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33. Neurodynamics

Robert Kozma, Jun Wang, Zhigang Zeng

This chapter introduces basic concepts, phenom-
ena, and properties of neurodynamic systems.
it consists of four sections with the first two
on various neurodynamic behaviors of gen-
eral neurodynamics and the last two on two
types of specific neurodynamic systems. The
neurodynamic behaviors discussed in the first
two sections include attractivity, oscillation,
synchronization, and chaos. The two specific
neurodynamics systems are memrisitve neuro-
dynamic systems and neurodynamic optimization
systems.
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33.1 Dynamics of Attractor and Analog Networks

An attractor, as a well-known mathematical object,
is central to the field of nonlinear dynamical sys-
tems (NDS) theory, which is one of the indispensable
conceptual underpinnings of complexity science. An
attractor is a set towards which a variable moves ac-
cording to the dictates of a nonlinear dynamical system,
evolves over time, such that points get close enough
to the attractor, and remain close even if they are
slightly disturbed. To well appreciate what an attractor
is, some corresponding NDS notions, such as phase or
state space, phase portraits, basins of attractions, initial
conditions, transients, bifurcations, chaos, and strange
attractors are needed to tame some of the unruliness of
complex systems.

Most of us have at least some inkling of what non-
linear means, which can be illustrated by the most
well-known and vivid example of the butterfly effect
of a chaotic system that is nonlinear. It has prompted

the use of the image of tiny air currents produced
by a butterfly flapping its wing in Brazil, which are
then amplified to the extent that they may influence
the building up of a thunderhead in Kansas. Although
no one can actually claim that there is such a linkage
between Brazilian lepidopterological dynamics and cli-
matology in the Midwest of the USA, it does serve to
vividly portray nonlinearity in the extreme.

As the existence of both the nonlinearity and
the capacity in passing through different regimes of
stability and instability, the outcomes of the nonlin-
ear dynamical system are unpredictable. These dif-
ferent regimes of a dynamical system are under-
stood as different phases governed by different at-
tractors, which means that the dynamics of each
phase of a dynamical system are constrained within
the circumscribed range allowable by that phase’s
attractors.
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33.1.1 Phase Space and Attractors

To better grasp the idea of phase space, a time se-
ries and phase portrait have been used to represent the
data points. Time series display changes in the val-
ues of variables on the y-axis (or the z-axis), and time
on the x-axis as in a time series chart, however, the
phase portrait plots the variables against each other
and leaves time as an implicit dimension not explicitly
plotted. Attractors can be displayed by phase portraits
as the long-term stable sets of points of the dynami-
cal system. This means that the locations in the phase
portrait towards which the system’s dynamics are at-
tracted after transient phenomena have died down. To
illustrate phase space and attractors, two examples are
employed.
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Fig. 33.1 Schematics of an unpushed swing
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Fig. 33.2 Phase portrait and fixed point attractor of an un-
pushed swing

Imagine a child on a swing and a parent pulling
the swing back. This gives a good push to make the
child move forward. When the child is not moving for-
ward, he will move backward on the swing as shown
in Fig. 33.1. The unpushed swing will come to rest
as shown in the times series chart and phase space.
The time series show an oscillation of the speed of the
swing, which slows down and eventually stops, that is
its flat lines. In phase space, the swing’s speed is plotted
against the distance of the swing from the central point
called a fixed point attractor since it attracts the sys-
tem’s dynamics in the long run. The fixed point attractor
in the center of Fig. 33.2 is equivalent to the flat line in
Fig. 33.3. The fixed point attractor is another way to see
and say that an unpushed swing will come to a state of
rest in the long term. The curved lines with arrows spi-
raling down to the center point in Fig. 33.2 display what
is called the basin of attraction for the unpushed swing.
These basins of attraction represent various initial con-
ditions for the unpushed swing, such as starting heights
and initial velocities.
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Fig. 33.3 Time series of the unpushed swing
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Fig. 33.4 Time series chart of the pushed swing
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Now consider another type of a similar dynami-
cal system, this time the swing is pushed each time it
comes back to where the parent is standing. The time
series chart of the pushed swing is shown in Fig. 33.4
as a continuing oscillation. This oscillation is around
a zero value for y and is positive when the swing is
going in one direction and negative when the swing is
going in the other direction. As a phase space diagram,
the states of variables against each other are shown in
Fig. 33.5. The unbroken oval in Fig. 33.5 is a different
kind of attractor from the fixed point one in Fig. 33.2.
This attractor is well known as a limit cycle or peri-
odic attractor of a pushed swing. It is called a limit
cycle because it represents the cyclical behavior of the
oscillations of the pushed swing as a limit to which
the dynamical systems adheres under the sway of this
attractor. It is periodic because the attractor oscillates
around the same values, as the swing keeps going up
and down until the s has a same heights from the lowest
point. Such dynamical system can be called periodic for
it has a repeating cycle or pattern.

By now, what we have learned about attractors can
be summarized as follows: they are spatially displayed
phase portraits of a dynamical system as it changes over
the course of time, thus they represent the long-term
dynamics of the system so that whatever the initial con-
ditions represented as data points are, their trajectories
in phase space fall within its basins of attraction, they
are attracted to the attractor. In spite of wide usage in
mathematics and science, asRobinson points out there is
still no precise definition of an attractor, although many
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Fig. 33.5 Phase portrait and limit cycle attractor of
a pushed swing (after [33.1])

have been offered [33.2]. So he suggests thinking about
an attractor as a phase portrait that attracts a large set of
initial conditions and has some sort of minimality prop-
erty, which is the smallest portrait in the phase space of
the system. The attractor has the property of attracting
the initial conditions after any initial transient behavior
has died down. The minimality requirement implies the
invariance or stability of the attractor. As a minimal ob-
ject, the attractor cannot be split up into smaller subsets
and retains its role as what dominates a dynamical sys-
tem during a particular phase of its evolution.

33.1.2 Single Attractors
of Dynamical Systems

Standard methods for the study of stability of dynamical
systems with a unique attractor include the Lyapunov
method, the Lasalles invariance principle, and the com-
bination of thereof. Usually, given the properties of
a (unique) attractor, we can realize a dynamical system
with such an attractor.

Since the creation of the fundamental theorems of
Lyapunov stability, many researchers have gone fur-
ther and proved that most of the fundamental Lyapunov
theories are reversible. Thus, from theory, this demon-
strates that these theories are efficacious; i. e., there
necessarily exists the corresponding Lyapunov function
if the solution has some kind of stability. However, as
for the construction of an appropriate V function for the
determinant of stability, researchers are still interested.
The difference between the existence and its construc-
tion is large. However, there is no general rule for the
construction of the Lyapunov function. In some cases,
different researchers have different methods for the
construction of the Lyapunov function based on their
experience and technique. Those, who can construct
a good quality Lyapunov function, can get more use-
ful information to demonstrate the effectiveness of their
theories. Certainly, many successful Lyapunov func-
tions have a practical background. For example, some
equations inferred from the physical model have a clear
physical meaning such as the mechanics guard system,
in which the total sum of the kinetic energy and po-
tential energy is the appropriate V function. The linear
approximate method can be used; i. e., for the nonlin-
ear differential equation, firstly find its corresponding
linear differential equation’s quadric form positive de-
fined V function, then consider the nonlinear quality for
the construction of a similar V function.

Grossberg proposed and studied additive neural net-
works because they add nonlinear contributions to the
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neuron activity. The additive neural network has been
used for many applications since the 1960s [33.3, 4],
including the introduction of self-organizing maps. In
the past decades, neural networks as a special kind
of nonlinear systems have received considerable at-
tention. The study of recurrent neural networks with
their various generalizations has been an active research
area [33.5–17]. The stability of recurrent neural net-
works is a prerequisite for almost all neural network
applications. Stability analysis is primarily concerned
with the existence and uniqueness of equilibrium points
and global asymptotic stability, global exponential sta-
bility, and global robust stability of neural networks at
equilibria. In recent years, the stability analysis of re-
current neural networks with time delays has received
much attention [33.18, 19]. Single attractors of dynam-
ical systems are shown in Fig. 33.6.

33.1.3 Multiple Attractors
of Dynamical Systems

Multistable systems have attracted extensive interest in
both modeling studies and neurobiological research in
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Fig. 33.6 Single attractors of dynamical systems
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Fig. 33.7 Two limit cycle attractors of dynamical systems

recent years due to their feasibility to emulate and ex-
plain biological behavior [33.20–34]. Mathematically,
multistability allows the system to have multiple fixed
points and periodic orbits. As noted in [33.35], more
than 25 years of experimental and theoretical work has
indicated that the onset of oscillations in neurons and
in neuron populations is characterized by multistabil-
ity.

Multistability analysis is different from monosta-
bility analysis. In monostability analysis, the objective
is to derive conditions that guarantee that each nonlin-
ear system contains only one equilibrium point, and all
the trajectories of the neural network converge to it.
Whereas in multistability analysis, nonlinear systems
are allowed to have multiple equilibrium points. Sta-
ble and unstable equilibrium points, and even periodic
trajectories may co-exist in a multistable system.

The methods to study the stability of dynamical
systems with a unique attractor include the Lyapunov
method, the Lasalles invariance principle, and the com-
bination of the two methods. One unique attractor can
be realized by one dynamical system, but it is much
more complicated for multiple attractors to be realized
by one dynamical system or dynamical multisystems
because of the compatibility, agreement, and behavior
optimization among the systems. Generally, the usual
global stability conditions are not adequately applicable
to multistable systems. The latest results on multistabil-
ity of neural networks can be found in [33.36–52]. It is
shown in [33.45, 46] that the n-neuron recurrent neural
networks with one step piecewise linear activation func-
tion can have 2n locally exponentially stable equilib-
rium points located in saturation regions by partitioning
the state space into 2n subspaces. In [33.47], mul-
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Fig. 33.8 24 equilibrium point attractors of dynamical sys-
tems
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tistability of almost periodic solutions of recurrently
connected neural networks with delays is investigated.
In [33.48], by constructing a Lyapunov functional and
using matrix inequality techniques, a delay-dependent
multistability criterion on recurrent neural networks is
derived. In [33.49], the neural networks with a class
of nondecreasing piecewise linear activation functions
with 2r corner points are considered. It is proved that
the n-neuron dynamical systems can have and only
have .2rC 1/n equilibria under some conditions, of
which .rC1/n are locally exponentially stable and oth-
ers are unstable. In [33.50], some multistability prop-
erties for a class of bidirectional associative memory
recurrent neural networks with unsaturation piecewise
linear transfer functions are studied based on local inhi-
bition. In [33.51], for two classes of general activation
functions, multistability of competitive neural networks

with time-varying and distributed delays is investigated
by formulating parameter conditions and using inequal-
ity techniques. In [33.52], the existence of 2n stable
stationary solutions for general n-dimensional delayed
neural networks with several classes of activation func-
tions is presented through formulating parameter condi-
tions motivated by a geometrical observation. Two limit
cycle attractors and 24 equilibrium point attractors of
dynamical systems are shown in Figs. 33.7 and 33.8,
respectively.

33.1.4 Conclusion

In this section, we briefly introduced what attractors
can be summarized as, and phase space and attractors.
Furthermore, single-attractor and multiattractors of dy-
namical systems were also discussed.

33.2 Synchrony, Oscillations, and Chaos in Neural Networks

33.2.1 Synchronization

Biological Significance of Synchronization
Neurodynamics deals with dynamic changes of neu-
ral properties and behaviors in time and space at
different levels of hierarchy in neural systems. The
characteristic spiking dynamics of individual neurons
is of fundamental importance. In large-scale systems,
such as biological neural networks and brains with
billions of neurons, the interaction among the con-
nected neural components is crucial in determining col-
lective properties. In particular, synchronization plays
a critical role in higher cognition and conscious-
ness experience [33.53–57]. Large-scale synchroniza-
tion of neuronal activity arising from intrinsic asyn-
chronous oscillations in local electrical circuitries of
neurons are at the root of cognition. Synchroniza-
tion at the level of neural populations is characterized
next.

