
A New Index Calculus Algorithm
with Complexity L(1/4 + o(1))

in Small Characteristic

Antoine Joux(B)

Laboratoire PRISM, CryptoExperts and Université de Versailles
Saint-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles Cedex, France

antoine.joux@m4x.org

Abstract. In this paper, we describe a new algorithm for discrete
logarithms in small characteristic. This algorithm is based on index cal-
culus and includes two new contributions. The first is a new method for
generating multiplicative relations among elements of a small smooth-
ness basis. The second is a new descent strategy that allows us to express
the logarithm of an arbitrary finite field element in terms of the loga-
rithm of elements from the smoothness basis. For a small characteristic
finite field of size Q = pn, this algorithm achieves heuristic complexity
LQ(1/4 + o(1)). For technical reasons, unless n is already a composite
with factors of the right size, this is done by embedding FQ in a small
extension FQe with e ≤ 2�logp n�.

1 Introduction

The discrete logarithm problem is one of the major hard problems used in
cryptography. In this paper, we show that for finite fields of small character-
istic, this problem can be solved with heuristic complexity L(1/4 + o(1)). More-
over, the algorithm yields very practical improvements compared to the previous
state-of-the-art.

One of the two main ideas used for our algorithm is a generalization of the
pinpointing technique proposed in [10]. Another independent algorithm for char-
acteristic 2 was proposed in [5], yielding an algorithm with complexity LQ(1/3),
with a better constant than the Function Field Sieve.

2 A Reminder of Discrete Logarithm Algorithms
in Small Characteristic

As usual when studying index calculus algorithms, we write:

LQ(β, c) = exp((c + o(1))(log Q)β(log log Q)1−β),

where Q = pn denotes the size of the finite field.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 355–379, 2014.
DOI: 10.1007/978-3-662-43414-7 18, c© Springer-Verlag Berlin Heidelberg 2014

356 A. Joux

When considering the computation of discrete logarithms, in fields of the
form FQ, where p is relatively small compared to Q, the state of the art choice
is to use one of the numerous variation of the function field sieve. For larger
values of p, it becomes preferable to use a variation of the number field sieve.
The choice between the two family of algorithms is made by comparing p and
LQ(13) (see [12]).

All these variants of the function field sieve find multiplicative relations by
factoring various polynomials into polynomials of low degree. A classical useful
result is the logarithm of the probability that a random polynomial of degree
n decomposes into factors of degree m over a finite field is close to:

− n

m
log

(n

m

)
,

for a wide range of parameters [13].
When using function field sieve algorithms, a standard heuristic assumption

is to assume that all polynomials that arise in the algorithm also follow this
smoothness probability. In the new algorithm presented here, this is false by
construction, because we consider polynomials than decompose more frequently
than usual. However, we still use the heuristic assumption on some polynomials:
those for which there is no known reason to expect that they would deviate from
the normal behavior.

Despite the new ingredients we are using, there are deep similarities between
our algorithm and its predecessors. In particular, some features are reminiscent
of Coppersmith’s algorithm [3], while others are inspired from [11]. In the present
section, we recall these two algorithms.

2.1 Coppersmith’s Algorithm

Coppersmith’s Algorithm was published in 1984 in [3]. Historically, it was the
first discrete logarithm algorithm to achieve complexity L(1/3). In its original
presentation, this algorithm is dedicated to characteristic 2, but it can easily be
generalized to any fixed characteristic [14].

Consider as usual a finite field of size Q = pn. Coppersmith assumes that
FQ is constructed using a polynomial P (x) = xn − P0(x), where P0(x) is a
polynomial of low degree. He then chooses k a power of p close to

√
n and writes

n = hk − n0, with 0 ≤ n0 < k.
Let A and B be two polynomials of low degree. Coppersmith considers the

polynomial C(x) = xhA(x) + B(x), let D = Ck and remarks that since k is a
power of p, the linearity of the Frobenius map implies:

D(x) = C(x)k

= xhkA(x)k + B(x)k (mod P (x))
= xn0P0(x)A(x)k + B(x)k (mod P (x))

As a consequence, both C and D have moderate degrees O(
√

n). If both factors
into low degree polynomials, we obtain a multiplicative relation between the
factors; in this relation, the factors of C are raised to the power k.

A New Index Calculus Algorithm in Small Characteristic 357

The complexity of Coppersmith’s index calculus algorithm is L(1/3, c) with
a value of c that depends on the extension degree n. This constant is minimized
when n is close to a power of p2.

2.2 Function Field Sieve

The general function field sieve algorithm was proposed in 1999 by Adleman and
Huang in [1]. It improves on Coppermith’s algorithm when the extension degree
n is not close to a power of p2. In its general form, it uses multiplicative relations
between ideals in function fields and technicalities arise due to this. A simplified
version was proposed in [11]. This simplified version only involves polynomial
rings (instead of function fields), which has the merit of removing most of these
technicalities.

The algorithm from [11] is particularly well suited to the computation of
discrete logarithms in fields that contain a medium-sized subfield (not necessarily
prime). To emphasize this, we write the finite field as Fqn , a degree n extension of
the medium-sized field Fq. In the optimal case where q = Lqn(1/3), the constant
in the complexity can even be reduced compared to usual function field sieve.

By convention, in the rest of the section, X and Y are formal variables,
while x and y are elements of Fqn . In order to define the extension field Fqn ,
the algorithm selects g1 and g2 two univariate polynomials of respective degree
d1 and d2 with coefficients in Fq. If the polynomial −g2(g1(Y)) + Y has an
irreducible factor I(Y) of degree n over Fq, then I can be used to define Fqn

and we denote by y a root of I in this field. When this occurs, −g1(g2(X)) + X
also has an irreducible factor I ′(X) of degree n over Fq. Moreover, x = g1(y) is a
root of I ′ in Fqn . Abstractly, we consider that the algorithm is, in fact, defining
the finite field Fqn implicitly by the two relations:

x = g1(y), y = g2(x), (1)

As explained in [11], it is easy to find polynomials g1 and g2 that satisfy this
requirement. This definition of the finite field induces the commutative diagram
in Fig. 1. On the right-hand side, we use the I(Y) to define Fqn and on the
left-hand side, we use I ′(X).

Fq[X,Y]

Fq[X] Fq[Y]

Fqn

Y ←g2(X)

X←g1(Y)

X←x

Y ←y

Fig. 1. Commutative diagram for the algorithm of [11]

358 A. Joux

The relative degrees of d1 and d2 in the construction are controlled by an
extra parameter D, whose choice is determined by the size of q compared to qn.
More precisely, we have d1 ≈ √

Dn and d2 ≈ √
n/D. The simplest and most

efficient case occurs when we can choose D = 1, i.e. d1 ≈ d2 ≈ √
n.

Starting from this definition of the finite field, the medium prime field algo-
rithms consider objects of the form A(Y)X +B(Y), where A and B are univari-
ate polynomials of degree D and A is unitary. Substituting g1(Y) for X on one
side and g2(X) for Y on the other, we obtain two univariate polynomials whose
images in Fqn are equal, i.e. an equation:

A(y) g1(y) + B(y) = A(g2(x))x + B(g2(x)).

This relates the images of a polynomial of degree d1 + D in Y and a polynomial
of degree Dd2 + 1 in X.

Following [11] , we only keep the relations, where A(Y) g1(Y) + B(Y) and
A(g2(X))X + B(g2(X)) both factor into unitary polynomials of degree at most
D in X or Y . This yields multiplicative relations between the images in Fqn of
these low-degree polynomials, which form the smoothness basis. Classically the
good pairs (A,B) are found using a sieving approach1.

Complexity. To express the complexity, [11] let Q = qn and assumes that there
exists a parameter α such that:

n =
1
α

·
(

log Q

log log Q

)2/3

, q = exp
(

α · 3
√

log Q · log2 log Q

)
.

In this setting, the heuristic asymptotic complexity of the sieving phase is
Lqn(13 , c1) and the complexity of the linear algebra is Lqn(13 , c2), with:

c1 =
2

3
√

αD
+ αD and c2 = 2αD.

Note that the algorithm with parameter D only works under the condition that
we can obtain enough linear equations to build the linear system of equations.
This requires:

(D + 1)α ≥ 2
3
√

αD
. (2)

For a given finite field Fqn , [11] indicates that the best possible complexity is
obtained by choosing the smallest acceptable value for the parameter D.

Individual Logarithms Phase. Another very important phase that appears
in index calculus algorithms is the individual discrete logarithms phase which
allows to compute the logarithm of an arbitrary finite field element by find-
ing a multiplicative relation which relates this element to the elements of the
smoothness basis whose logarithms have already been computed.
1 Asymptotically, exhaustive search of good pairs is as efficient. However, using sieving

improves things by a large constant factor.

A New Index Calculus Algorithm in Small Characteristic 359

We now detail this phase in the case of [11]. The ultimate goal of expressing a
given element as a product of elements from the smoothness basis is not achieved
in a single pass. Instead, it is done by first expressing the desired element in Fqn

as a product of univariate polynomials in either x or y and with degree smaller
than that of the desired element. These polynomials can in turn be related to
polynomials of a lower degree and so on, until hitting degree ≤ D, i.e. elements
of the smoothness basis. For this reason, the individual logarithm phase is also
called the descent phase.

