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13. Fuzzy Rule-Based Systems

Luis Magdalena

Fuzzy rule-based systems are one of the most
important areas of application of fuzzy sets and
fuzzy logic. Constituting an extension of classical
rule-based systems, these have been successfully
applied to a wide range of problems in differ-
ent domains for which uncertainty and vagueness
emerge in multiple ways. In a broad sense, fuzzy
rule-based systems are rule-based systems, where
fuzzy sets and fuzzy logic are used as tools for rep-
resenting different forms of knowledge about the
problem at hand, as well as for modeling the in-
teractions and relationships existing between its
variables. The use of fuzzy statements as one of
the main constituents of the rules allows cap-
turing and handling the potential uncertainty of
the represented knowledge. On the other hand,
thanks to the use of fuzzy logic, inference meth-
ods have become more robust and flexible. This
chapter will mainly analyze what is a fuzzy rule-
based system (from both conceptual and structural
points of view), how is it built, and how can be
used. The analysis will start by considering the
two main conceptual components of these sys-
tems, knowledge, and reasoning, and how they
are represented. Then, a review of the main struc-
tural approaches to fuzzy rule-based systems will
be considered. Hierarchical fuzzy systems will also
be analyzed. Once defined the components, struc-
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ture and approaches to those systems, the ques-
tion of design will be considered. Finally, some
conclusions will be presented.

From the point of view of applications, one of the most
important areas of fuzzy sets theory is that of fuzzy
rule-based systems (FRBSs). These kind of systems
constitute an extension of classical rule-based systems,
considering IF–THEN rules whose antecedents and
consequents are composed of fuzzy logic (FL) state-
ments, instead of classical logic ones.

Conventional approaches to knowledge representa-
tion are based on bivalent logic, which has associated
a serious shortcoming: the inability to reason in situa-

tions of uncertainty and imprecision. As a consequence,
conventional approaches do not provide an adequate
framework for this mode of reasoning familiar to hu-
mans, and most commonsense reasoning falls into this
category.

In a broad sense, an FRBS is a rule-based sys-
tem where fuzzy sets and FL are used as tools for
representing different forms of knowledge about the
problem at hand, as well as for modeling the interac-
tions and relationships existing between its variables.
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The use of fuzzy statements as one of the main con-
stituents of the rules, allows capturing and handling
the potential uncertainty of the represented knowl-
edge. On the other hand, thanks to the use of fuzzy
logic, inference methods have become more robust and
flexible.

Due to these properties, FRBSs have been success-
fully applied to a wide range of problems in different
domains for which uncertainty and vagueness emerge
in multiple ways [13.1–5].

The analysis of FRBSs will start by considering
the two main conceptual components of these systems,
knowledge and reasoning, and how they are repre-

sented. Then, a review of the main structural approaches
to FRBSs will be considered. Hierarchical fuzzy sys-
tems would probably match in this previous section,
but being possible to combine the hierarchical approach
with any of the structural models defined there, it seems
better to consider it independently. Once defined the
components, structure, and approaches to those sys-
tems, the question of design will be considered. Finally,
some conclusions will be presented. It is important to
notice that this chapter will concentrate on the general
aspects related to FRBSs without deepening in the foun-
dations of FL which are widely considered in previous
chapters.

13.1 Components of a Fuzzy Rule-Based System

Knowledge representation in FRBSs is enhanced with
the use of linguistic variables and their linguistic val-
ues, that are defined by context-dependent fuzzy sets
whose meanings are specified by gradual membership
functions [13.6–8]. On the other hand, FL inference
methods such as generalized Modus Ponens, general-
ized Modus Tollens, etc., form the basis for approx-
imate reasoning [13.9]. Hence, FL provides a unique
computational framework for inference in rule-based
systems. This idea implies the presence of two clearly
different concepts in FRBSs: knowledge and reasoning.
This clear separation between knowledge and reason-
ing (the knowledge base (KB) and processing structure
shown in Fig. 13.1) is the key aspect of knowledge-
based systems, so that from this point of view, FRBSs
can be considered as a type of knowledge-based system.

The first implementation of an FRBS dealing
with real inputs and outputs was proposed by Mam-
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Fig. 13.1 General structure of
a Mamdani FRBS

dani [13.10], who considering the ideas published just
a few months before by Zadeh [13.9] was able to aug-
ment his initial formulation allowing the application of
fuzzy systems (FSs) to a control problem, so creating
the first fuzzy control application. These kinds of FSs
are also referred to as FRBSs with fuzzifier and de-
fuzzifier or, more commonly, as fuzzy logic controllers
(FLCs), as proposed by the author in his pioneering pa-
per [13.11], or Mamdani FRBSs. From the beginning,
the term FLC became popular since control systems
design constituted the main application of Mamdani
FRBSs. At present, control is only one more of the
many application areas of FRBSs.

The generic structure of a Mamdani FRBS is shown
in Fig. 13.1. The KB stores the available knowledge
about the problem in the form of fuzzy IF–THEN rules.
The processing structure, by means of these rules, puts
into effect the inference process on the system inputs.



Fuzzy Rule-Based Systems 13.1 Components of a Fuzzy Rule Based-System 205
Part

B
|13.1

The fulfillment of rule antecedent gives rise to the ex-
ecution of its consequent, i. e., one output is produced.
The overall process includes several steps. The input
and output scalings produce domain adaptations. Fuzzi-
fication interface establishes a mapping between crisp
values in the input domain U, and fuzzy sets defined on
the same universe of discourse. On the other hand, the
defuzzification interface performs the opposite opera-
tion by defining a mapping between fuzzy sets defined
in the output domain V and crisp values defined in
the same universe. The central step of the process is
inference.

The next two subsections analyze in depth the two
main components of an FRBS, the KB and the pro-
cessing structure, considering the case of a Mamdani
FRBS.

13.1.1 Knowledge Base

The KB of an FRBS serves as the repository of the
problem-specific knowledge – that models the rela-
tionship between input and output of the underlying
system – upon which the inference process reasons
to obtain from an observed input, an associated out-
put.

This knowledge is represented in the form of rules,
and the most common rule structure in Mamdani
FRBSs involves the use of linguistic variables [13.6–8].
Hence, when dealing with multiple inputs-single output
(MISO) systems, these linguistic rules possess the fol-
lowing form

IF X1 is LT1 and : : : and Xn is LTn
THEN Y is LTo ; (13.1)

with Xi and Y being, respectively, the input and output
linguistic variables, and with LTi being linguistic terms
associated with these variables.

