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14. Interpretability of Fuzzy Systems:
Current Research Trends and Prospects

Jose M. Alonso, Ciro Castiello, Corrado Mencar

Fuzzy systems are universally acknowledged as
valuable tools to model complex phenomena
while preserving a readable form of knowledge
representation. The resort to natural language for
expressing the terms involved in fuzzy rules, in
fact, is a key factor to conjugate mathematical
formalism and logical inference with human-
centered interpretability. That makes fuzzy systems
specifically suitable in every real-world context
where people are in charge of crucial decisions.
This is because the self-explanatory nature of
fuzzy rules profitably supports expert assessments.
Additionally, as far as interpretability is investi-
gated, it appears that (a) the simple adoption of
fuzzy sets in modeling is not enough to ensure
interpretability; (b) fuzzy knowledge representa-
tion must confront the problem of preserving the
overall system accuracy, thus yielding a trade-
off which is frequently debated. Such issues have
attracted a growing interest in the research com-
munity and became to assume a central role in
the current literature panorama of computational
intelligence. This chapter gives an overview of the
topics related to fuzzy system interpretability, fac-
ing the ambitious goal of proposing some answers
to a number of open challenging questions: What
is interpretability? Why interpretability is worth
considering? How to ensure interpretability, and
how to assess (quantify) it? Finally, how to design
interpretable fuzzy models?

The objective of this chapter is to provide some
answers for the questions posed above. Section 14.1
deals with the challenging task of setting a proper
definition of interpretability. Section 14.2 intro-
duces the main constraints and criteria that can
be adopted to ensure interpretability when de-
signing interpretable fuzzy systems. Section 14.3
gives a brief overview of the soundest indexes for
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assessing interpretability. Section 14.4 presents
the most popular approaches for designing fuzzy
systems endowed with a good interpretability-
accuracy trade-off. Section 14.5 enumerates some
application fields where interpretability is a main
concern. Section 14.6 sketches a number of chal-
lenging tasks which should be addressed in the
near future. Finally, some conclusions are drawn
in Sect. 14.7.
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The key factor for the success of fuzzy logic stands
in the ability of modeling and processing perceptions
instead of measurements [14.1]. In most cases, such
perceptions are expressed in natural language. Thus,
fuzzy logic acts as a mathematical underpinning for
modeling and processing perceptions described in nat-
ural language.

Historically, it has been acknowledged that fuzzy
systems are endowed with the capability to conjugate
a complex behavior and a simple description in terms
of linguistic rules. In many cases, the compilation of
fuzzy systems has been accomplished manually; with
human knowledge purposely injected in fuzzy rules in
order to model the desired behavior (the rules could
be eventually tuned to improve the system accuracy).
In addition, the great success of fuzzy logic led to the
development of many algorithms aimed at acquiring
knowledge from data (expressing it in terms of fuzzy
rules). This made the automatic design of fuzzy sys-
tems (through data-driven design techniques) feasible.
Moreover, theoretical studies proved the universal ap-
proximation capabilities of such systems [14.2].

The adoption of data-driven design techniques is
a common practice nowadays. Nevertheless, while
fuzzy sets can be generally used to model perceptions,
some of them do not lead to a straight interpretation
in natural language. In consequence, the adoption of
accuracy-driven algorithms for acquiring knowledge
from data often results in unintelligible models. In
those cases, the fundamental plus of fuzzy logic is
lost and the derived models are comparable to other
measurement-based models (like neural networks) in
terms of knowledge interpretability.

In a nutshell, interpretability is not granted by
the adoption of fuzzy logic which represents a nec-
essary yet not a sufficient requirement for modeling
and processing perceptions. However, interpretability
is a quality that is not easy to define and quantify.
Several open and challenging questions arise while con-
sidering interpretability in fuzzy modeling: What is
interpretability? Why interpretability is worth consid-
ering? How to ensure interpretability? How to assess
(quantify) interpretability? How to design interpretable
fuzzy models? And so on.

14.1 The Quest for Interpretability

Answering the question What is interpretability? is
not straightforward. Defining interpretability is a chal-
lenging task since it deals with the analysis of the
relation occurring between two heterogeneous entities:
a model of the system to be designed (usually formal-
ized through a mathematical definition) and a human
user (meant not as a passive beneficiary of a system’s
outcome, but as an active reader and interpreter of the
model’s working engine). In this sense, interpretability
is a quality which is inherent in the model and yet it
refers to an act performed by the user who is willing to
grasp and explain the meaning of the model.

To pave the way for the definition of such a relation,
a common ground must be settled. This could be rep-
resented by a number of fundamental properties to be
incorporated into a model, so that its formal description
becomes compatible with the user’s knowledge repre-
sentation. In this way, the human user may interface the
mathematical model resting on concepts that appear to
be suitable to deal with it. The quest for interpretability,
therefore, calls for the identification of several features.
Among them, resorting to an appropriate framework for
knowledge representation is a crucial element and the
adoption of a fuzzy inference engine based on fuzzy

rules is straightforward to approach the linguistic-based
formulation of concepts which is typical of the human
abstract thought.

A distinguishing feature of a fuzzy rule-based
model is the double level of knowledge representation.
The lower level of representation is constituted by the
formal definition of the fuzzy sets in terms of their
membership functions, as well as the aggregation func-
tions used for inference. This level of representation
defines the semantics of a fuzzy rule-based model as
it determines the behavior of the model, i. e. the in-
put/output mapping for which it is responsible.

On the higher level of representation, knowledge is
represented in the form of rules. They define a formal
structure where linguistic variables are involved and re-
ciprocally connected by some formal operators, such as
AND, THEN, and so on. Linguistic variables correspond
to the inputs and outputs of the model. The (sym-
bolic) values they assume are related to linguistic terms
which, in turn, are mapped to the fuzzy sets defined
in the lower level of representation. The formal oper-
ators are likewise mapped to the aggregation functions.
This mapping provides the interpretative transition that
is quite common in the mathematical context: a formal
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structure is assigned semantics by mapping symbols
(linguistic terms and operators) to objects (fuzzy sets
and aggregation functions).

In principle, the mapping of linguistic terms to
fuzzy sets is arbitrary. It just suffices that identical lin-
guistic terms are mapped to identical fuzzy sets. Of
course, this is not completely true for formal opera-
tors (e.g., t-norms, implications, etc.). The correspond-
ing aggregation functions should satisfy a number of
constraints; however some flexibility is possible. Nev-
ertheless, the mere use of symbols in the high level of
knowledge representation implies the establishment of
a number of semiotic relations that are fundamental for
the quest of interpretability of a fuzzy model. In partic-
ular, linguistic terms – as usually picked from natural
language – must be fully meaningful for the expected
reader since they denote concepts, i. e. mental represen-
tations that allow people to draw appropriate inferences
about the entities they encounter.

Concepts and fuzzy sets, therefore, are both denoted
by linguistic terms. Additionally, concepts and fuzzy
sets play a similar role: the former (being part of the
human knowledge) contribute to determine the behav-
ior of a person; the latter (being the basic elements of
a fuzzy rule base) contribute to determine the behavior
of a system to be modeled. As a consequence, concepts
and fuzzy sets are implicitly connected by means of
common linguistic terms they are related to, which re-
fer to object classes in the real world. The key essence
of interpretability is therefore the property of cointen-
sion [14.3] between fuzzy sets and concepts, consisting
in the possibility of referring to similar classes of ob-
jects: such a possibility is assured by the use of common
linguistic terms.