There are various dynamic behaviors of potential
interest for neural systems. In the simplest case, the
system behavior converges to a fixed point, when all
major variables remain unchanged. A more interesting
dynamic behavior emerges when the system behavior
periodically repeats itself at period T , which will be
described first. Such periodic oscillations are common
in neural networks and are often caused by the pres-
ence of inhibitory neurons and inhibitory neural pop-
ulations. Another behavior emerges when the system

neither converges to a fixed point nor exhibits peri-
odic oscillations, rather it maintains highly complex,
chaotic dynamics. Chaos can be microscopic effect at
the cellular level, or mesoscopic dynamics of neural
populations or cortical regions. At the highest level
of hierarchy, chaos can emerge as the result of large-
scale, macroscopic effect across cortical areas in the
brain.

Considering the temporal dynamics of a system
of interacting neural units, limit cycle oscillations and
chaotic dynamics are of importance. Synchronization
in limit cycle oscillations is considered first, which il-
lustrates the basic principles of synchronization. The
extension to more complex (chaotic) dynamics is de-
scribed in Sect. 33.2.3. Limit cycle dynamics is de-
scribed as a cyclic repetition of the system’s behavior
at a given time period T . The cyclic repetition covers
all characteristics of the system, e.g., microscopic cur-
rents, potentials, and dynamic variables; see, e.g., the
Hodgkin–Huxley model of neurons [33.58]. Limit cy-
cle oscillations can be described as a cyclic loop of the
system trajectory in the space of all variables. The state
of the system is given as a point on this trajectory at any
given time instant. As time evolves, the point belong-
ing to the system traverses along the trajectory. Due to
the periodic nature of the movement, the points describ-
ing the system at time t and tCT coincide fully. We
can define a convenient reference system by selecting
a center point of the trajectory and describe the mo-
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tion as the vector pointing from the center to the actual
state on the trajectory. This vector has an amplitude and
phase in a suitable coordinate system, denoted as �.t/
and ˚.t/, respectively. The evolution of the phase in an
isolated oscillator with frequency !0 can be given as
follows

d˚.t/

dt
D !0 : (33.1)

Several types of synchronization can be defined.
The strongest synchronization takes place when two
(or multiple) units have identical behaviors. Consider-
ing limit cycle dynamics, strong synchronization means
that the oscillation amplitude and phase are the same
for all units. This means complete synchrony. An ex-
ample of two periodic oscillators is given by the clocks
shown in Fig. 33.9a–c [33.59]. Strong synchroniza-
tion means that the two pendulums are connected with
a rigid object forcing them move together. The lack of
connection between the two pendulums means the ab-
sence of synchronization, i. e., they move completely
independently. An intermediate level of synchrony may
arise with weak coupling between the pendulums, such
as a spring or a flexible band. Phase synchrony takes
place when the amplitudes are not the same, but the
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Fig. 33.9a–d Synchronization in pendulums, in phase and out of phase (after [33.59]). Bottom plots: Illustration of
periodic trajectories, case of in-phase (a–c) and out-of-phase oscillations (b–d)

phases of the oscillations could still coincide. Fig-
ure 33.9b–d depicts the case of out-of-phase synchrony,
when the phases of the two oscillators are exactly the
opposite.

Amplitude Measures of Synchrony
Denote by aj.t/ the time signal produced by the individ-
ual units (neurons); jD 1; : : : ;N, and the overall signal
of interacting units (A) is determined as

A.t/D 1=N
NX

jD1

aj.t/ : (33.2)

The variance of time series A.t/ is given as follows

�2
A D ˝

A2.t/
˛�hA.t/i2 : (33.3)

Here h f .t/i denotes time averaging over a give time
window. After determining the variance of the individ-
ual channels �2

Aj
based on (33.3), the synchrony �N in

the system with N components is defined as follows

�2
N D �2

A

1=N
PN

iD1 �
2
Ai

: (33.4)
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This synchrony measure has a nonzero value in syn-
chronized and partially synchronized systems 0< �N <
1, while �N D 0 means the complete absence of syn-
chrony in neural networks [33.60].

Fourier transform-based signal processing methods
are very useful for the characterization of synchrony
in time series, and they are widely used in neural net-
work analysis. The Fourier transform makes important
assumptions on the analyzed time series, including sta-
tionary or slowly changing statistical characteristics and
ergodicity. In many applications these approximations
are appropriate. In analyzing large-scale synchrony on
brain signals, however, alternative methods are also
justified. Relevant approaches include the Hilbert trans-
form for rapidly changing brain signals [33.61, 62].
Here both Fourier and Hilbert-based methods are out-
lined and avenues for their applications in neural net-
works are indicated. Define the cross correlation func-
tion (CCF) between discretely sampled time series xi.t/
and xi.t/, tD 1; : : : ;N as follows

CCFij.�/D 1

T

T��X
tD1

Œxi.tC �/� hxii�Œxj.t/� hxji� :

(33.5)

Here hxii is the mean of the signal over period T ,
and it is assumed that xi.t/ is normalized to unit vari-
ance. For completely correlated pairs of signals, the
maximum of the cross correlation is 1, for uncorrelated
signals it equals 0. The cross power spectral density
CPSDij.!/, cross spectrum for short, is defined as the
Fourier transform of the cross correlation as follows:
CPSDij.!/DF.CCFij.�//. If iD j, i. e., the two chan-
nels coincide, then we talk about autocorrelation and
auto power spectral density APSDii.!/; for details of
Fourier analysis, see [33.63]. Coherence �2 is defined
by normalizing the cross spectrum by the autospectra

�2
ij.!/D

jCPSDij.!/j2
jAPSDii.!/jjAPSDjj.!/j : (33.6)

The coherence satisfies 0 � �2.!/� 1 and it con-
tains useful information on the frequency content of
the synchronization between signals. If coherence is
close to unity at some frequencies, it means that the
two signals are closely related or synchronized; a co-
herence near zero means the absence of synchrony at
those frequencies. Coherence functions provide useful
information on synchrony in brain signals at various
frequency bands [33.64]. For other information-theo-
retical characterizations, including mutual information
and entropy measures.

Phase Synchronization
If the components of the neural network are weakly
interacting, the synchrony evaluated using the ampli-
tude measure � in (33.4) may be low. There can still
be a meaningful synchronization effect in the system,
based on phase measures. Phase synchronization is de-
fined as the global entrainment of the phases [33.65],
which means a collective adjustment of their rhythms
due to their weak interaction. At the same time, in sys-
tems with phase synchronization the amplitudes need
not be synchronized. Phase synchronization is often
observed in complex chaotic systems and it has been
identified in biological neural networks [33.61, 65].

In complex systems, the trajectory of the system
in the phase space is often very convoluted. The ap-
proach described in (33.1), i. e., choosing a center point
for the oscillating cycle in the phase space with natural
frequency !0, can be nontrivial in chaotic systems. In
such cases, the Hilbert transform-based approach can
provide a useful tool for the characterization of phase
synchrony. Hilbert analysis determines the analytic sig-
nal and its instantaneous frequency, which can be used
to describe phase synchronization effects. Considering
time series s.t/, its analytic signal z.t/ is defined as fol-
lows [33.62]

z.t/D s.t/C iOs.t/D A.t/ei˚.t/ : (33.7)

Here A.t/ is the analytic amplitude, ˚.t/ is the an-
alytic phase, while Os.t/ is the Hilbert transform of s.t/,
given by

Os.t/D 1

�
PV

C1Z
�1

s.t/

t� �
d� ; (33.8)

where PV stands for the principal value of the integral
computed over the complex plane. The analytic signal
and its instantaneous phase can be determined for an
arbitrary broadband signal. However, the analytic sig-
nal has clear meaning only at a narrow frequency band,
therefore, the bandpass filter should precede the eval-
uation of analytic signal in data with broad frequency
content.

The Hilbert method of analytic signals is illus-
trated using actual local field potentials measured over
rabbits with an array of chronically implanted intracra-
nial electrodes [33.67]. The signals have been filtered
in the theta band (3�7Hz). An example of time se-
ries s.t/ is shown in Fig. 33.10a. The Hilbert trans-
form Os.t/ is depicted in Fig. 33.10b in red, while blue
color shows s.t/. Figure 33.10c shows the analytic
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Fig. 33.10a–d Demonstration of the Hilbert analytic signal approach on electroencephalogram (EEG) signals (af-
ter [33.66]); (a) signal s.t/; (b) Hilbert transform Os.t/ (red) of signal s.t/ (blue); (c) instantaneous phase ˚.t/; and
analytic signal in complex plane z.t/

phase ˚.t/, and Fig. 33.10d depicts the analytic z.t/
signal in the complex plane. Figure 33.11 shows the
unwrapped instantaneous phase with bifurcating phase
curves indicating desynchronization at specific time in-
stances �1:3 s, �0:4 s, and 1 s. The plot on the right-
hand side of Fig. 33.11 depicts the evolution of the in-
stantaneous frequency in time. The frequency is around
5Hz most of the time, indicating phase synchroniza-
tion. However, it has very large dispersion at a few
specific instances (desynchronization).

Synchronization between channels x and y can be
measured using the phase lock value (PLV) defined as
follows [33.61]

PLVxy.t/D

ˇ̌̌
ˇ̌̌
ˇ
1

T

tCT=2Z
t�T=2

eiŒ˚x.�/�˚y.�/�d�

ˇ̌̌
ˇ̌̌
ˇ : (33.9)

PLV ranges from 1 to 0, where 1 indicates complete
phase locking. PLV defined in (33.9) determines an av-
erage value over a time window of length T . Note that

PLV is a function of t by applying the given sliding win-
dow. PLV is also the function of the frequency, which
is being selected by the bandpass filter during the pre-
processing phase. By changing the frequency band and
time, the synchronization can be monitored at various
conditions. This method has been applied productively
in cognitive experiments [33.68].

Synchronization–Desynchronization
Transitions

Transitions between neurodynamic regimes with and
without synchronization have been observed and ex-
ploited for cognitive monitoring. The Haken–Kelso–
Bunz (HKB) model is one of the prominent and elegant
approaches providing a theoretical framework for syn-
chrony switching, based on the observations related
to bimanual coordination [33.69]. The HKB model
invokes the concepts of metastability and multista-
bility as fundamental properties of cognition. In the
experiment, the subjects were instructed to follow the
rhythm of a metronome with their index fingers in an
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anti-phase manner. It was observed that by increasing
the metronome frequency, the subject spontaneously
switched their anti-phase movement to in-phase at a cer-
tain oscillation frequency and maintained it thereon
even if the metronome frequency was decreased again
below the given threshold.

The following simple equation is introduced to de-
scribe the dynamics observed: d�˚=dtD� sin.˚/�
2" sin.2˚/. Here �˚ D 	1�	2 is the phase difference
between the two finger movements, control parameter "
is related to the inverse of the introduced oscillatory fre-
quency. The system dynamics is illustrated in Fig. 33.12
by the potential surface V, where stable fixed points
correspond to local minima. For low oscillatory fre-
quencies (high "), there are stable equilibria at anti-
phase conditions. As the oscillatory frequency increases
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Fig. 33.11a,b Illustration of instantaneous phases; (a) un-
wrapped phase with bifurcating phase curves indicating
desynchronization at specific time instances�1:3 s,�0:4 s,
and 1 s; (b) evolution of instantaneous frequency in time

(low ") the dynamics transits to a state where only the
in-phase equilibrium is stable.

