
Probabilistic
545

Part
D
|31.1

31. Probabilistic Modeling in Machine Learning

Davide Bacciu, Paulo J.G. Lisboa, Alessandro Sperduti, Thomas Villmann

Probabilistic methods are the heart of machine
learning. This chapter shows links between core
principles of information theory and probabilistic
methods, with a short overview of historical and
current examples of unsupervised and inferen-
tial models. Probabilistic models are introduced as
a powerful idiom to describe the world, using ran-
dom variables as building blocks held together by
probabilistic relationships. The chapter discusses
how such probabilistic interactions can be mapped
to directed and undirected graph structures,
which are the Bayesian and Markov networks. We
show how these networks are subsumed by the
broader class of the probabilistic graphical mod-
els, a general framework that provides concepts
and methodological tools to encode, manipulate
and process probabilistic knowledge in a computa-
tionally efficient way. The chapter then introduces,
in more detail, two topical methodologies that
are central to probabilistic modeling in machine
learning. First, it discusses latent variable mod-
els, a probabilistic approach to capture complex
relationships between a large number of observ-
able and measurable events (data, in general),
under the assumption that these are generated
by an unknown, nonobservable process. We show
how the parameters of a probabilistic model in-
volving such nonobservable information can be
efficiently estimated using the concepts under-
lying the expectation–maximization algorithms.
Second, the chapter introduces a notable example

31.1 Probabilistic and Information-Theoretic
Methods.. 545
31.1.1 Information-Theoretic Methods .. 547
31.1.2 Probabilistic Models 548

31.2 Graphical Models 552
31.2.1 Bayesian Networks 553
31.2.2 Markov Networks....................... 555
31.2.3 Inference 556

31.3 Latent Variable Models......................... 560
31.3.1 Latent Space Representation 561
31.3.2 Learning with Latent Variables:

The Expectation–Maximization
Algorithm 561

31.3.3 Linear Factor Analysis 562
31.3.4 Mixture Models 563

31.4 Markov Models 565
31.4.1 Markov Chains........................... 566
31.4.2 Hidden Markov Models 567
31.4.3 Related Models 571

31.5 Conclusion and Further Reading 572

References ... 573

of latent variable model, that is of particular
relevance for representing the time evolution of
sequence data, that is the hidden Markov model.
The chapter ends with a discussion on advanced
approaches for modeling complex data-generating
processes comprising nontrivial probabilistic in-
teractions between latent variables and observed
information.

31.1 Probabilistic and Information-Theoretic Methods

Information theory is closely connected to probability
theory and statistics. In particular, the standard defi-
nition of information contained in a random variable
X with a probability density function P.X/ is well
known to be I.X/D� log.P.X//, with the correspond-

ing Shannon entropy, in differential form, given by the
average information

H .P/D�
Z

P .X/ log .P .X// dx : (31.1)

Part
D
|31.1

546 Part D Neural Networks

One of the fundamental theorems of information the-
ory, the second Gibbs theorem, states that the normal
distribution achieves maximum entropy, hence maximal
average information from all distributions with known
variance. To show this in the univariate case, consider
the normal distribution in the standard form

P .X/D 1p
2��2

exp

� .X��/

2

2�2

!
:

It is straightforward to show that for the natural loga-
rithm

�
Z

P.X/ log.P.X//dxD 1

2
C log

�p
2��2

�

D�
Z

G.X/ log.P.X//dx ;

where G.X/ is any arbitrary density function with vari-
ance

R
G.X/.X��/2dxD �2. Therefore, the difference

in average information between the two density func-
tions necessarily observes the following

�
Z

P.X/ log.P.X//dxC
Z

G.X/ log.G.X//dx

D�
Z

G.X/ log.P.X//dxC
Z

G.X/ log.G.X//dx

D�
Z

G.X/ log

�
P.X/

G.X/

�
dx

�
Z

G.X/

�
1� P.X/

G.X/

�
dxD 0

using Jensen’s inequality log.x/� x�1 and the normal-
ization property

R
P.X/D R Q.X/D 1. This is a par-

ticular instance of Gibbs inequality and proves that the
asymptotic distribution of the central limit theorem also
maximizes entropy.

This led, in probability theory, to the definition
of natural measures of dissimilarity closely related
to the expectation of information difference, e.g., the
Kullback–Leibler (KL) divergence [31.1]

DKL .PkQ/D
Z

P .X/ log

�
P .X/

Q .X/

�
dx ; (31.2)

as generalized distances between probability distribu-
tions P and Q.

The KL divergence occurs frequently in machine
learning, where the development of learning strategies
links information theory with statistical and biologi-
cally motivated concepts. For instance, the perceptron

model was established as a simple but mathematically
tractable model of a biological neuron as the smallest
information processing unit in brains [31.2]. Recog-
nition that gradient descent provided a pragmatic but
effective solution to the credit assignment problem,
namely which values the hidden nodes should have,
led to the multilayer perceptron as powerful compu-
tational tools for classification and regression. Initially
maximum likelihood optimization was used for param-
eter estimation, following the tried and tested statisti-
cal concepts of normally distributed errors leading to
a sum-of-squares loss function in regression and, for
classification, the Bernoulli distribution for binary data
and the so-called cross-entropy (31.2) for multinomial
class assignments, the latter two likelihood functions
measuring information divergence averaged over the
true distribution given by the empirical class labels.

Information theoretic aspects (e.g., mutual informa-
tion) were also considered in neural models in order
to avoid overtraining [31.3], for instance in Boltzmann
networks which directly mirror information princi-
ples in statistical mechanics [31.4]. Related approaches
are used currently for deep learning models, where
information principles drive the feature representa-
tions [31.5].

The correspondence between maximum entropy
and maximum likelihood outlined above is just one
aspect of the application of information-theoretic con-
cepts in machine learning. The next section outlines fur-
ther developments linked first to source identification
through blind signal separation and matrix factoriza-
tion methods. These concepts from signal processing
identify important degrees of freedom that may be used
as hidden variables in probabilistic models, discussed
later in the chapter. Furthermore, the application of
information-theoretic methods extends also to the au-
tomatic identification of prototypes for use in compact
data representations that include dictionaries defined by
methods such as vector quantization, typically with un-
supervised approaches.

Supervised methods are introduced as probabilis-
tic models, focusing first on discriminative methods.
This indicates that the maximum likelihood approach
is limited in its predictive power in generalization to
out-of-sample data, because it allows models to be
generated with very little bias but with considerable
variance – for a more detailed discussion of this point
refer [31.6]. What this means in practice is that flexible
models such as neural networks are prone to overfitting
unless the complexity of the model is controlled along
with the extent to which the model fits the data. The

Probabilistic Modeling in Machine Learning 31.1 Probabilistic and Information-Theoretic Methods 547
Part

D
|31.1

latter is described by the likelihood, but the model com-
plexity can be controlled in a number of different ways.
In probabilistic models an efficient framework to max-
imize the generality of probabilistic inference models
is to apply the maximum a posteriori (MAP) frame-
work which optimizes the posterior probability of the
model parameters given the data but also given prior
distributions for the parameters, typically limiting their
size by assuming a zero-centred normal distribution as
the prior. This is the basis of the method of automatic
relevance determination, explained in Sect. 31.2.

While discriminative models are efficient approxi-
mators for nonlinear response functions, both in regres-
sion and in the estimation of class conditional density
functions, they are difficult to interpret and can gener-
ally be considered as black boxes, meaning that they
are not readily interpreted to give insights about the
data. A topical and widely used alternative approach
is to model the joint distribution of the data directly.
This is ideally done by factorization into subgraphs into
which the multivariate structure of the data is broken-up
using strict conditional independence requirements, as
discussed in Sect. 31.2. Inference can then proceed us-
ing Bayes theorem introduced in (31.6).

An alternative approach to modeling the joint distri-
bution of the covariates is to use the mutual correlation
in the data to identify important degrees of freedom that
may be hidden in the sense that they are not directly ob-
served. This generates latent variable representations
that naturally fit into the framework of probabilistic
modeling. However, the introduction of additional vari-
ables also introduces complexity into the optimization
process for estimating their values. This leads naturally
to the introduction of expectation maximization (EM),
a general approach of particular value for estimating
mixture models, discussed in Sect. 31.3.

So far the modeling methodologies focus on snap-
shots of the data, without taking into consideration the
time evolution of the covariates. To do this requires
explicit parametrization, for which arguably the most
widely used probabilistic approach is hidden Markov
models (HMM). These models are build on the concepts
of conditional independence, latent variables, and ex-
pectation maximization to model the time evolution of
sequences of covariate measurements, in the last sub-
stantive Sect. 31.4

31.1.1 Information-Theoretic Methods

While the statistical properties of perceptrons are
widely investigated [31.6], the more difficult prob-

lem of establishing statistical independence is becom-
ing increasingly important and novel algorithms have
been presented during the last decade [31.7]. Their
applicability is enormous, ranging from variable selec-
tion, to blind source separation (BSS) and statistical
causality. Frequently, the difficult question of statistical
dependence in data is replaced by the easier consid-
eration of estimation and application of data correla-
tions for learning strategies. A recent approach tries
to determine independence by generalized correlation
functions [31.8]. In this context of decorrelation and
independence, BSS and nonnegative matrix factoriza-
tions [31.9] of data channels are based on statistical
deconvolution. A comprehensive overview for BSS,
independent component analysis (ICA) and nonneg-
ative matrix and tensor factorization (NMF) can be
found in [31.10–12], respectively. Different aspects can
be investigated, like ICA and BSS maximizing con-
ditional probabilities [31.11]. A relevant connection
exists between NMF and probabilistic graphical models
comprising hidden variables [31.13], which is briefly
discussed in Sect. 31.3.4.

Other recent approaches in this field incorporate in-
formation theoretic principles directly: Pham [31.14]
investigated BSS based on mutual information,
whereas [31.15] applied ˇ-divergences. The infomax
principle for ICA was considered in depth [31.16], as
was the problem of learning overcomplete data rep-
resentations and performing overcomplete noisy blind
source separation, e.g., the sparse coding neural gas
(SCNG) [31.17]. Recent results including modern di-
vergences (generalized ˛-ˇ-divergences) were recently
published [31.18]. Obviously, information theoretic di-
vergence measures like Rényi-divergences (belonging
to the family of ˛-divergences) capture directly the sta-
tistical information contained in the data, as expressed
by the probability density function [31.19, 20]. This
property can be used for unsupervisedmodel estimation
for instance in vector quantization, when divergences
are used as dissimilarity measure [31.21].

Information optimum vector quantization by proto-
types is a widely investigated topic in clustering and
data compression, based on the optimization of the
� -reconstruction error

EVQ .�/D
Z
kv�w .v/k�E P .V D v/ dv ;

where P.V D v/ is the data density of the vector data v
and kv�w.v/kE is the Euclidean distance of the data
vector and the prototype w.v/ representing it. One of

Part
D
|31.1

548 Part D Neural Networks

the key results concerning information theoretic prin-
ciples for vector quantization is Zador’s magnification
law [31.22]: if the data vectors v are given in q-
dimensional Euclidean space, then the magnification
law � � P˛ holds. Here, �.w/ is the prototype density
with the magnification factor

˛ D q

qC � :

This is the basic principle of vector quantization based
on Euclidean distances. For different schemes like self-
organizing maps, Neural Gas variants with slightly
different magnification factors are obtained depend-
ing on the choice of neighborhood cooperation scheme
applied during prototype adaptation [31.23–25]. Infor-
mation optimum magnification for ˛ D 1 is equivalent
to maximum mutual information [31.22]. Yet, it is pos-
sible to control the magnification for most of these
algorithms by different strategies like localized or fre-
quency sensitive competitive learning. For an overview,
we refer to [31.23]. If the Euclidean distance is re-
placed by divergence measures, optimummagnification
˛ D 1 can also be achieved by maximum entropy learn-
ing [31.26], or by the utilization of correntropy [31.27].
Vector quantization algorithms directly derived from in-
formation theoretic principles based on Rényi entropies
are intensively studied in [31.28], also highlighting its
connection to graph clustering and Mercer kernel-based
learning [31.29].

Other information theoretic vector quantizers opti-
mize the mutual information between data and proto-
types, or the respective KL divergence, instead of min-
imizing a reconstruction error [31.30]. Based on this
principle, several data embedding, or dimensionality re-
duction techniques, have been developed as alternatives
to multidimensional scaling. These approaches are fre-
quently used to visualize data. Prominent examples are
stochastic neighborhood embedding (SNE) [31.31] or
variants thereof: for instance, t-SNE uses outlier-robust
Student-t-distributions for data characterization instead
of Gaussians [31.32]. The generalization to other diver-
gences than KL can be found in [31.33].

Another role for information theory in machine
learning is in feature selection. Removing irrelevant or
redundant features not only leads to a simplification of
the model and a reduced requirement for data acquisi-
tion, but it is also central for maximizing the generality
of the model when it is applied to future data. Most
feature selection approaches are supervised schemes,
hence using class information or expected regression

values. Strategies to achieve this goal can be classi-
cal Bayesian inference schemes of which automatic
relevance determination (ARD) is a good example (de-
scribed further in Sect. 31.2), or statistical approaches
based on mutual correlation or covariances [31.34, 35].
An alternative approach to feature selection is to use
mutual information

I.X; Y/D DKL.J.X;Y/kP.X/Q.Y//

between random variables X and Y with probabil-
ity densities P and Q, respectively, and joint density
J [31.36]. Here, the features are treated as random vari-
ables to be compared and mutual information measures
the information loss resulting from removal of variables
from the model. Learning classification together with
feature weighting in vector quantization is known as
relevance learning [31.37]. Recent developments to in-
troduce sparseness according to information theoretic
constraints are discussed in [31.38, 39].

Information-theoretic measures such as mu-
tual information, can be explicitly estimated from
data [31.40]. This is used in the context of vectorial
data analysis to obtain consistent and reliable estima-
tors with topographic maps or kernels [31.41]. Further
applications of information theoretic learning also use
Rényi entropy

Ha.P/D 1

1� ˛ log

�Z
.P.X//˛ dx

�

as a cost function instead of the mean squared error,
resorting, for computational efficiency, to Parzen esti-
mators [31.42] or nearest neighbor entropy estimation
models. For effective computation of an approximate
of the mutual information I.X; Y/, the quadratic Rényi
entropy H2.p/ or the closely related information energy
are common choices [31.43]. Parzen window-based es-
timators for some information theoretic cost functions
have also been shown to be cost functions in a cor-
responding Mercer kernel space [31.44]. In particular,
a classification rule based on an information theoretic
criterion has been shown to correspond to a linear clas-
sifier in the kernel space. This leads to the formulation
of the support vector machine (SVM) from information
theory principles.

