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Abstract. Digital signatures have become a key component of many
embedded system solutions and are facing strong security and efficiency
requirements. At the same time side-channel resistance is essential for a
signature scheme to be accepted in real-world applications. Based on the
Merkle signature scheme and Winternitz one-time signatures we propose
a signature scheme with bounded side-channel leakage that is secure in
a post-quantum setting. Novel algorithmic improvements for the authen-
tication path computation bound side-channel leakage and improve the
average signature computation time by close to 50 % when compared to
state-of-the-art algorithms. The proposed scheme is implemented on an
Intel Core i7 CPU and an AVR ATxmega microcontroller with carefully
optimized versions for the respective target platform. The theoretical
algorithmic improvements are verified in the implementations and
cryptographic hardware accelerators are used to achieve competitive
performance.

Keywords: Hash-based cryptography - Signatures - Side-channel leak-
age - Software - Microcontroller - Post-quantum cryptography

1 Motivation

With the increasing popularity of contactless smart cards and near field commu-
nication, digital signature engines have become a key component of many embed-
ded system solutions. The applications of digital signatures are numerous, ranging
from identification over electronic payments to firmware updates and protection
against product counterfeiting. Due to the high computational requirements for
public-key cryptography, providing efficient signatures on embedded microproces-
sors without dedicated co-processors is a challenge. At the same time, side channel
attacks are considered a serious threat for such embedded implementations. On
the downside, adding effective protection against attacks like power or EM analy-
sis is costly in terms of space and computation time. Hence, side-channel resistant
public key engines are often just too bulky for widespread adoption. Exploring
public key schemes that are both efficient on embedded platforms and offer inher-

ent side-channel resistance can be a superior alternative to the prevailing choices
of (EC-)DSA and RSA.
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New research directions in theoretical cryptography, namely leakage resilient
cryptographic schemes, suggest that performing cryptographic algorithms in a
different way might make them inherently resistant against side-channel attacks
without the need of further implementational countermeasures. Instead of pro-
tecting a key that is used over and over again, these schemes limit the leakage
that an attacker can observe for a given key (or state) by limiting the number
of accesses to it. The groundbreaking work of Faust et al. [9] shows a scheme
that provides choosable many leakage resilient signatures. The approach builds
on a signature scheme that only leaks an admissible amount of information
when executed up to three times. The scheme does not explicitly propose or
recommend an underlying signature scheme. But when instantiated with one of
the prevailing signature schemes, the leakage resilient signature engine becomes
practically infeasible: each generated leakage-resilient signature requires three
signature generations and two key generations of the underlying signature.

Prior work by Rohde et al. [22] as well as by Hiilsing et al. [11] suggest that
the Merkle Signature Scheme (MSS) in combination with Winternitz One-Time
Signatures (W-OTS) is a possible choice for a time-limited signature scheme and
can be efficiently implemented in embedded systems. We analyze and extend the
proposal by Rohde et al. and propose several modifications that lead to signifi-
cant performance improvements and bounded side-channel leakage. One of the
key components of the analyzed MSS engine is the Pseudo Random Number
Generator (PRNG) used to generate the private signing key. The PRNG is a
self-contained component and is desired to be leakage resilient. Another build-
ing block for the one-time signatures is a one-way function that needs to have
bounded leakage. Other parts of the engine, such as a collision resistant hash
function needed for the Merkle tree only process public knowledge and are thus
leakage-agnostic.

Contribution. Compared to the state-of-the-art, the proposed scheme pro-
vides bounded leakage at comparable cost to an unprotected ECC engine, which
enables and encourages a wide deployment. We implement the proposed sig-
nature scheme on two wide-spread platforms (Intel Core i7 CPU and low-cost
AVR 8-bit microcontroller) targeting a security level of 80-bit and making use of
available cryptographic hardware accelerators to gain maximum efficiency. Fur-
thermore, we propose an improved algorithm for the authentication path com-
putation of a Merkle tree which limits side-channel leakage when signature keys
are generated using a secure PRNG. At the same time we decrease the average
computation time by close to 50 % compared to the most efficient authentica-
tion path computation algorithm at the price of a slightly increased memory
consumption. Explicit formulas are developed to quantify the amount each leaf
of the Merkle tree is computed during the authentication path computation. The
drawback of current authentication path computation algorithms is the unbal-
anced number of computations per leaf. Our improved algorithm mitigates this
issue by reducing the number of computations for often used leaves and allows
for more efficient computation of the authentication path.
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2 Hash-Based Signatures

