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Fuzzy implications are a generalization of the clas-
sical two-valued implication to the multi-valued

setting. They play a very important role both in the
theory and applications, as can be seen from their
use in, among others, multivalued mathematical

logic, approximate reasoning, fuzzy control, im-

age processing, and data analysis. The goal of this
chapter is to present the evolution of fuzzy impli-
cations from their beginnings to the current days.
From the theoretical point of view, we present the
basic facts, as well as the main topics and lines of
research around fuzzy implications. We also de-

vote a specific section to state and recall a list of
main application fields where fuzzy implications

are employed, as well as another one to the main
open problems on the topic.
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Fuzzy logic connectives play a fundamental role in the
theory of fuzzy sets and fuzzy logic. The basic fuzzy
connectives that perform the role of generalized And,
Or, and Not are t-norms, f-conorms, and negations, re-
spectively, whereas fuzzy conditionals are usually man-
aged through fuzzy implications. Fuzzy implications
play a very important role both in theory and applica-
tions, as can be seen from their use in, among others,
multivalued mathematical logic, approximate reason-
ing, fuzzy control, image processing, and data analysis.
Thus, it is hardly surprising that many researchers have
devoted their efforts to the study of implication func-
tions. This interest has become more evident in the last
decade when many works have appeared and have led to
some surveys [12.1,2] and even some research mono-
graphs entirely devoted to this topic [12.3,4]. Thus,
most of the known results and applications of fuzzy
implications until the publication date were collected
in [12.3], and very recently the edited volume [12.4] has
been published complimenting the earlier monograph
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with the most recent lines of investigation on fuzzy im-
plications.

In this regard, we have decided to devote this chap-
ter, as the title suggests, to present the evolution of
fuzzy implications from their beginnings to the present
time. The idea is not to focus on a list of results already
collected in other works, but unraveling the relations
and highlighting the importance in the development
and progress that fuzzy implications have experienced
along the time. From the theoretical point of view we
present the basic facts, as well as the main topics and
lines of research around fuzzy implications, recalling
in most of the cases where the corresponding results
can be found, instead of listing them. Of course, we
also devote a specific section to state and recall a list
of the main application fields where fuzzy implications
are employed. A final section looks ahead to the future
by listing some of the main open-problem-solutions of
which are certain to enrich the existing literature on the
topic.

and Future
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12.1 Fuzzy Implications: Examples, Properties, and Classes

Fuzzy implications are a generalization of the classical
implication to fuzzy logic. It is a well-established fact
that fuzzy concepts have to generalize the correspond-
ing crisp one, and consequently fuzzy implications
restricted to {0, 1}> must coincide with the classical
implication. Currently, the most accepted definition of

a fuzzy implication is the following one.

Definition 12.1 [12.3, Definition 1.1.1]

A function I: [0, 11> — [0, 1] is called a fuzzy implica-

tion if it satisfies the following conditions:
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This definition is flexible enough to allow uncount-
ably many fuzzy implications. This great repertoire of
fuzzy implications allows a researcher to pick out, de-
pending on the context, that fuzzy implication which
satisfies some desired additional properties. Many ad-
ditional properties, all of them arising from tautologies
in classical logic, have been postulated in many works.

(1) I(x,z) = I(y,z) when x <y, forall z € [0, 1]
(12) I(x,y) <I(x,z) wheny <z, forall x € [0, 1]
(13) 1(0,0) = I(1,1) = 1 and I(1,0) = 0.

The most important of them are collected below:

® (NP): The left neutrality principle,

I(1,y) =

y, yel0,1].

® (EP): The exchange principle,

I(x,1(v,2)) =1y, 1(x,2)), x,y,z€][0,1].

® (OP): The ordering property,
x<y<=Ix,y)=1, x,yel0,1].

® ([P): The identity principle,
I(x,x)=1, xe]0,1].

® (CP(N)): The contrapositive symmetry with respect

to a fuzzy negation N,

I(x.y) =IN(y).N(x)), x.ye[0,1].

Given a fuzzy implication I, its natural negation is
defined as N;(x) = I(x, 0) for all x € [0, 1]. This func-
tion is always a fuzzy negation. For the definitions of
basic fuzzy logic connectives like fuzzy negations, t-
norms and t-conorms please see [12.5]. Moreover, N,
can be continuous, strict, or strong and these are also
additional properties usually required of a fuzzy impli-
cation /.

Table 12.1 lists the most well-known fuzzy im-
plications along with the additional properties they
satisfy [12.3, Chap.1]. In addition, the following

Table 12.1 Basic fuzzy implications and the additional properties they satisfy where N¢, Np,, and Np, stand for the
classical, the least and the greatest fuzzy negations, respectively

Name
FLukasiewicz

Godel

Reichenbach
Kleene—Dienes

Goguen

Rescher

Yager

Weber

Fodor

Formula
Ik (x,y) = min{1, 1 —x+ y}

1 ifx<y
Iep(x,y) = .

y ifx>y
Igc(x,y) =1—x+xy
Igp (x,y) = max{l —x, y}

1 ifx<y
Igg(x.y) = {y .

= ifx>y
ifx<y

1
Irs(x,y) = {0

if x>y

1 if (x,y) = (0,0)
Iyg(x,y) = .
yoif (x.y) # (0,0
s (r.y) 1 ifx<l1
x,y) =
W= e
In(®.3) 1 ifx<y
x,y) =
FDLEY max{l —x,y} ifx>y

(NP) (EP) (IP) (OP) (CP(N)) Ny
N4 v v v Nc Nc
v v v v X Np,
v v X X Nc Nc
v v X X Nc Nc
v v v v X Np,
X X v v Nc¢ Np,
7 7 X X X Np,
v v v X X Np,
v v v v Nc Nc
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two implications

1, ifx=0o0ry=1,

Iy(x,y) =
o(x.) {0, ifx>0andy<1,

1, ifx<lory>0,

h(.5) {0, ifx=Tlandy=0,
are the least and the greatest fuzzy implications, respec-
tively, of the family of all fuzzy implications.

Beyond these examples of fuzzy implications, sev-
eral families of these operations have been proposed
and deeply studied. There exist basically two strate-
gies in order to define classes of fuzzy implications.
The most usual strategy is based on some combina-
tions of aggregation functions. In this way, -norms and
t-conorms [12.5] were the first classes of aggregation
functions used to generate fuzzy implications. Thus, the
following are the three most important classes of fuzzy
implications of this type:

1) (S,N)-implications defined as
Isn(x,y) =S(N().y), x,y€l[0.1],

where S is a 7-conorm and N a fuzzy negation.
They are the immediate generalization of the clas-
sical boolean material implicationp — g = —pVgq.
If N is involutive, they are called strong or S-
implications.

2) Residual or R-implications defined by

Ir(x,y) =sup{z € [0, 1] | T(x,2) <y}, x,y € [0, 1],

where T is a t-norm. When they are obtained from
left-continuous #-norms, they come from residuated
lattices based on the residuation property

T(x,y)<z<I(x,z) >y, forallx,y,ze[0,1].
3) QL-operations defined by

Irsn(xy) =SSN, T(x.y), xyel01],

where S is a r-conorm, T is a f-norm and N is
a fuzzy negation. Their origin is the quantum me-
chanic logic.

Note that R- and (S, N)-implications are always
implications in the sense of Definition 12.1, whereas
QL-operations are not implications in general (they
are called QL-implications when they actually are).