31.1.2 Probabilistic Models

Kernel models are known for having excellent discrim-
ination performance, but they are typically not well

Probabilistic Modeling in Machine Learning 31.1 Probabilistic and Information-Theoretic Methods 549
Part

D
|31.1

calibrated. This is because they are designed to be
efficient binary class allocation models rather than es-
timators of the posterior probability for membership of
each class C. As an example, SVMs allocate inputs to
classes on the basis on a binary-valued indicator vari-
able that generally does not have a link function to
a probability density estimate. This type of models is
known as discriminative models, a well-known variant
being Fisher’s linear discriminant. As the name implies,
the central model is linear in the covariates,

yD wTx

optimizing, for binary classification, a discriminant
function derived from the mean mi and variance si of
each class (i. e., iD 1; 2), namely

J.w/D .m1�m2/
2

s21C s22
:

In general, given the two data cohorts, the covariance
matrix of the data S has a strict decomposition into
within- and between-class covariance matrices as SD
SwC Sb. For an overall data mean vector m and a total
of Nj data points in each class, these matrices are given
by

SD
NX

iD1

�
.xi�m/T.xi�m/

�
;

Sw D
2X

jD1

NX
iD1

�
.xi �mj/

T.xi �mj/
�
;

Sb D
2X

jD1

�
Nj.mj�m/T.mj�m/

�
:

The solution to the optimization of J.w/ is

w/ S�1
w .m2�m1/ ;

where the inverse of the within-class covariance matrix
Sw positions the discriminant hyperplane so as to min-
imize the overlap between the projections of the data
points in each class onto the direction of the weight
w. This illustrates the observation that, in general, this
projection will not be calibrated with a probabilistic es-
timate such as the logit

logit.P.CjX//D log

�
P.CjX/

1�P.CjX/
�
:

The correct calibration is found in a class of generalized
linear models of the form

y.x/D f .wTxCw0/ ;

where f .	/ is known as the activation function in ma-
chine learning and its inverse is called a link function
by statisticians [31.6]. Perhaps the best-known choice
of activation is the sigmoid function, where the proba-
bilistic model becomes logistic regression and the linear
index wTx represents exactly the logit .P.CjX//. This is
very widely used and a generally well-calibrated model,
even when severe class imbalance is present.

It is often quoted that generalized linear mod-
els are limited by the discriminant forms determined
by the linear scores, which must therefore be hyper-
planes. However, this ignores the observation that, in
most practical applications, suitable attribute represen-
tations are defined using domain knowledge, typically
by binning variables into discrete states. This turns
the probabilistic estimators into linear-in-the-parameter
models with significant discrimination potential for
nonlinearly separable data. In effect, if the link func-
tion is properly tuned to the noise structure of the data
and in particular when there are larger numbers of in-
dependent covariates, well-designed generalized linear
models are competitive with flexible machine learning
models, the more so as the limitation of using a linear-
in-the-parameters scoring index now works as a form
of regularization limiting the complexity of the model.
Moreover, the linear index provides a strong element
of interpretability whose importance to application do-
main experts cannot be overestimated. Notwithstanding
the power of machine learning, generalized linear mod-
els should always be used as benchmarks to set against
nonlinear models.

An alternative to probabilistic linear models is the
wide range of flexible direct estimators of P.CjX/
among which arguably the most widely used model re-
mains the multilayer perceptron (MLP). Similarly to
linear statistical models, however, it is important to
note that the estimation of class conditional probabil-
ities with an MLP is contingent on using a correct
activation function at the output node together with
a suitable choice of loss function, which must be one
of the entropy functions outlined in the previous sec-
tion. So, in binary classification, the log-likelihood
function with a Bernoulli distribution should be used
in conjunction with a sigmoid activation function. In
the multinomial case, we would need an extension of
the sigmoid function, the softmax activation, together

Part
D
|31.1

550 Part D Neural Networks

with the cross-entropy as the loss function, since this
is the correct measure of the divergence between the
estimated and observed probability density functions.
Similarly, for nonlinear regression, the activation func-
tion should be linear with the usual sum-of-squares
error function, provided the inherent noise in the data
can be assumed to be normally distributed with zero
mean, since this is where the loss function is derived
from. In the event where the noise variance, for in-
stance, is dependent on the covariates, heteroscedastic
noise models must be used to derive appropriate loss
functions [31.6].

While the strength of neural networks is their uni-
versal approximation capability, in the sense of fitting
any multivariate surface to an arbitrarily small error,
this flexibility also makes them prone to overfitting, po-
tentially resulting in data models with little bias but
large variance, in direct contrast to generalized linear
models. In both cases, it is necessary to control the com-
plexity of the model and this is best done by adding
a penalty term to enforce the principle of parsimony,
colloquially known as Occam’s razor (lex parsimo-
niae). Arguably, the most commonly used and effective
scheme is to apply Bayes’ theory at the level of fitting
the model parameters, then to the regularization hyper-
parameters, and finally to model selection itself.

As we saw previously, the output of the MLP rep-
resents a direct estimate of the posterior probability of
class membership P.CjX/. This approach can be gener-
alized for the analysis of longitudinal data where each
individual subject is follow up over a period of time
starting with a defined recruitment point and ending ei-
ther at the end of a defined observation period or when
an event of interest is observed, whichever occurs first.
This is often called survival modeling and is typically
used to estimate event rates in the presence of censor-
ship, e.g., where the outcome of interest, for instance
recovery from an illness, is observed in some subjects
for only part of the allowed period of follow-up due
to other events taking over, such as another condition
setting-in, which prevent the observer from ever know-
ing whether or not the subject would have recovered
from the original illness, which is the event of interest.
For discrete time, these models can be estimated using
the standard MLP with an additional input node coding
the time intervals. The output of the MLP again repre-
sents a conditional probability, but now the probability
of the subject surviving each time interval given that
the subject survived until the start of the time interval.
This defines the hazard function hl.xi/, for subject with
covariate vector xi and predictions over the lth discrete

time interval, which is given by

hl.xi/D P.T � tljT > tl�1; xi/ :

For a single event of interest, i. e., a single risk factor,
the log-likelihood function exactly mirrors that used in
binary classification, treating as independent the proba-
bility estimates for each of the N subjects and over the
discrete time intervals where the subject was observed,
i. e., up to the end of the follow-up period or until cen-
sorship. This leads to the following loss function

LB D
NY

iD1

liY
lD1

n
hl.xi/dil Œ1� hl.xi/�.1�dil/

o
; (31.3)

where the binary indicator variable dil D 0 if the event
of interest was not observed for the subject during the
specific time interval, and is 1 otherwise. This loss func-
tion is known as a partial likelihood, since it is measured
only over time periods where the outcomes for each
subject are observed, an approach that has been ex-
tended to the multinomial case to provide a rigorous
treatment of censorship with flexible models in the con-
text known as competing risks [31.45].

Application of the Bayesian regularization frame-
work consists in maximizing the posterior probability
for the model parameters w, given the data set D, the
regularization hyperparameters ˛ and the choice of the
model structure, e.g., selected covariates H, namely

P.wjD; ˛;H/D P.Djw; ˛;H/P.wj˛;H/
P.Dj˛;H/ : (31.4)

The first term on the right-hand side of Eq. (31.4)
denotes the probability of the model fitting the data,
represented by the exponential of the entropy term dis-
cussed in the introduction and defined for longitudinal
data by (31.3), hence

P.Djw; ˛;H/D e�LB :

The second term in (31.4) represents a prior distribu-
tion of the model parameters typically with a quadratic
loss term corresponding to independent zero-mean uni-
variate Gaussian distributions, sometimes called weight
decay terms. A particularly efficient implementation of
Bayesian regularization is to assign a separate weight
decay term to each covariate, indexing the covariates by
m of which there are N˛, with the Nm hidden nodes in-
dexed by n. This allows each covariate to be separately
turned on or off depending on how informative it is

Probabilistic Modeling in Machine Learning 31.1 Probabilistic and Information-Theoretic Methods 551
Part

D
|31.1

for fitting the observations about the outcome variable,
a process known as automatic relevance determination
(ARD) [31.4]. Expressed in full, this gives

P.wj˛;H/D e�G.w;˛/

Zw.˛/
; where G.w; ˛/

D 1

2

NX̨
mD1

˛m

NmX
nD1

w2
mn and Zw D

NY̨
mD1

�
2�

˛m

� Nm
2

:

In principle, the best values for the regularization hyper-
parameters, i. e., the weight decay parameters ˛, are
those which minimize their posterior probability

P.˛jD;H/D P.Dj˛;H/P.˛jH/
P.DjH/ :

However, the denominator of (31.4) cannot be obtained
in closed form, so a Laplace approximation is typi-
cally around a stationary point in the loss function as
a function of the weights. This amounts to a local Tay-
lor expansion of

P.Dj˛;H/D
Z

P.Djw; ˛;H/P.wj˛;H/dw

D
Z

e�S.w;˛/

Zw.˛/
dw ;

where the linear term in the weights vanishes because
of stationarity leading to

S�.w; ˛/� S.wMP; ˛/C 1

2
.w�wMP/TA.w�wMP/ ;

from which the posterior probability for the hyperpa-
rameter results

P.˛jD;H// e�S.wMP;˛/

ZW.˛/
.2�/

Nw
2 det.A/�1=2 :

In practice, what this means is that the log-odds ratio,
given by the activation of the output node of the MLP
can be assumed to have a univariate normal distribution
whose variance is given by the Hessian of the matrix
S with respect to the weights; g is the gradient of the
activation a with respect to the weights, namely

P.ajX;D/D 1

1
.2�s2/1=2e

�

�
.a�aMP/

2

2s2

�

with aMP denoting the most probable value of the ac-
tivation function, i. e., the direct output of the MLP
without marginalization, and

s2.x/D gTA�1g :

The so-called marginalized estimate of the MLP out-
put is now the posterior distribution integrated over the
activation a. In the above expression, g is the gradient
of the activation with respect to the network weights
and A is the corresponding Hessian; hence the matrix of
second partial derivatives. For binary classification and
single-risks modeling, this is given by a neat analytical
expression

h.xi; l/D
Z

g.a/P.ajXiD xi; l;D/da

D g

aMP.xi; l/p

1C .�=8/gTA�1g

!
(31.5)

with g.	/ denoting the sigmoid function. This adjust-
ment to the original MLP output, i. e., aMP, shows the
regularization process in operation: stationary points,
where the weights are well defined, have small vari-
ance s2 and therefore their value remains almost un-
changed. Conversely, flat valleys in the loss function,
where stationary points for the weights have broad
Gaussian distributions, are penalized by reducing the
value of the argument of the sigmoid function in
(31.5) toward nil, reflecting an increase in uncertainty
by shifting the MLP output toward the don’t know
threshold.

A probabilistic alternative to discriminative ap-
proaches consists of generative models, where Bayes’
theorem is once again put into practice to estimate
the posterior probability of class membership P.CkjX/,
from the class conditional density functions P.XjCk/
and prior probabilities for the classes P.Ck/, that
is

P.CkjX/D P.XjCk/P.Ck/P
k P.XjCkP.Ck//

; (31.6)

where classes are indexed by k and the sum-rule has
been used to expand the denominator. Suitable mod-
els for the probability density functions (pdf) of the
data given each class will depend on the nature of the
data. However, it is straightforward to show for two
classes that if the pdfs are normal distributions with
equal variance, then the posterior probability will have
exactly the functional form of the logistic regression
model. This can be taken as an explanation in proba-
bilistic terms of the potential limitations of this linear
model, since different classes in practice tend to have
distinct variances, even when that data sets for each
class are approximately normally distributed. A natural

Part
D
|31.2

552 Part D Neural Networks

extension of this approach is to use a mixture of Gaus-
sian distributions. This is a very flexible model that can
parameterize also multimodal density functions. In the
interest of space, we refer the interested reader to a stan-
dard textbook [31.6].

The two approaches of discriminative and gener-
ative models may be combined by using generative
models to build kernels. These kernels define similarity
between two covariate vectors x and x0 by correlation
between the respective pdfs, with the values of the ker-
nel function given by k.x; x0/D P.X D x/ 	P.X0 D x0/
for suitable choices of the probability functions. A ker-

nel so designed will naturally form a Gram matrix.
Such kernels lead naturally to the use of latent vari-
ables

k.x; x0/D
X
i

P.X D xjZ D i/P.X0 D x0jZ D i/

�P.Z D i/ ;

with weighting coefficients P.Z/ reflecting the strength
of the latent variable Z indexed by i. An example of this
approach in practice will be seen in the HMMs later in
this chapter (see Sect. 31.4.2).

31.2 Graphical Models

In this section, we give a basic introduction to graphical
models, a general framework for dealing with uncer-
tainty in a computationally efficient way. Probabilistic
models that we treat in the next sections belong to this
framework. Here, we introduce the two main classes
of graphical models, Bayesian and Markov networks,
discussing different methods for performing probabilis-
tic inference. Specific instances of learning within this
framework, are given in the next two sections. For the
sake of presentation, here we limit our presentation to
discrete random variables; however, graphical models
can be defined on continuous variables or mixed vari-
ables. The material covered in this section is based
on [31.6, 46, 47].

A graphical model allows us to represent a fam-
ily of joint probability distributions in terms of a di-
rected or undirected graph, where nodes are associ-
ated with random variables, and edges represent some
form of direct probabilistic interaction between vari-
ables. Being able to compactly represent the joint
probability distribution of a set of random variables
X D fX1; : : : ;Xng is very important: any probabilistic
query involving the variables X1; : : : ;Xn can be an-
swered by knowing their joint probability distribution
P.X1; : : : ;Xn/. For example, assume variables to be
discrete, and suppose we want to know the posterior
probability of X1 and X2 given all the other variables,
i. e., P.X1;X2jX3; : : : ;Xn/. We can easily answer this
query by computing

P.X1;X2jX3; : : : ;Xn/

D P.X1; : : : ;Xn/P
X12dom.X1/
X22dom.X2/

P.X1 D x1;X2 D x2;X3; : : : ;Xn/
:

Unfortunately, storing the joint probability values asso-
ciated with all the different assignments x1; : : : ; xn is not
feasible: if di is the size of dom.X1/, all the different as-
signments are

Qn
iD1 di, i. e., an exponential number of

entries. This situation, however, constitutes the worst
case. In fact, in many application domains, indepen-
dence properties allow us to factorize the joint distribu-
tion into compact parts which can be stored efficiently.
Graphical models provide the language to compactly
represent these factors, enabling in many cases infer-
ence and learning over a compact parameterization of
the joint distribution as graphical manipulations.

Graphical models can be characterized accord-
ing to the type of probabilistic interaction between
variables they model. Directed graphs (Bayesian net-
works) are used to express causal relationships between
random variables (i. e., cause! effect relationships),
while undirected graphs (Markov networks) are better
suited to express probabilistic constraints among subset
of variables to which it is difficult to ascribe a direction-
ality (graphical models containing both directed and
undirected edges are possible; however, they will not
be covered here). In both cases, the joint distribution is
factorized according to the notion of conditional inde-
pendence.

Definition 31.1 Conditional Independence
Let X; Y; Z be sets of random variables with Xi 2X,
Yi 2 Y, Zi 2 Z. X is conditionally independent of Y
given Z (denoted as X??YjZ) in a distribution P if, for
all values xi 2 dom.Xi/; yi 2 dom.Yi/; zi 2 dom.Zi/

P.X D x;Y D yjZD z/D P.X D xjZD z/

�P.Y D yjZD z/ ;

Probabilistic Modeling in Machine Learning 31.2 Graphical Models 553
Part

D
|31.2

where X D x denotes X1 D x1; : : : ;XnX D xnX , Y D y
denotes Y1 D y1; : : : ; YnY D ynY , ZD z denotes Z1 D
z1; : : : ;ZnZ D znZ , and nX D jXj, nY D jYj, nZ D jZj.