Another practical example of synchrony-desyn-
chrony transition in neural networks is given by image
processing. An important basic task of neural networks
is image segmentation, which is difficult to accom-
plish with excitatory nodes only. There is evidence that
biological neural networks use inhibitory connections
for completing basic pattern separation and integration
tasks [33.70]. Synchrony between interacting neurons
may indicate the recognition of an input. A typical neu-
ral network architecture implementing such a switch
between synchronous and nonsynchronous states us-
ing local excitation and global inhibition is shown in
Fig. 33.13. This system uses amplitude difference to
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Fig. 33.12 Illustration of the potential surface (V) of the
HKB system as a function of the phase difference in radi-
ans �˚ and inverse frequency ". The transition from anti-
phase to in-phase behavior is seen as the oscillation fre-
quency increases (" decreases)

Fig. 33.13 Neural network with local excitation and
a global inhibition node (black; after [33.70])
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measure synchronization between neighboring neurons.
Phase synchronization measures have been proposed as
well to accomplish the segmentation and recognition
tasks [33.71]. Phase synchronization provides a very
useful tool for learning and control of the oscillations
in weakly interacting neighborhoods.

33.2.2 Oscillations in Neural Networks

Oscillations in Brains
The interaction between opposing tendencies in phys-
ical and biological systems can lead to the onset of
oscillations. Negative feedback between the system’s
components plays an important role in generating os-
cillations in electrical systems. Brains as large-scale
bioelectrical networks consist of components oscillat-
ing at various frequencies. The competition between
inhibitory and excitatory neurons is a basic ingredi-
ent of cortical oscillations. The intricate interaction
between oscillators produces the amazingly rich oscil-
lations that we experimentally observe as brain rhythms
at multiple time scales [33.72, 73].

Oscillations occur in the brain at different time
scales, starting from several milliseconds (high fre-
quencies) to several seconds (low frequencies). One
can distinguish between oscillatory components based
on their frequency contents, including delta (1�4Hz),
theta (4�7Hz), alpha (7�12Hz), beta (12�30Hz), and
gamma (30�80Hz) bands. The above separation of
brain wave frequencies is somewhat arbitrary, however,
they can be used as a guideline to focus on various
activities. For example, higher cognitive functions are
broadly assumed be manifested in oscillations in the
higher beta and gamma bands.

Brain oscillations take place in time and space.
A large part of cognitive activity happens in the cortex,
which is a convoluted surface of the six-layer cortical
sheet of gyri and sulci. The spatial activity is organized
on multiple scales as well, starting from the neuronal
level (�m), to granules (mm), cortical activities (several
cm), and hemisphere-wide level (20 cm). The tempo-
ral and spatial scales are not independent, rather they
delicately interact and modulate each other during cog-
nition. Modern brain monitoring tools provide insight
to these complex space–time processes [33.74].

Characterization of Oscillatory Networks
Oscillations in neural networks are synchronized activ-
ities of populations of neurons at certain well-defined
frequencies. Neural systems are often modeled as the
interaction of components which oscillate at specific,

well-defined frequencies. Oscillatory dynamics can cor-
respond to either microscopic neurons, to mesoscopic
populations of tens of thousands neurons, or to macro-
scopic neural populations including billions of neurons.
Oscillations at the microscopic level have been thor-
oughly studied using spiking neuron models, such as
the Hodgkin–Huxley equation (HH). Here we focus on
populations of neurons, which have some natural os-
cillation frequencies. It is meaningful to assume that
the natural frequencies are not identical due to the
diverse properties of populations in the cortex. Inter-
estingly, the diversity of oscillations at the microscopic
and mesoscopic levels can give rise to large-scale syn-
chronous dynamics at higher levels. Such emergent
oscillatory dynamics is the primary subject of this
section.

Consider N coupled oscillators with natural fre-
quencies !j; jD 1; : : : ;N. A measure of the synchro-
nization in such systems is given by parameter R,
which is often called the order parameter. This ter-
minology was introduced by Haken [33.75] to de-
scribe the emergence of macroscopic order from dis-
order. The time-varying order parameter R.t/ is defined
as [33.76]

R.t/D j1=N�˙N
jD1e

i�j.t/j : (33.10)

Order parameter R provides a useful synchroniza-
tion measure for coupled oscillatory systems. A com-
mon approach is to consider a globally coupled system,
in which all the components interact with each other.
This is the broadest possible level of interaction. The
local coupling model represents just the other extreme
limit, i. e., each node interacts with just a few others,
which are called its direct neighbors. In a one-dimen-
sional array, a node has two neighbors on its left and
right, respectively (assuming periodic boundary con-
ditions). In a two-dimensional lattice, a node has four
direct neighbors, and so on. The size of the neigh-
borhood can be expanded, so the connectivity in the
network becomes more dense. There is of special inter-
est in networks that have a mostly regular neighborhood
with some further neighbors added by a selection rule
from the whole network. The addition of remote or non-
local connections is called rewiring, and the networks
with rewiring are small world networks. They have been
extensively studied in network theory [33.76–78]. Fig-
ure 33.14 illustrates local (top left) and global coupling
(bottom right), as well as intermediate coupling, with
the bottom left plot giving an example of network with
random rewiring.
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The Kuramoto Model
The Kuramoto model [33.79] is a popular approach
to describe oscillatory neural systems. It implements
mean-field (global) coupling. The synchronization in
this model allows an analytical solution, which helps to
interpret the underlying dynamics in clear mathemati-
cal terms [33.76]. Let �j and !j denote the phase and the
inherent frequency of the i-th oscillator. The oscillators
are coupled by a nonlinear interaction term depending
on their pair-wise phase differences. In the Kuramoto
model, the following sinusoidal coupling term has been
used to model neural systems

d�j
dt

D !jC K

N
˙N

jD1 sin.�i� �j/; jD 1; : : : ;N :

(33.11)

Here K denotes the coupling strength and K D 0
means no coupling. The system in (33.11) and its
generalizations have been studied extensively since
its first introduction by Kuramoto [33.79]. Kuramoto
used Lorenztian initial distribution of phases � defined
as: L.�/D �=f�.� 2C .! �!0/

2/g. This leads to the
asymptotic solution N ! inf and t ! inf for order pa-
rameter R in simple analytic terms

RD
p
1� .Kc=K/ if K > Kc;RD 0 otherwise :

(33.12)

Here Kc denotes the critical coupling strength given
by Kc D 2� . There is no synchronization between the

a) b)

c) d)

Fig. 33.14a-d Network architectures with various connec-
tivity structures: (a) local, (b) and (c) are intermediate, and
(d) global (mean-field) connectivity

oscillators if K � Kc, and the synchronization becomes
stronger as K increases at supercritical conditions K >
Kc, see Fig. 33.15. Inputs can be used to control syn-
chronization, i. e., a highly synchronized system can
be (partially) desynchronized by input stimuli [33.80,
81]. Alternatively, input stimuli can induce large-scale
synchrony in a system with low level of synchrony, as
evidenced by cortical observations [33.82].

Neural Networks as Dynamical Systems
A dynamical system is defined by its equation of mo-
tion, which describes the location of the system as
a function of time t

dX.t; �/

dt
D F.X/; X 2 Rn : (33.13)

Here X is the state vector describing the state of
the system in the n-dimensional Euclidean space X D
X.x1; : : : ; xn/ 2 Rn and � is the vector of system param-
eters. Proper initial conditions must be specified and it
is assumed that F.X/ is a sufficiently smooth nonlinear
function. In neural dynamics it is often assumed that
the state space is a smooth manifold, and the goal is to
study the evolution of the trajectory of X.t/ in the state
space as time varies along the interval Œt0;T�.

The Cohen–Grossberg (CG) equation is a general
formulation of the motion of a neural network as a dy-
namical system with distributed time delays in the
presence of inputs. The CG model has been studied
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Fig. 33.15 Kuramoto model in the mean-field case. Depen-
dence of order parameter R on the coupling strength K.
Below a critical value Kc, the order parameter is 0, indi-
cating the absence of synchrony; synchrony emerges for K
above the critical value
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thoroughly in the past decades and it served as a starting
point for various other approaches. The general form of
the CG model is [33.83]

dzi.t/

dt
D�ai.xi.t//

2
4bi.xi.t//� NX

jD1

aijfj.xj.t//

�
NX

jD1

bijfj.xj.t� �ij//C uj

3
5 ;

iD 1; : : : ;N : (33.14)

Here X.t/D Œx1.t/; x2.t/; : : : ; xN.t/�T is the state
vector describing a neural network with N neurons.
Function ai.t/ describes the amplification, bi.t/ denotes
a properly behaved function to guarantee that the solu-
tion remains bounded, fi.x/ is the activation function, ui
denotes external input, aij and bij are components of the
connection weight matrix and the delayed connection
weight matrix, respectively, and �ij describes the time
delays between neurons, i; jD 1; : : : ; n. The solution
of (33.14) can be determined after specifying suitable
initial conditions.

There are various approaches to guarantee the sta-
bility of the CG equation as it approaches its equilibria
under specific constraints. Global convergence assum-
ing symmetry of the connectivity matrix has been
shown [33.83]. The symmetric version of a simpli-
fied CG model has become popular as the Hopfield
or Hopfield–Tank model [33.84]. Dynamical proper-
ties of CG equation have been studied extensively,
including asymptotic stability, exponential stability, ro-
bust stability, and stability of periodic bifurcations and
chaos. Symmetry requirements for the connectivity ma-
trix have been relaxed, still guaranteeing asymptotic
stability [33.85]. CG equations can be employed to
find the optimum solutions of a nonlinear optimization
problem when global asymptotic stability guarantees
the stability of the solution [33.86]. Global asymptotic
stability of the CG neural network with time delay is
studied using linear matrix inequalities (LMI). LMI is
a fruitful approach for global exponential stability by
constructing Lyapunov functions for broad classes of
neural networks.

Bifurcations in Neural Network Dynamics
Bifurcation theory studies the behavior of dynamical
systems in the neighborhood of bifurcation points, i. e.,
at points when the topology of the state space abruptly
changes with continuous variation of a system parame-
ter. An example of the state space is given by the folded

surface in Fig. 33.16, which illustrates a cusp bifurca-
tion point. Here �D Œa; b� is a two-dimensional param-
eter vector, X 2R1 [33.87]. As parameter b increases,
the initially unfolded manifold undergoes a bifurcation
through a cusp folding with three possible values of
state vector X. This is an example of pitchfork bifur-
cation, when a stable equilibrium point bifurcates into
one unstable and two stable equilibria. The projection to
the a� b plane shows the cusp bifurcation folding with
multiple equilibria. The presence of multiple equilib-
ria provides the conditions for the onset of oscillatory
states in neural networks. The transition from fixed
point to limit cycle dynamics can described by bifur-
cation theory.

Neural Networks with Inhibitory Feedback
Oscillations in neural networks are typically due to de-
layed, negative feedback between neural population.
Mean-field models are described first, starting with
Wilson–Cowan (WC) oscillators, which are capable of
producing limit cycle oscillations. Next, a class of more
general networks with excitatory–inhibitory feedback
are described, which can generate unstable limit cycle
oscillations.