In order to create relations between a polynomial in either X or Y (i.e.
coming either from the left or right side of a previous equation) and polynomials
of lower degree, [11] proceeds as follows: Let Q(X) (resp. Q(Y)) denote the
polynomial that represent the desired element. One considers a set of monomials
SQ = {XiY j |i ∈ [0 · · · Dx(Q)], j ∈ [0 · · · Dy(Q)]}, where Dx(Q) and Dy(Q) are
parameters that we determine later on. Each monomial in SQ can be expressed
as a univariate polynomial in X (resp. Y), after replacing Y by g2(X) (or X
by g1(Y)). For a monomial m we denote by VQ(m) the value modulo Q of the
univariate polynomial corresponding to m. Clearly, VQ(m) can be represented by
a vector of deg Q finite field elements. We now build a matrix MQ by assembling
all the vectors VQ(m) for m ∈ SQ. Any vector in the kernel of MQ can then be
interpreted as a polynomial whose univariate representation is divisible by Q. If
both the quotient after dividing by Q and the univariate representation in the
other unknown decompose into products of polynomials of low enough degree,
we obtain the desired relation.

Clearly, this approach requires us to take enough monomials to make sure
that the kernel contains sufficiently many polynomials in order to find a satis-
fying relation. This can be achieved by choosing Dx(Q) and Dy(Q) such that
Dx(Q)Dy(Q) ≥ deg Q. Moreover to balance the degrees after replacing X or Y ,
we make sure that Dy(Q)/Dx(Q) ≈ D. With these choices, the degree on each
side after replacement is close to

√
ndeg Q. The logarithm of the probability

that each of the two sides decompose into polynomials of degree at most μdeg Q
(after factoring out Q) is estimated by:

− 2
μ

√
n

deg Q log
(

2
μ

√
n

deg Q
)

.

The cost of this descent step increases when the degree of Q decreases. As
a consequence, the total cost of the descent is dominated by the lowest degree
polynomials that still need to be processed. In [11], the descent is used all the
way down to constant degree D. As a consequence, with the relative sizes of n
and q that [11] considers, the asymptotic complexity of the descent is LQ(1/3).

3 New Algorithm: Basic Ideas

The new index calculus algorithms proposed in this paper hinges on a few basic
ideas, which can be arranged into a functional discrete logarithm algorithm.

360 A. Joux

Basic idea 1: Homographies. In [10], it was remarked that a single polynomial f
that nicely factors can be transformed into several such polynomials, simply by
a linear change of variable: f(X) −→ f(aX), for any non-zero constant a.

Our first idea consists in remarking that this is also true for a larger class of
change of variables. Basically, we consider changes induced by homographies:

X −→ aX + b

cX + d
.

The reader might object that an homography is not going to transform f into
polynomial. To cover this, we instead perform homogeneous evaluation of f at
(aX + b)/(cX + d).

In other words, we consider the polynomial:

Fabcd(X) = (cX + d)deg ff

(
aX + b

cX + d

)
.

Theorem 1. Let f(Y) be a monic polynomial of degree D over Fq and Fqk be an

extension field of Fq. Let Fabcd(X) = (cX+d)deg ff
(

aX+b
cX+d

)
with (a, b, c, d) ∈ F

4
qk

and ad �= bc. Write the factorization of f into monic irreducible polynomials as
f(Y) =

∏k
i=1 Fi(Y)ei . It induces a factorization of Fabcd

Fabcd(X) =
k∏

i=1

(
(cX + d)deg FiFi

(
aX + b

cX + d

))ei

.

Note that the factors in this decomposition are not necessary monic, not neces-
sary irreducible and may have a lower degree than the corresponding factor in
Fi.

Proof. The induced factorization is clear. It suffices to perform the change of
variable on both sides and remark that the grouped terms

(cX + d)deg FiFi

(
aX + b

cX + d

)

are indeed polynomials.
It is also clear that the transformed factors have no reason to be irreducible

in the extension field Fqk .
Remark that when c �= 0 the coefficient of Xdeg Fi in the factor coming from

Fi is cdeg FiFi(a/c). Since this is not necessarily 1 and can even be 0, we see that
the transformed polynomials are not necessarily monic and may have degree
strictly smaller than the corresponding Fi. 	

Thanks to this, it is now possible to amplify a single polynomial to a much
larger extend than previously. More precisely, with a linear change of variables,
the number of amplified copies of a single polynomial is close to the size of
the finite field in which a is picked. With homographies, the number of copies
becomes larger (see Sect. 4.2 for a detailed analysis).

A New Index Calculus Algorithm in Small Characteristic 361

Basic idea 2: Systematic polynomial splitting. The second idea directly stems
from this fact. Since it is possible to make so many copies of one polynomial, it
suffices to start from a single polynomial f . Thus, instead of considering many
polynomials until we find some candidate, we are going to choose a polyno-
mial with factors by design. Over a small finite field Fq, an extremely natural
candidate to consider is:

f(X) = Xq − X.

It is well-known that this polynomial splits into linear factors, since any element
of Fq is a root of f .

Geometrically, using the homogeneous evaluation of f (with multiplication
by (cX + d)q+1) at an homography h is equivalent to considering the image of
the projective line (including its point at infinity) P1(Fq) by h.

Basic idea 3: Field definition The image of Xq − X by an homography is a
polynomial which only contains the monomials Xq+1, Xq, X and 1. To obtain
a multiplicative relation, it is thus desirable to find a finite field representation
that transforms such a polynomial into a low degree polynomial. This can be
achieved by choosing the finite field representation in a way that is reminiscent
both of Coppersmith’s algorithm and of [11].

More precisely, we ask for a relation in Fqn of the form:

xq =
h0(x)
h1(x)

.

This defines the finite field Fqn , if and only if, h1(X)Xq − h0(X) admits an
irreducible factor of degree n.

This construction is similar to Coppersmith’s Algorithm, since we require a
simple expression of the Frobenius map x → xq. It is similar to [11], because we
do not ask for the relation to directly give an irreducible polynomial but only
require a factor of the proper degree.

The rest of the paper gives the details of how to put together these basic ideas
into a working discrete logarithm algorithm. Another application of the same
ideas has been described in [7], where a new deterministic algorithm (based on
similar heuristics to ours) is proposed to find a provable multiplicative generator
of a finite field.

4 Description of the New Algorithm

In this section, we present the new discrete logarithm algorithm for small charac-
teristic fields that arises when putting together the basic ideas from the previous
section. We first describe the general setting of our algorithm, before considering
its relation collection phase. We skip the description of the linear algebra phase
that takes as input the relations and outputs logarithms of the elements of our
factor basis, since it is left unchanged compared to previous algorithms. Finally,
we study the computation of individual discrete logarithms, for arbitrary field

362 A. Joux

elements. This phase relies on a descent method which contains two main strate-
gies. For elements with representations of high degree, one proceeds as in [11],
while for lower degrees we introduce a new strategy based on the resolution of
multivariate systems of bilinear equations.

4.1 Choosing the Parameters

Given a small characteristic finite field Fpn , we start be embedding it into a field
of the form Fq2k , with k ≤ q. This can be achieved by taking a degree e extension
of Fpn , with e ≤ 2�logp n�.

After this initial embedding, the finite field Fq2k is constructed has a degree k
extension of Fq2 . This degree k extension is obtained by using a irreducible factor
of a low degree bivariate polynomial, evaluated at (X,Xp). More precisely, we
follow the third idea of Sect. 3 and choose two low degree polynomials h0(X) and
h1(X) with coefficients in Fq2 such that h1(X)Xq −h0(X) has an irreducible fac-
tor I(X) of degree k. This field representation leads to the commutative diagram
in Fig. 2. Heuristically, we expect arbitrary extension degrees to appear with this
form of definition polynomials. Indeed, we expect that a fraction close to 1/k
of random polynomials has a factor of degree k. Thus considering polynomials
h0 and h1 of degree 2, we have a very large number of degrees of freedom and
expect to get a good representation. However, this argument is not a proof. This
is emphasized by the fact that with linear polynomials h0 and h1 we can only
reach a fraction of the possible extension degrees (see the simple cases below).

In order to increase the confidence level in this heuristic hypothesis, we have
performed some experiments in characteristic 2. This yields some numerical evi-
dence supporting the heuristic which is described in Appendix B.

Moreover, since we have also the option of raising the degree of h0 and h1 to
an arbitrary constant, it should be easy to achieve any extension degree k (up to
q + deg(h1).)

Fq[X,X ′]

Fq[X] Fq[X]

Fq2k

Fpn

X′←Xq

X′←h0(X)/h1(X)

X←x

X←x

Degree e extension

Fig. 2. Commutative diagram for our new algorithm

A New Index Calculus Algorithm in Small Characteristic 363

Illustration of Some Simple Cases. Some kind of extensions are especially
well-suited to this form of representation. To illustrate our construction, we now
describe these simple cases.

