
Possibility Th
31

Part
A
|3

3. Possibility Theory and Its Applications:
Where Do We Stand?

Didier Dubois, Henry Prade

This chapter provides an overview of possibility
theory, emphasizing its historical roots and its re-
cent developments. Possibility theory lies at the
crossroads between fuzzy sets, probability, and
nonmonotonic reasoning. Possibility theory can be
cast either in an ordinal or in a numerical setting.
Qualitative possibility theory is closely related to
belief revision theory, and commonsense reason-
ing with exception-tainted knowledge in artificial
intelligence. Possibilistic logic provides a rich rep-
resentation setting, which enables the handling
of lower bounds of possibility theory measures,
while remaining close to classical logic. Quali-
tative possibility theory has been axiomatically
justified in a decision-theoretic framework in the
style of Savage, thus providing a foundation for
qualitative decision theory. Quantitative possibil-
ity theory is the simplest framework for statistical
reasoning with imprecise probabilities. As such, it
has close connections with random set theory and
confidence intervals, and can provide a tool for
uncertainty propagation with limited statistical or
subjective information.
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Possibility theory is an uncertainty theory devoted to
the handling of incomplete information. To a large ex-
tent, it is comparable to probability theory because

it is based on set functions. It differs from the latter
by the use of a pair of dual set functions (possibility
and necessity measures) instead of only one. Besides,
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it is not additive and makes sense on ordinal struc-
tures. The name Theory of Possibility was coined by
Zadeh [3.1], who was inspired by a paper byGaines and
Kohout [3.2]. In Zadeh’s view, possibility distributions
were meant to provide a graded semantics to natural
language statements; on this basis, possibility degrees
can be attached to other statements, as well as dual ne-
cessity degrees expressing graded certainty. However,
possibility and necessity measures can also be the ba-
sis of a full-fledged representation of partial belief that
parallels probability, without compulsory reference to
linguistic information [3.3, 4]. It can be seen either as
a coarse, nonnumerical version of probability theory, or
a framework for reasoning with extreme probabilities,
or yet a simple approach to reasoning with imprecise
probabilities [3.5].

Besides, possibility distributions can also be in-
terpreted as representations of preference, thus stand-
ing for a counterpart to a utility function. In this
case, possibility degrees estimate degrees of feasibil-
ity of alternative choices, while necessity measures
can represent priorities [3.6]. The possibility theory
framework is also bipolar [3.7] because distributions
may either restrict the possible states of the world
(negative information pointing out the impossible), or
model sets of actually observed possibilities (posi-
tive information pointing out the possible). Negative
information refers to pieces of knowledge that are
supposedly correct and act as constraints. Possibility
and necessity measures rely on negative information.

Positive information refers to reports of actually ob-
served states, or to sets of preferred choices. They
induce two other set functions: guaranteed possibility
measures and its dual, that are decreasing w.r.t. set in-
clusion [3.8].

After reviewing pioneering contributions to possi-
bility theory, we recall its basic concepts namely the
four set functions at work in possibility theory. Then we
present the two main directions along which possibility
theory has developed: the qualitative and quantitative
settings. Both approaches share the same basic maxitiv-
ity axiom. They differ when it comes to conditioning,
and to independence notions. We point out the connec-
tions with a coarse numerical integer-valued approach
to belief representation, proposed by Spohn [3.9], now
known as ranking theory [3.10].

In each setting, we discuss current and prospective
lines of research. In the qualitative approach, we review
the connections between possibility theory and modal
logic, possibilistic logic and its applications to non-
monotonic reasoning, logic programming and the like,
possibilistic counterparts of Bayesian belief networks,
the framework of soft constraints and the possibilistic
approach to qualitative decision theory, and more recent
investigations in formal concept analysis and learning.
On the quantitative side, we review quantitative possi-
bilistic networks, the connections between possibility
theory, belief functions and imprecise probabilities, the
connections with non-Bayesian statistics, and the appli-
cation of quantitative possibility to risk analysis.

3.1 Historical Background

Zadeh was not the first scientist to speak about for-
malising notions of possibility. The modalities pos-
sible and necessary have been used in philosophy
at least since the Middle Ages in Europe, based
on Aristotle’s and Theophrastus’ works [3.11]. More
recently these notions became the building blocks
of modal logics that emerged at the beginning of
the 20th century from the works of C.I. Lewis
(see Cresswell [3.12]). In this approach, possibility
and necessity are all-or-nothing notions, and han-
dled at the syntactic level. More recently, and inde-
pendently from Zadeh’s view, the notion of possi-
bility, as opposed to probability, was central in the
works of one economist, and in those of two philoso-
phers.

3.1.1 G.L.S. Shackle

A graded notion of possibility was introduced as a full-
fledged approach to uncertainty and decision in 1940–
1970 by the English economist Shackle [3.13], who
called degree of potential surprise of an event its de-
gree of impossibility, that is, retrospectively, the degree
of necessity of the opposite event. Shackle’s notion of
possibility is basically epistemic, it is a character of the
chooser’s particular state of knowledge in his present.
Impossibility is understood as disbelief. Potential sur-
prise is valued on a disbelief scale, namely a positive
interval of the form Œ0; y��, where y� denotes the ab-
solute rejection of the event to which it is assigned.
In case everything is possible, all mutually exclusive
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hypotheses have zero surprise. At least one elemen-
tary hypothesis must carry zero potential surprise. The
degree of surprise of an event, a set of elementary hy-
potheses, is the degree of surprise of its least surprising
realization. Shackle also introduces a notion of con-
ditional possibility, whereby the degree of surprise of
a conjunction of two events A and B is equal to the max-
imum of the degree of surprise of A, and of the degree of
surprise of B, should A prove true. The disbelief notion
introduced later by Spohn [3.9, 10] employs the same
type of convention as potential surprise, but uses the set
of natural integers as a disbelief scale; his conditioning
rule uses the subtraction of natural integers.

3.1.2 D. Lewis

In his 1973 book [3.14], the philosopher David Lewis
considers a graded notion of possibility in the form of
a relation between possible worlds he calls compara-
tive possibility. He connects this concept of possibility
to a notion of similarity between possible worlds. This
asymmetric notion of similarity is also comparative,
and is meant to express statements of the form: a world
j is at least as similar to world i as world k is. Compar-
ative similarity of j and k with respect to i is interpreted
as the comparative possibility of j with respect to k
viewed from world i. Such relations are assumed to be
complete pre-orderings and are instrumental in defining
the truth conditions of counterfactual statements (of the
form If I were rich, I would buy a big boat). Compar-
ative possibility relations �˘ obey the key axiom: for
all events A;B;C

A�˘ B implies C[A�˘ C[B :

This axiom was later independently proposed by the
first author [3.15] in an attempt to derive a possi-
bilistic counterpart to comparative probabilities. Inde-

pendently, the connection between numerical possibil-
ity degrees and similarity was investigated by Sud-
kamp [3.16].

3.1.3 L.J. Cohen

A framework very similar to the one of Shackle was
proposed by the philosopher Cohen [3.17] who con-
sidered the problem of legal reasoning. He introduced
so-called Baconian probabilities understood as degrees
of provability. The idea is that it is hard to prove some-
one guilty at the court of law bymeans of pure statistical
arguments. The basic feature of degrees of provability is
that a hypothesis and its negation cannot both be prov-
able together to any extent (the contrary being a case
for inconsistency). Such degrees of provability coincide
with what is known as necessity measures.

3.1.4 L.A. Zadeh

In his seminal paper [3.1], Zadeh proposed an inter-
pretation of membership functions of fuzzy sets as
possibility distributions encoding flexible constraints
induced by natural language statements. Zadeh tenta-
tively articulated the relationship between possibility
and probability, noticing that what is probable must
preliminarily be possible. However, the view of pos-
sibility degrees developed in his paper refers to the
idea of graded feasibility (degrees of ease, as in the
example of how many eggs can Hans eat for his break-
fast) rather than to the epistemic notion of plausibility
laid bare by Shackle. Nevertheless, the key axiom of
maxitivity for possibility measures is highlighted. In
the two subsequent articles [3.18, 19], Zadeh acknowl-
edged the connection between possibility theory, belief
functions and upper/lower probabilities, and proposed
their extensions to fuzzy events and fuzzy information
granules.

3.2 Basic Notions of Possibility Theory

The basic building blocks of possibility theory orig-
inate in Zadeh’s paper [3.1] and were first ex-
tensively described in the authors’ book [3.20],
then further on in [3.3, 21]. More recent accounts
are in [3.4, 5]. In this section, possibility theory
is envisaged as a stand-alone theory of uncer-
tainty.

3.2.1 Possibility Distributions

Let S be a set of states of affairs (or descriptions
thereof), or states for short. This set can be the domain
of an attribute (numerical or categorical), the Cartesian
product of attribute domains, the set of interpretations
of a propositional language etc.. A possibility distribu-
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tion is a mapping � from S to a totally ordered scale L,
with top denoted by 1 and bottom by 0. In the finite
case LD f1D �1 > 	 	 	�n > �nC1 D 0g. The possibil-
ity scale can be the unit interval as suggested by Zadeh,
or generally any finite chain, or even the set of nonnega-
tive integers. It is often assumed that L is equipped with
an order-reversing map denoted by � 2 L 7! 1��.

The function � represents the state of knowledge of
an agent (about the actual state of affairs), also called
an epistemic state distinguishing what is plausible from
what is less plausible, what is the normal course of
things from what is not, what is surprising from what
is expected. It represents a flexible restriction on what
is the actual state with the following conventions (sim-
ilar to probability, but opposite to Shackle’s potential
surprise scale (If LDN, the conventions are opposite:
0 means possible and1 means impossible.)):

� �.s/D 0 means that state s is rejected as impossi-
ble;� �.s/D 1 means that state s is totally possible (D
plausible).

The larger �.s/, the more possible, i. e., plausible
the state s is. Formally, the mapping � is the member-
ship function of a fuzzy set [3.1], where membership
grades are interpreted in terms of plausibility. If the uni-
verse S is exhaustive, at least one of the elements of S
should be the actual world, so that 9s; �.s/D 1 (nor-
malization). This condition expresses the consistency of
the epistemic state described by � .

Distinct values may simultaneously have a degree
of possibility equal to 1. In the Boolean case, � is just
the characteristic function of a subset E � S of mutually
exclusive states (a disjunctive set [3.22]), ruling out all
those states considered as impossible. Possibility theory
is thus a (fuzzy) set-based representation of incomplete
information.

3.2.2 Specificity

A possibility distribution � is said to be at least as spe-
cific as another � 0 if and only if for each state of affairs
s: �.s/� � 0.s/ [3.23]. Then, � is at least as restrictive
and informative as � 0, since it rules out at least as many
states with at least as much strength. In the possibilistic
framework, extreme forms of partial knowledge can be
captured, namely:

� Complete knowledge: for some s0; �.s0/D 1 and
�.s/D 0;8s¤ s0 (only s0 is possible)

� Complete ignorance:�.s/D 1;8s 2 S (all states are
possible).

Possibility theory is driven by the principle of min-
imal specificity. It states that any hypothesis not known
to be impossible cannot be ruled out. It is a minimal
commitment, cautious information principle. Basically,
we must always try to maximize possibility degrees,
taking constraints into account.