Note that the KB contains two different informa-
tion levels, i. e., the linguistic variables (providing fuzzy
rule semantics in the form of fuzzy partitions) and
the linguistic rules representing the expert knowledge.
Apart from that, a third component, scaling functions, is
added in many FRBSs to act as an interfacing compo-
nent for domain adaptation between the external world
and the universes of discourse used at the level of the
fuzzy partitions. This conceptual distinction drives to
the three separate entities that constitute the KB:

� The fuzzy partitions (also called Frames of Cogni-
tion) describe the sets of linguistic terms associated

with each variable and considered in the linguis-
tic rules, and the membership functions defining
the semantics of these linguistic terms. Each lin-
guistic variable involved in the problem will have
associated a fuzzy partition of its domain. Fig-
ure 13.2 shows a fuzzy partition using triangu-
lar membership functions. This structure provides
a natural framework to include expert knowledge
in the form of fuzzy rules. The fuzzy partition
shown in the figure uses five linguistic terms fvery
small, small, medium, large, and very largeg, (rep-
resented as VS, S, M, L, and VL, respectively)
with the interval Œl; r� being its domain (Universe
of discourse). The figure also shows the mem-
bership function associated to each of these five
terms.� A rule base (RB) is comprised of a collection of
linguistic rules (as the one shown in (13.1)) that
are joined by the also operator. In other words,
multiple rules can fire simultaneously for the same
input.� Moreover, the KB also comprises the scaling
functions or scaling factors that are used to
transform between the universe of discourse in
which the fuzzy sets are defined from/to the
domain of the system input and output vari-
ables.

It is important to note that the RB can present
several structures. The usual one is the list of rules,
although a decision table (also called rule matrix) be-
comes an equivalent and more compact representation
for the same set of linguistic rules when only a few in-
put variables (usually one or two) are considered by the
FRBS.

Let us consider an FRBS where two input vari-
ables (x1 and x2) and a single output variable .y/
are involved, with the following term sets associated:
fsmall, medium, largeg, fshort, medium, longg and
fbad, medium, goodg, respectively. The following RB

1

VS S M L VL

r

0.5

Fig. 13.2 Example of a fuzzy partition
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composed of five linguistic rules

R1W IF X1 is small and X2 is short THEN Y is bad;

also

R2W IF X1 is small and X2 is medium THEN Y is

bad, also

R3W IF X1 is medium and X2 is short THEN Y is

medium; also

R4W IF X1 is large and X2 is medium THEN Y is

medium; also

R5W IF X1 is large and X2 is long THEN Y is good ;
(13.2)

can be represented by the decision table shown in
Table 13.1.

Before concluding this section, we should notice
two aspects. On one hand, the structure of a lin-
guistic rule may be more generic if a connective
other than the and operator is used to aggregate the
terms in the rule antecedent. However, it has been
demonstrated that the above rule structure is generic
enough to subsume other possible rule representa-
tions [13.12]. The above rules are therefore com-
monly used throughout the literature due to their sim-
plicity and generality. On the other hand, linguistic
rules are not the only option and rules with a dif-
ferent structure can be considered, as we shall see in
Sect. 13.2.

13.1.2 Processing Structure

The functioning of FRBSs has been described as the
interaction of knowledge and reasoning. Once briefly
considered the knowledge component, this section will
analyze the reasoning (processing) structure. The pro-
cessing structure of a Mamdani FRBS is composed of
the following five components:

� The input scaling that transforms the values of the
input variables from its domain to the one where the
input fuzzy partitions are defined.

Table 13.1 Example of a decision table

x1
x2 small medium large
short bad medium
medium bad medium
long good

� A fuzzification interface that transforms the crisp in-
put data into fuzzy values that serve as the input to
the fuzzy reasoning process.� An inference engine that infers from the fuzzy in-
puts to several resulting output fuzzy sets according
to the information stored in the KB.� A defuzzification interface that converts the fuzzy
sets obtained from the inference process into a crisp
value.� The output scaling that transforms the defuzzified
value from the domain of the output fuzzy parti-
tions to that of the output variables, constituting the
global output of the FRBS.

In the following, the five elements will be briefly
described.

The Input/Output Scaling
Input/output scaling maps (applying the corresponding
scaling functions or factors contained in the KB) the in-
put/output variables to/from the universes of discourse
over which the corresponding linguistic variables were
defined.

This mapping can be performed with different func-
tions ranging from a simple scaling factor to linear and
nonlinear functions.

The initial idea for scaling was the use of scaling
factors with a tuning purpose [13.13], giving a certain
adaptation capability to the fuzzy system.

Additional degrees of freedom could be obtained by
using a more complex scaling function. A second op-
tion is the use of linear scaling with a function of the
form

f .x/D � 	 xC � ; (13.3)

where the scaling factor � enlarges or reduces the op-
erating range, which in turn decreases or increases the
sensitivity of the system in respect to that input vari-
able, or the corresponding gain in the case of an output
variable. The parameter � shifts the operating range and
plays the role of an offset for the corresponding vari-
able.

Finally, it is possible to use more complex mappings
generating nonlinear scaling. A common nonlinear
scaling function is

f .x/D sign.x/ 	 jxj˛ : (13.4)

This nonlinear scaling increases .˛ > 1/ or decreases
.˛ < 1/ the relative sensitivity in the region closer to the
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central point of the interval and has the opposite effect
when moving far from the central point [13.14].

The Fuzzification Interface
The fuzzification interface enables Mamdani FRBSs
to handle crisp input values. Fuzzification establishes
a mapping from crisp input values to fuzzy sets defined
in the universe of discourse of those inputs. The mem-
bership function of the fuzzy set A0 defined over the
universe of discourseU associated to a crisp input value
x0 is computed as

�A0 D F.x0/ ; (13.5)

in which F is a fuzzification operator.
The most common choice for the fuzzification oper-

ator F is the point wise or singleton fuzzification, where
A0 is built as a singleton with support x0, i. e., it presents
the following membership function:

�A0.x/D
(
1; if xD x0

0; otherwise :
(13.6)

Nonsingleton options [13.15] are also possible and have
been considered in some cases as a tool to represent the
imprecision of measurements.

