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21. Foundations of Rough Sets

Andrzej Skowron, Andrzej Jankowski, Roman W. Swiniarski (deceased)

The rough set (RS) approach was proposed by
Pawlak as a tool to deal with imperfect knowl-
edge. Over the years the approach has attracted
attention of many researchers and practitioners all
over the world, who have contributed essentially
to its development and applications. This chapter
discusses the RS foundations from rudiments to
challenges.
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21.1 Rough Sets: Comments on Development

The rough set (RS) approach was proposed by Zdzisław
Pawlak in 1982 [21.1, 2] as a tool for dealing with im-
perfect knowledge, in particular with vague concepts.
Many applications of methods based on rough set the-
ory alone or in combination with other approaches have
been developed. This chapter discusses the RS founda-
tions from rudiments to challenges.

In the development of rough set theory and appli-
cations, one can distinguish three main stages. While
the first period was based on the assumption that ob-
jects are perceived by means of partial information
represented by attributes, in the second period it was
assumed that information about the approximated con-
cepts is also partial. Approximation spaces and search-
ing strategies for relevant approximation spaces were
recognized as the basic tools for rough sets. Impor-
tant achievements both in theory and applications were
obtained. Nowadays, a new period for rough sets is
emerging, which is also briefly characterized in this
chapter.

The rough set approach seems to be of fundamen-
tal importance in artificial intelligence AI and cognitive
sciences, especially in machine learning, data mining,

knowledge discovery from databases, pattern recogni-
tion, decision support systems, expert systems, intel-
ligent systems, multiagent systems, adaptive systems,
autonomous systems, inductive reasoning, common-
sense reasoning, adaptive judgment, conflict analysis.

Rough sets have established relationships with
many other approaches such as fuzzy set theory, gran-
ular computing (GC), evidence theory, formal concept
analysis, (approximate) Boolean reasoning, multicri-
teria decision analysis, statistical methods, decision
theory, and matroids. Despite the overlap with many
other theories rough set theory may be considered as
an independent discipline in its own right. There are re-
ports on many hybrid methods obtained by combining
rough sets with other approaches such as soft comput-
ing (fuzzy sets, neural networks, genetic algorithms),
statistics, natural computing, mereology, principal com-
ponent analysis, singular value decomposition, or sup-
port vector machines.

The main advantage of rough set theory in data anal-
ysis is that it does not necessarily need any preliminary
or additional information about data like probability
distributions in statistics, basic probability assignments
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in evidence theory, a grade of membership, or the value
of possibility in fuzzy set theory.

One can observe the following advantages about the
rough set approach:

i) Introduction of efficient algorithms for finding hid-
den patterns in data.

ii) Determination of optimal sets of data (data reduc-
tion); evaluation of the significance of data.

iii) Generation of sets of decision rules from data.
iv) Easy-to-understand formulation.
v) Straightforward interpretation of results obtained.
vi) Suitability of many of its algorithms for parallel

processing.

Due to space limitations, many important research
topics in rough set theory such as various logics related
to rough sets and many advanced algebraic properties
of rough sets are only mentioned briefly in this chapter.

From the same reason, we herein restrict the ref-
erences on rough sets to the basic papers by Zdzisław
Pawlak (such as [21.1, 2]), some survey papers [21.3–
5], and some books including long lists of references
to papers on rough sets. The basic ideas of rough set
theory and its extensions as well as many interesting
applications can be found in a number of books, issues

of Transactions on Rough Sets, special issues of other
journals, numerous proceedings of international confer-
ences, and tutorials [21.3, 6, 7]. The reader is referred to
the cited books and papers, references therein, as well
as to web pages [21.8, 9].

The chapter is structured as follows. In Sect. 21.2
we discuss some basic issues related to vagueness and
vague concepts. The rough set philosophy is outlined
in Sect. 21.3. The basic concepts for rough sets such
as indiscernibility and approximation are presented in
Sect. 21.4. Decision systems and rules are covered in
Sect. 21.5. The basic information about dependencies
is included in Sect. 21.6. Attribute reduction belonging
to one of the basic problems of rough sets is discussed
in Sect. 21.7. Rough membership function as a tool for
measuring degrees of inclusion of sets is presented in
Sect. 21.8. The role of discernibility and Boolean rea-
soning for solving problems related to rough sets is
briefly explained in Sect. 21.9. In Sect. 21.10 a short
discussion on rough sets and induction is included.
Several generalizations of the approach proposed by
Pawlak are discussed in Sect. 21.11. In this section
some emerging research directions related to rough sets
are also outlined. In Sect. 21.12 some comments about
logics based on rough sets are included. The role of
adaptive judgment is emphasized.

21.2 Vague Concepts

Mathematics requires that all mathematical notions
(including sets) must be exact, otherwise precise rea-
soning would be impossible. However, philosophers
[21.10], and recently computer scientists as well as
other researchers, have become interested in vague (im-
precise) concepts. Moreover, in the twentieth century
one can observe the drift paradigms in modern science
from dealing with precise concepts to vague concepts,
especially in the case of complex systems (e.g., in
economy, biology, psychology, sociology, and quantum
mechanics).

In classical set theory, a set is uniquely determined
by its elements. In other words, this means that ev-
ery element must be uniquely classified as belonging
to the set or not. That is to say the notion of a set
is a crisp (precise) one. For example, the set of odd
numbers is crisp because every integer is either odd or
even.

In contrast to odd numbers, the notion of a beauti-
ful painting is vague, because we are unable to classify
uniquely all paintings into two classes: beautiful and

not beautiful. With some paintings it cannot be decided
whether they are beautiful or not and thus they remain
in the doubtful area. Thus, beauty is not a precise but
a vague concept.

Almost all concepts that we use in natural lan-
guage are vague. Therefore, common sense reasoning
based on natural language must be based on vague
concepts and not on classical logic. An interesting dis-
cussion of this issue can be found in [21.11]. The idea
of vagueness can be traced back to the ancient Greek
philosopher Eubulides of Megara (ca. 400 BC) who
first formulated the so-called sorites (heap) and falakros
(bald man) paradoxes [21.10]. There is a huge literature
on issues related to vagueness and vague concepts in
philosophy [21.10].

Vagueness is often associated with the boundary re-
gion approach (i. e., existence of objects which cannot
be uniquely classified relative to a set or its comple-
ment), which was first formulated in 1893 by the father
of modern logic, the German logician, Gottlob Frege
(1848–1925) ([21.12]). According to Frege the concept
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must have a sharp boundary. To the concept without
a sharp boundary there would correspond an area that
would not have any sharp boundary line all around.
This means that mathematics must use crisp, not vague
concepts, otherwise it would be impossible to reason
precisely.

One should also note that vagueness also relates to
insufficient specificity, as the result of a lack of feasi-
ble searching methods for sets of features adequately

describing concepts. A discussion on vague (imprecise)
concepts in philosophy includes their following charac-
teristic features [21.10]: (i) the presence of borderline
cases, (ii) boundary regions of vague concepts are not
crisp, (iii) vague concepts are susceptible to sorites
paradoxes. In the sequel we discuss the first two issues
in the RS framework. The reader can find a discussion
on the application of the RS approach to the third item
in [21.11].

21.3 Rough Set Philosophy
Rough set philosophy is founded on the assumption that
with every object of the universe of discourse we asso-
ciate some information (data, knowledge). For example,
if objects are patients suffering from a certain disease,
symptoms of the disease form information about the pa-
tients. Objects characterized by the same information
are indiscernible (similar) in view of the available in-
formation about them.