Given a piece of information in the form x is F,
where F is a fuzzy set restricting the values of the ill-
known quantity x, it leads to represent the knowledge by
the inequality � � �F , the membership function of F.
The minimal specificity principle enforces the possibil-
ity distribution � D �F , if no other piece of knowledge
is available. Generally there may be impossible val-
ues of x due to other piece(s) of information. Thus,
given several pieces of knowledge of the form x is Fi,
for iD 1; : : : ; n, each of them translates into the con-
straint � � �Fi ; hence, several constraints lead to the
inequality � �minniD1 �Fi and on behalf of the mini-
mal specificity principle, to the possibility distribution

� D n
min
iD1

�i ;

where �i is induced by the information item x is Fi.
It justifies the use of the minimum operation for com-
bining information items. It is noticeable that this way
of combining pieces of information fully agrees with
classical logic, since a classical logic base is equivalent
to the logical conjunction of the logical formulas that
belong to the base, and its models is obtained by in-
tersecting the sets of models of its formulas. Indeed, in
propositional logic, asserting a proposition 	 amounts
to declaring that any interpretation (state) that makes 	
false is impossible, as being incompatible with the state
of knowledge.

3.2.3 Possibility and Necessity Functions

Given a simple query of the form does event A occur?
(is the corresponding proposition 	 true?) where A is
a subset of states, the response to the query can be
obtained by computing degrees of possibility and ne-
cessity, respectively (if the possibility scale LD Œ0; 1�)

˘.A/D sup
s2A

�.s/I N.A/D inf
s…A

1��.s/ :

˘.A/ evaluates to what extent A is consistent with
� , while N.A/ evaluates to what extent A is certainly
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implied by � . The possibility–necessity duality is ex-
pressed by N.A/D 1�˘.Ac/, where Ac is the comple-
ment of A. Generally, ˘.S/D N.S/D 1 and ˘.;/D
N.;/D 0 (since � is normalized to 1). In the Boolean
case, the possibility distribution comes down to the dis-
junctive (epistemic) set E � S [3.3, 24]:

� ˘.A/D 1 if A\E ¤ ;, and 0 otherwise: function˘
checks whether proposition A is logically consistent
with the available information or not.� N.A/D 1 if E � A, and 0 otherwise: function N
checks whether proposition A is logically entailed
by the available information or not.

More generally, possibility and necessity measures
represent degrees of plausibility and belief, respec-
tively, in agreement with other uncertainty theories (see
Sect. 3.4). Possibility measures satisfy the basic maxi-
tivity property ˘.A[B/Dmax.˘.A/;˘.B//. Neces-
sity measures satisfy an axiom dual to that of possi-
bility measures, namely N.A\B/Dmin.N.A/;N.B//.
On infinite spaces, these axioms must hold for infinite
families of sets. As a consequence, of the normalization
of � , min.N.A/;N.Ac//D 0 and max.˘.A/;˘.Ac//D
1, where Ac is the complement of A, or equivalently
˘.A/D 1 whenever N.A/ > 0, which totally fits the in-
tuition behind this formalism, namely that something
somewhat certain should be fully possible, i. e., consis-
tent with the available information.

3.2.4 Certainty Qualification

Human knowledge is often expressed in a declara-
tive way using statements to which belief degrees are
attached. Certainty-qualified pieces of uncertain infor-
mation of the form A is certain to degree ˛ can then
be modeled by the constraint N.A/� ˛. It represents
a family of possible epistemic states � that obey this
constraints. The least specific possibility distribution
among them exists and is defined by [3.3]

�.A;˛/.s/D
(
1 if s 2 A ;

1�˛ otherwise :
(3.1)

If ˛ D 1, we get the characteristic function of A. If ˛ D
0, we get total ignorance. This possibility distribution
is a key building block to construct possibility distri-
butions from several pieces of uncertain knowledge.
Indeed, e.g., in the finite case, any possibility distribu-
tion can be viewed as a collection of nested certainty-
qualified statements. Let Ei D fs W �.s/� �i 2 Lg be the

�i-cut of � . Then it is easy to check that �.s/D
miniWs 62Ei 1�N.Ei/ (with the convention min

;

D 1).
We can also consider possibility-qualified state-

ments of the form ˘.A/� ˇ; however, the least spe-
cific epistemic state compatible with this constraint
expresses total ignorance.

3.2.5 Joint Possibility Distributions

Possibility distributions over Cartesian products of at-
tribute domains S1� 	 	 	 � Sm are called joint possibility
distributions �.s1; : : : ; sn/. The projection �#

k of the
joint possibility distribution � onto Sk is defined as

�
#

k .sk/D˘.S1� 	 	 	 Sk�1� fskg � 	 	 	 SkC1� Sm/

D sup
si2Si;i¤k

�.s1; : : : ; sn/ :

Clearly, �.s1; : : : ; sn/�minmkD1 �
#

k .sk/ that is, a joint
possibility distribution is at least as specific as the
Cartesian product of its projections. When the equality
holds, �.s1; : : : ; sn/ is called separable.

3.2.6 Conditioning

Notions of conditioning exist in possibility theory. Con-
ditional possibility can be defined similarly to prob-
ability theory using a Bayesian-like equation of the
form [3.3]

˘.B\A/D˘.B j A/ ?˘.A/ :

where ˘.A/ > 0 and ? is a t-norm (A nondecreas-
ing Abelian semigroup operation on the unit interval
having identity 1 and absorbing element 0 [3.25].);
moreover N.B j A/D 1�˘.Bc j A/. The above equa-
tion makes little sense for necessity measures, as it
becomes trivial when N.A/D 0, that is under lack
of certainty, while in the above definition, the equa-
tion becomes problematic only if ˘.A/D 0, which
is natural as then A is considered impossible. If op-
eration ? is the minimum, the equation ˘.B\A/D
min.˘.B j A/;˘.A// fails to characterize ˘.B j A/,
and we must resort to the minimal specificity principle
to come up with the qualitative conditioning rule [3.3]

˘.B j A/D
(
1 if ˘.B\A/D˘.A/ > 0 ;

˘.B\A/ otherwise :

(3.2)
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It is clear that N.B j A/ > 0 if and only if ˘.B\
A/ > ˘.Bc \A/. Moreover, if ˘.B j A/ > ˘.B/ then
˘.B j A/D 1, which points out the limited expres-
siveness of this qualitative notion (no gradual positive
reinforcement of possibility). However, it is possible to
have that N.B/ > 0;N.Bc j A1/ > 0;N.B j A1 \A2/ > 0
(i. e., oscillating beliefs). Extensive works on condi-
tional possibility, especially qualitative, handling the
case ˘.A/D 0, have been recently carried out by Co-
letti and Vantaggi [3.26, 27] in the spirit of De Finetti’s
approach to subjective probabilities defined in terms of
conditional measures and allowing for conditioning on
impossible events.

In the numerical setting, due to the need of preserv-
ing for ˘.B j A/ continuity properties of ˘ , we must
choose ?D product, so that

˘.B j A/D ˘.B\A/

˘.A/

which makes possibilistic and probabilistic condition-
ings very similar [3.28] (now, gradual positive rein-
forcement of possibility is allowed). But there is yet
another definition of numerical possibilistic condition-
ing, not based on the above equation as seen later in this
chapter.

3.2.7 Independence

There are also several variants of possibilistic indepen-
dence between events. Let us mention here the two
basic approaches:

� Unrelatedness: ˘.A\B/Dmin.˘.A/;˘.B//.
When it does not hold, it indicates an epistemic
form of mutual exclusion between A and B. It is
symmetric but sensitive to negation. When it holds
for all pairs made of A;B and their complements,
it is an epistemic version of logical independence
related to separability.� Causal independence: ˘.B j A/D˘.B/. This no-
tion is different from the former one and stronger.
It is a form of directed epistemic independence
whereby learning A does not affect the plausibility
of B. It is neither symmetric nor insensitive to nega-
tion: for instance, it is not equivalent to N.B j A/D
N.B/.

Generally, independence in possibility theory is
neither symmetric, nor insensitive to negation. For
Boolean variables, independence between events is
not equivalent to independence between variables. But

since the possibility scale can be qualitative or quan-
titative, and there are several forms of conditioning,
there are also various possible forms of independence.
For studies of various notions and their properties
see [3.29–32]. More discussions and references appear
in [3.4].

3.2.8 Fuzzy Interval Analysis

An important example of a possibility distribution is
a fuzzy interval [3.3, 20]. A fuzzy interval is a fuzzy
set of reals whose membership function is unimodal
and upper-semi continuous. Its ˛-cuts are closed in-
tervals. The calculus of fuzzy intervals is an extension
of interval arithmetics based on a possibilistic counter-
part of a computation of random variable. To compute
the addition of two fuzzy intervals A and B one has
to compute the membership function of A˚B as the
degree of possibility�A˚B.z/D˘.f.x; y/ W xCyD zg/,
based on the possibility distribution min.�A.x/;�B.y//.
There is a large literature on possibilistic interval anal-
ysis; see [3.33] for a survey of 20th-century refer-
ences.

3.2.9 Guaranteed Possibility

Possibility distributions originally represent negative
information in the sense that their role is essentially
to rule out impossible states. More recently, [3.34, 35]
another type of possibility distribution has been con-
sidered where the information has a positive nature,
namely it points out actually possible states, such as
observed cases, examples of solutions, etc. Positively-
flavored possibility distributions will be denoted by ı
and serve as evidential support functions. The conven-
tions for interpreting them contrast with usual possibil-
ity distributions:

� ı.s/D 1 means that state s is actually possible be-
cause of a high evidential support (for instance, s is
a case that has been actually observed);� ı.s/D 0 means that state s has not been observed
(yet: potential impossibility).

Note that �.s/D 1 indicates potential possibility,
while ı.s/D 1 conveys more information. In contrast,
ı.s/D 0 expresses ignorance.

A measure of guaranteed possibility can be defined,
that differs from functions˘ and N [3.34, 35]


.A/D inf
s2A

ı.s/ :
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It estimates to what extent all states in A are actually
possible according to evidence. 
.A/ can be used as
a degree of evidential support for A. Of course, this
function possesses a conjugate r such that r.A/D
1�
.Ac/D sups 62A 1� ı.s/. Function r.A/ evaluates
the degree of potential necessity of A, as it is 1
only if some state s outside A is potentially impossi-
ble.

Uncertain statements of the form A is possible to de-
gree ˇ often mean that any realization of A is possible
to degree ˇ (e.g., it is possible that the museum is open
this afternoon). They can then be modeled by a con-
straint of the form 
.A/� ˇ. It corresponds to the idea
of observed evidence.

This type of information is better exploited by as-
suming an informational principle opposite to the one
of minimal specificity, namely, any situation not yet ob-
served is tentatively considered as impossible. This is
similar to the closed-world assumption. The most spe-
cific distribution ı.A;ˇ/ in agreement with 
.A/� ˇ is

ı.A;ˇ/.s/D
(
ˇ if s 2 A ;

0 otherwise :

Note that while possibility distributions induced from
certainty qualified pieces of knowledge combine con-
junctively, by discarding possible states, evidential
support distributions induced by possibility-qualified
pieces of evidence combine disjunctively, by accumu-
lating possible states. Given several pieces of knowl-
edge of the form x is Fi is possible, for iD 1; : : : ; n,
each of them translates into the constraint ı � �Fi ;
hence, several constraints lead to the inequality ı �
maxniD1 �Fi and on behalf of another minimal commit-
ment principle based on maximal specificity, we get the
possibility distribution

ı D n
max
iD1

�i ;

where ıi is induced by the information item x is Fi is
possible. It justifies the use of the maximum operation
for combining evidential support functions. Acquiring
pieces of possibility-qualified evidence leads to updat-
ing ı.A;ˇ/ into some wider distribution ı > ı.A;ˇ/. Any
possibility distribution can be represented as a collec-
tion of nested possibility-qualified statements of the
form .Ei; 
.Ei//, with Ei D fs W ı.s/� �ig, since ı.s/D
maxiWs2Ei 
.Ei/, dually to the case of certainty-qualified
statements.

