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Abstract. Elliptic curve cryptography (ECC) is preferred for high-
speed applications due to the lower computational complexity compared
with other public-key cryptographic schemes. As the basic arithmetic, the
modular multiplication is the most time-consuming operation in public-
key cryptosystems. The existing high-radix Montgomery multipliers per-
formed a single Montgomery multiplication either in approximately 2n
clock cycles, or approximately n cycles but with a very low frequency,
where n is the number of words. In this paper, we first design a novel
Montgomery multiplier by combining a quotient pipelining Montgomery
multiplication algorithm with a parallel array design. The parallel design
with one-way carry propagation can determine the quotients in one clock
cycle, thus one Montgomery multiplication can be completed in approx-
imately n clock cycles. Meanwhile, by the quotient pipelining technique
applied in digital signal processing (DSP) blocks, our multiplier works
in a high frequency. We also implement an ECC processor for generic
curves over GF(p) using the novel multiplier on FPGAs. To the best
of our knowledge, our processor is the fastest among the existing ECC
implementations over GF(p).
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1 Introduction

Elliptic curve cryptography has captured more and more attention since the
introduction by Koblitz [8] and Miller [12] in 1985. Compared with RSA or dis-
crete logarithm schemes over finite fields, ECC uses a much shorter key to achieve
an equivalent level of security. Therefore, ECC processors are preferred for high-
speed applications owing to the lower computational complexity and other nice
properties such as less storage and power consumption. Hardware accelerators
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are the most appropriate solution for the high-performance implementations with
acceptable resource and power consumption. Among them, field-programmable
gate arrays (FPGAs) are well-suited for this application due to their reconfig-
urability and versatility.

Point multiplication dominates the overall performance of the elliptic curve
cryptographic processors. Efficient implementations of point multiplication can
be separated into three distinct layers [6]: the finite field arithmetic, the elliptic
curve point addition and doubling and the scalar multiplication. The fundamen-
tal finite field arithmetic is the basis of all the others. Finite field arithmetic over
GF(p) consists of modular multiplications, modular additions/subtractions and
modular inversions. By choosing an alternative representation, called the projec-
tive representation, for the coordinates of the points, the time-consuming finite
field inversions can be eliminated almost completely. This leaves the modular
multiplication to be the most critical operation in ECC implementations over
GF(p). One of the widely used algorithms for efficient modular multiplications
is the Montgomery algorithm which was proposed by Peter L. Montgomery [16]
in 1985.

Hardware implementations of the Montgomery algorithm have been studied
for several decades. From the perspective of the radix, the Montgomery multipli-
cation implementations can be divided into two categories: radix-2 based [7,21]
and high-radix based [1,2,9,11,17,19,20,22,23]. Compared with the former one,
the latter, which can significantly reduce the required clock cycles, are preferred
for high-speed applications.

For high-radix Montgomery multiplication, the determination of quotients is
critical for speeding up the modular multiplication. For simplifying the quotient
calculation, Walter et al. [3,23] presented a method that shifted up of modulus
and multiplicand, and proposed a systolic array architecture. Following the sim-
ilar ideas, Orup presented an alternative to systolic architecture [18], to perform
high-radix modular multiplication. He introduced a rewritten high-radix Mont-
gomery algorithm with quotient pipelining and gave an example of a non-systolic
(or parallel) architecture, but the design is characterized by low frequency due to
global broadcast signals. In order to improve the frequency, DSP blocks widely
dedicated in modern FPGAs have been employed for high-speed modular mul-
tiplications since Suzuki’s work [19] was presented. However, as a summary, the
existing high-radix Montgomery multipliers perform a single Montgomery mul-
tiplication for n-word multiplicand either in approximately 2n clock cycles, or
approximately n cycles but with a low frequency.

To design a high-speed ECC processor, our primary goal is to propose a new
Montgomery multiplication architecture which is able to simultaneously process
one Montgomery multiplication within approximately n clock cycles and improve
the working frequency to a high level.

Key Insights and Techniques. One key insight is that the parallel array archi-
tecture with one-way carry propagation can efficiently weaken the data depen-
dency for calculating quotients, yielding that the quotients can be determined
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in a single clock cycle. Another key insight is that a high working frequency can
be achieved by employing quotient pipelining inside DSP blocks. Based on these
insights, our Montgomery multiplication design is centered on the novel tech-
niques: combining the parallel array design and the quotient pipelining inside
DSP blocks.