A characterization of those QL-operations which are
also implications is still open (Sect. 12.4), but a com-
mon necessary condition is S(N(x),x) =1 for all x €
[0, 1]. Yet another class of fuzzy implications is that of
Dishkant or D-operations [12.6] which are the contra-
position of QL-operations with respect to a strong fuzzy
negation.

These initial classes were successfully general-
ized considering more general classes of aggregation
functions, mainly uninorms, generating new classes
of fuzzy implications with interesting properties. In
this way, (U, N), RU-implications and QLU-operations
have been deeply analyzed [12.3, Chap. 5], [12.6].

A second approach to obtain fuzzy implications is
based on the direct use of unary monotonic functions.
In this way, the most important families are Yager’s f-
and g-generated fuzzy implications which can be seen
as implications generated from additive generators of
continuous Archimedean t-norms and f-conorms, re-
spectively [12.3, Chap. 3]:

1) Yager’s f-generated implications are defined as

#(X,y) :f_l(x'f(y))’ x’ye[oa l]a

with the understanding 0 - oo = 0, where f: [0, 1] —
[0, o0] is a strictly decreasing and continuous func-
tion with (1) = 0.

2) Yager’s g-generated implications are defined as

L(x,y)=g"" (min {% -g(y),g(l)}) .
x,y€[0,1],

with the understanding %: oo and oco-0=o00

where g: [0, 1] — [0, o0], is a strictly increasing and
continuous function with g(0) = 0.

The above classes give rise to fuzzy implications
with different additional properties which are collected
in Table 12.2. All the results referred in Table 12.2 are
from [12.3, Chaps. 2 and 3].

One of the main topics in this field is the character-
ization of each of these families of fuzzy implications
through algebraic properties. This is an essential step in
order to understand the behavior of these families. The
available characterization results of the above families
of implications are collected below.

Theorem 12.1 [12.3, Theorem 2.4.10]
For a function I: [0, 1]*> — [0, 1] the following state-
ments are equivalent:

185
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Table 12.2 Classes of fuzzy implications and the additional properties they satisfy

Class / Properties (NP) (EP) ar) (OP) (CP(N)) Ny

(S, N)-imp. v v Thm. 2.4.17 Thm. 2.4.19 Prop. 2.4.3 N

R-imp. with I-c. T v v v v Prop. 2.5.28 Nr
QL-imp. v Thm. 2.6.19 Sect. 2.6.3 Sect. 2.6.4 Sect. 2.6.5 N

f-gen. v v X X Thm. 3.1.7 Prop. 3.1.6
g-gen. v v Thm. 3.2.8 Thm. 3.2.9 X Np,

i) [ is an (S, N)-implication with a continuous (strict,
strong) fuzzy negation N.

ii) [ satisfies (I1), (EP), and MV, is a continuous (strict,
strong) fuzzy negation.

Moreover, in this case the representation I(x,y) =
S(N(x),y) is unique with N=N; and S(x,y) =
I(Ry(x),y) (for the definition of Ry see [12.3,
Lemma 1.4.10]).

Theorem 12.2 [12.3, Theorem 2.5.17]
For a function I:[0, 1]*> — [0, 1] the following state-
ments are equivalent:

i) I is an R-implication generated from a left-
continuous #-norm.

ii) [ satisfies (I12), (EP), (OP) and it is right continuous
with respect to the second variable.

Moreover, the representation
I(x,y) = max{r € [0, 1]|T(x, 1) <y}
is unique with

T(x,y) = min{z € [0, 1]|I(x, ) > y}.

As already said, it is still an open question when
QL-operations are fuzzy implications. However, in the
continuous case, when S and N are the p-conjugates of
the Lukasiewicz t-conorm Sy g and the classical negation
Nc, respectively, for some order automorphism ¢ on the
unit interval, the QL-operation has the following expres-
sion

Irs.n(x.y) =1p.1(x,y)

=0 ' (1— () +o(T(x.y))).
x,y€[0,1],

and we have the following characterization result.

Theorem 12.3 [12.3, Theorem 2.6.12]

For a QL-operation I, 7, where T is a t-norm and ¢
is an automorphism on the unit interval, the following
statements are equivalent:

1) Iy r1is a QL-implication.
ii) T, satisfies the Lipschitz condition, i. e.,

|T(p—1 (x1,31) — T(p—l (x2,¥2)]
<lxr—xl+ =y, x,x.y1.y2€[0.1].
In addition, (U, N)-implications are characterized
in [12.3, Theorem 5.3.12] and more recently, Yager’s f
and g-generated [12.7] and RU-implications [12.8] have
been also characterized. Finally, due to its importance in
many results, we recall the characterization of the fam-
ily of the conjugates of the Lukasiewicz implication.

Theorem 12.4 [12.3, Theorem 7.5.1]
For a function I:[0, 1]*> — [0, 1] the following state-
ments are equivalent:

i) I is continuous and satisfies both (EP) and (OP).
ii) I is a ¢-conjugate with the Lukasiewicz implica-
tion i, i.e., there exists an automorphism ¢ on

the unit interval, which is uniquely determined, such
that 7 has the form

I(x,y) = (ILk) o (x.y)
= ¢ '(min{l —p(x) + ¢(). 1}) .

x,y€0,1].
Igs Io I, e g || le
Ikp |Tr  Ire||{lvg
I Lk
GG
Irp Iop
Is,w Iws
FI ? T

Fig. 12.1 Intersections between the main classes of fuzzy
implications
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For the conjugates of the other basic implications
in Table 12.1, see the characterization results in [12.3,
Sect. 7.5].

The great number of classes of fuzzy implications
induces the study of the intersection between the differ-
ent classes which brings out both the unity that exists
among this diversity of classes and where the basic im-
plications from Table 12.1 are located. The intersections
among the main classes of fuzzy implications were stud-
ied in [12.3, Chap. 4] and are graphically displayed in
Fig. 12.1 (note that FI, Is n, I, loL, IF and Ig
denote the families of all fuzzy implications, (S,N)-
implications, R-implications, QL-implications, Yager’s
f-generated implications and Yager’s g-generated impli-

cations, respectively). In this figure, we have included
the fuzzy implications of Table 12.1 and the following
fuzzy implications which are examples of implications
lying in some intersection between some families

. y
Ig,\(x,y) :mln{l,—l} ,
XA

1, ifx=0,

Ip(x,y) =
b(x.) gy, ifx>0,
Ipc(x,y) = 1 — (max{x(x +x7 —2y),0})7 .

Also note that it is still an open problem to prove if
(Ior NIT)\Is.n = 0.

12.2 Current Research on Fuzzy Implications

In the previous sections, we have seen some func-
tional equations, namely, the exchange property (EP),
the contrapositive symmetry (CP(N)) and the like. In
this section, we deal with a few functional equations (or
inequalities) involving fuzzy implications. These equa-
tions, once again, arise as the generalizations of the
corresponding tautologies in classical logic involving
boolean implications.

12.2.1 Functional Equations and Properties

A study of such equations stems from their applica-
bility. The need for a plethora of fuzzy implications
possessing various properties is quite obvious. On the
one hand, they allow us to clearly classify and charac-
terize different fuzzy implications, while on the other
hand, they make themselves appealing to different ap-
plications. Thus, the functional equations presented in
this section are chosen to reflect this dichotomy.