The indiscernibility relation generated in this way
is the mathematical basis of rough set theory. This un-
derstanding of indiscernibility is related to the idea
of Gottfried Wilhelm Leibniz that objects are indis-
cernible if and only if all available functionals take
identical values on them (Leibniz’s law of indiscerni-
bility: the identity of indiscernibles) [21.13]. However,
in the rough set approach indiscernibility is defined rel-
ative to a given set of functionals (attributes).

Any set of all indiscernible (similar) objects is
called an elementary set and forms a basic granule
(atom) of knowledge about the universe. Any union
of some elementary sets is referred to as a crisp (pre-
cise) set. If a set is not crisp, then it is called rough
(imprecise, vague). Consequently, each rough set has
borderline cases (boundary-line), i. e., objects which
cannot be classified with certainty as members of either
the set or its complement. Obviously, crisp sets have no
borderline elements at all. This means that borderline
cases cannot be properly classified by employing avail-
able knowledge.

Thus, the assumption that objects can be seen only
through the information available about them leads to

the view that knowledge has granular structure. Due
to the granularity of knowledge, some objects of in-
terest cannot be discerned and appear as the same (or
similar). As a consequence, vague concepts in contrast
to precise concepts, cannot be characterized in terms
of information about their elements. Therefore, in the
proposed approach, we assume that any vague concept
is replaced by a pair of precise concepts – called the
lower and the upper approximation of the vague con-
cept. The lower approximation consists of all objects
which definitely belong to the concept and the upper
approximation contains all objects which possibly be-
long to the concept. The difference between the upper
and the lower approximation constitutes the boundary
region of the vague concept. Approximation operations
are the basic operations in rough set theory. Properties
of the boundary region (expressed, e.g., by the rough
membership function) are important in the rough set
methods.

Hence, rough set theory expresses vagueness not by
means of membership, but by employing a boundary re-
gion of a set. If the boundary region of a set is empty it
means that the set is crisp, otherwise the set is rough
(inexact). A nonempty boundary region of a set means
that our knowledge about the set is not sufficient to de-
fine the set precisely.

Rough set theory it is not an alternative to classical
set theory but it is embedded in it. Rough set theory
can be viewed as a specific implementation of Frege’s
idea of vagueness, i. e., imprecision in this approach is
expressed by a boundary region of a set.

21.4 Indiscernibility and Approximation

The starting point of rough set theory is the indiscerni-
bility relation, which is generated by information about
objects of interest (Sect. 21.1). The indiscernibility rela-

tion expresses the fact that due to a lack of information
(or knowledge) we are unable to discern some objects
by employing available information (or knowledge).
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This means that, in general, we are unable to deal with
each particular object but we have to consider granules
(clusters) of indiscernible objects as a fundamental ba-
sis for our theory.

From a practical point of view, it is better to define
basic concepts of this theory in terms of data. There-
fore, we will start our considerations from a data set
called an information system. An information system
can be represented by a data table containing rows la-
beled by objects of interest and columns labeled by
attributes and entries of the table are attribute values.
For example, a data table can describe a set of pa-
tients in a hospital. The patients can be characterized
by some attributes, like age, sex, blood pressure, body
temperature, etc. With every attribute a set of its val-
ues is associated, e.g., values of the attribute age can
be young, middle, and old. Attribute values can also be
numerical. In data analysis the basic problem that we
are interested in is to find patterns in data, i. e., to find
a relationship between some set of attributes, e.g., we
might be interested whether blood pressure depends on
age and sex.

More formally, suppose we are given a pair AD
.U;A/ of nonempty, finite sets U and A, where U
is the universe of objects, and an A�a set consist-
ing of attributes, i. e., functions aWU �! Va, where
Va is the set of values of attribute a, called the do-
main of a. The pair AD .U;A/ is called an infor-
mation system. Any information system can be repre-
sented by a data table with rows labeled by objects
and columns labeled by attributes. Any pair .x; a/,
where x 2 U and a 2 A defines the table entry con-
sisting of the value a.x/. Note that in statistics or
machine learning such a data table is called a sam-
ple [21.14].

Any subset B of A determines a binary relation
IND.B/ on U, called an indiscernibility relation, de-
fined by

xIND.B/y if and only if
a.x/D a.y/ for every a 2 B ;

(21.1)

where a.x/ denotes the value of attribute a for the ob-
ject x.

Obviously, IND.B/ is an equivalence relation. The
family of all equivalence classes of IND.B/, i. e.,
the partition determined by B, will be denoted by
U=IND.B/, or simply U=B; the equivalence class of
IND.B/, i. e., the block of the partition U=B, contain-
ing x will be denoted by B.x/ (other notation used: Œx�B
or Œx�IND.B/). Thus in view of the data we are unable, in

general, to observe individual objects but we are forced
to reason only about the accessible granules of knowl-
edge.

If .x; y/ 2 IND.B/ we will say that x and y are
B-indiscernible. Equivalence classes of the relation
IND.B/ (or blocks of the partition U=B) are referred
to as B-elementary sets or B-elementary granules.
In the rough set approach the elementary sets are
the basic building blocks (concepts) of our knowl-
edge about reality. The unions of B-elementary sets
are called B-definable sets. Let us note that in appli-
cations we consider only some subsets of the fam-
ily of definable sets, e.g., defined by conjunction
of descriptors only. This is due to the computa-
tional complexity of the searching problem for rele-
vant definable sets in the whole family of definable
sets.

For B� A, we denote by InfB.x/ the B-signature
of x 2 U, i. e., the set f.a; a.x//Wa 2 Bg. Let INF.B/D
fInfB.x/W x 2 Ug. Then for any objects x; y 2 U the fol-
lowing equivalence holds: xIND.B/y if and only if
InfB.x/D InfB.y/.

The indiscernibility relation is used to define the ap-
proximations of concepts. We define the following two
operations on sets X � U

B
�

.X/D fx 2 UW B.x/� Xg ; (21.2)

B�.X/D fx 2 UW B.x/\X ¤ ;g ; (21.3)

assigning to every subset X of the universe U two sets
B

�

.X/ and B�.X/ called the B-lower and the B-upper
approximation of X, respectively. The set

BNB.X/D B�.X/�B
�

.X/ ; (21.4)

will be referred to as the B-boundary region of X.
From the definition we obtain the following in-

terpretation: (i) the lower approximation of a set X
with respect to B is the set of all objects, which can
for certain be classified to X using B (are certainly
in X in view of B), (ii) the upper approximation of
a set X with respect to B is the set of all objects which
can possibly be classified to X using B (are possi-
bly in X in view of B), (iii) the boundary region of
a set X with respect to B is the set of all objects,
which can be classified neither to X nor to not-X us-
ing B.

Due to the granularity of knowledge, rough sets
cannot be characterized by using available knowledge.
The definition of approximations is clearly depicted in
Fig. 21.1.
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The approximations have the following properties

B
�

.X/� X � B�.X/ ;

B
�

.;/D B�.;/D ; ;B
�

.U/D B�.U/D U ;

B�.X[Y/D B�.X/[B�.Y/ ;

B
�

.X\Y/D B
�

.X/\B
�

.Y/ ;

X � Y implies B
�

.X/� B
�

.Y/

and B�.X/� B�.Y/ ;

B
�

.X[Y/� B
�

.X/[B
�

.Y/ ;

B�.X\Y/� B�.X/\B�.Y/ ;

B
�

.�X/D�B�.X/ ;

B�.�X/D�B
�

.X/ ;

B
�

.B
�

.X//D B�.B
�

.X//D B
�

.X/ ;

B�.B�.X//D B
�

.B�.X//D B�.X/ : (21.5)

Let us note that the inclusions (for union and inter-
section) in (21.5) cannot, in general, be substituted by
the equalities. This has some important algorithmic and
logical consequences.