In the following we describe the foundations of the Merkle signature scheme. It
was introduced in [19] and a detailed description of MSS can be found in [6].
Details about the implementation inspiring our work are given in [22]. We use
Winternitz one-time signatures [8] for message signing. The one-time keys are
generated using a PRNG to minimize storage requirements as proposed in [22].
The following components use an at least second preimage resistant, unde-
tectable n-bit one-way function f and a cryptographic m-bit hash function g:

f:40,11" —{0,1}", g:{0,1}" — {0,1}"

2.1 The Merkle Signature Scheme

Given a One-Time Signature Scheme (OTSS) a tree height H is chosen to allow
for the creation of 27 signatures that are verifiable with the same verification
key. Let the nodes of the Merkle tree be denoted as vy, [s] with h € {0,..., H}
being the height of the node and s € {0, L2 1} being the node index
on height h.

Key Generation. The 27 leaves of the Merkle tree are defined to be digests
g (Y;) of one-time verification keys Y;. Starting from the leaves, the MSS verifi-
cation key which is the root node of the Merkle tree vy [0] is generated following

Vh41 [Z]:g(yh[QZ] ||Vh [27’+1])7 0§h<Ha 0§i<2H7h713

meaning that a parent node is generated by hashing the concatenation of its two
child nodes.

Signature Generation. A Merkle signature o5 (d) of a digest d = g (M) of a
message M consists of a signature index s, a one-time signature oors, a one-
time verification key Y;, and an authentication path (AUTHg,..., AUTHy_1)
that allows the verification of the one-time signature with respect to the public
MSS verification key, hence

os (d) = (s,00Ts, Ys, (AUTHy, ..., AUTHy 1)) .

The signature index s € {0, o2 1} is incremented with every issued sig-
nature. The OTSS is applied using signature key X, to generate the signature
oots = Signgrg(d, X,) of the message digest d. The authentication path for the
sth leaf are all sibling nodes AUTHy, h € {0,..., H — 1} on the path from leaf
g [s] to the root node v [0]. It enables the verifier to recompute the root node
of the Merkle tree and authenticates the current one-time signature.

We would like to stress that the signature generation reflects the structure
of an online/offline signature scheme. The authentication path only depends on
the OTSS verification key Y, which is known prior to the message and hence can
be precomputed.
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Signature Verification. Given a message digest d = g (M) and a signature
os (d) the verifier checks the one-time signature ocorg with the underlying one-
time signature verification algorithm Verifygrg (d,05(d)). In addition, the root
node is reconstructed using the provided authentication path

{g(gzﬁh | AuTHy) , if [s/2"] = 0mod 2
¢h+1 -

) =V S,hZO,.‘.,H—l.
g (AUTH} || 61) , if [5/2"] = 1mod 2 %0 =rols]

If the one-time signature oors is successfully verified and ¢g is equal to vy [0]
the MSS signature is accepted.

2.2 Winternitz One-Time Signatures

Winternitz OTS [8] are a convenient choice for the one-time signature scheme,
as they reduce the overall signature length. The Winternitz parameter w > 2
determines how many bits are signed simultaneously and ¢ determines of how
many random n-bit strings x; the Winternitz signature keys consist.

[logy t1] + 1+ ﬂ

n
t=11+12, t1= [*-‘, ly = [

w w
Key Generation. A W-OTS signature key X = (zg,...,2:—1) is generated by
selecting ¢ random bit strings z; € {0,1}", 0 <4 < t. The W-OTS verification
key Y = g(yol| --- || ye—1) is computed from the signature key by applying f
2 — 1 times to each z; giving y; = f2" ' (x;), 0 < i < t and computing the
hash of the concatenated y;’s. Note, the superscript denotes multiple executions

of f,eg., f2(z:) = f(f (2:)) and fO (2;) = z;.

Signature Generation. A signature for a message M is created by signing its
digest d = g (M) under key X. Digest d is divided into ¢; blocks by, ..., b, -1
of length w and a checksum ¢ = Z:;Bl (2% — b;) is computed. Checksum c is
divided into t9 blocks by, , ..., bi—1 of length w (zero-padding to the left is applied
if ¢ or d are no multiples of w). The W-OTS signature ow.ots = (00, ...,0t-1)

is computed with o; = f% (z;), 0 <i < t.