3.2.10 Bipolar Possibility Theory

A bipolar representation of information using pairs
.ı; �/ may provide a natural interpretation of interval-
valued fuzzy sets [3.8]. Although positive and negative
information are represented in separate and different
ways via ı and � functions, respectively, there is a co-
herence condition that should hold between positive
and negative information. Indeed, observed informa-
tion should not be impossible. Likewise, in terms of
preferences, solutions that are preferred to some ex-
tent should not be unfeasible. This leads to enforce the
coherence constraint ı � � between the two represen-
tations.

This condition should be maintained when new in-
formation arrives and is combined with the previous
one. This does not go for free since degrees ı.s/ tend
to increase while degrees �.s/ tend to decrease due
to the disjunctive and conjunctive processes that, re-
spectively, govern their combination. Maintaining this
coherence requires a revision process that works as fol-
lows. If the current information state is represented by
the pair .ı; �/, receiving a new positive (resp. nega-
tive) piece of information represented by ınew (resp.
�new) to be enforced, leads to revising .ı; �/ into
(max.ı; ınew/; � rev) (resp. into (ırev;min.�;�new/), us-
ing, respectively,

� rev D max.�; ınew/ I (3.3)

ırev D min.�new; ı/ : (3.4)

It is important to note that when both positive and neg-
ative pieces of information are collected, there are two
options:

� Either priority is given to positive information over
negative information: it means that (past) positive
information cannot be ruled out by (future) negative
information. This may be found natural when very
reliable observations (represented by ı) contradict
tentative knowledge (represented by �). Then revis-
ing .ı; �/ by .ınew; �new/ yields the new pair

.ırev; � rev/D .max.ı; ınew/;

max.min.�;�new/;max.ı; ınew///

� Priority is given to negative information over pos-
itive information. It makes sense when handling
preferences. Indeed, then, positive information may
be viewed as wishes, while negative informa-
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tion reflects constraints. Then, revising .ı; �/ by
.ınew; �new/ would yield the new pair

.ırev; � rev/D .min.min.�;�new/;max.ı; ınew//;

min.�;�new// :

It can be checked that the two latter revision rules
generalize the two previous ones. With both revision
options, it can be checked that if ı � � and ınew � �new

hold, revising .ı; �/ by .ınew; �new/ yields a new coher-
ent pair. This revision process should not be confused
with another one pertaining only to the negative part of
the information, namely computing min.�; �new/ may
yield a possibility distribution that is not normalized, in
the case of inconsistency. If such an inconsistency takes
place, it should be resolved (by some appropriate renor-
malization) before one of the two above bipolar revision
mechanisms can be applied.

3.3 Qualitative Possibility Theory

This section is restricted to the case of a finite state
space S, typically S is the set of interpretations of a for-
mal propositional language L based on a finite set of
Boolean attributes V . The usual connectives ^ (con-
junction), _ (disjunction), and : (negation) are used.
The possibility scale is then taken as a finite chain, or
the unit interval understood as an ordinal scale, or even
just a complete preordering of states. At the other end,
one may use the set of natural integers (viewed as an im-
possibility scale) equipped with addition, which comes
down to a countable subset of the unit interval, equipped
with the product t-norm, instrumental for conditioning.
However, the qualitative nature of the latter setting is
questionable, even if authors using it do not consider it
as genuinely quantitative.

3.3.1 Possibility Theory and Modal Logic

In this section, the possibility scale is Boolean .LD
f0; 1g/ and a possibility distribution reduces to a sub-
set of states E, for instance the models of a set of
formulas K representing the beliefs of an agent in
propositional logic. The presence of a proposition p
in K can be modeled by N.Œp�/D 1, or ˘.Œ:p�/D 0
where Œp� is the set of interpretations of p; more gen-
erally the degrees of possibility and necessity can be
defined by [3.36]:

� N.Œp�/D˘.Œp�/D 1 if and only if K ˆ p (the agent
believes p)� N.Œ:p�/D˘.Œ:p�/D 0 if and only if K ˆ:p (the
agent believes :p)� N.Œp�/D 0 and˘.Œp�/D 1 if and only if K 6ˆ p and
K 6ˆ :p (the agent is unsure about p)

However, in propositional logic, it cannot be syn-
tactically expressed that N.Œp�/D 0 nor ˘.Œp�/D 1. To

do so, a modal language is needed [3.12], that prefixes
propositions with modalities such as necessary (�) and
possible (Þ). Then �p encodes N.Œp�/D 1 (instead of
p 2 K in classical logic), Þp encodes˘.Œp�/D 1. Only
a very simple modal language L� is needed that en-
capsulates the propositional language L. Atoms of this
logic are of the form �p, where p is any propositional
formula. Well-formed formulas in this logic are ob-
tained by applying standard conjunction and negation
to these atoms

L� D �p; p 2 L j :	 j 	 ^ :
The well-known conjugateness between possibility and
necessity reads: ÞpD:�:p. Maxitivity and minitiv-
ity axioms of possibility and necessity measure, respec-
tively, read Þ.p_q/D Þp_Þq and �.p^q/D �p^
�q and are well known to hold in regular modal log-
ics, and the consistency of the epistemic state is ensured
by axiom D W �p! Þp. This is the minimal epistemic
logic (MEL) [3.37] needed to account for possibility
theory. It corresponds to a small fragment of the logic
KD without modality nesting and without objective for-
mulas (L� \LD ;). Models of such modal formulas
are epistemic states: for instance, E is a model of �p
means that E � Œp� [3.37, 38]. This logic is sound and
complete with respect to this semantics, and enables
propositions whose truth status is explicitly unknown
to be reasoned about.

3.3.2 Comparative Possibility

A plausibility ordering is a complete preorder of states
denoted by �� , which induces a well-ordered partition
fE1; : : : ;Eng of S. It is the comparative counterpart of
a possibility distribution � , i. e., s �� s0 if and only if
�.s/� �.s0/. Indeed it is more natural to expect that
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an agent will supply ordinal rather than numerical in-
formation about his beliefs. By convention, E1 contains
the most normal states of fact, En the least plausible,
or most surprising ones. Denoting by max.A/ any most
plausible state s0 2 A, ordinal counterparts of possibil-
ity and necessity measures [3.15] are then defined as
follows: fsg �˘ ; for all s 2 S and

A�˘ B if and only if max.A/�� max.B/

A�N B if and only if max.Bc/�� max.Ac/ :

Possibility relations�˘ were proposed by Lewis [3.14]
and they satisfy his characteristic property

A�˘ B implies C[A�˘ C[B ;

while necessity relations can also be defined as A�N

B if and only if Bc �˘ Ac, and they satisfy a similar
axiom

A�N B implies C\A�N C\B :

The latter coincides with epistemic entrenchment re-
lations in the sense of belief revision theory [3.39]
(provided that A>˘ ;, if A¤ ;). Conditioning a pos-
sibility relation �˘ by a nonimpossible event C >˘ ;
means deriving a relation �C

˘
such that

A�C
˘ B if and only if A\C �˘ B\C :

These results show that possibility theory is implicitly
at work in the principal axiomatic approach to belief
revision [3.40], and that conditional possibility obeys its
main postulates [3.41]. The notion of independence for
comparative possibility theory was studied by Dubois
et al. [3.31], for independence between events, and Ben
Amor et al. [3.32] between variables.

3.3.3 Possibility Theory
and Nonmonotonic Inference

Suppose S is equipped with a plausibility ordering. The
main idea behind qualitative possibility theory is that
the state of the world is always believed to be as nor-
mal as possible, neglecting less normal states. A�˘ B
really means that there is a normal state where A holds
that is at least as normal as any normal state where B
holds. The dual case A�N B is intuitively understood
as A is at least as certain as B, in the sense that there
are states where B fails to hold that are at least as nor-
mal as the most normal state where A does not hold. In

particular, the events accepted as true are those which
are true in all the most plausible states, namely the ones
such that A>N ;. These assumptions lead us to inter-
pret the plausible inference A j� B of a proposition B
from another A, under a state of knowledge�˘ as fol-
lows: B should be true in all the most normal states
were A is true, which means B>A

˘
Bc in terms of or-

dinal conditioning, that is, A\B is more plausible than
A\Bc. A j� B also means that the agent considers B as
an accepted belief in the context A.

This kind of inference is nonmonotonic in the sense
that A j� B does not always imply A\C j� B for any
additional information C. This is similar to the fact that
a conditional probability P.B j A\C/ may be low even
if P.B j A/ is high. The properties of the consequence
relation j� are now well understood, and are precisely
the ones laid bare by Lehmann and Magidor [3.42]
for their so-called rational inference. Monotonicity is
only partially restored: A j� B implies A\C j� B pro-
vided that A j� Cc does not hold (i. e., that states were
A is true do not typically violate C). This property is
called rational monotony, and, along with some more
standard ones (like closure under conjunction), charac-
terizes default possibilistic inference j�. In fact, the set
fB;A j� Bg of accepted beliefs in the context A is de-
ductively closed, which corresponds to the idea that the
agent reasons with accepted beliefs in each context as
if they were true, until some event occurs that modifies
this context. This closure property is enough to justify
a possibilistic approach [3.43] and adding the rational
monotonicity property ensures the existence of a single
possibility relation generating the consequence relation
j� [3.44].

Plausibility orderings can be generated by a set of
if-then rules tainted with unspecified exceptions. This
set forms a knowledge base supplied by an agent. Each
rule if A then B is modeled by a constraint of the form
A\B>˘ A\Bc on possibility relations. There exists
a single minimally specific element in the set of pos-
sibility relations satisfying all constraints induced by
rules (unless the latter are inconsistent). It corresponds
to the most compact plausibility ranking of states in-
duced by the rules [3.44]. This ranking can be computed
by an algorithm originally proposed by Pearl [3.45].

Qualitative possibility theory has been studied from
the point of view of cognitive psychology. Experimen-
tal results [3.46] suggest that there are situations where
people reason about uncertainty using the rules or pos-
sibility theory, rather than with those of probability
theory, namely people jump to plausible conclusions
based on assuming the current world is normal.
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3.3.4 Possibilistic Logic

Qualitative possibility relations can be represented by
(and only by) possibility measures ranging on any to-
tally ordered set L (especially a finite one) [3.15]. This
absolute representation on an ordinal scale is slightly
more expressive than the purely relational one. For
instance, one can express that a proposition is fully
plausible .˘.A/D 1/, while using a possibility rela-
tion, one can only say that it is among the most plausible
ones. When the finite set S is large and generated
by a propositional language, qualitative possibility dis-
tributions can be efficiently encoded in possibilistic
logic [3.47–49].

A possibilistic logic base K is a set of pairs .pi; ˛i/,
where pi is an expression in classical (propositional or
first-order) logic and ˛i > 0 is a element of the value
scale L. This pair encodes the constraint N.pi/� ˛i
where N.pi/ is the degree of necessity of the set of mod-
els of pi. Each prioritized formula .pi; ˛i/ has a fuzzy
set of models (via certainty qualification described in
Sect. 3.2) and the fuzzy intersection of the fuzzy sets
of models of all prioritized formulas in K yields the
associated plausibility ordering on S encoded by a pos-
sibility distribution �K . Namely, an interpretation s is
all the less possible as it falsifies formulas with higher
weights, i. e.,

�K.s/D 1 if sˆ pi;8.pi; ˛i/ 2 K ; (3.5)

�K.s/D 1�maxf˛i W .pi; ˛i/ 2 K; s 6ˆ pig
otherwise : (3.6)

This distribution is obtained by applying the minimal
specificity principle, since it is the largest one that sat-
isfies the constraints N.pi/� ˛i. If the classical logic
base fpi W .pi; ˛i/ 2 Kg is inconsistent, �K is not nor-
malized, and a level of inconsistency equal to inc.K/D
1�max�K can be attached to the base K. However, the
set of formulas fpi W .pi; ˛i/ 2 K; ˛i > inc.K/g is always
consistent.

