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Abstract. Elliptic curves based algorithms are nowadays widely spread
among embedded systems. They indeed have the double advantage of
providing efficient implementations with short certificates and of being
relatively easy to secure against side-channel attacks. As a matter of fact,
when an algorithm with constant execution flow is implemented together
with randomization techniques, the obtained design usually thwarts clas-
sical side-channel attacks while keeping good performances. Recently, a
new technique that makes some randomizations ineffective, has been suc-
cessfully applied in the context of RSA implementations. This method,
related to a so-called horizontal modus operandi, introduced by Walter
in 2001, turns out to be very powerful since it only requires leakages
on a single algorithm execution. In this paper, we combine such kind of
techniques together with the collision correlation analysis, introduced at
CHES 2010 by Moradi et al., to propose a new attack on elliptic curves
atomic implementations (or unified formulas) with input randomization.
We show how it may be applied against several state-of-the art imple-
mentations, including those of Chevallier-Mames et al., of Longa and
of Giraud-Verneuil and also Bernstein and Lange for unified Edward’s
formulas. Finally, we provide simulation results for several sizes of ellip-
tic curves on different hardware architectures. These results, which turn
out to be the very first horizontal attacks on elliptic curves, open new
perspectives in securing such implementations. Indeed, this paper shows
that two of the main existing countermeasures for elliptic curve imple-
mentations become irrelevant when going from vertical to horizontal
analysis.

1 Introduction

Elliptic Curves Cryptosystems (ECC) that have been introduced by N. Koblitz
[21] and V. Miller [29], are based on the notable discrete logarithm problem,
which has been thoroughly studied in the literature and is supposed to be a hard
mathematical problem. The main benefit in elliptic curves based algorithms is
the size of the keys. Indeed, for the same level of security, the schemes require keys
that are far smaller than those involved in classical public-key cryptosystems.
The success of ECC led to a wide variety of applications in our daily life and they
are now implemented on lots of embedded devices: smart-cards, micro-controller,
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and so on. Such devices are small, widespread and in the hands of end-users.
Thus the range of threats they are confronted to is considerably wider than
in the classical situation. In particular, physical attacks are taken into account
when assessing the security of the application implementation (e.g. the PACE
protocol in e-passports [20]) and countermeasures are implemented alongside
the algorithms.

A physical attack may belong to one of the two following families: pertur-
bation analysis or observation analysis. The first one tends to modify the cryp-
tosystem processing with laser beams, clock jitter or voltage perturbation. Such
attacks can be thwarted by monitoring the device environment with captors and
by verifying the computations before returning the output. The second kind of
attacks consists in measuring a physical information, such as the power consump-
tion or the electro-magnetic emanation, during sensitive computations. Inside
this latter area we can distinguish, what we call simple attacks, that directly
deduces the value of the secret from one or a small number of observation(s)
(e.g. Simple Power Analysis [23]) and advanced attacks involving a large number
of observations and exploiting them through statistics (e.g. Differential Power
Analysis [24] or Correlation Power Analysis [9]). Such attacks require the use
of a statistical tool, also known as a distinguisher, together with a leakage model
to compare hypotheses with real traces (each one related to known or chosen
inputs). The latter constraint may however be relaxed thanks to the so-called
collision attacks [32] which aim at detecting the occurrences of colliding values
during a computation, that can be linked to the secret [8,14,30,31]. In order
to counteract all those attacks, randomization techniques can be implemented
(e.g. scalar/message blinding for ECC [16]). The recent introduction of the so-
called horizontal side-channel technique by Clavier et al. in [13] seems to have
set up a new deal. This method, which is inspired by Walter’s work [33], takes
its advantage in requiring a unique power trace, thus making classical random-
ization techniques ineffective. Up to now, it has been applied successfully on RSA
implementations and we show in this paper that it can be combined with colli-
sion correlation analysis to provide efficient attack on elliptic curves protected
implementations.