Distributivity over other Fuzzy Logic Operations
The distributivity of fuzzy implications over different
fuzzy logic connectives, like #-norms, ¢-conorms, and
uninorms is reduced to four equations

I(x,C1(y,2)) = Co(I(x,y),1(x,2)) , (12.1)
1(x, D1 (y.2)) = Da(I(x.y).1(x,2)) . (12.2)
I(C(x,y),z) =D((x,2),1(v,2)) , (12.3)
I(D(x,y),2) = CI(x,2),1(y,2)) , (12.4)

satisfied for all x,y, z € [0, 1], where I is some gener-
alization of classical implication, C, Cy, C, are some

generalizations of classical conjunction and D, Dy, D,
are some generalizations of classical disjunction.

All the above equations can be investigated in two
different ways. On the one hand, one can assume that
function 7 belongs to some known class of fuzzy im-
plications and investigate the connectives C;, D; that
satisfy (12.1)—(12.4), as is done in the following works,
for e.g., Trillas and Alsina [12.9], Balasubramaniam
and Rao [12.10], Ruiz-Aguilera and Torrens [12.11,
12] and Massanet and Torrens [12.13]. On the other
hand, one can assume that the connectives C;, D; come
from the known classes of functions and investigate
the fuzzy implications / that satisfy (12.1)—(12.4). See
the works of Baczyriski [12.14,15], Baczyriski and Ja-
yaram [12.16], Baczyrnski and Qin [12.17, 18] for such
an approach.

The above distributive equations play an important
role in reducing the complexity of fuzzy systems, since
the number of rules directly affects the computational
duration of the overall application (we will discuss this
problem again in Sect. 12.3.2).

Law of Importation
One of the desirable properties of a fuzzy implication is
the law of importation as given below

I1(x,I(y,2)) =1(T(x,y),2), xy,z€[0,1], (12.5)

where T is a t-norm (or, in general, some conjunc-
tion). It generalizes the classical tautology (p A q) —
r= (p — (¢ — r)) into fuzzy logic context. This equa-
tion has been investigated for many different families

ce| gued
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of fuzzy implications (for results connected with main
classes see [12.3, Sect. 7.3]). Fuzzy implications satis-
fying (12.5) have been found extremely useful in fuzzy
relational inference mechanisms, since one can obtain
an equivalent hierarchical scheme which significantly
decreases the computational complexity of the system
without compromising on the approximation capability
of the inference scheme. For more on this, we refer the
readers to the following works [12.19, 20]. Related with
(12.5) is its equivalence with (EP) that has been an open
problem till the recent paper [12.21], where it is proved
that (12.5) is stronger than (EP) and equivalent when N
is continuous.

T-Conditionality or Modus Ponens
Another property investigated in the scientific litera-
ture, which is of great practical importance (see also
Sect. 12.3.1), is the so-called T-conditionality, defined
in the following way. If I is a fuzzy implication and T is
a t-norm, then / is called an MP-fuzzy implication for T,
if

T(x,I(x,y) <y, (12.6)

Investigations of (12.6) have been done for the three
main families of fuzzy implications, namely, (S, N)-,
R-, and QL-implications [12.3, Sect. 7.4].

x,ye[0,1].

Nonsaturating Fuzzy Implications

Investigations connected with subsethood measures
(see Sect. 12.3.3) and constructing strong equality func-
tions by aggregation of implication functions by the
formula ¥ (x,y) = M(I(x,y),I(y,x)), where M is some
symmetric function, have led researchers to consider
under which properties a fuzzy implication [ satisfies
the following conditions:

(P1) I(x,y) =1lifandonlyifx=0o0ry=1;
(P2) I(x,y) =0ifand onlyifx=1andy =0.

In [12.22], the authors considered the possible re-
lationships between these two properties and the prop-
erties usually required of implication operations. More-
over, they developed different construction methods of
strong equality indexes using fuzzy implications that
satisfy these two additional properties.

Special Fuzzy Implications
Special implications were introduced by Hdjek and Ko-
hout [12.23] in their investigations on some statistics on
marginals. The authors further have shown that they are
related to special GUHA-implicative quantifiers (see,
for instance, [12.24-26]). Thus, special fuzzy impli-

cations are related to data mining. In their quest to
obtain some many-valued connectives as extremal val-
ues of some statistics on contingency tables with fixed
marginals, they especially focussed on special homoge-
nous implicational quantifiers and showed that:

Each special implicational quantifier determines
a special implication. Conversely, each special
implication is given by a special implicational
quantifier.

Definition 12.2

A fuzzy implication [ is said to be special, if for any
e > 0andforallx,y € [0, 1] suchthatx+e¢, y+¢ € [0, 1]
the following condition is satisfied

I(x,y) <I(x+¢e,y+e). (12.7)

Recently, Jayaram and Mesiar [12.27] have investi-
gated the above functional equation. Their study shows
that among the main classes of fuzzy implications, no f-
implication is a special implication, while the Goguen
implication /g is the only special g-implication. Based
on the available results, they have conjectured that the
(S, N)-implications that are special also turn out to be
R-implications. However, in the case of R-implications
(generated from any #-norm) they have obtained the fol-
lowing result.

Theorem 12.5 [12.27, Theorem 4.6]

Let T be any t-norm and Ir be the R-implication
obtained from 7. Then the following statements are
equivalent:

i) I satisfies (12.7).

ii) T satisfies the 1-Lipschitz condition.

iii) 7 has an ordinal sum representation ({ey,de,
T« ))aea Where each t-norm Ty, o € A is generated
by a convex additive generator (for the definition of
ordinal sum, see [12.5]).

Having shown that the families of (S,N)-, f-, and
g-implications do not lead to any new special implica-
tions, Jayaram and Mesiar [12.27] turned to the most
natural question: Are there any other special implica-
tions, than those that could be obtained as residuals
of t-norms? This led them to propose some interest-
ing constructions of fuzzy implications which were
also special — one such construction is given in Defi-
nition 12.4 in Sect. 12.2.2.
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12.2.2 New Classes and Generalizations

Another current research line on fuzzy implications is
devoted to the study of new classes and generalizations
of the already known families. The research in this di-
rection has been extensively developed in recent years.
Among many generalizations of already known classes
of implications that have been dealt with in the litera-
ture, we highlight the following ones.

Generalizations of R-implications
The family of residual implications is one of the most
commonly selected families for generalization. As al-
ready mentioned in Sect. 12.1, the RU-implications
were the first generalization obtained via residuation
from uninorms instead of from #-norms. In the same
line, many other families of aggregation functions have
been used to derive residual implications:

1. Copulas, quasi-copulas, and semicopulas were used
in [12.28]. The main results in this work relate to
the axiomatic characterizations of those functions /
that are the residual implications of left-continuous
commutative semicopulas, the residuals of quasi-
copulas, and the residuals of associative copulas.
For details on these characterizations, that involve
up to ten different axioms, see [12.28].

2. Representable aggregation functions (RAFs) were
used in [12.29]. These are aggregation functions
constructed from additive generators of continuous
Archimedean 7-conorms and strong negations. The
interest in the residual implications obtained from
them lies in the fact that they are always continu-
ous and in many cases they also satisfy the modus
ponens with a nilpotent t-conorm. In particular,
residual implications that depend only on a strong
negation N are deduced from the general method
just by considering specific generators of continu-
ous Archimedean 7-conorms.

3. A more general situation is studied in [12.30] where
residual implications derived from binary functions
F:[0,1]*> — [0, 1] are studied. In this case, the pa-
per deals with the minimal conditions that F' must
satisfy in order to obtain an implication by residu-
ation. The same is done in order to obtain residual
implications satisfying each one of the most usual
properties.