Now we are ready to give the definition of rough
sets. If the boundary region of X is the empty set, i. e.,
BNB.X/D ;, then the set X is crisp (exact) with respect
to B; in the opposite case, i. e., if BNB.X/¤ ;, the set X
is referred to as rough (inexact) with respect to B. Thus
any rough set, in contrast to a crisp set, has a nonempty
boundary region. This is the idea of vagueness proposed
by Frege.

The universe of objectsGranules of knowledge

The upper
approximation

The lower
approximation

The set

Fig. 21.1 A rough set

Let us observe that the definition of rough sets refers
to data (knowledge), and is subjective, in contrast to the
definition of classical sets, which is in some sense an
objective one.

A rough set can also be characterized numerically
by the following coefficient

˛B.X/D card.B
�

.X//

card.B�.X//
; (21.6)

called the accuracy of approximation, where X ¤ ; and
card.X/ denotes the cardinality of X. Obviously 0�
˛B.X/ � 1. If ˛B.X/D 1 then X is crisp with respect
to B (X is precise with respect to B), and otherwise, if
˛B.X/ < 1 then X is rough with respect to B (X is vague
with respect to B). The accuracy of approximation can
be used to measure the quality of approximation of de-
cision classes on the universe U. One can use another
measure of accuracy defined by 1�˛B.X/ or by

1� card.BNB.X//

card.U/
:

Some other measures of approximation accuracy are
also used, e.g., based on entropy or some more specific
properties of boundary regions. The choice of a relevant
accuracy of approximation depends on a particular data
set. Observe that the accuracy of approximation of X
can be tuned by B. Another approach to the accuracy of
approximation can be based on the variable precision
rough set model (VPRSM).

In [21.10], it is stressed that boundaries of vague
concepts are not crisp. In the definition presented in
this chapter, the notion of boundary region is de-
fined as a crisp set BNB.X/. However, let us ob-
serve that this definition is relative to the subjective
knowledge expressed by attributes from B. Different
sources of information may use different sets of at-
tributes for concept approximation. Hence, the bound-
ary region can change when we consider these differ-
ent views. Another reason for boundary change may
be related to incomplete information about concepts.
They are known only on samples of objects. Hence,
when new objects appear again the boundary region
may change. From the discussion in the literature it
follows that vague concepts cannot be approximated
with satisfactory quality by static constructs such as
induced membership inclusion functions, approxima-
tions, or models derived, e.g., from a sample. An
understanding of vague concepts can be only realized
in a process in which the induced models adaptively
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match the concepts in dynamically changing environ-
ments. This conclusion seems to have important con-
sequences for the further development of rough set

theory in combination with fuzzy sets and other soft
computing paradigms for adaptive approximate reason-
ing.

21.5 Decision Systems and Decision Rules

In this section, we discuss the decision rules (con-
structed over a selected set B of features or a family
of sets of features), which are used in inducing clas-
sification algorithms (classifiers), making it possible to
classify unseen objects to decision classes. Parameters
which are tuned in searching for a classifier with high
quality are its description size (defined, e.g., by used
decision rules) and its quality of classification (mea-
sured, e.g., by the number of misclassified objects on
a given set of objects). By selecting a proper balance
between the accuracy of classification and the descrip-
tion size one can search for classifier with a high quality
of classification also on testing objects. This approach
is based on the minimum description length principle
(MDL) [21.15].

In an information system AD .U;A/ we some-
times distinguish a partition of A into two disjoint
classes C;D� A of attributes, called condition and de-
cision (action) attributes, respectively. The tuple AD
.U;C;D/ is called a decision system (or a decision
table).

Let V DSfVa W a 2 Cg[SfVd j d 2 Dg. Atomic
formulae over B� C[D and V are expressions aD
v called descriptors (selectors) over B and V, where
a 2 B and v 2 Va. The set of formulae over B
and V, denoted by F.B;V/, is the least set con-
taining all atomic formulae over B and V and
closed under the propositional connectives ^ (con-
junction), _ (disjunction) and : (negation). By k'kA
we denote the meaning of ' 2F.B;V/ in the de-
cision system A, which is the set of all objects
in U with the property '. These sets are defined
by

kaD vkA D fx 2 U j a.x/D vg ;
k' ^ '0kA D k'kA \k'0kA I
k' _ '0kA D k'kA [k'0kA I

k:'kA D U�k'kA :

The formulae from F.C;V/, F.D;V/ are called con-
dition formulae of A and decision formulae of A,
respectively.

Any object x 2 U belongs to the decision class
kVd2D dD d.x/kA of A. All decision classes of A
create a partition U=D of the universe U.

A decision rule for A is any expression of the
form ')  , where ' 2F.C;V/,  2 F.D;V/, and
k'kA ¤ ;. Formulae ' and  are referred to as the
predecessor and the successor of decision rule ')  .
Decision rules are often called IF . . . THEN . . . rules.
Such rules are used in machine learning.

Decision rule ')  is true in A if and only if
k'kA � k kA. Otherwise, one can measure its truth
degree by introducing some inclusion measure of k'kA
in k kA. Let us denote by cardA.'/ (or card.'/, if this
does not lead to confusion) the number of objects from
U that satisfies formula ', i. e., the cardinality of k'kA.
According to Łukasiewicz [21.16], one can assign to
formula ' the value

card.'/

card.U/
;

and to the implication ')  the fractional value

card.' ^ /
card.'/

;

under the assumption that k'kA ¤ ;. The fractional
part proposed by Łukasiewicz was adapted much later
by machine learning and data mining community, e.g.,
in the definitions of the accuracy of decision rules or
confidence of association rules.

For any decision system AD .U;C;D/ one can
consider a generalized decision function ıAWU �!
POW.INF.D//, where for any x 2 U, ıA.x/ is the set
of all D-signatures of objects from U which are C-
indiscernible with x, AD C[D and POW.INF.D// is
the powerset of the set INF.D/ of all possible decision
signatures.

The decision system A is called consistent (de-
terministic), if card.ıA.x//D 1, for any x 2 U. Other-
wise A is said to be inconsistent (nondeterministic).
Hence, a decision system is inconsistent if it consists



Foundations of Rough Sets 21.7 Reduction of Attributes 337
Part

C
|21.7

of some objects with different decisions but that are
indiscernible with respect to condition attributes. Any
set consisting of all objects with the same general-
ized decision value is called a generalized decision
class.

Now, one can consider certain (possible) rules for
decision classes defined by the lower (upper) approxi-
mations of such generalized decision classes ofA. This
approach can be extended by using the relationships of
rough sets with the evidence theory (Dempster–Shafer

theory) by considering rules relative to decision classes
defined by the lower approximations of unions of deci-
sion classes ofA.

Numerous methods have been developed for the
generation of different types of decision rules, and the
reader is referred to the literature on rough sets for de-
tails. Usually, one is searching for decision rules that are
(semi) optimal with respect to some optimization crite-
ria describing the quality of decision rules in concept
approximations.

21.6 Dependencies
Another important issue in data analysis is discover-
ing dependencies between attributes in a given decision
systemAD .U;C;D/. Intuitively, a set of attributes D
depends totally on a set of attributes C, denotedC) D,
if the values of attributes from C uniquely determine the
values of attributes from D. In other words, D depends
totally on C, if there exists a functional dependency be-
tween values of C and D.