It is not difficult to see that if X??YjZ, then it is
also true that P.XjY;Z/D P.XjZ/. In fact, using the
product rule for probabilities, we have P.X;YjZ/D
P.XjY;Z/P.YjZ/.

In the following, we will discuss how conditional
independence is used within Bayesian and Markov net-
works to factorize the joint distribution. Inference and
learning will be discussed as well.

31.2.1 Bayesian Networks

Bayesian networks are directed acyclic graphs used to
model causal relationships between random variables:
an edge X1! X2 is used to express the fact that vari-
able X1 (cause) influences variable X2 (effect). The
combination of this interpretation in conjunction with
the exploitation of conditional independence, where
applicable, allows the efficient probabilistic modeling
of many relevant application domains. In general, the
product rule can be used to factorize the joint distribu-
tion of variables X1;X2;X3; : : : ;Xn as

P.X1;X2;X3; : : : ;Xn/D
nY

iD1

P.XijX1;X2; : : : ;Xi�1/ :

(31.7)

The conditional independence relationships can be used
to simplify the form of each factor in (31.7), i. e.,
by eliminating variables from the conditioning part,
thus drastically reducing the number of probability
values that need to be specified to define the factor.
For example, if we assume that all the variables are
Boolean, then the number of entries needed to define
P.XnjX1;X2; : : : ;Xn�1; / would be 2n�1. If we consider
a simple scenario in which the variable Xn is depen-
dent only on Xn�1, the corresponding simplified factor
becomes P.XnjX1;X2; : : : ;Xn�1/D P.XnjXn�1/, which
only requires two entries.

The naïve Bayes model used in classification tasks
can be understood as a Bayesian network, where the
variable associated with the class label C is the cause
and the variables X1; : : : ;Xn used to describe the at-
tributes of the current input are the effects. The un-
derlying conditional independence assumption is fairly
simplistic, but allows a very parsimonious factoriza-
tion of the joint distribution. By assuming that the class
label does not depend on the attributes, and that the at-

tributes are conditionally independent with respect to
each other given the class label, i. e., 8i; j P.Xi;XjjC/D
P.XijC/P.XjjC/, naïve Bayes factorizes the joint distri-
bution as

P.C;X1;X2;X3; : : : ;Xn/D P.C/
nY

iD1

P.XijC/ :

The details of this model are not discussed in this chap-
ter, but a good didactic reference is [31.6].

In general, after simplification via conditional in-
dependence, factors are in the form P.XijXj1 ; : : : ;Xjk /,
where Xj1 ; : : : ;Xjk are denoted as parents of Xi, and
the notation pa.Xi/ is used with the following meaning
pa.Xi/D fXj1 ; : : : ;Xjk g. The factor associated with vari-
able Xi can thus be rewritten as P.Xijpa.Xi// and the
joint distribution as

P.X1;X2;X3; : : : ;Xn/D
nY

iD1

P.Xijpa.Xi// : (31.8)

The graphical representation of a Bayesian network is
shown in Fig. 31.1. The graphical model includes one
node for each involved variable. Moreover, a variable
that is conditioned (effect) with respect to a parent
one (cause) receives a directed edge from that variable.
For example, in the Bayesian network represented in
Fig. 31.1, we have pa.X7/D fX2;X3g, i. e., the set con-
stituted by the two nodes from which X7 receives an
edge. This means that the factor associated with X7 is
P.X7jX2;X3/. In Fig. 31.1, we have reported one popu-
lar way to specify the parameters of P.X7jX2;X3/ when
the involved variables are discrete, i. e., the conditional

P(t |X7)

0.3
0.9

X7

f
t

X3

f
t
f
t

X2

f
f
t
t

P(t |X2, X3)

0.6
0.4
0.8
0.3

X1→X7
indirect
causal
effect

X4→X7
indirect

evidential
effect

Common cause

Common effect

X7

X5 X6 X4

X3X1 X2

Fig. 31.1 An example of Bayesian network. Conditional probability
tables are shown only for variables X5 and X7. Different types of
probabilistic influence among variables are highlighted

Part
D
|31.2

554 Part D Neural Networks

probability distribution table (CPD table). The CPD of
X7 in Fig. 31.1, for instance, reports the probability of
X7 D t, given each possible assignment of values to its
parents. The CPD table associated with X5 is reported
as well. By using the CPD tables associated to all nodes,
the joint distribution can be rewritten as

P.X1; : : : ;X7/D P.X1/P.X3/P.X2jX1/P.X7jX2;X3/

�P.X5jX7/P.X6jX7/P.X4jX6/ :

Note that different distributions can be obtained by
using different values for the entries of the CPD ta-
bles. Thus, a Bayesian network is actually representing
a family of distributions: all the distributions that are
consistent with the conditional independence assump-
tions used to simplify the factors. In fact, up to now, we
have discussed how starting from a universal decompo-
sition of the joint distribution via the product rule (note
that such decomposition is not unique as it depends on
the presentation order assigned to the variables), a set
of conditional independence assumptions can be used
to simplify the factors, leading to the corresponding
graphical representation given by the Bayesian net-
work. An important question, however, is whether the
topological structure of a Bayesian network allows for
the direct identification of other (conditional) inde-
pendence relationships, i. e., whether there exist other
(conditional) independence relationships thatmust hold
for any joint distribution P that is compatible with the
structure of a specific Bayesian network (note that ad-
ditional relationships may hold only for some specific
distributions, i. e., some specific assignment of values to
the entries of the CDP tables). As we will see later, the
answer to this question is important to devise general-
purpose inference algorithms on Bayesian networks.
A general procedure, called d-separation (directed sep-
aration), can answer the question. It is based on the
observation that two variables are not independent if
one can influence the other via one or more paths in the
graph. Let us exemplify this concept on the Bayesian
network reported in Fig. 31.1, where we have high-
lighted four different basic cases:

1. Indirect causal effect: X1 can influence X7 via X2 if
and only if X2 is not observed (a variable is said to
be observed if the value assigned to that variable is
known).

2. Indirect evidential effect: X4 can influence X7 via X6

if and only if X6 is not observed.
3. Common cause: X5 can influence X6 (and viceversa)

via X7 if and only if X7 is not observed.

4. Common effect: X2 can influence X3 (and viceversa)
if and only if either X7 or one of X7’s descendants
(in this case, X5, X6, X4) is observed.

The topological structure encountered in the com-
mon effect is called v-structure and it plays a relevant
role in the d-separation procedure. In general, it is clear
from above that probabilistic influence does not fol-
low edge direction. Thus, when considering a longer
trail, e.g., the path from X1 to X4, we have to consider
whether each part of the trail allows probabilistic influ-
ence to flow or not (according to the four basic cases
described above).

Definition 31.2 Active Trail
Let X1; : : : ;Xk be a trail in a Bayesian network G,
and E be a subset of observed variables in G. The trail
X1; : : : ;Xk is active given E if:

� Whenever a v-structure Xi�1! Xi XiC1 does oc-
cur, Xi or one of its descendants belong to E;� No other node along the trail belongs to E.

Of course, by definition, if X1 2 E or Xn 2 E the trail is
not active. Examples of active/not active trails from the
Bayesian network represented in Fig. 31.1 are: the trail
X1;X2;X7;X6;X4 is active given the set E D fX3;X5g,
while it is not active whenever either X2 or X7 or X6 be-
longs to E; on the other hand, the trail X1;X2;X7;X3 is
active if X2 62 E and either X7 or X5 or X6 or X4 belongs
to E.

The Bayesian network represented in Fig. 31.1
does not allow more than one trail between any cou-
ple of nodes. In general, however, two nodes may
have several trails connecting them and one node
can influence the other one as long as there exist
at least one active trail among them. This intuition
is captured by the definition of the concept of d-
separation.

Definition 31.3 d-Separation
Let X; Y; Z be nonintersecting sets of nodes of
a Bayesian network. X and Y are d-separated given Z
if there is no active trail between any node X 2X and
Y 2 Y given Z.

The d-separation test can be used to precisely char-
acterize the independence relationships which hold for
probabilistic distributions that factorize according to the
given Bayesian network.

Probabilistic Modeling in Machine Learning 31.2 Graphical Models 555
Part

D
|31.2

In the following, we introduce another class of
graphical models, i. e., Markov networks, which are de-
scribed by undirected graphs.

31.2.2 Markov Networks

Directed edges in Bayesian networks are suited to de-
scribe causal relationships between random variables.
In many cases, however, the probabilistic interaction
between two variables is not directional. In these cases,
it is natural to consider undirected graphs, i. e.,Markov
networks. An undirected edge between variables X
and Y represents a probabilistic constraint between the
two variables. On the other hand, if X and Y are not
connected, then we can state a conditional indepen-
dence assertion involving them if and only if there are
no active trails connecting them in the graph. Note
that, since edges are now undirected, a trail is not ac-
tive if and only if any of the variables in the trail
is observed. This leads us to discuss which kind of
joint distribution factorization a Markov network does
represent.

If we go back to the concept of active trail, it is clear
that if we consider a subset S of fully connected nodes
in the undirected graph, i. e., nodes in S are connected
to each other, then any X; Y 2 S will be connected by so
many trails involving nodes in S n fX; Yg that it is wise
to consider a single factor 	S involving all nodes in S.
Technically, S is called a clique, and we are actually in-
terested in maximal cliques, i. e., cliques which cannot
be extended in size by considering another node of the
graph. For example, the maximal cliques of the Markov
network given in Fig. 31.2 are

c1 D fX1;X3;X5g ; c2 D fX1;X2g ;
c3 D fX2;X4g ; c4 D fX3;X4g :

Note that, while fX1;X5g is a clique, it is not maximal
since we can add X3 obtaining a larger clique.

A different factor can be associated with each maxi-
mal clique ci. By using a global normalization constant
for the joint distribution factorization, a factor associ-
ated with a clique ci can be modeled by a potential func-
tion 	ci.	/, i. e., any nonnegative function (see Fig. 31.2
for involving Boolean variables). Thus, the factoriza-
tion of the joint distribution for the example in Fig. 31.2
is

P.X1;X2;X3;X4;X5/D 1

Z
	c1.X1;X3;X5/	c2.X1;X2/

�	c3.X2;X4/	c4.X3;X4/ ;

where the normalization constant

Z D
X

8i;xi2Xi

	c1.X1;X3;X5/	c2.X1;X2/

�	c3.X2;X4/	c4.X3;X4/

is called the partition function. If with x we denote
an assignment of values to the variables X1; : : : ;Xn

and with xci the corresponding assignments associated
with variables in the clique ci, the general formulas for
a Markov network are

P.X1; : : : ;Xn/D 1

Z

Y
8i;ci

	ci.xci/ ;

where

Z D
X
x

Y
8i;ci

	ci.xci/ :

If the potential functions are restricted to be strictly pos-
itive, then it is possible to find a precise correspondence
between factorization and conditional independence.
In fact, if we consider the set of all possible dis-
tributions defined over variables of a given Markov
network, then the set of such distributions that are con-
sistent with the conditional independence statements
that can be derived by using the adapted concept of
active trails and d-separation coincides with the set
of distributions that can be expressed as a factoriza-
tion of the form given above with respect to maximal
cliques of the network (Hammersley–Clifford theo-
rem).

X4

f
t
f
t

X2

f
f
t
t

φ(X2, X4)

1.2
0.5
3.9
9.1

φ(X1, X2)

φ(X3, X4)

φ(X2, X4)φ(X1, X3, X5)

X2X1

X5

X4X3

Fig. 31.2 An example of Markov network involving five vari-
ables. Maximal cliques and corresponding potential functions are
highlighted. An example of potential function is given for clique
fX2;X4g, where we have assumed that X2 and X4 are Boolean vari-
ables

Part
D
|31.2

556 Part D Neural Networks

For practical reasons, it is convenient to express
a strictly positive potential function as a Boltzmann dis-
tribution, i. e.,

	ci.xci/D e�E.xci / ;

where E.xci/ is called an energy function. Since the
joint distribution is the product of potentials, the total
energy is obtained by adding the energy functions of
each of the maximal cliques. Energy functions are very
useful since, in the absence of a specific probabilistic in-
terpretation for the potential functions, assignments of
values that have high probability can be given low en-
ergies, while less probable assignments will correspond
to high energies.

Let us give an example of application of Markov
networks: image de-noising. The task is to remove noise
from a binary image Y where the pixels Yi are �1 or
C1. Each observed pixel Yi is obtained by a noise-free
image X with pixels Xi where, with some small proba-
bility, the sign of the pixel is flipped. Since neighboring
pixels in the noise-free image are strongly correlated,
as well as the two variables Yi and Xi, due to the small
flipping probability, we can use a Markov network like
the one depicted in Fig. 31.3 to capture this knowledge.
The total energy function encoding such prior knowl-
edge would be

E.X;Y/D�ˇ
X

Xi;Xj2X
XiXj � �

X
Xi2X
Yi2Y

XiYi ;

where all the maximal cliques are considered and cou-
ples of pixels with the same sign get lower energy
values. Since we are interested in removing noise from

Pixel i

Yi

Xi

Fig. 31.3 A Markov network for image de-noising. Yi is
the binary variable representing the state of pixel i in the
noisy observed image, while Xi refers to the noise-free im-
age

the observed pixels Yi, we add a bias toward pixel val-
ues that have one particular sign, by summing a term
hXi to the energy function for each pixel in the noise-
free image

E.X;Y/D h
X
Xi2X

Xi �ˇ
X

Xi;Xj2X
XiXj � �

X
Xi2X
Yi2Y

XiYi :

Note that his operation is legal since it corresponds to
multiplying the potential function, which are arbitrary
nonnegative functions, by a nonnegative function.

The factorized joint distribution over Y and X is
then defined as

P.X;Y/D 1

Z
e�E.X;Y/ :

Probabilistic inference can now be performed by clamp-
ing the value of Y to the observed image, which implic-
itly corresponds to a conditional distribution P.XjY/
over free images, and by computing the assignments
to X that minimizes the total energy of the Markov
model, i. e., the assignment of values to pixels of X
with highest probability given the observed image Y.
The resulting assignment of values to X will return the
(presumed) noise-free version of Y.

In the following, we briefly present different ap-
proaches to perform probabilistic inference in Bayesian
and Markov networks.

31.2.3 Inference

Performing probabilistic inference in a graphical model
over a set of random variables X means being able
to answer any probabilistic query involving X. Since
a graphical model, either a Bayesian or a Markov net-
work, describes a factorization of the joint distribution,
any probabilistic query can be answered, so the problem
reduces to find efficient procedures to perform infer-
ence. In the following, we report some of the most
typical form of queries:

� Conditional: In this case, we are interested in com-
puting P.YjE D e/, where Y;E �X, with Y \
E D ;, where Y are the query variables and E D
fE1; : : : ;Ekg are the evidence variables for which
specific values eD fe1; : : : ; ekg have been observed.� Most probable assignment: Given evidence E D e,
we are interested in computing the most likely as-
signment y� to Y �X nE. There are two main
variants for this kind of query: most probable ex-
planation (MPE) andmaximum a posteriori (MAP).