A first example concerns extensions of degree k = q − 1. They can be repre-
sented as Kummer extensions by an irreducible polynomial I(X) = Xq−1 − g,
where g is a generator of the multiplicative group F

∗
q . This can be achieved easily

in our setting by letting h0(X) = gX and h1(X) = 1.
Similarly extensions of degree k = q + 1 can be represented by a Kummer

extension by an irreducible polynomial I(X) = Xq+1 + Gq−1, where G is a
generator of the multiplicative group F

∗
q2 . This can be achieved easily in our

setting by letting h0(X) = −Gq−1 and h1(X) = X.
Alternatively, extensions of degree q + 1 can also be represented using a

“twisted Kummer” form, i.e. using an irreducible polynomial of the form Xq+1−
AX −B, with coefficients A and B in Fq. This twisted Kummer form is used for
the record computation presented in Sect. 8.

Another special case is k = p, which can be represented by an Artin-Schreier
extension with I(X) = Xp − X − 1. This can be achieved by choosing h0(X) =
−(X + 1) and h1(X) = 1. However, since our algorithm is dedicated to small
characteristic, this only leads to low degree extensions.

Action of Frobenius. When using Kummer, twisted Kummer or Artin-Schreier
extensions, the fact that the Frobenius maps X to an homography in X allows
to reduce the size of the factor basis by a factor close to the extension degree.
Indeed, we can remark that:

1. In the Kummer case:

(x + θ)q = xq + θq = g(x + θq/g).

2. In the twisted Kummer case:

(x + θ)q = xq + θq =
1
x

((θ + A)x + B).

3. In the Artin-Schreier case:

(x + θ)p = xp + θp + 1.

These relations yield simple linear relations between the elements of the smooth-
ness basis and allow to reduce its size. It is easy to check that similar relations
also relate polynomials of degree 2 in x.

4.2 Logarithms of Linear Polynomials

The first step in the algorithm is to generate the logarithms of all linear polyno-
mials in the finite field. As usual in index calculus, we construct multiplicative
relations between these elements. These equations can be viewed as linear equa-
tions on the values of their logarithms which are then obtained by linear algebra.

364 A. Joux

In order to generate the relations, we start from the polynomial identity:
∏

α∈Fq

(Y − α) = Y q − Y, (3)

and perform a change of variable Y = aX+b
cX+d , with (a, b, c, d) ∈ F

4
q2 satisfying

ad − bc �= 0.
Evaluating Eq. (3) and multiplying by (cX + d)q+1, we find that:

(cX + d)
∏

α∈Fq

((a − αc)X + (b − αd)) = (cX + d)(aX + b)q − (aX + b)(cX + d)q.

Moreover the right-hand side can be evaluated to:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq)
≡

(caq−acq)Xh0(X)+(daq − bcq)h0(X)+(cbq−adq)Xh1(X)+(dbq − bdq)h1(X)
h1(X)

(mod I(X)).
(4)

As a consequence, we get an equality in Fq2k between a product of linear
polynomials and a fraction with low-degree numerator and constant denomi-
nator. Considering h1(X) as an extra element of the smoothness basis, we get
a multiplicative relation whenever the right-hand side’s numerator factors into
linear factors.

Counting the Relation Candidates. The above description that generates a
candidate relation from a quadruple (a, b, c, d) disregards some important struc-
ture in the set of candidates. In particular, the reader should be aware that
the same relation may be encountered several times (with different quadruples
(a, b, c, d)). Typically, when (a, b, c, d) ∈ F

4
q, we obtain a trivial equation. Indeed,

in this case, for each v in {a, b, c, d}, we have vq = v. As a consequence, after
evaluation, we obtain the polynomial (ad − bc)(Xq − X). Since this a just a
multiple of the basic polynomial Xq − X, this cannot form a new relation.

This is the reason why we need to take coefficients2 (a, b, c, d) in Fq2 and to
consider a smoothness basis with coefficients in Fq2 .

To understand the way Eq. (3) is transformed, we need to recall a few facts
about the geometric action of homographies on a projective line. Given a non-
singular matrix M with coefficients in a field K and a point P on the projective
line P1(K) with homogeneous coordinates (XP , YP), we define the image of P
by M to be the point MP , whose coordinates are obtained by multiplying the
matrix M and the vector of coordinates of P . In other words, when

M =
(

a b
c d

)
,

2 At this point, there is nothing really special with Fq2 , it is just the smallest superfield
of Fq. A larger superfield would also work.

A New Index Calculus Algorithm in Small Characteristic 365

MP is defined as the point with homogeneous coordinates (aXP + bYP , cXP +
dYP). It is clear that multiplying M by an arbitrary non-zero scalar does not
change the induced geometric action. Since the scalar matrices form a normal
subgroup of the invertible matrices, it is better to consider M as an element
from the corresponding quotient group which is traditionally called PGL2(K). It
is well known that for a finite field K, the cardinality of PGL2(K) is (|K|2−1)·|K|.

Geometrically, the change of variables we considered in the Eq. (3) is equiva-
lent to writing a polynomial equation for the image of the projective line P1(Fq)
by an element of PGL2(Fq2). Since PGL2(Fq) leaves P1(Fq) globally invariant, it
is now clear that the same equation can arise multiple times. More precisely, for
any M in PGL2(Fq2) and any N in PGL2(Fq), M and NM send P1(Fq) to the
same image and induce the same equation. Since PGL2(Fq) is not a distinguished
subgroup of PGL2(Fq2), we cannot form a quotient group. Instead, we need to
regroup the matrices of PGL2(Fq2) into orbits induced by the (left-)action of
PGL2(Fq). One can check that this action is free and thus that the cardinal-
ity of the set of orbits is simply the quotient of the cardinalities of PGL2(Fq2)
and PGL2(Fq). As a consequence, the number of orbits and, thus, of candidate
equations is:

q6 − q2

q3 − q
= q3 + q.

Cost of relation finding. We now would like to estimate the probability of finding
a relation for a random quadruple. Under the usual heuristic that the right-
hand side’s numerator factors into linear with a probability close to a random
polynomial of the same degree, we need to perform D! trials, where D denotes the
degree of the right-hand numerator. We note that D ≤ 1 + max(deg h0,deg h1).

As a consequence, since D can heuristically be chosen as a constant, we expect
to find enough relations by considering O(q2) quadruples. To avoid duplicates,
we can either use the structure of the orbits of PGL2(Fq2) under the action of
PGL2(Fq) or simply keep hash values of the relations to remove collisions. Since
we only need O(q2) distinct elements in a set of size close to q3, the number of
expected collisions between relations for randomly chosen quadruples (a, b, c, d)
is O(q). As a consequence, dealing with these collisions does not induce any
noticeable slow-down.

4.3 Extending the Basis to Degree 2 Polynomials

The above process together with linear algebra can thus give us the logarithms of
linear polynomials. Unfortunately, this is not enough. Indeed, we do not know, in
general, how to compute arbitrary logarithms using a smoothness basis that only
contains linear polynomials. Instead, we extend our basis of known logarithms
to include polynomials of degree 2.

We first describe a natural approach that does not work, before proposing a
successful approach that requires some additional linear algebra steps.

366 A. Joux

A Natural Strategy that Fails. The idea of this strategy is to reconsider the
relations produced for finding the linear polynomials. But, instead of keeping
the relations with a right-hand side that splits into linear factors, it also keeps
relations with a single degree 2 factor and some linear factors. This clearly allows
us to compute the logarithm of the degree 2 polynomial.

A simple counting argument shows that in general, this approach must fail.
Indeed, on the one-hand, the number of quadratic polynomials with coefficients
in Fq2 is O(q4), while on the other hand, the number of relations that can be
obtained from homographies with coefficients in Fq2 is close to q3 when remov-
ing the duplicates arising from homographies with coefficients in Fq. As a con-
sequence, it is not possible to derive the logarithms of all quadratic polynomials
in this way.

It is interesting to note that if we replace the field Fq2 by a larger field for
the coefficients of the homographies, the natural approach becomes workable.
However, we can see that the same counting argument shows that, in general,
using Fq3 is not good enough since a fraction of the equation are lost due to
the right-hand side splitting probability. Thus, to be able to recover the degree 2
polynomials with the simple strategy we need to, at least, use Fq4 as our basefield.
Since the number of linear polynomials in this case is q4, it is clearly preferable
to stay with Fq2 and pay the price of constructing quadratic polynomials with
the strategy below.

A Working Strategy. For this second strategy, we produce some extra equa-
tions, using the same approach as for linear polynomials together with a slightly
more general change of variable. More precisely, we consider changes of the form:

Y =
aX2 + bX + c

dX2 + eX + f
.

With this choice, the left-hand side factors into polynomials of degree at most 2.
If the left-hand side also factors into polynomials of degree at most 2, we obtain
an equation that involves the extended basis. Once we get enough equations, it
suffices to perform a linear algebra step to recover the extra logarithms.

However, this linear algebra step is much bigger than the first one. In fact, it
is almost as expensive as initially building all linear polynomials over the larger
basefield Fq4 . Thankfully, it is often possible to improve this, by separating the
degree 2 polynomials into several subsets which can be addressed independently.

Basically, the idea is to choose

Y =
a(X2 + αX) + b

c(X2 + αX) + d
.

With this choice, thanks to the repetition of X2 + αX in the numerator and
denominator, all the degree 2 factors on the left are of the form X2 + αX + K.
If we only keep relations with a right-hand side that factors into linear poly-
nomials, a set of relations that all share the same value for α then produce

A New Index Calculus Algorithm in Small Characteristic 367

a much smaller linear system. Indeed, the unknowns are the logarithms of
irreducible polynomials of degree 2 from the subset X2 + αX + K, with a
fixed α. As a consequence, instead of solving a large system of size O(q4), we
need to solve q2 smaller system (on for each α), of size O(q2). This system is
obtained by selecting equations with a smooth left-hand side in a set of O(q3)
candidates.