Core idea. In the context of embedded security, most ECC protocols (e.g. ECDSA
[1] or ECDH [2]) use a short term secret that changes at each protocol iteration. In
this particular setting, advanced side-channel attacks, which require several exe-
cutions of the algorithm with the same secret, are ineffective. As a consequence,
only protection against SPA is usually needed, that can be done thanks to the
popular atomicity principle [11,18,26]. Up to now, this technique is considered
as achieving the best security/efficiency trade-off to protect against side-channel
analysis. In this paper, we provide a new side-channel attack, called horizontal
collision correlation analysis that defeats such protected ECC implementations.
In particular, implementations using point/scalar randomization combined with
atomicity are not secure, contrary to what was thought up to now. Moreover in
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order to complete our study, we also investigate the case of unified formulas'.
Indeed, we show that our horizontal collision correlation attack allows to distin-
guish, with a single leakage trace, a doubling operation from an addition one.
This technique, which allows to eventually recover the secret scalar, is applied
to three different atomic formulae on elliptic curves, namely those proposed by
Chevallier-Mames et al. in [11], by Longa in [26], by Giraud and Verneuil in [18].

The paper is organized as follows. First, Sect.2 recalls some basics about
ECC in a side-channel attacks context. Then, under the assumption that one
can distinguish common operands in modular multiplications, the outlines of
our new horizontal collision correlation attack are presented in Sect.3. After a
theoretical analysis explaining how to practically deal with the distinguishability
assumption, we provide in Sect. 4 experimental results for 160, 256 and 384-bit-
size curves working with 8, 16 or 32-bit registers. These results show that the
attack success rate stays high even when significant noise is added to the leakage.

2 Preliminaries

2.1 Notations and Basics on Side-Channel Attacks

Notations. A realization of a random variable X is referred to as the corre-
sponding lower-case letter x. A sample of n observations of X is denoted by ()
or by (2;)1<i<n When a reference to the indexation is needed. In this case, the
global event is summed up as (z) <> X. The j*"coordinate of a variable X (resp.
a realization ), viewed as a vector, is denoted by X[j] (resp. x[j]). As usual, the
notation E[X] refers to the mean of X. For clarity reasons we sometimes use the
notation Ex[Y] when Y depends on X and other variables, to enlighten the fact
that the mean is computed over X. Attacks presented in this paper involve the
linear correlation coefficient which measures the linear interdependence between
two variables X and Y. It is defined as p(X,Y) = %, where cov(X,Y),
called covariance between X and Y, equals E[XY] — E[X]E[Y] and where ox
and oy respectively denotes the standard deviation of X and Y. The linear
correlation coefficient can be approximated from realizations samples (x;)1<i<n
and (y;)1<i<n of X and Y respectively. For this approximation, the following
so-called Pearson’s coefficient is usually involved:

pPXY) = ny; Ty ;ZZ T Y, Uj N
Vet = (S Vo, - (Z,m)

(1)

General Attack Context. In the subsequent descriptions of side-channel
analyses, an algorithm A is modelled by a sequence of elementary calcula-
tions (C;), that are Turing machines augmented with a common random access

! Among the unified formulas, we especially focus on the Edward’s ones in [5] intro-
duced by Bernstein and Lange since they lead to efficient doubling and addition
computations compared to the Weierstrass case [10].
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memory (see [28] for more details about this model). Each elementary calcu-
lation C; reads its input X; in this memory and updates it with its output
0; = C;(X;). During the processing of A, each calculation C; may be associated
with an information leakage random variable L; (a.k.a. noisy observation). A pre-
requisite for the side-channel analyses described in this paper to be applicable
is that the mutual information between O; and L; is non-zero. The alternative
notation L;(0;) will sometimes be used to stress the relationship between the
two variables.

A side-channel analysis aims at describing a strategy to deduce information
on the algorithm secret parameter from the leakages L;. Let us denote by s
this secret parameter. In this paper, we pay particular attention to two attacks
sub-classes. The first ones are called simple and try to exploit a dependency
between the sequence of operations C; and s (independently of the C; inputs
and outputs). A well-known example of such an attack is the simple power
analysis (SPA) [16]. In this attack, the algorithm input is kept constant and
the unprotected sequence of C; is usually composed of two distinct operations
(for instance a doubling and an addition in the case of ECC). It can easily be
checked that the order of those operations in the sequence is a one-to-one function
of the secret scalar s. Hence, if the leakages L; enable to clearly differentiate
the operations, then the adversary may recover the order of the latters, and thus
the secret.