Probabilistic Modeling in Machine Learning 31.2 Graphical Models 557
Part

D
|31.2

A MPE query must solve the problem

y� D argmax
y

P.Y D y;E D e/ ;

where Y DX nE, while a MAP query must solve
the problem

y� D argmax
y

X
z

P.Y D y;ZD zjE D e/ ;

where ZDX nE nY.

From the point of view of inference, both directed
and undirected networks can be treated in the same way.
In fact, directed networks can be converted to undi-
rected networks. This is done by observing that factors
in directed networks can be understood as factors cor-
responding to cliques in an undirected graph obtained
by mutually connecting all the parents of each node by
new undirected edges and by dropping direction from
the original directed edges. This procedure is known as
moralization and the resulting undirected graph is the
moral graph. By this means, all the variables involved
in factors of the directed graph (e.g., CPTs) will be
contained in corresponding cliques of the moral graph.
Thus, we can focus on undirected graphs.

From a computational point of view, in the worst
case, probabilistic inference is difficult: every type of
probabilistic inference in graphical models isNP-hard
or harder. Specifically, the complexity of inference is re-
lated to a topological property of the graphical network
called treewidth. Approximate inference methods have
been devised to deal with such computational complex-
ity. Unfortunately, approximate inference turns out to
be hard, in the worst case. Nevertheless, if the treewidth
of the graphical network is not too large (e.g., in poly-
trees), exact inference can be performed in a reasonable
amount of time. Moreover, in many practical cases, ap-
proximate inference is efficient and adequate.

There are three major approaches to perform in-
ference: exact algorithms, sampling algorithms, and
variational algorithms. The former tries to compute the
exact probabilities while avoiding repeated computa-
tions. The second approach aims to efficiently approx-
imate probabilities by sampling, in a smart way, the
universe of events. Finally, the third approach allows
us to treat both exact and approximate inference within
the same conceptual framework. In the following, we
briefly sketch the main ideas underpinning these ap-
proaches.

Exact Algorithms
Let us illustrate one of the basic ideas of exact algo-
rithms, i. e., variable elimination, by using the Markov
network shown in Fig. 31.2, where we assume all vari-
ables to be Boolean. Suppose we are interested in
computing the marginal probability P.X2/. We can get
it by summing the factorized joint distribution over the
remaining variables

P.X2/D
X
x1

X
x3

X
x4

X
x5

1

Z
	.X1;X3;X5/

�	.X1;X2/	.X2;X4/	.X3;X4/ :

Naïve computation of the above equation would require
O.25/ operations, since each summand involves five
Boolean variables. However, we can rearrange the sum-
mands in a smarter way

P.X2/D 1

Z

X
x1

	.X1;X2/
X
x4

	.X2;X4/
X
x3

	.X3;X4/

�
X
x5

	.X1;X3;X5/

D 1

Z

X
x1

	.X1;X2/
X
x4

	.X2;X4/

�
X
x3

	.X3;X4/m5.X1;X3/

D 1

Z

X
x1

	.X1;X2/
X
x4

	.X2;X4/m3.X1;X4/

D 1

Z

X
x1

	.X1;X2/m4.X1;X2/

D 1

Z
m1.X2/ ;

where themi terms are the intermediate factors obtained
by summation on variable Xi. Note that Z can be com-
puted by summing on variable X2. Moreover, the total
computational complexity reduces to O.23/ since no
more than three variables occur together in any sum-
mand. In general, the maximal number of variables that
occur in any summand is determined by the elimina-
tion order. Since many different elimination orders may
be used, the lowest complexity is obtained by the order
that minimizes this maximal number, which is related
to the treewidth of the graph. Unfortunately, finding the
optimal elimination order isNP-hard.

One positive aspect of the elimination approach
is that it also works for continuous variables since

Part
D
|31.2

558 Part D Neural Networks

X1, X3, X5 X1, X3, X4 X1, X2, X4 X1, X2
X1, X3 X1, X4 X1, X2

Fig. 31.4 Example of cluster graph, where the direction of the flow of computation is shown under each edge, while the
scope of the computed factor transmitted to the other node after variable elimination is shown over each edge

it is only based on the topology of the graph. How-
ever, the elimination procedure returns only a single
marginal probability, while it is often of interest to
compute more than one marginal probability. Luckily,
we can generalize the idea to efficiently compute all
the single marginals. Here we give some hints on
how to do it. Consider the sequence of intermediate
factors generated in the example above. They can be
indexed by the variables in their scope, i. e., 1;3;5

D 	.X1;X3;X5/; 1;3;4 D 	.X3;X4/m5.X1;X3/; 1;2;4

D 	.X2;X4/m3.X1;X4/; 1;2 D 	.X1;X2/m4.X1;X2/.
Graphically, we can represent them via a cluster
graph, where each node is associated with a subset of
variables (i. e., the scope of intermediate factors) and
the undirected edges support the flow of computation
of the elimination process. In our example, the cluster
graph is shown in Fig. 31.4, where we have shown the
direction of the flow of computation under each edge,
and the scope of the computed factor transmitted to the
other node after variable elimination over each edge.
The variable X2 in the rightmost node is underlined to
remark that it is the target of the flow of computation.
In general, since each edge is associated with a variable
elimination, it is not difficult to realize that the cluster
graph is in fact a tree (called clique tree or junction
tree). This structure can also be used for computing
other marginals. In order to see that, we have to observe
that the scope of the rightmost node is a subset of the
scope of the node at its left, so it can be merged with
this last node; moreover, each initial potential must be
associated with a node with consistent scope, e.g.,

X1, X3, X5 X1, X3, X4 X1, X2, X4 .X1, X3

φ (X1, X3, X5) φ (X3, X4) φ (X1, X2) φ (X2, X4)

X1, X4

Now, suppose we want to compute P.X3/ by eliminat-
ing all the other variables. We have to select a node
which contains X3 in its scope, e.g., the middle node.
The flow of computation should now converge toward
that node, as shown in

X1, X3, X5 X1, X3, X4 X1, X2, X4 .X1, X3

m5 m2

X1, X4

Any elimination order consistent with the above flow
will do the work, e.g., we first consider the leftmost
node and eliminate X5 by transmitting the message

m5.X1;X3/D
X
x5

	.X1;X3;X5/

to the middle node. Then, we do the same for the
rightmost node, by eliminating X2 and transmitting the
message

m2.X1;X4/D
X
x2

	.X1;X2/	.X2;X4/ :

Finally, the middle node can merge the two received
messages with the local potential obtaining

	.X3;X4/m5.X1;X3/m2.X1;X4/ ;

which is an unnormalized version of the joint dis-
tribution P.X1;X3;X4/. Marginal P.X3/ can then be
computed by summing out X1 and X4 and normalizing
the result. Note that the same flow can be used to com-
pute P.X1/ and P.X4/: in the first case, the final stage
will sum out X3 and X4, while in the second case it will
sum out X1 and X3.

In general, all the factors needed by all the nodes to
compute the marginals of the variables in their scope,
can be computed by a sum-product message passing
scheme where, having selected an arbitrary node as
root, messages are transmitted from the leaves up to the
root and then back from the root to the leaves. If ev-
idence is present, restricted potentials (i. e., potentials
where evidence variables are bound to the observed val-
ues) are used. MEP and MAP queries can be answered
by using a max-sum algorithm, which is a variation
of the sum-product algorithm exploiting a trellis over
all the values the variables can take. The message
passing scheme sketched above can also be imple-
mented using division, giving raise to the Belief Update
algorithm.

Sampling Algorithms
The strategy adopted by sampling algorithms to per-
form (approximate) inference is to approximate the
joint distribution via estimates computed on a set of

Probabilistic Modeling in Machine Learning 31.2 Graphical Models 559
Part

D
|31.2

representative instantiations of all, or some of, the vari-
ables of the graphical model. Unlike exact inference,
some techniques are specialized for directed networks.
For example, a simple approach to estimate the joint
probability in a Bayesian network is Forward Sam-
pling. It starts by considering any topological ordering
of the variables, e.g., for the network in Fig. 31.1 the
order X1;X3;X2;X7;X5;X6;X4 will do the job. Then
random samples are generated by following the order
and by picking a value for each variable according to
its distribution. Note that variables with conditional dis-
tributions will be considered only when specific values
for their parents have already been generated, so that the
conditional probability for those variables is fully spec-
ified. OnceM full samples are generated in this way, the
probability of a specific event P.E D e/ is estimated as
the fraction of samples where variables in E take val-
ues e. If the query is of the form P.YjE D e/, samples
which are not consistent with the evidence are rejected
(rejection sampling) and the remaining samples used
to estimate the conditional distribution on variables Y.
With this approach, however, a large amount of gener-
ated samples are discarded.

An improvement on this aspect is given by the
likelihood weighting algorithm, which is based on the
observation that evidence variables can be forced to as-
sume only the observed values in a sample as long as the
sample is weighted by the likelihood of the evidence.
This means that a weight is associated with each sample
and the weight is given by the product of all the poste-
rior probabilities corresponding to the observed values
for the evidence variables, i. e.,

wsample D
Y
Ei2E

P.Ei D eijpa.Ei// :

Estimates are then computed considering weighted
samples. Likelihood weighting turns out to be a spe-
cial case of a more general approach called importance
sampling which aims at estimating the expectation of
a function relative to some distribution.

Improved sampling methods, which can also be ap-
plied to Markov networks, are given by Markov chain
Monte Carlo methods. Unlike the methods described
so far, these methods generate a sequence of samples,
in such a way that later samples are generated by dis-
tributions that provably approximate with increasing
precision the target posterior probability (i. e., the query
P.YjE D e/).

The simpler method uses Gibbs sampling: an ini-
tial assignment of values for the unobserved variables

is generated from an initial distribution; subsequently,
in turn, each unobserved variable is sampled using
the posterior probability given the current sample for
all other variables. This distribution can be computed
efficiently by using only factors associated with the
Markov blanket, i. e., the neighbors of the variable to
be resampled in the Markov network (in Bayesian net-
works, the Markov blanket of a node is given by the set
of its parents, its children and the parents of its chil-
dren). Using the theory ofMarkov chains (discussed in
Sect. 31.4.1), it is possible to show that, under some
assumptions, the sequence of generated distributions
converges to a stationary distribution, where the frac-
tion of time in which a specific assignment of values
to variables (sample) does occur in the sequence is ex-
actly proportional to the posterior probability of that
assignment.

A drawback of Gibbs sampling is that it uses only
local moves (i. e., resampling of a single variable), lead-
ing to very slow convergence for assignments with
low probability. More effective methods, based on the
Metropolis–Hastings approach, enable for a broader
range of moves. Further, more advanced approaches al-
low us to consider partial assignments in conjunction
with a closed-form distribution for unassigned vari-
ables. Others use deterministic methods to explicitly
search for high-probability assignments to approximate
the joint distribution.

Variational Algorithms
Probabilistic inference can be formulated as a con-
strained optimization problem. This allows both to
rediscover exact inference algorithms, such as the ones
we have briefly discussed above, and to design ap-
proximated inference algorithms, by simplifying either
the objective function to optimize and/or the admissi-
ble region for optimization. The possibility to devise
theoretically founded approximation algorithms is par-
ticularly appealing in cases where the joint distribution
is characterized by a factorization with associated large
treewidth. Research in this area has been recently very
active, yielding to several interesting results. Here we
do not have the space for a proper technical treatment,
so we try to give only a brief introduction to the main
ideas.

Variational approaches are based on the idea of
approximating an intractable probabilistic distribu-
tion with a simpler one, which allows for inference.
This simpler distribution is selected from a family of
tractable distributions, as the distribution that is the best
approximation to the desired one. Can we define a mea-

Part
D
|31.3

560 Part D Neural Networks

sure of the quality of the approximation that can be
used for the minimization process? A good measure is
the KL-divergence introduced in (31.2). Let us denote
a distribution that factorizes according to the graphical
model G as

PG.X/D 1

Z

Y
8i;ci

	ci.xci/ (31.9)

and let Q.X/ be a member of the tractable distributions
we use to approximate PG.X/. Then, a nice feature of
KL-divergence is that it allows us to efficiently solve
the optimization problem

arg min
Q.X/

DKL.Q.X/kPG.X//

without requiring to perform inference in PG.X/. In
fact, using the factorization of PG.X/ in (31.9), it is not
difficult to show that

DKL.Q.X/kPG.X//D logZ�
X
8i;ci

EQŒlog	ci �

CEQŒlogQ.X/� ; (31.10)

and, since log Z does not depend on Q.X/, minimizing
DKL.Q.X/kPG.X// is equivalent to maximizing the en-
ergy functional term

X
8i;ci

EQŒlog	ci ��EQŒlogQ.X/� :

Following from the definition in (31.1), HQ.X/D
�EQŒlogQ.X/� is the entropy of Q, while the first term
in (31.10) is referred to as energy term.

Different variational methods correspond to differ-
ent strategies for optimizing the energy functional. The

name variational is used since all of them adopt the
general strategy of reformulating the optimization prob-
lem by introducing new variational parameters to be
used for optimization. In particular, each specific choice
of values for the variational parameters expresses one
member, i. e., Q.X/, of the family of tractable distri-
butions we want to use. The optimization procedure
searches the space of variational parameters to find the
Q�.X/ that best approximates PG.X/. It is important to
understand that the family of tractable distributions will
actually corresponds to a set of constraints, involving
the variational parameters that must be satisfied while
maximizing the energy functional. By using Lagrange
multipliers these constraints can be merged together
with the energy functional, giving rise to a Lagrangian
function that must be maximized. By taking the partial
derivatives with respect to the variational parameters
and the Lagrange multipliers, the solution to the op-
timization problem can be characterized by a set of
fixed-point equations. These equations can then be used
to straightforwardly devise an iterative solution.

Different variational methods work with different
types of approximations. There are two main sources
of approximation, which can be used singularly or in
conjunction. One source is the energy functional, which
can be substituted by a functional easy to manipulate
while preserving a good degree of approximation. An-
other source of approximation are the constraints, i. e.,
the definition of the family of tractable distributions,
which may not be fully consistent with the factoriza-
tion represented by the graphical model (in this case,
denoted as pseudo-distributions).

We do not have space here to give more details;
however, it is worth to mention that while convergence
proofs of several variational methods are available, it
is not so common to find theoretical guarantees on the
approximation error made by the specific method.

31.3 Latent Variable Models

Knowledge hindered in the complex relation between
a large number of observable variables can be surfaced
under the assumption that a simpler and unobservable
process exists, which is responsible for generating the
complex behavior of manifest data. Such an unobserv-
able generative process can be modeled through the use
of latent variables, as opposed to observable variables,
that are not directly measurable, but can be inferred
from observations and can explain the relation between
manifest data. Intuitively, latent variables can be un-

derstood as an attempt to model the unknown physical
process generating the observations or as an abstraction
providing a simplified representation of the manifest
data, e.g., clusters.

Probabilistic models that attempt to explain obser-
vations in terms of latent variables are called latent
variable models. In probabilistic terms, the simplifi-
cation introduced by latent variables results in condi-
tional independence assumptions, such that (subsets of)
observable variables can be considered conditionally

Probabilistic Modeling in Machine Learning 31.3 Latent Variable Models 561
Part

D
|31.3

independent when their hidden explanation, i. e., the la-
tent variable assignment, is given. Similarly to observed
variables, latent variables can be discrete or continu-
ous: their nature, together with that of the observations,
determines different types of probabilistic models. Nev-
ertheless, parameter estimation in the different latent
variable models can be achieved through a general it-
erative principle, known as expectation–maximization.