D can depend partially on C. Formally such a de-
pendency can be defined in the following way. We will
say that D depends on C to a degree k .0� k � 1/, de-
noted by C)k D, if

kD �.C;D/D card.POSC.D//

card.U/
; (21.7)

where

POSC.D/D
[

X2U=D

C
�

.X/ ; (21.8)

which is called a positive region of the partition U=D
with respect to C, is the set of all elements ofU that can

be uniquely classified to blocks of the partition U=D,
by means of C.

If kD 1, we say that D depends totally on C, and
if k < 1, we say that D depends partially (to degree k)
on C. If kD 0, then the positive region of the partition
U=D with respect to C is empty.

The coefficient k expresses the ratio of all elements
of the universe, which can be properly classified to
blocks of the partitionU=D, employing attributes C and
is called the degree of the dependency.

It can be easily seen that if D depends totally on C,
then IND.C/� IND.D/. This means that the partition
generated by C is finer than the partition generated
by D.

Summing up: D is totally (partially) dependent on
C, if all (some) elements of the universe U can be
uniquely classified to blocks of the partition U=D, em-
ploying C. Observe that (21.7) defines only one of the
possible measures of dependency between attributes.
Note that one can consider dependencies between ar-
bitrary subsets of attributes in the same way. One also
can compare the dependency discussed in this section
with dependencies considered in databases.

21.7 Reduction of Attributes

We often face the question as to whether we can re-
move some data from a data table and still preserve
its basic properties, that is – whether a table contains
some superfluous data. Let us express this idea more
precisely.

Let C;D� A be sets of condition and decision
attributes, respectively. We will say that C0 � C is a D-
reduct (reduct with respect toD) ofC; ifC0 is a minimal

subset of C such that

�.C;D/D �.C0;D/ : (21.9)

The intersection of all D-reducts is called a D-core
(core with respect to D). Because the core is the in-
tersection of all reducts, it is included in every reduct,
i. e., each element of the core belongs to some reduct.
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Thus, in a sense, the core is the most important subset
of attributes, since none of its elements can be removed
without affecting the classification power of attributes.
Certainly, the geometry of reducts can be more comlex.
For example, the core can be empty but there can ex-
ist a partition of reducts into a few sets with nonempty
intersection.

Many other kinds of reducts and their approxima-
tions have been discussed in the literature. They are
defined relative to different quality measures. For ex-
ample, if one changes the condition (21.9) to @A.x/D
@B.x/, (where AD C[D and BD C0 [D), then the de-
fined reducts preserve the generalized decision. Other
kinds of reducts preserve, e.g., (i) the distance between
attribute value vectors for any two objects, if this dis-
tance is greater than a given threshold, (ii) the distance
between entropy distributions between any two objects,
if this distance exceeds a given. Yet another kind of
reducts is defined by the so-called reducts relative to
object used for the generation of decision rules.

Reducts are used for building data models. Choos-
ing a particular reduct or a set of reducts has an
impact on the model size as well as on its qual-
ity in describing a given data set. The model size
together with the model quality are two basic com-
ponents tuned in selecting relevant data models. This
is known as the minimum length principle. Selection
of relevant kinds of reducts is an important step in
building data models. It turns out that the different
kinds of reducts can be efficiently computed using
heuristics based, e.g., on the Boolean reasoning ap-
proach.

Let us note that analogously to the information
flow [21.17] one can consider different theories over
information or decision systems representing different
views on knowledge encoded in the systems. In partic-
ular, this approach was used for inducing concurrent
models from data tables. For more details the reader
is referred to the books cited at the beginning of the
chapter.

21.8 Rough Membership

Let us observe that rough sets can be also defined em-
ploying the rough membership function (21.10) instead
of approximation. That is, consider

�B
X WU ! Œ0; 1� ;

defined by

�B
X .x/D

card.B.x/\X/

card.B.x//
; (21.10)

where x 2 X � U. The value �B
X .x/ can be interpreted

as the degree that x belongs to X in view of knowledge
about x expressed by B or the degree to which the el-
ementary granule B.x/ is included in the set X. This
means that the definition reflects a subjective knowl-
edge about elements of the universe, in contrast to the
classical definition of a set related to objective knowl-
edge.

Rough membership function can also be interpreted
as the conditional probability that x belongs to X
given B. One may refer to Bayes’ theorem as the origin
of this function. This interpretation was used by several
researchers in the rough set community.

One can observe that the rough membership func-
tion has the following properties:

1) �B
X .x/D 1 iff x 2 B

�

.X/,
2) �B

X .x/D 0 iff x 2 U�B�.X/,
3) 0< �B

X .x/ < 1 iff x 2 BNB.X/,
4) �B

U�X.x/D 1��B
X .x/ for any x 2 U,

5) �B
X[Y.x/�max.�B

X .x/; �
B
Y.x// for any x 2 U,

6) �B
X\Y.x/�min.�B

X .x/; �
B
Y.x// for any x 2 U.

From the properties it follows that the rough mem-
bership differs essentially from the fuzzy member-
ship [21.18], for properties 5) and 6) show that the
membership for union and intersection of sets, in gen-
eral, cannot be computed – as in the case of fuzzy sets
– from their constituents’ membership. Thus formally
rough membership is different from fuzzy membership.
Moreover, the rough membership function depends on
available knowledge (represented by attributes from B).
Besides, the rough membership function, in contrast
to the fuzzy membership function, has a probabilistic
flavor.

Let us also mention that rough set theory, in con-
trast to fuzzy set theory, clearly distinguishes two very
important concepts, vagueness and uncertainty, very
often confused in the AI literature. Vagueness is the
property of concepts. Vague concepts can be approx-
imated using the rough set approach. Uncertainty is
the property of elements of a set or a set itself (e.g.,
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only examples and/or counterexamples of elements of
a considered set are given). Uncertainty of elements of
a set can be expressed by the rough membership func-
tion.

Both fuzzy and rough set theory represent two
different approaches to vagueness. Fuzzy set theory ad-
dresses gradualness of knowledge, expressed by the
fuzzy membership, whereas rough set theory addresses
granularity of knowledge, expressed by the indiscerni-
bility relation. One can also cope with knowledge
gradualness using the rough membership. A nice illus-
tration of this difference was given by Dider Dubois and

Henri Prade in their example related to image process-
ing, where fuzzy set theory refers to gradualness of gray
level, whereas rough set theory is about the size of pix-
els.

Consequently, these theories do not compete with
each other but are rather complementary. In particular,
the rough set approach provides tools for approxi-
mate construction of fuzzy membership functions. The
rough-fuzzy hybridization approach has proved to be
successful in many applications. An interesting discus-
sion of fuzzy and rough set theory in the approach to
vagueness can be found in [21.11].

21.9 Discernibility and Boolean Reasoning

The discernibility relations are closely related to indis-
cernibility relations and belong to the most important
relations considered in rough set theory. Tools for dis-
covering and classifying patterns are based on reason-
ing schemes rooted in various paradigms. Such patterns
can be extracted from data by means of methods based,
e.g., on discernibility and Boolean reasoning.

The ability to discern between perceived objects is
important for constructing many entities like reducts,
decision rules, or decision algorithms. In the standard
approach the discernibility relation DIS.B/� U�U is
defined by xDIS.B/y if and only if non.xIND.B/y/; i. e.,
B.x/\B.y/D ¿. However, this is, in general, not the
case for generalized approximation spaces.