Syntactic deduction from a set of prioritized clauses
is achieved by refutation using an extension of the stan-
dard resolution rule, whereby .p_ q;min.˛; ˇ// can
be derived from .p_ r; ˛/ and .q_:r; ˇ/. This rule,
which evaluates the validity of an inferred proposition
by the validity of the weakest premiss, goes back to
Theophrastus, a disciple of Aristotle. Another way of
presenting inference in possibilistic logic relies on the
fact that K ` .p; ˛/ if and only if K˛ D fpi W .pi; ˛i/ 2
K; ˛i � ˛g ` p in the sense of classical logic. In par-
ticular, inc.K/Dmaxf˛ W K˛ ` ?g. Inference in possi-

bilistic logic can use this extended resolution rule and
proceeds by refutation since K ` .p; ˛/ if and only if
inc.f.:p;1/g[K/� ˛. Computational inference meth-
ods in possibilistic logic are surveyed in [3.50].

Possibilistic logic is an inconsistency-tolerant ex-
tension of propositional logic that provides a natural
semantic setting for mechanizing nonmonotonic rea-
soning [3.51], with a computational complexity close
to that of propositional logic. Namely, once a possibil-
ity distribution on models is generated by a set of if-then
rules pi ! qi (as explained in Sect. 3.3.3 and modeled
here using qualitative conditioning as N.qi j pi/ > 0),
weights ˛i D N.:pi_qi/ can be computed, and the cor-
responding possibilistic base built [3.51]. See [3.52] for
an efficient method involving compilation.

Variants of possibilistic logic have been proposed
in later works. A partially ordered extension of pos-
sibilistic logic has been proposed, whose semantic
counterpart consists of partially ordered models [3.53].
Another approach for handling partial orderings be-
tween weights is to encode formulas with partially
constrained weights in a possibilistic-like many-sorted
propositional logic [3.54]. Namely, a formula .p; ˛/ is
rewritten as a classical two-sorted clause p_ab˛, where
ab˛ means the situation is ˛-abnormal, and thus the
clause expresses that p is true or the situation is abnor-
mal, while more generally .p;min.˛; ˇ// is rewritten
as the clause p_ ab˛ _ abˇ . Then a known constraint
between unknown weights such as ˛ � ˇ is translated
into a clause :ab˛ _ abˇ. In this way, a possibilistic
logic base, where only partial information about the rel-
ative ordering between the weights is available under
the form of constraints, can be handled as a set of clas-
sical logic formulas that involve symbolic weights.

An efficient inference process has been proposed
using the notion of forgetting variables. This approach
provides a technique for compiling a standard possi-
bilistic knowledge bases in order to process inference
in polynomial time [3.55]. Let us also mention quasi-
possibilistic logic [3.56], an extension of possibilis-
tic logic based on the so-called quasi-classical logic,
a paraconsistent logic whose inference mechanism is
close to classical inference (except that it is not allowed
to infer p_ q from p). This approach copes with in-
consistency between formulas having the same weight.
Other types of possibilistic logic can also handle con-
straints of the form ˘.	/� ˛, or 
.	/� ˛ [3.49].

There is a major difference between possibilistic
logic and weighted many-valued logics [3.57]. Namely,
in the latter, a weight � 2 L attached to a (many val-
ued, thus nonclassical) formula p acts as a truth-value
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threshold, and .p; �/ in a fuzzy knowledge base ex-
presses the Boolean requirement that the truth value of
p should be at least equal to � for .p; �/ to be valid. So
in such fuzzy logics, while truth of p is many-valued,
the validity of a weighted formula is two-valued. On the
contrary, in possibilistic logic, truth is two-valued (since
p is Boolean), but the validity of a possibilistic for-
mula .p; ˛/ is many-valued. In particular, it is possible
to cast possibilistic logic inside a many-valued logic.
The idea is to consider many-valued atomic sentences
	 of the form .p; ˛/, where p is a formula in classi-
cal logic. Then, one can define well-formed formulas
such as 	 _ , 	 ^ , or yet 	!  , where the exter-
nal connectives linking 	 and  are those of the chosen
many-valued logic. From this point of view, possibilis-
tic logic can be viewed as a fragment of a many-valued
logic that uses only one external connective: conjunc-
tion interpreted as minimum. This approach involving
a Boolean algebra embedded in a nonclassical one has
been proposed by Boldrin and Sossai [3.58] with a view
to augment possibilistic logic with fusion modes cast at
the object level. It is also possible to replace classical
logic by a many-valued logic inside possibilistic logic.
For instance, possibilistic logic has been extended to
Gödel many-valued logic [3.59]. A similar technique
has been used by Hájek et al. to extend possibilistic
logic to a many-valued modal setting [3.60].

Lehmke [3.61] has cast fuzzy logics and possibilistic
logic inside the same framework, considering weighted
many-valued formulas of the form .p; �/, where p is
a many-valued formula with truth set T , and � is a la-
bel defined as a monotone mapping from the truth-set
T to a validity set L (a set of possibility degrees). T
and L are supposed to be complete lattices, and the set
of labels has properties that make it a fuzzy extension
of a filter. Labels encompass fuzzy truth-values in the
sense of Zadeh [3.62], such as very true, more or less
true that express uncertainty about (many-valued) truth
in a graded way.

Rather than expressing statements such as it is half-
true that John is tall, which presupposes a state of
complete knowledge about John’s height, one may be
interested in handling states of incomplete knowledge,
namely assertions of the form all we know is that John
is tall. One way to do it is to introduce fuzzy constants
in a possibilistic first-ordered logic. Dubois, Prade, and
Sandri [3.63] have noticed that an imprecise restric-
tion on the scope of an existential quantifier can be
handled in the following way. From the two premises
8x 2 A;:p.x; y/_ q.x; y/, and 9x 2 B; p.x;a/, where a
is a constant, we can conclude that 9x 2 B; q.x; a/ pro-

vided that B� A. Thus, letting p.B; a/ stand for 9x 2
B; p.x; a/, one can write

8x 2 A;:p.x; y/_ q.x; y/; p.B; a/ ` q.B; a/

if B� A, B being an imprecise constant. Letting A and
B be fuzzy sets, the following pattern can be validated
in possibilistic logic

.:p.x; y/_ q.x; y/;min.�A.x/; ˛//; .p.B; a/; ˇ/

` .q.B;a/;min.NB.A/; ˛; ˇ/ ;

where NB.A/D inft max.�A.t/; 1��B.t// is the neces-
sity measure of the fuzzy event A based on fuzzy
information B. Note that A, which appears in the weight
slot of the first possibilistic formula plays the role of
a fuzzy predicate, since the formula expresses that the
more x is A, the more certain (up to level ˛) if p is true
for .x; y/, q is true for them as well.

Alsinet and Godo [3.64, 65] have applied possi-
bilistic logic to logic programming that allows for
fuzzy constants [3.65, 66]. They have developed pro-
gramming environments based on possibility theory. In
particular, the above inference pattern can be strength-
ened, replacing B by its cut Bˇ in the expression of
NB.A/ and extended to a sound resolution rule. They
have further developed possibilistic logic programming
with similarity reasoning [3.67] and more recently ar-
gumentation [3.68, 69].

Lastly, in order to improve the knowledge repre-
sentation power of the answer-set programming (ASP)
paradigm, the stable model semantics has been ex-
tended by taking into account a certainty level, ex-
pressed in terms of necessity measure, on each rule
of a normal logic program. It leads to the definition
of a possibilistic stable model for weighted answer-
set programming [3.70]. Bauters et al. [3.71] introduce
a characterization of answer sets of classical and pos-
sibilistic ASP programs in terms of possibilistic logic
where an ASP program specifies a set of constraints on
possibility distributions.

3.3.5 Ranking Function Theory

A theory that parallels possibility theory to a large ex-
tent and that has been designed for handling issues
in belief revision, nonmonotonic reasoning and causa-
tion, just like qualitative possibility theory is the one of
ranking functions by Spohn [3.9, 10, 72]. The main dif-
ference is that it is not really a qualitative theory as it
uses the set of integers including 1 (denoted by NC)
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as a value scale. Hence, it is more expressive than qual-
itative possibility theory, but it is applied to the same
problems.

Formally [3.10], a ranking function is a mapping � W
2S !NC such that:

� �.fsg/D 0 for some s 2 S;� �.A/Dmins2A �.fsg/;� �.;/D1.

It is immediate to verify that the set function
˘.A/D 2��.A/ is a possibility measure. So a ranking
function is an integer-valued measure of impossibility
(disbelief). The function ˇ.A/D �.Ac/ is an integer-
valued necessity measure used by Spohn for measuring
belief, and it is clear that the rescaled necessity measure
is N.A/D 1� 2�ˇ.A/. Interestingly, ranking functions
also bear close connection to probability theory [3.72],
viewing �.A/ as the exponent of an infinitesimal prob-
ability, of the form P.A/D �.A/. Indeed the order of
magnitude of P.A[B/ is then min.�.A/;�.B// . Integers
also come up naturally if we consider Hamming dis-
tances between models in the Boolean logic context, if
for instance, the degree of possibility of an interpreta-
tion is a function of its Hamming distance to the closest
model of a classical knowledge base.

Spohn [3.9] also introduces conditioning concepts,
especially:

� The so-called A-part of �, which is a conditioning
operation by event A defined by �.B j A/D �.B\
A/� �.B/;� The .A; n/-conditionalization of �, �.	 j .A! n//
which is a revision operation by an uncertain input
enforcing �0.Ac/D n, and defined by

�.s j .A! n//D
(
�.s j A/ if s 2 A

nC �.s j Ac/ otherwise :

(3.7)

This operation makes A more believed than Ac by n
steps, namely,

ˇ.A j .A! n//D 0 I ˇ.Ac j .A! nD n// :

It is easy to see that the conditioning of ranking
functions comes down to the product-based condi-
tioning of numerical possibility measures, and to the
infinitesimal counterpart of usual Bayesian condition-
ing of probabilities. The other conditioning rule can
be obtained by means of Jeffrey’s rule of condition-
ing [3.73] P.B j .A; ˛//D ˛P.B j A/C .1�˛/P.B j Ac/

by a constraint of the form P.A/D ˛. Both qualita-
tive and quantitative counterparts of this revision rule
in possibility theory have been studied in detail [3.74,
75]. In fact, ranking function theory is formally en-
compassed by numerical possibility theory. Moreover,
there is no fusion rule in Spohn theory, while fusion is
one of the main applications of possibility theory (see
Sect. 3.5).

3.3.6 Possibilistic Belief Networks

Another compact representation of qualitative possi-
bility distributions is the possibilistic directed graph,
which uses the same conventions as Bayesian nets, but
relies on conditional possibility [3.76]. The qualitative
approach is based on a symmetric notion of qualita-
tive independence ˘.B\A/Dmin.˘.A/;˘.B// that
is weaker than the causal-like condition ˘.B j A/D
˘.B/ [3.31]. Like joint probability distributions, joint
possibility distributions can be decomposed into a con-
junction of conditional possibility distributions (us-
ing minimum or product) in a way similar to Bayes
nets [3.76]. A joint possibility distribution associated
with variablesX1; : : : ;Xn, decomposed by the chain rule

�.X1; ;Xn/Dmin.�.Xn j X1; : : : ;Xn�1/;

: : : ; �.X2 j X1/; �.X1// :

Such a decomposition can be simplified by assuming
conditional independence relations between variables,
as reflected by the structure of the graph. The form of
independence between variables at work here is condi-
tional noninteractivity: Two variables X and Y are inde-
pendent in the context Z, if for each instance .x; y; z/ of
.X; Y; Z/ we have: �.x; y j z/Dmin.�.x j z/; �.y j z//.