4. Tt is well known that residual implications de-
rived from continuous Archimedean f-norms can
be expressed directly from the additive genera-
tor of the -norm. A generalization of this idea is

presented in [12.31], where strictly decreasing func-
tions f: [0, 1] — [0, +o00] with (1) = 0 are used to
derive implications as follows

, ifx<y,

1
I(x,y) =
R S B S
where f(y") =Tim,_,+ f(v) and f(1F) = f(1).
Properties of these implications are studied and
many new examples are also derived in [12.31].

Generalizations of (S, N)-Implications
Once again a first generalization of this class of im-
plications has been done using uninorms leading to
the (U, N)-implications mentioned in Sect. 12.1, but
recently many other aggregation functions were also
employed.

This is the case for instance in [12.32], where
the authors make use of 7S-functions obtained from
a t-norm T, a t-conorm S and a continuous, strictly
monotone function f: [0, 1] — [—00, +0o0] through the
expression

TS 1 (6.y) =~ (L= A)f(T(x,3)) + Af(S(x. 1))

for x,y € [0, 1], where A € (0, 1). Operators defined by
I(x,y) =TS s(N(x),y) are studied in [12.32] giving
the conditions under which they are fuzzy implications.

Another approach is based on the use of dual repre-
sentable aggregation functions G, that are simply the
N-dual of RAFSs, introduced earlier. In this case, the
corresponding (G, N)-operator is always a fuzzy impli-
cation and several examples and properties of this class
can be found in [12.33]. See also [12.34] where it is
proven that they satisfy (EP) (or (12.5)) if and only if G
is in fact a nilpotent -conorm.

Generalizations of Yager's Implications
In this case, the generalizations usually deal with the
possibility of varying the generator used in the defini-
tion of the implication. A first step in this line was taken
in [12.35] by considering multiplicative generators of z-
conorms, but it was proven in [12.36] that this new class
is included in the family of all (S, N)-implications ob-
tained from 7-conorms and continuous fuzzy negations.

Another approach was given in [12.37] introducing
(f, g)-implications. In this case, the idea is to general-
ize f-generated Yager’s implications by substituting the
factor x by g(x) where g: [0, 1] — [0, 1] is an increasing
function satisfying g(0) = 0 and g(1) = 1.

ce| gued
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In the same direction, a generalization of f- and
g-generated Yager’s implications based on aggregation
operators is presented and studied in [12.38], where the
implications are constructed by replacing the product
t-norm in Yager’s implications by any aggregation func-
tion.

Finally, h-implications were introduced in [12.39]
and are constructed from additive generators of repre-
sentable uninorms as follows.

Definition 12.3 ([12.39])

Let A:[0, 1] = [—00, 00] be a strictly increasing and
continuous function with 2(0) = —oo, h(e) = 0 for an
e € (0,1) and h(1) = 4+oc0. The function I”: [0, 1]> —
[0, 1] defined by

1, ifx=0,
I"(x,y) = T h (x-h(y))
= (L-h)) .

ifx>0andy<e,
ifx>0andy>e,

is called an h-implication.

This kind of implications maintains several properties
of those satisfied by Yager’s implications, like (EP) and
(12.5) with the product f-norm, but at the same time
they satisfy other interesting ones. For more details on
this kind of implications, as well as some generaliza-
tions of them, see [12.39].

12.2.3 New Construction Methods

In this section, we recall some construction meth-
ods of fuzzy implications. The relevance of these
methods is based on their capability of preserv-
ing the additional properties satisfied by the ini-
tial implication(s). First, note that some of them
were already collected in [12.3, Chaps. 6 and 7],
like:

® The @-conjugation of a fuzzy implication /

Ip(x.y) = ¢ ' U(p(x). (). x.ye[0.1],

where ¢ is an order automorphism on [0, 1].
® The min and max operations from two given fuzzy
implications

(I Vv I)(x,y) = maxil(x,y),J(x,y)} . x,y € [0, 1],
I AT)(x,y) = min{l(x,y),J(x,y)}, x,y € [0, 1] .

® The convex combinations of two fuzzy implica-
tions, where A € [0, 1]

IyGey) =206 y) +(1=2) T ().
x,y€[0,1].

® The N-reciprocation of a fuzzy implication /
Iy(x,y) =I(N(y),N(x)) ,

where N is a fuzzy negation.
® The upper, lower, and medium contrapositivization
of a fuzzy implication / defined, respectively, as

x,y€[0,1],

Iy(x,y) = max{/(x, y), In(x,y)}
= (I VIy)(x.y).
Iy(x,y) = min{I(x,y). Iy (x. y)}
= (I AIy)(x.y) .
Iy (x,y) = min{/(x,y) vV N(x), Iy (x,y) V ¥} ,

where N is a fuzzy negation and x, y € [0, 1]. Please
note that the lower (upper) contrapositivization is
based on applying the min (max) method to a fuzzy
implication / and its N-reciprocal.

It should be emphasized that the first major work to
explore contrapositivization in detail, in its own right,
was that of Fodor [12.40], where he discusses the con-
trapositive symmetry of fuzzy implications for the three
main families, namely, S-, R-, and QL-implications.
In fact, during this study Fodor discovered the nilpo-
tent minimum #-norm Ty, which is by far the first
left-continuous but noncontinuous f-norm known in
the literature. This study had a major impact on the
development of left-continuous #-norms with strong
natural negation, for instance, see the early works of
Jenei [12.41, and references therein].

The above fact clearly illustrates how the study of
functional equations involving fuzzy implications have
also had interesting spin-offs and have immensely ben-
efited other areas and topics in fuzzy logic connectives.

Among the new construction methods proposed in
the recent literature, we can roughly divide them into
the following categories.

Implications Generated from Negations
The first method was introduced by Jayaram and
Mesiar in [12.42], while they were studying special im-
plications (see Definition 12.2). From this study, they
introduced the neutral special implications with a given
negation and they studied the main properties of this
new class.
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Definition 12.4 [12.42]
Let N be a fuzzy negation such that N < N¢. Then the
function Ipy: [0, 1]* — [0, 1] given by

1, ifx<y,
Nx—y)(1—x)
1l—x+y

I (x,y) = x>y

with the understanding g =0, is called the neutral spe-
cial implication generated from N.

The second method of generation of fuzzy implica-
tions from fuzzy negations was introduced in [12.43].

Definition 12.5 [12.43]
Let N be a fuzzy negation. The function I™V1: [0, 1]* —
[0, 1] is defined by

1 ifx<y,

™y =1
() (l]:ﬂ-i-N(x), ifx>y.

Again, several properties of these new implications
can be derived, specially when the following classes of
fuzzy negations are considered

Na(r) = 1, ifxeA,
Yo, ifxgA,
1, ifxeA,
Mp) =1 L-x ifxéA
1+ Bx’ ’

where A = [0, o) withw € (0,1) or A = [0, ] with o €
[0, 1]. Note that Nyoy = Np, and Ny} g is the Sugeno
class of negations. Note also that /") can be expressed
as I (x,y) = Sp(N(x), Igg (x, y)) for all x,y e [0, 1].
From this observation, replacing Sp for any f-conorm
S and Ig¢ for any implication /, the function

N30 y) = SINW.I@.y) . xy€(0.1].
is always a fuzzy implication.

Implications Constructed

from Two Given Implications
In this section, we present methods that generate a fuzzy
implication from two given ones.

The first method is based on an adequate scaling of
the second variable of the two initial implications and it
is called the threshold generation method [12.44].