We also implement an ECC processor for generic curves over GF(p) using
the novel multiplier on FPGAs. Due to the pipeline characteristic of the mul-
tiplier, we reschedule the operations in elliptic curve arithmetic by overlapping
successive Montgomery multiplications to further reduce the number of opera-
tion cycles. Additionally, side-channel analysis (SCA) resistance is considered in
our design. Experimental results indicate that our ECC processor can perform
a 256-bit point multiplication in 0.38 ms at 291 MHz on Xilinx Virtex-5 FPGA.

Our Contributions. In summary, the main contributions of this work are as
follows.

— We develop a novel architecture for Montgomery multiplication. As far as we
know, it is the first Montgomery multiplier that combining the parallel array
design and the quotient pipelining using DSP blocks.

— We design and implement our ECC processor on modern FPGAs using the
novel Montgomery multiplier. To the best of our knowledge, our ECC proces-
sor is the fastest among the existing hardware implementations over GF(p).

Structure. The rest of this paper is organized as follows. Section 2 presents the
related work for high-speed ECC implementations and high-radix Montgomery
multiplications. Section 3 describes a processing method for pipelined imple-
mentation, and a high-speed architecture is proposed in Sect. 4. Section 5 gives
implementation results and detailed comparisons with other designs. Section 6
concludes the paper.

2 Related Work

2.1 High-Speed ECC Implementations over GF(p)

Among the high-speed ECC hardware implementations over GF(p), the archi-
tectures in [5] and [4] are the fastest two. For a 256-bit point multiplication they
reached latency of 0.49ms and 0.68 ms in modern FPGAs Virtex-4 and Stratix
I1, respectively. The architectures in [5] are designed for NIST primes using fast
reduction. By forcing the DSP blocks to run at their maximum frequency (487
MHz), the architectures reach a very low latency for one point multiplication.
Nevertheless, due to the characteristics of dual clock and the complex control
inside DSP blocks, the architecture can be only implemented in FPGA plat-
forms. Furthermore, due to the restriction on primes, the application scenario of
[5] is limited in NIST prime fields. For generic curves over GF(p), [4] combines
residue number systems (RNS) and Montgomery reduction for ECC implemen-
tation. The design achieves 6-stage parallelism and high frequency with a large
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number of DSP blocks, resulting in the fastest ECC implementation for generic
curves. In addition, the design in [4] is resistant to SCA.

As far as we know, the fastest ECC implementation based on Montgomery
multiplication was presented in [11], which was much slower than the above two
designs. The main reason is that the frequency is driven down to a low level
although the number of cycles for a single multiplication is approximately n.
In an earlier FPGA device Virtex-2 Pro, the latency for a 256-bit point mul-
tiplication is 2.27 ms without the SCA resistance, and degrades to 2.35ms to
resist SCA.

2.2 High-Radix Montgomery Multiplication

Up to now, for speeding up high-radix Montgomery multiplications, a wealth of
methods have been proposed either to reduce the number of processing cycles
or to shorten the critical path in the implementations.

The systolic array architecture seems to be the best solution for modular mul-
tiplications with very long integers. Eldridge and Walter performed a shift up of
the multiplicand to speed up modular multiplication [3], and Walter designed a
systolic array architecture with a throughput of one modular multiplication every
clock cycle and a latency of 2n + 2 cycles for n-word multiplicands [23]. Suzuki
introduced a Montgomery multiplication architecture based on DSP48, which
is a dedicated DSP unit in modern FPGAs [19]. In order to achieve scalability
and high performance, complex control signals and dual clocks were involved
in the design. However, the average number of processing cycles per multipli-
cation are approximately 2n at least. In fact, this is a common barrier in the
high-radix Montgomery algorithm implementations: the quotient is hard to gen-
erate in a single clock cycle. This barrier also exists in other systolic high-radix
designs [9,22].

On the contrary, some non-systolic array architectures were proposed for
speeding up the process of quotient determination, but the clock frequency is a
concern. Orup introduced a rewritten high-radix Montgomery algorithm with
quotient pipelining and gave an example of a non-systolic architecture [18].
Another high-speed parallel design was proposed by Mentens [11], where the
multiplication result was written in a special carry-save form to shorten the long
computational path. The approach was able to process a single n-word Mont-
gomery multiplication in approximately n clock cycles. But the maximum fre-
quency was reduced to a very low level, because too many arithmetic operations
have to be completed within one clock cycle. Similar drawbacks in frequency can
also be found in [2,17].