The Wilson–Cowan model is based on statistical
analysis of neural populations in the mean-field limit,
i. e., assuming that all components of the system fully
interact [33.88, 89]. In the brain it may describe a sin-
gle cortical column in one of the sensory cortices, which
in turn interacts with other columns to generate syn-
chronous or asynchronous oscillations, depending on
the cognitive state. In its simplest manifestation, the
WC model has one excitatory and one inhibitory com-

Oscillatory
states

Unstable
equilibrium

Stable
equilibrium

Bifurcation
point

X

b

x

b

a

Fig. 33.16 Folded surface in the state space illustrating
cusp bifurcation following (after [33.87]). By increasing
parameter b, the stable equilibrium bifurcates to two stable
and one unstable equilibria
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ponent, with interaction weights denoted as wEE, wEI,
wIE, and wII. Nonlinear function f stands for the stan-
dard sigmoid with rate constant a

dXE

dt
D�XE C f .wEEXE CwIEXI CPE/ ; (33.15)

dXI

dt
D�XI C f .wEIXE CwIIXI CPI/ ; (33.16)

f .x/D 1=Œ1C e�ax� : (33.17)

PE and PI describe the effect of input stimuli
through the excitatory and inhibitory nodes, respec-
tively. The inhibitory weights are negative, while the
excitatory ones are positive. The WC system has been
extensively studied with dynamical behaviors includ-
ing fixed point and oscillatory regimes. In particular,
for fixed weight values, it has been shown that the
WC system undergoes a pitchfork bifurcation by chang-
ing PE or PI input levels. Figure 33.17 shows the
schematics of the two-node system, as well as the illus-
tration of the oscillatory states following the bifurcation
with parameters wEE D 11:5, wII D�2, wEI D�wIE D
�10, and input values PE D 0 and PI D�4, with rate
constant aD 1. Stochastic versions of the Wilson–
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Fig. 33.17 Schematic diagram of the Wilson–Cowan os-
cillator with excitatory (E) and inhibitory (I) populations;
solid lines show excitatory, dashed show inhibitory con-
nections. The right panels show the trajectory in the phase
space of XE �XI and the time series of the oscillatory sig-
nals (after [33.90])

Cowan oscillators have been extensively developed as
well [33.90]. Coupled Wilson–Cowan oscillators have
been used in learning models and have demonstrated
applicability in a number of fields, including visual pro-
cessing and pattern classification [33.91–93].

Oscillatory neural networks with interacting ex-
citatory–inhibitory units have been developed in Free-
man K sets [33.94]. That model uses an asymmetric
sigmoid function f .x/ modeled based on neurophysio-
logical activations and given as follows

f .x/D qf1� exp.�Œ1=.q.ex� 1//�/g : (33.18)

Here q is a parameter specifying the slope and
maximal asymptote of the sigmoid curve. The sigmoid
has unit gain at zero, and has maximum gain at pos-
itive x values due to its asymmetry, see (33.18). This
property provides the opportunity for self-sustained os-
cillations without input at a wide range of parameters.
Two versions of the basic oscillatory units have been
studied, either one excitatory and one inhibitory unit,
or two excitatory and two inhibitory units. This is il-
lustrated in Fig. 33.18. Stability conditions of the fixed
point and limit cycle oscillations have been identi-
fied [33.95, 96]. The system with two E and two I units
has the advantage that it avoids self-feedback, which is
uncharacteristic in biological neural populations. Inter-
estingly, the extended system has an operating regime
with an unstable equilibrium without stable equilib-
ria. This condition leads to an inherent instability in
a dynamical regime when the system oscillates with-
out input. Oscillations in the unstable region have been
characterized and conditions for sustained unstable os-
cillations derived [33.96]. Simulations in the region
confirmed the existence of limit cycles in the unstable
regime with highly irregular oscillatory shapes of the
cycle, see Fig. 33.18, upper plot. Regions with regular
limit cycle oscillations and fixed point oscillations have
been identified as well, see Fig. 33.18, middle and bot-
tom [33.97].

Spatiotemporal Oscillations
in Heterogeneous NNs

Neural networks describe the collective behavior of
populations of neurons. It is of special interest to study
populations with a large-number of components having
complex, nonlinear interactions. Homogeneous popula-
tions of neurons allow mathematical modeling in mean-
field approximation, leading to oscillatory models such
as the Wilson–Cowan oscillators and Freeman KII sets.
Field models with heterogeneous structure and dynamic
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Fig. 33.18a,b Illustration of excitatory–inhibitory models. (a) Left:
simplified model with one excitatory (E) and one inhibitory (I)
node. Right: extended model with two E and two I nodes. (b) Simu-
lations with the extended model with two E and two I nodes; y1�y4
show the activations of the nodes; b1: limit cycle oscillations in the
unstable regime; b2: oscillations in the stable limit cycle regime;
b3: fixed point regime (after [33.97])

variables are of great interest as well, as they are the
prerequisite of associative memory functions of neural
networks.

A general mathematical formulation views the neu-
ropil, the interconnected neural tissue of the cortex,
as a dynamical system evolving in the phase space,
see (33.13). Consider a population of spiking neu-
rons each of which is modeled by a Hodgkin–Huxley
equation. The state of a neuron at any time instant is
determined by its depolarization potential, microscopic

current, and spike timing. Each neuron is represented
by a point in the state space given by the above coor-
dinates comprising vector X.t/ 2Rn, and the evolution
of a neuron is given with its trajectory the state space.
Neuropils can include millions and billions of neurons;
thus the phase space of the neurons contains a myriads
of trajectories. Using the ensemble density approach of
population modeling, the distribution of neurons in the
state space at a given time t is described by a prob-
ability density function p.X; t/. The ensemble density
approach models the evolution of the probability den-
sity in the state space [33.98]. One popular approach
uses the Langevin formalism given next.

Field Theories of Neural Networks
Consider the stochastic process X.t/, which is described
by the Langevin equation [33.99]

dX.t/D �.X.t//dtC �.X.t//dW.t/ : (33.19)

Here � and � denote the drift and variance, respec-
tively, and dW.t/ is a Wiener process (Brown noise)
with normally distributed increments. The probability
density p.X; t/ of Langevin equation (33.19) satisfies
the following form of the Fokker–Planck equation, after
omitting higher-order terms

@p.X; t/

@t
D�

nX
iD1

@

@xi
Œ�i.X/p.X; t/�

C
nX

iD1

nX
jD1

@2

@xi@xj
ŒDij.X/p.X; t/� :

(33.20)

The Fokker–Planck equation has two components.
The first one is a flow term containing drift vec-
tor �i.X/, while the other term describes diffusion
with diffusion coefficient matrix Dij.X; t/. The Fokker–
Planck equation is a partial differential equation (PDE)
that provides a deterministic description of macroscopic
events resulting from random microscopic events. The
mean-field approximation describes time-dependent,
ensemble average population properties, instead of
keeping track of the behavior of individual neurons.

Mean-field models can be extended to describe the
evolution of neural populations distributed in physi-
cal space. Considering the cortical sheet as a de facto
continuum of the highly convoluted neural tissue (the
neuropil), field theories of brains are developed using
partial differential equations in space and time. The cor-
responding PDEs are wave equations. Consider a sim-
ple one-dimensional model to describe the dynamics of
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the current density ˚.x; t/ as a macroscopic variable. In
the simple case of translational invariance of the con-
nectivity function between arbitrary two points of the
domain with exponential decay, the following form of
the wave equation is obtained [33.100]

@2˚

@t2
C .!2

0 � v2
/˚ C 2!0
@˚

@t

D
�
!2
0 C!0

@

@t

�
SŒ˚.x; t/CP.x; t/� : (33.21)

Here 
D @2=x2 is the Laplacian in one dimen-
sion, S.:/ is a sigmoid transfer function for firing
rates, P.x; t/ describes the effect of inputs; !0 D v=� ,
where v is the propagation velocity along lateral axons,
and � is the spatial relaxation constant of the applied
exponential decay function [33.100]. The model can
be extended to excitatory–inhibitory components. An
example of simulations with a one-dimensional neu-
ral field model incorporating excitatory and inhibitory
neurons is given in Fig. 33.19 [33.101]. The figure
shows the propagation of two traveling pulses and the
emergence of transient complex behavior ultimately
leading to an elevated firing rate across the whole tis-
sue [33.101]. For recent developments in brain field
models, see [33.90, 102].

Coupled Map Lattices for NNs
Spatiotemporal dynamics in complex systems has been
modeled using coupled map lattices (CML) [33.103].
CMLs use continuous state space and discrete time and
space coordinates. In other words, CMLs are defined on
(finite or infinite lattices) using discrete time iterations.
Using periodic boundary conditions, the array can be
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Fig. 33.19 Numerical simulations of a one-dimensional
neural field model showing the interaction of two travel-
ing pulses (after [33.101])

folded into a circle in one dimension, or into a torus
for lattices of dimension 2 or higher. CML dynamics is
described as follows

xnC1.i/D .1�"/f .xn.i//C"
1

K

K=2X
kD�K=2

f .xn.iCk// ;

(33.22)

where xn.i/ is the value of node i at iteration step n; iD
1; : : : ;N; N is the size of the lattice. Note that in (33.22)
a periodic boundary condition applies. f .:/ is a nonlin-
ear mapping function used in the iterations and " is the
coupling strength, 0� " � 1. "D 0 means no coupling,
while "D 1 is maximum coupling. The CML rule de-
fined in (33.22) has two terms. The first term on the
right-hand side is an iterative update of the i-th state,
while the second term describes coupling between the
units. Parameter K has a special role in coupled map
lattices; it defines the size of the neighborhoods.K D N
describes mean-field coupling, while smaller K values
belong to smaller neighborhoods. The geometry of the
system is similar to the ones given in Fig. 33.14. The
case of local neighborhood is the upper left diagram in
Fig. 33.14, while mean-field coupling is the lower right
diagram. Similar rules have been defined for higher-di-
mensional lattices.

CMLs exhibit very rich dynamic behavior, includ-
ing fixed points, limit cycles, and chaos, depending
on the choice of control parameters, ";K; and func-
tion f .:/ [33.103, 104]. An example of the cubic sig-
moid function

f .x; a/D ax3 � axC x

is shown in Fig. 33.20, together with the bifurcation di-
agram with respect to parameter a. By increasing the
value of parameter a, the map exhibits bifurcations from
fixed point to limit cycle, and ultimately to the chaotic
regime.

Complex CML dynamics has been used to design
dynamic associative memory systems. In CML, each
memory is represented as a spatially coherent oscil-
lation and is learnt by a correlational learning rule
operating in limit cycle or chaotic regimes. In such sys-
tems, both the memory capacity and the basin volume
for each memory are larger in CML than in the Hopfield
model employing the same learning rule [33.105]. CML
chaotic memories reduce the problem of spurious mem-
ories, but they are not immune to it. Spurious memories
prevent the system from exploiting its memory capacity
to the fullest extent.
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Fig. 33.20a,b Transfer function for CML: (a) shape of the cubic transfer function f .x; a/D ax3 � axC x; (b) bifurcation
diagram over parameter a

Stochastic Resonance
Field models of brain networks develop determinis-
tic PDEs (Fokker–Planck equation) for macroscopic
properties based on a statistical description of the
underlying stochastic dynamics of microscopic neu-
rons. In another words, they are deterministic sys-
tems at the macroscopic level. Stochastic resonance
(SR) deals with conditions when a bistable or multi-
stable system exhibits strong oscillations under weak
periodic perturbations in the presence of random
noise [33.106]. In a typical SR situation, the weak
periodic carrier wave is insufficient to cross the po-
tential barrier between the equilibria of a multistable
system. Additive noise enables the system to sur-
mount the barrier and exhibit oscillations as it transits
between the equilibria. SR is an example of pro-
cesses when properly tuned random noise improves
the performance of a nonlinear system and it is
highly relevant to neural signal processing [33.107,
108].