The Inference System
The inference system is the component that derives
the fuzzy outputs from the input fuzzy sets accord-
ing to the relation defined through the fuzzy rules. The
usual fuzzy inference scheme employs the generalized
Modus Ponens, an extension to the classical Modus Po-
nens [13.9]

IF X is A THEN Y is B
X is A0

Y is B0 :

(13.7)

In this expression, IF X is A THEN Y is B describes
a conditional statement that in this case is a fuzzy con-
ditional statement, since A and B are fuzzy sets, and
X and Y are linguistic variables. A fuzzy conditional
statement like this one represents a fuzzy relation be-
tween A and B defined in U �V. This fuzzy relation is
expressed again by a fuzzy set .R/ whose membership
function �R.x; y/ is given by

�R.x; y/D I.�A.x/; �B.y//; 8x 2 U; y 2 V ;

(13.8)

in which �A.x/ and �B.y/ are the membership functions
of the fuzzy sets A and B, and I is a fuzzy implication
operator that models the existing fuzzy relation.

Going back to (13.7), the result of applying gen-
eralized Modus Ponens is obtaining the fuzzy set B0

(through its membership function) by means of the
compositional rule of inference [13.9]:

If R is a fuzzy relation defined in U and V, and A0

is a fuzzy set defined in U, then the fuzzy set B0, in-
duced by A0, is obtained from the composition of R
and A0,

that is

B0 D A0 ıR : (13.9)

Now it is needed to compute the fuzzy set B0 from
A0 and R. According to the definition of composition
(T-composition) given in the chapter devoted to fuzzy
relations, the result will be

�B0.y/D sup
x2U

T.�A0.x/;�R.x; y// ; (13.10)

where T is a triangular norm (t-norm). The concept and
properties of t-norms have been previously introduced
in the chapter devoted to fuzzy sets.

Given now an input value X D x0, obtaining A0 in
accordance with (13.6) (where �A0.x/D 0 8x¤ x0),
and considering the properties of t-norms .T.1;a/D
a;T.0; a/D 0/, the previous expression is reduced to

�B0.y/D T.�A0.x0/; �R.x0; y//

D T.1; �R.x0; y//D �R.x0; y/ : (13.11)

The only additional point to arrive to the final value
of �B0.y/ is the definition of R, the fuzzy relation
representing the Implication. This is a somehow con-
troversial question. Since the very first applications of
FRBSs [13.10, 11] this relation has been implemented
with the minimum (product has been also a common
choice). If we analyze the definition of fuzzy impli-
cation given in the corresponding chapter, it is clear
that the minimum does not satisfy all the conditions
to be a fuzzy implication, so, why is it used? It can
be said that initially it was a short of heuristic de-
cision, which demonstrated really good results being
accepted and reproduced in all subsequent applications.
Further analysis can offer different explanations to this
choice [13.16–18].

In any case, assuming the minimum as the represen-
tation for R, (13.11) produces the following final result:

�B0.y/Dmin.�A.x0/; �B.y// : (13.12)
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Considering now an n-dimensional input space, the
inference will establish a mapping between fuzzy sets
defined in the Cartesian product .U D U1 �U2 � 	 	 	 �
Un/ of the universes of discourse of the input variables
X1; : : : ;Xn, and fuzzy sets defined in V, being the uni-
verse of discourse of the output variable Y . Therefore,
when applied to the ith rule of the RB, defined as

Ri W IF X1 is Ai1 and : : : and Xn is Ain THEN Y is Bi ;

(13.13)

considering an input value x0 D .x1; : : : ; xn/, the out-
put fuzzy set B0 will be obtained by replacing �A.x0/
in (13.12) with,

�Ai.x0/D T.�Ai1.x1/; : : : ; �Ain.xn// ;

where T is a fuzzy conjunctive operator (a t-norm).

The Defuzzification Interface
The inference process in Mamdani-type FRBSs oper-
ates at the level of individual rules. Thus, the applica-
tion of the compositional rule of inference to the current
input, using the m rules in the KB, generates m out-
put fuzzy sets B0

i . The defuzzification interface has to
aggregate the information provided by the m individ-
ual outputs and obtain a crisp output value from the
aggregated set. This task can be done in two different
ways [13.1, 12, 19]: Mode A-FATI (first aggregate, then
infer) andMode B-FITA (first infer, then aggregate).

Mamdani originally suggested the mode A-FATI
in his first conception of FLCs [13.10]. In the last
few years, the Mode B-FITA is becoming more pop-
ular [13.19–21], in particular, in real-time applications
which demand a fast response time.

Mode A-FATI: First Aggregate, then Infer. In this
case, the defuzzification interface operates as follows:

� Aggregate the individual fuzzy sets B0

i into an over-
all fuzzy set B0 by means of a fuzzy aggregation
operator G (usually named as the also operator):

�B0.y/D G
n
�B0

1
.y/;�B0

2
.y/; : : : ; �B0

m
.y/

o
:

(13.14)

� Employ a defuzzification method, D, transforming
the fuzzy set B0 into a crisp output value y0:

y0 D D.�B0.y// : (13.15)

Usually, the aggregation operator G is implemented
by the maximum (a t-conorm), and the defuzzifier D
is the center of gravity (CG) or the mean of maxima
(MOM), whose expressions are as follows:

� CG:

y0 D
R
Y y 	�B0.y/dyR
Y �B0.y/dy

: (13.16)

� MOM:

yinf D inffzj�B0.z/Dmax
y

�B0.y/g
ysup D supfzj�B0.z/Dmax

y
�B0.y/g

y0 D yinf C ysup
2

: (13.17)

Mode B-FITA: First Infer, then Aggregate. In this
second approach, the contribution of each fuzzy set is
considered separately and the final crisp value is ob-
tained by means of an averaging or selection operation
applied to the set of crisp values derived from each of
the individual fuzzy sets B0

i .
The most common choice is either the CG or the

maximum value (MV), then weighted by the matching
degree. Its expression is shown as follows:

y0 D
Pm

iD1 hi 	 yiPm
iD1 hi

; (13.18)

with yi being the CG or the MV of the fuzzy set B0

i ,
inferred from rule Ri, and hi D �Ai.x0/ being the match-
ing between the system input x0 and the antecedent
(premise) of rule i.

Hence, this approach avoids aggregating the rule
outputs to generate the final fuzzy set B0, reducing the
computational burden compared to mode A-FATI de-
fuzzification.