Ben Amor and Benferhat [3.77] investigate the
properties of qualitative independence that enable lo-
cal inferences to be performed in possibilistic nets.
Uncertainty propagation algorithms suitable for possi-
bilistic graphical structures have been studied in [3.78].
It is also possible to propagate uncertainty in nondi-
rected decompositions of joint possibility measures
as done quite early by Borgelt et al. [3.79]. Coun-
terparts of product-based numerical possibilistic nets
using ranking functions exist as well [3.10]. Quali-
tative possibilistic counterparts of decision trees and
influence diagrams for decision trees have been re-
cently investigated [3.80, 81]. Compilation techniques
for inference in possibilistic networks have been de-
vised [3.82]. Finally, the study of possibilistic networks
from the standpoint of causal reasoning has been inves-
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tigated, using the concept of intervention, that comes
down to enforcing the values of some variables so as to
lay bare their influence on other ones [3.83, 84].

3.3.7 Fuzzy Rule-Based and Case-Based
Approximate Reasoning

A typology of fuzzy rules has been devised in the set-
ting of possibility theory, distinguishing rules whose
purpose is to propagate uncertainty through reasoning
steps, from rules whose main purpose is similarity-
based interpolation [3.85], depending on the choice
of a many-valued implication connective that models
a rule. The bipolar view of information based on .ı; �/
pairs sheds new light on the debate between conjunctive
and implicative representation of rules [3.86]. Repre-
senting a rule as a material implication focuses on
counterexamples to rules, while using a conjunction
between antecedent and consequent points out exam-
ples of the rule and highlights its positive content.
Traditionally in fuzzy control and modeling, the lat-
ter representation is adopted, while the former is the
logical tradition. Introducing fuzzy implicative rules in
modeling accounts for constraints or landmark points
the model should comply with (as opposed to observed
data) [3.87]. The bipolar view of rules in terms of ex-
amples and counterexamples may turn out to be very
useful when extracting fuzzy rules from data [3.88].

Fuzzy rules have been applied to case-based rea-
soning (CBR). In general, CBR relies on the following
implicit principle: similar situations may lead to similar
outcomes. Thus, a similarity relation S between prob-
lem descriptions or situations, and a similarity measure
T between outcomes are needed. This implicit CBR
principle can be expressed in the framework of fuzzy
rules as: “the more similar (in the sense of S) are the
attribute values describing two situations, the more pos-
sible the similarity (in the sense of T) of the values
of the corresponding outcome attributes.” Given a sit-
uation s0 associated to an unknown outcome t0 and
a current case .s; t/, this principle enables us to con-
clude on the possibility of t0 being equal to a value
similar to t [3.89]. This acknowledges the fact that, of-
ten in practice, a database may contain cases that are
rather similar with respect to the problem description
attributes, but which may be distinct with respect to
outcome attribute(s). This emphasizes that case-based
reasoning can only lead to cautious conclusions.

The possibility rule the more similar s and s0, the
more possible t and t0 are similar, is modeled in terms
of a guaranteed possibility measure [3.90]. This leads

to enforce the inequality 
0.T.t; 	//� �S.s; s0/, which
expresses that the guaranteed possibility that t0 belongs
to a high degree to the fuzzy set of values that are T-
similar to t, is lower bounded by the S-similarity of s
and s0. Then the fuzzy set F of possible values t0 for t0
with respect to case .s; t/ is given by

Ft0 .t
0/Dmin.�T.t; t

0/;�S.s; s0// ;

since the maximally specific distribution such that

.A/� ˛ is ı Dmin.�A; ˛/. What is obtained is the
fuzzy set T.t; :/ of values t0 that are T-similar to t,
whose possibility level is truncated at the global degree
�S.s; s0/ of similarity of s and s0. The max-based ag-
gregation of the various contributions obtained from the
comparison with each case .s; t/ in the memory M of
cases acknowledges the fact that each new comparison
may suggest new possible values for t0 and agrees with
the positive nature of the information in the repository
of cases. Thus, we obtain the following fuzzy set Es0 of
the possible values t0 for t0

Es0.t
0/D max

.s;t/2M
min.S.s; s0/;T.t; t0// :

This latter expression can be put in parallel with the
evaluation of a flexible query [3.91]. This approach has
been generalized to imprecisely or fuzzily described sit-
uations, and has been related to other approaches to
instance-based prediction [3.92, 93].

3.3.8 Preference Representation

Possibility theory also offers a framework for prefer-
ence modeling in constraint-directed reasoning. Both
prioritized and soft constraints can be captured by pos-
sibility distributions expressing degrees of feasibility
rather than plausibility [3.6]. Possibility theory offers
a natural setting for fuzzy optimization whose aim is to
balance the levels of satisfaction of multiple fuzzy con-
straints (instead of minimizing an overall cost) [3.94].
In such problems, some possibility distributions repre-
sent soft constraints on decision variables, other ones
can represent incomplete knowledge about uncontrol-
lable state variables. Qualitative decision criteria are
particularly adapted to the handling of uncertainty in
this setting. Possibility distributions can also model
ill-known constraint coefficients in linear and nonlin-
ear programming, thus leading to variants of chance-
constrained programming [3.95].

Optimal solutions of fuzzy constraint-based prob-
lems maximize the satisfaction of the most violated
constraint, which does not ensure the Pareto dominance
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of all such solutions. More demanding optimality no-
tions have been defined, by canceling equally satisfied
constraints (the so-called discrimin ordering) or using
a leximin criterion [3.94, 96, 97].

Besides, the possibilistic logic setting provides
a compact representation framework for preferences,
where possibilistic logic formulas represent priori-
tized constraints on Boolean domains. This approach
has been compared to qualitative conditional prefer-
ence networks (CP nets), based on a systematic ceteris
paribus assumption (preferential independence between
decision variables). CP nets induce partial orders of so-
lutions rather than complete preorders, as possibilistic
logic does [3.98]. Possibilistic networks can also model
preference on the values of variables, conditional to the
value of other ones, and offer an alternative to condi-
tional preference networks [3.98].

Bipolar possibility theory has been applied to pref-
erence problems where it can be distinguished between
imperative constraints (modeled by propositions with
a degree of necessity), and nonimperative wishes (mod-
eled by propositions with a degree of guaranteed possi-
bility level) [3.99]. Another kind of bipolar approach to
qualitative multifactorial evaluation based on possibil-
ity theory, is when comparing objects in terms of their
pros and cons where the decision maker focuses on the
most important assets or defects. Such qualitativemulti-
factorial bipolar decision criteria have been defined, ax-
iomatized [3.100], and empirically tested [3.101]. They
are qualitative counterparts of cumulative prospect the-
ory criteria of Kahneman and Tverski [3.102].

Two issues in preference modeling based on possi-
bility theory in a logic format are as follows:

� Preference statements of the form ˘.p/ > ˘.q/
provide an incomplete description of a preference
relation. One question is then how to complete this
description by default. The principle of minimal
specificity then means that a solution not explicitly
rejected is satisfactory by default. The dual maximal
specificity principle, says that a solution not sup-
ported is rejected by default. It is not always clear
which principle is the most natural.� A statement according to which it is better to sat-
isfy a formula p than a formula q can in fact be
interpreted in several ways. For instance, it may
mean that the best solution satisfying p is better that
the best solution satisfying q, which reads ˘.p/ >
˘.q/ and can be encoded in possibilistic logic
under minimal specificity assumption; a stronger
statement is that the worst solution satisfying p is

better that the best solution satisfying q, which reads

.p/ > ˘.q/. Other possibilities are 
.p/ > 
.q/,
and ˘.p/ > 
.q/. This question is studied in some
detail by Kaci [3.103].

3.3.9 Decision-Theoretic Foundations

Zadeh [3.1] hinted that since our intuition concerning
the behavior of possibilities is not very reliable, our un-
derstanding of them

would be enhanced by the development of an ax-
iomatic approach to the definition of subjective
possibilities in the spirit of axiomatic approaches
to the definition of subjective probabilities.

Decision-theoretic justifications of qualitative possibil-
ity were devised, in the style of Von Neumann and
Morgenstern, and Savage [3.104] more than 15 years
ago [3.105, 106].

On top of the set of states, assume there is a set
X of consequences of decisions. A decision, or act, is
modeled as a mapping f from S to X assigning to each
state S its consequence f .s/. The axiomatic approach
consists in proposing properties of a preference relation
 between acts so that a representation of this relation
by means of a preference functional W.f / is ensured,
that is, act f is as good as act g (denoted by f  g) if
and only if W.f /�W.g/. W.f / depends on the agent’s
knowledge about the state of affairs, here supposed to
be a possibility distribution� on S, and the agent’s goal,
modeled by a utility function u on X. Both the utility
function and the possibility distributionmap to the same
finite chain L. A pessimistic criterion W�

� .f / is of the
form

W�

� .f /Dmin
s2S

max.n.�.s//;u.f .s/// ;

where n is the order-reversing map of L. n.�.s// is the
degree of certainty that the state is not s (hence the de-
gree of surprise of observing s), u.f .s// the utility of
choosing act f in state s. W�

� .f / is all the higher as all
states are either very surprising or have high utility. This
criterion is actually a prioritized extension of the Wald
maximin criterion. The latter is recovered if �.s/D 1
(top of L)8s 2 S. According to the pessimistic criterion,
acts are chosen according to their worst consequences,
restricted to the most plausible states S� D fs; �.s/�
n.W�

� .f //g. The optimistic counterpart of this criterion
is

WC

� .f /Dmax
s2S

min.�.s//;u.f .s/// :
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� .f / is all the higher as there is a very plausible state
with high utility. The optimistic criterion was first pro-
posed by Yager [3.107] and the pessimistic criterion by
Whalen [3.108]. See Dubois et al. [3.109] for the res-
olution of decision problems under uncertainty using
the above criterion, and cast in the possibilistic logic
framework. Such criteria can be refined by the classical
expected utility criterion [3.110].

These optimistic and pessimistic possibilistic crite-
ria are particular cases of a more general criterion based
on the Sugeno integral [3.111] specialized to possibility
and necessity of fuzzy events [3.1, 20]

S�;u.f /Dmax
�2L

min.�; �.F�// ;

where F� D fs 2 S;u.f .s//� �g, � is a monotonic set
function that reflects the decision-maker attitude in
front of uncertainty: �.A/ is the degree of confidence in
event A. If � D˘ , then S˘;u.f /DWC

� .f /. Similarly, if
� D N, then SN;u.f /DW�

� .f /.
For any acts f ; g, and any event A, let fAg denote an

act consisting of choosing f if A occurs and g if its com-
plement occurs. Let f ^ g (resp. f _ g) be the act whose
results yield the worst (resp. best) consequence of the
two acts in each state. Constant acts are those whose
consequence is fixed regardless of the state. A result
in [3.112, 113] provides an act-driven axiomatization of
these criteria, and enforces possibility theory as a ra-
tional representation of uncertainty for a finite state
space S:

Theorem 3.1
Suppose the preference relation on acts obeys the fol-
lowing properties:

1. .XS;/ is a complete preorder.
2. There are two acts such that f � g.

3. 8A;8g and h constant, 8f ; g h implies gAf 
hAf .

4. If f is constant, f � h and g� h imply f ^ g� h.
5. If f is constant, h� f and h� g imply h � f _ g.

Then there exists a finite chain L, an L-valued
monotonic set function � on S and an L-valued utility
function u, such that  is representable by a Sugeno
integral of u.f / with respect to � . Moreover, � is a ne-
cessity (resp. possibility) measure as soon as property
(4) (resp. (5)) holds for all acts. The preference func-
tional is thenW�

� .f / (resp. W
C

� .f /).