A prominent example of SR in a neural net-
work with excitatory and inhibitory units is described
in [33.109]. In the model developed, the activation
rate of excitatory and inhibitory neurons is described
by �e and �i, respectively. The ratio ˛ D �e=�i is an
important parameter of the system. The investigated
neural populations exhibit a range of dynamic behav-
iors, including convergence to fixed point, damped
oscillations, and persistent oscillations. Figure 33.21

summarizes the main findings in the form of a phase
diagram in the space of parameters ˛ and noise level.
The diagram contains three regions. Region I is at low
noise levels and it corresponds to oscillations decay-
ing to a fixed point at an exponential rate. Region II
corresponds to high noise, when the neural activity ex-
hibits damped oscillations as it approaches the steady
state. Region III, however, demonstrates sustained os-
cillations for an intermediate level of noise. If a is
above a critical value (see the tip of Region III),

Noise

Dynamical SR

Network
oscillations

Berger effect
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III
I

Critical
fluctuations

Damped oscillations

Band-pass filter

Threshold SR

α

Fig. 33.21 Stochastic resonance in excitatory–inhibitory
neural networks; ˛ describes the relative strength of inhi-
bition. Region I: fixed point dynamics. Region II: damped
oscillatory regime. Region III: sustained periodic oscilla-
tions illustrating stochastic resonance (after [33.109])
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Fig. 33.22a,b Lorenz attractor in the chaotic regime; (a) time series of the variables X;Y , and Z; (b) butterfly-winged
chaotic Lorenz attractor in the phase space spanned by variables X;Y , and Z

the activities in the steady state undergo a first-order
phase transition at a critical noise level. The inten-
sive oscillations in Region III at an intermediate noise
level show that the output of the system (oscilla-
tions) can be enhanced by an optimally selected noise
level.

The observed phase transitions may be triggered by
neuronal avalanches, when the neural system is close
to a critical state and the activation of a small number
of neurons can generate an avalanche process of activa-
tion [33.110]. Neural avalanches have been described
using self-organized criticality (SOC), which has been
identified in neural systems [33.111]. There is much
empirical evidence of the cortex conforming to the self-
stabilized, scale-free dynamics with avalanches during
the existence of some quasi-stable states [33.112, 113].
These avalanches maintain a metastable background
state of activity.

Phase transitions have been studied in models with
extended layers of excitatory and inhibitory neuron
populations, respectively. A specific model uses ran-
dom cellular neural networks to describe conditions
with sustained oscillations [33.114]. The role of var-
ious control parameters has been studied, including
noise level, inhibition, and rewiring. Rewiring describes
long axonal connections to produce neural network ar-
chitectures resembling connectivity patterns with short
and long-range axons in the neuropil. By properly tun-
ing the parameters, the system can reside in a fixed
point regime in isolation, but it will switch to per-
sistent oscillations under the influence of learnt input
patterns [33.115].

33.2.3 Chaotic Neural Networks

Emergence of Chaos in Neural Systems
Neural networks as dynamical systems are described
by the state vector X.t/ which obeys the equation of
motion (33.13). Dynamical systems can exhibit fixed
point, periodic, and chaotic behaviors. Fixed points and
periodic oscillations, and transitions from one to the
other through bifurcation dynamics has been described
in Sect. 33.2.2. The trajectory of a chaotic system does
not converge to a fixed point or limit cycle, rather it
converges to a chaotic attractor. Chaotic attractors, or
strange attractors, have the property that they define
a fractal set in the state space, moreover, chaotic trajec-
tories close to each other at some point, diverge from
each other exponentially fast as time evolves [33.116,
117].

An example of the chaotic Lorenz attractor is shown
in Fig. 33.22. The Lorenz attractor is defined by a sys-
tem of three ordinary differential equations (ODEs)
with nonlinear coupling, originally derived for the de-
scription of the motion of viscous flows [33.118]. The
time series belonging to variables X; Y;Z are shown in
Fig. 33.22a for parameters in the chaotic region, while
the strange attractor is illustrated by the trajectory in the
phase space, see Fig. 33.22b.

Chaotic Neuron Model
In chaotic neural networks the individual components
exhibit chaotic behavior, and the goal is to study the or-
der emerging from their interaction. Nerve membranes
produce propagating action potentials in a highly non-
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linear process which can generate oscillations and bi-
furcations to chaos. Chaos has been observed in the gi-
ant axons of squid and it has been used to study chaotic
behavior in neurons. The Hodgkin–Huxley equations
can model nonlinear dynamics in the squid giant axon
with high accuracy [33.58]. The chaotic neuron model
of Aihara et al. is an approximation of the Hodgkin–
Huxley equation and it reproduces chaotic oscillations
observed in the squid giant axon [33.119, 120]. The
model uses the following simple iterative map

x.tC 1/D kx.t/�˛f .x.t//C a ; (33.23)

where x.t/ is the state of the chaotic neuron at time t,
k is a decay parameter, ˛ characterizes refractoriness,
a is a combined bias term, and f .y.t// is a nonlin-
ear transfer function. In the chaotic neuron model,
the log sigmoid transfer function is used, see (33.17).
Equation (33.23) combined with the sigmoid produces
a piece-wise monotonous map, which generates chaos.

Chaotic neural networks composed of chaotic neu-
rons generate spatio-temporal chaos and are able to
retrieve previously learnt patterns as the chaotic trajec-
tory traverses the state space. Chaotic neural networks
are used in various information processing systems
with abilities of parallel distributed processing [33.121–
123]. Note that CMLs also consist of chaotic oscillators
produced by a nonlinear local iterative map, like in
chaotic neural networks. CMLs define a spatial rela-
tionship among their nodes to describe spatio-tempo-
ral fluctuations. A class of cellular neural networks
combines the explicit spatial relationships similar to
CMLs with detailed temporal dynamics using Cohen–
Grossberg model [33.83] and it has been used success-
fully in neural network applications [33.124, 125].

Collective Chaos in Neural Networks
Chaos in neural networks can be an emergent macro-
scopic property stemming from the interaction of non-
linear neurons, which are not necessarily chaotic in iso-
lation. Starting from the microscopic neural level up to
the macroscopic level of cognition and consciousness,
chaos plays an important role in neurodynamics [33.82,
126–129]. There are various routes to chaos in neu-
ral systems, including period-doubling bifurcations to
chaos, chaotic intermittency, and collapse of a two-di-
mensional torus to chaos [33.130, 131].

Chaotic itinerancy is a special form of chaos,
which is between ordered dynamics and fully devel-
oped chaos. Chaotic itinerancy describes the trajectory
through high-dimensional state space of neural activ-
ity [33.132]. In chaotic itinerancy the chaotic system

is destabilized to some degree but some traces of the
trajectories remain. This describes an itinerant behavior
between the states of the system containing destabilized
attractors or attractor ruins, which can be fixed point,
limit cycle, torus, or strange attractor with unstable di-
rections. Dynamical orbits are attracted to a certain
attractor ruin, but they leave via an unstable mani-
fold after a (short or long) stay around it and move
toward another attractor ruin. This successive chaotic
transition continues unless a strong input is received.
A schematic diagram is shown in Fig. 33.23, where the
trajectory of a chaotic itinerant system is shown visit-
ing attractor ruins. Chaotic itinerancy is associated with
perceptions and memories, the chaos between the at-
tractor ruins is related to searches, and the itinerancy
is associated with sequences in thinking, speaking, and
writing.

Frustrated chaos is a dynamical system in a neu-
ral network with a global attractor structure when local
connectivity patterns responsible for stable oscilla-
tory behaviors become intertwined, leading to mutually
competing attractors and unpredictable itinerancy be-
tween brief appearances of these attractors [33.133].
Similarly to chaotic itinerancy, frustrated chaos is re-
lated to destabilization of the dynamics and it generates
itinerant, wavering oscillations between the orbits of
the network, the trajectories of which have been stable
with the original connectivity pattern. Frustrated chaos
is shown to belong to the family of intermittency type
of chaos [33.134, 135].

To characterize chaotic dynamics, tools of statistical
time series analysis are useful. The studies may involve
time and frequency domains. Time domain analysis

C

D

F
E

B

A

Fig. 33.23 Schematic illustration of itinerant chaos with
a trajectory visiting attractor ruins (after [33.132])
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includes attractor reconstruction, i. e., the attractor is
depicted in the state space. Chaotic attractors have frac-
tal dimensions, which can be evaluated using one of the
available methods [33.136–138]. In the case of low-di-
mensional chaotic systems, the reconstruction can be
illustrated using two or three-dimensional plots. An ex-
ample of attractor reconstruction is given in Fig. 33.22
for the Lorenz system with three variables. Attractor re-
construction of a time series can be conducted using
time-delay coordinates [33.139].

Lyapunov spectrum analysis is a key tool in iden-
tifying and describing chaotic systems. Lyapunov ex-
ponents measure the instability of orbits in different
directions in the state space. It describes the rate of ex-
ponential divergence of trajectories that were once close
to each other. The set of corresponding Lyapunov ex-
ponents constitutes the Lyapunov spectrum. The maxi-
mum Lyapunov exponent �� is of crucial importance;
as a positive leading Lyapunov exponent �� > 0 is the
hallmark of chaos. X.t/ describes the trajectory of the
system in the phase space starting from X.0/ at time tD
0. Denote by X�x0.t/ the perturbed trajectory starting
from ŒX.0/C�x0�. The leading Lyapunov exponent can
be determined using the following relationship [33.140]

�� D lim
t!1

�x0!0

t�1 lnŒjX�x0.t/�X.t/j=j�x0j� ;

(33.24)

where �� < 0 corresponds to convergent behavior,
�� D 0 indicates periodic orbits, and �� > 0 signi-
fies chaos. For example, the Lorenz attractor has �� D
0:906, indicating strong chaos (Fig. 33.24). Equa-
tion (33.24) measures the divergence for infinitesimal
perturbations in the limit of infinite time series. In prac-
tical situations, especially for short time series, it is
often difficult to distinguish weak chaos from random
perturbations. One must be careful with conclusions
about the presence of chaos when �� has a value
close to zero. Lyapunov exponents are widely used in
brain monitoring using electroencephalogram (EEG)
analysis, and various methods are available for charac-
terization of normal and pathological brain conditions
based on Lyapunov spectra [33.141, 142].

Fourier analysis conducts data processing in the
frequency domain, see (33.5) and (33.6). For chaotic
signals, the shape of the power spectra is of special
interest. Power spectra often show 1=f˛ power law be-
havior in log–log coordinates, which is the indication of
scale-free system and possibly chaos. Power-law scal-
ing in systems at SOC is suggested by a linear decrease

in log power with increasing log frequency [33.143].
Scaling properties of criticality facilitate the coexis-
tence of spatially coherent cortical activity patterns for
a duration ranging from a few milliseconds to a few
seconds. Scale-free behavior characterizes chaotic brain
activity both in time and frequency domains. For com-
pleteness, we mention the Hilbert space analysis as an
alternative to Fourier methods. The analytic signal ap-
proach based on Hilbert analysis is widely used in brain
monitoring.

Emergent Macroscopic Chaos
in Neural Networks

Freeman’s K model describes spatio-temporal brain
chaos using a hierarchical approach. Low-level K sets
were introduced in the 1970s, named in the honor of
Aharon Kachalsky, an early pioneer of neural dynam-
ics [33.82, 94]. K sets are multiscale models, describ-
ing an increasing complexity of structure and dynam-
ics. K sets are mesoscopic models and represent an
intermediate level between microscopic neurons and
macroscopic brain structures. K-sets are topological
specifications of the hierarchy of connectivity in neu-
ral populations in brains. K sets describe the spatial
patterns of phase and amplitude of the oscillations gen-
erated by neural populations. They model observable
fields of neural activity comprising electroencephalo-
grams (EEGs), local field potentials (LFPs), and mag-
netoencephalograms (MEGs) [33.144]. K sets form
a hierarchy for cell assemblies with components start-
ing from K0 to KIV [33.145, 146].