Following the framework presented in [4], we call advanced the attacks belong-
ing to the second class of side-channel analyses. Among them, we find the well-
known differential power analysis (DPA) [24] or the correlation power analysis
(CPA) [9]. Contrary to simple attacks, the advanced ones do not only focus on
the operations but also on the operands. They usually focus on a small subset
I of the calculations C; and try to exploit a statistical dependency between the
results O; of those calculations and the secret s. For such a purpose, the adver-
sary must get a sufficiently large number N of observations (£5); < L;(0;),
where i € I and 1 < j < N.

In the literature, two strategies have been specified to get the observations
samples (E;) ; for a given elementary computation O; = C;(X;). The first method,
called wvertical, simply consists in executing the implementation several times
and in defining £} as the observation related to the result O; at the j*"algorithm
execution. Most attacks [3,9,24] enter into this category and the number of
different indices i may for instance correspond to the attack order [27]. The
second method, called horizontal [13,33], applies on a single algorithm execu-
tion. It starts by finding the sequence of elementary calculations (C;;); that
processes the same mathematical operation than C; (e.g. a field multiplication)
and depends on the same secret sub-part. By construction, all the outputs O;; of
the C;; can be viewed as a realization of O; = C;(X;) and the E; are here defined
as the observations of the O;,. We can eventually notice that the vertical and
horizontal strategies are perfectly analogous to each other and that they can be
applied to both simple and advanced attacks.
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2.2 Background on Elliptic Curves

As this paper focuses on side-channel attacks on ECC, let us recall now some basics
on elliptic curves and especially on the various ways of representing points on
such objects (the reader could refer to [15,19] for more details).

Throughout this paper, we are interested in elliptic curve implementations
running on platforms (ASIC, FPGA, micro-controller) embedding a hardware
modular multiplier (e.g. a 16-bit, 32-bit or 64-bit multiplier). On such imple-
mentations, the considered elliptic curves are usually defined over a prime finite
field IF,,. In the rest of this paper, we will assume that all curves are defined over
F, with p # {2,3}. The algorithm used for the hardware modular multiplica-
tion is assumed to be known to the attacker. Moreover, to simplify the attack
descriptions, we assume hereafter that the latter multiplication is performed in
a very simple way: a schoolbook long integer multiplication followed by a reduc-
tion. Most of current devices do not implement the modular multiplications that
way, but the attacks described hereafter can always be adapted by changing the
definition of the elementary operations of Sect.3.3 (see the full version of the
paper for a complete discussion on that point).

Definition. An elliptic curve E over a prime finite field F,, with p # {2, 3} can
be defined as an algebraic curve of affine reduced Weierstrass equation:

(E):y* =23 +ax+0, (2)

with (a,b) € (F,)? and 4a® + 27b% # 0. Let P = (z1,y1) and @ = (z2,y2) be
two points on (F), the sum R = (z3,y3) of P and @ belongs to the curve under
a well-known addition rule [21]. The set of pairs (z,y) € (F,)? belonging to
(E), taken with an extra point O, called point at infinity, form an abelian group
named E(F,).

In the rest of the paper, the points will be represented using their projective
coordinates. Namely, a point P = (x,y) is expressed as a triplet (X : Y : Z)
such that X =22 and Y = yZ.

2.3 Points Operations in Presence of SCA

This paper focusses on elliptic curves cryptosystems which involve the scalar
multiplication [s] P, implemented with the well-known double and add algorithm.

In a non-protected implementation, the sequence of point doublings and point
additions can reveal the value of s with a single leakage trace. Thus to protect
the scheme against SPA, the sequence of point operations must be independent
from the secret value. This can be achieved in several ways. The double and add
always algorithm [16] is the simplest solution. It consists in inserting dummy
point additions each time the considered bit value of s is equal to 0. In average,
this solution adds an overhead of % point additions. Another technique con-
sists in using unified formulae for both addition and doubling [6,7,25]. Finally,
the scheme that is usually adopted in constrained devices such as smart cards,
since it achieves the best time/memory trade-off, remains atomicity [11,18,26].
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This principle is a refinement of the double and add always technique. It consists
in writing addition and doubling operations as a sequence of a unique pattern.
This pattern is itself a sequence of operations over IF,,. Since the pattern is unique,
the same sequence of field operations is repeated for the addition and the dou-
bling, the only difference being the number of times the pattern is applied for
each operation. It thus becomes impossible to distinguish one operation from
the other or even to identify the starting and ending of these operations.