This defuzzification mode constitutes a different ap-
proach to the notion of the also operator, and it is
directly related to the idea of interpolation and the ap-
proach of Takagi–Sugeno–Kang (TSK) fuzzy systems,
as can be seen by comparing (13.18) and (13.25).
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13.2 Types of Fuzzy Rule-Based Systems

As discussed earlier, the first proposal of an FRBS was
that of Mamdani, and this kind of system has been
considered as the basis for the general description of
previous section. This section will focus on the differ-
ent structures that can be considered when building an
FRBS.

13.2.1 Linguistic Fuzzy Rule-Based Systems

This approach corresponds to the original Mam-
dani FRBS [13.10, 11], being the main tool to de-
velop Linguistic models, and is the approach that has
been mainly considered to this point in the chap-
ter.

A Mamdani FRBS provides a natural framework
to include expert knowledge in the form of linguis-
tic rules. This knowledge can be easily combined with
rules which are automatically generated from data sets
that describe the relation between system input and
output. In addition, this knowledge is highly inter-
pretable. The fuzzy rules are composed of input and
output variables, which take values from their term sets
having a meaning (a semantics) associated with each
linguistic term. Therefore, each rule is a description of
a condition-action statement that exhibits a clear in-
terpretation to a human – for this reason, these kinds
of systems are usually called linguistic or descrip-
tive Mamdani FRBSs. This property makes Mamdani
FRBSs appropriate for applications in which the em-
phasis lies on model interpretability, such as fuzzy
control [13.20, 22, 23] and linguistic modeling [13.4,
21].

13.2.2 Variants of Mamdani Fuzzy
Rule-Based Systems

AlthoughMamdani FRBSs possess several advantages,
they also come with some drawbacks. One of the prob-
lems, especially in linguistic modeling applications,
is their limited accuracy in some complex problems,
which is due to the structure of the linguistic rules.
[13.24] and [13.25] analyzed these limitations conclud-
ing that the structure of the fuzzy linguistic IF–THEN
rule is subject to certain restrictions because of the use
of linguistic variables:

� There is a lack of flexibility in the FRBS due
to the rigid partitioning of the input and output
spaces.

� When the input variables are mutually dependent, it
becomes difficult to find a proper fuzzy partition of
the input space.� The homogeneous partition of the input and output
space becomes inefficient and does not scale well
as the dimensionality and complexity of the input–
output mapping increases.� The size of the KB increases rapidly with the num-
ber of variables and linguistic terms in the system.
This problem is known as the course of dimension-
ality. In order to obtain an accurate FRBS, a fine
level of granularity is needed, which requires addi-
tional linguistic terms. This increase in granularity
causes the number of rules to grow, which compli-
cates the interpretability of the system by a human.
Moreover, in the vast majority of cases, it is possi-
ble to obtain an equivalent FRBS that achieves the
same accuracy with a fewer number of rules whose
fuzzy sets are not restricted to a fixed input space
partition.

Both variants of linguistic Mamdani FRBSs de-
scribed in this section attempt to solve the said prob-
lems by making the linguistic rule structure more
flexible.

DNF Mamdani Fuzzy Rule-Based Systems
The first extension to Mamdani FRBSs aims at a differ-
ent rule structure, the so-called disjunctive normal form
(DNF) fuzzy rule, which has the following form [13.26,
27]:

IF X1 is eA1 and : : : and Xn is eAn

THEN Y is B ; (13.19)

where each input variable Xi takes as its value a set
of linguistic terms eAi, whose members are joined by
a disjunctive operator, while the output variable remains
a usual linguistic variable with a single label associated.
Thus, the complete syntax for the antecedent of the rule
is

X1 is eA1 D fA11 or : : : or A1l1g and : : :

and Xn is eAn D fAn1 or : : : or Anlng : (13.20)

An example of this kind of rule is shown as follows. Let
us suppose we have three input variables, X1, X2, and
X3, and one output variable, Y , such that the linguistic
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term sets Di (iD 1; 2; 3) and F, associated with each
variable, are

D1 D fA11;A12;A13g
D2 D fA21;A22;A23;A24;A25g
D3 D fA31;A32g FD fB1;B2;B3g : (13.21)

In this case, an example of DNF rule will be

IF X1 is fA11 or A12g and X2 is fA23 or A24g
and X3 is fA31 or A32g THEN Y is B2 : (13.22)

This expression contains an additional connective
different than the and considered in all previous rules.
The or connective is computed through a t-conorm, the
maximum being the most commonly used.

The main advantage of this rule structure is its
ability to integrate in a single expression (a single
DNF rule) the information corresponding to several
elemental rules (the rules commonly used in Mam-
dani FRBSs). In this example, (13.22) corresponds to
8 (2�2�2) rules of the equivalent system expressed as
(13.1). This property produces a certain level of com-
pression of the rule base, being quite helpful when the
number of input variables increases, alleviating the ef-
fect of the course of dimensionality.

Approximate Mamdani-Type
Fuzzy Rule-Based Systems

While the previous DNF fuzzy rule structure does not
involve an important loss in the linguistic Mamdani

R1: If X is NB then Y is NB
R2: If X is NM then Y is NM
R3: If X is NS then Y is NS
R4: If X is ZR then Y is ZR

R1: If X is then Y is
R2: If X is then Y is
R3: If X is then Y is
R4: If X is then Y is

a)  Descriptive Knowledge base

b)  Approximate fuzzy rule base

X

Xl Xr

NB NM NS ZR PS PM PB

R5: If X is PS then Y is PS
R6: If X is PM then Y is PM
R7: If X is PB then Y is PB

Y

Yl Yr

NB NM NS ZR PS PM PB

Fig. 13.3a,b Comparison between a descriptive KB and an approx-
imate fuzzy rule base

FRBS interpretability, the point of departure for the sec-
ond extension is to obtain an FRBS which achieves
a better accuracy at the cost of reduced interpretability.
These systems are called approximate Mamdani-type
FRBSs [13.1, 25, 28–30], in opposition to the previous
descriptive or linguistic Mamdani FRBSs.