3 Processing Method

In this section, we propose a processing method for pipelined implementation
by employing DSP blocks.
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3.1 Pipelined Montgomery Algorithm

Montgomery multiplication [16] is a method for performing modular multiplica-
tion without the need to perform division by the modulus. A high-radix version
of Montgomery’s algorithm with quotient pipelining [18] is given as Algorithm 1.
The algorithm provides a way to apply pipelining techniques in Montgomery
modular multiplication to shorten the critical path.

Algorithm 1. Modular Multiplication with Quotient Pipelining [18]
Input:
A modulus M > 2 with ged(M,2) = 1 and positive integers k,n such that
AM < 2" = R, where M is given by M = (M mod 2*¢*Y)M and integer d > 0
is a delay parameter.
Integer R™*, where 2" R~ mod M =1
Integer M, M', where (—M M) mod 2*@+D =1 M’ = (M + 1) div 2~+D
Integer multiplicand A, where 0 < A < oM
Integer multiplier B = Z?jod(Qk)ibi7 where digit b; € {0,1,...,2% =1} for 0 < i <
n, b; =0 fori>mnand 0< B <2M.
Output:
Integer Sp+d+2 where Sytat2 = ABR™! (mod M) and 0 < S 4442 < oM
So=0;q-a=0;¢-4+1=0;...5g-1 =0;
fori=0ton+d—1do
qi = S; mod Qk;
Sit1 =8, div ok + qi,dM/ + b A;
end for
Sntars =2 Sniar1 + Y050 g 12"

The calculation of the right ¢; is crucial for Montgomery multiplication, and
it is the most time-consuming operation for hardware implementations. In order
to improve the maximum frequency, a straightforward method is to divide the
computational path into « stages for pipelining. The processing clock cycles,
however, increase by a factor of «, since g; is generated every « clock cycles. That
is to say, the pipeline does not work due to data dependency. The main idea of
Algorithm 1 is using the preset values ¢_q = 0,¢_4+1 =0,...,9-1 = 0 to replace
q1 to start the pipeline in the first d clock cycles. Then, in the (d + 1)** cycle,
the right value ¢; is generated and fed into the calculation of the next round.
After that, one g; is generated per clock cycle in pipelining mode. Compared to
the traditional Montgomery algorithm, the cost of Algorithm 1 is a few extra
iteration cycles, additional pre-processing and a wider range of the final result.

3.2 DSP Blocks in FPGAs

Dedicated multiplier units in older FPGAs have been adopted in the high-radix
Montgomery multiplication implementations for years. In modern FPGAs, such
as Xilinx Virtex-4 and later FPGAs, instead of traditional multiplier units, arith-
metic hardcore accelerators - DSP blocks have been embedded. DSP blocks can
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Fig. 1. Generic structure of DSP blocks in modern FPGAs

be programmed to perform multiplication, addition, and subtraction of integers
in a more flexible and advanced fashion.

Figure 1 shows the generic DSP block structure in modern FPGAs. By using
different data paths, DSP blocks can operate on external inputs A, B, C as well
as on feedback values from P or results PCIN from a neighboring DSP block.
Notice that all the registers, labeled in gray in Figure 1, can be added or bypassed
to control the pipeline stages, which is helpful to implement the pipelined Mont-
gomery algorithm. Here, for the sake of the brevity and portability of the design,
we do not engage dual clock and complex control signals like [5,19] which force
DSP blocks to work in the maximum frequency.

3.3 Processing Method for Pipelined Implementation

According to the features of DSP resources, the processing method for pipelined
implementation is presented in Algorithm 2. From Algorithm 1, we observe that
M’ is a pre-calculated integer, and the bit length m of M’ = Z;lgl(Qk)img
equals that of modulus M, and the last statement in Algorithm 1 is just a
left shift of S, 41 where the d last quotient digits are shifted in from the
right. Here, the radix is set to 2! and the delay parameter d = 3, yielding
that n < m + d+ 2 = m + 5. The remaining inputs appearing in Algorithm 1
are omitted.