To defeat an atomic implementation, the adversary needs to use advanced
side-channel attacks (see Sect.2.1), such as DPA, CPA and so on. These attacks
focus on the operations operands instead of only focusing on the kind of oper-
ations. They usually require more observations than for SPA since they rely on
statistical analyses. In the ECC literature, such attacks have only been investi-
gated in the vertical setting, where they can be efficiently prevented by input
randomization.

3 Horizontal Collision Correlation Attack on ECC

We show hereafter that implementations combining atomicity and randomization
techniques are in fact vulnerable to collision attacks in the horizontal setting.
This raises the need for new dedicated countermeasures.

This section starts by recalling some basics on collision attacks. Then, assum-
ing that the adversary is able to distinguish when two field multiplications have
a common (possibly unknown) operand, we show how to exhibit flaws in the
atomic algorithms proposed in [11,18,26]) and also in implementations using
the unified formulas for Edward’s curves [5]. Eventually, we apply the collision
attack presented in the first subsection to show how to efficiently deal with the
previous assumption.

3.1 Collision Power Analysis in the Horizontal Setting

To recover information on a subpart s of the secret s, collision side-channel analy-
ses are usually performed on a sample of observations related to the processing,
by the device, of two variables O and O; that jointly depend on s. The advan-
tage of those attacks, compared to the classical ones, is that the algorithm inputs
can be unknown since the adversary does not need to compute predictions on the
manipulated data. When performed in the horizontal setting, the observations on
0, and O are extracted from the same algorithm execution (see Sect. 2.1). Then,
the correlation between the two samples of observations is estimated thanks to
the Pearson’s coefficient (see Eq. (1)) in order to recover information on s. We
sum up hereafter the outlines of this attack, that will be applied in the following.

Remark 1. In Table 1, we use Pearson’s coefficient to compare the two samples
of observations but other choices are possible (e.g. mutual information).

Remark 2. In order to deduce information on s from the knowledge of p, one
may use for instance a Maximum Likelihood distinguisher (see a discussion on
that point in Sect.4).
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Table 1. Collision power analysis

1. Identify two elementary calculations Cq(-) and C2(-) which are processed several
times, say N, with input(s) drawn from the same distribution(s). The correlation
between the random variables O; and Oz corresponding to the outputs of C; and
C2 must depend on the same secret sub-part s.

2. For each of the N processings of Cy (resp. C2) get an observation ¢} (resp. £3)
with j € [1; N].

3. Compute the quantity: p = f)((éjl-)]-, (Ef);)

Deduce information on s from p.

In the next section, the attack in Table 1 is invoked as an Oracle enabling to
detect whether two field multiplications share a common operand.

Assumption 1. The adversary can detect when two field multiplications have
at least one operand in common.

In Sect. 3.3, we will come back to the latter hypothesis and will detail how it
can indeed be satisfied in the particular context of ECC implementations on
constrained systems.

3.2 Attacks on ECC Implementations: Core Idea

We start by presenting the principle of the attack on atomic implementations,
and then on an implementation based on unified (addition and doubling) formu-
las over Edward’s curves.

Attack on Chevallier-Mames et al.’s Scheme. In Chevallier-Mames
et al’s atomic scheme, historically the first one, the authors propose the three
first patterns® given in Fig. 1 for the doubling of a point @ = (X7 : Y7 : Z;) and
the addition of @ with a second point P = (X5 : Y5 : Z).