The idea of Boolean reasoning is based on the con-
struction for a given problem P of a corresponding
Boolean function fP with the following property: the so-
lutions for the problem P can be decoded from prime
implicants of the Boolean function fP [21.19–21]. Let
us mention that to solve real-life problems it is neces-
sary to deal with very large Boolean functions.

A successful methodology based on the discerni-
bility of objects and Boolean reasoning has been de-
veloped for computing many important ingredients for
applications. These applications include generation of
reducts and their approximations, decision rules, as-
sociation rules, discretization of real-valued attributes,
symbolic value grouping, searching for new features de-
fined by oblique hyperplanes or higher-order surfaces,
pattern extraction from data, as well as conflict resolu-
tion or negotiation [21.4, 6].

Most of the problems related to the generation of the
above-mentioned entities are NP-complete or NP-hard.
However, it was possible to develop efficient heuris-

tics returning suboptimal solutions of the problems.
The results of experiments on many data sets are very
promising. They show very good quality of solutions
generated by the heuristics in comparison with other
methods reported in the literature (e.g., with respect to
the classification quality of unseen objects). Moreover,
they are very efficient from the point of view of the time
necessary to compute the solution. Many of these meth-
ods are based on discernibility matrices. However, it
is possible to compute the necessary information about
these matrices without their explicit construction (i. e.,
by sorting or hashing original data).

It is important to note that the methodology makes
it possible to construct heuristics with a very impor-
tant approximation property, which can be formulated
as follows: expressions, called approximate implicants,
generated by heuristics that are close to prime impli-
cants define approximate solutions for the problem.

Mining large data sets is one of the biggest chal-
lenges in knowledge discovery and data mining (KDD).
In many practical applications, there is a need for data
mining algorithms running on terminals of a client–
server database system where the only access to
database (located in the server) is enabled by queries
in structured query language (SQL).

Let us consider two illustrative examples of prob-
lems for large data sets: (i) searching for short reducts,
(ii) searching for best partitions defined by cuts on con-
tinuous attributes. In both cases, the traditional imple-
mentations of rough sets and Boolean reasoning-based
methods are characterized by a high computational cost.
The critical factor for the time complexity of algorithms
solving the discussed problems is the number of data
access operations. Fortunately some efficient modifi-
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cations of the original algorithms were proposed by
relying on concurrent retrieval of higher-level statistics,
which are sufficient for the heuristic search of reducts

and partitions [21.4, 6]. The rough set approach was
also applied in the development of other scalable big
data processing techniques (e.g., [21.22]).

21.10 Rough Sets and Induction
The rough set approach is strongly related to inductive
reasoning (e.g., in rough set-based methods for induc-
ing classifiers or clusters [21.6]). The general idea for
inducing classifiers is as follows. From a given decision
table a set of granules in the form of decision rules is
induced together with arguments for and against each
decision rule and decision class. For any new object
with known signature one can select rules matching
this object. Note that the left-hand sides of decision
rules are described by formulae that make it possible
to check for new objects if they satisfy them assuming
that the signatures of these objects are known. In this
way, one can consider two semantics of formulae: on
a sample of objects U and on its extension U� � U.
Definitely, one should consider a risk related to such
generalization, e.g., in the decision rule induction. Next,
a conflict resolution should be applied to resolve con-
flicts between matched rules by new object voting for
different decisions. In the rough set approach, the pro-
cess of inducing classifiers can be considered as the
process of inducing approximations of concepts over

extensions of approximation spaces (defined over sam-
ples of objects represented by decision systems). The
whole procedure can be generalized for the case of ap-
proximation of more complex information granules. It
is worthwhile mentioning that approaches for inducing
approximate reasoning schemes have also been devel-
oped.

A typical approach in machine learning is based
on inducing classifiers from samples of objects. These
classifiers are used for prediction decisions on objects
unseen so far, if only the signatures of these objects
are available. This approach can be called global, i. e.,
leading to decision extension from a given sample of
objects on the whole universe of objects. This global ap-
proach has some drawbacks (see the Epilog in [21.23]).
Instead of this one can try to use transduction [21.23],
semi-supervised learning, induced local models rela-
tive to new objects, or adaptive learning strategies.
However, we are still far away from fully understand-
ing the discovery processes behind such generalization
strategies [21.24].

21.11 Rough Set-Based Generalizations

The original approach by Pawlak was based on indis-
cernibility defined by equivalence relations. Any such
indiscernibility relation defines a partition of the uni-
verse of objects. Over the years many generalizations
of this approach were introduced, many of which are
based on coverings rather than partitions. In particu-
lar, one can consider the similarity (tolerance)-based
rough set approach, binary relation based rough sets,
neighborhood and covering rough sets, the dominance-
based rough set approach, hybridization of rough sets
and fuzzy sets, and many others.

One should note that dealing with coverings re-
quires solving several new algorithmic problems such
as the selection of family of definable sets or resolving
problems with the selection of the relevant definition of
the approximation of sets among many possible ones.
One should also note that for a given problem (e.g.,

classification problem) one should discover the relevant
covering for the target classification task. In the litera-
ture there are numerous papers dedicated to theoretical
aspects of the covering rough set approach. However,
still much more work should be done on rather hard
algorithmic issues, e.g., for the relevant covering dis-
covery.

Another issue to be solved is related to inclusion
measures. Parameters of such measures are tuned in
inducing of the high quality approximations. Usually,
this is done on the basis of the minimum description
length principle. In particular, approximation spaces
with rough inclusion measures have been investigated.
This approach was further extended to the roughmereo-
logical approach. More general cases of approximation
spaces with rough inclusion have also been discussed
in the literature, including approximation spaces in GC.
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Finally, it is worthwhile mentioning the approach for
ontology approximation used in hierarchical learning of
complex vague concepts [21.6].

In this section, we discuss in more detail some is-
sues related to the above-mentioned generalizations.
Several generalizations of the classical rough set ap-
proach based on approximation spaces defined as pairs
of the form .U;R/, where R is the equivalence relation
(called indiscernibility relation) on the set U, have been
reported in the literature. They are related to different
views on important components used in the definition
of rough sets. In the definition of rough sets different
kinds of structural sets that are examples of information
granules are used. From mathematical point of view,
one may treat them as sets defined over the hierarchy
of the powerset of objects. Among them are the follow-
ing ones:

� Elementary granules (neighborhoods) of objects
(e.g., similarity, tolerance, dominance neighbor-
hoods, fuzzy neighborhoods, rough-fuzzy neigh-
borhoods, fuzzy rough neighborhoods, families of
neighborhoods).� Granules defined by accessible information about
objects (e.g., only partial information on the signa-
ture of objects may be accessible).� Methods for the definition of higher-order informa-
tion granules (e.g., defined by the left-hand sides of
induced decision rules or clusters of similar infor-
mation granules).� Inclusion measures making it possible to define the
degrees of inclusion and/or closeness between in-
formation granules (e.g., the degrees of inclusion
granules defined by accessible information about
objects into elementary granules).� Aggregation methods of inclusion or/and closeness
degrees.� Methods for the definition of approximation opera-
tions, including strategies for extension of approx-
imations from samples of objects to larger sets of
objects.� Algebraic structures of approximation spaces.

Let us consider some examples of generalizations
of the rough set approach proposed by Pawlak in 1982.