Axioms (4 and 5) contradict expected utility theory.
They become reasonable if the value scale is finite, de-
cisions are one-shot (no compensation) and provided
that there is a big step between any level in the quali-
tative value scale and the adjacent ones. In other words,
the preference pattern f � h always means that f is
significantly preferred to h, to the point of consider-
ing the value of h negligible in front of the value of
f . The above result provides decision-theoretic founda-
tions of possibility theory, whose axioms can thus be
tested from observing the choice behavior of agents.
See [3.114] for another approach to comparative possi-
bility relations, more closely relying on Savage axioms,
but giving up any comparability between utility and
plausibility levels. The drawback of these and other
qualitative decision criteria is their lack of discrimi-
nation power [3.115]. To overcome it, refinements of
possibilistic criteria were recently proposed, based on
lexicographic schemes. These refined criteria turn out
to be by a classical (but big-stepped) expected utility
criterion [3.110], and Sugeno integral can be refined by
a Choquet integral [3.116]. For extension of this qual-
itative decision-making framework to multiple-stage
decision, see [3.117].

3.4 Quantitative Possibility Theory

The phrase quantitative possibility refers to the case
when possibility degrees range in the unit interval, and
are considered in connection with belief function and
imprecise probability theory. Quantitative possibility
theory is the natural setting for a reconciliation be-
tween probability and fuzzy sets. In that case, a precise
articulation between possibility and probability theo-
ries is useful to provide an interpretation to possibility
and necessity degrees. Several such interpretations can

be consistently devised: a degree of possibility can
be viewed as an upper probability bound [3.118], and
a possibility distribution can be viewed as a likelihood
function [3.119]. A possibility measure is also a special
case of a Shafer plausibility function [3.120]. Following
a very different approach, possibility theory can ac-
count for probability distributions with extreme values,
infinitesimal [3.72] or having big steps [3.121]. There
are finally close connections between possibility theory
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and idempotent analysis [3.122]. The theory of large de-
viations in probability theory [3.123] also handles set
functions that look like possibility measures [3.124].
Here we focus on the role of possibility theory in the
theory of imprecise probability.

3.4.1 Possibility as Upper Probability

Let � be a possibility distribution where �.s/ 2 Œ0; 1�.
Let P.�/ be the set of probability measures P such
that P�˘ , i. e., 8A� S;P.A/ �˘.A/. Then the pos-
sibility measure˘ coincides with the upper probability
function P� such that P�.A/D supfP.A/;P 2 P.�/g
while the necessity measure N is the lower probabil-
ity function P

�

such that P
�

.A/D inffP.A/;P 2 P.�/g;
see [3.118, 125] for details. P and � are said to be con-
sistent if P 2 P.�/. The connection between possibility
measures and imprecise probabilistic reasoning is es-
pecially promising for the efficient representation of
nonparametric families of probability functions, and it
makes sense even in the scope of modeling linguistic
information [3.126].

A possibility measure can be computed from
nested confidence subsets fA1;A2; : : : ;Amg where Ai �
AiC1; iD 1; : : : ;m� 1. Each confidence subset Ai is
attached a positive confidence level �i interpreted as
a lower bound of P.Ai/, hence a necessity degree. It is
viewed as a certainty qualified statement that generates
a possibility distribution �i according to Sect. 3.2. The
corresponding possibility distribution is

�.s/D min
iD1;:::;m

�i.s/

D
(
1 if u 2 A1

1��j�1 if jDmaxfi W s … Aig > 1
:

The information modeled by � can also be viewed
as a nested random set f.Ai; �i/; iD 1; : : : ;mg, where
�i D �i��i�1. This framework allows for imprecision
(reflected by the size of the Ai’s) and uncertainty (the
�i’s). And �i is the probability that the agent only knows
that Ai contains the actual state (it is not P.Ai/). The
random set view of possibility theory is well adapted
to the idea of imprecise statistical data, as developed
in [3.127, 128]. Namely, given a bunch of imprecise
(not necessarily nested) observations (called focal sets),
� supplies an approximate representation of the data, as
�.s/DP

iWs2Ai �i.
In the continuous case, a fuzzy interval M can be

viewed as a nested set of ˛-cuts, which are intervals
M˛ D fx W �M.x/� ˛;8˛ > 0g. In the continuous case,

note that the degree of necessity is N.M˛/D 1�˛,
and the corresponding probability set P.�M/D fP W
P.M˛/� 1� ˛;8˛ > 0g. Representing uncertainty by
the family of pairs f.M˛; 1�˛/ W 8˛ > 0g is very simi-
lar to the basic approach of info-gap theory [3.129].

The set P.�/ contains many probability distribu-
tions, arguably too many. Neumaier [3.130] has re-
cently proposed a related framework, in a different
terminology, for representing smaller subsets of prob-
ability measures using two possibility distributions in-
stead of one. He basically uses a pair of distributions
.ı; �/ (in the sense of Sect. 3.2) of distributions, he
calls cloud, where ı is a guaranteed possibility distri-
bution (in our terminology) such that � � ı. A cloud
models the (generally nonempty) set P.�/\P.1� ı/,
viewing 1� ı as a standard possibility distribution. The
precise connections between possibility distributions,
clouds and other simple representations of numerical
uncertainty is studied in [3.131].

3.4.2 Conditioning

There are two kinds of conditioning that can be en-
visaged upon the arrival of new information E. The
first method presupposes that the new information al-
ters the possibility distribution � by declaring all states
outside E impossible. The conditional measure �.: j E/
is such that ˘.B j E/ 	˘.E/D˘.B\E/. This is for-
mally Dempster rule of conditioning of belief functions,
specialized to possibility measures. The conditional
possibility distribution representing the weighted set of
confidence intervals is

�.s j E/D
8<
:
�.s/

˘.E/
; if s 2 E

0 otherwise :

De Baets et al. [3.28] provide a mathematical justifi-
cation of this notion in an infinite setting, as opposed
to the min-based conditioning of qualitative possibil-
ity theory. Indeed, the maxitivity axiom extended to
the infinite setting is not preserved by the min-based
conditioning. The product-based conditioning leads to
a notion of independence of the form ˘.B\E/D
˘.B/ 	˘.E/ whose properties are very similar to the
ones of probabilistic independence [3.30].

Another form of conditioning [3.132, 133], more
in line with the Bayesian tradition, considers that the
possibility distribution � encodes imprecise statisti-
cal information, and event E only reflects a feature of
the current situation, not of the state in general. Then
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the value ˘.B jj E/D supfP.B j E/;P.E/ > 0;P�˘g
is the result of performing a sensitivity analysis of the
usual conditional probability over P.�/ [3.134]. Inter-
estingly, the resulting set function is again a possibility
measure, with distribution

�.s jj E/D8<
:max

�
�.s/;

�.s/

�.s/CN.E/

�
; if s 2 E

0 otherwise :

It is generally less specific than � on E, as clear
from the above expression, and becomes noninforma-
tive when N.E/D 0 (i. e., if there is no information
about E). This is because �.	 jj E/ is obtained from
the focusing of the generic information � over the
reference class E. On the contrary, �.	 j E/ operates
a revision process on � due to additional knowledge
asserting that states outside E are impossible. See De
Cooman [3.133] for a detailed study of this form of
conditioning.

3.4.3 Probability–Possibility
Transformations

The problem of transforming a possibility distribution
into a probability distribution and conversely is mean-
ingful in the scope of uncertainty combination with
heterogeneous sources (some supplying statistical data,
other linguistic data, for instance). It is useful to cast all
pieces of information in the same framework. The ba-
sic requirement is to respect the consistency principle
˘ � P. The problem is then either to pick a probability
measure in P.�/, or to construct a possibility measure
dominating P.

There are two basic approaches to possibility/
probability transformations, which both respect a form
of probability–possibility consistency. One, due to
Klir [3.135, 136] is based on a principle of information
invariance, the other [3.137] is based on optimizing in-
formation content. Klir assumes that possibilistic and
probabilistic information measures are commensurate.
Namely, the choice between possibility and probabil-
ity is then a mere matter of translation between lan-
guages neither of which is weaker or stronger than
the other (quoting Klir and Parviz [3.138]). It sug-
gests that entropy and imprecision capture the same
facet of uncertainty, albeit in different guises. The
other approach, recalled here, considers that going from
possibility to probability leads to increase the preci-
sion of the considered representation (as we go from

a family of nested sets to a random element), while
going the other way around means a loss of speci-
ficity.

From Possibility to Probability
The most basic example of transformation from possi-
bility to probability is the Laplace principle of insuf-
ficient reason claiming that what is equally possible
should be considered as equally probable. A general-
ized Laplacean indifference principle is then adopted
in the general case of a possibility distribution � : the
weights �i bearing on the sets Ai from the nested fam-
ily of levels cuts of � are uniformly distributed on
the elements of these cuts Ai. Let Pi be the uniform
probability measure on Ai. The resulting probability
measure is PDP

iD1;:::;m �i 	Pi. This transformation,
already proposed in 1982 [3.139] comes down to select-
ing the center of gravity of the set P.�/ of probability
distributions dominated by � . This transformation also
coincides with Smets’ pignistic transformation [3.140]
and with the Shapley value of the unamimity game (an-
other name of the necessity measure) in game theory.
The rationale behind this transformation is to minimize
arbitrariness by preserving the symmetry properties of
the representation. This transformation from possibility
to probability is one-to-one. Note that the definition of
this transformation does not use the nestedness prop-
erty of cuts of the possibility distribution. It applies all
the same to nonnested random sets (or belief functions)
defined by pairs f.Ai; �i/; iD 1; : : : ;mg, where �i are
nonnegative reals such that

P
iD1;:::;m �i D 1.

From Objective Probability to Possibility
From probability to possibility, the rationale of the
transformation is not the same according to whether
the probability distribution we start with is subjec-
tive or objective [3.106]. In the case of a statistically
induced probability distribution, the rationale is to pre-
serve as much information as possible. This is in
line with the handling of 
-qualified pieces of in-
formation representing observed evidence, considered
in Sect. 3.2; hence we select as the result of the
transformation of a probability measure P, the most
specific possibility measure in the set of those dominat-
ing P [3.137]. This most specific element is generally
unique if P induces a linear ordering on S. Suppose
S is a finite set. The idea is to let ˘.A/D P.A/, for
these sets A having minimal probability among other
sets having the same cardinality as A. If p1 > p2 >
	 	 	> pn, then ˘.A/D P.A/ for sets A of the form
fsi; : : : ; sng, and the possibility distribution is defined



Part
A
|3.4

48 Part A Foundations

as �P.si/D
P

jDi;:::;m pj, with pj D P.fsjg/. Note that
�P is a kind of cumulative distribution of P, already
known as a Lorentz curve in the mathematical liter-
ature [3.141]. If there are equiprobable elements, the
unicity of the transformation is preserved if equipossi-
bility of the corresponding elements is enforced. In this
case it is a bijective transformation as well. Recently,
this transformation was used to prove a rather surpris-
ing agreement between probabilistic indeterminateness
as measured by Shannon entropy, and possibilistic non-
specificity. Namely it is possible to compare probability
measures on finite sets in terms of their relative peaked-
ness (a concept adapted from Birnbaum [3.142]) by
comparing the relative specificity of their possibilis-
tic transforms. Namely let P and Q be two probability
measures on S and �P, �Q the possibility distribu-
tions induced by our transformation. It can be proved
that if �P � �Q (i. e., P is less peaked than Q) then
the Shannon entropy of P is higher than the one of
Q [3.143]. This result give some grounds to the in-
tuitions developed by Klir [3.135], without assuming
any commensurability between entropy and specificity
indices.