K0 sets represent noninteractive collections of neu-
rons forming cortical microcolumns; a K0 set models
a neuron population of� 103�104 neurons. K0 models
dendritic integration in average neurons and an asym-
metric sigmoid static nonlinearity for axon transmis-
sion. The K0 set is governed by a point attractor with
zero output and stays at equilibrium except when per-
turbed. In the original K-set models, K0s are described
by a state-dependent, linear second-order ordinary dif-
ferential equation (ODE) [33.94]

ab d2X.t/=dt2 C .aC b/ dX.t/=dtCP.t/D U.t/ :

(33.25)

Here a and b are biologically determined time con-
stants. X.t/ denotes the activation of the node as a func-
tion of time. U.t/ includes an asymmetric sigmoid
function Q.x/, see (33.18), acting on the weighted sum
of activation from neighboring nodes and any external
input.
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Fig. 33.24a–c KIII diagram and behaviors; (a) 3 double layer hierarchy of KIII and time series over each layer, exhibit-
ing intermittent chaotic oscillations, (b) phase space reconstruction using delayed time coordinates

KI sets are made of interacting K0 sets, either exci-
tatory or inhibitory with positive feedback. The dynam-
ics of KI is described as convergence to a nonzero fixed
point. If KI has sufficient functional connection density,
then it is able to maintain a nonzero state of back-
ground activity by mutual excitation (or inhibition).

KI typically operates far from thermodynamic equi-
librium. Neural interaction by stable mutual excitation
(or mutual inhibition) is fundamental to understanding
brain dynamics. KII sets consists of interacting exci-
tatory and inhibitory KI sets with negative feedback.
KII sets are responsible for the emergence of limit cy-
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cle oscillation due to the negative feedback between the
neural populations. Transitions from point attractor to
limit cycle attractor can be achieved through a suit-
able level of feedback gain or by input stimuli, see
Fig. 33.18.

KIII sets made up of multiple interacting KII sets.
Examples include the sensory cortices. KIII sets gen-
erate broadband, chaotic oscillations as background
activity by combined negative and positive feedback
among several KII populations with incommensurate
frequencies. The increase in nonlinear feedback gain
that is driven by input results in the destabilization of
the background activity and leads to the emergence of
a spatial amplitude modulation (AM) pattern in KIII.
KIII sets are responsible for the embodiment of mean-
ing in AM patterns of neural activity shaped by synaptic
interactions that have been modified through learning in
KIII layers. The KIII model is illustrated in Fig. 33.24
with three layers of excitatory–inhibitory nodes. In
Fig. 33.24a the temporal dynamics is illustrated in each
layer, while Fig. 33.24b shows the phase space recon-
struction of the attractor. This is a chaotic behavior
resembling the dynamics of the Lorenz attractor in
Fig. 33.22. KIV sets are made up of interacting KIII
units to model intentional neurodynamics of the limbic
system. KIV exhibits global phase transitions, which
are the manifestations of hemisphere-wide coopera-
tion through intermittent large-scale synchronization.
KIV is the domain of Gestalt formation and preaffer-
ence through the convergence of external and internal
sensory signals leading to intentional action [33.144,
146].

Properties of Collective Chaotic Neural
Networks

KIII is an associative memory, encoding input data
in spatio-temporal AM patterns [33.147, 148]. KIII
chaotic memories have several advantages as compared
to convergent recurrent networks:

1. They produce robust memories based on relatively
few learning examples even in noisy environment.

2. The encoding capacity of a network with a given
number of nodes is exponentially larger than their
convergent counterparts.

3. They can recall the stored data very quickly, just as
humans and animals can recognize a learnt pattern
within a fraction of a second.

The recurrent Hopfield neural network can store
an estimated 0.15N input patterns in stable attractors,

where N is the number of neurons [33.84]. Exact anal-
ysis by Mceliece et al. [33.149] shows that the memory
capacity of the Hopfield network isN=.4logN/. Various
generalizations provide improvements over the initial
memory gain [33.150, 151]. It is of interest to eval-
uate the memory capacity of the KIII memory. The
memory capacity of chaotic networks which encode
input into chaotic attractors is, in principle, exponen-
tially increased with the number of nodes. However,
the efficient recall of the stored memories is a serious
challenge. The memory capacity of KIII as a chaotic as-
sociative memory device has been evaluated with noisy
input patterns. The results are shown in Fig. 33.25,
where the performance of Hopfield and KIII memo-
ries are compared; the top two plots are for Hopfield
nets, while the lower two figures describe KIII re-
sults [33.152]. The light color shows recognition rate
close to 100%, while the dark color means poor recog-
nition approaching 0. The right-hand column has higher
noise levels. The Hopfield network shows the well-
known linear gain curve� 0:15. The KIII model, on the
other hand, has a drastically better performance. The
boundary separating the correct and incorrect classifi-
cation domains is superlinear; it has been fitted with as
a fifth-order polynomial.

Cognitive Implications
of Intermittent Brain Chaos

Developments in brain monitoring techniques provide
increasingly detailed insights into spatio-temporal neu-
rodynamics and neural correlates of large-scale cog-
nitive processing [33.74, 153–155]. Brains as large-
scale dynamical systems have a basal state, which is
a high-dimensional chaotic attractor with a dynamic
trajectory wandering broadly over the attractor land-
scape [33.82, 126]. Under the influence of external
stimuli, cortical dynamics is destabilized and condenses
intermittently to a lower-dimensional, more organized
subspace. This is the act of perception when the subject
identifies the stimulus with a meaning in the context
of its previous experience. The system stays intermit-
tently in the condensed, more coherent state, which
gives rise to a spatio-temporal AM activity pattern cor-
responding to the stimulus in the given context. The
AM pattern is meta-stable and it disintegrates as the
system returns to the high-dimensional chaotic basal
state (less synchrony) Brain dynamics is described
as a sequence of phase transitions with intermittent
synchronization-desynchronization effects. The rapid
emergence of synchronization can be initiated by (Heb-
bian) neural assemblies that lock into synchronization
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Fig. 33.25a,b Comparison of the memory capacity of (a) Hopfield and (b) KIII neural networks; the noise level is 40%
(left); 50% (right); the lighter the color the higher the recall accuracy. Observe the linear gain for Hopfield networks and
the superlinear (fifth-order) separation for KIII (after [33.152])

across widespread cortical and subcortical areas [33.82,
156, 157].

Intermittent oscillations in spatio-temporal neural
dynamics are modeled by a neuropercolation approach.
Neuropercolation is a family of probabilistic models
based on the theory of probabilistic cellular automata
on lattices and random graphs and it is motivated by
structural and dynamical properties of neural popu-
lations. Neuropercolation constructs the hierarchy of
interactive populations in networks as developed in
Freeman K models [33.94, 144], but replace differen-
tial equations with probability distributions from the
observed random networks that evolve in time [33.158].
Neuropercolation considers populations of cortical neu-
rons which sustain their background state by mutual
excitation, and their stability is guaranteed by the neural
refractory periods. Neural populations transmit and re-

ceive signals from other populations by virtue of small-
world effects [33.77, 159]. Tools of statistical physics
and finite-size scaling theory are applied to describe
critical behavior of the neuropil. Neuropercolation the-
ory provides a mathematical approach to describe phase
transitions and critical phenomena in large-scale, in-
teractive cortical networks. The existence of phase
transitions is proven in specific probabilistic cellular au-
tomata models [33.160, 161].

Simulations by neuropercolation models demon-
strate the onset of large-scale synchronization-desyn-
chronization behavior [33.162]. Figure 33.26 illustrates
results of intermittent phase desynchronization for neu-
ropercolation with excitatory and inhibitory popula-
tions. Three main regimes can be distinguished, sepa-
rated by critical noise values "1 > "0. In Regime I " >
"1, Fig. 33.26a, the channels are not synchronous and
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Fig. 33.26a–c Phase synchroni-
zation–desynchronization with
excitatory–inhibitory connections
in neuropercolation with 256 gran-
ule nodes; the z-axis shows the pair-
wise phase between the units. (a)
No synchrony; (b) intermittent syn-
chrony; (c) highly synchronized,
frozen phase regime (after [33.162])

the phase values are distributed broadly. In Regime II
"1 > " > "0, Fig. 33.26b, the phase lags are drastically
reduced indicating significant synchrony over extended
time periods. Regime III is observed for high val-
ues of "0 > ", when the channels demonstrate highly
synchronized, frozen dynamics, see Fig. 33.26c. Sim-

ilar transitions can be induced by the relative strength
of inhibition, as well as by the fraction of rewiring
across the network [33.114, 115, 163]. The probabilistic
model of neural populations reproduces important prop-
erties of the spatio-temporal dynamics of cortices and is
a promising approach for large-scale cognitive models.

33.3 Memristive Neurodynamics

Sequential processing of fetch, decode, and execu-
tion of instructions through the classical von Neu-
mann digital computers has resulted in less efficient
machines as their ecosystems have grown to be in-
creasingly complex [33.164]. Though modern digital
computers are fast and complex enough to emulate the
brain functionality of animals like spiders, mice, and
cats [33.165, 166], the associated energy dissipation in
the system grows exponentially along the hierarchy
of animal intelligence. For example, to perform cer-
tain cortical simulations at the cat scale even at an
83 times slower firing rate, the IBM team has to em-
ploy Blue Gene/P (BG/P), a super computer equipped
with 147 456 CPUs and 144TBs of main memory. On
the other hand, the human brain contains more than
100 billion neurons and each neuron has more than
20 000 synapses [33.167]. Efficient circuit implementa-
tion of synapses, therefore, is very important to build
a brain-like machine. One active branch of this re-
search area is cellular neural networks (CNNs) [33.168,
169], where lots of multiplication circuits are utilized in
a complementary metal-oxide-semiconductor (CMOS)
chip. However, since shrinking the current transistor
size is very difficult, introducing a more efficient ap-
proach is essential for further development of neural
network implementations.

The memristor was first authorized by Chua as
the fourth basic circuit element in electrical circuits in
1971 [33.170]. It is based on the nonlinear character-

istics of charge and flux. By supplying a voltage or
current to the memristor, its resistance can be altered.
In this way, the memristor remembers information. In
that seminal work, Chua demonstrated that the memris-
tance M.q/ relates the charge q and the flux ' in such
a way that the resistance of the device will change with
the applied electric field and time

M D d'

dq
: (33.26)

The parameter M denotes the memristance of a charge
controlled memristor, measured in ohms. Thus, the
memristanceM can be controlled by applying a voltage
or current signal across the memristor. In other words,
the memristor behaves like an ordinary resistor at any
given instance of time, where its resistance depends on
the complete history of the device [33.170].

Although the device was proposed nearly four
decades ago, it was not until 2008 that researchers from
HP Labs showed that the devices they had fabricated
were indeed two-terminal memristors [33.171]. Fig-
ure 33.27 shows the I–V characteristics of a generic
memristor, where memristance behavior is observed
for TiO2-based devices. A TiO2�x layer with oxy-
gen vacancies is placed on a perfect TiO2 layer, and
these layers are sandwiched between platinum elec-
trodes. In metal oxide materials, the switching from Roff

to Ron and vice versa occurs as a result of ion migra-
tion, due to the enormous electric fields applied across
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the nanoscale structures. These memristors have been
fabricated using nanoimprint lithography and were suc-
cessfully integrated on a CMOS substrate in [33.172].
Apart from these metal-oxide memristors, memristance
has also been demonstrated using magnetic materials
based on their magnetic domain wall motion and spin-
torque induced magnetization switching in [33.173].
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Fig. 33.27 Typical I–V characteristic of memristor (af-
ter [33.171]). The pinched hysteresis loop is due to the
nonlinear relationship between the memristance current
and voltage. The parameters of the memristor are Ron D
100%, Roff D 16K%, Rinit D 11 k%, DD 10 nm, uv D
10�10 cm2 s�1 V�1, pD 10 and Vin D sin.2�t/. The mem-
ristor exhibits the feature of pinched hysteresis, which
means that a lag occurs between the application and the
removal of a field and its subsequent effect, just like the
feature of neurons in the human brain
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Furthermore, several different types of nonlinear mem-
ristor models have been investigated [33.174, 175].
One of them is the window model in which the state
equation is multiplied by window function Fp.!/,
namely

d!

dt
D �v

Ron

D
i.t/Fp.!/ ; (33.27)

where p is an integer parameter and Fp.!/ is defined by

Fp.!/D 1�
�
2
!