Definition 12.6 [12.44]
Let I; and I, be two fuzzy implications and e € (0, 1).
The function I;, —p,: [0, 1]* — [0, 1] defined by

1. ifx=0,

el (X, X),
e

e+(1—e)-I, (x, %),

ifx>0andy>e,

ifx>0andy<e,
In—p(x,y) =

is called the e-threshold generated implication from 1,
and /5.

This method allows for a certain degree of con-
trol over the rate of increase in the second variable of
the generated implication. Furthermore, the importance
of this method derives from the fact that it allows us
to characterize h-implications as the threshold gener-
ated implications of an f-generated and a g-generated
implication [12.13, Theorem 2 and Remark 30]. Fur-
ther, in contrast to many other generation methods of
fuzzy implications from two given ones, it preserves
(EP) and (12.5) if the initial implications possess them.
Moreover, for an e € (0, 1), the e-threshold generated
implications can be characterized as those implications
that satisfy I(x, e) = e for all x > 0.

The threshold generation method given above is
based on splitting the domain of the implication with
a horizontal line and then scaling the two initial impli-
cations in order to be well defined in those two regions.
An alternate but analogous method can be proposed
by using a vertical line instead of a horizontal line.
This is the idea behind the vertical threshold generation
method of fuzzy implications. This method does not
preserve as many properties as the horizontal threshold
method, but some results can still be proven. In partic-
ular, they are characterized as those fuzzy implications
such that I(e,y) = e forall y < 1 [12.45].

The following two construction methods were pre-
sented in [12.46]. Given two implications /I, J, the
following operations are introduced

(I VJ)(XJ) =I(J(y’x)"](x’y)) s
I 1)(x,y) =1(x,J(x,y)),

for all x,y € [0, 1]. The properties of these new opera-
tions as well as the structure of the set of all implica-
tions FI equipped with each one of these operations is
studied in [12.46].
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Other Construction Methods
In addition to the above methods, we would like to
recall the following interesting method based on condi-
tional probability and conditional distribution functions
presented by Grzegorzewski in [12.47].

Definition 12.7 [12.47, 48]
The function I¢: [0, 1]> — [0, 1] given by

1, ifx=0,
le(x.y) =1 C(x.y)
-

ifx>0,

where C is a copula, is called a probabilistic implication
based on copula C.

Conditions on copula C ensuring that the corre-
sponding /¢ is an implication, as well as properties of
these implications are detailed in [12.48]. The main in-
terest on this kind of implications lies in the fact that
they are a powerful link between probability theory and
fuzzy implications theory that can be useful in approxi-
mate reasoning. Moreover, results on these probabilistic
implications can also be useful for examining and inter-
preting the behavior of some stochastic events. Some
early results in this direction have appeared in [12.49,
50], where some generalizations of the previous idea
are considered. In particular in [12.51], survival impli-
cations based on the probability that a given object will
survive a fixed time into a population are studied. In this
case, the survival implications are defined by

1, ifx=0,
x+y—14+C(1—x,1-y)
x

IE(x.y) =

, ifx>0,

where C is again a copula.

Finally, we only briefly mention that there exist
other construction methods. For instance, Massanet
and Torrens [12.13,44,45] have proposed methods of
constructing implications derived from a given impli-
cation / and a fuzzy negation N as part of their study
on some properties of horizontal and vertical threshold
generated implications.

12.2.4 Fuzzy Implications in Nonclassical
Settings

When we deal with uncertainty through fuzzy sets and
fuzzy logic the natural framework is the unit inter-
val [0, 1] and hence the logical connectives to be used

are interpreted as operators on this interval. However,
there are many different tools that have been proposed
for managing uncertainty. In this context, some ex-
tensions of fuzzy logic and fuzzy sets have also been
developed. One can list at least the following exten-
sions: interval-valued fuzzy sets, Atanassov intuitionis-
tic fuzzy sets (that are equivalent to the interval-valued
approach, [12.52]), interval-valued intuitionistic fuzzy
sets, type-2 fuzzy sets, fuzzy multisets, n-dimensional
fuzzy sets, and hesitant fuzzy sets.

For all these extensions, the usual logical connec-
tives like fuzzy conjunctions and fuzzy disjunctions
need to be studied to develop a comprehensive theory,
and especially fuzzy implications in order to make in-
ferences in each one of these extensions. Due to space
constraints, we only recall some aspects of interval-
valued (or intuitionistic) fuzzy implications and the
references where they can be found.

Interval-Valued Approach

A good compilation of the known results related to
fuzzy implications (and other operations) in the interval-
valued framework, can be found in [12.53] or [12.54]
wherein, interval-valued or intuitionistic (S, N)- and R-
implications are developed and some of their properties
are presented. Works that deal with the construction of
these classes of interval-valued implications can also be
found in the literature. For instance, in [12.55] a con-
struction method for the residual implication associated
with a representable -norm (constructed from two stan-
dard #-norms T} and T, with T < T5) is presented. Sim-
ilarly, (S, N)- and R-implications generated from:

i) Aggregation functions and a standard fuzzy nega-
tion are presented in [12.56].

ii) Some classes of interval-valued aggregation func-
tions based on #-norms and #-conorms are dealt with
in [12.57].

iii) The so-called Ky -operators have been proposed in
[12.58].

Discrete Approach
Note that all the above mentioned tools are mainly used
in the management of imprecise quantitative informa-
tion. However, experts deal with many problems where
qualitative information is usually expressed through
linguistic terms. Qualitative information is often inter-
preted to take values in a totally ordered finite scale like

{Extremely Bad, Very Bad, Bad, Fair

12.8
Good, Very Good, Extremely Good}. (12.8)
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In these cases, the representative finite chain L, =
{0,1,...,n} is usually considered to model these lin-
guistic hedges and several researchers have devel-
oped an extensive study of operations on L,, usu-
ally called discrete operations. This approach allows
avoiding numerical interpretations and consequently,
the fuzzification and defuzzification steps become un-
necessary. In this framework, the smoothness con-
dition is usually considered as the discrete counter-
part of continuity. In fact, in the discrete framework
this property is equivalent to the divisibility prop-
erty as well as to the Lipschitz condition. In this
way, smooth discrete f-norms and f-conorms were
studied and characterized in [12.59] and also dis-
crete fuzzy implications derived from them have been
introduced.

As in the case of [0, 1], the four most usual ways
to construct discrete implications from f-norms and #-
conorms on L, are (S, N)-, R-, QL-, and D-implications.
The first two classes derived from smooth f-norms
and z-conorms and the only strong negation on L,
(given by Ny(x) = n—x) were studied in [12.60]. In
the smooth case, it is proven that the intersection be-
tween (S,N)- and R-implications contains only the
Lukasiewicz implication [12.60, Proposition 10]. Fur-
ther, the nonsmooth case has also been investigated
showing a parameterized family of nonsmooth #-norms
T for which the corresponding R-implication coincides
with the (S, N)-implication derived from the Ny-dual of
T. The case of discrete QL- and D-operators is studied
in [12.61], where characterization results on when such
operators are in fact implications are given and, more-
over, it is proven that both these classes coincide in the
smooth case.

However, the modeling of linguistic information is
limited because the information provided by experts for
each variable must be expressed by a simple linguistic
term. In most cases, this is a problem for experts be-
cause their opinion does not agree with a concrete term.
On the contrary, experts’ values are usually expressions
like better than Good, between Fair and Very Good, or
other even more complex expressions.

