomorphic to the prod-
uct t-norm ˘ , nilpotent t-norms are isomorphic to
the Łukasiewicz t-norm TL. Similarly, quasi-arithmetic
means with no annihilator are isomorphic to the arith-
metic mean M. The only n-ary aggregation functions
invariant under isomorphic transformations are the lat-
tice polynomials [4.62], i. e., the Choquet integrals
with respect to f0; 1g-valued capacities. So, for nD 2,
only Min;Max;PF and PL are invariant under isomor-
phic transformations. There are several generalizations
of (4.7). One can consider, for example, decreasing bi-
jections � W Œ0; 1�! Œ0; 1� and define A� via (4.7). This
type of transformations reverses the conjunctivity of ag-
gregation function into disjunctivity, and vice versa. It
preserves the existence of a neutral element (annihila-
tor), however, if e is a neutral element of A (a is an
annihilator of A) then ��1.e/ is a neutral element of A�

(��1.a/ is an annihilator of A�). If � is involutive, i. e.,
if � ı �D idŒ0;1�, then .A�/� D A, so there is a duality
between A and A�. The most applied duality is based
on the standard (or Zadeh’s) negation � W Œ0; 1�! Œ0; 1�
given by �.x/D 1� x. In that case, we use the notation
Ad D A� and Ad.x1; : : : ; xn/D 1�A.1�x1; : : : ; 1�xn/.
As a distinguished example recall the class of triangular
conorms which are just the dual aggregation functions
to triangular norms, i. e., S is a triangular conorm [4.26]
if and only if there is a triangular norm T such that
SD Td.

Further generalizations of (4.7) consider different
automorphisms '; '1; : : : ; 'n W Œ0; 1�! Œ0; 1�,

A';'1;:::;'n .x1; : : : ; xn/

D ' .A .'1.x1/; : : : ; 'n.xn/// : (4.8)

Moreover, it is enough to suppose that '1; : : : ; 'n are
monotone (not necessarily strictly) and satisfy 'i.0/D
0, 'i.1/D 1, iD 1; : : : ; n, as in such case it also holds
that for any aggregation function A, A';'1;:::;'n given
by (4.8) is an aggregation function.

Another construction well known from functional
theory is linked to the composition of functions. We
have two kinds of compositionmethods. In the first one,
considering a k-ary aggregation function B W Œ0; 1�k !
Œ0; 1�, we can choose arbitrary k aggregation functions
C1; : : : ;Ck (either all of them are extended aggregation
functions, or all of them are n-ary aggregation functions
for some fixed n> 1), and then we can introduce a new
aggregation function A (either extended, with the con-
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vention A.x/D x, x 2 Œ0; 1�; or n-ary) such that

A.x/D B .C1.x/; : : : ;Ck.x// : (4.9)

As a typical example of construction (4.9), consider B
to be a weighted arithmetic mean W , W.x1; : : : ; xn/DPn

iD1 wixi. Then

A.x/D
kX

iD1

wi 	Ci.x/ ;

i. e., A is a convex combination of aggregation functions
C1; : : : ;Ck.

The second method is based on a partition of the
space of coordinates f1; : : : ; ng into subspaces

f1; : : : ; n1g ; fn1C 1; : : : ; n1 C n2g ; : : : ;
fn1 C 	 	 	C nk�1C 1; ng :

Then, considering a k-ary aggregation function B W
Œ0; 1�k ! Œ0; 1� and aggregation functionsCi W Œ0; 1�ni !
Œ0; 1�, iD 1; : : : ; k, we can define a composite aggrega-
tion function A W Œ0; 1�n ! Œ0; 1� by

A.x1; : : : ; xn/

D B .C1.x1; : : : ; xn1/;C2.xn1C1; : : : ; xn1Cn2/;

: : : ;Ck.xn1C���Cnk�1 ; : : : ; xn// : (4.10)

This method can be generalized by considering an
arbitrary partition of f1; : : : ; ng into fI1; : : : ; Ikg. As an
example, consider the n-ary copula C W Œ0; 1�n ! Œ0; 1�
defined for a fixed partition fI1; : : : ; Ikg of f1; : : : ; ng by

C.x1; : : : ; xn/D
kY

iD1

min
˚
xj j j 2 Ii



:

For more details, see [4.63].
The third group containing constructions based

on some given aggregation functions can be seen as
a group of patchwork methods. As typical examples,
we can recall several types of ordinal sums. Besides
the well-knownMin-based ordinal sums for conjunctive
aggregation functions (especially for triangular norms
and copulas) [4.26, 64], W-ordinal sums for copulas
(or quasi-copulas) [4.65], as well as g-ordinal sums
for copulas [4.66], we recall one kind of ordinal sums
introduced in [4.67] which is applicable to arbitrary ag-
gregation functions.

Theorem 4.3
Let f W Œ0; 1�! Œ�1;1� be a continuous strictly mono-
tone function, and let 0D a0 < a1 < 	 	 	< ak D 1 be
a given sequence of real constants. Then for any system
.Ai/

k
iD1 of n-ary (extended) aggregation functions the

function A W Œ0; 1�n ! Œ0; 1� .A W [n2N Œ0; 1�n ! Œ0; 1�/
given by

A.x/D f�1

0
@
0
@ kX

jD1

f .aj�iC .aj� aj�1/Aj.x.j//

1
A

�
k�1X
jD1

f .aj/

1
A ; (4.11)

where

x.j/ D
�
x.j/1 ; : : : ; x.j/n

�
and

x.j/i Dmax
�
0;min

�
1;

xi � aj�1

aj� aj�1

		
;

is an n-ary (extended) aggregation function.