31.3.1 Latent Space Representation

To understand the intuition at the basis of latent space
representation, consider a joint distribution P.X/D
P.X1; : : : ;XN/ defined over N joint observed random
variables Xi. As discussed in Sect. 31.2.1, without
any simplifying assumption, the number of free pa-
rameters of this simple model grows as O.2N�1/ for
Boolean variables, which quickly becomes unmanage-
able for large N. One way to control the number of free
parameters of a model, without taking too simplistic
assumptions (e.g., Xi being i.i.d.), is to introduce a col-
lection of latent, or hidden, variables ZD fZ1; : : : ; ZKg.
The latent variables are unobserved but can be used
to factorize the joint distribution P.X/ while allow-
ing to capture (some of) the correlations between the
X D fX1; : : : ;XNg observed variables. More formally,
latent variables are such that

P.X/D
Z
z

P.XjZD z/P.ZD z/dz ; (31.11)

that is the general formulation for the likelihood of a la-
tent variable model. The details of the latent variable
model, and the tractability of the integral in (31.11), are
determined by the form of the conditional distribution
P.XjZ/ and by the marginal probability P.Z/. A com-
mon approach in latent variable models is to assume
that observed variables become conditionally indepen-
dent given the latent variables, that is

P.X/D
Z
z

NY
iD1

P.XijZD z/P.ZD z/dz : (31.12)

A basic assumption for this latent model to be effective,
is that the conditional and marginal distributions should
be more tractable than the joint distribution P.X/. For
instance, in a simple scenario with discrete observa-
tions and latent variables, this entails that K� N. Not
surprisingly, the same intuition is applied, in a deter-
ministic context, for dimensionality reduction (cf. the
number of projection directions in PCA) and clustering.

Different types of latent variable models are defined
based on the nature of the latent and observed variables,
as well as depending on the form of the conditional
and marginal probabilities. In the following, we discuss
two general classes of latent variable models with con-
tinuous and discrete hidden variables, which are factor
analysis and mixture models, respectively.

31.3.2 Learning with Latent Variables:
The Expectation–Maximization
Algorithm

Learning, in a probabilistic setting, entails working with
the model likelihood. In latent variable models, the like-
lihood in (31.11) might be difficult to treat due to the
marginalization inside the logarithm, which can po-
tentially couple all the model parameters. Despite the
diversity of the models that can be designed, based on
the general expression in (31.11), there exist a general
principle to estimate their parameters.

The expectation–maximization (EM) algorithm
[31.48] is a general iterative method for the maximiza-
tion of the likelihood under latent variables. The key
intuition of the EM algorithm is to define an alterna-
tive objective function where the parameter coupling
introduced by the marginalization of the hidden vari-
ables is removed. The EM algorithm maximizes the
marginal data likelihoodP.Xj�/, where � are the model
parameters, through a tractable lower bound defined
by introducing a function of the latent variables, i. e.,
Q.Z/, into the data likelihood through marginalization.
For notational simplicity, consider the case of discrete
latent variables. For any nonzero distribution Q.Z/, it
holds

L.�/D logP.Xj�/
D log

X
z

P.X;ZD zj�/

D log
X
z

Q.z/
P.X;ZD zj�/

Q.z/

�
X
z

Q.z/ logP.X;Zj�/

�
X
z

Q.z/ logQ.z/D QL.Q; �/ ; (31.13)

where the lower bound QL.Q; �/� L.�/ is obtained by
the application of the Jensen inequality to the con-
cave log function. The joint distribution P.X;Zj�/ is
known as the complete data likelihood, where the term

Part
D
|31.3

562 Part D Neural Networks

complete refers to the fact that the marginal data likeli-
hood P.Xj�/ is completed with the observations z for
the latent variables.

The Expectation–maximization algorithm defines
an alternate optimization process where the bound
QL.Q; �/ is maximized with respect to Q.	/ and � . In
general, this is performed by two independent maxi-
mization steps that are repeated until convergence:

� Expectation (E) Step: For � fixed, find the distribu-
tionQ.tC1/.z/ that maximizes the bound QL.Q; � .t//;� Maximization (M) Step: Given the distribution
Q.z/.tC1/, estimate the model parameters � .tC1/

that maximize the bound QL.Q.tC1/; �/;

where the superscript denotes the estimate at time t.
Clearly, the optimal solution for the E-step is attained
when

Q.tC1/.z/D P.ZD zjX; � .t// ; (31.14)

that is when the lower bound in (31.13) becomes an
equality. In practice, to explicitly evaluate the complete
likelihood in QL.Q; � .t//, we would need to observe the z
assignments. These are unknown, since latent variables
are unobservable. However, given the marginalization
of z in (31.13), we can substitute the unavailable z ob-
servations with their expected values, by considering
them as another random variable. To this end, it suf-
fices that the E-step computes the expected value of
the complete log-likelihood logP.X;Zj�/ with respect
to Z. These observations provide the final form of the
classical EM algorithm:

� E-step: Given the current estimate of the model pa-
rameters � .t/, compute

Q.tC1/.� j� .t//D EZjX;�.t/ ŒlogP.X;Zj�/� I
(31.15)

� M-step: Find the new estimate of the model param-
eters

� .tC1/ D argmax
�

Q.tC1/.� j� .t// : (31.16)

In other words, the E-step estimates the value of the
otherwise unobserved latent variables, while theM-step
finds the parameters that maximize the current estimate
of the log-likelihood. In practice, the E-step often re-
duces to estimating the expectation of Z as its posterior

P.ZjX; � .t//, while theM-step uses these values as suf-
ficient statistics to update the model parameters � .tC1/.
This alternate optimization is typically iterated until the
log-likelihood does not change much between consecu-
tive estimates, or when a number of maximum iterations
is reached. Note that the two-step EM optimization pro-
cess is prone to local optima. Hence, its convergence
can be slow and, often, its solutions tend to be depen-
dent on the initialization.

The EM algorithm assumes that we can calcu-
late the expected value of the complete log-likelihood.
However, there are cases in which the required summa-
tion is not computationally feasible (e.g., with infinite
summations where the integral has no close-form solu-
tion): in this cases, the approximated inference methods
described in Sect. 31.2.3 can be used to define nonex-
act EM algorithms. For instance, stochastic versions
of the EM algorithm are obtained by approximating
the infeasible summation using (e.g., Gibbs) sampling
from the posterior distribution P.ZjX; �/. The clas-
sical EM algorithm is a ML method providing point
estimates of the model parameters � . The variational
Bayes (VB) [31.6] method has been introduced to ob-
tain a fully Bayesian solution that returns a posterior
distribution of the parameters P.�/, instead of their
point estimate. VB is based on an analytical approxi-
mation of the joint posterior of the latent variables and
model parameters that yields to a generalization of the
EM alternate optimization, where the maximization at
theM-step is taken over possible distributionsQ.�/, in-
stead of on � itself.

31.3.3 Linear Factor Analysis

Factor analysis (FA) is an example of a latent variable
model for continuous hidden and manifest variables.
In its simplest linear form, it is a classical statistical
model widely used for generative dimensionality re-
duction. Similarly to its deterministic counterparts, e.g.,
PCA, it forms a low-dimensional embedding of a set
of observations DD .x1; : : : ; xn/, where each obser-
vation x is a D-dimensional vector of reals. FA finds
a lower dimensional probabilistic representation of D,
by assuming that the features of each x are indepen-
dently generated by K real-valued latent variables ZD
fZ1; : : : ;ZKg, with K� D (see the associated graphical
model in Fig. 31.5).

The FA model, assumes that observations are linked
to the latent vectors through a linear model

xD FzC bC ; (31.17)

Probabilistic Modeling in Machine Learning 31.3 Latent Variable Models 563
Part

D
|31.3

X1

Z1

X2 XD

Z2 ···

···

ZK

Fig. 31.5 Linear factor analysis: the observed D-
dimensional variable X is related to the K latent variables
ZD fZ1; : : : ;ZKg through a linear mapping

where �N .j0; �/ is the Gaussian distributed noise
with zero mean and covariance � , b is a bias vector
and F is the factor loading matrix. The latent vari-
ables are the factors and are generally assumed to be
distributed as Z�N .zj0; IK/D P.Z/, where IK is the
K-dimensional identity matrix. Under such Gaussian
assumptions, and given the linear model in (31.17), the
conditional distribution of the observations is

P.X D xjZD z/DN .xjFzC b; �/ ; (31.18)

which, inserted in (31.11), provides the distribution for
the FA complete likelihood

P.X/D
Z
z

P.XjZ/P.Z/dzDN .xjb;FFT C�/ :

(31.19)

The form of the noise covariance � determines the type
of FA model: in general, this is chosen as a diagonal
matrix with a vector of . 1; : : : ; D/ values on the main
diagonal. When the diagonal elements are all equal to
a single value �2 2R, the FA reduces to the special case
of the Probabilistic PCA [31.49].

Learning of the FA parameters � D .�;F/ (b is usu-
ally set a priori to the mean of the data) is obtained
by maximum likelihood estimation. The most popular
approach to obtain such estimates is based on solving
an eigen-decomposition problem. Given the nature of
FA as a latent variable model, its � parameters can also
be estimated by applying EM to the logarithm of the
complete likelihood in (31.19). The latter approach is,
however, less used in general, given its slower conver-
gence.

31.3.4 Mixture Models

The term mixture models identifies a large family
of latent variable models comprising discrete hidden

variables and generic manifest variables. A mixture
model assumes that each observation is generated by
a weighted contribution of a number of simple distri-
butions, selected by the hidden variables. The simplest
form of mixture model assumes that an observation
is independently generated by a single mixture com-
ponent. Widely popular elements of this family are
the Gaussian mixture model for continuous observa-
tions and the mixture of unigrams for multinomial data.
In the following, we discuss an example of more ar-
ticulated generative processes comprising observations
with mixed component memberships.

Probabilistic Latent Semantic Analysis
Probabilistic latent semantic analysis (pLSA) [31.50]
has been introduced to model mixed membership obser-
vations, where a manifest sample is allowed to be gener-
ated by multiple latent variables. Its primary application
is on documental analysis, where latent variables are
interpreted as topics to be identified in a collection of
documents. Intuitively, in the mixture of unigrams, each
document is assigned to a unique topic and, as a conse-
quence, all the words in a document are constrained to
belong to a single topic. The pLSA model relaxes this
assumption by allowing words in a document to belong
to different topics, obtaining a multitopic representation
for the documents in the collection.

The typical pLSA setting includes a dataset of
multinomial samples, which are the documents DD
fd1; : : : ; dNg. Each document is an L-dimensional vec-
tor of word counts of length equal to the size of the
reference dictionary. In other words, the ith observed
sample is a vector di D .wi

1; : : : ;w
i
L/, where wi

j is the
number of occurrences of the jth word of the vocabulary
in the ith document. This data is typically summarized
in a rectangular L�N integer matrix n, such that each
row n.	;di/ contains the word counts for document di.
The variables identifying words and documents, i. e.,Wj

and Di, are observed, in contrast with the set of top-
ics ZD fZ1; : : : ;ZKg, which are the latent variables.
In pLSA, every observation n.wj; di/ is associated with
a latent topic zk by means of the hidden variable Zk.

The fundamental probabilities associated with this
model are P.DD di/, that is, the document probabil-
ity, P.W D wjjZ D zk/, that is, the probability of word
wj conditioned on topic zk, and P.Z D zkjDD di/, that
is the conditional probability of topic zk given docu-
ment di. Given the nature of the manifest and hidden
variables, all probabilities involved in pLSA are multi-
nomials. The pLSA defines a (quasi) generative model
for the word/document co-occurrences whose gener-

Part
D
|31.3

564 Part D Neural Networks

ative process is described by Fig. 31.6, using plate
notation. This is a concise representation for graphical
models involving replications: rectangular plates denote
replication of their content for a number of times given
by term on the bottom right (e.g., N and Ld for the outer
and inner plates in Fig. 31.6, respectively); each shaded
circular item denotes an observed variable, while empty
circles identify latent variables.

The conditional independence relationships in
Fig. 31.6 allow us to factorize the joint word-topic
distribution: by using the parent decomposition rule in-
troduced in (31.8), it yields

P.Wj;Di/D P.Di/P.WjjDi/

D P.Di/

KX
kD1

P.ZkjDi/P.WjjZk/ ; (31.20)

that is the specific pLSA form of the general latent topic
factorization in (31.12). The second equality in (31.20)
is given by the marginalization of the latent topics Zk
and by the conditional independence assumption of the
pLSA model, stating that word wj and document di can
be considered independent given the state of the la-
tent variable Zk. In other words, the word distribution
of a document is modeled as a convex combination of
K topic-specific distributions P.WjjZk/. Such decom-
position has a well-known characterization in terms of
Nonnegative matrix factorization [31.13].

Estimation of the pLSA parameters � D
fP.WjjZk/;P.ZkjDi/g is obtained by maximization
of the log-likelihood

L.�/D log
DY

iD1

WY
jD1

P.Wj;Di/
n.wj;di/ D

DX
iD1

WX
jD1

n.wj; di/

� log
(
P.Di/

KX
kD1

P.ZkjDi/P.WjjZk/
)
;

(31.21)

Ld

N

WZD

Fig. 31.6 Graphical model for the probabilistic latent se-
mantic analysis: indices for the random variables D;Z, and
W are omitted in the plate notation. The term Ld denotes
replication for the Ld words present in the dth document

where P.Wj;Di/ has been expanded using the formu-
lation in (31.20). As with other latent topic models,
this maximization problem can be solved through the
iterative EM-algorithm discussed in Sect. 31.3.2. Fol-
lowing (31.15), the E-step computes the expectation
of the complete likelihood P.Z;W;D/ with respect to
the pLSA latent topics, assuming observed documents
and words. It easily shows that the resulting E-step
computes

P.ZkjWj;Di/D P.ZkjDi/
.t/P.WjjZk/.t/PK

k0

D1 P.Zk0 jDi/.t/P.WjjZk0/.t/
;

(31.22)

that is the probability of the topic Zk given word Wj

in document Di, estimated using the current values (at
time t) of the model parameters � .t/ D fP.WjjZk/.t/;
P.ZkjDi/

.t/g. Note that the decomposition on the right-
hand side of Eq. (31.22) has been obtained by factor-
ization of the posterior P.ZkjWj;Di/ using the Bayes
theorem.

The M-step equations (31.16) are obtained by dif-
ferentiating the pLSA log-likelihood, extended with ap-
propriate Lagrange multipliers for normalization, with
respect to the P.ZkjDi/ and P.WjjZk/ parameters. The
resulting update equations are

P.ZkjDi/
.tC1/ D

PW
jD1 n.wj; di/P.ZkjWj;Di/PW

jD1 n.wj; di/
;

(31.23)

P.WjjZk/.tC1/ D
PD

iD1 n.wj; di/P.ZkjWj;Di/PW
jD1

PD
iD1 n.wj; di/P.ZkjWj;Di/

:

(31.24)

The two-step optimization is iterated until a likelihood
convergence criterion is met: often a validation set, or
a tempered version of the EM are used in order to avoid
model overfitting [31.50].