Now we explain the consistency between Algorithms 1 and 2. There are three
phases in Algorithm 2: Phase 0 for initialization, Phase 1 for iteration and
Phase 2 for the final addition. The initialization should be executed before each
multiplication begins. In Phase 1, a four-stage pipeline is introduced in order to
utilize the DSP blocks, so the total of the surrounding loops becomes n + 6 from
n + 3. The inner loop from 0 to n — 1 represents the operations of n Processing
Elements (PEs). In the pipeline, referring to Algorithm 1, we can see that Stage
1 to Stage 3 are used to calculate w; = ¢;, M’ + b; A, and Stage 4 is used to
calculate (S; mod 2% + w;). Here, (S; mod 2*) is divided into two parts: c(;43,j)
inside the PE itself and s(;;3 ;1) from the neighboring higher PE. The delay
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Algorithm 2. Processing Method for Pipelined Implementation
Input:

radix 2F = 2'® delay parameter d = 3

M = Zr;Bl(Qk)zm; , A= ?;01(2k)iai7 B = :L:Jrod(Qk)zbz
Output:

Integer S,4+5 where S,15 = ABR™' (mod M) and 0 < S,45 < oM

/* Phase 0: Initialization */

1: for j=0ton—1do

2: 'LL(()J) = 32/b0, U(O,j) = 32lb0,
3w, = 33'b0;

4: 5(0,5) — 16/b0, C0,5) = 17lb0,
5: end for

/* Phase 1 */
6: for 1 =0 ton+6 do
T Qi-3 = 8(3i,0);
8 forj=0ton—1do

9: Stage 1: ugit1,j) = qi—smj;

10: Stage 2: v(iy1,5) = a;bi;

11: Stage 3: W(i41,5) = Wi,5) + V(i)

12: Stage 4: {Cc(iv1,5), S(i+1,5)} = Wi j) + Cling) + S(ij+1) 3
13:  end for

14: end for

/* Phase 2 */
n—4 j
15: Spta =025 (2" {enir.i)s S(nt7) )5
16: Sn+5 = {S7L+47 dn+3,qn+2, Qn+1}§

is caused by the pipeline. In Stage 4, S; is represented by s(;;3;) and c(it3 )
in a redundant form, where s(; 13 ;) represents the lower k bits and c(;y3 ;) the
k 4+ 1 carry bits. Note that the carry bits from lower PEs are not transferred to
higher PEs, because this interconnection would increase the data dependency for
calculating ¢; implying that g; cannot be generated per clock cycle. Therefore,
except for ¢;_3, the transfer of s(; j;1) in Stage 4 is the only interconnection
among the PEs, ensuring that ¢;_3 can be generated per cycle. The carry bits
from lower PEs to higher PEs which are saved in c(; j) are processed in Phase
2. In brief, the goal of Phase 1 is to generate the right quotient per clock cycle
for running the iteration regardless of the representation of S;, while by simple
additions Phase 2 transforms the redundant representation to non-redundant
representation of the final value S, 4. The detailed hardware architecture is
presented in the next section.

4 Proposed Architecture

4.1 Montgomery Multiplier

Processing Element. The Processing Elements, each of which processes k-bit
block data, form the modular multiplication array. As the input A < 2M, n PEs
are needed to compose the array. Figure 2 provides the structure of the j** PE.
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Fig. 2. The structure of the j*" PE
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In the first three pipeline stages, the arithmetic operations ¢;_qM’ + b; A,
are located in the two DSP blocks named DSP1 and DSP2. In order to achieve
high frequency, two stage registers are inserted in DSP2 which calculates the
multiplication of ¢;_4 and m;-. Accordingly, another stage of registers are added
in DSP1 in order to wait for the multiplication result u; ;) from DSP2. The
addition of u(; jy and v(; ;) is performed by DSP1 as shown in Fig.2. In the
fourth stage, the three-number addition w(; j) + c(; j) + S(,j+1) is performed by
using the carry-save adder (CSA). In FPGAs, CSA can be implemented by one-
stage look-up tables (LUTs) and one carry propagate adder (CPA). Because
the computational path between the DSP registers is shorter than the CSA, the
critical path only includes three-number addition, i.e. CSA. Therefore, in this
way, the PE can work in a high frequency due to the very short critical path.