Semantic cointension is a key issue when dealing
with interpretability of fuzzy systems. It has been in-
troduced and centered on the role of fuzzy sets, but
it can be easily extended to refer to some more com-
plex structures, such as fuzzy rules or the whole fuzzy
models. In this regard, a crisp assertion about the im-
portance of cointension pronounced at the level of the
whole model is given by theMichalski’s Comprehensi-
bility Postulate [14.4]:

The results of computer induction should be sym-
bolic descriptions of given entities, semantically
and structurally similar to those a human expert
might produce observing the same entities. Com-
ponents of these descriptions should be compre-
hensible as single chunks of information, directly
interpretable in natural language, and should relate

quantitative and qualitative concepts in an inte-
grated fashion.

It should be observed that the above postulate
has been formulated in the general area of machine
learning. Nevertheless, the assertion made by Michal-
ski has important consequences in the specific area
of fuzzy modeling (FM) too. According to the Com-
prehensibility Postulate, results of computer induction
should be described symbolically. Symbols are nec-
essary to communicate information and knowledge;
hence, pure numerical methods, such as neural net-
works, are not suited for meeting interpretability unless
an interpretability-oriented postprocessing of the result-
ing knowledge is performed.

The key point of the Michalski’s postulate is the
human centrality of the results of a computer induc-
tion process. The importance of the human compo-
nent implicitly suggests a novel aspect to be taken
into account in the quest for interpretability. Actu-
ally, the semantic cointension is related to one facet
of the interpretability process, which can be referred
to as comprehensibility of the content and behavior of
a fuzzy model. In other words, cointension concerns
the semantic interpretation performed by a user de-
termined to comprehend such a model. On the other
hand, when we turn to consider the cognitive capa-
bilities of human brains and their intrinsic limitations,
then a different facet of the interpretability process
can be defined in terms of readability of the bulk
of information conveyed by a fuzzy model. In that
case, simplicity is required to perform the interpretation
process because of the limited ability to store informa-
tion in the human brain’s short-term memory [14.5].
Therefore, structural measures concerning the com-
plexity of a rule base affect the cognitive efforts of
a user determined to read and interpret a fuzzy model.

Comprehensibility and readability represent two
facets of a common issue and both of them are to
be considered while assessing the interpretability pro-
cess. In particular, this distinction should be acknowl-
edged when criteria are specifically designed to provide
a quantitative definition of interpretability.

14.1.1 Why Is Interpretability So Important?

A great number of inductive modeling techniques are
currently available to acquire knowledge from data.
Many of these techniques provide predictive models
that are very accurate and flexible enough to be applied
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in a wide range of applications. Nevertheless, the re-
sulting models are usually considered as black boxes,
i. e. models whose behavior cannot be easily explained
in terms of the model structure. On the other hand, the
use of fuzzy rule-based models is a matter of design
choice: whenever interpretability is a key factor, fuzzy
rule-based models should be naturally preferred. It is
worth noting that interpretability is a distinguishing fea-
ture of fuzzy rule-based models. Several reasons justify
a choice inclined toward interpretability. They include
but are not limited to:

� Integration: In an interpretable fuzzy rule-based
model the acquired knowledge can be easily verified
and related to the domain knowledge of a hu-
man expert. In particular, it is easy to verify if
the acquired knowledge expresses new and inter-
esting relations about the data; also, the acquired
knowledge can be refined and integrated with ex-
pert knowledge.� Interaction: The use of natural language as a mean
for knowledge communication enables the possibil-
ity of interaction between the user and the model.
Interactivity is meant to explore the acquired knowl-
edge. In practice, it can be done at symbolical level
(by adding new rules or modifying existing ones)
and/or at numerical level (by modifying the fuzzy
sets denoted by linguistic terms; or by adding new
linguistic terms denoting new fuzzy sets).� Validation: The acquired knowledge can be eas-
ily validated against common-sense knowledge and
domain-specific knowledge. This capability enables
the detection of semantic inconsistencies that may
have different causes (misleading data involved in
the inductive process, local minimum where the
inductive process may have been trapped, data over-
fitting, etc.). This kind of anomaly detection is
important to drive the inductive process toward
a qualitative improvement of the acquired knowl-
edge.� Trust: The most important reason to adopt inter-
pretable fuzzy models is their inherent ability to
convince end users about the reliability of a model
(especially those users not concerned with knowl-
edge acquisition techniques). An interpretable fuzzy
rule-based model is endowed with the capability of
explaining its inference process so that users may
be confident on how it produces its outcomes. This
is particularly important in such domains as medi-
cal diagnosis, where a human expert is the ultimate
responsible for a decision.

14.1.2 A Historical Review

It has been long time since Zadeh’s seminal work on
fuzzy sets [14.6] and nowadays there are lots of fruit-
ful research lines related to fuzzy logic [14.7]. Hence,
we can state that fuzzy sets and systems have become
the subjects of a mature research field counting several
works both theoretical and applied in their scope. Fig-
ure 14.1 shows the distribution of publications per year
regarding interpretability issues. Three main phases can
be identified taking into account the historical evolution
of FM.

From 1965 to 1990
During this initial period, interpretability emerged
naturally as the main advantage of fuzzy systems.
Researchers concentrated on building fuzzy models
mainly working with expert knowledge and a few sim-
ple linguistic variables [14.8–10] and linguistic rules
usually referred to as Mamdani rules [14.11]. As a re-
sult, those designed fuzzy models were characterized
by their high interpretability. Moreover, interpretability
is assumed as an intrinsic property of fuzzy systems.
Therefore, there are only a few publications regard-
ing interpretability issues. Note that the first proposal
of a fuzzy rule-based system (FRBS) was presented
by Mamdani who was able to augment Zadeh’s initial
formulation allowing the application of fuzzy systems
to a control problem. These kinds of fuzzy systems
are also referred to as fuzzy logic controllers, as pro-
posed by the author in his pioneering paper. In addition,
Mamdani-type FRBSs soon became the main tool to de-
velop linguistic models. Of course, many other rule for-
mats were arising and gaining importance. In addition
to Mamdani FRBSs, probably the most famous FRBSs
are those proposed by Takagi and Sugeno [14.12], the
popular TSK fuzzy systems, where the conclusion is
a function of the input values. Due to their current popu-
larity, in the following we will use the term fuzzy system
to denote Mamdani-type FRBSs and their subsequent
extensions.

From 1990 to 2000
In the second period the focus was set on accuracy.
Researchers realized that expert knowledge was not
enough to deal with complex systems. Thus, they ex-
plored the use of fuzzy machine learning techniques
to automatically extract knowledge from data [14.13,
14]. Accordingly, those designed fuzzy models became
composed of extremely complicated fuzzy rules with
high accuracy but at the cost of disregarding inter-
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Fig. 14.1 Publications per year related to interpretability issues

pretability as a side effect. Obviously, automatically
generated rules were rarely as readable as desired.
Along this period some researchers started claiming
that fuzzy models are not interpretable per se. Inter-
pretability is a matter of careful design. Thus, inter-
pretability issues must be deeply analyzed and seriously
discussed. Although the amount of publications related
to interpretability issues is still small in this period,
please pay attention to the fact that publications begin
to grow exponentially at the end of this second phase.