As expected, and as a straightforward implication of the atomicity principle,
the doubling and addition schemes perform exactly the same sequence of field
operations if the star (dummy) operations are well chosen®. This implies that
it is impossible to distinguish a doubling from an addition by just looking at
the sequence of calculations (i.e. by SPA). Let us now focus on the operations’
operands. In the addition scheme, the field multiplications in Patterns 1 and 3
both involve the coordinate Z;. On the contrary, the corresponding multiplica-
tions in the doubling scheme have a priori independent operands (indeed the
first one corresponds to the multiplication X7 - X7, whereas the other one corre-
sponds to Z2 - Z?). If an adversary has a mean to detect this difference (which is
actually the case under Assumption 1), then he is able to distinguish a doubling
from an addition and thus to fully recover the secret scalar s. Indeed, let us

2 For readability reasons we do not recall the full patterns but the interested reader
can find them in [11].
3 Quidelines are given in [11] to define the dummy operations in a pertinent way.
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DouBLING ADDITION
R0<—a7R1 <—X17R2<—Y1,R3<—Zl R1 <—)(17]:52<—Y1,]%3<—Zl7
R7 — XQ, Rg — Y27 Rg — Zz

_R4(—R1-R1 (=X1~X1) -R4(—R9'R9 (:Zz-Zz)
1 Rs «— R4+ R4 1 *

* *

_R4 <—R4+R5 _*

[R5 < Rs - R3 [ Ri < Ri- R4
2. R1 <—R1+R1 9. *

* *

| * | *

[Rs < Rs- Rs (= Z% - Z3) (R4 <+ Ra-Ro (=73 - Z2)
31" 3. %

* *

| * | *

Fig. 1. Three first atomic patterns of point doubling and addition.

focus on the processing of the second step of the double and add left-to-right
algorithm, and let us denote by s the most significant bit of s. Depending on s,
this sequence either corresponds to the processing of the doubling of Q = [2]P
(case s = 0) or to the addition of @ = [2]P with P (case s = 1). Eventually,
the results 77 and T5 of the field multiplications in respectively Patterns 1 and
3 satisfy:

Ty= (2} -2%) " (23 2,)°

where we recall that we have P = (X5 : Yo : Zp) and Q = (X; : Y1 : Z1).
Equation (3) and Assumption 1 enables to deduce whether s equals 0 or 1.
Applying this attack log,(s) times, all the bits of s can be recovered one after
the other.

We now show that the same idea can successfully be applied to attack the
other atomic implementations proposed in the literature, namely those of Longa
[26] and Giraud and Verneuil [18].

Attack on Longa’s Scheme. The atomic pattern introduced by Longa in [26]
is more efficient than that of Chevallier-Mames et al.’s scheme. This improvement
is got by combining affine and Jacobian coordinates in the points addition, see
Fig. 2.

It can be seen that the first and third patterns of Longa’s scheme contain
two field multiplications that either have no operand in common (doubling case)
or share the operand Z; (addition case). Similarly to Chevallier-Mames et al.’s
scheme, we can hence define the two following random variables:

{Tl = (Zl‘Zl)IT‘,(Zl‘Zl)S , (4)
T, = (X, 4v2)' (22 2,)"
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DOUBLING

Rl (—Xl,RQ(—YhRg(—Zl

[Rs < R2 (=71-Z1) [Rs « R}
* *
Rs < Ri1 + R4 Re <+ Ra + R
1. | Re + R3 3. | R¢ + R1-Re (= X1-4Y7)
Ry <+ — R4 R1<——R6
Rs < Rs + R> R+ R1+ Ry
_R4<—R1+R4 _R1<—R1+R5
ADDITION

(mixed coordinates)

Input: P = (X1 :Y1:2Z1) and Q = (X2,Y2)
Output: P+ Q = (X3 :Y3: Z3: X1 :Y{)
R1 <—X1, R2 <—Y17 Rg < Z17 RI < XQ, Ry < Y2

[Ry < R3 (=2Z1-Z1) [Rg < Rs - Rs
* *
* Rs < Rs + Ry
1. | Rs < Ry - R4 3. |Ra<+ R3-Ry (=2} Zy)
Rg <+ —R1 *
Rs +— Rs + Rs *
L * _*

Fig. 2. The first and third patterns used in atomicity of Longa

Under Assumption 1, it leads to the recovery of s.

Attack on Giraud and Verneuil’s Scheme. Giraud and Verneuil introduced
in [18] a new atomic pattern which reduces the number of field additions, nega-
tions and dummy operations (x) compared to the above proposals. The patterns
are recalled in Fig. 3.