D
� 1

�2p
; (33.28)

which is shown in Fig. 33.28.

33.3.1 Memristor-Based Synapses

The design of simple weighting circuits for synap-
tic multiplication between arbitrary input signals and
weights is extremely important in artificial neural sys-
tems. Some efforts have been made to build neuron-
like analog neural networks [33.178–180]. However,
this research has gained limited success so far be-
cause of the difficulty in implementing the synapses
efficiently. Based on the memristor, a novel weight-
ing circuit was proposed by Kim et al. [33.176, 181,
182] as shown in Fig. 33.29. The memristors pro-
vide a bridge-like switching for achieving either posi-
tive or negative weighting. Though several memristors
are employed to emulate a synapse, the total area of
the memristors is less than that of a single transis-
tor. To compensate for the spatial nonuniformity and
nonideal response of the memristor bridge synapse,
a modified chip-in-the-loop learning scheme suitable
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Fig. 33.29 Memristor bridge circuit. The synaptic weight
is programmable by varying the input voltage. The weight-
ing of the input signal is also performed in this circuit
(after [33.176])
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Fig. 33.30 Neuromorphic memristive computer equipped
with STDP (after [33.177])

for the proposed neural network architecture is inves-
tigated [33.176]. In the proposed method, the initial
learning is conducted by software, and the behavior of
the software-trained network is learned via the hard-
ware network by learning each of the single layered
neurons of the network independently. The forward
calculation of single layered neuron learning is im-
plemented through circuit hardware and is followed
by a weight updating phase assisted by a host com-
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Fig. 33.31 Memristor-based cellular
neural networks cell (after [33.183])

puter. Unlike conventional chip-in-the-loop learning,
the need for the readout of synaptic weights for cal-
culating weight updates in each epoch is eliminated by
virtue of the memristor bridge synapse and the proposed
learning scheme.

On the other hand, spike-timing-dependent learn-
ing (STDP), which is a powerful learning paradigm
for spiking neural systems because of its massive
parallelism, potential scalability, and inherent defect,
fault, and failure-tolerance, can be implemented by
using a crossbar memristive array combined with neu-
rons that asynchronously generate spikes of a given
shape [33.177, 185]. Such spikes need to be sent
back through the neurons to the input terminal as in
Fig. 33.30. The shape of the spikes turns out to be very
similar to the neural spikes observed in realistic bio-
logical neurons. The STDP learning function obtained
by combining such neurons with memristors is exactly
obtained from neurophysiological experiments on real
synapses. Such nanoscale synapses can be combined
with CMOS neurons which is possible to create neuro-
morphic hardware several orders of magnitude denser
than in conventional CMOS. This method offers bet-
ter control over power dissipation; fewer constraints on
the design of memristive materials used for nanoscale
synapses; greater freedom in learning algorithms than
traditional design of synapses since the synaptic learn-
ing dynamics can be dynamically turned on or off;
greater control over the precise form and timing of the
STDP equations; the ability to implement a variety of
other learning laws besides STDP; better circuit diver-
sity since the approach allows different learning laws
to be implemented in different areas of a single chip
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Fig. 33.32 Simple realization of MNN based on fuzzy concepts (after [33.184])

using the same memristive material for all synapses.
Furthermore, an analog CMOS neuromorphic design
utilizing STDP and memristor synapses is investigated
for use in building a multipurpose analogy neuromor-
phic chip [33.186]. In order to obtain a multipurpose
chip, a suitable architecture is established. Based on the
technique of IBM 90nm CMOS9RF, neurons are de-
signed to interface with Verilog-A memristor synapses
models to perform the XOR operation and edge detec-
tion function.

To make the neurons compatible with such new
synapses, some novel training methods are proposed.
For instance,Manem et al. proposed a variation-tolerant
training method to efficiently reconfigure memristive
synapses in a trainable threshold gate array (TTGA)
system [33.187]. The training process is inspired from
the gradient descent machine learning algorithm com-
monly used to train artificial threshold neural networks

known as perceptrons. The proposed training method
is robust to the unpredictability of CMOS and nanocir-
cuits with decreasing technology sizes, but also pro-
vides its own randomness in its training.

33.3.2 Memristor-Based Neural Networks

Employing memristor-based synapses, some results
have been obtained about the memristor-based neural
networks [33.183, 184, 188]. As the template weights in
memristor-based neural networks (MNNs) are usually
known and need to be updated between each template
in a sequence of templates, there should be a way to
rapidly change the weights. Meanwhile, the MNN cells
need to be modified, as the programmable couplings
are implemented bymemristors which require program-
ming circuits to isolate each other. Lehtonen and Laiho
proposed a new cell of memristor-based cellular neural
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network that can be used to program the templates. For
this purpose, a voltage global is input into the cell. This
voltage is used to convey the weight of one connection
into the cells [33.183]. The level of virtual ground and
switches are controlled so that the memristor connected
to a particular neighbor is biased above the program-
ming threshold, until it reaches the desired resistance
value.

Merrikh-Bayat et al. presented a newway to explain
the relationships between logical circuits and artificial
neural networks, logical circuits and fuzzy logic, and
artificial neural networks and fuzzy inference systems,
and proposed a new neuro-fuzzy computing system,
which can effectively be implemented via the mem-
ristor-crossbar structure [33.184]. A simple realization
of MNNs is shown in Figs. 33.32–33.34. Figure 33.32
shows that it is possible to interpret the working pro-
cedure of conventional artificial neural network ANN
without changing its structure. In this figure, each row
of the structure implements a simple fuzzy rule or min-
term. Figure 33.33 shows how the activation function
of neurons can be implemented when the activation
function is modeled by a t-norm operator. Matrix mul-
tiplication is performed by vector circuit in Fig. 33.34.
This circuit consists of a simple memristor crossbar
where each of its rows is connected to the virtually
grounded terminal of an operational amplifier that plays
the role of a neuron with identity activation function.
The advantages of the proposed system are twofold:
first, its hardware can be directly trained using the
Hebbian learning rule and without the need to per-
form any optimization; second, this system has a great
ability to deal with a huge number of input-output
training data without facing problems like overtraing-
ing.

Howard et al. proposed a spiking neuro-evolution-
ary system which implements memristors as plas-
tic connections [33.188]. These memristors provide
a learning architecture that may be beneficial to the evo-
lutionary design process that exploits parameter self-
adaptation and variable topologies, allow the num-
ber of neurons, connection weights, and interneu-
ral connectivity pattern to emerge. This approach
allows the evolution of networks with appropriate
complexity to emerge whilst exploiting the memris-
tive properties of the connections to reduce learning
time.

To investigate the dynamic behaviors of memris-
tor-based neural networks, Zeng et al. proposed the
memristor-based recurrent neural networks (MRNNs)
[33.189, 190] shown in Fig. 33.35, where xi.:/ is the
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state of the i-th subsystem, fj.:/ is the amplifier, Mfij

is the connection memristor between the amplifier fj.:/
and state xi.:/, Ri and Ci are the resistor and capaci-
tor, Ii is the external input, ai; bi are the outputs, i; jD
1; 2; : : : ; n. The parameters in this neural network are
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changed according to the state of the system, so this
network is a state-dependent switching system. The
dynamic behavior of this neural network with time-
varying delays was investigated based on the Filippov
theory and the Lyapunov method.

33.3.3 Conclusion

Memristor-based synapses and neural networks have
been investigated by many scientists for their possi-

ble applications in analog, digital information process-
ing, and memory and logic applications. However, the
problem, of how to take advantage of the nonvolatile
memory of memristors, nanoscale, low-power dissipa-
tion, and so on to design a method to process and store
the information, which needs learning and memory, into
the synapses of the memristor-based neural networks at
the dynamical mapping space by a more rational space-
parting method, is still an open issue. Further investiga-
tion is needed to shorten such a gap.

33.4 Neurodynamic Optimization

Optimization is omnipresent in nature and society, and
an important tool for problem-solving in science, en-
gineering, and commerce. Optimization problems arise
in a wide variety of applications such as the design,
planning, control, operation, and management of en-
gineering systems. In many applications (e.g., online

pattern recognition and in-chip signal processing in mo-
bile devices), real-time optimization is necessary or
desirable. For such applications, conventional optimiza-
tion techniques may not be competent due to stringent
requirements on computational time. It is computation-
ally challenging when optimization procedures are to
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be performed in real time to optimize the performance
of dynamical systems.

The brain is a profound dynamic system and its
neurons are always active from birth to death. When
a decision is to be made in the brain, many of its neu-
rons are highly activated to gather information, search
memory, compare differences, and make inferences
and decisions. Recurrent neural networks are brain-like
nonlinear dynamic system models and can be prop-
erly designed to imitate biological counterparts and
serve as goal-seeking parallel computational models
for solving optimization problems in a variety of set-
tings. Neurodynamic optimization can be physically
realized in designated hardware such as application-
specific integrated circuits (ASICs) where optimization
is carried out in a parallel and distributedmanner, where
the convergence rate of the optimization process is in-
dependent of the problem dimensionality. Because of
the inherent nature of parallel and distributed informa-
tion processing, neurodynamic optimization can handle
large-scale problems. In addition, neurodynamic opti-
mization may be used for optimizing dynamic systems
in multiple time scales with parameter-controlled con-
vergence rates. These salient features are particularly
desirable for dynamic optimization in decentralized
decision-making scenarios [33.191–194]. While pop-
ulation-based evolutionary approaches to optimization
have emerged as prevailing heuristic and stochastic
methods in recent years, neurodynamic optimization
deserves great attention in its own right due to its close
ties with optimization and dynamical systems theories,
as well as its biological plausibility and circuit imple-
mentability with very large scale integration (VLSI) or
optical technologies.

33.4.1 Neurodynamic Models

The past three decades witnessed the birth and growth
of neurodynamic optimization. Although a couple of
circuit-based optimization methods were developed
earlier [33.195–197], it was perhaps Hopfield and Tank
who spearheaded neurodynamic optimization research
in the context of neural computation with their sem-
inal work in the mid 1980s [33.198–200]. Since the
inception, numerous neurodynamic optimization mod-
els in various forms of recurrent neural networks have
been developed and analyzed, see [33.201–256], and
the references therein. For example, Tank and Hop-
field extended the continuous-time Hopfield network
for linear programming and showed their experimen-
tal results with a circuit of operational amplifiers and

other discrete components on a breadboard [33.200].
Kennedy and Chua developed a circuit-based recurrent
neural network for nonlinear programming [33.201]. It
is proven that the state of the neurodynamics is glob-
ally convergent and an equilibrium corresponding to an
approximate optimal solution of the given optimization
problems.