Observe that if all Ai’s are triangular norms (copu-
las, quasi-copulas, triangular conorms, continuous ag-
gregation functions, idempotent aggregation functions,
symmetric aggregation functions) then so is the newly
constructed aggregation function A.

The fourth group contains construction methods
allowing one to introduce weights into the aggrega-
tion procedure. The quantitative look at weights can
be seen as the corresponding repetition of inputs, and
the weights roughly correspond to the occurrence of
single input arguments. For example, when consid-
ering a strongly idempotent (symmetric) aggregation
function constructed by means of a dissimilarity func-
tion D (see Theorem 4.1) and weights w1; : : : ;wn

(at least one of them should be positive, and all of
them are nonnegative), we look for minimizers of the
sum

Pn
iD1 wiD.xi; t/. For example, ifD.x; y/D .x�y/2,

then we obtain the weighted arithmetic mean

W.x1; : : : ; xn/D
Pn

iD1 wixiPn
iD1 wi

:

This approach can also be introduced in the case when
different dissimilarity functions are applied. As an ex-
ample, consider the aggregation function A W Œ0; 1�n !
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Œ0; 1� given by (4.5). We look for minimizers of the
expression w1jx1� tjCPn

iD2 wi.xi� t/2 and the result-
ing weighted aggregation function Aw W Œ0; 1�n ! Œ0; 1�
is given by

Aw.x1; : : : ; xn/

DMed

�
x1;M.x2; : : : ; xn/� w1

2
Pn

iD2 wi
;

M.x2; : : : ; xn/C w1

2
Pn

iD2 wi

�
:

Considering the integer weights wD .w1; : : : ;wn/, for
an extended aggregation function A which is symmetric
and strongly idempotent, we obtain the weighted aggre-
gation function Aw W Œ0; 1�n ! Œ0; 1� given by

Aw.x1; : : : ; xn/

D A

0
B@x1; : : : ; x1„ ƒ‚ …

w1-times

; x2; : : : ; x2„ ƒ‚ …
w2-times

; : : : ; xn; : : : ; xn„ ƒ‚ …
wn-times

1
CA :

The strong idempotency of A also allows one to in-
troduce rational weights into aggregation. Observe that

for each k 2N, the weights k 	w result in the same
weighted aggregation function as when considering the
weights w only. For general weights the limit approach
described in [4.17, Proposition 6.27] should be applied.

The qualitative approach to weights considers
a transformation of inputs x1; : : : ; xn accordingly to the
considered weights (importances) w1; : : : ;wn 2 Œ0; 1�,
with constraint that at least once it holds wi D 1. This
approach is applied when we consider an extended
aggregation function A with a strong neutral element
e 2 Œ0; 1�. Then the weighted aggregation function Aw W
Œ0; 1�n ! Œ0; 1� is given by

Aw.x1; : : : ; xn/D A .h.w1; x1/; : : : ; h.wn; xn// ;

where h W Œ0; 1�2 ! Œ0; 1� is a relevancy transforma-
tion (RET) operator [4.24, 68] satisfying h.0; x/D e,
h.1; x/D x, which is increasing in the second coordi-
nate as well as in the first coordinate for all x� e, while
h.	; x/ is decreasing for all x� e. As an example, con-
sider the RET operator h given by

h.w; x/D wxC .1�w/e :

For more details, we recommend [4.17, Chapter 6].

4.4 Concluding Remarks

As already mentioned, all introduced results (some-
times for special types of aggregation functions only)
can be straightforwardly extended to any interval I �
Œ�1;1�. Moreover, one can aggregate more gen-
eral objects than real numbers. For example, a quite
expanding field concerns interval mathematics. The
aggregation of interval inputs can be done coordinate-
wise,

A .Œx1; y1�; : : : ; Œxn; yn�/

D ŒA1.x1; : : : ; xn/;A2.y1; : : : ; yn/� ;

where A1;A2 are an arbitrary couple of classical aggre-
gation functions such that A1 � A2 (mostly A1 D A2 is
considered). However, there are also more sophisticated
approaches [4.69].

Already in 1942, Menger [4.43] introduced the ag-
gregation of distribution functions whose supports are
contained in Œ0;1� (distance functions), which led
not only to the concept of triangular norms [4.44],
but also to triangle functions directly aggregating

such distribution functions [4.70]. Some triangle func-
tions are derived from special aggregation functions
(triangular norms), some of them have more com-
plex background (as a distinguished example recall
the standard convolution of distribution functions).
For an overview and details we recommend [4.71,
72].

In 1965, Zadeh [4.73] introduced fuzzy sets. Their
aggregation, in particular union and intersection, is
again built by means of special aggregation functions
on Œ0; 1�, namely by means of triangular conorms and
triangular norms [4.26]. Triangular norms also play an
important role in the Zadeh extension principle [4.74–
76] allowing to extend standard aggregation functions
acting on real inputs to the generalized aggregation
functions acting on fuzzy inputs. As a typical exam-
ple recall the arithmetic of fuzzy numbers [4.77]. In
some special fuzzy logics also uninorms have found
the application in modeling conjunctions. Among re-
cent generalizations of fuzzy set theory recall the type
2-fuzzy sets, including interval-valued fuzzy sets, or
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n-fuzzy sets. In all these fields, a deep study of aggre-
gation functions is one of the major theoretical tasks to
build a sound background.

Observe that all mentioned particular domains are
covered by the aggregation on posets, where up to now

only some particular general results are known [4.22,
78]. We expect an enormous growth of interest in this
field, as it can be seen, for example, in its special sub-
domain dealing with computing and aggregation with
words [4.79–81].
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