Once again, depending on the secret s, we observe a repetition of two mul-
tiplications with a common operand in the first pattern of the addition scheme
(ADD 1.), leading to the following equations:

T = (X1 X)) " (%2 2)° )
Ty=(2vi V1) (23 Z)"

which, under Assumption 1, leads to the recovery of s.

Remark 3. A second version of the patterns in Fig. 3 has been proposed in [18]
which allows to save more field additions and negations without addition of
dummy operations. This proposal share the same weakness as the previous ones
and our attack still applies.
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ADDITION DOUBLING

rRi«— Zs-Zo 'R6<—Ri rRy — X1 -X1
* * Ry — Y1+ Y1
* * *
* * *
Ry — X1 - Ry Rs «— Z1 - Z> Zy «— Ro - Z3
* * Ry — R1 + Ry
* * *

ADD 1. N ADD 2. . DOUB %
Ri — Ri1-Z2 (=22 Z2) Z3 «— Rs - Ry R3 <~ R2-Y1 (=2Y1-Y1)
* * Rg «— R3 + Rs
* * *
* * *

Fig. 3. The beginning of Giraud and Verneuil’s patterns

Attack on Edward’s Curves. Edward’s representation of elliptic curves has
been introduced in [17]. In a subsequent paper [6], Bernstein and Lange homog-
enized the curve equation in order to avoid field inversions in Edward’s addition
and doubling formulas. For this homogenized representation, points addition and
doubling are both computed thanks to the same formula. Let P = (X7 : Y7 : Z1)
and Q = (X3 : Y5 : Z5) be two points on the curve, the sum R = (X3 : Y3 : Z3)
of P and @ is given by the following system:

X3 =217Z5(X1Ys — YlXQ)(X1Y1Z22 + Z%XQYQ)
Ys = Z12:(X 1 X2 + V1Yo) (X Y123 — Z3XoYo)
Zy =dZ3Z3(X1Xs + YV1Ys)(X1Ys — Y1 X5)

where d is some constant related to the Edward curve equation. These formulae
correspond to the sequence of operations given by Fig. 4.

This sequence also works when P = (), meaning that it applies similarly
for addition and doubling. This is one of the main advantage of Edward’s rep-
resentation compared to the other ones (e.g. Projectives) where such a unified
formula does not exist. However it is significantly more costly than the separate
addition and doubling formulas.*

Here, we can exploit the fact that the multiplication X Z; is performed twice
if P = @ (i.e. when the formula processed a doubling), which is not the case
otherwise (see Fig.4). We can hence define the two following random variables:

T = (X1 7)) " (X1 Z)° ©
= (X1 2) " (Xo- 20)°

4 Indeed, let us denote by M the cost of a field multiplication and by S the cost of
a squaring. We assume S = 0.8 M, which is usually satisfied in current implemen-
tations. For points in projective coordinates, the unified formulas for Weierstrass
curves [10] require around 15.8M which represents a similar cost than for addition
points (around 16M) but is significantly higher than that of the doubling (around
9M). The unified formula for Edward curves costs around 11M which is less than
in the Weierstrass case but still higher than the classical formulas.
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ADDITION
1. Rl < X1Z2
2. Ry < Y125
3. R3 < Z1X2
4. R4 < 21Y2

Fig. 4. First steps of algorithm for addition.

which, under Assumption 1, leads to the recovery of s.

Remark 4. This technique still applies in the case of other unified formulas
(e.g. those introduced in [10]). Indeed, the sequence of operations in [10] present
the same weaknesses as Edward’s case. The multiplication X;Z; is performed
twice if the current operation is a doubling (see the first and third multiplications
in [10, Sect. 3, Fig. 1]).

3.3 Distinguishing Common Operands in Multiplications

In this section we apply the collision attack principle presented in Sect.3.1 to
show how an adversary may deal with Assumption 1. This will conclude our
attack description. As mentioned before, we assume that the field multiplications
are implemented in an arithmetic co-processor with a Long Integer Multiplication
(LIM) followed by a reduction. Many other multiplication methods exist but our
attack can always be slightly adapted to also efficiently apply to those methods
(see the full version of the paper).

Let w denote an architecture size (e.g. w equals 8, 16 or 32) and let us
denote by (X[t],-- , X[1])2« the base-2“ representation of an integer. We recall
hereafter the main steps of the LIM when applied between two integers X and Y.