Possibility Distributions Induced by Prediction
Intervals

In the continuous case, moving from objective prob-
ability to possibility means adopting a representation
of uncertainty in terms of prediction intervals around
the mode viewed as the most frequent value. Extract-
ing a prediction interval from a probability distribution
or devising a probabilistic inequality can be viewed
as moving from a probabilistic to a possibilistic rep-
resentation. Namely suppose a nonatomic probability
measure P on the real line, with unimodal density 	,
and suppose one wishes to represent it by an interval I
with a prescribed level of confidence P.I/D � of hitting
it. The most natural choice is the most precise interval
ensuring this level of confidence. It can be proved that
this interval is of the form of a cut of the density, i. e.,
I� D fs; 	.s/� �g for some threshold � . Moving the
degree of confidence from 0 to 1 yields a nested family
of prediction intervals that form a possibility distribu-
tion � consistent with P, the most specific one actually,
having the same support and the same mode as P and
defined by [3.137]

�.inf I� /D �.sup I� /D 1� � D 1�P.I� / :

This kind of transformation again yields a kind of
cumulative distribution according to the ordering in-

duced by the density 	. Similar constructs can be
found in the statistical literature (Birnbaum [3.142]).
More recentlyMauris et al. [3.144] noticed that starting
from any family of nested sets around some charac-
teristic point (the mean, the median,: : :), the above
equation yields a possibility measure dominating P.
Well-known inequalities of probability theory, such as
those of Chebyshev and Camp-Meidel, can also be
viewed as possibilistic approximations of probability
functions. It turns out that for symmetric unimodal den-
sities, each side of the optimal possibilistic transform
is a convex function. Given such a probability density
on a bounded interval Œa; b�, the triangular fuzzy num-
ber whose core is the mode of 	 and the support is
Œa; b� is thus a possibility distribution dominating P re-
gardless of its shape (and the tightest such distribution).
These results justify the use of symmetric triangu-
lar fuzzy numbers as fuzzy counterparts to uniform
probability distributions. They provide much tighter
probability bounds than Chebyshev and Camp-Meidel
inequalities for symmetric densities with bounded sup-
port. This setting is adapted to the modeling of sensor
measurements [3.145]. These results are extended to
more general distributions by Baudrit et al. [3.146],
and provide a tool for representing poor probabilis-
tic information. More recently, Mauris [3.147] unifies,
by means of possibility theory, many old techniques
independently developed in statistics for one-point esti-
mation, relying on the idea of dispersion of an empirical
distribution. The efficiency of different estimators can
be compared by means of fuzzy set inclusion applied
to optimal possibility transforms of probability distribu-
tions. This unified approach does not presuppose a finite
variance.

Subjective Possibility Distributions
The case of a subjective probability distribution is dif-
ferent. Indeed, the probability function is then supplied
by an agent who is in some sense forced to express
beliefs in this form due to rationality constraints, and
the setting of exchangeable bets. However his actual
knowledge may be far from justifying the use of a sin-
gle well-defined probability distribution. For instance in
case of total ignorance about some value, apart from its
belonging to an interval, the framework of exchange-
able bets enforces a uniform probability distribution,
on behalf of the principle of insufficient reason. Based
on the setting of exchangeable bets, it is possible to
define a subjectivist view of numerical possibility the-
ory, that differs from the proposal of Walley [3.134].
The approach developed by Dubois et al. [3.148] re-
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lies on the assumption that when an agent constructs
a probability measure by assigning prices to lotteries,
this probability measure is actually induced by a be-
lief function representing the agent’s actual state of
knowledge. We assume that going from an underly-
ing belief function to an elicited probability measure
is achieved by means of the above mentioned pignis-
tic transformation, changing focal sets into uniform
probability distributions. The task is to reconstruct this
underlying belief function under a minimal commit-
ment assumption. In the paper [3.148], we pose and
solve the problem of finding the least informative be-
lief function having a given pignistic probability. We
prove that it is unique and consonant, thus induced by
a possibility distribution. The obtained possibility dis-
tribution can be defined as the converse of the pignistic
transformation (which is one-to-one for possibility dis-
tributions). It is subjective in the same sense as in the
subjectivist school in probability theory. However, it is
the least biased representation of the agent’s state of
knowledge compatible with the observed betting be-
havior. In particular, it is less specific than the one
constructed from the prediction intervals of an objec-
tive probability. This transformation was first proposed
in [3.149] for objective probability, interpreting the em-
pirical necessity of an event as summing the excess of
probabilities of realizations of this event with respect
to the probability of the most likely realization of the
opposite event.

Possibility Theory and Defuzzification
Possibilistic mean values can be defined using Choquet
integrals with respect to possibility and necessity mea-
sures [3.133, 150], and come close to defuzzification
methods [3.151]. Interpreting a fuzzy interval M, asso-
ciated with a possibility distribution �M, as a family of

probabilities, upper and lower mean values E�.M/ and
E

�

.M/, can be defined as [3.152]

E
�

.M/D
1Z

0

infM˛ d˛I E�.M/D
1Z

0

supM˛ d˛ ;

where M˛ is the ˛-cut ofM.
Then the mean interval E.M/D ŒE

�

.M/;E�.M/� of
M is the interval containing the mean values of all
random variables consistent with M, that is E.M/D
fE.P/ j P 2 P.�M/g; where E.P/ represents the ex-
pected value associated with the probability measure
P. That the mean value of a fuzzy interval is an in-
terval seems to be intuitively satisfactory. Particularly
the mean interval of a (regular) interval Œa; b� is this
interval itself. The upper and lower mean values are
linear with respect to the addition of fuzzy numbers.
Define the addition MCN as the fuzzy interval whose
cuts areM˛CN˛ D fsC t; s 2M˛; t 2 N˛g defined ac-
cording to the rules of interval analysis. Then E.MC
N/D E.M/CE.N/, and similarly for the scalar multi-
plication E.aM/D aE.M/, where aM has membership
grades of the form �M.s=a/ for a ¤ 0. In view of this
property, it seems that the most natural defuzzication
method is the middle point OE.M/ of the mean interval
(originally proposed by Yager [3.153]). Other defuzzi-
fication techniques do not generally possess this kind
of linearity property. OE.M/ has a natural interpreta-
tion in terms of simulation of a fuzzy variable [3.154],
and is the mean value of the pignistic transformation
of M. Indeed it is the mean value of the empirical
probability distribution obtained by the random process
defined by picking an element ˛ in the unit interval
at random, and then an element s in the cut M˛ at
random.

3.5 Some Applications

Possibility theory has not been the main framework
for engineering applications of fuzzy sets in the past.
However, on the basis of its connections to symbolic
artificial intelligence, to decision theory and to im-
precise statistics, we consider that it has significant
potential for further applied developments in a number
of areas, including some where fuzzy sets are not yet
always accepted. Only some directions are pointed out
here.

3.5.1 Uncertain Database Querying
and Preference Queries

The evaluation of a flexible query in the face of incom-
plete or fuzzy information amounts to computing the
possibility and the necessity of the fuzzy event express-
ing the gradual satisfaction of the query [3.155]. This
evaluation, known as fuzzy pattern matching [3.156,
157], corresponds to the extent to which fuzzy sets
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(representing the query) overlap, or include the possi-
bility distributions (representing the available informa-
tion). Such an evaluation procedure has been extended
to symbolic labels that are no longer represented by
possibility distributions, but which belong to possi-
bilistic ontologies where approximate similarity and
subsumption between labels are estimated in terms of
possibility and necessity degrees, respectively [3.158].
These approaches presuppose a total lack of depen-
dencies between ill-known attributes. A more general
approach based on possible world semantics has been
envisaged [3.159]. However, as for the probabilistic
counterpart of this latter view, evaluating queries has
a high computational cost [3.160]. This is why it has
been proposed to only use certainty qualified values (or
disjunctions of values), as in possibilistic logic, rather
than general possibility distributions, for representing
attribute values pervaded with uncertainty. It has been
shown that it leads to a tractable extension of relational
algebra operations [3.161, 162].

Besides, possibility theory is not only useful for
representing qualitative uncertainty, but it may also
be of interest for representing preferences, and as
such may be applied to the handling of preferences
queries [3.163]. Thus, requirements of the form A and
preferably B (i. e., it is more satisfactory to have A and
B than A alone), or A or at least B can be expressed
using appropriate priority orderings, as in possibilistic
logic [3.164]. Lastly, in bipolar queries [3.165–167],
flexible constraints that are more or less compulsory
are distinguished from additional wishes that are op-
tional, as for instance in the request find the apartments
that are cheap and maybe near the train station. Indeed,
negative preferences express what is (more or less, or
completely) impossible or undesirable, and by com-
plementation state flexible constraints restricting the
possible or acceptable values. Positive preferences are
not compulsory, but rather express wishes; they state
what attribute values would be really satisfactory.

3.5.2 Description Logics

Description logics (initially named terminological log-
ics) are tractable fragments of first-order logic repre-
sentation languages that handle notions of concepts,
roles and instances, referring at the semantic level to
the respective notions of set, binary relations, mem-
bership, and cardinality. They are useful for describing
ontologies that consist in hierarchies of concepts in
a particular domain, for the semantic web. Two ideas
that, respectively, come from fuzzy sets and possibil-

ity theory, and that may be combined, may be used for
extending the expressive power of description logics.
On one hand, vague concepts can be approximated in
practice by pairs of nested sets corresponding to the
cores and the supports of fuzzy sets, thus sorting out
the typical elements, in a way that agrees with fuzzy set
operations and inclusions. On the other hand, a possi-
bilistic treatment of uncertainty and exceptions can be
performed on top of a description logic in a possibilistic
logic style [3.168]. In both cases, the underlying prin-
ciple is to remain as close as possible to classical logic
for preserving computational efficiency as much as pos-
sible. Thus, formal expressions such as .P�X

˛ Q; ˇ/
intend to mean that it is certain at least at level ˇ that
the degree of subsumption of concept P in Q is at least
˛, in the sense of some X-implication (e.g., Gödel, or
Kleene–Dienes implication). In particular, it can be ex-
pressed that typical Ps are Qs, or that typical Ps are
typical Qs, or that an instance is typical of a concept.
Such ideas have been developed by Qi et al. [3.169]
toward implemented systems in connection with web
research.

3.5.3 Information Fusion

Possibility theory offers a simple, flexible framework
for information fusion that can handle incompleteness
and conflict. For instance, intervals or fuzzy intervals
can be merged, coming from several sources. The ba-
sic fusion modes are the conjunctive and disjunctive
modes, presupposing, respectively, that all sources of
information are reliable and that at least one is [3.170,
171]. In the conjunctive mode, the use of the minimum
operation avoids assuming sources are independent. If
they are, the product rule can be applied, whereby
low plausibility degrees reinforce toward impossibil-
ity. Quite often, the results of a conjunctive aggregation
are subnormalized, this indicating a conflict. Then, it
is common to apply a renormalization step that makes
this mode of combination brittle in case of strong con-
flict, and anyway the more numerous the sources the
more conflicting they become. Weighted average of
possibility degrees can be used but it does not pre-
serve the properties of possibility measure. The use of
the disjunctive mode is more cautious: it avoids the
conflict at the expense of losing information. When
many sources are involved the result becomes totally
uninformative.

To cope with this problem, some ad hoc adap-
tive combination rules have been proposed that fo-
cus on maximal subsets of sources that are either
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fully consistent or not completely inconsistent [3.170].
This scheme has been further improved by Oussalah
et al. [3.172]. Oussalah [3.173] has proposed a num-
ber of postulates a possibilistic fusion rule should
satisfy. Another approach is to merge the set of cuts
of the possibility distributions based on the maximal
consistent subsets of sources (consistent subsets of
cuts are merged using conjunction, and the results are
merged disjunctively). The result is then a belief func-
tion [3.174]. Another option is to make a guess on
the number of reliable sources and merge informa-
tion inside consistent subsets of sources having this
cardinality.