The structure of an approximate FRBS is similar to
that of a descriptive one shown in Fig. 13.1. The dif-
ference is that in this case, the rules do not refer in
their definition to predefined fuzzy partitions of the lin-
guistic variables. In an approximate FRBS, each rule
defines its own fuzzy sets instead of using a linguistic
label pointing to a particular fuzzy set of the partition
of the underlying linguistic variable. Thus, an approxi-
mate fuzzy rule has the following form:

IF X1 is A1 and : : : and Xn is An THEN Y is B :

(13.23)

The major difference with respect to the rule struc-
ture considered in linguisticMamdani FRBSs is the fact
that the input variables Xi and the output one Y are fuzzy
variables instead of linguistic variables and, thus,Ai and
B are not linguistic terms (LTi) as they were in (13.1),
but independently defined fuzzy sets that elude an in-
tuitive linguistic interpretation. In other words, rules of
approximate nature are semantic free, whereas descrip-
tive rules operate in the context formulated by means of
the linguistic terms semantics.

Therefore, approximate FRBSs do not relay on
fuzzy partitions defining a semantic context in the form
of linguistic terms. The fuzzy partitions are somehow
integrated into the fuzzy rule base in which each rule
subsumes the definition of its underlying input and out-
put fuzzy sets, as shown in Fig. 13.3(b).

Approximate FRBSs demonstrate some specific ad-
vantages over linguistic FRBSs making them particu-
larly useful for certain types of applications [13.25]:

� The major advantage of the approximate approach
is that each rule employs its own distinct fuzzy sets
resulting in additional degrees of freedom and an in-
crease in expressiveness. It means that the tuning of
a certain fuzzy set in a rule will have no effect on
other rules, while changing a fuzzy set of a fuzzy
partition in a descriptive model affects all rules con-
sidering the corresponding linguistic label.� Another important advantage is that the number of
rules can be adapted to the complexity of the prob-
lem. Simple input–output relationships are modeled
with a few rules, but still more rules can be added as
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the complexity of the problem increases. Therefore,
approximate FRBSs constitute a potential remedy
to the course of dimensionality that emerges when
scaling to multidimensional systems.

These properties enable approximate FRBSs to
achieve a better accuracy than linguistic FRBS in com-
plex problem domains. However, despite their benefits,
they also come with some drawbacks:

� Their main drawback compared to the descriptive
FRBS is the degradation in terms of interpretabil-
ity of the RB as the fuzzy variables no longer
share a unique linguistic interpretation. Still, un-
like other kinds of approximate models such as
neural networks that store knowledge implicitly,
the knowledge in an approximate FRBS remains
explicit as the system behavior is described by lo-
cal rules. Therefore, approximate FRBSs can be
considered as a compromise between the apparent
interpretability of descriptive FRBSs and the type of
black-box behavior, typical for nondescriptive, im-
plicit models.� The capability to approximate a set of training data
accurately can lead to over-fitting and therefore to
a poor generalization capability to cope with previ-
ously unseen input data.

According to their properties, fuzzy model-
ing [13.1] constitutes the major application of approx-
imate FRBSs, as model accuracy is more relevant than
description ability. Approximate FRBSs are usually not
the first choice for linguistic modeling and fuzzy control
problems. Hence, descriptive and approximate FRBSs
are considered as complementary rather than competi-
tive approaches. Depending on the problem domain and
requirements on the obtainedmodel, one should use one
or the other approach. Approximate FRBSs are recom-
mendable in case one wants to trade interpretability for
improved accuracy.

13.2.3 Takagi–Sugeno–Kang
Fuzzy Rule-Based Systems

Instead of working with linguistic rules of the kind in-
troduced in the previous section, Sugeno et al. [13.31,
32] proposed a new model based on rules whose an-
tecedent is composed of linguistic variables and the
consequent is represented by a function of the input
variables. The most common form of this kind of rules
is the one in which the consequent expression consti-

tutes a linear combination of the variables involved in
the antecedent

IF X1 is A1 and : : : and Xn is An

THEN Y D p0C p1 	X1 C 	 	 	C pn 	Xn ; (13.24)

where Xi are the input variables, Y is the output variable,
and pD .p0; p1; : : : ; pn/ is a vector of real parameters.
Regarding Ai, they are either a direct specification of
a fuzzy set (thus Xi being fuzzy variables) or a linguis-
tic label that points to a particular member of a fuzzy
partition of a linguistic variable. These rules, and conse-
quently the systems using them, are usually called TSK
fuzzy rules, in reference to the names of their first pro-
ponents.

The output of a TSK FRBS, using a KB composed
of m rules, is obtained as a weighted sum of the indi-
vidual outputs provided by each rule, Yi, iD 1; : : : ;m,
as follows:Pm

iD1 hi 	 YiPm
iD1 hi

; (13.25)

in which hi D T.Ai1.x1/; : : : ;Ain.xn// is the matching
degree between the antecedent part of the ith rule
and the current inputs to the system, x0 D .x1; : : : ; xn/.
T stands for a conjunctive operator modeled by a t-
norm. Therefore, to design the inference engine of TSK
FRBSs, the designer only selects this conjunctive op-
erator T , with the most common choices being the
minimum and the product. As a consequence, TSK sys-
tems do not need defuzzification, being their outputs
real numbers.

This type of FRBS divides the input space in sev-
eral fuzzy subspaces and defines a linear input–output
relationship in each one of these subspaces [13.31].
In the inference process, these partial relationships are
combined in the said way for obtaining the global
input–output relationship, taking into account the dom-
inance of the partial relationships in their respective
areas of application and the conflicts emerging in the
overlapping zones. As a result, the overall system per-
forms as a sort of interpolation of the local models
represented by each individual rule.

TSK FRBSs have been successfully applied to
a large variety of practical problems. The main ad-
vantage of these systems is that they present a set of
compact system equations that allows the parameters pi
to be estimated by means of classical regression meth-
ods, which facilitates the design process. However, the
main drawback associated with TSK FRBSs is the form
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of the rule consequents, which does not provide a natu-
ral framework for representing expert knowledge that is
afflicted with uncertainty. Still, it becomes possible to
integrate expert knowledge in these FRBSs by slightly
modifying the rule consequent: for each linguistic rule
with consequent Y is B, provided by an expert, its con-
sequent is substituted by Y D p0, with p0 standing for
the modal point of the fuzzy set associated with the la-
bel B. These kinds of rules are usually called simplified
TSK rules or zero-order TSK rules.