Signature Verification. Given a message digest d = g (M), a signature ow.ors
and a verification key Y the verifier generates blocks bg,...,b;—1 from d as in
signature generation and reconstructs

Y =g (7 o) [ T )

If Y/ equals Y; the signature is valid, otherwise it has to be rejected. When
using W-OTS signatures in MSS, transmitting Y; and comparing Y; to Y/ can
be omitted. Y can simply be used together with the nodes of the authentication
path to recompute the root of the Merkle tree. If the recomputed root equals

the MSS public key, then Y/ is a valid OTS verification key.
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2.3 Private Key Generation

Storing 2¥ one-time signature or verification keys can be an infeasible task,
especially on constrained implementation platforms. Generating keys on-the-fly
by using a PRNG significantly reduces the required storage space (cf. [22]).

Each W-OTS signature key X; = (xg,...,7;1), 0 <i < 2% is generated by
the PRNG from a seed SEEDw.oTs,. These seeds in turn are also generated by
the PRNG from a initial randomly selected seed SEEDg € {0,1}" which serves
as the MSS signature key. On input of k; the PRNG outputs a random string
r;+1 and an updated seed k;4.

PRNG : {0, 1}n — {07 1}71 X {0, 1}n Sk — (ki+1ari+1) (1)

Starting from the initial SEED( the seeds for the signature keys SEEDw.oTs, are
created by

(SEED; 41, SEEDw.oTs,) + PRNG (SEED;), 0<i < 27,

The t n-bit strings of the i-th W-OTS signature key X; = (zg,...,2¢-1), 0 <
i < 21 are then generated by

(SEEDw.oTS;, ;) +— PRNG (SEEDw.oTs,), 0<j <t.

2.4 Authentication Path Computation

Creating an authentication path for a specific leaf s can be accomplished by stor-
ing all tree nodes in memory and looking up the required nodes when needed.
However, because of the exponential growth of nodes in tree height H this app-
roach becomes infeasible for reasonable practical applications. Hence, algorithms
for efficient on-the-fly authentication path computation during signature gener-
ation are required.

The currently best known algorithm for on-the-fly computation of authentica-
tion nodes is the BDS algorithm [6] (Algorithm 3, cf. Appendix). It makes use of
several treehash algorithm instances TREEHASHy, for heights 0 < h < H - K —1.
The treehash algorithm was introduced in [19] and modified in [25]. Tt allows
to efficiently create (parts of) Merkle trees. In the BDS algorithm each instance
is initialized with a leaf index s to which it computes the corresponding node
value. Each instance is updated until the required authentication node is com-
puted. During a treehash update the next leaf is created and parent nodes are
computed if possible.

The generation of the authentication path is split up into two parts that go
alongside with the key and signature generation of MSS. During key genera-
tion all treehash instances TREEHASH, are initialized with vy, [3] and the first
authentication path stored is AuTH;, = v, [1], 0 <h < H — 1.

The BDS algorithm generates left authentication nodes either by comput-
ing the leaf value or by one hash-function evaluation of the concatenation of
two previously computed nodes that are held in memory. Right authentication
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nodes in contrast are computed from the leaf up, which is computationally more
expensive. Since right nodes close to the top are expensive to compute a positive
integer K > 2,(H — K even) decides how many of these nodes are stored in
RETAIN,, H — K < h < H — 2 during key generation.

Authentication nodes change every 2" steps for height h. During signature
generation the treehash instances are updated and if a authentication node from
a treehash instance is used, the instance is re-initialized to compute the next
authentication node for that height.

2.5 Security of MSS

The security properties of the signature scheme described above is discussed
in [6]. Specifically, the work shows that the Lamport-Diffie one-time signa-
tures [15] are existentially unforgeable under an adaptive chosen message attack
(i.e., CMA-secure), if the chosen one-way function is preimage resistant. The
employed Merkle signature scheme is also CMA-secure if the underlying OTS
is CMA-secure and if the underlying hash function is collision resistant. For
increased efficiency (and shorter signatures) we chose Winternitz OTS rather
than the classic Lamport-Diffie OTS. The security of the Winternitz one-time
signatures is discussed in [4,8,10]. The findings in [4]and [10] show that Win-
ternitz OTS are CMA-secure if used with pseudo-random functions or collision-
resistant, undetectable one-way functions, respectively. The level of bit security
lost by using a small Winternitz-parameter is in both cases rather small. In our
case, the biggest Winternitz parameter is w = 4, hence we still provide a security
level of approx. 95 bits for a 128-bit PRF or 116 bits for W-OTS+ [10]). Related
discussions for a similar MSS scheme can also be found in [5].