From 2000 to 2013
After the two previous periods, researchers realized that
both expert-driven (from 1965 to 1990) and data-driven
(from 1990 to 2000) design approaches have their own
advantages and drawbacks, but they are somehow com-
plementary. For instance, expert knowledge is general
and easy to interpret but hard to formalize. On the con-
trary, knowledge derived from data can be extracted
automatically but it becomes quite specific and its inter-
pretation is usually hard [14.15]. Moreover, researchers
were aware of the need of taking into account simulta-
neously interpretability and accuracy during the design
of fuzzy models. As a result, during this third phase
the main challenge was how to combine expert knowl-
edge and knowledge extracted from data, with the aim
of designing compact and robust systems with a good
interpretability–accuracy trade-off. When considering
both interpretability and accuracy in FM, two main
strategies turn up naturally [14.16]: linguistic fuzzy
modeling (LFM) and precise fuzzy modeling (PFM). On
the one hand, in LFM, designers first focus on the inter-
pretability of the model, and then they try to improve its
accuracy [14.17]. On the other hand, in PFM, design-

ers first build a fuzzy model maximizing its accuracy,
and then they try to improve its interpretability [14.18].
As an alternative, since accuracy and interpretability
represent conflicting goals by nature, multiobjective
fuzzy modeling strategies (considering accuracy and
interpretability as objectives) have become very popu-
lar [14.19, 20].

At the same time, there has been a great effort
for formalizing interpretability issues. As a result, the
number of publications has grown. Researchers have
actively looked for the right definition of interpretabil-
ity. In addition, several interpretability constraints have
been identified. Moreover, interpretability assessment
has become a hot research topic. In fact, several in-
terpretability indexes (able to guide the FM design
process) have been defined. Nevertheless, a universal
index widely admitted is still missing. Hence, further
research on interpretability issues is demanded.

Unfortunately, although the number of publications
was growing exponentially until 2009, later it started
decreasing. We would like to emphasize the impact of
the two pioneer books [14.17, 18] edited in 2003. They
contributed to make the fuzzy community aware of the
need to take into account again interpretability as a main
research concern. It is worth noting that the first formal
definition of interpretability (in the fuzzy literature) was
included in [14.18]. It was given by Bodenhofer and
Bauer [14.21] who established an axiomatic treatment
of interpretability at the level of linguistic variables.

We encourage the fuzzy community to keep pay-
ing attention to interpretability issues because there is
still a lot of research to be done. Interpretability must
be the central point on system modeling. In fact, some
of the hottest and most recent research topics like pre-
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cisiated natural language, computing with words, and
human centric computing strongly rely on the inter-
pretability of the designed models. The challenge is
to better exploit fuzzy logic techniques for improving

the human-centric character of many intelligent sys-
tems. Therefore, interpretability deserves consideration
as a main research concern and the number of publica-
tions should grow again in the next years.

14.2 Interpretability Constraints and Criteria

Interpretability is a quality of fuzzy systems that is not
immediate to quantify. Nevertheless, a quantitative def-
inition is required both for assessing the interpretability
of a fuzzy system and for designing new fuzzy systems.
This requirement is especially stringent when fuzzy
systems are automatically designed from data, through
some knowledge extraction procedure.

A common approach for defining interpretability
is based on the adoption of a number of constraints
and criteria that, taken as a whole, provide for a def-
inition of interpretability. This approach is inherent
to the subjective nature of interpretability, because
the validity of some conditions/criteria is not univer-
sally acknowledged and may depend on the application
context.

In the literature, a large number of interpretability
constraints and criteria can be found. Some of them
are widely accepted, while others are controversial. The
nature of these constraints and criteria is also diverse.
Some are neatly defined as a mathematical condition,
others have a fuzzy character and their satisfaction is
a matter of degree. This section is addressed to give
a brief yet homogeneous outline of the best known
interpretability constraints and criteria. The reader is re-
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Fig. 14.2 Interpretability constraints and criteria in different ab-
straction levels

ferred to the specialized literature for deeper insights on
this topic [14.22, 23].

Several ways are available to categorize inter-
pretability constraints and criteria. It could be possible
to refer to their specific nature (e.g., crisp vs. fuzzy),
to the components of the fuzzy system where they are
applied, or to the description level of the fuzzy system
itself. Here, as depicted in Fig. 14.2, we choose a hi-
erarchical organization that starts from the most basic
components of a fuzzy system, namely the involved
fuzzy sets, and goes on toward more complex levels,
such as fuzzy partitions, fuzzy rules, up to considering
the model as a whole.

14.2.1 Constraints and Criteria for Fuzzy Sets

Fuzzy sets are the basic elements of fuzzy systems and
their role is to express elementary yet imprecise con-
cepts that can be denoted by linguistic labels. Here
we assume that fuzzy sets are defined on a universe
of discourse represented by a closed interval of the
real line (this is the case of most fuzzy systems, espe-
cially those acquired from data). Thus, fuzzy sets are
the building blocks to translate a numerical domain in
a linguistically quantified domain that can be used to
communicate knowledge.

Generally speaking, single fuzzy sets are employed
to express elementary concepts and, through the use of
connectives, are combined to represent more complex
concepts. However, not all fuzzy sets can be related to
elementary concepts, since the membership function of
a fuzzy set may be very awkward but still legitimate
from a mathematical viewpoint. Actually, a subclass of
fuzzy sets should be considered, so that its members
can be easily associated with elementary concepts and
tagged by the corresponding linguistic labels. Fuzzy
sets of this subclass must verify a number of basic in-
terpretability constraints, including:

� Normality: At least one element of the universe
of discourse is a prototype for the fuzzy set, i. e.
it is characterized by a full membership degree.
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A normal fuzzy set represents a concept that fully
qualifies at least one element of the universe of dis-
course, i. e. the concept has at least one example that
fulfills it. On the other hand, a subnormal fuzzy set
is usually a consequence of a partial contradiction
(it is easy to show that the degree of inclusion of
a subnormal fuzzy set in the empty set is nonzero).� Continuity: The membership function is continu-
ous on the universe of discourse. As a matter of
fact, most concepts that can be naturally represented
through fuzzy sets derive from a perceptual act,
which comes from external stimuli that usually vary
in continuity. Therefore, continuous fuzzy sets are
better in accordance with the perceptive nature of
the represented concepts.� Convexity: In a convex fuzzy set, given three el-
ements linearly placed on the axis related to the
universe of discourse, the degree of membership of
the middle element is always greater than or equal
to the minimum membership degree of the side ele-
ments [14.24]. This constraint encodes the rule that
if a property is satisfied by two elements, then it is
also satisfied by an element settled between them.

14.2.2 Constraints and Criteria
for Fuzzy Partitions

The key success factor of fuzzy logic in modeling
is the ability of expressing knowledge linguistically.
Technically, this is realized by linguistic variables, i. e.
variables that assume symbolic values called linguis-
tic terms. The peculiarity of linguistic variables with
respect to classical symbolic approaches is the interpre-
tation of linguistic terms as fuzzy sets. The collection of
fuzzy sets used as interpretation of the linguistic terms
of a linguistic variable forms a fuzzy partition of the
universe of discourse.