Let W, X, Y and Z be four independent values of size tw bits. We show hereafter
how to distinguish by side-channel analysis the two following cases:

— Case (1) where the device processes LIM(X, W) and LIM(Y, Z) (all the operands
are independent),

— Case (2) where LIM(X, Z) and LIM(Y, Z) are processed (the two LIM process-
ings share an operand).

For such a purpose, and by analogy with our side-channel model in Sect. 2.1
and Table 1, we denote by C; (resp. Cy) the multiplication in the loop during
the first LIM processing (resp. the second LIM processing) and by Op (resp. Os)
its result. The output of each multiplication during the loop may be viewed as
a realization of the random variable O; (resp. Oz). To each of those realizations
we associate a leakage f}hb (vesp. £2 ). To distinguish between cases (1) and (2),
we directly apply the attack described in Table 1 and we compute the Pearson’s

correlation coefficient:
ﬁ((éé,b)a,bv (ég,b)mb) : (7)
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Algorithm 1. Long Integer Multiplication (LIM)
Input: X = (X[t], X[t —1],..., X[1])2w, Y = (Y[¢, Y[t = 1],...,Y[1])2«.
Output: LIM(X,Y).
for a from 1 to 2t do
| Rla] <0
for a from 1 to t do
C+—0
for b from 1 to t do
(U,V)aw «— X[a] - Y[b] // Operation C; (resp. Cz)
(U, V)ow — (U, V)ow + C
(U7 V)zw — (U7 V)Qw + R[a +b— 1}
Rla+b—-1]«V
C—U
| Rla+t]—C
return R

In place of (7), the following correlation coefficient can be used in the attack:

(G2, () - o

In the following section we actually argue that this second correlation coefficient
gives better results, which is confirmed by our attacks simulations reported in
Sect. 4.

3.4 Study of the Attack Soundness

This section aims at arguing on the soundness of the approach described pre-
viously to distinguish common operands in multiplications. For such a purpose,
we explicit formulae for the correlation coefficients given in (7) and (8). For
simplicity, the development is made under the assumption that the device leaks
the Hamming weight of the processed data but similar developments could be
done for other models and would lead to other expressions. Under the Hamming
weight assumption, we have ¢!, « HW(O;) + By and (2, «— HW(O3) + B
where By, and B, are two indépendent Gaussian random variables with zero
mean and standard deviation o.

— If O; and O3 correspond to the internal multiplications during the processings
of LIM(X, W) and LIM(Y, Z) respectively, then, for every (a,b) € [1;t]?, we
have:

lay = HW(z[a] - w(b]) + brap (9)
2y =HW(y[a] - 2[b]) + baap - (10)

Since W, X, Y and Z are independent, the correlation coefficients in (7) and
(8) tend towards 0 when ¢ tends towards infinity.
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— If O1 and Os correspond to the internal multiplications during the processings
of LIM(X, Z) and LIM(Y, Z) respectively, then we have:

lay =HW(z[a] - 2[b]) + b1a (11)
éi,b = HW(yla] - 2[b]) + b2,a - (12)
Since the two multiplications share an operand, their results are dependent.

In this case indeed, it can be proved that the correlation coefficients (7) and
(8) satisty:

1
N 2 -
p((ga,b)ayb’ (ga,b)a,b) — 220+252 1 (y—1)22% 2%
2020 _(2wF1)2% -1

and

(1= 1« 1
’ <(t Zﬁ“’b)b’ (? Zﬁ%b)b) “1 | 122202 (w122 42w
a a t

2.2%% —(2w+1)2—1

When ¢ tends towards infinity, it may be noticed that the second correlation
coefficient tends towards 1 (which is optimal).

4 Experiments

In order to validate the approach presented in Sect. 3.3 and thus to illustrate the
practical feasibility of our attack, we performed several simulation campaigns for
various sizes of elliptic curves, namely [log,(p)] € {160,256, 384}, implemented
on different kinds of architectures, namely w € {8,32} using the Chevallier-
Mames et al.’s scheme. Each experiment has been performed in the same way. For
each (p,w), we computed Pearson’s correlation coefficients (7) and (8) between
the sample of observations coming from the leakages on operations C; and Cy in
the two following cases:

— when the secret bit s is equal to 1, that is when an addition is performed
(which implies correlated random variables, see (3)),

— when the secret bit s is equal to 0, that is when a doubling operation is
performed (which implies independent random variables, see (3)).