Depending on the exact parameters of the finite field and the number of
logarithms that need to be computed, it might also be useful to further extend
the smoothness basis and include polynomials of higher degree (3 or more).

5 New Algorithm: Descent Phase

Once the logarithms of smoothness basis elements are known, we want to be able
to compute the logarithm of an arbitrary element of the finite field. We wish to
proceed using a descent approach similar to [11]. The basic idea is to first obtain
a good representation of the desired element into a product of polynomials whose
degrees are not too high. Then, proceeding recursively, we express the logarithms
of those polynomials as sums of logarithms of polynomials of decreasing degree.
Once we reach the polynomials of the smoothness basis, we are done.

In our context, we cannot, in general, use the preexisting method for this
descent step. Yet, we first recall this method, discuss when it can be used and
explain why we cannot use it generally. Then, we propose an alternative method
that is more suited to the field representations we are using. This new method
involves the resolution of bilinear multivariate systems of equations over Fq2 .
The resolution of such systems has been analyzed carefully in Spaenlehauer’s
PhD thesis [15] and in [4].

5.1 Practical Preliminary Step

Before going into the descent itself, it is useful to start by finding a good repre-
sentation of the element Z whose logarithm is desired. Initially, Z is expressed
as a polynomial of degree up to k − 1 over Fq2 . Assuming that g denotes a gen-
erator of Fq2k , we consider the decomposition of the polynomials that represent
giZ, until we find one which decomposes into elements of reasonably low degree.
These lower degree elements are then processed by the descent step.

A classical improvement on this is to use a continued fraction algorithm to
first express giZ as a quotient of two polynomials of degree at most k/2.

This preliminary step gives no improvement on the asymptotic complexity
of the descent phase.

5.2 Classical Descent Method

The classical descent technique as described in [11] and recalled in Sect. 2.2
is based on Special-Q sieving. More precisely, it creates relations in a linear

368 A. Joux

subspace where by construction one side of the equation is divisible by the desired
polynomial.

In the description of this method, we have two related variables X and Y . The
relations are constructed by considering bivariate polynomials h(X,Y), which
can lead to relations of the form h(X, f1(X)) = h(f2(Y), Y). To create a rela-
tion that involves a fixed polynomial Q(X), we want to enforce the condition
h(X, f1(X)) ≡ 0 (mod Q(X)). This condition is equivalent to deg(Q) linear
equations on the coefficients of h. When the basefield is not too small, to get
enough equations, it suffices to build the polynomials h as linear combination of
deg(Q) + 2 monomials.

In general characteristic, we cannot use this method in our context, because
we do not known how to create two related variables X and Y to use in this
descent step. However, with small characteristic fields, this become possible. Let
p denote the characteristic of the finite field. We can then write q = p� and let
Y = Xpr

, where r = ��/2�. Then following our construction, we see that:

Y q·p−r

= Xq =
h0(X)
h1(X)

.

For the Kummer (or Artin-Schreier) case, where h0 and h1 have degree at most
one, this directly gives X as a polynomial g in Y and the usual descent can be
applied without modification. When h0 or h1 have higher degree, the method
still works, but we need to use a slight variation. Instead of considering the
relation h(X,Xpr

) = h(g(Y), Y), we consider a relation (h(X,Xpr

))q·p−r

=
h′(Xq·p−r

, h0(X)/h1(X)), where h′ is obtained from h by raising the coefficient
to the power q ·p−r. This has the additional advantage of completely eliminating
the auxiliary variable Y .

As seen in Sect. 2.2, this becomes less and less efficient as the degree of Q
decreases and the complexity is dominated by the lowest degree of Q that we
consider.

However, by itself, this method cannot descend to very low degrees which is
a problem when we want to keep a small smoothness basis. As a consequence,
we combine it with a newer method described below, which works better on low
degree polynomials.

5.3 Bilinear System Based Descent

The basic idea of the new descent method we propose to complement the clas-
sical descent works as follows: given a polynomial Q, we search for a pair of
polynomials of lower degree, k1 and k2 such that Q(X) divides (k1(X)qk2(X) −
k1(X)k2(X)q) mod I(X). As a consequence, the relation:

(k1(X)qk2(X) − k1(X)k2(X)q) ≡ (k1(X)qk2(X) − k1(X)k2(X)q) mod I(x),

has a factor equal to Q on the right-hand side and factors of degree at most
Dm = max(deg k1,deg k2) on the left-hand side. Since the total degree of the

A New Index Calculus Algorithm in Small Characteristic 369

right-hand side is bounded by a small multiple of Dm (related to the degrees of h0

and h1 the polynomials which defined out extension field), with good probability,
we obtain a relation between Q and polynomials of degree at most Dm.

The question is thus to construct such polynomials k1 and k2. We remark that
the condition that (k1(X)qk2(X) − k1(X)k2(X)q) mod I(X) vanishes modulo
Q can be rewritten as a quadratic system of multivariate equations over Fq. In
fact, this system is even bilinear, since each monomial that appear in it contains
at most one unknown for each of k1 and k2. As a consequence, this system
can be quite efficiently solved using a Gröbner basis algorithm. More precisely,
consider each coefficient of k1 and k2 as a formal unknown belonging to the
field of coefficients Fq2 . If x is one of these unknowns, we express x as x0 + zx1,
where (1, z) is a polynomial basis for Fq2 over Fq, x0 and x1 are unknowns
belonging to Fq. With this convention, we have xq = x0 +zqx1 and we can check
that our polynomial system of equations is indeed bilinear over Fq. This system
contains deg Q equations over Fq2 which are rewritten as 2 deg Q equations over
Fq. Assuming k1 to be unitary, the maximal number of unknowns that can fit in
k1 and k2 is 2(deg k1+deg k2+1). However, due to the action of PGL2(Fq), several
distinct pairs k1, k2 yield the same polynomial for (k1(X)qk2(X)−k1(X)k2(X)q).
To avoid this issue, we need to fix at least one of the unknowns over Fq2 to an
element of Fq2 − Fq. After this, the number of remaining unknowns over Fq is
2(deg k1 + deg k2).

At this point, we need a new heuristic argument concerning the result-
ing system of equations. Namely, we require two important properties of the
system that arise after fixing any additional unknowns to values. The result-
ing system is bilinear and its number of unknowns N is equal to its number
of equations. We ask that with good probability this system should be zero-
dimensional with at least one solution with values in the finite field Fq. In
order to apply this heuristic, we need at least one extra unknown over Fq2 that
can be set to a random value. As a consequence, we require deg k1 + deg k2 ≥
deg Q + 1.

Under this heuristic, we can analyze the cost of the bilinear descent by study-
ing the complexity of solving one such system. The main result from [4,15]
is that this complexity is exponential in min(deg k1,deg k2). For this reason,
we do not use our descent strategy with balanced degrees deg k1 ≈ deg k2),
instead we let d = deg k2 parametrize the smallest of the two degrees and fix
deg k1 = deg Q + 1 − d.

We recall the complexity analysis given in [4,15]:

Theorem 2 [Corollary 3 from [4]].
The arithmetic complexity of computing a Gröbner basis of a generic bilinear
system f1, · · · , fnx+ny

∈ K[x0, · · · , xnx−1, y0, · · · , yny−1] with the F5 algorithm
is upper bounded by:

O

((
nx + ny + min(nx + 1, ny + 1)

min(nx + 1, ny + 1)

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant.

370 A. Joux

In our application, we have nx = 2(deg Q+1−d), ny = 2d and min(nx, ny) =
2d. Thus, the cost of one descent step becomes:

(
2 deg Q + 3

2d + 1

)ω

.

An asymptotic choice for d is given in Sect. 6. It is obtained by making d
large enough to make sure that the top level nodes of the descent tree dominate
the total cost. Note that, in practical computations, the best choice is usually
to make d as large as feasible. Indeed, the feasibility of the Gröbner step mostly
depends on the available amount of memory and it is important to descent as
steeply as possible to minimize the total cost.

6 Complexity Analysis

According to the heuristic argument of Sect. 4.1, the creation of the finite field
representation runs in randomized polynomial time, just by trying random poly-
nomials h0 and h1 of degree 2 (or higher constant degree). Similarly, the creation
of the logarithms of linear and quadratic elements can be done in polynomial
time. The dominating part of this initial creation of logarithms is dominated
by the linear algebra required for the quadratic elements. Since we are solving
q2 linear systems of dimension O(q2) with O(q) entries per line, the total cost
of this polynomial part is O(q7) arithmetic operations. Note that for Kummer
extensions, the number of linear systems is reduced to O(q), which lowers the
cost to O(q6).

A similar polynomial time behavior for computing the logarithms of the
smoothness basis is also given in [5].

The rest of this section analyzes the descent phases which dominates the
asymptotic cost of our algorithm.

6.1 Individual Logarithms

To analyze this phase it is convenient to write k = αq, for some constant α ≤
1 + deg h1

q . Under this hypothesis, remark that:

Lq2k(β, c) = exp((c + o(1))(2k log q)β(log(2k log q))1−β)

≈ exp((c′ + o(1))qβ log(q)), where c′ = (2α)β · c

We now give the analysis of the complexity, which shows that we can reach
complexity L(1/4 + o(1)) when the characteristic is small enough. Namely, we
require q = p� for some � ≥ 2.