To understand the role of a fuzzy partition, we
should consider that it is meant to define a relation
among fuzzy sets. Such a relation must be co-intensive
with the one connecting the elementary concepts repre-
sented by the fuzzy sets involved in the fuzzy partition.
That is the reason why the design of fuzzy partitions
is so crucial for the overall interpretability of a fuzzy
system. The most critical interpretability constraints for
fuzzy partitions are:

� Justifiable number of elements: The number of
fuzzy sets included in a linguistic variable must be
small enough so that they can be easily remembered

and recalled by users. Psychological studies suggest
at most nine fuzzy sets or even less [14.5, 25]. Usu-
ally, three to five fuzzy sets are convenient choices
to set the partition cardinality.� Distinguishability: Since fuzzy sets are denoted
by distinct linguistic terms, they should refer to
well-distinguished concepts. Therefore, fuzzy sets
in a partition should be well separated, although
some overlapping is admissible because usually
perception-based concepts are not completely dis-
joint. Several alternatives are available to quantify
distinguishability, including similarity and possibil-
ity [14.26].� Coverage: Distinguishable fuzzy sets are necessary,
but if they are too much separated they risk to
under-represent some subset of the universe of dis-
course. The coverage constraint requires that each
element of the universe of discourse must belong to
at least one fuzzy set of the partition with a mem-
bership degree not less than a threshold [14.22].
This requirement involves that each element of the
universe of discourse has some quality that is well
represented in the fuzzy partition. On the other
hand, the lack of coverage is a signal of incom-
pleteness of the fuzzy partition that may hamper the
overall comprehensibility of the system’s knowl-
edge. Coverage and distinguishability are somewhat
conflicting requirements that are usually balanced
by fuzzy partitions that enforce the intersection of
adjacent fuzzy sets to elements whose maximum
membership degree is equal to a threshold (usually
the value of this threshold is set to 0.5).� Relation preservation: The concepts that are rep-
resented by the fuzzy sets in a fuzzy partition are
usually cross related. The most immediate relation
which can be conceived among concepts is related
to the order (e.g., Low preceding Medium, preced-
ing High, and so on). Relations of this type must
be preserved by the corresponding fuzzy sets in the
fuzzy partition [14.27].� Prototypes on special elements: In many problems,
some elements of the universe of discourse have
some special meaning. A common case is the mean-
ing of the bounds of the universe of discourse,
which usually represent some extreme qualities
(e.g., Very Large or Very Small). Other examples
are possible, which could be aside from the bounds
of the universe of discourse being, instead, more
problem-specific (e.g., prototypes could be con-
ceived for the icing point of water, the typical
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human body temperature, etc.). In all these cases,
the prototypes of some fuzzy sets of the partition
must coincide with such special elements.

14.2.3 Constraints and Criteria
for Fuzzy Rules

In most cases, a fuzzy system is defined over a multi-
dimensional universe of discourse that can be split into
many one-dimensional universes of discourse, each of
them associated with a linguistic variable. A subset of
these linguistic variables is used to represent the input
of a system, while the remaining variables (usually only
one variable) are used to represent the output. The in-
put/output behavior is expressed in terms of rules. Each
rule prescribes a linguistic output value when the input
matches the rule condition (also called rule premise),
usually expressed as a logical combination of soft con-
straints. A soft constraint is a linguistic proposition
(specification) that ties a linguistic variable to a linguis-
tic term (e.g., Temperature is High). Furthermore, the
soft constraints combined in a rule condition may in-
volve different linguistic variables (e.g., Temperature is
High AND Pressure is Low).

A fuzzy rule is a unit of knowledge that has the
twofold role of determining the system behavior and
communicating this behavior in a linguistic form. The
latter feature urges to adopt a number of interpretability
constraints which are to be added up to the constraints
required for fuzzy sets and fuzzy partitions. Some of the
most general interpretability constraints and criteria for
fuzzy rules are as follows:

� Description length: The description length of
a fuzzy rule is the sum of the number of soft con-
straints occurring in the condition and in the conse-
quent of the rule (it is usually known as total rule
length). In most cases, only one linguistic variable
is represented in a rule consequent, therefore the de-
scription length of a fuzzy rule is directly related
to the complexity of the condition. A small number
of soft constraints in a rule implies both high read-
ability and semantic generality; hence, short rules
should be preferred in fuzzy systems.� Granular outputs: The main strength of fuzzy sys-
tems is their ability to represent and process im-
precision in both data and knowledge. Imprecision
is part of fuzzy inference, therefore the inferred
output of a fuzzy system should carry information
about the imprecision of its knowledge. This can be
accomplished by using fuzzy sets as outputs. De-

fuzzification collapses fuzzy sets into single scalars;
it should be therefore used only when strictly nec-
essary and in those situations where outputs are not
the object of user interpretation.

14.2.4 Constraints and Criteria
for Fuzzy Rule Bases

As previously stated, the interpretability of a rule base
taken as a whole has two facets: (1) a structural facet
(readability), which is mainly related to the easiness
of reading the rules; (2) a semantic facet (compre-
hensibility), which is related to the information con-
veyed to the users who are willing to understand the
system behavior. The following interpretability con-
straints and criteria are commonly defined to ensure
the structural and semantic interpretability of fuzzy rule
bases.

� Compactness: A compact rule base is defined by
a small number of rules. This is a typical structural
constraint that advocates for simple representation
of knowledge in order to allow easy reading and un-
derstanding. Nevertheless, a small number of rules
usually involves low accuracy; it is therefore very
common to balance compactness and accuracy in
a trade-off that mainly depends on user needs.� Average firing rules: When an input is applied to
a fuzzy system, the rules whose conditions are ver-
ified to a degree greater than zero are firing, i. e.
they contribute to the inference of the output. On
an average, the number of firing rules should be as
small as possible, so that users are able to under-
stand the contributions of the rules in determining
the output.� Logical view: Fuzzy rules resemble logical proposi-
tions when their linguistic description is considered.
Since linguistic description is the main mean for
communicating knowledge, it is necessary that log-
ical laws are applicable to fuzzy rules; otherwise,
the system behavior may result counter intuitive.
Therefore, the validity of some basic laws of the
propositional logic (like Modus Ponens) and the
truth-preserving operations (e.g., application of dis-
tributivity, De Morgan laws, etc.) should also be
verified for fuzzy rules.� Completeness: The behavior of a fuzzy system is
well defined for all inputs in the universe of dis-
course; however, when the maximum firing strength
determined by an input is too small, it is not easy to
justify the behavior of the system in terms of the



Interpretability of Fuzzy Systems 14.3 Interpretability Assessment 227
Part

B
|14.3

activated rules. It is therefore required that for each
possible input at least one rule is activated with a fir-
ing strength greater than a threshold value (usually
set to 0.5) [14.22].� Locality: Each rule should define a local model,
i. e. a fuzzy region in the universe of discourse
where the behavior of the system is mainly due
to the rule and only marginally by other rules that
are simultaneously activated [14.28]. This require-
ment is necessary to avoid that the final output
of the system is a consequence of an interpolative
behavior of different rules that are simultaneously
activated with high firing strengths. On the other
hand, a moderate overlapping of local models is
admissible in order to enable a smooth transition
from a local model to another when the input

values gradually shift from one fuzzy region to an-
other.