To avoid the limitation above, an approach has re-
cently appeared trying to increase the flexibility of
the elicitation of linguistic information. This approach
deals with the possibility of extending monotonic op-
erations on L, to operations on the set of discrete
fuzzy numbers whose support is a subinterval of L,,
usually denoted by J’Zlf”. The idea lies in the fact that
any discrete fuzzy number A € J’Zlf” can be consid-
ered (identifying the scale £ given in (12.8) with the
chain Lg) as an assignment of a [0, 1]-value to each
term in our linguistic scale. As an example, the above
mentioned expression between Fair and Very Good can
be performed, for instance, by a discrete fuzzy number
A€ Afﬁ, with support given by the subinterval

[Fair, Very Good] = {Fair, Good, Very Good} ,

(that corresponds to the subinterval [3,5] in Lg). The
values of A in its support should be described by
experts, allowing in this way a complete flexibility
of the qualitative valuation. Usual operations like 7-
norms, z-conorms, strong negations, aggregation func-
tions, and also fuzzy implications have been introduced
in this framework. The case of (S,N)-, QL- and D-
implications can be found in [12.62,63] and the case
of R-implications in [12.64].

12.3 Fuzzy Implications in Applications

So far, we have discussed the theoretical aspects of
fuzzy implications, namely, analytical and algebraic. In
this section, we discuss their applicational value which
shows a wide spectrum of areas wherein they are em-
ployed and how the gamut of properties that a fuzzy
implication possesses plays an important role in its em-
ployability.

12.3.1 FL,—Fuzzy Logic in the Narrow Sense

Boolean implications are employed in inference
schemas like modus ponens, modus tollens, etc., where

the reasoning is done with statements or propositions
whose truth-values are two valued. Fuzzy implica-
tions play a similar role in the generalizations of the
above inference schemas, where reasoning is done with
fuzzy statements whose truth-value lies in [0, 1] instead
of {0, 1}.

Fuzzy Propositions
An expression of the form x is A where A is a fuzzy
set on an appropriate domain U, with reference to the
context, is termed as a Fuzzy Statement or a Fuzzy
Proposition. (The above two interpretations bear a close
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resemblance to the Adjunctive and Connective interpre-
tations as given in [12.65, pp. 331], though they are
originally given for a binary operator. For other views
and interpretation of the above statement, see, for in-
stance, Bezdek et al., [12.66].)

Let it be given that x is A and also that x assumes
the precise value, let us say, x = u, where u € U, the
domain of A. Then the truth value of the above fuzzy
statement is obtained as follows

t(xisA)=Au),

i.e., the truth value of the above fuzzy statement, given
that x is precisely known, is equal to the degree to
which u — the value x assumes — is itself compatible
with the fuzzy set A. Thus greater the membership de-
gree of u in the concept A, higher is the truth value of
the fuzzy statement.

Consider the statement John is Tall and that x — the
height of John — is precisely given to be 510" € U.
Now, A(5'10”) gives the membership degree of 5'10”
in the concept A = Tall, which can be interpreted as
how much John belongs to the set of all 7Tall men, or
equivalently, how much John is Tall is true, which is
nothing but the truth-value t(John is Tall).

Fuzzy Conditionals or Fuzzy IF-THEN Rules
A fuzzy statement of the type discussed above X is A
can be interpreted in yet another way, namely, as a lin-
guistic statement, i.e., as an assignment of a fuzzy set
to a variable.

Let A: U — [0, 1] be a fuzzy set on a suitable do-
main U. Then A can be taken to represent a concept.
A linguistic variable of U is a symbol X that can assume
or be assigned any fuzzy subset of U. Then a linguistic
statement X is A is interpreted as the linguistic variable
X taking the linguistic value A.

For example, let U denote the set of all values in
degrees centigrade. If the linguistic variable X denotes
Temperature, then it can assume the following linguis-
tic values A, namely, high, more or less high, medium,
cool, very cold, etc. Each of the linguistic values (say
A = cool) is represented by a fuzzy set on the domain
U of the linguistic variable X, i.e., A: U — [0, 1].

The shape of the graph of the function represents
the concept (say high temperature). The concept of high
temperature is itself again context dependent. For ex-
ample, high temperature (fever) for a human being is
different from the high temperature in a blast furnace,
and accordingly the domain of the linguistic variable is
selected.

A fuzzy IF-THEN rule is of the form

IF Xis A THEN Yis B, (12.9)
where A, B are linguistic expressions/values assumed
by the linguistic variables X,y. For example,

IF'X (temperature) is A (high)
THEN'Y (pressure) is B (low).

Generalized Modus Ponens
Let «, B be two fuzzy propositions as given above and
let « —> B be the fuzzy conditional which is a fuzzy
IF-THEN rule as above. In classical logic, one uses
rules of deduction, like modus ponens and modus tol-
lens to deduce new knowledge from a given set of
propositions. For instance, modus ponens states that
aA(a— B)FB.

In fuzzy logic, since we deal with fuzzy propo-
sitions whose truth values vary over the entire [0, 1]
interval we employ fuzzy logic operations. Typically A
is interpreted as a r-norm 7 and for the — a fuzzy im-
plication is used.

Unlike with classical propositions, when we deal
with fuzzy propositions it is not always given that from
a A (@ —> ) one obtains B. This type of deduction
is known as generalized modus ponens (GMP) and the
study of pairs of operators (A, —>), or alternately, a 7-
norm and fuzzy implication (7', I), that can be employed
in GMP becomes important. It can be shown that this
property translates to studying pairs (7, 7) that satisfy
the functional equation 7'(x, I(x,y)) <y forx,y € [0, 1],
which is nothing but 7-conditionality as dealt with in
Sect. 12.2.1.

Proof by Contradiction
In classical logic, many a time one proves a statement
of the form &« — B by proving its contrapositive, i. e.,
—f —> —a. However, in the setting of fuzzy logic, of-
ten the negation — used is noninvolutive, i.e., ~—a #
a.

For instance, when the underlying fuzzy logic
operations come from the Godel residuated lattice
([0, 1], Ty, Igp, A, V), the natural negation of the fuzzy
implication Igp is not involutive and Igp is not contra-
positive w.r.t. any fuzzy negation. This led to the study
of contrapositivization of fuzzy implications which was
begun by Fodor [12.40] and is dealt with in Sect. 12.2.3
above.
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12.3.2 Approximate Reasoning

One of the best known application areas of fuzzy logic
is approximate reasoning (AR), wherein from impre-
cise inputs and fuzzy premises or rules we obtain, often,
imprecise conclusions [12.67]. AR with fuzzy sets en-
compasses a wide variety of inference schemes and
have been readily embraced in many fields, especially
among others: decision making, expert systems, and
control. Fuzzy implications play a vital role in many of
these inference mechanisms, a brief discussion of which
is presented below.

Inference Mechanisms in AR
Let us be given a set of n fuzzy IF-THEN rules of the
form given in (12.10)

IfXisA; ThenyisB;, i=1,2,...,n, (12.10)

where A;, B; are fuzzy sets on input and output domains.
Now, given a fuzzy input, i.e., a fuzzy proposition or
a statement of the form X is A, the role of an inference
mechanism is to obtain a fuzzy output B’ that satisfies
some desirable properties [12.68, 69].

Note that, if we denote the fuzzy rules as A; —
B, i=1,2,...,n, as is typically done, then these
are exactly the fuzzy conditionals discussed above in
Sect. 12.3.1. Further, if we denote the input as A’ then
an inference mechanism implements the generalized
modus ponens by composing the fuzzy input A’ with
all the rules A; —> B; to obtain the fuzzy output B'.