From the configuration (p,w), the size ¢ of the observations’ samples used in the
attack can be directly deduced: it equals f%] The quality of the estima-
tions of the correlation coefficient by Pearson’s coefficient depends on both the
observations signal to noise ratio (SNR) and ¢. When the SNR tends towards 0,
the sample size t must tend towards infinity to deal with the noise. Since, in our
attack the samples size cannot be increased (it indeed only depends on the imple-
mentation parameters p and w), our correlation estimations tend towards zero
when the SNR decreases. As a consequence, distinguishing the two Pearson coef-

ficients coming from s = 0 and s = 1 becomes harder when the SNR decreases.
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This observation raises the need for a powerful (and robust to noise) test to
distinguish the two coefficients. To take this into account for each setting (p,w)
and several SNR, we computed the mean and the variance of Pearson’s coefficient
defined in (7) and (8) over 1000 different samples of size ¢t. To build those kinds
of templates, leakages have been generated in the Hamming weight model with
additive Gaussian noise of mean 0 and standard deviation o (i.e. according to
(9)-(10) for s = 0 and to (11)-(12) for s = 1)°. When there is no noise at all,
namely when o = 0 (i.e. SNR = +00), one can observe that the mean of Pearson’s
coefficient is coherent with the predictions evaluated in Sect. 3.4.

Figures (5, 6, 7, 8) illustrate the spreading of the obtained Pearson’s coef-
ficient around the mean value. This variance gives us information about the
amount of trust we can put into the mean values. It also shows whether a distinc-
tion between the right hypothesis and the wrong one can easily be highlighted.
For each SNR value (denoted by 7) and each sample size t, let us denote by
$0,+(T) (resp. p1.+(7)) the random variable associated to the processing of (7) for
s =0 (resp. for s = 1). In Figs. (5, 6, 7, 8), we plot estimations of the mean and
variance of pg.(7) and p1,.(7) for several pairs (7,t). Clearly, the efficiency of the
attack described in Sect. 3 depends on the ability of the adversary to distinguish,
for a fixed pair (¢,7), the distribution of pg+(7) from that of 51 4(7). In other
terms, once the adversary has computed a Pearson coefficient p he must decide
between the two following hypotheses; Hy : p < po+(7) or Hy : p < p1,,(7). For
such a purpose, we propose here to apply a mazimum likelihood strategy and
to choose the hypothesis having the highest probability to occur. This led us to
approximate the distribution of the coefficients o +(7) and p1,4(7) by a Gaussian
distribution with mean and variance estimated in the Hamming weight model
(as given in Figs.5, 6, 7, 8). Attacks reported in Figs.9 and 10 are done with
this strategy.

Remark 5. Since the adversary is not assumed to know the exact leakage SNR,
the maximum likelihood can be computed for several SNR values 7 starting from
oo to some pre-defined threshold. This problematic occurs each time that the
principle of collision attacks is applied.

Remark 6. For a curve of size n = [logy(p)] and a w-bit architecture, the adver-
sary can have a sample of ¢ = [Z] observations if he averages over the columns
and t = [(2)?] without averaging. All experiments provided in this section have

been performed using the “average” strategy.

This attack works for any kind of architecture, even for a 32-bit one (see
Fig. 10), which is the most common case in nowadays implementations. In the
presence of noise, the attack success decreases highly but stays quite success-
ful for curves of size 160, 256 and 384 bits. In all experiments (Figs.9, 10), we
also observe that the success rate of our attack increases when the size of the
curve becomes larger. This behaviour can be explained by the increasing num-
ber of observations available in this case. Paradoxically, it means that when the

5 In this context, the SNR simply equals w/402.
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Fig. 9. Success rate of the attack on 8-bit registers
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Fig. 10. Success rate of the attack on 32-bit registers

theoretical level of security becomes stronger (i.e. p is large), resistance against
side-channel attacks becomes weaker. This fact stands in general for horizon-
tal attacks and has already been noticed in [12,33].
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