A generalized approximation space [21.25] can be
defined by a tupleASD .U; I; �/, where I is the uncer-
tainty function defined onU with values in the powerset
POW.U/ of U (I.x/ is the neighborhood of x) and � is
the inclusion function defined on the Cartesian product
POW.U/�POW.U/ with values in the interval Œ0; 1�

measuring the degree of inclusion of sets. The lower
and upper approximation operations can be defined
inAS by

LOW.AS;X/D fx 2 UW �.I.x/;X/D 1g ; (21.11)

UPP.AS;X/D fx 2 UW �.I.x/;X/ > 0g : (21.12)

In the case considered by Pawlak [21.2], I.x/ is equal to
the equivalence class B.x/ of the indiscernibility rela-
tion IND.B/; in the case of the tolerance (or similarity)
relation T � U�U we take I.x/D Œx�T D fy 2 UW xTyg,
i. e., I.x/ is equal to the tolerance class of T defined
by x.

The standard rough inclusion relation �SRI is defined
for X; Y � U by

�SRI.X;Y/D
8<
:

card.X\ Y/

card.X/
; if X ¤ ; ;

1 ; otherwise :

(21.13)

For applications it is important to have some construc-
tive definitions of I and �.

One can consider another way to define I.x/. Usu-
ally together with AS we consider some set F of
formulae describing sets of objects in the universe U
of AS defined by semantics k 	 kAS, i. e., k˛kAS � U
for any ˛ 2 F . If ASD .U;A/ then we will also write
k˛kU instead of k˛kAS . Now, one can take the set

NF .x/D f˛ 2F W x 2 k˛kASg ; (21.14)

and I.x/D fk˛kAS W˛ 2 NF .x/g: Hence, more general
uncertainty functions with values in POW.POW.U//
can be defined and in consequence different definitions
of approximations are considered. For example, one can
consider the following definitions of approximation op-
erations in this approximation spaceAS

LOW.AS
ı

;X/

D fx 2 UW �.Y;X/D 1 for some Y 2 I.x/g; (21.15)

UPP.AS
ı

;X/

D fx 2 UW �.Y;X/ > 0 for any Y 2 I.x/g : (21.16)

There are also different forms of rough inclusion
functions. Let us consider two examples. In the first
example of a rough inclusion function, a threshold t 2
.0; 0:5/ is used to relax the degree of inclusion of sets.
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The rough inclusion function �t is defined by

�t .X; Y/

D

8̂̂
<
ˆ̂:
1 if �SRI .X; Y/ � 1� t ;
�SRI .X; Y/� t

1� 2t
if t � �SRI .X; Y/ < 1� t ;

0 if �SRI .X; Y/� t :

(21.17)

One can obtain approximations considered in the
variable precision rough set approach (VPRSM) by sub-
stituting in (21.12) and (21.13) the rough inclusion
function �t defined by (21.17) instead of �, assuming
that Y is a decision class and I.x/D B.x/ for any object
x, where B is a given set of attributes. Another example
of application of the standard inclusion was developed
by using probabilistic decision functions. The rough
inclusion relation can be also used for function approx-
imation and relation approximation [21.25].

The approach based on inclusion functions has
been generalized to the rough mereological ap-
proach [21.26]. The inclusion relation x�ry with the
intended meaning x is a part of y to a degree at
least r has been taken as the basic notion of the rough
mereology being a generalization of the Leśniewski
mereology [21.27].

Usually families of approximation spaces labeled
by some parameters are considered. By tuning such
parameters according to chosen criteria (e.g., minimal
description length) one can search for the optimal ap-
proximation space for concept approximation.

Our knowledge about the approximated concepts
is often partial and uncertain. For example, con-
cept approximation should be constructed from ex-
amples and counterexamples of objects for the con-
cepts [21.14]. Hence, concept approximations con-
structed from a given sample of objects are extended,
using inductive reasoning, on objects not yet observed.
The rough set approach for dealing with concept ap-
proximation under such partial knowledge is now well
developed.

Searching strategies for relevant approximation
spaces are crucial for real-life applications. They in-
clude the discovery of uncertainty functions, inclusion
measures, as well as selection of methods for approxi-
mations of decision classes and strategies for inductive
extension of approximations from samples on larger
sets of objects.

Approximations of concepts should be constructed
under dynamically changing environments. This leads
to a more complex situation where the boundary re-

gions are not crisp sets, which is consistent with the
postulate of the higher-order vagueness considered by
philosophers [21.10]. Different aspects of vagueness in
the rough set framework have been discussed.

It is worthwhile mentioning that a rough set ap-
proach to the approximation of compound concepts has
been developed. For such concepts, it is hardly pos-
sible to expect that they can be approximated with
the high quality by the traditional methods [21.23,
28]. The approach is based on hierarchical learning
and ontology approximation. Approximation methods
of concepts in distributed environments have been de-
veloped. The reader may find surveys of algorithmic
methods for concept approximation based on rough sets
and Boolean reasoning in the literature.

In several papers, the problem of ontology approx-
imation was discussed together with possible applica-
tions to approximation of compound concepts or to
knowledge transfer. In any ontology [21.29] (vague)
concepts and local dependencies between them are
specified. Global dependencies can be derived from lo-
cal dependencies. Such derivations can be used as hints
in searching for relevant compound patterns (informa-
tion granules) in approximation of more compound
concepts from the ontology. The ontology approxi-
mation problem is one of the fundamental problems
related to approximate reasoning in distributed environ-
ments. One should construct (in a given language that
is different from the language in which the ontology
is specified) not only approximations of concepts from
ontology, but also vague dependencies specified in the
ontology. It is worthwhile mentioning that an ontology
approximation should be induced on the basis of in-
complete information about concepts and dependencies
specified in the ontology. Information granule calculi
based on rough sets have been proposed as tools making
it possible to solve this problem. Vague dependencies
have vague concepts in premisses and conclusions.

The approach to approximation of vague dependen-
cies based only on degrees of closeness of concepts
from dependencies and their approximations (classi-
fiers) is not satisfactory for approximate reasoning.
Hence, more advanced approach should be developed.
Approximation of any vague dependency is a method
which for any object allows us to compute the argu-
ments for and against its membership to the depen-
dency conclusion on the basis of analogous arguments
relative to the dependency premisses. Any argument
is a compound information granule (compound pat-
tern). Arguments are fused by local schemes (produc-
tion rules) discovered from data. Further fusions are
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possible through composition of local schemes, called
approximate reasoning schemes (AR) [21.30]. To esti-
mate the degree to which (at least) an object belongs to
concepts from ontology the arguments for and against
those concepts are collected and next a conflict resolu-
tion strategy is applied to them to predict the degree.

Several generalizations of the rough set approach
introduced by Pawlak in 1982 are discussed in this
handbook in more detail:

� The similarity (tolerance)-based rough set approach
(Chap. 25)� Binary relation based rough sets (Chap. 25)� Neighborhood and covering rough sets (Chap. 25)� The dominance-based rough set approach
(Chap. 22)� The probabilistic rough set approach and its prob-
abilistic extension called the variable consistency
dominance-based rough set approaches (Chap. 24)� Parameterized rough sets based on Bayesian confir-
mation measures (Chap. 22)� Stochastic rough set approaches (Chap. 22)� Generalizations of rough set approximation opera-
tions (Chap. 25)� Hybridization of rough sets and fuzzy sets
(Chap. 26)� Rough sets on abstract algebraic structures (e.g., lat-
tices) (Chap. 25).