In summary, a number of interpretable constraints
and criteria apply to all levels of a fuzzy system. This
section highlights only the constraints that are general
enough to be applied independently on the model-
ing problem; however, several problem-specific con-
straints are also reported in the literature (e.g., attribute
correlation). Sometimes interpretability constraints are
conflicting (as exemplified by the dichotomy distin-
guishability versus coverage) and, in many cases, they
conflict with the overall accuracy of the system. A bal-
ance is therefore required, asking in its turn for a way
to assess interpretability in a qualitative but also quanti-
tative way. This is the main subject of the next section.

14.3 Interpretability Assessment

The interpretability constraints and criteria presented
in previous section belong to two main classes: (1)
structural constraints and criteria referring to the static
description of a fuzzy model in terms of the elements
that compose it; (2) semantic constraints and criteria
quantifying interpretability by looking at the behav-
ior of the fuzzy system. Whilst structural constraints
address the readability of a fuzzy model, semantic con-
straints focus on its comprehensibility.

Of course, interpretability assessment must regard
both global (description readability) and local (infer-
ence comprehensibility) points of view. It must also
take into account both structural and semantic issues
when considering all components (fuzzy sets, fuzzy
partitions, linguistic partitions, linguistic propositions,
fuzzy rules, fuzzy operators, etc.) of the fuzzy system
under study.

Thus, assessing interpretability represents a chal-
lenging task mainly because the analysis of inter-
pretability is extremely subjective. In fact, it clearly
depends on the feeling and background (knowledge, ex-
perience, etc.) of the person who is in charge of making
the evaluation. Even though having subjective indexes
would be really appreciated for personalization pur-
poses, looking for a universal metric widely admitted
also makes the definition of objective indexes manda-
tory. Hence, it is necessary to consider both objective
and subjective indexes. On the one hand, objective in-
dexes are aimed at making feasible fair comparisons
among different fuzzy models designed for solving

the same problem. On the other hand, subjective in-
dexes are thought for guiding the design of customized
fuzzy models, thus making easier to take into account
users’ preferences and expectations during the design
process.

The rest of this section gives an overview on
the most popular interpretability indexes which turn
out from the specialized literature. Firstly, Zhou and
Gan [14.29] established a two-level taxonomy regard-
ing interpretability issues. They distinguished between
low-level (also called fuzzy set level) and high-level
(or fuzzy rule level). This taxonomy was extended
by Alonso et al. [14.30] who introduced a conceptual
framework for characterizing interpretability. They con-
sidered both fuzzy partitions and fuzzy rules at several
abstraction levels. Moreover, in [14.31] Mencar et al.
remarked the need to distinguish between readability
(related to structural issues) and comprehensibility (re-
lated to semantic issues). Later, Gacto et al. [14.32]
proposed a double axis taxonomy regarding semantic
and structural properties of fuzzy systems, at both par-
tition and rule base levels. Accordingly, they pointed
out four groups of indexes. Below, we briefly introduce
the two most sounded indexes inside each group (they
are summarized in Fig. 14.3):

G1. Structural-based interpretability at fuzzy partition
level:� Number of features.� Number of membership functions.
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Fuzzy partition level Fuzzy rule base level

G1
Number of features
Number of membership functions

G2
Number of rules
Number of conditions

G3
Context–adaptation–based index
GM3M index

G4
Semantic–cointension–based index
Co–firing–based–comprehensibility index

Structural–based
interpretability

Semantic–based
interpretability

Fig. 14.3 Interpretability indexes considered in this work

G2. Structural-based interpretability at fuzzy rule base
level:� Number of rules. This index is the most widely

used [14.30].� Number of conditions. This index corresponds
to the previously mentioned total rule length
which was coined by Ishibuchi et al. [14.33].

G3. Semantic-based interpretability at fuzzy partition
level:� Context-adaptation-based index [14.34]. This

index was introduced by Botta et al. with the
aim of guiding the so-called context adaptation
approach for multiobjective evolutionary design
of fuzzy rule-based systems. It is actually an
interpretability index based on fuzzy ordering
relations.� GM3M index [14.35]. Gacto et al. proposed an
index defined as the geometric mean of three
single metrics. The first metric computes the
displacement of the tuned membership func-
tions with respect to the initial ones. The second
metric evaluates the changes in the shapes of
membership functions in terms of lateral am-
plitude rate. The third metric measures the area
similarity. This index was used to preserve
the semantic interpretability of fuzzy partitions
along multiobjective evolutionary rule selection
and tuning processes aimed at designing fuzzy
models with a good interpretability-accuracy
trade-off.

G4. Semantic-based interpretability at fuzzy rule base
level:� Semantic-cointension-based index [14.36]. This

index exploits the cointension concept coined
by Zadeh [14.3]. In short, two different concepts
referring almost to the same entities are taken as
cointensive. Thus, a fuzzy system is deemed as
comprehensible only when the explicit seman-
tics (defined by fuzzy sets attached to linguistic

terms as well as fuzzy operators) embedded in
the fuzzy model is cointensive with the implicit
semantics inferred by the user while reading
the linguistic representation of the rules. In the
case of classification problems, semantic coin-
tension can be evaluated through a logical view
approach, which evaluates the degree of fulfill-
ment of a number of logical laws exhibited by
a given fuzzy rule base [14.31]. The idea mainly
relies on the assumption that linguistic propo-
sitions resemble logical propositions, for which
a number of basic logical laws are expected to
hold.� Co-firing-based comprehensibility index
[14.37]. It measures the complexity of under-
standing the fuzzy inference process in terms of
information related to co-firing rules, i. e. rules
firing simultaneously with a given input vector.
This index emerges in relation with a novel
approach for fuzzy system comprehensibility
analysis, based on visual representations of the
fuzzy rule-based inference process. Such rep-
resentations are called fuzzy inference-grams
(fingrams) [14.38, 39]. Given a fuzzy rule
base, a fingram plots it graphically as a social
network made of nodes representing fuzzy rules
and edges connecting nodes in terms of rule
interaction at the inference level. Edge weights
are computed by paying attention to the number
of co-firing rules. Thus, looking carefully at
all the information provided by a fingram it
becomes easy and intuitive understanding the
structure and behavior of the fuzzy rule base it
represents.

Notice that, most published interpretability indexes
only deal with structural issues, so they correspond to
groups G1 and G2. Indexes belonging to these groups
are mainly quantitative. They essentially analyze the
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structural complexity of a fuzzy model by counting the
number of elements (membership functions, rules, etc.)
it contains. As a result, these indexes can be deemed
as objective ones. Although these indexes are usually
quite simple (that is the reason why we have just listed
them above), they are by far the most popular ones. On
the contrary, only a few interpretability indexes are able
to assess the comprehensibility of a fuzzy model deal-
ing with semantic issues (they belong to groups G3 and
G4). This is mainly due to the fact that these indexes
must take into account not only quantitative but also
qualitative aspects of the modeled fuzzy system. They
are inherently subjective and therefore not easy to for-

malize (that is the reason why we have provided more
details above). Anyway, the interested reader is referred
to the cited papers for further information. Moreover,
a much more exhaustive list of indexes can be found
in [14.32].