Over the years, neurodynamic optimization re-
search has made significant progress with models with
improved features for solving various optimization
problems. Substantial improvements of neurodynamic
optimization theory and models have been made in the
following dimensions:

i) Solution quality: designed based on smooth penalty
methods with a finite penalty parameter; the earliest
neurodynamic optimization models can converge to
approximate solutions only [33.200, 201]. Later on,
better models designed based on other design prin-
ciples can guarantee to state or output convergence
to exact optimal solutions of solvable convex and
pseudoconvex optimization problems with or with-
out any conditions [33.204, 205, 208, 210], etc.

ii) Solvability scope: the solvability scope of neuro-
dynamic optimization has been expanded from lin-
ear programming problems [33.200, 202, 208, 211,
212, 214–219, 223, 242, 244, 251], to quadratic pro-
gramming problems [33.202–206, 210, 214, 217,
218, 220, 225, 226, 229, 233, 240–243, 247], to
smooth convex programming problemswith various
constraints [33.201, 204, 205, 210, 214, 222, 224,
228, 230, 232, 234, 237, 245, 246, 257], to nons-
mooth convex optimization problems [33.235, 248,
250–256], and recently to nonsmooth optimization
with some nonconvex objective functions or con-
straints [33.239, 249, 254–256].

iii) Convergence property: the convergence property of
neurodynamic optimization models has been ex-
tended from near-optimum convergence [33.200,
201], to conditional exact-optimum global conver-
gence [33.205, 208, 210], to guaranteed global con-
vergence [33.204, 205, 214–216, 218, 219, 222,
226–228, 230, 232, 234, 240, 243, 245, 247, 250,
253, 256, 257], to faster global exponential con-
vergence [33.206, 224, 225, 228, 233, 237, 239, 241,
246, 254], to even more desirable finite-time con-
vergence [33.235, 248, 249, 251, 252, 255], with in-
creasing convergence rate.

iv) Model complexity: the neurodynamic optimization
models for constrained optimization are essentially
multilayer due to the introduction of instrumen-
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tal variables for constraint handling (e.g., Lagrange
multipliers or dual variables). The architectures of
later neurodynamic optimization models for solv-
ing linearly constrained optimization problems have
been reduced from multilayer structures to single-
layer ones with decreasing model complexity to
facilitate their implementation [33.243, 244, 251,
252, 254, 255].
Activation functions are a signature component
of neural network models for quantifying the
firing state activities of neurons. The activation
functions in existing neurodynamic optimization
models include smooth ones (e.g., sigmoid), as
shown in Fig. 33.36a,b [33.200, 208–210], nons-
mooth ones (e.g., piecewise-linear) as shown in
Fig. 33.36c,d [33.203, 206], and even discontinuous
ones as shown in Fig. 33.36e,f [33.243, 244, 251,
252, 254, 255].

33.4.2 Design Methods

The crux of neurodynamic optimization model design
lies in the derivation of a convergent neurodynamic
equation that prescribes the states of the neurodynam-
ics. A properly derived neurodynamic equation can
ensure that the states of neurodynamics reaches an equi-

a) b)

c) d)

e) f)

Fig. 33.36a–f Three classes of activation functions in
neurodynamic optimization models: smooth in (a) and (b),
nonsmooth in (c) and (d), and discontinuous in (e) and (f)

librium that satisfies the constraints and optimizes the
objective function. Although the existing neurodynamic
optimization models are highly diversified with many
different features, the design methods or principles for
determining their neurodynamic equations can be cate-
gorized as follows:

i) Penalty methods
ii) Lagrange methods
iii) Duality methods
iv) Optimality methods.

Penalty Methods
Consider the general constrained optimization problem

minimize f .x/

subject to g.x/� 0;

h.x/D 0;

where x 2 Ren is the vector of decision variables, f .x/
is an objective function, g.x/D Œg1.x/; : : : ; gm.x/�T is
a vector-valued function, and h.x/D Œh1.x/; : : : ; hp.x/�T

a vector-valued function.
A penalty method starts with the formulation of

a smooth or nonsmooth energy function based on
a given objective function f .x/ and constraints g.x/
and h.x/. It plays an important role in neurodynamic
optimization. Ideally, the minimum of a formulated en-
ergy function corresponds to the optimal solution of
the original optimization problem. For constrained op-
timization, the minimum of the energy function has to
satisfy a set of constraints. Most early approaches for-
mulate an energy function by incorporating objective
function and constraints through functional transfor-
mation and numerical weighting [33.198–201]. Func-
tional transformation is usually used to convert con-
straints to a penalty function to penalize the violation
of constraints; e.g., a smooth penalty function is as
follows

p.x/D 1

2

mX
iD1

fŒ�gi.x/�Cg2 C
pX

jD1

Œhj.x/�
2 ;

where Œy�C Dmaxf0; yg. Numerical weighting is often
used to balance constraint satisfaction and objective op-
timization, e.g.,

E.x/D f .x/Cwp.x/ ;

where w is a positive weight.
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In smooth penalty methods, neurodynamic equa-
tions are usually derived as the negative gradient flow
of the energy function in the form of a differential equa-
tion

dx.t/

dt
/ �rE.x.t// :

If the energy function is bounded below, the stability
of the neurodynamics can be ensured. Nevertheless,
the major limitation is that the neurodynamics de-
signed using a smooth penalty method with any fixed
finite penalty parameter can converge to an approxi-
mate optimal solution only, as a compromise between
constraint satisfaction and objective optimization. One
way to remedy the approximated limitation of smooth
penalty design methods is to introduce a variable
penalty parameter. For example, a time-varying de-
laying penalty parameter (called temperature) is used
in deterministic annealing networks to achieve ex-
act optimality with a slow cooling schedule [33.208,
210].

If the objective function or penalty function is nons-
mooth, the gradient has to be replaced by a generalized
gradient and the neurodynamics can be modeled us-
ing a differential inclusion [33.235, 248, 249, 251, 252,
255]. Two advantages of nonsmooth penalty methods
over smooth ones are possible constraint satisfaction
and objective optimization with some finite penalty pa-
rameters and finite-time convergence of the resulting
neurodynamics. Needless to say, nonsmooth neurody-
namics are much more difficult to analyze to guarantee
their stability.

Lagrange Methods
A Lagrange method for designing a neurodynamic
optimization model begins with the formulation of
a Lagrange function (Lagrangian) instead of an energy
function [33.204, 205]. A typical Lagrangian is defined
as

L.x; �; �/D f .x/C
mX

iD1

�igi.x/C
pX

jD1

�jhj.x/ ;

where �D .�1; : : : ; �m/
T and �D .�1; : : : ; �p/

T are La-
grange multipliers, for inequality constraints g.x/ and
equality constraints h.x/, respectively.

According to the saddle-point theorem, the opti-
mal solution can be determined by minimizing the
Lagrangian with respect to x and maximizing it with
respect to � and �. Therefore, neurodynamic equations

can be derived in an augmented space


dx.t/

dt
D�rxL.x.t/; �.t/; �.t// ;


d�.t/

dt
D�r�L.x.t/; �.t/;�.t// ;


d�.t/

dt
D�rL.x.t/; �.t/;�.t// ;

where  is a positive time constant. The equilibrium
of the Lagrangian neurodynamics satisfy the Lagrange
necessary optimality conditions.

Duality Methods
For convex optimization, the objective functions of pri-
mal and dual problems reach the same value at their
optima. In view of this duality property, the dual-
ity methods for designing neurodynamic optimization
models begin with the formulation of an energy func-
tion consisting of a duality gap between the primal and
dual problems and a constraint-based penalty function,
e.g.,

E.x; y/D 1

2
.f .x/� fd.y//

2C p.x/C pd.y/ ;

where y is a vector of dual variables, fd.y/ is the dual
objective function to be maximized, p.x/ and pd.y/
are, respectively, smooth penalty functions to pe-
nalize the violations of constraints of primal (orig-
inal) and dual problems. The corresponding neuro-
dynamic equation can be derived with guaranteed
global stability as the negative gradient flow of the
energy function similarly as in the aforementioned
smooth penalty methods [33.216, 218, 222, 226, 258,
259]. Neurodynamic optimization models designed by
using duality design methods can guarantee global
convergence to the exact optimal solutions of con-
vex optimization problems without any parametric
condition.

In addition, using duality methods, dual networks
and their simplified/improved versions can be designed
for quadratic programming with reduced model com-
plexity bymapping their global convergent optimal dual
state variables to optimal primal solutions via linear
or piecewise-linear output functions [33.240, 247, 260–
263].

Optimality Methods
The neurodynamic equations of some recent models
are derived based on optimality conditions (e.g., the
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Karush–Kuhn–Tucker condition) and projection meth-
ods. Basically, the methods are to map the equilibrium
of the designed neurodynamic optimization models to
the equivalent equalities given by optimality conditions
and projection equations (i. e., all equilibria essentially
satisfy the optimality conditions) [33.225, 227, 228].
For several types of common geometric constraints
(such as nonnegative constraints, bound constraints,
and spherical constraints), some projection operators
map the neuron state variables onto the convex fea-
sible regions by using their activation functions and
avoid the use of excessive dual variables as in the
dual networks, and thus lower the model complexity.
For neurodynamic optimization models designed using
optimality methods, stability analysis is needed ex-
plicitly to ensure that the resulting neurodynamics are
stable.

Once a neurodynamic equation has been derived
and its stability is proven, the next step is to deter-
mine the architecture of the neural network in terms of
the neurons and connections based on the derived neu-
rodynamic equation. The last step is usually devoted
to simulation or emulation to test the performance of
the neural network numerically or physically. The sim-
ulation/emulation results may reveal additional prop-
erties or characteristics for further analysis or model
redesign.

33.4.3 Selected Applications

Over the last few decades, neurodynamic optimization
has been widely applied in many fields of science, engi-
neering, and commerce, as highlighted in the following
selected nine areas.

Scientific Computing
Neurodynamic optimization models ave been devel-
oped for solving linear equations and inequalities and
computing inverse or pseudoinverse matrices [33.240,
264–268].

Network Routing
Neurodynamic optimization models have been devel-
oped or applied for shortest-path routing in networks
modeled by using weighted directed graphs [33.258,
269–271].

Machine Learning
Neurodynamic optimization has been applied for sup-
port vector machine learning to take the advantages of
its parallel computational power [33.272–274].

Data Processing
The data processing applications of neurodynamic
optimization include, but are not limited to, sort-
ing [33.275–277], winners-take-all selection [33.240,
277, 278], data fusion [33.279], and data reconcilia-
tion [33.254].

Signal/Image Processing
The applications of neurodynamic optimization for sig-
nal and image processing include, but are not limited
to, recursive least-squares adaptive filtering, overcom-
plete signal representations, time delay estimation, and
image restoration and reconstruction [33.191, 203, 204,
280–283].

Communication Systems
The telecommunication applications of neurodynamic
optimization include beamforming [33.284, 285]) and
simulations of DS-CDMA mobile communication sys-
tems [33.229].

Control Systems
Intelligent control applications of neurodynamic op-
timization include pole assignment for synthesizing
linear control systems [33.286–289] and model predic-
tive control for linear/nonlinear systems [33.290–292].

Robotic Systems
The applications of neurodynamic optimization in in-
telligent robotic systems include real-time motion plan-
ning and control of kinematically redundant robot ma-
nipulators with torque minimization or obstacle avoid-
ance [33.259–263, 267, 293–298] and grasping force
optimization for multifingered robotic hands [33.299].

Financial Engineering
Recently, neurodynamic optimization was also applied
for real-time portfolio selection based on an equivalent
probability measure to optimize the asset distribution in
financial investments; [33.255, 300].

33.4.4 Concluding Remarks

Neurodynamic optimization provides a parallel dis-
tributed computational model for solving many opti-
mization problems. For convex and convex-like opti-
mization, neurodynamic optimization models are avail-
able with guaranteed optimality, expended applicability,
improved convergence properties, and reduced model
complexity. Neurodynamic optimization approaches
have been demonstrated to be effective and efficient for
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many applications, especially those with real-time solu-
tion requirements.

The existing results can still be further improved
to expand their solvability scope, increase their con-
vergence rate, or reduce their model complexity. With
the view that neurodynamic approaches to global op-
timization and discrete optimization are much more

interesting and challenging, it is necessary to develop
neurodynamic models for nonconvex optimization and
combinatorial optimization. In addition, neurodynamic
optimization approaches could be more widely ap-
plied for many other application areas in conjunction
with conventional and evolutionary optimization ap-
proaches.
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