There are some other well-established or emerging
domains not covered in the chapter where some gener-
alizations of rough sets are proposed as the basic tools,
often in combination with other existing approaches.
Among them are rough sets based on [21.6]:

i) Incomplete information and/or decision systems
ii) Nondeterministic information and/or decision sys-

tems
iii) The rough set model on two universes
iv) Dynamic information and/or decision systems
v) Dynamic networks of information and/or decision

systems.

Moreover, rough sets play a crucial role in the de-
velopment of granular computing (GC) [21.31]. The ex-
tension to interactive granular computing (IGR) [21.32]
requires generalization of basic concepts such as in-
formation and decision systems, as well as methods of
inducing hierarchical structures of information and de-
cision systems.

Let us note that making progress in understanding
interactive computations is one of the key problems
in developing high quality intelligent systems working
in complex environments [21.33]. The current research
projects aim at developing foundations of IGC based on
the rough set approach in combination with other soft
computing approaches, in particular with fuzzy sets.
The approach is called interactive rough granular com-
puting (IRGC). In IRGC computations are based on
interactions of complex granules (c-granules, for short).
Any c-granule consists of a physical part and a mental
part that are linked in a special way [21.32]. IRGC is
treated as the basis for (see [21.6] and references in this
book):

i) Wistech Technology, in particular for approximate
reasoning, called adaptive judgment about proper-
ties of interactive computations

ii) Context induction
iii) Reasoning about changes
iv) Process mining (this research was inspired

by [21.34])
v) Perception-based computing (PBC)
vi) Risk management in computational systems

[21.32].

Interactive computations based on c-granules seem
to create a good background, e.g., for modeling com-
putations in Active Media Technology (AMT) and
Wisdom Web of Things (W2T). We plan to investigate
their role for foundations of natural computing too. Let
us also mention that the interactive computations based
on c-granules are quite different in nature than Turing
computations. Hence, we plan to investigate relation-
ships of interactive computability based on c-granules
and Turing computability.

21.12 Rough Sets and Logic

The father of contemporary logic was the German
mathematician Gottlob Frege (1848–1925). He thought
that mathematics should not be based on the notion

of set but on the notions of logic. He created the first
axiomatized logical system but it was not understood
by the logicians of those days. During the first three

http://dx.doi.org/10.1007/978-3-662-43505-2_25
http://dx.doi.org/10.1007/978-3-662-43505-2_25
http://dx.doi.org/10.1007/978-3-662-43505-2_25
http://dx.doi.org/10.1007/978-3-662-43505-2_22
http://dx.doi.org/10.1007/978-3-662-43505-2_24
http://dx.doi.org/10.1007/978-3-662-43505-2_22
http://dx.doi.org/10.1007/978-3-662-43505-2_22
http://dx.doi.org/10.1007/978-3-662-43505-2_25
http://dx.doi.org/10.1007/978-3-662-43505-2_26
http://dx.doi.org/10.1007/978-3-662-43505-2_25
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decades of the twentieth century there was a rapid
development in logic, bolstered to a great extent by Pol-
ish logicians, in particular by Alfred Tarski, Stanisław
Leśniewski, Jan Łukasiewicz, and next by Andrzej
Mostowski and Helena Rasiowa. The development of
computers and their applications stimulated logical re-
search and widened their scope.

When we speak about logic, we generally mean
deductive logic. It gives us tools designed for de-
riving true propositions from other true propositions.
Deductive reasoning always leads to true conclusions
from true premises. The theory of deduction has well-
established, generally accepted theoretical foundations.
Deductive reasoning is the main tool used in mathemat-
ical reasoning.

Rough set theory has contributed to some extent to
various kinds of deductive reasoning. Particularly, var-
ious kinds of logics based on the rough set approach
have been investigated; rough set methodology has con-
tributed essentially to modal logics, many valued logic,
intuitionistic logic, and others (see, e.g., references in
the book [21.6] and in articles [21.3, 4]). A summary of
this research can be found in [21.35, 36] and the inter-
ested reader is advised to consult these volumes.

In natural sciences (e.g., in physics) inductive rea-
soning is of primary importance. The characteristic
feature of such reasoning is that it does not begin
from axioms (expressing general knowledge about the
reality) like in deductive logic, but some partial knowl-
edge (examples) about the universe of interest are the
starting point of this type of reasoning, which are gen-
eralized next and they constitute the knowledge about
a wider reality than the initial one. In contrast to de-
ductive reasoning, inductive reasoning does not lead to
true conclusions but only to probable (possible) ones.
Also, in contrast to the logic of deduction, the logic of
induction does not have uniform, generally accepted,
theoretical foundations as yet, although many impor-
tant and interesting results have been obtained, e.g.,
concerning statistical and computational learning and
others.

Verification of the validity of hypotheses in the logic
of induction is based on experiment rather than the for-
mal reasoning of the logic of deduction. Physics is the
best illustration of this fact. The research on modern
inductive logic has a several centuries’ long history. It
is worthwhile mentioning here the outstanding English
philosophers Francis Bacon (1561–1626) and John Stu-
art Mill (1806–1873) [21.37].

The creation of computers and their innovative ap-
plications essentially contributed to the rapid growth

of interest in inductive reasoning. This domain is de-
veloping very dynamically thanks to computer sci-
ence. Machine learning, knowledge discovery, reason-
ing from data, expert systems, and others are exam-
ples of new directions in inductive reasoning. Rough
set theory is very well suited as a theoretical basis
for inductive reasoning. Basic concepts of this the-
ory fit very well to represent and analyze knowledge
acquired from examples, which can be next used as
a starting point for generalization. Besides, in fact,
rough set theory has been successfully applied in many
domains to find patterns in data (data mining) and
acquire knowledge from examples (learning from ex-
amples). Thus, rough set theory seems to be another
candidate as a mathematical foundation of inductive
reasoning.

The most interesting from a computer science point
of view is common sense reasoning. We use this kind
of reasoning in our everyday lives, and we face exam-
ples of such kind of reasoning in newspapers, radio, TV,
etc., in political, economics, etc., and in debates and
discussions.

The starting point for such reasoning is the knowl-
edge possessed by a specific group of people (com-
mon knowledge) concerning some subject and intuitive
methods of deriving conclusions from it. Here we
do not have the possibility to resolve the dispute by
means of methods given by deductive logic (reason-
ing) or by inductive logic (experiment). So the best
known methods for solving the dilemma are voting,
negotiations, or even war. See, e.g., Gulliver’s Trav-
els [21.38], where the hatred between Tramecksan
(High-Heels) and Slamecksan (Low-Heels) or disputes
between Big-Endians and Small-Endians could not be
resolved without a war. These methods do not reveal
the truth or falsity of the thesis under consideration at
all. Of course, such methods are not acceptable in math-
ematics or physics. Nobody is going to solve the truth
of Fermat’s theorem or Newton’s laws by voting, nego-
tiations, or declare a war.

Reasoning of this kind is the least studied from
the theoretical point of view and its structure is not
sufficiently understood, in spite of many interesting the-
oretical research in this domain [21.39]. The meaning of
commonsense reasoning, considering its scope and sig-
nificance for some domains, is fundamental, and rough
set theory can also play an important role in it, but more
fundamental research must be done to this end. In par-
ticular, the rough truth introduced and studied in [21.40]
seems to be important for investigating commonsense
reasoning in the rough set framework.
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Let us consider a simple example. In the decision
system considered we assume U D Birds is a set of
birds that are described by some condition attributes
from a set A. The decision attribute is a binary attribute
Flies with possible values yes if the given bird flies
and no, otherwise. Then, we define the set of abnormal
birds by AbA.Birds/D A

�

.fx 2 BirdsWFlies.x/D nog/.
Hence, we have, AbA.Birds/D Birds�A�.fx 2
BirdsW Flies.x/D yesg/ and Birds�AbA.Birds/D
A�.fx 2 BirdsW Flies.x/D yesg/. This means that for
normal birds it is consistent, with knowledge repre-
sented by A, to assume that they can fly, i. e., it is
possible that they can fly. One can optimize AbA.Birds/
using A to obtain minimal boundary region in the
approximation of fx 2 BirdsWFlies.x/D nog.