Even though there has been a great effort in the last
years to propose new interpretability indexes, a univer-
sal index is still missing. Hence, defining such an index
remains a challenging task. Anyway, we would like to
highlight the need to address another encouraging chal-
lenge which is a careful design of interpretable fuzzy
systems guided by one or more of the already existing
interpretability indexes.

14.4 Designing Interpretable Fuzzy Systems

Linguistic (Mamdani-type) fuzzy systems are widely
known as a powerful tool to develop linguistic mod-
els [14.11]. They are made up of two main components:

� The inference engine, that is the component of the
fuzzy system in charge of the fuzzy processing tasks.� The knowledge base (KB), that is the component of
the fuzzy system that stores the knowledge about
the problem being solved. It is composed of:
– The fuzzy partitions, describing the linguistic

terms along with the correspondingmembership
functions defining their semantics, and

– The fuzzy rule base, constituted by a collection
of linguistic rules with the following structure

IF X1 is A1 and : : : and Xn is An

THEN Y1 is B1 and : : : and Ym is Bm

with Xi and Yj being input and output linguis-
tic variables, respectively, and Ai and Bj being
linguistic terms defined by the corresponding
fuzzy partitions. This structure provides a nat-
ural framework to include expert knowledge
in the form of linguistic fuzzy rules. In addi-
tion to expert knowledge, induced knowledge
automatically extracted from experimental data
(describing the relation between system input
and output) can also be easily formalized in the
same rule base. Expert and induced knowledge
are complementary. Furthermore, they are rep-
resented in a highly interpretable structure. The
fuzzy rules are composed of input and output
linguistic variables which take values from their
term sets having a meaning associated with each

linguistic label. As a result, each rule is a de-
scription of a condition-action statement that
offers a clear interpretation to a human.

The accuracy of a fuzzy system directly depends
on two aspects, the composition of the KB (fuzzy
partitions and fuzzy rules) and the way in which it im-
plements the fuzzy inference process. Therefore, the
design process of a fuzzy system includes two main
tasks which are going to be further explained in the fol-
lowing subsections, regarding both interpretability and
accuracy:

� Generation of the KB in order to formulate and de-
scribe the knowledge that is specific to the problem
domain.� Conception of the inference engine, that is the
choice of the different fuzzy operators that are em-
ployed by the inference process.

Mamdani-type fuzzy systems favor interpretability.
Therefore, they are usually considered when looking for
interpretable fuzzy systems. However, it is important
to remark that they are not interpretable per se. Notice
that designing interpretable fuzzy systems is a matter of
careful design.

14.4.1 Design Strategies for the Generation
of a KB Regarding
the Interpretability-Accuracy
Trade-Off

The two main objectives to be addressed in the FM
field are the interpretability and accuracy. Of course,
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the ideal aim would be to satisfy both objectives to
a high degree but, since they represent conflicting
goals, it is generally not possible. Regardless of the
approach, a common scheme is found in the existing
literature:

� Firstly, the main objective (interpretability or accu-
racy) is tackled defining a specific model structure
to be used, thus setting the FM approach.� Then, the modeling components (model structure
and/or modeling process) are improved by means
of different mechanisms to achieve the desired ratio
between interpretability and accuracy.

This procedure resulted in four different possibili-
ties:

1. LFM with improved interpretability,
2. LFM with improved accuracy,
3. PFM with improved interpretability, and
4. PFM with improved accuracy.

Option (1) gives priority to interpretability. Al-
though a fuzzy system designed by LFM uses a model
structure with high descriptive power, it has some prob-
lems (curse of dimensionality, excessive number of
input variables or fuzzy rules, garbled fuzzy sets, etc.)
that make it not as interpretable as desired. In conse-
quence, there is a need of interpretability improvements
to restore the pursued balance.

On the contrary, option (4) considers accuracy as
the main concern. However, obtaining more accuracy in
PFM does not pay attention to the interpretability of the
model. Thus, this approach goes away from the aim of
this chapter. It acts close to black-box techniques, so it
does not follow the original objective of FM (not taking
profit from the advantages that distinguish it from other
modeling techniques).

Finally, the two remaining options, (2) and (3), pro-
pose improvement mechanisms to compensate for the
initial imbalance in the quest for the best trade-off be-
tween interpretability and accuracy. In summary, three
main approaches exist depending on how the two ob-
jectives are optimized (sequentially or at once):

� First interpretability then accuracy (LFM with im-
proved accuracy).� First accuracy then interpretability (PFM with im-
proved interpretability).� Multiobjective design. Both objectives are opti-
mized at the same time.

The rest of this section provides additional details
related to each of these approaches.

First Interpretability Then Accuracy
LFM has some inflexibility due to the use of linguistic
variables with global semantics that establishes a gen-
eral meaning of the used fuzzy sets [14.40]:

1. There is a lack of flexibility in the fuzzy system
because of the rigid partitioning of the input and
output spaces.

2. When the system input variables are dependent, it
is very hard to find out right fuzzy partitions of the
input spaces.

3. The usual homogeneous partitioning of the in-
put and output spaces does not scale to high-
dimensional spaces. It yields to the well-known
curse of dimensionality problem that is character-
istic of fuzzy systems.

4. The size of the KB directly depends on the number
of variables and linguistic terms in the model. The
derivation of an accurate linguistic fuzzy system
usually requires a big number of linguistic terms.
Unfortunately, this fact causes the number of rules
to rise significantly, which may cause the system to
lose the capability of being readable by human be-
ings. Of course, in most cases it would be possible
to obtain an equivalent fuzzy system with a much
smaller number of rules by renouncing to that kind
of rigidly partitioned input space.

However, it is possible to make some considerations
to face the disadvantages enumerated above. Basically,
two ways of improving the accuracy in LFM can be
considered by performing the improvement in:

� The model structure, slightly changing the rule
structure to make it more flexible, or in� The modeling process, extending the model design
to other components beyond the rule base, such as
the fuzzy partitions, or even considering more so-
phisticated derivations of it.

Note that, the so-called strong fuzzy partitions are
widely used because they satisfy most of the inter-
pretability constraints introduced in Sect. 14.2.2. The
design of fuzzy partitions may be integrated within the
whole derivation process of a fuzzy system with differ-
ent schemata:

� Preliminary design. It involves extracting fuzzy
partitions automatically by induction (usually per-
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formed by nonsupervised clustering techniques)
from the available dataset.� Embedded design. Following a meta-learning pro-
cess, this approach first derives different fuzzy
partitions and then samples its efficacy running
an embedded basic learning method of the entire
KB [14.41].� Simultaneous design. The process of designing
fuzzy partitions is developed together with the
derivation of other components such as the fuzzy
rule base [14.42].� A posteriori design. This approach involves tuning
of the previously defined fuzzy partitions once the
remaining components have been obtained. Usu-
ally, the tuning process changes the membership
function shapes with the aim of improving the
accuracy of the linguistic model [14.43]. Neverthe-
less, sometimes it also takes care of getting better
interpretability (e.g., merging membership func-
tions [14.44]).

It is also possible to opt for usingmore sophisticated
rule base learning methods while the fuzzy partitions
and the model structure are kept unaltered. Usually, all
these improvements have the final goal of enhancing the
interpolative reasoning the fuzzy system develops. For
instance, the COR (cooperative rules) method follows
the primary objective of inducing a better cooperation
among linguistic rules [14.45].