Advanced Topic Models
The pLSA was the first mixed membership model
allowing a single observed sample to be generated
by multiple latent topics at the same time. How-
ever, pLSA cannot be considered a fully generative
model. In fact, the document-specific mixing weights
for the topics are not sampled from a distribution,
rather they are selected from P.zkjdi/ based on the in-
dex of document di. Hence, pLSA indexes only those

Probabilistic Modeling in Machine Learning 31.4 Markov Models 565
Part

D
|31.4

documents that are in the training set D and can-
not directly model the generative process of unseen
test documents. In other words, the pLSA is basi-
cally assigning null probabilities to all inputs that are
not in the training set. The folding-in heuristic has
been proposed to opportunistically solve this limitation,
by assigning latent variables in the test-data to their
MAP values before computing the test-set perplexity.
However, the folding-in approach has been shown to
lead to overly optimistic estimates of the test-set log-
likelihood [31.51].

The latent Dirichlet allocation (LDA) [31.52] has
been proposed as a Bayesian approach to address such
modeling limitation of pLSA. It extends pLSA by treat-
ing the multinomial weights P.ZjD/ as additional latent
random variables, sampling them from a Dirichlet dis-
tribution, that is the conjugate prior of a multinomial
distribution. Using conjugate distribution eases infer-
ence as it ensures that the posterior distribution has the
same form of the prior. The latent variable decomposi-
tion of the LDA log-likelihood is

P.W D wj	;˛; ˇ/D
Z X

z

P.W D wjZ D z; 	/

�P.Z D zj�/P.� j˛/P.	jˇ/d� ;
(31.25)

where P.WjZ; 	/ is the multinomial word-topic distri-
bution with parameters 	 sampled from the Dirichlet
distribution P.	jˇ/. The term P.Zj�/ is the topic dis-
tribution having � as document-specific multinomial
parameter being sampled from the Dirichlet P.� j˛/.

Ld

K

N

WZ

φ�

θα

Fig. 31.7 Graphical model for the latent Dirichlet alloca-
tion

The terms ˛ and ˇ are the hyperparameters of
the Dirichlet distribution, see Fig. 31.7 for the model
plate notation. Direct EM inference is impossible for
LDA, since the integral in (31.25) is intractable due
to the couplings between the parameters within the
topic marginalization. Again, approximate and stochas-
tic Bayesian inference methods, such as those in
Sect. 31.2.3, are used to fit the LDA parameters, includ-
ing VB [31.52], expectation propagation [31.53], and
Gibbs sampling [31.54].

The principles underlying pLSA and LDA have
inspired the development of latent topic models that ac-
count for more articulated assumptions on the form of
the hidden generative process. For instance, hierarchical
LDA [31.55] proposes a generative process where ob-
servations are generated by a topic tree instead of being
drawn from a flat topic collection. Further, specialized
latent variable models have been developed for specific
applications, such as author-topic analysis in scientific
literature [31.56] and image understanding [31.57].

31.4 Markov Models

Time series and, more generally, sequences are a form
of structured data that represents a list of observations
for which a complete order can be defined, e.g., time
in a temporal sequence. Let a sequence of length T be
yn D y1; : : : ; yT , where the bold notation is used to de-
note the fact that y is a compound object (in practice,
however, this is can be treated as a set of random vari-
ables). The term yt is used to denote the tth observation
with respect to the total order. Position t is often referred
to as time when dealing with time-series data.

Two sequences are generally the results of indepen-
dent trials, hence they can be considered i.i.d. samples.
However, the elements composing a sequence fail to
meet such i.i.d. property. Therefore, in principle, a prob-

abilistic model for y would be required to specify the
joint distribution P.Y1; : : : ;YT /. For discrete valued ob-
servations yt, the joint distribution grows exponentially
with the size of the observation domain. Clearly, this
would make the use of the probabilistic model fairly
impractical due to the exponential size of the param-
eter space. To reduce such parameterization, Markov
chains make the simplifying assumption that an obser-
vation occurring at some position t of the sequence,
only depends on a limited number of its predecessors
with respect to the complete order. In a time series,
this entails that an observation at the present time, only
depends on the history of a limited number of past
observations. Markov chains allow us to model such

Part
D
|31.4

566 Part D Neural Networks

history dependence and are the heart of the hidden
Markov model (HMM), which is the most popular ap-
proach to model the generative process of sequential
data.

The HMM is a notable example of latent variable
model: in the following, we provide an overview of
the associated learning and inference problems. For
simplicity, presentation focuses on sequences of finite
length T and discrete time t. Sequence elements yt can
be either discrete valued or defined over reals, without
major impact on the model. The section also discusses
how the HMM causation assumption can be modified
to give rise to alternative approaches, with interesting
applications that overshoot simple sequence modeling.

31.4.1 Markov Chains

A Markov chain is a simple stochastic process for
sequences. It assumes that an observation yt at time
(position) t only depends on a finite set of L � 1 pre-
decessors in the sequence. The number of predecessor
L influencing the new observation is the order of the
Markov chain.

Definition 31.4 Markov Chain
An L-order Markov chain is a sequence of random vari-
ables YD Y1; : : : ; YT such that for every t 2 f1; : : : ;Tg,
it holds

P.Yt D ytjY1; : : : ;Yt�1;YtC1; : : : ; YT/

D P.Yt D ytjYt�L; : : : ;Yt�1/ : (31.26)

Following from the discussions in Sect. 31.2.1, (31.26)
states that the L predecessors of Yt define the set
of its Bayesian parents pa.Yt/D fYt�L; : : : ; Yt�1g. For
a first-order Markov chain, i. e., LD 1, (31.26) reduces
to P.Yt D ytjYt�1 D yt�1/. Such conditional indepen-
dence assumption formally encodes the intuition that
the current observation can be predicted from the
sole knowledge of the preceding sample. The graph-
ical model of a first-order Markov chain is shown in
Fig. 31.8, whose joint distribution decomposes as

P.Y1; : : : ;YT /D P.Y1/P.Y2jY1/;P.Y3jY2/
� : : :P.YT jYT�1/

D P.Y1/
TY

tD2

P.YtjYt�1/ : (31.27)

The first element Y1 has an empty conditioning part
given that is has no predecessor. Its probability P.Y1/

YTY3Y2Y1 ···

Fig. 31.8 Graphical model for a first-order Markov chain
of length T , where pa.Yt/D fYt�1g

is referred to as marginal or prior probability, while the
term P.YtjYt�1/ is the transition probability.

A Markov chain is stationary or homogeneous, if
the transition probability does not depend on the time
(position) t. In other words, the parameterization of the
Markov chain is such that

P.Yt D y0jYt�1 D y/D f .y0; y/ ;

where the transition distribution is a function f .y0; y/
of the sole observations y; y0. An interesting stationary
first-order Markov chain is that whose random variables
take values from a finite alphabet of discrete symbols
i; j 2 f1; : : : ;Mg. In these chains, the transition proba-
bility

Aij D P.Yt D ijYt�1 D j/ (31.28)

denotes the probability of occurrence of the ith symbol
preceded by symbol j. For convenience, such proba-
bility is represented by the element Aij of the M �M
transition matrix A D �Aij

�M
i;jD1. Similarly, the marginal

distribution defines the elements

�i D P.Y1 D i/ (31.29)

of the M� 1 initial state vector � D Œ�i�
M
iD1. These

Markov chains can be straightforwardly interpreted as
state-transition systems, where each symbol i of the
alphabet is a state and a state-transition arrow exists be-
tween states i and j having a nonzero Aij entry in the
transition matrix.

The Markov chains described by (31.28) and
(31.29), despite their simplicity, have found wide ap-
plication, e.g., in modeling of physical phenomena,
economic time series, and information retrieval. Learn-
ing Markov chains requires fitting the M2 parameters
of the transition matrix plus an M-dimensional prior,
where M is the size of the observation alphabet. Effi-
cient methods exists to fit stationary first-order Markov
chains by maximum likelihood (ML). By using the de-
composition in (31.26), substituting the definitions in
(31.28) and (31.29), the Markov chain log-likelihood

Probabilistic Modeling in Machine Learning 31.4 Markov Models 567
Part

D
|31.4

for a generic sequence y writes

L.�/D logP.YD yj�/D log
MY

i0D1

�
ı.y1Di0/
i0

�
TY

tD2

MY
i;jD1

Aı.ytDi;yt�1Dj/
ij ; (31.30)

where � D .A; �/ are the model parameters and ı.yt D
i; yt�1 D j/ is the indicator function. For instance, it
equals 1 if a transition from yt�1 D j to yt D i can be ob-
served in the sequence and it is 0 otherwise. Similarly,
ı.y1 D i0/D 1 if and only if the first symbol of the se-
quence is i0. The final expression of the log-likelihood
is obtained by taking the log into the products and
adding appropriate Lagrange multipliers for normaliza-
tion. TheML estimate is obtained by differentiating this
final expression with respect to parameters Aij and �i,
yielding

Aij D
PT

tD2 ı.yt D i; yt�1 D j/PT
tD2

PM
iD1 ı.yt D i; yt�1 D j/

; (31.31)

�i D ı.y1 D i/PM
iD1 ı.y1 D i/

: (31.32)

Intuitively, theML estimate corresponds to counting the
number of transitions from symbol j to i across time
(similarly for the initial state). Generalization to a set of
N samples sequences yn is straightforward: it suffices to
count transitions both in time and across samples, and
similarly for the initial symbols yn1.

31.4.2 Hidden Markov Models

Markov chains model sequential data assuming that se-
quence elements are generated by a fully observable
stochastic process. In the discrete-state Markov chain,
this requires each state of the process to correspond to
an observable element of the sequence, i. e., en event.
On the other hand, most real-world systems generate
observable events that are correlated, but not coinci-
dent, with the state of the generating process. More
importantly, the only available information can be the
outcome of the stochastic process at each time, i. e.,
event yt, while the state of the system remains unob-
servable, i. e., hidden. The HMM allows modelingmore
general stochastic processes where the state transition
dynamics is disentangled from the observable infor-
mation generated by the process. The state-transition

STS3S2S1 ···

YTY3Y2Y1

Fig. 31.9 A first-order HMM with hidden states St chosen
on the discrete domain f1; : : : ;Cg, for tD 1 : : : T

dynamics is assumed to be nonobservable and is mod-
eled by a Markov chain of discrete and finite latent
variables, i. e., the hidden states. The observable infor-
mation is then generated by such hidden states similarly
to how latent variables generate observations in mixture
models (see Sect. 31.3.4).

The graphical model of an HMM is exemplified in
Fig. 31.9: the hidden states are latent variables St, while
the sequence elements Yt are observed.

The conditional dependence expressed by the arrow
St! Yt indicates that the observed element of the se-
quence at time t is generated by the corresponding hid-
den state St through the emission distribution bst .yt/D
P.Yt D ytjSt D st/. The unknown state-transition dy-
namics is modeled by the first-order Markov chain
of discrete and finite hidden states St. By applying
the Markovian decomposition in (31.27) to the hid-
den states chain, the joint distribution of the observed
sequence yD y1; : : : ; yT and associated hidden states
sD s1; : : : ; sT writes as

P.YD y;SD s/D P.S1/
TY

tD2

P.StjSt�1/P.YtjSt/ :

(31.33)

The actual parameterization of the probabilities in
(31.33) depends on the form of the observation and
hidden states variables. From Sect. 31.8, a stationary
hidden states chain is known to be regulated by the
C�C matrix of state transitions Aij D P.St D ijSt�1 D
j/ and by the C-dimensional vector of initial state
probabilities �i D P.St D i/, where i; j are drawn from
f1; : : : ;Cg. For discrete sequence observations yt 2
f1;Mg, the emission distribution is an M �C emission
matrix B such that its elements are

bi.k/D Bki D P.Yt D kjSt D i/ : (31.34)

For continuous observations yt, the state assignment
St D i selects the ith emission distributions bi.yt/D
P.YtjSt D i/ from a mixture of C candidates.

Part
D
|31.4

568 Part D Neural Networks

An HMM is a latent variable model defined by
the � D .�;A;B/ parameters and, implicitly, by the
(unkown) number of hidden states C. In [31.58],
three notable inference problems are identified for an
HMM.

Definition 31.5 Evaluation Problem
Given a model � and an observed sequence y, deter-
mine the likelihood P.YD yj�/ of the sequence being
generated by the model.

Definition 31.6 Learning Problem
Given a dataset of N observed sequences DD
fy1; : : : ; yNg and the number of hidden states C, find
the parameters � , A and B that maximize the probability
of model � D f�;A;Bg having generated the sequences
inD.

Definition 31.7 Optimal States Problem
Given a model � and an observed sequence y, find an
optimal state assignment sD s�

1 ; : : : ; s
�

T for the under-
lying hidden Markov chain.

These classical inference problems are addressed us-
ing efficient and numerically stable recursive algo-
rithms that exploit message passing on the HMM
junction tree (Sect. 31.2.3) to factorize the, other-
wise hardly tractable, joint maximization problems.
The underlying intuition is a recursive computa-
tion of intermediate probabilities (messages) that are
passed forward and backward along the sequence
(the junction tree, in practice) to accumulate evi-
dence for solving the joint problem. A discussion of
the key aspects of these solutions is provided in the
following.

Evaluation
The evaluation problem refers to measuring how well
a given HMM matches an observed sequences. Let
the model be � D .�;A;B/ and the observed se-
quence yD y1; : : : ; yT , the objective is to find P.YD
yj�/. To effectively compute this probability in the
HMM assumption, it is needed to introduce the hid-
den states assignment corresponding to the observed
sequence y. Following the general approach for latent
variable models in Eq. (31.11), these are introduced
through marginalization on the joint assignment sD
s1; : : : ; sT

P.Yj�/D
X
s

P.Y; SD sj�/

D
X

s1;:::;sT

P.S1/
TY

tD2

P.StjSt�1/P.YtjSt/ ;

(31.35)

where the joint probability P.Y; Sj�/ has been factor-
ized according to the HMM assumption in (31.33).

Direct computation of (31.35) is generally infea-
sible, as it would require O.TCT/ operations. This
probability can be efficiently computed, with O.TC2/
operations, through accumulation of a recursive term
that is computed by scanning the sequence from left to
right. The procedure is known as forward algorithm: let
y1Wt be the observed subsequence from position 1 to t,
define the forward probability as

˛t.i/D P.Y1Wt D y1Wt; St D ij�/ (31.36)

that is the probability of observing a partial sequence up
to position t and the underlying hidden process being in
state i at time t. A recursive formulation of the ˛t.i/
term is obtained by introducing the hidden state St�1

by marginalization, yielding

˛t.i/D
CX

jD1

P.Y1Wt D y1Wt; St D i; St�1 D jj�/

D
CX

jD1

P.Yt D ytjSt D i; �/

�P.St D ijSt�1 D j; �/

�P.Y1Wt�1 D y1Wt�1; St�1 D jj�/

D bi.yt/
CX

jD1

Aij˛t�1.j/ ; (31.37)

where the second equality follows from the condi-
tional independence assumptions of the model. Since,
pa.St/D fSt�1g, the chain element St is completely de-
termined by the hidden state at previous time St�1;
similarly, emission Yt is conditional independent from
the rest, given the hidden state St.