Parallel PE Array. n PEs named PEj to PE,,_; have been connected to form
a parallel array which performs Phase I in Algorithm 2, as shown in Fig. 3.
The quotient is generated from PEj and fed to the following PEs. Especially, in
PE,, to PE,,_1, DSP2 and ¢;_4 are no more required since m;- equals to zero for
these PEs. The PE outputs c(; ;) are omitted in Fig. 3, as they only need to be
outputted when the iteration in Phase 1 finishes. Unlike the high-radix systolic
array [9] and the design in [19], the PE array works in parallel for the iteration,
resulting in the consumed clock cycles for transferring the values from lower PEs
to higer PEs are saved.

Now we analyze the performance of the PE array. According to Algorithm 2,
the number of iteration rounds of Phase I is n+ 7. Together with the one clock
cycle for initialization, the processing cycles of the PE array are n+8. Regarding
the consumed hardware resources, n + m DSP blocks are required for forming
the PE array.

Although the frequency may decrease due to the global signals and large bus
width, fortunately we find that these factors do not have a serious impact on
the hardware performance, owing to the small bit size (256 or smaller) of the
operands of ECC. The impact has been verified in our experiment as shown
in Sect. 5.1.
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Fig. 3. The structure of the parallel PE array

The outputs of PEs are the redundant representation of the final result S;,44.
So some addition operations (cf. Phase 2) have to be performed to get the non-
redundant representation before it can be used as input for a new multiplication.
Here we use another circuit module - redundant number adder (RNA) to imple-
ment the operation of Phase 2. Actually, the PE array and RNA that work in
an alternative form can be pipelined for processing independent multiplications
which are inherent in the elliptic curve point calculation algorithms. Therefore,
the average number of processing clock cycles for one multiplication are only
(n+ 8) in our ECC processor.

Redundant Number Adder. The outputs of PEs should be added in an
interleaved form to obtain the final result S,44 by the RNA. The redundant
number addition process is shown in Algorithm 3. For simplicity we rename
Snt7,; and cny7; as s; and ¢, respectively. Notice that there is a 1-bit overlap
between c; and c; 41 due to the propagation of the carry bit. Obviously, so can be
directly outputted. We rewrite the s; and c¢; to form three long integers SS,CL
and CH in Algorithm 3, where ¢;[k—1 : 0] and ¢, [k] are the lowest k bits and the
highest bit of c;, respectively. Before being stored into the registers for addition,
the three integers are converted to two integers by using CSA within one clock
cycle. Then the addition of the two integers can be performed by a I-bit CPA in
[@] clock cycles. For balancing the processing cycles and working frequency,
the path delay of I-bit CPA is configured close to the addition of three numbers
in PE. In our design, the width [ is set to a value between 3k and 4k.

4.2 ECC Processor Architecture

The architecture of the ECC processor based on our Montgomery modular mul-
tiplier is described in Fig. 4, where the Dual Port RAM is used to store arith-
metic data. By reading a pre-configured program ROM, the Finite State Machine
(FSM) controls the modular multiplier and the modular adder/subtracter
(ModAdd/Sub), as well as the RAM state. Note that the widths of the data
interfaces among the Dual Port RAM and the arithmetic units are all kn bits
due to the parallelism of the multiplier.
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Algorithm 3. Redundant number addition
Input:
85 = 8(nt7.4)» & = Cn+7), J € [0,n — 4]
Output:
S =300 (28 {55}
/*Forming three integers*/
1 88 = Y H s,
2 CL=3""0(2")¢;[k —1:0]
3: CH =Y (25) ¢ [k]
/¥CSA*/
4: X =85S CLeCH
5. C = (SS&CL)|(SS&CH)|(CL&CH)
/*1-bit CPA*/
6: carry = 1’60
7: for i =0 to [@] —1do
8:  {carry, Si} = X; + C; + carry,
where S;, X;, C; represent the ith [-bit block of S, X, C, respectively.
9: end for

Modular Adder/Subtracter. In elliptic curve arithmetic, modular additions
and subtractions are interspersed among the modular multiplication arithmetic.
According to Algorithm 1, for the inputs in the range of [0, oM ] the final result
Sn+d+2 Will be reduced to the range of [0, QM].