However, TSK FRBSs are more difficult to interpret
than Mamdani FRBSs due to two different reasons:

� The structure of the rule consequents is difficult to
be understood by human experts, except for zero-
order TSK.� Their overall output simultaneously depends on the
activation of the rule antecedents and on the evalu-
ation of the function defining rule consequent, that
depends itself on the crisp inputs as well, rather than
being constant.

TSK FRBSs are used in fuzzy modeling [13.4, 31]
as well as control problems [13.31, 33].

As with Mamdani FRBSs, it is also possible to built
descriptive as well as approximate TSK systems.

13.2.4 Singleton Fuzzy Rule-Based Systems

The singleton FRBS, where the rule consequent takes
a single real-valued number, may be considered as
a particular case of the linguistic FRBS (the consequent
is a fuzzy set where the membership function is one
for a specific value and zero for the remaining ones) or
of the TSK-type FRBS (the previously described zero-
order TSK systems).

Its rule structure is the following

IF X1 is A1 and : : : and Xn is An

THEN Y is y0 : (13.26)

Since the single consequent seems to be more easily
interpretable than a polynomial function, the singleton
FRBS may be used to develop linguistic fuzzy mod-
els. Nevertheless, compared with the linguistic FRBS,
the fact of having a different consequent value for each
rule (no global semantic is used for the output variable)
worsens the interpretability.

13.2.5 Fuzzy Rule-Based Classifiers

Previous sections have implicitly considered FRBSs
working with inputs and, what is more important, out-

puts which are real variables. These kinds of fuzzy
systems show an interpolative behavior where the over-
all output is a combination of the individual outputs of
the fired rules. This interpolative behavior is explicit in
TSK models but it is also present in Mamdani systems.
This situation gives FRBSs a sort of smooth output,
generating soft transitions between rules, and being one
of the significant properties of FRBSs.

A completely different situation is that of having
a problem where the output takes values from a finite
list of possible values representing categories or classes.
Under those circumstances, the interpolative approach
of previously defined aggregation and defuzzification
methods, makes no sense. As a consequence, some ad-
ditional comments will be added to highlight the main
characteristics of fuzzy rule-based classifiers (FRBCs),
and the differences with other FRBSs.

A fuzzy rule-based classifier is an automatic clas-
sification system that uses fuzzy rules as knowledge
representation tool. Therefore, the fuzzy classification
rule structure is as follows

IF X1 is A1 and : : : and Xn is An

THEN Y is C ; (13.27)

with Y being a categorical variable, so C being a class
label. The processing structure is similar to that previ-
ously described in what concerns to the evaluation of
matching degree between each rule’s antecedent and
current input, i. e., for each rule Ri we obtain hi D
T.Ai1.x1/; : : : ;Ain.xn//. Once obtained hi, the winner
rule criteria could be applied so that the overall output
is assigned with the consequent of the rule achieving
the highest matching degree (highest value of hi). More
elaborated evaluations as voting are also possible.

Other alternative representations that include a cer-
tainty degree or weight for each rule have also been
considered [13.34]. In this case, the previously de-
scribed rule will also include a rule weight wi that
weights the matching degree during the inference pro-
cess. The effect will be that the winning rule will be
that achieving the highest value of hi 	wi, or in the case
of voting schemes, the influence of the vote of the rule
will be proportional to this value.

13.2.6 Type-2 Fuzzy Rule-Based Systems

The idea of extending fuzzy sets by allowing member-
ship functions to include some kind of uncertainty was
already mentioned by Zadeh in early papers [13.6–8].
The idea, that was not really exploited for a long period,
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has achieved now a significant presence in the literature
with the proposal of Type-2 fuzzy systems and Interval
type-2 fuzzy systems [13.35]. The main concept is that
the membership degree is not a value but a fuzzy set or
an interval, respectively. The effect is obtaining addi-
tional degrees of freedom being available in the design
process, but increasing the complexity of the process-
ing structure that requires now a type-reduction step
added to the overall process described in previous sec-
tion. As the complexity of the type reduction process
is much lower for Interval type-2 fuzzy systems than
in the general case of type-2 fuzzy systems, interval ap-
proaches are the most widely considered now in the area
of Type-2 fuzzy sets.

13.2.7 Fuzzy Systems with Implicative Rules

Rule-based systems mentioned to this point consider
rules that, having the form if X is A then Y is B, model
the inference through a t-norm, usually minimum or
product (Sect. 13.1.2).With this interpretation, rules are

described as conjunctive rules, representing joint sets
of possible input and output values. As mentioned in
the chapter devoted to fuzzy control, these rules should
be seen not as logical implications but rather as input–
output associations.

That kind of rule is the one commonly used in
real applications to the date. However, different au-
thors have pointed out that the same rule will have
a completely different meaning when modeled in terms
of material implications (the approach for Boolean
if–then statements in propositional logic) [13.18]. As
a result, in addition to the common interpretation
of fuzzy rules that is widely considered in the lit-
erature, some authors are exploring the modeling of
fuzzy rules (with exactly the same structure pre-
viously mentioned) by means of material implica-
tions [13.36]. Even being in a quite preliminary stage
of development, it is interesting to mention this ideas
since it constitutes a completely different interpreta-
tion of FRBSs, offering so new possibilities to the
field.

13.3 Hierarchical Fuzzy Rule-Based Systems

The knowledge structure of FRBSs offers different
options to introduce hierarchical structures. Rules, par-
titions, or variables can be distributed at different levels
according to their specificity, granularity, relevance, etc.
This section will introduce different approaches to hier-
archical FRBSs.

It would be possible to consider hierarchical fuzzy
systems as a different type of FRBS, so including it in
previous section, or as a design option to build simpler
FRBSs, being then included as part of the next section.
Including it in previous section could be a little bit con-
fusing since it is possible to combine the hierarchical
approach with several of the structural models defined
there, it seems better to consider it independently devot-
ing a section to analyze them.

The definition of hierarchical fuzzy systems as
a method to solve problems with a higher level of
complexity than those usually focused on with FRBSs,
has produced some good results. In most of the cases,
the underlying idea is to cope with the complexity of
a problem by applying some kind of decomposition
that generates a hierarchy of lower complexity sys-
tems [13.37].

Several methods to establish hierarchies in fuzzy
controllers have been proposed. These methods

could be grouped according to the way they struc-
ture the inference process, and the knowledge ap-
plied.