The forward recursion scans the observed sequence
from left to right and recursively computes the ˛t.i/ val-
ues in each position tD 1; : : : ;T using (31.37). At each
observed position t, the ˛t.i/ values are computed for
each i 2 f1; : : : ;Cg, since the hidden states are not ob-
served. The basis of the recursion is at tD 1, where the

Probabilistic Modeling in Machine Learning 31.4 Markov Models 569
Part

D
|31.4

(31.37) reduces to ˛1.i/D bi.y1/�i, such that y1 is the
first element of the observed sequence. The likelihood
of the full sequence yD y1WT is computed at the end of
the forward recursion as

P.Yj�/D
CX

iD1

P.Y1WT ; ST D ij�/D
CX

iD1

˛T.i/ :

(31.38)

Learning
Learning of an HMM � D .�;A;B/ amounts to find-
ing the values of the parameters � , A and B that are
most likely to have generated a dataset of observed
i.i.d. sequencesDD fy1; : : : ; yNg. From the evaluation
problem, we know how to measure the quality of the
matching between a sequence y and a model � using the
likelihood P.Yj�/. The HMM learning problem can be
solved through ML estimation of � parameters consid-
ering the hidden states as latent variables. As discussed
in Sect. 31.3.2, this problem can be solved through ap-
plication of the EM algorithm, whose HMM version is
referred to as Baum–Welch algorithm [31.59], which is
a form of sum-product inference algorithm introduced
in Sect. 31.2.3. Marginalization of the hidden states as
in (31.35), yields to the HMM log-likelihood on the
datasetD

L.�/D log
NY

nD1

P.Ynj�/

D log
NY

nD1

8<
:

X
sn1;:::;s

n
Tn

P.Sn1/

�
TnY
tD2

P.Snt jSnt�1/P.Y
n
t jSnt /

9=
; ;

(31.39)

where overscript n refers to the nth sequence yn and Tn
is the corresponding length. The likelihood in (31.39)
is intractable due to the nonobservable state assignment
that introduces the marginalization term. Following the
principles of the EM algorithm, we assume to know the
unobserved state assignment, as in (31.30). This can be
achieved by introducing indicator variables znti for the
unknown assignment, such that znti D 1 if the chain is
in state i at position t of the nth sequences, and it is 0
otherwise. Given this (assumed) knowledge about the

hidden state assignments, if is possible to write the cor-
responding completed likelihood

Lc.�/

D log
NY

nD1

8<
:

CY
iD1

P.Sn1 D i/z
n
1i

�
TnY
tD2

CY
i;jD1

P.Snt D ijSnt�1 D j/z
n
tiz

n
.t�1/iP.Yn

t jSnt D i/z
n
ti

9=
;

D
NX

nD1

8<
:

CX
iD1

zn1i log�iC
TnX
tD2

CX
i;jD1

zntiz
n
.t�1/i

� logAijC znti log bi.y
n
t /

9=
; ; (31.40)

where the latter equality introduces the parameters � in
place of the corresponding probabilities and brings the
logarithms into the products.

The EM procedure is applied to the complete log-
likelihood in (31.40). Following (31.15), the E-step
computes the expected value of Lc.�/ with respect
to the distribution of the indicator variables ZD fzntig,
conditional on the observed sequences D and the cur-
rent estimate of the parameters � .k/. Given Lc.�/ as in
(31.40), taking its conditional expectation with respect
to the hidden variables Z, it yields to the following pos-
terior probability:

EZjY;�.k/ Œzti�D P.St D ijy/ ; (31.41)

where superscript n is omitted for notational simplic-
ity. The estimation of this posterior is known as the
smoothing problem. In the Baum–Welch algorithm, this
is efficiently solved by a double recursion that exploits
the following decomposition of the joint probability

P.St D i; y/D P.St D i;Y1Wt;YtC1WT /

D P.St D i;Y1Wt/

�P.YtC1WT jSt D i/D ˛t.i/ˇt.i/ ;
(31.42)

where the observed contribution from the predecessors
of t (i. e., Y1Wt) is separated from that of its succes-
sors (i. e., YtC1WT). The cancelations in (31.42) follow
from the fact that St d-separates (see definition in
Sect. 31.2.1) the elements of the two subsequences, i. e.,
Y1Wt and YtC1WT .

Part
D
|31.4

570 Part D Neural Networks

The first term in (31.42) is the ˛t.i/ probability
defined in (31.36), which can be computed through
the forward algorithm. The ˇt.i/ term can also be
computed through a recursive procedure known as
backward algorithm, due to the inverted direction with
respect to the forward recursion. Consider the following
recursive decomposition

ˇt�1.j/D P.YtWT jSt�1 D j/

D
CX

iD1

P.YtWT ; St D ijSt�1 D j/

D
CX

iD1

P.YtjSt D i/P.Y.tC1/WT jSt D i/

�P.St D ijSt�1 D j/

D
CX

iD1

bi.yt/ˇt.i/Aij ; (31.43)

it can be computed for 2� t � T by scanning the se-
quence backward, assuming ˇT.j/D 1 for each j 2
f1; : : : ;Cg.

The final expression of the smoothed posterior in
(31.41) is given by the joint ˛�ˇ recursions, known as
the forward–backward algorithm, that is

�t.i/D P.St D ijY/D P.St D i;Y/
P.Y/

D ˛t.i/ˇt.i/PC
jD1 ˛t.j/ˇt.j/

: (31.44)

Note that the forward and backward recursions can be
ran in parallel, since the values of ˛ and ˇ do not de-
pend on each other. To complete the derivations of the
sufficient statistics for theM-step, it is also necessary to
estimate the joint posterior

EZjY;�.k/ Œztiz.t�1/j�D P.St D i; St D jjY/ ; (31.45)

which can be straightforwardly factorized into known
probabilities along the lines of (31.42). It turns out that
such joint posterior can be estimated using the ˛�ˇ
probabilities computed by the forward–backward algo-
rithm, that is

�t;t�1.i; j/D P.St D i; St D jjY/
D ˛t�1.j/Aijbi.yt/ˇt.i/PC

m;lD1 ˛t�1.m/Almb3.yt/ˇt.l/
:

(31.46)

Parameters � D .�;A;B/ are re-estimated at the M-
step, with update equations that follow straightfor-
wardly from the maximization problem in (31.16). It
suffices to differentiate (31.40), extended with appropri-
ate Lagrange multipliers to account for the sum-to-one
constraints. Intuitively, the update equations can be
straightforwardly written from the ML estimates for
observableMarkov chains in (31.31) and (31.32). It suf-
fices to substitute the observed state counts, obtained
through the indicator function ı.	/, with the virtual
counts �.	/ estimated by (31.44) and (31.46) at the E-
step. For the hidden state transition and initial state
distributions this yields to

Aij D
PN

nD1

PTn

tD2 �
n
t;t�1.i; j/PN

nD1

PTn

tD2 �
n
t�1.j/

and �i D
NX

nD1

�n1 .i/ : (31.47)

The estimate of the parameters B depends on the form
of the emission distribution: if the observed sequences
take values k from a finite alphabet f1; : : : ;Mg, the cor-
responding multinomial emission in (31.34) is updated
by

Bki D
NX

nD1

TnX
tD1

�nt .i/ı.yt D k/ ; (31.48)

where ı.	/ is the indicator function counting the oc-
currences of the symbols k in the observed sequences.
Real-valued sequences are modeled usually through
Gaussian emissions, whose parameters are fit as usual
through maximization of the complete log-likelihood.

Particular care must be taken to avoid numerical
problems when implementing the forward–backward
algorithm. Both recursions work with multiplications
of small numbers: hence, the values of ˛ and ˇ can un-
derflow for long sequences. To this end, it is advisable
to perform them in log-space or to work with scaled
versions of the ˛ and ˇ probabilities [31.60]. A sequen-
tial version of the smoothing algorithm exists [31.61]
that directly computes the smoothed posterior �t.i/D
P.St D ijY/ through a � -recursion that uses the ˛ val-
ues generated by the forward algorithm.

Optimal State
Once a model � has been trained, it can be interesting
to determine the most likely hidden state assignment
s� that has generated an observed sequence y. This
inference problem, known also as decoding, has differ-
ent solutions, since several optimal assignment exists,

Probabilistic Modeling in Machine Learning 31.4 Markov Models 571
Part

D
|31.4

depending on the interpretation of what an optimal as-
signment is. For instance, the optimal hidden sequence
can be the one maximizing the expected count of correct
states. On the other hand, an optimal assignment might
be the sequence of hidden states s� with the maximum
joint probability P.YD y;SD s�/.

The former optimality condition is solved by select-
ing, at each position t, the most likely state given by the
sequence, i. e.,

s�

t D arg max
iD1;:::;C

P.St D ijY/ : (31.49)

Clearly, this amounts to select the most likely state for
each position independently, using the posterior com-
puted by the Baum–Welch algorithm. Conversely, the
latter optimality condition estimates the joint hidden
state assignment

s� D argmax
s

P.Y; SD s/ : (31.50)

This is a complex inference problem that can be ef-
ficiently solved though a dynamic programming ap-
proach, known as the Viterbi algorithm. Note that the
two optimality definitions generally lead to different so-
lutions. For instance, the Viterbi solution is constrained
to provide only state transitions allowed by the generat-
ing distribution, while this is not the case for the Baum,
Welch solution, given that hidden states are selected in-
dependently.

The Viterbi algorithm is based on a backward re-
cursion that exploits a factorization of the maximization
problem in (31.50). Consider the restricted problem of
determining the hidden state of the tail element T

max
sT

P.Y; ST D sT/Dmax
sT

TY
tD1

P.YtjSt/P.StjSt�1/

D
T�1Y
tD1

P.YtjSt/P.StjSt�1/max
sT

P.YtjST/P.ST jST�1/ ;

(31.51)

where the joint probability factorizes according to the
Markov chain assumption. We can isolate the maxi-
mization problem in the rightmost term

T�1.sT�1/Dmax
sT

P.YtjST D sT/

�P.ST D sT jST�1 D sT�1/ ; (31.52)

that is a message conveying information on the max-
imization of the tail element to the penultimate po-
sition. Substituting the definition of T�1.sT�1/ back

in (31.51) and adding the maximization with respect
to sT�1, suggests the recursive formulation of

�

.	/ for
a generic position t� 1, i. e.,

t�1.st�1/Dmax
st

P.YtjSt D st/

�P.St D stjSt�1 D st�1/t.st/ ;

(31.53)

for 2� t � T , where T.sT/D 1 is the basis of the re-
cursion. At each step t of the backward recursion, the
Viterbi algorithm computes the -message for each pos-
sible assignment of the hidden state of t and propagates
it to the predecessor t�1. The recursion ends at the ini-
tial element of the sequence, where the initial optimal
state is obtained as

s�

1 D argmax
s

P.YtjS1 D s/P.S1 D s1/1.s/ :

(31.54)

The assignment of the remaining hidden states is ob-
tained by backtracking through the forward recursion

s�

t D argmax
s

P.YtjSt D s/

�P.St D sjSt�1 D s�

t�1/t.s/ : (31.55)

Note that the Viterbi algorithm is a special case
of a max-sum inference algorithm introduced in
Sect. 31.2.3.

31.4.3 Related Models

Higher Order Markov Models
Hidden Markov models serve as a starting point for the
design on more complex Markov generative processes,
besides the obvious extension to higher order hidden
chains [31.62]. Factorial HMMs [31.63] generalize the
original model by defining super states that are collec-
tions of K discrete hidden states, each being part of an
independent Markov chain (see Fig. 31.10). This facto-
rial model results in K hidden Markov chains running
in parallel: at each time step, the emission depends on
the K-dimensional super state, but each state variable is
decoupled from those of the other chains and evolves
according to its own dynamics. By this means, it is
possible to efficiently encode the state dynamics of K
objects evolving independently that interact to jointly
determine the observation (e.g., K cars moving in the
traffic and jointly determining traffic jams).

Part
D
|31.5

572 Part D Neural Networks

S1
TS1

3S1
2S1

1

S2
TS2

3S2
2S2

1

S3
TS3

3S3
2S3

1

···

···

···

YTY3Y2Y1

Fig. 31.10 Factorial HMMwithK D 3 independent hidden
Markov chains

S1Y1

Y3S3S2Y2

Y5S5S4Y4

Fig. 31.11 A bottom-up hidden tree Markov model for
a simple structure with five nodes: the generative process
follows the direction of the arrows, i. e., from the leaves to
the root (tD 1)

Nonhomogenous HMMs
Relaxation of the homogeneity assumption led to the
input/output hidden Markov model (IO-HMM) [31.64]
that allow modeling the causal dependence of the hid-
den generative process from an additional input se-
quence x. Basically, the IO-HMM enables nonhomoge-

neous transition and emission distributions that are ex-
plicitly dependent (i. e., parameterized) on the currently
observed label of the input sequence. An IO-HMM im-
plements a mapping, referred to as transduction, from
an observed input sequence x into an output (target)
sequence y, realized by the input-conditional hidden
process P.YjX/. Interesting applications of IO-HMM
are in learning transformations between modalities in
multimedia data [31.65], exploratory analysis of finan-
cial time series [31.66] and gene data analysis [31.67].

HMMs for Structured Data
Hidden tree Markov models represent the generative
process of more complex, tree-structured information
(see Fig. 31.11). Differently from the sequential do-
main, the direction of the generative process leads
to different representational capabilities when dealing
with trees. Top-down approaches [31.68] model all pos-
sible paths from the root to the leaves of the tree.
Bottom-upmodels [31.69] propose a generative process
from the leaves to the root, where complex structures
are generated by composition of simpler substructures.
Recently, an extension of the IO-HMM has been pro-
posed to learn transductions between trees [31.70].

Bayesian and Nonparametric Extensions
HMMs have been extended to allow a countably infinite
number of hidden states through a Bayesian approach
where state distributions are modeled by Dirichlet pro-
cesses [31.71]. Abstracting from the direction of the
arrows in Fig. 31.9 leads to a discriminative proba-
bilistic model known as liner-chain conditional random
fields [31.72], whose capability to model long term de-
pendences is widely used in natural language parsing
and computer vision.

31.5 Conclusion and Further Reading

Graphical models have been discussed as an excel-
lent framework for probabilistic modeling of articulated
processes that can be described by a static set of ran-
dom variables tied up by probabilistic relationships.
Such relationships need not to be necessarily known,
a-priori. Several approaches exists to infer them from
data, i. e., to determine the presence of a correspond-
ing edge in the graphical model. However, the same
approaches tend to fix the structure of the graphical
model, once this is determined from the data. In other
words, these graphical models represent a static picture

of the process, where the set of random variables and
associated relationships is held fixed from a point on-
ward. The nature of sequence data calls for the ability to
model more dynamic phenomena. Processing of video
information requires Markov networks that can unfold
their structure across the video sequence. Even classic
text analysis needs to account for novel generative dy-
namics, where texts are produced as dynamic streams
instead of being static collections of words, e.g., con-
sider blog posts and associated comments, or the stream
of social networks status updates. Therefore, the hori-

Probabilistic Modeling in Machine Learning References 573
Part

D
|31

zon of current research is pushing graphical models to
more dynamic formulations where, on the one hand, the
structure is allowed to change over time and, on the
other hand, the model is allowed to dynamically self-
tune the number of parameters that is most adequate
to represent the process at each time. Following the
intuitions underlying the HMM approach, dynamical
graphical models are being proposed that are capable
of unfolding their structure across time, to better model
the dynamics of complex time-varying processes. At
the same time, concepts from nonparametric Bayesian
statics are being used to develop models where latent
variables can be dynamically adjusted to sample from

a virtually infinite set of events and where the very
same structure of the latent space is adapted across time,
i. e., through variable addition and pruning. Such a new
class of dynamic graphical models introduces novel
computational challenges associated with inference and
representation of dynamic knowledge. The answers to
this challenges can be partly found in the chapter, in
the approximated inference methods discussed for static
models and in the principles underlying the unfold-
ing of Markov chains. Finally, it is worth to note that
deep learning, described in Chap. 2, is an instance of
graphical model where both nonlinearity and dynamic
representations play an important role.