In our design, ModAdd/Sub performs actually straightforward integer addi-
tion/subtraction without modular reduction. As an alternative, the modular
reduction is performed by the Montgomery multiplication with an expanded
R. After a careful observation and scheduling, the results of ModAdd/Sub are
restricted to the range of (0,8M), as shown in Appendix A, where the squaring
is treated as the generic multiplication with two identical multiplicands. The
range of (0,8M) is determined by the rescheduling of elliptic curve arithmetic.
For example, for calculating 8(x x y) where x,y < 2M , the process is rescheduled
as (4x) x (2y) to narrow the range of the result. In this case, parameter R should
be expanded to R > 64M to guarantee that for inputs in the range of (0, 8M )
the result of Montgomery multiplication S still satisfies: S < 2M. The proof is
omitted here.

For A + B mod M, the range of the addition result is (0,8M) due to the
calculation of 4z where z € (0,2M) is an output of the multiplier. Therefore,
the modular addition is simplified to the integer addition A + B, as shown in
Eq. (1). For A—B mod M, the range of the subtrahend B is (0,4M) after specific
scheduling, so 4M should be added to ensure that the result is positive, as shown
in Eq. (2). Especially, for calculating  — (y — z) where z,y, z < 2M, the process
is rescheduled as (z — y) + z — (z — y +4M) + z € (0,8M).

A+ Bmod M — A+ B e (0,8M) (1)
A—Bmod M — A— B+4M € (0,8M) (2)
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Fig. 4. The architecture of the ECC processor

Point Doubling and Addition. The point doubling and addition are imple-
mented in Jacobian projective coordinates, under which the successive multi-
plications can be performed independently. The process of point doubling and
addition with specific scheduling is presented in Appendix A. In the process, the
dependencies of adjacent multiplications are avoided to fully exploit the mul-
tiplier, and the range of the modular addition/subtraction output satisfies the
required conditions. After the above optimizations, completing one point dou-
bling operation needs the processing cycles of 8 multiplications, and completing
one point addition operation needs the processing cycles of 16 multiplications
and 2 subtractions/additions.

SCA Resistance. Considering the SCA resistance and the efficiency, we com-
bine randomized Jacobian coordinates method and a window method [13] against
differential power analysis (DPA) and simple power analysis (SPA), respectively.
The randomization technique transforms the base point (z,y,1) of projective
coordinates to (r2x,r3y,r) with a random number r # 0. The window method
in [13] based on a special recoding algorithm makes minimum information leak
in the computation time, and it is efficient under Jacobian coordinates with
a pre-computed table. A more efficient method was presented in [14], and a
security enhanced method, which avoided a fixed table and achieved compar-
ative efficiency, was proposed in [15]. For computing point multiplication, the
window-based method [13] requires 2“~! + tw point doublings and 2% ~! — 1 ++¢
point additions, where w is the window size and ¢ is the number of words after
recoding. The pre-computing time has been taken into account, and the base
point is not assumed to be fixed. The pre-computed table with 2 — 1 points can
be easily implemented by block RAMs which are abundant in modern FPGAs,
and the cost is acceptable for our design. Note that the randomization technique
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causes no impact on the area and little decrease in the speed, as the randomiza-
tion is executed only twice or once [13].

5 Implementation and Comparison

5.1 Hardware Implementation

Our ECC processor for 256-bit curves named ECC-256p is implemented on
Xilinx Virtex-4 (XC4VLX100-12FF1148) and Virtex-5 (XC5LX110T-3FF1136)
FPGA devices. In order to keep the length of the critical path as expected and
simultaneously achieve a high efficiency, the addition width is set to 54 for RNA
and ModAdd/Sub, the path delay of which is shorter than that of three number
addition. Therefore, as expected, the critical path of ECC-256p is the addition
of three 32-bit number in the PE. The Montgomery modular multiplier can com-
plete one operation in n + 14 clock cycles that consists of n + 8 cycles for the
PE array and 6 cycles for the RNA, and the former is the average number of
clock cycles for ECC point calculation. For the window-based algorithm of point
multiplications, the window size w is set to 4, and the maximum ¢ after recoding
is 64 for 256-bit prime fields. In this case, one point multiplication requires 264
doublings and 71 additions at the cost of a pre-computed table with 15 points.