A first approach defines the hierarchy as a prioriti-
zation of rules in such a way that rules with a different
level of specificity receive a different priority, having
higher priority those rules being more specific [13.38,
39]. With this kind of hierarchy, a generic rule is ap-
plied only when no suitable specific rule is available. In
this case, the hierarchy is the effect of a particular im-
plication mechanism applying the rules by taking into
account its priority. This methodology defines the hi-
erarchy (the decomposition) at the level of rules. The
rules are grouped into prioritized levels to design a hi-
erarchical fuzzy controller.

Another option is that of considering a hierarchy of
fuzzy partitions with different granularity [13.40]. From
that point, an FRBS is structured in layers, where each
layer contains fuzzy partitions with a different granu-
larity, as well as the rules using those fuzzy partitions.
Usually, every partition in a certain layer has the same
number of fuzzy terms. In this case, rules at different
layers have different granularity, being somehow re-
lated to the idea of specificity of the previous paragraph.
It is even possible to generate a multilevel grid-like
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partition where only for some specific regions of the
input space (usually those regions showing poor perfor-
mance) a higher granularity is considered [13.41], with
a similar approach to that already considered in some
neuro-fuzzy systems [13.42].

A completely different point of view is that of in-
troducing the decomposition at the level of variables. In
this case, the input space is decomposed into subspaces
of lower dimensionality, and each input variable is only
considered at a certain level of the hierarchy. The re-
sult is a cascade structure of FRBSs where, in addition
to a subset of the input variables, the output of each
level is considered as one of the inputs to the follow-
ing level [13.43]. As a result, the system is decomposed
into a finite number of reduced-order subsystems, elim-
inating the need for a large-sized inference engine. This
decomposition is usually stated as a way to maintain
under control the problems generated by the so-called
course of dimensionality, the exponential growth of the
number of rules related to the number of variables of
the system.

The number of rules of an FRBS with n input vari-
ables and l linguistic terms per variable, will be ln. In
this approach to hierarchical FRBSs, the variables (and
rules) are divided into different levels in such a way that
those considered the most influential variables are cho-
sen as input variables at the first level, the next most
important variables are chosen as input variables at the

second level, and so on. The output variable of each
level is introduced as input variable at the following
level.

With that structure, the rules at first level of the
FRBS have a similar structure to any Mamdani FRBS,
i. e., that describe by (13.1), but at k-th level (k > 1),
rules include the output of the previous level as input

IF XNkC1 is LTNkC1 and : : : and XNkCnk is LTNkCnk

and Ok�1 is LTOk�1 THEN Ok is LTOk ; (13.28)

where the value Nk determines the input variables con-
sidered in previous levels

Nk D
k�1X
tD1

nt ; (13.29)

with nt being the number of system variables applied at
level t. Variable Ok represent the output of the k level
of the hierarchy. All outputs are intermediate variables
except for the output of the last level that will be Y (the
overall output of the system).

With this structure it is shown [13.43] that the num-
ber of rules in a complete rule base could be reduced
to a linear function of the number of variables, while in
a conventional FRBS it was an exponential function of
the number of variables.

13.4 Fuzzy Rule-Based Systems Design

Once defined the components and functioning of
an FRBS, it is time to consider its design, i. e., how to
built an FRBS to solve a certain problem while showing
some specific properties. The present section will focus
on this question.

An FRBS can be characterized according to its
structure and its behavior. When referring to its struc-
ture, we can consider questions as the dimension of
the system (number of variables, fuzzy sets, rules, etc.)
as well as other aspects related to properties of its
components (distinguishability of the fuzzy sets, re-
dundancy of the fuzzy rules, etc.). On the other hand,
the characterization related to the behavior mostly an-
alyzes properties considering the input–output relation
defined by the FRBS. In this area, we can include ques-
tions as stability or accuracy. Finally, there is a third
question that simultaneously involves structure and be-
havior. This question is interpretability, a central aspect

in fuzzy systems design that is considered in an inde-
pendent chapter.

13.4.1 FRBS Properties

All the structural properties to be mentioned are related
to properties of the KB, and basically cover charac-
teristics related to the individual fuzzy sets, the fuzzy
partitions related to each input and output variable, the
fuzzy rules, and the rule set as a whole.

The elemental components of the KB are fuzzy sets.
At this level, we have several questions to be analyzed
as normality, convexity, or differentiability of fuzzy
sets; all of them being related to the properties of the
membership function (�A.x/) defining the fuzzy set (A).
In most applications the considered fuzzy sets adopt
predefined shapes as triangular, trapezoidal, Gaussian,
or bell; the fuzzy sets are then defined by only changing
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some parameters of these parameterized functions. In
summary, most fuzzy sets considered in FRBSs are nor-
mal and convex sets belonging to one of two possible
families: piecewise linear functions and differentiable
functions. Piecewise linear functions are basically tri-
angular and trapezoidal functions offering a reduced
complexity from the processing point of view. On the
other hand, differentiable functions are mainly Gaus-
sian, bell, and sigmoidal functions being better adapted
to some kind of differential learning approaches as
those used in neuro-fuzzy systems, but adding complex-
ity from the processing point of view.

Once individual fuzzy sets have been considered,
the following level is that of fuzzy partitions related
to each variable. The main characteristics of a fuzzy
partition are cardinality, coverage, and distinguishabil-
ity. Cardinality corresponds to the number of fuzzy sets
that compose the fuzzy partitions. In most cases, this
number ranges from 3 to 9, with 9 being an upper limit
commonly accepted after the ideas of Miller [13.44].
The larger the number of fuzzy sets in the partition, the
most difficult the design and interpretation of the FRBS.
Coverage corresponds to the minimummembership de-
gree with which any value of the variable (x), through
its universe of discourse (U), will be assigned to at least
a fuzzy set (Ai) in the partition. Coverage is then defined
as

min
x2U

max
iD1:::n

�Ai.x/ ; (13.30)

being n the cardinality of the partition. As an example,
the fuzzy partition in Fig. 13.2 has a coverage of 0:5.
Finally, distinguishability of fuzzy sets is related to the
level of overlapping of their membership functions, be-
ing analyzed with different expressions.