References

31.1 S. Kullback, R.A. Leibler: On information and suffi-
ciency, Ann. Math. Stat. 22, 79–86 (1951)

31.2 F. Rosenblatt: The perceptron: A probabilistic
model for information storage and organization in
the brain, Psychol. Rev. 65, 386–408 (1958)

31.3 G. Deco, W. Finnoff, H.G. Zimmermann: Unsuper-
vised mutual information criterion for elemination
of overtraining in supervised mulilayer networks,
Neural Comput. 7, 86–107 (1995)

31.4 D.J.C. Mackay: Information Theory, Inference and
Learning Algorithms (Cambridge Univ. Press, Cam-
bridge 2003)

31.5 R. Salakhutdinov, G. Hinton: Using deep belief nets
to learn covariance kernels for Gaussian processes,
Adv. Neural Inf. Process. Syst. 20, 1249–1256 (2008)

31.6 C.M. Bishop: Pattern Recognition and Machine
Learning (Springer, New York 2006)

31.7 S. Seth, J.C. Principe: Variable selection: A statisti-
cal dependence perspective, Proc. Int. Conf. Mach.
Learn. Appl. (ICMLA) (2010)

31.8 M. Rao, S. Seth, J. Xu, Y. Chen, H. Tagare, J.C. Princi-
pe: A test of independence based on a generalized
correlation function, Signal Process. 91, 15–27 (2011)

31.9 D.D. Lee, H.S. Seung: Learning the parts of ob-
jects by non-negative matrix factorization, Nature
401(6755), 788–791 (1999)

31.10 P. Comon, C. Jutten: Handbook of Blind Source Sep-
aration (Academic, Oxford 2010)

31.11 A. Hyvärinen, J. Karhunen, E. Oja: Independent
Component Analysis (Wiley, New York 2001)

31.12 A. Cichocki, R. Zdunek, A.H. Phan, S.-I. Amari:
Nonnegative Matrix Tensor Factorizations (Wiley,
Chichester 2009)

31.13 E. Gaussier, C. Goutte: Relation between plsa and
nmf and implications, Proc. 28th Int. ACM Conf.
Res. Dev. Inf. Retr. (SIGIR’05) (ACM, New York 2005)
pp. 601–602

31.14 D.T. Pham: Mutual information approach to blind
separation of stationary sources, IEEE Trans. Inf.
Theory 48, 1935–1946 (2002)

31.15 M. Minami, S. Eguchi: Robust blind source sep-
aration by beta divergence, Neural Comput. 14,
1859–1886 (2002)

31.16 T.-W. Lee, M. Girolami, T.J. Sejnowski: Indepen-
dent component analysis using an extended info-
max algorithm for mixed sub-Gaussian and super-
Gaussian sources, Neural Comput. 11(2), 417–441
(1999)

31.17 K. Labusch, E. Barth, T. Martinetz: Sparse coding
neural gas: Learning of overcomplete data repre-
sentations, Neuro 72(7–9), 1547–1555 (2009)

31.18 A. Cichocki, S. Cruces, S.-I. Amari: Generalized
alpha-beta divergences and their application to
robust nonnegative matrix factorization, Entropy
13, 134–170 (2011)

31.19 I. Csiszár: Axiomatic characterization of informa-
tion measures, Entropy 10, 261–273 (2008)

31.20 F. Liese, I. Vajda: On divergences and informations
in statistics and information theory, IEEE Trans. Inf.
Theory 52(10), 4394–4412 (2006)

31.21 T. Villmann, S. Haase: Divergence based vec-
tor quantization, Neural Comput. 23(5), 1343–1392
(2011)

31.22 P.L. Zador: Asymptotic quantization error of contin-
uous signals and the quantization dimension, IEEE
Trans. Inf. Theory 28, 149–159 (1982)

31.23 T. Villmann, J.-C. Claussen:Magnification control in
self-organizing maps and neural gas, Neural Com-
put. 18(2), 446–469 (2006)

31.24 B. Hammer, A. Hasenfuss, T. Villmann: Magnifica-
tion control for batch neural gas, Neurocomputing
70(7–9), 1225–1234 (2007)

31.25 E. Merényi, A. Jain, T. Villmann: Explicit magnifi-
cation control of self-organizing maps for “forbid-
den” data, IEEE Trans. Neural Netw. 18(3), 786–797
(2007)

31.26 T. Villmann, S. Haase: Magnification in divergence
based neural maps, Proc. Int. Jt. Conf. Artif. Neural
Netw. (IJCNN 2011), ed. by R. Mikkulainen (IEEE, Los
Alamitos 2011) pp. 437–441

http://dx.doi.org/10.1007/978-3-662-43505-2_2

Part
D
|31

574 Part D Neural Networks

31.27 R. Chalasani, J.C. Principe: Self organizing maps
with the correntropy induced metric, Proc. Int.
Jt. Conf. Artif. Neural Netw. (IJCNN 2010) (IEEE,
Barcelona 2010) pp. 1–6

31.28 T. Lehn-Schiøler, A. Hegde, D. Erdogmus, J.C. Prin-
cipe: Vector quantization using information theo-
retic concepts, Nat. Comput. 4(1), 39–51 (2005)

31.29 R. Jenssen, D. Erdogmus, J.C. Principe, T. Eltoft: The
Laplacian PDF distance: A cost function for clus-
tering in a kernel feature space, Adv. Neural Inf.
Process. Syst., Vol. 17 (MIT Press, Cambridge 2005)
pp. 625–632

31.30 A. Hegde, D. Erdogmus, T. Lehn-Schiøler, Y.N. Rao,
J.C. Principe: Vector quantization by density
matching in the minimum Kullback-Leibler-
divergence sense, Proc. Int. Jt. Conf. Artif. Neural
Netw. (IJCNN), Budapest (IEEE, New York 2004)
pp. 105–109

31.31 G.E. Hinton, S.T. Roweis: Stochastic neighbor em-
bedding, Adv. Neural Inf. Process. Syst., Vol. 15 (MIT
Press, Cambridge 2002) pp. 833–840

31.32 L. van der Maaten, G. Hinten: Visualizing data using
t-SNE, J. Mach. Learn. Res. 9, 2579–2605 (2008)

31.33 K. Bunte, S. Haase, M. Biehl, T. Villmann: Stochastic
neighbor embedding (SNE) for dimension reduc-
tion and visualization using arbitrary divergences,
Neurocomputing 90(9), 23–45 (2012)

31.34 M. Strickert, F.-M. Schleif, U. Seiffert, T. Villmann:
Derivatives of pearson correlation for gradient-
based analysis of biomedical data, Intel. Artif. Rev.
Iberoam. Intel. Artif. 37, 37–44 (2008)

31.35 M. Strickert, B. Labitzke, A. Kolb, T. Villmann: Multi-
spectral image characterization by partial general-
ized covariance, Proc. Eur. Symp. Artif. Neural Netw.
(ESANN’2011), Louvain-La-Neuve, ed. by M. Verley-
sen (2011) pp. 105–110

31.36 V. Gómez-Verdejo, M. Verleysen, J. Fleury: Informa-
tion-theoretic feature selection for functional data
classification, Neurocomputing 72(16–18), 3580–
3589 (2009)

31.37 B. Hammer, T. Villmann: Generalized relevance
learning vector quantization, Neural Netw. 15(8/9),
1059–1068 (2002)

31.38 T. Villmann, M. Kästner: Sparse functional rel-
evance learning in generalized learning vector
quantization, Lect. Notes Comput. Sci. 6731, 79–89
(2011)

31.39 M. Kästner, B. Hammer,M. Biehl, T. Villmann: Func-
tional relevance learning in generalized learning
vector quantization, Neurocomputing 90(9), 85–95
(2012)

31.40 A. Kraskov, H. Stogbauer, P. Grassberger: Estimat-
ing mutual information, Phys. Rev. E 69(6), 66–138
(2004)

31.41 Y.-I. Moon, B. Rajagopalan, U. Lall: Estimating
mutual information by kernel density estimators,
Phys. Rev. E 52, 2318–2321 (1995)

31.42 J.C. Principe: Information Theoretic Learning
(Springer, Heidelberg, 2010)

31.43 R. Andonie, A. Cataron: An information energy LVQ
approach for feature ranking, Eur. Symp. Artif. Neu-
ral Netw. 2004, ed. by M. Verleysen (d-side, Evere
2004) pp. 471–476

31.44 R. Jenssen, D. Erdogmus, J.C. Principe, T. Eltoft:
Some equivalences between kernel methods and
information theoretic methods, J. VLSI Signal Pro-
cess. 45, 49–65 (2006)

31.45 P.J.G. Lisboa, T.A. Etchells, I.H. Jarman, C.T.C. Ar-
sene, M.S.H. Aung, A. Eleuteri, A.F.G. Taktak,
F. Ambrogi, P. Boracchi, E. Biganzoli: Partial lo-
gistic artificial neural network for competing risks
regularized with automatic relevance determina-
tion, IEEE Trans. Neural Netw. 20(9), 1403–1416
(2009)

31.46 M.I. Jordan: Graphical models, Stat. Sci. 19, 140–155
(2004)

31.47 D. Koller, N. Friedman: Probabilistic Graphical
Models: Principles and Techniques – Adaptive
Computation and Machine Learning (MIT Press,
Cambridge 2009)

31.48 A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum
likelihood from incomplete data via the EM algo-
rithm, J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

31.49 M.E. Tipping, C.M. Bishop: Probabilistic principal
component analysis, J. R. Stat. Soc. Ser. B 61(3), 611–
622 (1999)

31.50 T. Hofmann: Unsupervised learning by probabilistic
latent semantic analysis, Mach. Learn. 42(1/2), 177–
196 (2001)

31.51 M. Welling, C. Chemudugunta, N. Sutter: Determin-
istic latent variable models and their pitfalls, SIAM
Int. Conf. Data Min. (2008)

31.52 D.M. Blei, A.Y. Ng, M.I. Jordan: Latent Dirich-
let allocation, J. Mach. Learn. Res. 3, 993–1022
(2003)

31.53 T. Minka, J. Lafferty: Expectation propagation for
the generative aspectmodel, Proc. Conf. Uncertain.
AI (2002)

31.54 T. Griffiths, M. Steyvers: Finding scientific topics,
Proc. Natl. Acad. Sci. USA 101, 5228–5235 (2004)

31.55 M. Blei, D. Blei, T. Griffiths, J. Tenenbaum: Hi-
erarchical topic models and the nested Chinese
restaurant process, Adv. Neural Inf. Process. Syst.,
Vol. 16 (MIT Press, Cambridge 2004) p. 17

31.56 M. Rosen-Zvi, T. Griffiths, M. Steyvers, P. Smyth: The
author-topic model for authors and documents,
Proc. 20th Conf. Uncertain. Artif. Intell., UAI ’04
(AUAI, Corvallis 2004) pp. 487–494

31.57 L.-J. Li, L. Fei-Fei: What, where and who? classi-
fying events by scene and object recognition, IEEE
11th Int. Conf. Comput. Vis. (ICCV) 2007 (2007), pp.
1–8

31.58 L.R. Rabiner: A tutorial on hidden markov models
and selected applications in speech recognition,
Proc. IEEE 77(2), 257–286 (1989)

31.59 L.E. Baum, T. Petrie: Statistical inference for proba-
bilistic functions of finite state Markov chains, Ann.
Math. Stat. 37(6), 1554–1563 (1966)

Probabilistic Modeling in Machine Learning References 575
Part

D
|31

31.60 S.E. Levinson, L.R. Rabiner, M.M. Sondhi: An intro-
duction to the application of the theory of proba-
bilistic functions of a Markov process to automatic
speech recognition, Bell Syst. Tech. J. 62(4), 1035–
1074 (1983)

31.61 P.A. Devijver: Baum’s forward-backward algorithm
revisited, Pattern Recogn. Lett. 3(6), 369–373 (1985)

31.62 M. Brand, N. Oliver, A. Pentland: Coupled hid-
den Markovmodels for complex action recognition,
Computer Vision and Pattern Recognition, Proc.,
1997 IEEE (1997) pp. 994–999

31.63 Z. Ghahramani, M.I. Jordan: Factorial hidden
Markov models, Mach. Learn. 29(2), 245–273
(1997)

31.64 Y. Bengio, P. Frasconi: Input-output HMMs for se-
quence processing, IEEE Trans. Neural Netw. 7(5),
1231–1249 (1996)

31.65 Y. Li, H.Y. Shum: Learning dynamic audio-visual
mapping with input-output hidden Markov mod-
els, IEEE Trans. Multimed. 8(3), 542–549 (2006)

31.66 B. Knab, A. Schliep, B. Steckemetz, B. Wichern:
Model-based clustering with hidden Markov mod-
els and its application to financial time-series
data, Proc. GfKl 2002 Data Sci. Appl. Data Anal.
(Springer, Berlin, Heidelberg 2003) pp. 561–569

31.67 M. Seifert, M. Strickert, A. Schliep, I. Grosse: Ex-
ploiting prior knowledge and gene distances in
the analysis of tumor expression profiles with
extended hidden Markov models, Bioinformatics
27(12), 1645–1652 (2011)

31.68 M. Diligenti, P. Frasconi, M. Gori: Hidden tree
markov models for document image classification,
IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 519–
523 (2003)

31.69 D. Bacciu, A. Micheli, A. Sperduti: Compositional
generative mapping for tree-structured data –
Part I: Bottom-up probabilistic modeling of trees,
IEEE Trans. Neural Netw. Learn. Syst. 23(12), 1987–
2002 (2012)

31.70 D. Bacciu, A. Micheli, A. Sperduti: An input-output
hidden Markov model for tree transductions, Neu-
rocomputing 112, 34–46 (2013)

31.71 M.J. Beal, Z. Ghahramani, C.E. Rasmussen: The infi-
nite hidden Markovmodel, Adv. Neural Inf. Process.
Syst. 14, 577–584 (2002)

31.72 C. Sutton, A. McCallum: An introduction to con-
ditional random fields for relational learning. In:
Introduction to Statistical Relational Learning, ed.
by L. Getoor, B. Taskar (MIT Press, Cambridge 2006)
pp. 93–128

	31 Probabilistic Modeling in Machine Learning
	31.1 Probabilistic and Information-Theoretic Methods
	31.2 Graphical Models
	31.3 Latent Variable Models
	31.4 Markov Models
	31.5 Conclusion and Further Reading
	References