Table 1. Clock cycles for ECC-256p under Jacobian projective coordinates

Operation ECC-256p
MUL 35 (average 29)
ADD/SUB 7

Point Doubling (Jacobian) 232

Point Addition (Jacobian) 484

Inversion (Fermat) 13685

Point Multiplication (Window) 109297

The number of clock cycles for the operations are shown in Table 1, and Post
and Route (PAR) results on Virtex-4 and Virtex-5 are given in Table 2. In our
results, the final inversion at the end of the scalar multiplication is taken into
account. We use Fermats little theorem to compute the inversion. According to
Table 2, ECC-256p can process one point multiplication in 109297 cycles under
250 MHz and 291 MHz frequency, meaning that the operation can be completed
within 0.44ms and 0.38 ms on Virtex-4 and Virtex-5, respectively. Note that
the amounts of consumed hardware resource are different in the two devices,
since the Virtex-5 resource units, such as slice, LUT and BRAM, have larger
capacity. In particular, each slice in Virtex-5 contains four LUTs and flip-flops,
while the number is two in Virtex-4 slice. Therefore, the total occupied slices are
significantly reduced when the design is implemented on Virtex-5.
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Table 2. PAR results of ECC-256p on Virtex-4 and Virtex-5

Virtex-4 Virtex-5
Slices 4655 1725
LUTs 5740 (4-input) 4177 (6-input)
Flip-flops 4876 4792
DSP blocks 37 37
BRAMs 11 (18Kb) 10 (36 Kb)

Frequency (Delay) 250 MHz (0.44ms) 291 MHz (0.38 ms)

5.2 Performance Comparison and Discussion

The comparison results are shown in Table 3, where the first three works support
generic elliptic curves, while the last two only support NIST curves. In addition,
our work and [4,11] are SCA resistant, while the others are not. We have labeled
these differences in Table 3.

As far as we know, the fastest ECC processor for generic curves is [4], which
uses RNS representations to speed up the computation. Substantial hardware
resources (96 DSP blocks and 9177 ALM) in Stratix II FPGA are used for the
implementation. In fact, Stratix II and Virtex-4 are at the same level, since the
process nodes of the two devices are both 90 nm. Assuming that a Stratix II
ALM and a Virtex-4 Slice are equivalent, our processor saves more than half
resources compared with [4]. In the aspect of speed, our design is faster than
[4] by more than 40 % from the perspective of implementation results. However,
note that employing different SCA protections makes the performance quite dif-
ferent. In [4], Montgomery ladder which is a time-hungry technique against SPA
and error-injection attacks was engaged. As the speed is the main concern, in our
design it is not optimal (or even a waste) to adopt those countermeasures such as
indistinguishable point addition formulae and Montgomery ladder, because the
point doubling operation is nearly twice faster than the addition under Jacobian
coordinates. In addition, our design has great advantages in area over [4]. There-
fore, we use the window-based method which is a type of resource-consuming but
efficient countermeasure against SPA. In brief, for generic curves over GF(p), our
work provides an efficient alternative to achieve a higher speed and competitive
security with a much more concise design.

The designs in [10,11] are both based on the classic Montgomery algorithm,
and implemented in earlier FPGAs Virtex-2 Pro, which did not supported DSP
blocks yet. To our best knowledge, the architecture [11] is the fastest among the
implementations based on the Montgomery multiplication for generic curves. In
[11], the multiplication result was written in a special carry-save form to shorten
the long computational path. But the maximum frequency was reduced to a very
low level. As the targeted platform of our design is more advanced than that of
[11], it is necessary to explain that our frequency is higher than [11] by a large
margin from the aspect of the critical path. The critical path of [11] is composed
of one adder, two 16-bit multipliers and some stage LUTSs for 6-2 CSA, whereas
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Table 3. Hardware performance comparison of this work and other ECC cores

Curve Device Size Frequency Delay SCA res.
(DSP) (MHz) (ms)
Our 256 any  Virtex-5 1725 Slices (37 DSPs) 291 0.38  Yes
work 256 any  Virtex-4 4655 Slices (37 DSPs) 250 0.44  Yes
[4] 256 any  Stratix II 9177 ALM (96 DSPs) 157 0.68  Yes
[11] 256 any  Virtex-2 Pro 3529 Slices (36 MULTS) 67 2.35  Yes
[10] 256 any  Virtex-2 Pro 15755 Slices (256 MULTs) 39.5 384 No
[5] 256 NIST Virtex-4 1715 Slices (32 DSPs) 487 049 No
[17] 192 NIST Virtex-E 5708 Slices 40 3 No

the critical path in our design is only one stage LUTSs for 3-2 CSA and one 32-bit
adder. As a result, owing to the quotient pipelining technique applied in DSP
blocks, the critical path is shortened significantly in our design.