We start with the classical descent approach, which it is compatible with
our algorithm when � ≥ 2. The analysis of this method is recalled in Sect. 2.2.
Since the cost increases when deg Q decreases, it suffices to write the cost for

A New Index Calculus Algorithm in Small Characteristic 371

the lowest degree we wish to attain, namely cc

√
q/ log q for some constant cc.

The total cost in this case becomes:

exp
(

1
2μ

√
α

cc
q1/4 log q5/4

)
,

where μ < 1.
Of course stopping at polynomials of degree O(q1/2) is not enough to fin-

ish the computation. To continue the descent, we use the newer approach,
starting from polynomials of degree deg Q = cc

√
q/ log q. We need to deter-

mine the value of the parameter d = deg k2 introduced in Sect. 5.3. The left-
hand side in the bilinear descent contains q + 1 polynomials of degree at most
deg k1 = deg Q + 1 − d. The degree of the right-hand side is bounded by
deg k1(max(deg h0,deg h1) + 1), i.e., by a small multiple of deg Q, a solution
of the system yields with heuristic constant probability a new equation relating
the desired polynomial to polynomials of degree at most deg k1. The total num-
ber of polynomials of degree between deg k1 − d and deg k1 after decomposing
each side into irreducible polynomial is at most q + O(1). Note that the con-
tribution of lower degree polynomials to the complexity is negligible, since the
computation of their logarithms is deferred to a lower level of the computation
tree, where they represent a tiny fraction of the polynomials to be addressed.

Thus, the running time to compute the logarithm of a degree DQ = deg Q
polynomial is T (DQ, d) ≈ T0(DQ, d) + qT (DQ − d, d). In Sect. 5.3, we find that:

T0(DQ, d) =
(

2DQ + 3
2d + 1

)ω

.

We now choose d to ensure that T0(DQ, d) dominates the computation. This
requires d to be large enough to be able to neglect the powers of q in the
sum (when the expression of T (DQ, d) is unrolled). To simplify the analysis,
we replace T0 by T1(DQ, d) = D

6(d+1)
Q , which is asymptotically larger. We find

that we need to choose d such that:

q (Dq − d)6(d+1) ≤ DQ
6(d+1).

Taking the logarithm, and using − log(1 − ε) ≈ ε, it asymptotically suffices to
have

d2 ≥ DQ log q

6
.

With DQ = cc

√
q/ log q, we can choose d =

⌈(
cc
6

√
q log q

)1/2
⌉
.

This yields:

T1(DQ, d) = exp
((√

6cc

4
+ o(1)

)
q1/4 log5/4 q

)
.

Of course, this cost should be multiplied by the number of polynomials after
the classical descent. When μ < 1, the number of levels in the classical descent

372 A. Joux

tree is logarithmic in q and each level multiplies the number of polynomials by a
constant. As a consequence, the total number of polynomials after the classical
descent is polynomial in q and vanishes into the o(1) in the exponent of the
complexity. In order the balance the two phases of the descent, we can take:

cc =
1
μ

√
2α

3
,

which achieves complexity:

exp

((
1

2
√

μ
·
(

3α

2

)1/4

+ o(1)

)
q1/4 log5/4 q

)
.

The constant in the above complexity could be improved by taking into
account a value of the linear algebra constant ω < 3 and letting μ tend toward 1.
Note that due to the presence of an extra log1/2(q) term, this is strictly bigger
than L(1/4). However, it can be rewritten as L(1/4 + o(1)).

Impact of more efficient algorithms to solve the bilinear systems. It is important
to remark that given an oracle (or efficient algorithm) to solve the bilinear sys-
tems, we could use a much faster descent from degree deg Q to �(deg Q + 1)/2�
at each step. In this case, the complexity would be dominated by the number of
nodes in the descent tree, i.e. qlog D. Starting directly from deg Q = k − 1 would
then give a quasi-polynomial complexity exp(O(log2 q)).

Moreover, this would get rid of the use of classical descent, together with the
constraint of having q = p�, with � ≥ 2.

7 Remarks on the Special Case of Fpk , p and k Prime

As already mentioned, in order to use our algorithm, we need to embed Fpk with
p and k prime into a small extension Fq2k , with q = pe and e = 2�log k�. From
an asymptotic point of view, this is of little impact, indeed the complexity would
become:

exp
(
Ck1/4 log5/4 k

)
,

for some constant C. Since log pk = k log p ≥ k/2, expressed as a function of pk,
it becomes:

exp
(
C ′ log1/4 pk log log5/4 pk

)
= Lpk(1/4 + o(1)).

In practice, it is also interesting to consider computations in F2p with 1024 <
p < 2048 prime. We know from Appendix B that this can be done by taking
q = 211 and having polynomials h0 and h1 of degree 2. In this case, we expect
the complexity to be dominated by the computation of logarithms of quadratic
polynomials. This would require approximately 277 arithmetic operations on
numbers of p bits, since we only need the value of logarithms modulo 2p − 1.
Comparing with the most recent data of the function field sieve [2], this L(1/3)
algorithm remains more efficient in this range.

A New Index Calculus Algorithm in Small Characteristic 373

8 A Couple of Experiments on Kummer Extensions in
Characteristic 2

For practical experiments, it is very convenient to use finite fields containing
a subfield of adequate size and to chose an extension that can be represented
with polynomials h0 and h1 of degree 1. In practice, this means choosing a
Kummer or twisted Kummer extension, which also a reduction of the size of
the smoothness basis by a nice factor. We recently announce two computation
records that illustrate the algorithm described here in this context. For numerical
details about these records, we refer the reader to [8,9].

8.1 A Kummer Extension F2562·255

Our first example is representative of our algorithm in the special case of Kum-
mer extension. More precisely, we let q = 256 and consider the finite field Fq2k ,
with k = q − 1.

In this computation, the most costly part is the linear algebra step for com-
puting the discrete logarithms of approximately 222 quadratic polynomials. This
is decomposed into 129 independent linear systems, one containing 214 elements
and 128 with 215 elements. On average, these system contain 128 non-zero coef-
ficients per line.

An initial phase of continued fractions reduced the problem to computed
logarithms of polynomials of degree at most 29. The classical descent step was
used to reduce this down to degree 12. The bilinear system approach permitted
to conclude the computation.

The total cost of the individual logarithm was approximately one half of the
cost of linear algebra. However, by using improved parameter choices (as in the
next computation), it would be possible to reduce this by a large factor.

8.2 A Twisted Kummer Extension F2563·257

This second example is interesting because it shows that pairing-based cryptog-
raphy over F2257 cannot be secure. However, it is too specific to be representative,
indeed, it crucially relies on the fact that F2563 = F644 .

The main specificity of this computation is a descent strategy, similar to
the one presented in [6], that allows a descent from polynomials of degree 2 to
polynomials of degree 1. This requires 3 conditions, the use of a Kummer or
twisted Kummer extension, the replacement of the field of coefficients Fq2 by
Fq3 and the use of two different polynomials to generate the systematic side of
relations. Namely, we used both X256 + X and (X64 + X)4.

As a direct consequence, the costly phase of generating quadratic polynomi-
als as a whole is removed. Thus, the computation becomes dominated by the
descent phase. Compared to the previous computation, this was largely opti-
mized. Indeed, the cost of the descent in this computation is about 1/10 of the
descent in the previous example.

374 A. Joux

Acknowledgements. We acknowledge that the results in this paper have been
achieved using the PRACE Research Infrastructure resource Curie based in France
at TGCC, Bruyères-le-Chatel (project number 2011050868) and the PRACE Research
Infrastructure resource Jugene/Juqueen based in Germany at the Jülich Supercomput-
ing Centre (project number 2011050868).

Appendix

A Alternative Polynomials

Throughout the paper, we used the polynomial Xq − X as our starting point.
However, it is also possible to use other polynomials for this purpose. In order to
be usable in our algorithm, a polynomial needs to satisfy two basic properties.
First, it should factor into linear factors over a small degree extension of Fq.
Second, it should be possible to write it as a low degree polynomial in X and
Xq.

Two possible alternative polynomials are Xq+1 − 1 and Xq+1 + 1 which
factor into linear terms over Fq2 . Another possibility is to use Xq+1 − X + 1 or
Xq+1 + X + 1 which factor into linear terms over Fq3 . For example, let us this
factorization in the case of Xq+1 −X +1. Let x denote a root of this polynomial
in Fq. It is clear that x satisfies:

xq =
x − 1

x
.

As a consequence:

xq2
=

xq − 1
xq

=
−1

x − 1
,

and
xq3

=
−1

xq − 1
= x.

Thus x belongs to Fq3 . The polynomials Xq+1 ± X + 1 are very closely related
to the discrete logarithm approach proposed in [5].

A.1 Equivalence of Using the Alternative Polynomials

Assume that we are working with a subfield Fq of characteristic q. Define v to be
a root of Xq+1 −1 in Fq2 . Consider now the homography given by the quadruple
(a, b, c, d) = (v, 1, 1, v). It is easy to check that the image of Xq − X by this
homography is:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≡
(vq − v)Xq+1 + (vq+1 − 1)Xq + (1 − vq+1)X + (v − vq) ≡

(vq − v)(Xq+1 − 1).