2.6 Bounded Leakage for MSS

The presented design has several features that bound leakage of secret informa-
tion. First, the design consists of many one-time signatures with independent
keys. This means there is no key reuse, and hence leakage of one OTS key does
not reveal information about the other keys. Major parts of the performed com-
putations are in the Merkle tree. Since the Merkle tree is public, computations
within the tree do not leak any secret information. Hence, leakage of ¢ is not an
issue.

Secret information is only processed during signing and key generation. Key
generation usually takes place in a secure environment, as key generation is usu-
ally too costly to be performed on the embedded system. However, even if key
generation leaks, it is a single sequence of leakage for all parts of the key, i.e., all
one-time keys leak exactly once. Critical information leakage can only happen
during signing. If all OTS keys would be stored, they could be chosen indepen-
dently and would leak exactly once, when used for signing (assuming that only
computation leaks information [20]). In this case, an adversary would get, at
most, two observations per key (one during key generation and one at signing),
outperforming the scheme described in [9]. However, as described in Sect. 2.3,
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the OTS keys are generated on-the-fly using a PRNG to achieve a scheme suited
for embedded devices. In this case each signing operation consists of three steps:
(i) performing one OTS, (ii) updating the state (requires recomputation of ver-
ification keys), and (iii) computing the authentication path. Since the Merkle
tree is public, no secret information is revealed during authentication path com-
putation. The OTS itself only leaks information about the current OTS key, i.e.
one additional leakage for each key. The main leakage occurs during the state
updates, which result in repeated execution of the PRNG and recomputation of
verification keys that leak information about the corresponding OTS key.

Each PRNG update reveals information about one OTS key and the internal
state of the PRNG. As the described scheme generates several one-time keys
more than once, the PRNG can be executed [ times on the same input, where [
is determined by the parameters of the BDS algorithm. That is, each SEED; has
up to [ leakages as PRNG input. The OTS keys x; are derived from an initial
seed SEEDw.oTs,; by the same PRNG. The z; serve as input for the one-way
function f. That is, each SEEDw.oTs, has up to [ leakages as input to PRNG;
each x; is either known by the adversary (as part of the signature) or has up to
l leakages as input of f during verification key recomputation and signing.

3 Optimized Authentication Path Computation

Since the Merkle-tree is not stored, the parts of the Merkle tree needed for
the authentication path must be generated. One optimized algorithm for this
purpose is the BDS algorithm [6]. Its design goal was to minimize costly leaf
computations. However, to minimize the leakage, it is also important to bal-
ance leaf computations. In the following we describe further optimizations that
reduce the number of computations for each individual leaf, thereby minimizing
the maximum leakage per private key computation. We furthermore reduce the
overall computation time by close to 50 %, at the cost of a slightly increased
memory usage.

3.1 Authentication Path Computation

The authentication path consists of nodes of the Merkle tree. For the com-
putation of upcoming authentication nodes we use several stacks of nodes for
different heights of the tree. Treehash instances TREEHASH,, are used for heights
0 < h < H— K —1. Each instance is initialized with a leaf index s and is updated
in Algorithm 3 until the required authentication node is computed. During a tree-
hash update the next leaf is created and parent nodes are computed by hashing
previously created nodes if possible. Authentication nodes change every 2" steps
for height h and if an authentication node is used from a treehash instance, this
instance is re-initialized to compute the following authentication node for that
height.
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Preliminaries. The total number of leaf computations that occur during execu-
tion of Algorithm 3 can be calculated by counting all invocations of LEAFCALC,
a function that on input s outputs leaf v [s]. As mentioned in [6] it is possible to
omit LEAFCALC in Step 3 of Algorithm 3 since the sth W-OTS key pair is used
to sign the current message, hence the verification key can be computed from the
signature and one additional hash computation yields leaf g [s]. If a different
OTSS is used the verification key is part of the OTS and can be hashed to create
vp [s]. This saves 271 LEAFCALC invocations. Careful analysis of Algorithm 3
leads to the total number of leaf computations in the BDS algorithm

H-—K-1
NHK i = Z (2H-1 —ohthy = (H — K) 2"~ —2H K+l 4 o,
h=0

In order to count the necessary computations for a specific leaf s during exe-
cution of Algorithm 3 we have to consider all occurrences of s as parameter of
LEAFCALC, except for when s is a left leaf (Step 3 of Algorithm 3), as explained
above. To determine if leaf s is computed in treehash instance TREEHASH;, we
make the following observation: TREEHASHy computes leaves (5),(7),(9),...,
TREEHASH; computes leaves (10,11),(14,15),..., TREEHASHy computes leaves
(20,21,22,23),(28,29,30,31),... and so forth. Hence, the total number of com-
putations for leaf s is given by