On the basis of the fuzzy sets and fuzzy partitions,
the fuzzy rules are built. The first structural question
regarding fuzzy rules is the type of fuzzy rule to be con-
sidered: Mamdani, TSK, descriptive or approximate,
DNF, etc. If we consider now the interaction between
the different fuzzy rules of a fuzzy system, questions as
knowledge consistency or redundancy appear, i. e., does
a fuzzy system include pieces of knowledge (usually
rules) providing contradictory (or redundant) informa-
tion for a specific situation. Finally, when considering
the rule base as a whole, completeness and complex-
ity are to be considered. Completeness refers to the
fact that any potential input value will fire at least one
rule.

Considering now behavioral properties, the most
widely analyzed are stability and accuracy. It is also

possible to take into account other properties as con-
tinuity or robustness, but we will concentrate in those
having the larger presence in the literature. Behavioral
properties are related to the overall system, i. e., to the
processing structure as well as to the KB.

Stability is a key aspect of dynamical systems anal-
ysis, and plays a central role in control theory. FRBSs
are nonlinear dynamical systems, and after its early ap-
plication to control problems, the absence of a formal
stability analysis was seriously criticized. As a con-
sequence, the stability question received significant
attention from the very beginning, at present being
a widely studied problem [13.45] for both Mamdani
and TSK fuzzy systems, considering the use of different
approaches as Lyapunov’s methods, Popov criterion or
norm-based analysis among others.

Another question with a continuous presence in the
literature is that of accuracy and the somehow related
concept of universal approximation. The idea of fuzzy
systems as universal approximators states that, given
any continuous real-valued function on a compact sub-
set of Rn, we can, at least in theory, find an FRBS that
approximates this function to any degree. This prop-
erty has been established for different types of fuzzy
systems [13.46–48]. On this basis, the idea of build-
ing fuzzy models with an unbounded level of accuracy
can be considered. In any case, it is important to notice
that previous papers proof the existence of such a model
but assuming at the same time an unbounded complex-
ity, i. e., the number of fuzzy sets and rules involved in
the fuzzy system will usually grow as the accuracy im-
proves. That means that improving accuracy is possible
but always with a cost related either to the complexity
of the system or to the relaxation of some of its proper-
ties (usually interpretability).

13.4.2 Designing FRBSs

Given a modeling, classification, or control problem to
be solved, and assumed it will be focused on through
an FRBS, there are several steps in the process of
design. The first decision is the choice between the
different types of systems mentioned in Sect. 13.2, par-
ticularly Mamdani and TSK approaches. They offer
different characteristics related to questions as their ac-
curacy and interpretability, as well as different methods
for the derivation of its KB.

Once chosen a type of FRBS, its design im-
plies the construction of its processing structure as
well as the derivation of its KB. Even consider-
ing that there are several options to modify the
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processing structure of the system (Sect. 13.1.2),
most designers consider a standard inference engine
and concentrate on the knowledge extraction prob-
lem.

Going now to the knowledge extraction problem,
some of its parts are common to any modeling pro-
cess (being fuzzy or not). Questions as the selection of
the input and output variables and the determination of
the range of those variables are generic to any model-
ing approach. The specific aspects related to the fuzzy
environment are the definition of the fuzzy sets or the
fuzzy partition related to each of those variables, and
the derivation of a suitable set of fuzzy rules. These
two components can be jointly derived in a single pro-
cess, or sequentially performed by considering first the
design of the fuzzy partition associated with each vari-
able and then the fuzzy rules. The design process can
be based on two main sources of information: expert
knowledge and experimental data.

If we first consider the definition of fuzzy sets and
fuzzy partitions, quite different approaches [13.49] can
be applied. Even the idea of simply generating a uni-

formly distributed strong fuzzy partition of a certain
cardinality is widely considered.

Going now to rules, Mamdani FRBSs are partic-
ularly adapted to expert knowledge extraction, and
knowledge elicitation for that kind of system has been
widely considered in the literature. In any case, there
is not a standard methodology for fuzzy knowledge
extraction from experts and at present most practical
works consider either a direct data-driven approach, or
the integration of expert and data-driven knowledge ex-
traction [13.50].

When considering data-driven knowledge extrac-
tion, there is an almost endless list of approaches.
Some options are the use of ad-hoc methods based
on data covering measures (as [13.46]), the generation
of fuzzy decisions trees [13.51], the use of cluster-
ing techniques [13.52], and the use of hybrid systems
where genetic fuzzy systems [13.53] and neuro fuzzy
systems [13.54] represent the most widely considered
approaches to fuzzy systems design. Some of those
techniques produce both the partitions (or fuzzy sets)
and the rules in a single process.

13.5 Conclusions

Fuzzy rule-based systems constitute a tool for repre-
senting knowledge and reasoning on it. Jointly with
fuzzy clustering techniques, FRBSs are probably the
developments of fuzzy sets theory leading to the larger
number of applications. These systems, being a kind of
rule-based system, can be analyzed as knowledge-based
systems showing a structure with two main compo-
nents: knowledge and processing. The processing struc-
ture relays on many concepts presented in previous
chapters as fuzzy implications, connectives, relations
and so on. In addition, some new concepts as fuzzifica-
tion and defuzzification are required when constructing
a fuzzy rule-based system. But the central concept
of fuzzy rule-based systems are fuzzy rules. Different
types of fuzzy rules have been considered, particularly
those having a fuzzy (or not) consequent, producing dif-
ferent types of FRBS. In addition, new formulations are
being considered, e.g., implicative rules. Eventually, the
representation capabilities of fuzzy sets have been con-
sidered as too limited to represent some specific kinds
of knowledge or information, and some extended types
of fuzzy sets have been defined. Type-2 fuzzy sets are
an example of extension of fuzzy sets.

Having been said that FRBSs are knowledge-based
systems, and as a consequence, its design involves,
apart from aspects related to the processing structure,
the elicitation of a suitable KB properly describing the
way to solve the problem under consideration. Even
considering the large number of problems solved us-
ing FRBSs, there is not a clear design methodology
defining a well-established design protocol. In addi-
tion, two completely different sources of knowledge,
requiring different extraction approaches, have been
considered when building FRBSs: expert knowledge
and data. Many expert and data-driven knowledge ex-
traction techniques and methods are described in the
literature and can be considered. Connected to this
question, as part of the process to provide automatic
knowledge extraction capabilities to FRBSs, many hy-
brid approaches have been proposed, genetic fuzzy
systems and neuro-fuzzy systems being the most widely
considered.

In summary, FRBSs are a powerful tool to solve
real world problems, but many theoretical aspects and
design questions remain open for further investiga-
tion.
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