As an alternative, other authors advocate the exten-
sion of the usual linguistic model structure to make
it more flexible. As Zadeh highlighted in [14.46],
a way to do so without losing the description abil-
ity to a high degree is to use linguistic hedges (also
called linguistic modifiers in a wider sense). In ad-
dition, the rule structure can be extended through
the definition of double-consequent rules, weighted
rules, rules with exceptions, hierarchical rule bases,
etc.

First Accuracy Then Interpretability
The birth of more flexible fuzzy systems such as TSK
or approximate ones (allowing the FM to achieve higher
accuracy) entailed the eruption of PFM. Nevertheless,
the modeling tasks with these kinds of fuzzy systems
increasingly resembled black-box processes. Conse-
quently, nowadays several researchers share the idea
of rescuing the seminal intent of FM, i. e. to preserve
the good interpretability advantages offered by fuzzy
systems. This fact is usually attained by reducing the
complexity of the model [14.47]. Furthermore, there are

approaches aimed at improving the local description of
TSK-type fuzzy rules:

� Merging/removing fuzzy sets in precise fuzzy sys-
tems. The interpretability of TSK-type fuzzy sys-
tems may be improved by removing those fuzzy
sets that, after an automatic adaptation and/or ac-
quisition, do not contribute significantly to the
model behavior. Two aspects must be consid-
ered:
– Redundancy. It refers to the coexistence of simi-

lar fuzzy sets representing compatible concepts.
In consequence, models become more complex
and difficult to understand (the distinguishabil-
ity constraint is not satisfied).

– Irrelevancy. It arises when fuzzy sets with
a constant membership degree equal to 1, or
close to it, are used. These kinds of fuzzy sets
do not furnish relevant information.

The use of similarity measures between fuzzy sets
the has been proposed to automatically detect these
undesired fuzzy sets [14.48]. Through first merg-
ing/removing fuzzy sets and then merging fuzzy
rules, the precise fuzzy model goes through an in-
terpretability improvement process that makes it
less complex (more compact) and more easily in-
terpretable (more transparent).� Ordering/selecting TSK-type fuzzy rules. An effi-
cient way to improve the interpretability in FM is
to select a subset of significant fuzzy rules that rep-
resent in a more compact way the system to be
modeled. Moreover, as a side effect this selection
of important rules reduces the possible redundancy
existing in the fuzzy rule base, thus improving
the generalization capability of the system, i. e.,
its accuracy. For instance, resorting to orthogonal
transformations [14.49] is one of the most success-
ful approaches in this sense.� Exploiting the local description of TSK-type fuzzy
rules. TSK-type fuzzy systems are usually consid-
ered as the combination of simple models (the rules)
that describe local behaviors of the system to be
modeled. Hence, insofar as each fuzzy rule is either
forced to have a smoother consequent polynomial
function or to develop an isolated action, the inter-
pretability will be improved:
– Smoothing the consequent polynomial func-

tion [14.50]. Through imposing several con-
straints to the weights involved in the poly-
nomial function of each rule consequent then
a convex combination of the input variables is
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performed. This contributes to a better under-
standing of the model.

– Isolating the fuzzy rule actions [14.47]. The de-
scription of each fuzzy rule is improved when
the overlapping between adjacent input fuzzy
sets is reduced. Note that the performance re-
gion of a rule is more clearly defined by avoid-
ing that other rules have high firing degree in the
same area.

Multiobjective Design
Since interpretability and accuracy are widely recog-
nized as conflicting goals, the use of multiobjective
evolutionary (MOE) strategies is becoming more and
more popular in the quest for the best interpretability-
accuracy trade-off [14.19, 51]. Ducange and Marcel-
loni [14.52] proposed the following taxonomy of mul-
tiobjective evolutionary fuzzy systems:

� MOE Tuning. Given an already defined fuzzy sys-
tem, its main parameters (typically membership
function parameters but also fuzzy inference param-
eters) are refined through MOE strategies [14.53,
54].� MOE Learning. The components of a fuzzy sys-
tem KB, the both fuzzy partitions forming the
database (DB) and fuzzy rules forming the rule-base
(RB), are automatically generated from experimen-
tal data.
– MOE DB Learning. The most relevant variables

are identified and the optimum membership
function parameters are defined from scratch.
It usually wraps a RB heuristic-based learning
process [14.55].

– MOE RB Selection. Starting from an initial RB,
a set of nondominated RBs is generated by
selecting subsets of rules exhibiting different
trade-offs between interpretability and accu-
racy [14.56]. In some works [14.35, 57], MOE
RB selection and MOE tuning are carried out
together.

– MOE RB Learning. The entire set of fuzzy rules
is fully defined from scratch. In this approach,
uniformly distributed fuzzy partitions are usu-
ally considered [14.58].

– MOE KB Learning. Simultaneous evolution-
ary learning of all KB components (DB and
RB). Concurrent learning of fuzzy partitions
and fuzzy rules proved to be a powerful tool
in the quest for a good balance between inter-
pretability and accuracy [14.59].

It is worthy to note that for the sake of clarity we
have only cited some of the most relevant papers in the
field of MOE fuzzy systems. For further details, the in-
terested reader is referred to [14.51, 52] where a much
more exhaustive review of related works is carried out.

14.4.2 Design Decisions at Fuzzy Processing
Level

Although there are studies analyzing the behavior of the
existing fuzzy operators for different purposes, unfor-
tunately this question has not been considered yet as
a whole from the interpretability point of view. Keeping
in mind the interpretability requirement, the implemen-
tation the of the inference engine must address the
following careful design choices:

� Select the right conjunctive operator to be used in
the antecedent of the rule. Different operators (be-
longing to the t-norm family) are available to make
this choice [14.60].� Select the operator to be used in the fuzzy impli-
cation of IF-THEN rules. Mamdani proposed to
use the minimum operator as the t-norm for im-
plication. Since then, various other t-norms have
been suggested as implication operator [14.60],
for instance the algebraic product. Other important
family of implication operators are the fuzzy im-
plication functions [14.61], one of the most usual
being the Lukasiewicz’s one. Less common impli-
cation operators such as force-implications [14.62],
t-conorms and operators not belonging to any of the
most known implication operator families [14.63,
64] have been considered too.� Choose the right inference mechanism. Two main
strategies are available:
– FATI (First Aggregation Then Inference). All

antecedents of the rules are aggregated to form
a multidimensional fuzzy relation. Via the com-
position principle the output fuzzy set is derived.
This strategy is preferred when dealing with im-
plicative rules [14.65].

– FITA (First Inference Then Aggregation). The
output of each rule is first inferred, and then all
individual fuzzy outputs are aggregated. This is
the common approach when working with the
usual conjunctive rules. This strategy has be-
come by far the most popular, especially in case
of real-time applications. The choice for an out-
put aggregation method (in some cases this is
called the also operator) is closely related to
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the considered implication operator since it has
to be related to the interpretation of the rules
(which is connected to the kind of implication).� Choose the most suitable defuzzification interface

operation mode. There are different options being
the most widely used the center of area, also called

center of gravity, and the mean of maxima. Even
though most methods are based on geometrical or
statistical interpretations, there are also paramet-
ric methods, adaptive methods including human
knowledge, and even evolutionary adaptive meth-
ods [14.66].