H

Nuk (s) = _ZK:_l r mO;QhHJ ' Pzzw

h=0

Drawbacks. A drawback of the BDS algorithm (Algorithm 3) is that it does
not balance the computation of leaf nodes. There are leaves that are calculated
various times, while others are barely touched. In terms of side-channel leakage
this is undesirable. On average each leaf of the Merkle tree is computed Ny x =
Nuk,,../2" ~ L(H — K) times. However, the computations per leaf deviate
from the average as shown in Fig. 1 for a Merkle tree (H = 10, K = 2) with 1024
leaves.

3.2 Balanced Authentication Path Computation

Since the rightmost nodes of each treehash instance are calculated most fre-
quently, we propose to cache and reuse them for balancing the leaf computa-
tions. We use an array RIGHTNODES to store those nodes. Note, the root of
each treehash instance and the complete treehash instance TREEHASH( are not
stored since lower treehash instances do not require those nodes. Besides reducing
the side-channel leakage for heavy duty leaves, this also leads to a significantly
reduced computation time, at the cost of an increased memory consumption.
From TREEHASH; we store node 1 [7], from TREEHASHs we store nodes
v1 [7] and g [15] and so on. More generally, we store h nodes v; [227/—7 — 1],
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j=0,...,h—1 for each instance TREEHASH,, 1 < h < H — K — 1. The required
storage space is
H—K-1
H-K
SRightNodes (H, K) = h= (

9 ) =AHg_Kg_1.

h=1

Table 1 lists the storage requirements for common H — K values. The initial-
ization of the RIGHTNODES array is done during the computation of the public
key of the Merkle tree. The updated initial setup is formalized in Algorithm 2.

Table 1. Storage space required by the RIGHTNODES array where the rightmost nodes
of each treehash instance TREEHASHp, h = 1,..., H — K — 1 are stored for reusage by
lower treehash instances.

H—-K Ap_x-1 128-bit digest (byte) 160-bit digest (byte) 256-bit digest (byte)

6 15 240 300 480

8 28 448 560 896
10 45 720 900 1440
12 66 1056 1320 2112
14 91 1456 1820 2912
16 120 1920 2400 3840
18 153 2448 3060 4896

In Step 5 of Algorithm 3 the treehash instances receive updates if they are
initialized and not finished. In every update one leaf is computed and higher
nodes are generated if possible by hashing concatenated nodes from the stack.
During the last update before the treehash instance is finished, the rightmost
leaf of this treehash instance is computed and all other rightmost nodes of this
trechash instance are consecutively generated. If the leaf index s = 2" —1 mod 2"
in instance TREEHASH},, we store the following nodes in the RIGHTNODES array
starting from offset h(h — 1) /2. An adapted version of the treehash update
algorithm is given in Algorithm 1.

In every second re-initialization of treehash instances TREEHASHy,, h = 0, .. .,
H — K — 2 the authentication node can be copied from the RIGHTNODES array
because it has been computed before by treehash instance TREEHASH; 1. If
s+ 1 =0 mod2"t? the authentication node can be copied from the RIGHTN-
ODES array and if s +1 = 2! mod 2"*2 the authentication node has to be
computed. If we can reuse nodes, we not only copy the authentication node
(root of TREEHASH},) but also its rightmost child nodes from RIGHTNODES, so
they can be reused for instances TREEHASH;, j < h. This improvement can be
easily integrated into the BDS algorithm by modifying Step 4c) accordingly.

Comparison. In order to quantify our improvements, we give the total amount
of leaf computations and show how to determine the leaf computations for a
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specific leaf s. As before, each instance TREEHASH;, computes 2" leaves until
they are finished. The re-initializations however are halved for treehash instances
TREEHASH,, h=0,...,H — K —2, to 20772 _ 1 re-initializations because in
half of all cases previously computed nodes can be copied from the RIGHTNODES
array and the LEAFCALC computations are skipped. Hence, the number of calls
to LEAFCALC from each TREEHASH), instance is 27 =2 —2" The trechash instance
TREEHASHy _ k1 cannot copy nodes from higher instances since it is the top-
most treehash instance. It calls LEAFCALC as before, resulting in 26 —1 — 2H—K
computations. The total number of leaf computations is

H—-K-— 2
h=0
=(H—-K+1)2f72 3. oH-K=1 11,

When compared to Ny, k., , , of the BDS algorithm this is nearly a 50 % reduction.