Up to a multiplicative constant, this yields the polynomial Xq+1 − 1.

A New Index Calculus Algorithm in Small Characteristic 375

Similarly, if v denotes a root of Xq+1 + 1 in Fq2 , consider the homography
induced by the quadruple (a, b, c, d) = (v,−1, 1, v). The image of Xq − X is:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≡
(vq − v)Xq+1 + (vq+1 + 1)Xq + (−1 − vq+1)X + (−v + vq) ≡

(vq − v)(Xq+1 + 1).

As a consequence, the polynomials Xq+1 ± 1 can be obtained by applying
a well-chosen homography to Xq − X. Thus, they do not generate any extra
multiplicative relations in the finite field.

Similarly, the use of Xq+1 ± X + 1 is equivalent to the use of Xq − X when
taking coefficients in Fq3 . To see that, define v to be a root of Xq+1 − X + 1 in
Fq3 . Consider the homography given by (a, b, c, d) = (v, v − 1, 1, v). We see that
after applying the homography, Xq − X becomes:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≡
(vq−v)Xq+1 + (vq+1 − v + 1)Xq + (vq − 1 − vq+1)X + (vq+1 − v − vq+1 + vq) ≡

(vq − v)(Xq+1 + X + 1).

Finally, with v a root of Xq+1 + X + 1 in Fq3 and the homography given by
(a, b, c, d) = (v,−v − 1, 1, v), we find after applying the homography:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≡
(vq − v)Xq+1 + (vq+1 + v + 1)Xq + (−vq − 1 − vq+1)X + (−vq+1 − v+vq+1+vq)

≡
(vq − v)(Xq+1 − X + 1).

As a consequence, we see that the four natural alternative polynomials that
can be used with coefficients in Fq2 or Fq3 turn out to be equivalent to the use
of Xq − X.

B Evidence for the Existence of the h0 and h1

Polynomials

Since our algorithm replies on the existence of low degree polynomials h0 and h1

such that h1(X) · Xq − h0(X) has a factor of degree k, it is important to study
this heuristic hypothesis in more details.

In this appendix, we give some practical evidence for the existence of such
polynomials in some practically interesting case. Assume that we wish to com-
pute discrete logarithm in F2p for a prime p in the interval [210, 211]. We expect
this to be achievable by embedding the finite field in F211p , i.e. by taking q = 211.
We define the finite field Fq as F2[a], with a11 + a2 + 1 = 0, and search for good
polynomials h0 and h1 with coefficient in Fq.

The result of this search is given in Table 1. It shows that all of the desired
extension fields can be represented with polynomials h0 and h1 of degree 2.

376 A. Joux

T
a
b
le

1
.
R

ep
re

se
n
ta

ti
o
n

o
f
F
q
p

b
y
X

q
=

h
0
(X

)/
h
1
(X

)
fo

r
q

=
2
1
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

1
0
3
1

X
2

+
a
1
5
5
5
X

+
a
1
4
8

X
2

+
a
1
9
6
2
X

+
a
1
4
6
5

1
0
3
3

X
2

+
a
2
7
7
X

+
a
7
0
2

X
2

+
a
1
3
1
X

+
a
1
6
1
9

1
0
3
9

X
2

+
a
1
1
6
1
X

+
a
4
9
8

X
2

+
a
1
5
1
9
X

+
a
1
4
8
2

1
0
4
9

X
2

+
a
1
7
6
8
X

+
a
7
0
9

X
2

+
a
1
3
1
X

+
a
2
8
3

1
0
5
1

X
2

+
a
1
9
6
7
X

+
a
1
9
1
9
X

2
+

a
3
0
4
X

+
a
2
7
2

1
0
6
1

X
2

+
a
6
3
8
X

+
a
1
9
0
5

X
2

+
a
3
4
7
X

+
a
6
5
1

1
0
6
3

X
2

+
a
1
0
7
9
X

+
a
5
2
5

X
2

+
a
9
0
4
X

+
a
2
0
2
9

1
0
6
9

X
2

+
a
1
0
5
0
X

+
a
1
7
2
5
X

2
+

a
1
8
4
2
X

+
a
1
5
5
1

1
0
8
7

X
2

+
a
4
2
1
X

+
a
1
4
0
5

X
2

+
a
1
4
0
4
X

+
a
9
0
1

1
0
9
1

X
2

+
a
6
0
9
X

+
a
1
7
4
4

X
2

+
a
1
9
4
5
X

+
a
7
8
1

1
0
9
3

X
2

+
a
6
0
8
X

+
a
4
6
8

X
2

+
a
3
4
2
X

+
a
1
2
0
0

1
0
9
7

X
2

+
a
1
6
0
3
X

+
a
4
5
2

X
2

+
a
1
9
1
0
X

+
a
1
8
9
2

1
1
0
3

X
2

+
a
1
5
5
X

+
a
1
6
9
4

X
2

+
a
7
3
2
X

+
a
7
7
9

1
1
0
9

X
2

+
a
4
1
4
X

+
a
6
1
2

X
2

+
a
6
5
6
X

+
a
1
0
2
9

1
1
1
7

X
2

+
a
4
0
9
X

+
a
1
3
0
3

X
2

+
a
1
5
9
1
X

+
a
1
1
5
9

1
1
2
3

X
2

+
a
4
6
X

+
a
1
1
3
1

X
2

+
a
1
6
1
5
X

+
a
1
3
7
9

1
1
2
9

X
2

+
a
1
9
4
X

+
a
3
1
5

X
2

+
a
1
3
7
9
X

+
a
1
1
8
4

1
1
5
1

X
2

+
a
3
9
4
X

+
a
3
9
1

X
2

+
a
1
3
0
5
X

+
a
1
2
5

1
1
5
3

X
2

+
a
1
6
7
3
X

+
a
1
7
1

X
2

+
a
8
7
0
X

+
a
3
0
2

1
1
6
3

X
2

+
a
6
9
4
X

+
a
1
3
6
8

X
2

+
a
2
2
0
X

+
a
2
4

1
1
7
1

X
2

+
a
7
7
1
X

+
a
1
9
9
6

X
2

+
a
3
0
6
X

+
a
8
0
5

1
1
8
1

X
2

+
a
5
0
6
X

+
a
2
0
1
8

X
2

+
a
3
2
6
X

+
a
1
6
9
8

1
1
8
7

X
2

+
a
1
3
5
1
X

+
a
1
7
0
9
X

2
+

a
1
8
1
0
X

+
a
1
5
1
8

1
1
9
3

X
2

+
a
8
4
5
X

+
a
4
2

X
2

+
a
5
7
2
X

+
a
9
0
0

1
2
0
1

X
2

+
a
1
0
5
3
X

+
a
1
7
5

X
2

+
a
7
3
4
X

+
a
1
4
0
2

1
2
1
3

X
2

+
a
1
5
6
2
X

+
a
1
5
4
1
X

2
+

a
5
9
7
X

+
a
7
0
4

1
2
1
7

X
2

+
a
7
1
5
X

+
a
1
2
5
1

X
2

+
a
1
0
8
5
X

+
a
1
4
7

1
2
2
3

X
2

+
a
8
0
7
X

+
a
1
8
1
8

X
2

+
a
5
9
9
X

+
a
1
6
2

1
2
2
9

X
2

+
a
3
9
7
X

+
a
1
8
3
7

X
2

+
a
8
2
3
X

+
a
2
4
5

1
2
3
1

X
2

+
a
1
7
5
0
X

+
a
3
5
6

X
2

+
a
5
9
X

+
a
7
2
4

1
2
3
7

X
2

+
a
5
7
2
X

+
a
9
2
2

X
2

+
a
1
7
8
4

∗X
+

a
2
0
3
7

1
2
4
9

X
2

+
a
6
7
3
X

+
a
9
0
2

X
2

+
a
4
3
X

+
a
8
7
7

1
2
5
9

X
2

+
a
1
7
0
0
X

+
a
1
4
8
0
X

2
+

a
1
7
8
0
X

+
a
1
7
5
0

1
2
7
7

X
2

+
a
1
3
8
0
X

+
a
1
4
8
4
X

2
+

a
1
8
6
1
X

+
a
5
3
8

1
2
7
9

X
2

+
a
4
3
1
X

+
a
1
4
3
3

X
2

+
a
1
6
9
5
X

+
a
4
3
8

1
2
8
3

X
2

+
a
4
9
3
X

+
a
2
0
8

X
2

+
a
8
5
X

+
a
1
6
7
2

1
2
8
9

X
2

+
a
1
9
3
4
X

+
a
1
8
6
3
X

2
+

a
1
2
7
3
X

+
a
1
8
2
9

1
2
9
1

X
2

+
a
3
7
5
X

+
a
5
2
4

X
2

+
a
1
2
3
6
X

+
a
1
9
4
5

1
2
9
7

X
2

+
a
1
9
2
1
X

+
a
1
7
3
6
X

2
+

a
5
9
8
X

+
a
1
5
3
0

1
3
0
1

X
2

+
a
1
0
2
9
X

+
a
4
7
8

X
2

+
a
1
4
3
4
X

+
a
1
4
1
8

1
3
0
3

X
2

+
a
1
1
9
4
X

+
a
1
8
0
1
X

2
+

a
2
0
8
X

+
a
1
5
9
2

1
3
0
7

X
2

+
a
1
7
5
4
X

+
a
6
2
6

X
2

+
a
2
3
5
X

+
a
9
7
9

1
3
1
9

X
2

+
a
1
4
3
7
X

+
a
2
8
2

X
2

+
a
1
4
8
X

+
a
7
4
4

1
3
2
1

X
2

+
a
9
8
2
X

+
a
1
0
8
9

X
2

+
a
1
6
3
2
X

+
a
1
5
9
8

A New Index Calculus Algorithm in Small Characteristic 377

T
a
b
le

1
.
(C

o
n
ti
n
u
ed

)