The architecture described in [5] is the fastest FPGA implementation of
elliptic curve point multiplication over GF(p), but with restrictions on primes.
It computes point multiplication over NIST curves which are widely used and
standardized in practice. It is a dual clock design, and shifts all the field arith-
metic operations into DSP blocks, thus the design occupies a small area and
runs at a high speed (487 MHz) on Virtex-4. Our design extends the applica-
tion to support generic curves at a higher speed, and our architecture is not
limited in FPGA platforms. In fact, our architecture can be easily transferred
to application specific integrated circuits (ASICs) by replacing the multiplier
cores, i.e. DSP blocks with excellent pipelined multiplier IP cores. It will be
more flexible on ASICs to configure the delay parameter and the radix to max-
imize the hardware performance. Furthermore, notice that the drawbacks of
the pipelined Montgomery algorithm, i.e. the wider range and additional itera-
tion cycles mentioned in Sect. 2.1, can be eliminated for commonly used pseudo
Mersenne primes. Taking NIST prime P-256 = 2256 — 2224 4 2192 1 996 _ 1 345 an
example, the least 96 significant bits are all ‘1’, so the parameter M equals 1 in
Algorithm 1 for k, d satisfying 2(4+1) < 296 and then M is reduced to M = M.
In this case, the range of pre-computed parameters are corresponding to the
width in the traditional Montgomery algorithm. Therefore, if our architecture is
designed for P-256, the performance will be further improved.

6 Conclusion and Future Work

This paper presents a high-speed elliptic curve cryptographic processor for generic
curves over GF(p) based on our novel Montgomery multiplier. We combine the
quotient pipelining Montgomery multiplication algorithm with our new parallel
array design, resulting in our multiplier completes one single Montgomery multi-
plication in approximately n clock cycles and also works in a high frequency. Also,
employing the multiplier, we implement the ECC processor for scalar multiplica-
tions on modern FPGAs. Experimental results indicate that the design is faster
than other existing ECC implementations over GF(p) on FPGAs. From the com-
parison results, we can see that pipelined Montgomery based scheme is a better
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choice than the classic Montgomery based and RNS based ones in terms of speed
or consumed resources for ECC implementations. In future work, we will imple-
ment the architecture in more advanced FPGAs such as Virtex-6 and Virtex-7,
and transfer it to ASIC platforms.
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A Rescheduling of Point Addition and Doubling
in Jacobian Projective Coordinates

Given the Weierstrass equation of an elliptic curve E : 4% = 2% + ax + b defined
over GF(p), the projective point (X : Y : Z), Z # 0 corresponds to the affine

Table 4. Scheduling process of point addition and doubling

Point Addition

Point Doubling

Step MUL ADD/SUB MUL ADD/SUB
1 L1:ZQ><Z2 L1:Z1><Zl L2:)/1+Y1
2 L2:Z1><Zl L3:L2><L2 L4:X1—|—L1
Ls =X, — Ly
3 )\1:X1><L1 L13:L4><L5 L6:X1+X1
4 )\QZXQXLQ )\2:L3><L6 A1:3L13
5 L3:Y1XZQ )\3:)\1—A2 LQZ)\1><)\1 L7:)\2/2
A7 = A1+ A2 Lg = X2+ L7
6 L4221XY2 L10:L3><L3 L11:L3—L9
7 )\4:L1><L3 L12:L11X>\1 )\3:L10/2
X3 = Lo — A2
8 /\5:L2><L4 Z3:L2><Zl Y3:L12*)\3
9 L5:Z1XZQ )\6:)\4_)\5
As =X+ A5
11 L7:)\6><)\6 L8:>\7+>\7
12 LQILGXLS
13 L10 = Ag X L() L = L9/2
Li2 = L1+ Ly
Lis=L7+ L7
14 23:)\3><L5 X3:L7*L11

Lis = L1 — L13
15 L1y = Xs X Lo
16 L16 = L15 X )\6
17 Y3 =Lig— L1
18 Y; = Y3/2
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point (X/Z?,Y/Z3) in Jacobian projective coordinates. Here we assume that
the elliptic curve y? = 23 + ax + b has a = —3 without much loss of generality.
Given two points Py = (X1,Y1,21), P, = (X2, Ys, Z5) in Jacobian coordinates,
sum P3 = P; + P». The point addition calculation process for P; # P, and point
doubling calculation process for P; = P, are scheduled as given in Table 4.
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