Possibilistic information fusion can be performed
syntactically on more compact representations such as
possibilistic logic bases [3.175] (the merging of possi-
bilistic networks [3.176] has also been recently consid-
ered). The latter type of fusion may be of interest both
from a computational and from representational point
of view. Still it is important to make sure that the syntac-
tic operations are counterparts of semantic ones. Fusion
should be performed both at the semantic and at the syn-
tactic levels equivalently. For instance, the conjunctive
merging of two possibility distributions corresponds to
the mere union of the possibilistic bases that represent
them. More details for other operations can be found
in [3.175, 177], and in the bipolar case in [3.99]. This
line of research is pursued by Qi et al. [3.178]. They
also proposed an approach to measuring conflict be-
tween possibilistic knowledge bases [3.179].

The distance-based approach [3.180] that applies to
the fusion of classical logic bases can be embedded
in the possibilistic fusion setting as well [3.177]. The
distance between an interpretation s and each classical
base K is usually defined as d.s;K/DminfH.s; s�/ W
s� ˆ Kg where H.s; s�/ is the Hamming distance that
evaluates the number of literals with different signs in s
and s�). It is then easy to encode the distance d.s;K/
into a possibilistic knowledge base (interpreting pos-
sibility as Hamming-distance-based similarity to the
models ofK, i. e., �.s/D ad.s;K/; a 2 .0;1/). The result
of the possibilistic fusion is a possibilistic knowledge
base, the highest weight layer of which is the classical
database that is searched for, provided that the distance
merging operation is suitably translated to a possibilis-
tic merging operation.

A similar problem exists in belief revision where an
epistemic state, represented either by a possibility dis-
tribution or by a possibilistic logic base, is revised by
an input information p [3.181]. Revision can be viewed
as prioritized fusion, using for instance conditioning,

or other operations, depending if in the revised epis-
temic state one wants to enforce N.p/D 1, or N.p/ > 0
only, or if we are dealing with an uncertain input .p; ˛/.
Then, the uncertain input may be understood as enforc-
ing N.p/� ˛ in any case, or as taking it into account
only if it is sufficiently certain w.r.t. the current epis-
temic state.

3.5.4 Temporal Reasoning and Scheduling

Temporal reasoning may refer to time intervals or to
time points. When handling time intervals, the basic
building block is the one provided by Allen relations
between time intervals. There are 13 relations that de-
scribe the possible relative locations of two intervals.
For instance, given the two intervals AD Œa; a0� and
BD Œb; b0�, A is before (resp. after) B means a0 < b
(resp. b0 < a), Ameets (resp. is met by) Bmeans a0 D b
(resp. b0 D a), A overlaps (resp. is overlapped by) B iff
b> a and a0 > b and b0 > a0 (resp. a > b and b0 > a,
and a0 > b0). The introduction of fuzzy features in tem-
poral reasoning can be related to two different issues:

� First, it can be motivated by the need of a grad-
ual, linguistic-like description of temporal relations
even in the face of complete information. Then
an extension of Allen relational calculus has been
proposed, which is based on fuzzy comparators
expressing linguistic tolerance, which are used in
place of the exact relations >;D0, and <. Fuzzy
Allen relations are thus defined from three fuzzy
relations between dates that can be, for instance
approximately equal, clearly greater, and clearly
smaller, where, e.g., the extent to which x is ap-
proximately equal to y is the degree of membership
of x�y to some fuzzy set expressing something like
small [3.182, 183].� Second, the possibilistic handling of fuzzy or in-
complete information leads to pervade classical
Allen relations, and more generally fuzzy Allen
relations, with uncertainty. Then patterns for prop-
agating uncertainty and composing the different
(fuzzy) Allen relations in a possibilistic way have
been laid bare [3.184, 185].

Besides, the handling of temporal reasoning in
terms of relations between time points can also be ex-
tended in case of uncertain information [3.186]. Uncer-
tain relations between temporal points are represented
bymeans of possibility distributions over the three basic
relations >;D0, and <. Operations for computing in-
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verse relations, for composing relations, for combining
relations coming from different sources and pertaining
to the same temporal points, or for handling negation,
have been defined. This shows that possibilistic tempo-
ral uncertainty can be handled in the setting of point
algebra. The possibilistic approach can then be favor-
ably compared with a probabilistic approach previously
proposed (first, the approach can be purely qualitative,
thus avoiding the necessity of quantifying uncertainty
if information is poor, and second, it is capable of
modeling ignorance in a nonbiased way). Possibilis-
tic logic has also been extended to a timed version
where time intervals where a proposition is more or
less certainly true is attached to classical propositional
formulas [3.187].

Applications of possibility theory-based decision-
making can be found in scheduling. One issue is to
handle fuzzy due dates of jobs using the calculus of
fuzzy constraints [3.188]. Another issue is to han-
dle uncertainty in task durations in basic scheduling
problems such as program evaluation and review tech-
nique (PERT) networks. A large literature exists on this
topic [3.189, 190] where the role of fuzzy sets is not al-
ways very clear. Convincing solutions on this problem
start with the works of Chanas and Zielinski [3.191,
192], where the problem is posed in terms of projecting
a joint possibility theory on quantities of interest (earli-
est finishing times, or slack times) and where tasks can
be possibly or certainly critical. A full solution apply-
ing Boolean possibility theory to interval uncertainty of
tasks durations is described in [3.193], and its fuzzy
extension in [3.194]. Other scheduling problems are
solved in the same possibilistic framework by Kasper-
ski and colleagues [3.195, 196], as well as more general
optimization problems [3.197, 198].

3.5.5 Risk Analysis

The aim of risk analysis studies is to perform un-
certainty propagation under poor data and without
independence assumptions (see the papers in the spe-
cial issue [3.199]). Finding the potential of possibilis-
tic representations in computing conservative bounds
for such probabilistic calculations is certainly a ma-
jor challenge [3.200]. An important research direc-
tion is the comparison between fuzzy interval anal-
ysis [3.33] and random variable calculations with

a view to unifying them [3.201]. Methods for joint
propagation of possibilistic and probabilistic infor-
mation have been devised [3.202], based on casting
both in a random set setting [3.203]; the case of
probabilistic models with fuzzy interval parameters
has also been dealt with [3.204]. The active area of
fuzzy random variables is also connected to this ques-
tion [3.205].

3.5.6 Machine Learning

Applications of possibility theory to learning have
started to be investigated rather recently in differ-
ent directions. For instance, taking advantage of the
proximity between reinforcement learning and partially
observed Markov decision processes, a possibilistic
counterpart of reinforcement learning has been pro-
posed after developing the possibilistic version of the
latter [3.206]. Besides, by looking for big-stepped prob-
ability distributions, defined by discrete exponential
distributions, one can mine data bases for discovering
default rules [3.207]. Big-stepped probabilities mim-
ick possibility measures in the sense that P.A/ > P.B/
if and only if maxs2A p.s/ >maxs2B p.s/. The ver-
sion space approach to learning presents interesting
similarities with the binary bipolar possibilistic rep-
resentation setting, thinking of examples as positive
information and of counterexamples as negative in-
formation [3.208]. The general bipolar setting, where
intermediary degrees of possibility are allowed, pro-
vides a basis for extending version space approach
in a graded way, where examples and counter ex-
amples can be weighted according to their impor-
tance. The graded version space approach agrees with
the possibilistic extension of inductive logic program-
ming [3.209]. Indeed, where the background knowl-
edge may be associated with certainty levels, the
examples may be more or less important to cover,
and the set of rules that is learnt may be stratified
in order to have a better management of exceptions
in multiple-class classification problems, in agree-
ment with the possibilistic approach to nonmonotonic
reasoning.

Other applications of possibility theory can be
found in fields such as data analysis [3.79, 210, 211],
diagnosis [3.212, 213], belief revision [3.181], argu-
mentation [3.68, 214, 215], etc.
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3.6 Some Current Research Lines

A number of ongoing works deal with new research
lines where possibility theory is central. In the follow-
ing, we outline a few of those:

� Formal concept analysis: Formal concept analysis
(FCA) studies Boolean data tables relating objects
and attributes. The key issue of FCA is to ex-
tract so-called concepts from such tables. A concept
is a maximal set of objects sharing a maximal
number of attributes. The enumeration of such con-
cepts can be carried out via a Galois connection
between objects and attributes, and this Galois con-
nection uses operators similar to the 
 function of
possibility theory. Based on this analogy, other cor-
respondences can be laid bare using the three other
set functions of possibility theory [3.216, 217]. In
particular, one of these correspondences detects in-
dependent subtables [3.22]. This approach can be
systematized to fuzzy or uncertain versions of for-
mal concept analysis.� Generalized possibilistic logic: Possibilistic logic,
in its basic version, attaches degrees of necessity
to formulas, which turn them into graded modal
formulas of the necessity kind. However only con-
junction of weighted formulas are allowed. Yet
very early we noticed that it makes sense to ex-
tend the language toward handing constraints on
the degree of possibility of a formula. This re-
quires allowing for negation and disjunctions of
necessity-qualified proposition. This extension, still
under study [3.218], puts together the KD modal
logic and basic possibilistic logic. Recently it has
been shown that nonmonotonic logic programming
languages can be translated into generalized pos-
sibilistic logic, making the meaning of negation
by default in rules much more transparent [3.219].
This move from basic to generalized possibilistic
logic also enables further extensions to the mul-
tiagent and the multisource case [3.220] to be
considered. Besides, it has been recently shown
that a Sugeno integral can also be represented in
terms of possibilistic logic, which enables us to lay
bare the logical description of an aggregation pro-
cess [3.221].

� Qualitative capacities and possibility measures:
While a numerical possibility measure is equiva-
lent to a convex set of probability measures, it turns
out that in the qualitative setting, a monotone set
function can be represented by means of a family
of possibility measures [3.222, 223]. This line of re-
search enables qualitative counterparts of results in
the study of Choquet capacities in the numerical set-
tings to be established. Especially, a monotone set
function can be seen as the counterpart of a belief
function, and various concepts of evidence the-
ory can be adapted to this setting [3.224]. Sugeno
integral can be viewed as a lower possibilistic ex-
pectation in the sense of Sect. 3.3.9 [3.223]. These
results enable the structure of qualitative monotonic
set functions to be laid bare, with possible con-
nection with neighborhood semantics of nonregular
modal logics [3.225].� Regression and kriging: Fuzzy regression analy-
sis is seldom envisaged from the point of view of
possibility theory. One exception is the possibilis-
tic regression initiated by Tanaka and Guo [3.211],
where the idea is to approximate precise or set-
valued data in the sense of inclusion by means
of a set-valued or fuzzy set-valued linear function
obtained by making the linear coefficients of a lin-
ear function fuzzy. The alternative approach is the
fuzzy least squares ofDiamond [3.226] where fuzzy
data are interpreted as functions and a crisp dis-
tance between fuzzy sets is often used. However, in
this approach, fuzzy data are questionably seen as
objective entities [3.227]. The introduction of pos-
sibility theory in regression analysis of fuzzy data
comes down to an epistemic view of fuzzy data
whereby one tries to construct the envelope of all
linear regression results that could have been ob-
tained, had the data been precise [3.228]. This view
has been applied to the kriging problem in geo-
statistics [3.229]. Another use of possibility theory
consists in exploiting possibility–probability trans-
forms to develop a form of quantile regression on
crisp data [3.230], yielding a fuzzy function that is
much more faithful to the data set than what a fuzzi-
fied linear function can offer.
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