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

1
3
2
7

X
2

+
a
1
4
5
5
X

+
a
1
8
1

X
2

+
a
5
0
8
X

+
a
3
7
3

1
3
6
1

X
2

+
a
1
4
5
1
X

+
a
8
8
2

X
2

+
a
1
0
3
5
X

+
a
6
3
4

1
3
6
7

X
2

+
a
3
3
1
X

+
a
1
9
8

X
2

+
a
1
1
6
7
X

+
a
1
8
1
8

1
3
7
3

X
2

+
a
4
5
9
X

+
a
1
4
6
1

X
2

+
a
9
4
6
X

+
a
9
5
7

1
3
8
1

X
2

+
a
4
5
X

+
a
1
5
2
4

X
2

+
a
1
8
1
6
X

+
a
7
6
6

1
3
9
9

X
2

+
a
6
8
4
X

+
a
1
5
7
4

X
2

+
a
5
8
0
X

+
a
1
6
1
1

1
4
0
9

X
2

+
a
1
4
3
9
X

+
a
4
5
4

X
2

+
a
1
5
9
9
X

+
a
1
0
3
9

1
4
2
3

X
2

+
a
7
9
2
X

+
a
1
0
2
8

X
2

+
a
9
4
0
X

+
a
1
6
6
2

1
4
2
7

X
2

+
a
3
4
5
X

+
a
9
0
8

X
2

+
a
1
3
9
2
X

+
a
8
6
4

1
4
2
9

X
2

+
a
6
6
7
X

+
a
1
6
5
6

X
2

+
a
1
8
6
7
X

+
a
8
3
0

1
4
3
3

X
2

+
a
2
1
9
X

+
a
3
6
2

X
2

+
a
1
4
1
X

+
a
1
8
8
1

1
4
3
9

X
2

+
a
1
4
1
7
X

+
a
1
7
6
1
X

2
+

a
1
2
2
4
X

+
a
7
6
6

1
4
4
7

X
2

+
a
9
9
4
X

+
a
1
2
1
6

X
2

+
a
1
5
X

+
a
7
5
6

1
4
5
1

X
2

+
a
7
1
8
X

+
a
7
6
6

X
2

+
a
5
0
9
X

+
a
7
0
2

1
4
5
3

X
2

+
a
1
1
8
0
X

+
a
1
2
9

X
2

+
a
1
3
0
X

+
a
1
6
5
9

1
4
5
9

X
2

+
a
6
1
9
X

+
a
7
8
2

X
2

+
a
1
4
2
3
X

+
a
7
9
3

1
4
7
1

X
2

+
a
7
5
7
X

+
a
2
1
0

X
2

+
a
1
1
9
2
X

+
a
1
9
7
6

1
4
8
1

X
2

+
a
1
8
8
0
X

+
a
8
8
2

X
2

+
a
7
7
3
X

+
a
3
3
9

1
4
8
3

X
2

+
a
6
7
0
X

+
a
2
0

X
2

+
a
2
4
X

+
a
1
5
1
4

1
4
8
7

X
2

+
a
1
9
7
2
X

+
a
1
9
6
4
X

2
+

a
1
3
7
0
X

+
a
5
2
8

1
4
8
9

X
2

+
a
1
5
0
1
X

+
a
1
1
6

X
2

+
a
8
6
6
X

+
a
6
9
4

1
4
9
3

X
2

+
a
1
9
5
7
X

+
a
9
8
7

X
2

+
a
9
7
9
X

+
a
7
8
1

1
4
9
9

X
2

+
a
1
4
5
6
X

+
a
1
6
4
4
X

2
+

a
1
4
7
9
X

+
a
6
0
0

1
5
1
1

X
2

+
a
2
7
9
X

+
a
1
3
6
0

X
2

+
a
5
9
1
X

+
a
1
9
4
4

1
5
2
3

X
2

+
a
8
1
0
X

+
a
2
5

X
2

+
a
1
9
2
4
X

+
a
9
2
7

1
5
3
1

X
2

+
a
1
4
1
5
X

+
a
6
3
2

X
2

+
a
1
5
7
5
X

+
a
9
1
1

1
5
4
3

X
2

+
a
1
9
5
7
X

+
a
1
1
0
6
X

2
+

a
1
0
9
8
X

+
a
1
1
1
1

1
5
4
9

X
2

+
a
1
4
0
X

+
a
4
9
8

X
2

+
a
5
1
3
X

+
a
1
8
7
6

1
5
5
3

X
2

+
a
1
1
0
9
X

+
a
8
8
3

X
2

+
a
1
2
5
6
X

+
a
5
2
4

1
5
5
9

X
2

+
a
4
8
5
X

+
a
1
3
1
2

X
2

+
a
1
1
0
2
X

+
a
8
4
7

1
5
6
7

X
2

+
a
9
0
8
X

+
a
1
2
8

X
2

+
a
1
8
8
X

+
a
1
9
4

1
5
7
1

X
2

+
a
2
9
X

+
a
1
9
1
6

X
2

+
a
1
8
2
5
X

+
a
1
2
6
6

1
5
7
9

X
2

+
a
9
5
3
X

+
a
1
1
9
2

X
2

+
a
1
1
1
3
X

+
a
1
3
3
4

1
5
8
3

X
2

+
a
7
9
2
X

+
a
1
4
5
9

X
2

+
a
1
1
1
5
X

+
a
6
4
5

1
5
9
7

X
2

+
a
8
7
4
X

+
a
1
6
9
7

X
2

+
a
3
8
7
X

+
a
7
6
3

1
6
0
1

X
2

+
a
1
3
8
X

+
a
1
7
2
8

X
2

+
a
1
6
2
3
X

+
a
9
6
1

1
6
0
7

X
2

+
a
7
3
7
X

+
a
1
1
9

X
2

+
a
1
8
5
8
X

+
a
1
7
8
8

1
6
0
9

X
2

+
a
1
6
4
1
X

+
a
3
5
5

X
2

+
a
1
8
2
3
X

+
a
9
6
3

1
6
1
3

X
2

+
a
8
0
1
X

+
a
7
3
0

X
2

+
a
1
9
3
X

+
a
2
9
2

1
6
1
9

X
2

+
a
1
7
1
5
X

+
a
1
6
7

X
2

+
a
5
1
0
X

+
a
1
1
6
6

1
6
2
1

X
2

+
a
1
3
5
9
X

+
a
7
4
5

X
2

+
a
1
1
5
7
X

+
a
1
4
5

1
6
2
7

X
2

+
a
1
5
6
0
X

+
a
1
0
7
4
X

2
+

a
1
6
3
1
X

+
a
1
6
2
4

1
6
3
7

X
2

+
a
5
7
5
X

+
a
1
7
4
1

X
2

+
a
1
6
2
0
X

+
a
1
1
0

1
6
5
7

X
2

+
a
1
7
2
7
X

+
a
1
0
6
4
X

2
+

a
1
9
6
8
X

+
a
1
7
1
4

1
6
6
3

X
2

+
a
9
6
0
X

+
a
2
7
0

X
2

+
a
7
4
4
X

+
a
1
5
7

1
6
6
7

X
2

+
a
1
7
6
X

+
a
5
3
6

X
2

+
a
1
2
0
8
X

+
a
1
9
1
9

1
6
6
9

X
2

+
a
2
2
9
X

+
a
4
0
7

X
2

+
a
1
7
2
3
X

+
a
1
9
9
9

1
6
9
3

X
2

+
a
7
3
X

+
a
6
4
2

X
2

+
a
8
8
9
X

+
a
4
8
9

378 A. Joux

T
a
b
le

1
.
(C

o
n
ti
n
u
ed

)