14.5 Interpretable Fuzzy Systems in the Real World

Interpretable fuzzy systems have an immediate impact
on real-world applications. In particular, their useful-
ness is appreciable in all application areas that put
humans at the center of computing. Interpretable fuzzy
systems, in fact, conjugate knowledge acquisition capa-
bilities with the ability of communicating knowledge in
a human-understandable way.

Several application areas can take advantage from
the use of interpretable fuzzy systems. In the follow-
ing, some of them are briefly outlined, along with a few
notes on specific applications and potentialities.

� Environment: Environmental issues are often chal-
lenging because of the complex dynamics, the
high number of variables and the consequent un-
certainty characterizing the behavior of subjects
under study. Computational intelligence techniques
come into play when tolerance for imprecision
can be exploited to design convenient models
that are suitable to understand phenomena and
take decisions. Interpretable fuzzy systems show
a clear advantage over black-box systems in pro-
viding knowledge that is capable of explaining
complex and nonlinear relationships by using lin-
guistic models. Real-world environmental applica-
tions of interpretable fuzzy systems include: harm-
ful bioaerosol detection [14.67]; modeling habitat
suitability in river management [14.68]; modeling
pesticide loss caused by meteorological factors in
agriculture [14.69], and so on.� Finance: This is a sector where human-computer
cooperation is very tight. Cooperation is carried out
in different ways, including the use of computers
to provide business intelligence for decision sup-
port in financial operations. In many cases financial
decisions are ultimately made by experts, who can
benefit from automated analyses of big masses of
data flowing daily in markets. To this pursuit, Com-
putational intelligence approaches are spreading
among the tools used by financial experts in their
decisions, including interpretable fuzzy systems for

stock return predictions [14.70], exchange rate fore-
casting [14.71], portfolio risk monitoring [14.72],
etc.� Industry: Industrial applications could take advan-
tage from interpretable fuzzy systems when there is
the need of explaining the behavior of complex sys-
tems and phenomena, like in fault detection [14.73].
Also, control plans for systems and processes can
be designed with the help of fuzzy systems. In such
cases, a common practice is to start with an ini-
tial expert knowledge (used to design rules which
are usually highly interpretable) that is then tuned
to increase the accuracy of the controller. However,
any unconstrained tuning could destroy the origi-
nal interpretability of the knowledge base, whilst,
by taking into account interpretability, the possibil-
ity of revising and modifying the controller (or the
process manager) can be enhanced [14.74].� Medicine and Health-care: As a matter of fact, in al-
most all medical contexts intelligent systems can be
invaluable decision support tools, but people are the
ultimate actors in any decision process. As a conse-
quence, people need to rely on intelligent systems,
whose reliability can be enhanced if their outcomes
may be explained in terms that are comprehensible
by human users. Interpretable fuzzy systems could
play a key role in this area because of the possibility
of acquiring knowledge from data and communicat-
ing it to users. In the literature, several approaches
have been proposed to apply interpretable fuzzy
systems in different medical problems, like assisted
diagnosis [14.75], prognosis prediction [14.76], pa-
tient subgroup discovery [14.77], etc.� Robotics: The complexity of robot behavior model-
ing can be tackled by an integrated approach where
a first modeling stage is carried out by combining
human expert and empirical knowledge acquired
from experimental trials. This integrated approach
requires that the final knowledge base is provided
to experts for further maintenance: this task could
be done effectively only if the acquired knowledge
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is interpretable by the user. Some concrete applica-
tions of this approach can be found in robot local-
ization systems [14.78] and motion analysis [14.79,
80].� Society: The focus of intelligent systems for social
issues has noticeably increased in recent years. For

reasons that are common to all the previous appli-
cation areas, interpretable fuzzy systems have been
applied in a wide variety of scopes, including qual-
ity of service improvement [14.81], data mining
with privacy preservation [14.82], social network
analysis [14.37], and so on.

14.6 Future Research Trends on Interpretable Fuzzy Systems
Research on interpretable fuzzy systems is open in sev-
eral directions. Future trends involve both theoretical
and methodological aspects of interpretability. In the
following, some trends are outlined amongst the pos-
sible lines of research development [14.7].

� Interpretability definition: The blurred nature of in-
terpretability requires continuous investigations on
possible definitions that enable a computable treat-
ment of this quality in fuzzy systems. This require-
ment casts the research on interpretable fuzzy sys-
tems toward cross-disciplinary investigations. For
instance, this research line includes investigations
on computable definitions of some conceptual qual-
ities, like vagueness (which has to be distinguished
from imprecision and fuzziness). Also, the problem
of interpretability of fuzzy systems can be intended
as a particular instance of the more general problem
of communication between granular worlds [14.83],
where many aspects of interpretability could be
treated in a more abstract way.� Interpretability assessment: A prominent objec-
tive is the adoption of a common framework for
characterizing and assessing interpretability with
the aim of avoiding misleading notations. Within
such a framework, novel metrics could be de-
vised, especially for assessing subjective aspects
of interpretability, and integrated with objective in-
terpretability measures to define more significant
interpretability indexes.� Design of interpretable fuzzy models: A current re-
search trend in designing interpretable fuzzy models
makes use of multiobjective genetic algorithms in

order to deal with the conflicting design objectives
of accuracy and interpretability. The effectiveness
and usefulness of these approaches, especially those
concerning advanced schemes, have to be veri-
fied against a number of indexes, including indexes
that integrate subjective measures. This verifica-
tion process is particularly required when tackling
high-dimensional problems. In this case, the combi-
nation of linguistic and graphical approaches could
be a promising approach for descriptive and ex-
ploratory analysis of interpretable fuzzy systems.� Representation of fuzzy systems: For very complex
problems the use of novel forms of representa-
tion (different from the classical rule based) may
help in representing complex relationship in com-
prehensible ways thus yielding a valid aid in de-
signing interpretable fuzzy systems. For instance,
a multilevel representation could enhance the inter-
pretability of fuzzy systems by providing different
granularity levels for knowledge representation. On
the one hand, the highest granulation levels give
a coarse (yet immediately comprehensible) descrip-
tion of knowledge, while lower levels provide for
more detailed knowledge.

As a final remark, it is worth observing that inter-
pretability is one aspect of the multifaceted problem of
human-centered design of fuzzy systems [14.84]. Other
facets include acceptability (e.g., according to ethical
rules), interestingness of fuzzy rules, applicability (e.g.,
with respect to law), etc. Many of them are not yet in the
research mainstream but they clearly represent promis-
ing future trends.

14.7 Conclusions

Interpretability is an indispensable requirement for de-
signing fuzzy systems, yet it cannot be assumed to hold
by the simple fact of using fuzzy sets for modeling. In-
terpretability must be encoded in some computational

methods in order to drive the design of fuzzy systems,
as well as to assess the interpretability of existing mod-
els. The study of interpretability issues started about
two decades ago and led to a number of theoretical
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and methodological results of paramount value in fuzzy
modeling. Nevertheless, research is still open both in
depth – through new ways of encoding and assessing

interpretability – and in breadth, by integrating inter-
pretability in the more general realm of human centered
computing.
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