There are two established ways to accomplish the
above, namely, fuzzy relational inference (FRI) and sim-
ilarity based reasoning (SBR). Fuzzy implications play
a major role in both the types of inference mechanisms
as detailed below.

Fuzzy Relational Inference (FRI)
In a fuzzy relational inference, all the rules A; — B;
are combined into a single fuzzy relation R and the out-
put B’ is obtained as an image of the input A’ composed
with R.

A fuzzy IF-THEN rule base of the form (12.10) is
modeled as a fuzzy relation R(x,y): X x Y — [0, 1] as
follows

R(x,y) = A=y (Ai(x) — Bi(y))
= N1 U(Ai(x), Bi())) ,
which reflects the conditional nature of the rules and

where [ is usually a fuzzy implication. Then given a fact
Xis A’, the inferred output B is obtained either as:

(12.11)

i) sup-T composition, as in the compositional rule of
inference (CRI) of Zadeh [12.70], or

iil) An inf-/ composition, as in the Bandler—-Kohout
subproduct (BKS) [12.71],

of A’(x) and R(x, y), i.e.,

B'(y) = A (x) o R(x,y) = sup T(A' (), R(x. ) .
(12.12)

B'() = A'(0) < Rex,y) = inf 14" (1), R(x, )
(12.13)

where T can be any 7-norm and / is any fuzzy implica-
tion.

It is clear from (12.12) and (12.13) that the impor-
tant role fuzzy implications and their properties play in
the goodness of an inference scheme. In the following
subsection, we present a few issues where this role is
highlighted.

Issues in FRI
While the rule base is an example of a single input sin-
gle output (SISO) case, in practice we need multi-input
single-output (MISO) rules of the form given below,
with m input domains X;, j = 1,2, ..., m,

Rl' . IF?C] is Ail ANDF)\CIZ is Ai2 AND
... ANDYX, is A;, THENYis B; .

While MISO rule bases are of great practical necessity,
they spring up some new issues when they are em-
ployed in FRIs.

Combinatorial Explosion of Rules

and Distributivity of Fuzzy Implications
Let there be k; fuzzy sets defined on each of the do-
mains Xj, j=1,2,...,m. Then in a complete MISO
rule base, we will have n = k; X kp X -+ - k,, number of
rules. Clearly, as m or k; increases n increases and we
have a combinatorial explosion of rules.

In a seminal work on studying this issue, Combs
and Andrews [12.72] proposed an equivalent transfor-
mation of the CRI to mitigate the computational cost.
The authors showed that the distributivity of fuzzy
implications over t-norms play a major role in this
transformation. This was further studied by Balasubra-
maniam and Rao [12.10] and its use in SBR was also
demonstrated later by Jayaram [12.73].
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Computational Complexity,

Hierarchical Systems,

and the Law of Importation
Let us consider an MISO rule base. From (12.11), it is
clear that the relation R obtained is a multidimensional
matrix, with R: X; X Xp X -+ X X, X ¥ — [0, 1]. In fact,
when one uses the First-Infer-Then-Aggregate mecha-
nism in an FRI, either CRI or BKS, one needs to store
n such m-dimensional matrices. Further, the input A’ is
also an m-dimensional matrix and the computation of
the output gets costlier.

To overcome this, Jayaram [12.19] proposed an
alternate hierarchical inference scheme which can be
shown to be equivalent both in the CRI [12.19]
and BKS [12.20] setting, when the underlying
operators are such that the fnorm 7 and the
fuzzy implication [/ satisfy the law of importation
(12.5).

12.3.3 Fuzzy Subsethood Measures

Inclusion or subsethood of sets is an important con-
cept. The first such definition of inclusion of a fuzzy
set A over X in another fuzzy set B, was given by Zadeh
[12.74] as follows

A CzB<=A(x) <B(),
forallxe X .

Note that this definition was more or less crisp, since
an A was either contained in B or not. A more
general notion of degree of inclusion was missing
in the above definition. Subsequently many fuzzy
subsethood measures, denoted (usually) Inc, were
proposed.

Axiomatic Studies

on Fuzzy Subsethood Measures
From the isomorphism that exists between classical set
theory and classical logic, we know that A C B is equiv-
alent to y4 = yp, where yy is the characteristic func-
tion of the set X. Thus, early fuzzy subsethood measures
also mimicked this equivalence by defining them based
on fuzzy implications. Many researchers, in particular,
Sinha and Dougherty [12.75], Kitainik [12.76], Bandler
and Kohout [12.77] proposed sets of axioms for an Inc
to satisfy.

It is easy to see that all of the above axiomatic ap-
proaches, eventually lead to employing implications as
the underlying operators to define the corresponding Inc

measure, as given below

Incsp(A, B) = 12£ min (1, A(A(x)) + A(1 — B(x))) .,
Ine(A.B) = inf 9o (B, A))

1 —Ikp(A(x), B(x))) ,
Incyk (A, B) = inf (I(A(x). B(x))) .

where A:[0, 1] — [0, 1] is a decreasing function with
some additional properties, ¢: A — [0,1] a func-
tion with additional properties where A = {(x,y) €
[0, 1]?|x > y} and [ is any fuzzy implication.

From the above formulae the important position
a fuzzy implication / holds in measuring fuzzy sub-
sethood is apparent. Note that the Inc measure is used
extensively in similarity based reasoning (SBR) and in
fuzzy mathematical morphology (FMM) which are dis-
cussed below.

12.3.4 Fuzzy Control

While Sect. 12.3.2 dealt with FRIs which are largely
used in the context of decision making and expert sys-
tems, in this section we deal with another type of fuzzy
inference mechanism (FIM) that is used in fuzzy con-
trol, where the approximation properties of the FIM are
important.

Similarity-Based Reasoning (SBR)
Let us once again consider a fuzzy IF-THEN rule base
of the form (12.10) and a fuzzy input A’. In an SBR
inference scheme, the following steps are employed to
produce the output:

® Matching: The input A’ is matched against each
of the antecedents A; of the rules (12.10) using
a matching function M to obtain the correspond-
ing similarity values s; = M(A’, A;) € [0, 1] for i =
1,2,...,n.

® Modification: Each of the similarity values s; is used
to modify the corresponding consequent B; of the
rule (12.10) using a modification J to obtain the
modified output B, = J(s;, B;).

® Aggregation: Finally all the modified outputs B;
are aggregated to obtain an overall output B =
G(By,....B).

In notations, we can write the above as

B'(y)=G_, (J(M(A".A).Bi(y))) . yeY.

(12.14)
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Fuzzy Implications and Matching Functions
Clearly, since A, A! € F(X), we see that the matching
function M : F(X) x F(X) — [0, 1]. Typically, a fuzzy
subsethood measure Inc is employed as an M. While
there exist M that are not based on fuzzy implications,
it is seen that those that are based on fuzzy implications
often satisfy many of the desirable properties required
on the matching function M in different contexts, for
instance, when the SBR is required to be interpolative,
monotonic or for the SBR to possess good approxima-
tion properties. For more on this topic, see the works of
Jayaram [12.73] or Mandal and Jayaram [12.78].

Fuzzy Implications and Modification Functions
From (12.14), it is clear that the modification function J
can be seen simply as a binary function on [0, 1]. While
any fuzzy logic operation could be used for J, fuzzy
implications are preferred either due to their proper-
ties or due to the conditional nature of the underlying
rules. For instance, when J = I a fuzzy implication, if
the original output B; is normal then the modified out-
put B/ is also normal, which is usually not the case when
one uses, say, a t-norm. In fact, different properties of 7
like (OP), (IP) and the nature of its natural negation N;
all play a role in the reasonableness of the final output
of an SBR.