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

1
6
9
7

X
2

+
a
4
4
1
X

+
a
7
2
2

X
2

+
a
1
4
5
4
X

+
a
1
5
6
6

1
6
9
9

X
2

+
a
3
8
7
X

+
a
1
3
0
0

X
2

+
a
4
4
X

+
a
6
8
4

1
7
0
9

X
2

+
a
1
4
7
5
X

+
a
1
5
8
2
X

2
+

a
6
3
X

+
a
1
7
7
9

1
7
2
1

X
2

+
a
1
0
5
1
X

+
a
8
4
6

X
2

+
a
1
5
3
6
X

+
a
1
5
0
6

1
7
2
3

X
2

+
a
1
4
9
3
X

+
a
1
5
5
1
X

2
+

a
1
2
9
3
X

+
a
1
7
8
1

1
7
3
3

X
2

+
a
1
5
3
6
X

+
a
7
0
8

X
2

+
a
8
3
6
X

+
a
1
5
1
8

1
7
4
1

X
2

+
a
1
2
1
5
X

+
a
4
5
5

X
2

+
a
2
0
1
3
X

+
a
1
4
0
0

1
7
4
7

X
2

+
a
9
7
8
X

+
a
1
6
7
6

X
2

+
a
1
4
4
4
X

+
a
1
1
0
2

1
7
5
3

X
2

+
a
4
5
0
X

+
a
1
6
8
5

X
2

+
a
3
9
2
X

+
a
1
3
6

1
7
5
9

X
2

+
a
1
0
1
0
X

+
a
1
4
3
8
X

2
+

a
1
2
1
5
X

+
a
6
3

1
7
7
7

X
2

+
a
1
2
9
3
X

+
a
2
4
9

X
2

+
a
5
6
9
X

+
a
5
5
4

1
7
8
3

X
2

+
a
1
5
0
X

+
a
1
6
0
8

X
2

+
a
1
1
8
5
X

+
a
1
0
6
1

1
7
8
7

X
2

+
a
1
5
6
3
X

+
1

X
2

+
a
1
7
6
6
X

+
a
1
7
9
0

1
7
8
9

X
2

+
a
1
4
3
5
X

+
a
1
0
8
4
X

2
+

a
2
6
4
X

+
a
7
7
0

1
8
0
1

X
2

+
a
1
7
1
3
X

+
a
6
7
8

X
2

+
a
1
6
5
6
X

+
a
1
6
2
6

1
8
1
1

X
2

+
a
1
8
0
9
X

+
a
2
0
3
6
X

2
+

a
1
8
5
9
X

+
a
5
2
5

1
8
2
3

X
2

+
a
6
5
9
X

+
a
5
6
7

X
2

+
a
1
4
7
X

+
a
9
6
2

1
8
3
1

X
2

+
a
1
3
8
4
X

+
a
1
7
0

X
2

+
a
5
5
0
X

+
a
2
0
3
5

1
8
4
7

X
2

+
a
8
8
5
X

+
a
9
6
4

X
2

+
a
7
0
1
X

+
a
1
2
2
1

1
8
6
1

X
2

+
a
1
9
3
2
X

+
a
1
7
0
1
X

2
+

a
1
5
8
X

+
a
1
2
5
0

1
8
6
7

X
2

+
a
1
3
6
3
X

+
a
1
8
3
6
X

2
+

a
3
0
7
X

+
a
7
3
5

1
8
7
1

X
2

+
a
7
4
9
X

+
a
1
9
5
5

X
2

+
a
4
9
9
X

+
a
1
6
6

1
8
7
3

X
2

+
a
7
5
7
X

+
a
2
0
0

X
2

+
a
9
7
1
X

+
a
6
0
1

1
8
7
7

X
2

+
a
7
5
8
X

+
a
5
0
0

X
2

+
a
9
4
3
X

+
a
1
8
3
2

1
8
7
9

X
2

+
a
2
8
9
X

+
a
1
3
5
9

X
2

+
a
9
1
3
X

+
a
8
4
0

1
8
8
9

X
2

+
a
1
0
7
6
X

+
a
1
0
0
2
X

2
+

a
1
4
3
1
X

+
a
4
7
6

1
9
0
1

X
2

+
a
7
5
2
X

+
a
1
0
6
0

X
2

+
a
2
6
9
X

+
a
1
7
9
3

1
9
0
7

X
2

+
a
1
9
5
4
X

+
a
1
8
5
6
X

2
+

a
2
5
5
X

+
a
3
1
6

1
9
1
3

X
2

+
a
1
1
4
2
X

+
a
5
7
8

X
2

+
a
1
1
1
8
X

+
a
1
0
5
2

1
9
3
1

X
2

+
a
1
5
2
9
X

+
a
7
7
7

X
2

+
a
1
6
3
1
X

+
a
2
8
5

1
9
3
3

X
2

+
a
6
0
0
X

+
a
5
0
9

X
2

+
a
1
4
7
7
X

+
a
5
9
8

1
9
4
9

X
2

+
a
8
3
9
X

+
a
1
7
6
6

X
2

+
a
1
2
3
2
X

+
a
2
2
6

1
9
5
1

X
2

+
a
1
0
1
6
X

+
a
1
1
4
3
X

2
+

a
1
6
2
4
X

+
a
1
8
7
1

1
9
7
3

X
2

+
a
7
2
2
X

+
a
7
6
9

X
2

+
a
8
3
4
X

+
a
1
2
7
7

1
9
7
9

X
2

+
a
1
0
0
7
X

+
a
1
4
6
4
X

2
+

a
9
6
6
X

+
a
9
1
2

1
9
8
7

X
2

+
a
1
0
0
2
X

+
a
6
8
2

X
2

+
a
1
2
5
5
X

+
a
1
0
0
6

1
9
9
3

X
2

+
a
7
0
9
X

+
a
1
6
7
6

X
2

+
a
6
3
8
X

+
a
9
5
7

1
9
9
7

X
2

+
a
1
6
5
3
X

+
a
1
8
9
9
X

2
+

a
2
9
X

+
a
8
6
7

1
9
9
9

X
2

+
a
1
0
4
X

+
a
1
4
8
2

X
2

+
a
1
0
1
9
X

+
a
6
4
9

2
0
0
3

X
2

+
a
3
2
8
X

+
a
7
0
1

X
2

+
a
5
5
4
X

+
a
1
7
6

2
0
1
1

X
2

+
a
1
5
1
0
X

+
a
1
2
4
1
X

2
+

a
1
5
2
4
X

+
a
7
4
1

2
0
1
7

X
2

+
a
1
5
7
2
X

+
a
1
6
4
5
X

2
+

a
8
1
4
X

+
a
2
9
8

2
0
2
7

X
2

+
a
1
8
7
8
X

+
a
1
2
4
3
X

2
+

a
1
4
7
4
X

+
a
1
1
2
4

2
0
2
9

X
2

+
a
1
5
0
2
X

+
a
1
9
9
8
X

2
+

a
9
8
2
X

+
a
7
2
1

2
0
3
9

X
2

+
a
1
8
7
1
X

+
a
1
8
4
8
X

2
+

a
1
3
4
6
X

+
a
1
2
7
2

A New Index Calculus Algorithm in Small Characteristic 379

References

1. Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete loga-
rithms over finite fields. Inf. Comput. 151, 5–16 (1999). (Academic Press)

2. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: Discrete logarithm in GF(2809) with FFS. IACR Cryptol.
ePrint Arch. 2013, 197 (2013)

3. Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE
Trans. Inf. Theor. IT-30(4), 587–594 (1984)

4. Faugère, J.-C., Din, M.S.E., Spaenlehauer, P.-J.: Gröbner bases of bihomogeneous
ideals generated by polynomials of bidegree (1,1): algorithms and complexity. J.
Symbolic Comput. 46(4), 406–437 (2011)

5. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities: application to discrete logarithms
in 21971. IACR Cryptol. ePrint Arch. 2013, 74 (2013)

6. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: Solving a 6120-bit DLP on
a desktop computer. IACR Cryptol. ePrint Arch. 2013, 306 (2013)

7. Huang, M.-D., Narayanan, A.K.: Finding primitive elements in finite fields of small
characteristic. CoRR abs/1304.1206 (2013)

8. Joux, A.: Discrete logarithms in GF(24080). NMBRTHRY list, March 2013
9. Joux, A.: Discrete logarithms in GF(26168) = GF((2257)24). NMBRTHRY list, May

2013
10. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit

and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

11. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Hei-
delberg (2006)

12. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006)

13. Panario, D., Gourdon, X., Flajolet, P.: An analytic approach to smooth polyno-
mials over finite fields. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp.
226–236. Springer, Heidelberg (1998)

14. Semaev, I.: An algorithm for evaluation of discrete logarithms in some nonprime
finite fields. Math. Comput. 67, 1679–1689 (1998)

15. Spaenlehauer, P.-J.: Solving multi-homogeneous and determinantal systems Algo-
rithms - Complexity - Applications. Ph.D. thesis, Université Pierre et Marie Curie
(UPMC) (2012)

	A New Index Calculus Algorithm with Complexity L(1/4+o(1)) in Small Characteristic
	1 Introduction
	2 A Reminder of Discrete Logarithm Algorithms in Small Characteristic
	2.1 Coppersmith's Algorithm
	2.2 Function Field Sieve

	3 New Algorithm: Basic Ideas
	4 Description of the New Algorithm
	4.1 Choosing the Parameters
	4.2 Logarithms of Linear Polynomials
	4.3 Extending the Basis to Degree 2 Polynomials

	5 New Algorithm: Descent Phase
	5.1 Practical Preliminary Step
	5.2 Classical Descent Method
	5.3 Bilinear System Based Descent

	6 Complexity Analysis
	6.1 Individual Logarithms

	7 Remarks on the Special Case of Fpk, p and k Prime
	8 A Couple of Experiments on Kummer Extensions in Characteristic 2
	8.1 A Kummer Extension F2562255
	8.2 A Twisted Kummer Extension F2563257

	A Alternative Polynomials
	A.1 Equivalence of Using the Alternative Polynomials

	B Evidence for the Existence of the h0 and h1 Polynomials
	References