It is worthwhile mentioning that in [21.41] an ap-
proach was presented that combines the rough sets with
nonmonotonic reasoning. Some basic concepts are dis-
tinguished, which can be approximated on the basis of
sensor measurements and more complex concepts that
are approximated using so-called transducers defined
by first-order theories constructed over approximated
concepts. Another approach to commonsense reason-
ing was developed in a number of papers. The approach
is based on an ontological framework for approxima-
tion. In this approach, approximations are constructed
for concepts and dependencies between the concepts
represented in a given ontology, expressed, e.g., in nat-
ural language. Still another approach combining rough
sets with logic programming has been developed. Let us
also note that Pawlak proposed a new approach to con-
flict analysis [21.42]. The approach was next extended
in the rough set framework.

To recapitulate, let us consider the following char-
acteristics of the three above-mentioned kinds of rea-
soning:

a) Deductive
i) Reasoning methods: axioms and rules of infer-

ence
ii) Applications: mathematics
iii) Theoretical foundations: complete theory
iv) Conclusions: true conclusions from true pre-

misses
v) Hypotheses verification: formal proof

b) Inductive
i) Reasoning methods: generalization from exam-

ples
ii) Applications: natural sciences (physics)
iii) Theoretical foundations: lack of generally ac-

cepted theory

iv) Conclusions: not true but probable (possible)
v) Hypotheses verification: empirical experiment

c) Common sense
i) Reasoning methods: reasoning method based on

common sense knowledge with intuitive rules of
inference expressed in natural language

ii) Applications: everyday life, humanities
iii) Theoretical foundations: lack of generally ac-

cepted theory
iv) Conclusions: obtained by mixture of deduc-

tive and inductive reasoning based on concepts
expressed in natural language, e.g., with ap-
plication of different inductive strategies for
conflict resolution (such as voting, negotiations,
cooperation, war) based on human behavioral
patterns

v) Hypotheses verification: human behavior.

There are numerous issues related to approximate
reasoning under uncertainty. These issues are discussed
in books on granular computing, rough mereology, and
the computational complexity of algorithmic problems
related to these issues. For more details, the reader is
referred to the following books [21.26, 31, 43, 44].

Finally, we would like to stress that still much more
work should be done to develop approximate reasoning
about complex vague concepts to make progress in the
development of intelligent systems. According to Leslie
Valiant [21.45] (who is the 2011 winner of the ACM
Turing Award, for his fundamental contributions to the
development of computational learning theory and to
the broader theory of computer science):

A fundamental question for artificial intelligence is
to characterize the computational building blocks
that are necessary for cognition. A specific chal-
lenge is to build on the success of machine learning
so as to cover broader issues in intelligence . . . This
requires, in particular a reconciliation between two
contradictory characteristics – the apparent logi-
cal nature of reasoning and the statistical nature of
learning.

It is worthwhile presenting two more views. The
first one by Lotfi A. Zadeh, the founder of fuzzy sets
and the computing with words (CW) paradigm [21.46]:

Manipulation of perceptions plays a key role in hu-
man recognition, decision and execution processes.
As a methodology, computing with words provides
a foundation for a computational theory of per-
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ceptions – a theory which may have an important
bearing on how humans make and machines might
make – perception-based rational decisions in an
environment of imprecision, uncertainty and partial
truth. . . . computing with words, or CW for short, is
a methodology in which the objects of computation
are words and propositions drawn from a natural
language.

The other view is that of Judea Pearl [21.47] (the
2011 winner of the ACM Turing Award, the high-
est distinction in computer science, for fundamental
contributions to artificial intelligence through the de-
velopment of a calculus for probabilistic and causal
reasoning):

Traditional statistics is strong in devising ways of
describing data and inferring distributional param-
eters from sample. Causal inference requires two
additional ingredients: a science-friendly language
for articulating causal knowledge, and a mathe-
matical machinery for processing that knowledge,
combining it with data and drawing new causal
conclusions about a phenomenon.

The question arises about the logic relevant for the
above-mentioned tasks. First, let us observe that the
satisfiability relations in the IRGC framework can be
treated as tools for constructing new granules. In fact,
for a given satisfiability relation one can define the se-
mantics of formulae related to this relation, i. e., which
are the candidates for the new relevant granules. We
would like to emphasize one a very important feature.
The relevant satisfiability relation for the considered
problems is not given but it should be induced (discov-
ered) from partial information given by information or
decision systems. For real-life problems it is often nec-
essary to discover a hierarchy of satisfiability relations
before we obtain the relevant target one. Granules con-
structed on different levels of this hierarchy finally lead
to relevant ones for approximation of complex vague
concepts related to complex granules expressed using
natural language.

The reasoning making it possible to derive rel-
evant c-granules for solutions of the target tasks is
called adaptive judgment. Intuitive judgment and ra-

tional judgment are distinguished as different kinds
of judgment [21.48]. Deduction and induction as well
as abduction or analogy-based reasoning are involved
in adaptive judgment. Among the tasks for adaptive
judgment are the following ones, which support rea-
soning under uncertainty toward: searching for relevant
approximation spaces, discovery of new features, se-
lection of relevant features, rule induction, discovery
of inclusion measures, strategies for conflict resolu-
tion, adaptation of measures based on the minimum
description length principle, reasoning about changes,
perception (action and sensory) attributes’ selection
by agent control, adaptation of quality measures over
computations relative to agents, adaptation of object
structures, discovery of relevant contexts, strategies for
knowledge representation and interaction with knowl-
edge bases, ontology acquisition and approximation,
learning in dialog of inclusion measures between gran-
ules from different languages (e.g., the formal language
of the system and the user’s natural language), strate-
gies for adaptation of existing models, strategies for
development and evolution of communication language
among agents in distributed environments, strategies for
risk management in distributed computational systems.
Definitely, in the language used by agents for deal-
ing with adaptive judgment (i. e., intuitive and rational)
some deductive systems known from logic may be ap-
plied for reasoning about knowledge relative to closed
worlds. This may happen, e.g., if the agent languages
are based on classical mathematical logic. However, if
we move to interactions in open worlds, then new spe-
cific rules or patterns relative to a given agent or group
of agents in such worlds should be discovered. The pro-
cess of inducing such rules or patterns is influenced
by uncertainty because they are induced by agents un-
der uncertain and/or imperfect knowledge about the
environment.

The concepts discussed, such as interactive com-
putation and adaptive judgment, are among the basic
concepts in WisdomTechnology (WisTech) [21.49, 50].
Let us mention here the WisTech meta-equation

WISDOMD INTERACTIONS

CADAPTIVE JUDGMENT

CKNOWLEDGE : (21.18)
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21.13 Conclusions
In the chapter, we have discussed some basic issues and
methods related to rough sets together with some gen-
eralizations, including those related to relationships of
rough sets with inductive reasoning.We have also listed

some current research directions based on interactive
rough granular computing. For more details, the reader
is referred to the literature cited at the beginning of this
chapter (see also [21.9]).
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