In real-life systems, the input and output domains
X, Y are subsets of R. Now, let the consequents B;
be of bounded support, i.e., {y € Y CR|B;(y) > 0} =
[a,b] £ Y for some finite a,b € R. When an I whose
Nj is not the Godel least negation Np; is employed, the
support of B! becomes larger and in the case N is in-
volutive then the support of the modified output sets
B! become the whole of the set Y. This often makes
the modified output sets B; to be nonconvex (and of
larger support) and makes it difficult to apply stan-
dard defuzzification methods. For more on these see the
works of Stépnicka and De Baets [12.79]. The above
discussion brings out an interesting aspect of fuzzy im-
plications. While fuzzy implications / whose N; are
strong are to be preferred in the setting of fuzzy logic
FL, for inferencing as noted in Sect. 12.3.1 above, an [
with an N, that is not even continuous is to be preferred
in inference mechanisms used in fuzzy control.

By the core of a fuzzy set B on Y, we mean the
set {y € Y|B(y) = 1}. Now, an I which possesses (OP)
or (IP) is preferred in an SBR to ensure there is an
overlap between the cores of the modified outputs B, —
a property that is so important to ensure coherence in
the system [12.80] and that, once again, standard de-
fuzzification methods can be applied.

12.3.5 Fuzzy Mathematical Morphology

Consider a 2D binary image 2, i. e., the value at a pixel
is either O or 1. P can be seen as a function from X C
R? — {0, 1} or just a classical subset X C R2. Mathe-
matical morphology (MM) is a set-theoretic method for
the extraction of shape information from a scene. Here,
a Y C R? — which can be seen as another image Q and
often referred to as the structuring element — is used to
transform the original image 2 by some well-defined
local operators termed Dilation and Erosion as defined
below

D(P,Q)={veR?*A,(Q)NP#0}, (12.15)
E(P,Q)={veR*|A,(Q) C P}, (12.16)

where A4,(Q) = {u € R?|u—v € 9} is the translation of
9 by veR2

FMM is the extension of MM to gray-level im-
ages by using fuzzy sets and possibility theory. Note
that a gray-level image P can be interpreted as a fuzzy
set X C R? — [0, 1] where the pixel value is interpreted
as its membership degree to the original data set. This
fuzzified image is then processed via morphological op-
erators that are extensions of the boolean ones.

In the literature, one finds two approaches to this
extension:

i) As a formal translation of crisp equations using
t-norms and negations, by employing a fuzzy in-
tersection for N in (12.15) and a fuzzy subsethood
measure Inc for C in (12.16), and

ii) Using adjunction and residual implications.

While the first approach is based on the duality be-
tween dilation and erosion, the second approach stems
more from an algebraic setting.

De Baets [12.81, 82] took the second approach, and
defined the fuzzy dilation and erosion as follows

DP.Q)y)= sup [C(P(x—y).2())].

X€EA,(Y)NX

E(P.Q)(y) = inf [[(P(x=y), )],
x€A,(Y)

where C is any fuzzy conjunction and / is a fuzzy im-
plication.

When the pair of operations (C, ) satisfy the ad-
junction property, or equivalently, / is a residual impli-
cation obtained from C, then many interesting aspects
emerge. Firstly, it can be shown that opening and
closing operations, which are some morphological op-
erations obtained from the defined D, E turn out to
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be idempotent, which is highly desirable [12.83]. Sec-
ondly, it can be shown, as was done by Nachtegael and
Kerre [12.84], that this approach is more general and
many other approaches become a specific case of it.
Thirdly, recently, Bloch [12.85] showed that both the
above approaches based on duality and adjunction are
equivalent under some rather general and mild con-

12.4 Future of Fuzzy Implications

Since the publication of [12.2, 3], the peak of interest
in fuzzy implications has led to a rapid progress in at-
tempts to solve open problems in this topic. Specially,
in [12.3], many open problems were presented covering
all the subtopics of this field: characterizations, intersec-
tions, additional properties, etc. Many of these problems
have been already solved and the solutions have been
collected in [12.88]. However, there still remain many
open problems involving fuzzy implications. Thus, in
this section, we will list some of them whose choice has
been dictated either based on the importance of the prob-
lem or the significance of the solution.

The first subset corresponds to open problems deal-
ing with the satisfaction of particular additional prop-
erties of fuzzy implications. The first one deals with
the law of importation (LI). Recently, some works
have dealt with this property and its equivalence to the
exchange principle and from them, some new character-
izations of (S, N)- and R-implications based on (12.5)
have been proposed, see [12.21]. However, some ques-
tions are still open. Firstly, (12.5) with a #-norm (or
a more general conjunction) and (EP) are equivalent
when NV, is a continuous negation, but the equivalence
in general is not fully determined.

Problem 12.1
Characterize all the cases when (LI) and (EP) are equiv-
alent.

Secondly, it is not yet known which fuzzy implica-
tions satisfy (LI) when the conjunction operation s fixed.

Problem 12.2

Given a conjunction C (usually a t-norm or a conjunc-
tive uninorm), characterize all fuzzy implications / that
satisfy (LI) with this conjunction C. For instance, which
implications 7 satisfy the following functional equation

I(xy,z) =I(x,1(y,2))

that comes from (LI) with T = Tp?

ditions, but those that often lead to highly desirable
settings.

Recently, the approach initiated by De Baets has
been enlarged by considering uninorms instead of -
norms and their residual implications with good results
in edge detection, as well as in noise reduction [12.86,
87].

Another problem now concerning only the ex-
change principle follows.

Problem 12.3
Give a necessary condition on a nonborder continuous
t-norm T for the corresponding I7 to satisfy (EP).

It should be mentioned that some related work on
the above problem appeared in [12.89].

Some other open problems with respect to the sat-
isfaction of particular additional properties are based
on the preservation of these properties from some ini-
tial fuzzy implications to the generated one using some
construction methods like max, min, or the convex com-
bination method.

Problem 12.4
Characterize all fuzzy implications I, J such that I Vv J,

IAJ and K* satisfy (EP) or (LI), where A € [0, 1].

The above problem is also related to the following
one:

Problem 12.5

Characterize the convex closures of the following fam-
ilies of fuzzy implications: (S, N)-, R- and Yager’s f-
and g-generated implications.

Another open problem which has immense applica-
tional value is the satisfaction of the T-conditionality by
the Yager’s families of fuzzy implications.

Problem 12.6

Characterize Yager’s f-generated and g-generated im-
plications satisfying the T-conditionality property with
some t-norm 7.

The following two open problems are related to the
characterization of some particular classes of fuzzy im-
plications.
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Problem 12.7
What is the characterization of (S, N)-implications gen-
erated from noncontinuous negations?

Problem 12.8
Characterize triples (7, S, N) such that the correspond-
ing QL-operation I7 g y satisfies (I1).

Finally, a fruitful topic where many open problems
are still to be solved is the study of the intersections
among the classes of fuzzy implications (Fig. 12.1).

Problem 12.9

i) Is there a fuzzy implication I, other than the
Weber implication Iwg, which is both an (S,N)-
implication and an R-implication which is obtained
from a nonborder continuous z-norm and cannot be
obtained as the residual of any other left-continuous
t-norm?
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