To retrieve the number of leaf computations in the improved version for a
specific leaf s we have to check whether s is a left or a right leaf. If s is even, it is a
left leaf and can be computed from the current one-time signature or verification
key as mentioned in Sect. 3.1 for Step 3 of Algorithm 3. If s is odd, it is a right
leaf thus LEAFCALC is not executed directly. To determine if s is computed in
treehash instance TREEHASH,, h =0,..., H — K — 2, we have to consider that
in half of all cases it is copied and not computed. For this purpose we construct
function 8% j (s) that returns the number of times leaf s is computed in treehash

instances TREEHASHy, h =0,..., H — K — 2.
, L2 s mod 2+t | 557 | s mod 2"+2
O (s)= ) oh eyl N oh+1
h=0

The topmost treehash instance TREEHASHp k1 cannot copy nodes from
the RIGHTNODES array because the required nodes have not been computed so
far. Thus, we have to count the number of computations for this instance as in
the unoptimized version. The total number of times leaf s is generated during
the computation of all authentication nodes can now be summed up to

s mod 28— K TEH—R=T
Nix () = | i H[“?H WM’H,K(s).

On average each leaf is now computed Ny o = Ny e, /2" ~ 3(H — K +1)
times. The reduced number of computations for each leaf is shown in Fig. 2. Visual
comparison between Figs. 1 and 2 already gives an intuition of the reduction and
balancing of leaf computations. For further comparisons see Fig. 3 in the appen-
dix. Table 2 compares the total number of leaf computations, how often a leaf has
to be computed in the worst-case, and the average number of leaf computations
for common heights H = {10, 16,20} and K = {2,4}. The total number of leaf
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Fig. 1. Number of times each leaf is Fig.2. Number of times each leaf is
computed by the original BDS algo- computed by our variation for a Merkle
rithm for a Merkle tree of height H = tree of height H = 10 and K = 2.

10 and K = 2.

computations as well as the average computations per leaf are decreased by about
38-48 % for the chosen parameters of H and K. Both the worst-case computa-
tion time as well as the average signature computation time are decreased. E.g.,
battery-powered devices greatly profit from the reduced overall computation time
which directly relates to the overall power consumption.

Table 2. Overview of the necessary computations for a Merkle tree with parameters
H and K when executing Algorithm 3. Furthermore, the worst-case computations for
a leaf is listed together with the average computations Ny x and Ny . The variance

of N,k (s) and Ny i (s) is denoted by 0% x and o k-

max. max.

H K Nuk,, Niur, Nox Nyx % ohx oix % Nux(s) Nyg(s) %

10 2 3586 1921 3.50 1.88 46.4 2.24 0.73 67.3 8 4 50.0
10 4 2946 1697 2.88 1.66 42.4 1.60 0.50 68.5 6 3 50.0
10 6 2018 1257 1.97 1.23 37.7 1.02 0.33 67.9 4 2 50.0
16 2 425986 221185 6.50 3.38 48.1 3.75 1.11 70.4 14 7 50.0
16 4 385026 206849 5.88 3.16 46.3 3.11 0.88 71.6 12 6 50.0
16 6 325634 178689 4.97 2.73 45.1 2.53 0.71 72.1 10 5 50.0
20 2 8912898 4587521 8.50 4.38 48.5 4.75 1.36 71.4 18 9 50.0
20 4 8257538 4358145 7.88 4.16 47.2 4.11 1.13 725 16 8 50.0
20 6 7307266 3907585 6.97 3.73 46.5 3.53 0.96 72.9 14 7 50.0

Since all but the topmost treehash instance only need to be computed every
second time, the number of updates per signature (Algorithm 3, Step 5) can
be reduced from [(H — K)/2] to [(H — K +1)/4]. As a result, the average
update time is much better balanced than in Algorithm 3 and the worst case
computation time is also improved. The BDS algorithm needs to store 3H +
|H/2] — 3K + 2% — 2 tree nodes and 2 (H — K) + 1 PRNG seeds as signature
key. Due to storing the rightmost nodes our improved algorithm increases the
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number of tree nodes that have to be stored by (H ;K ) Even if the additional
memory is used to increase K for the original BDS algorithm, the speedup
is still significant. E.g., comparing our (H,K) = (16,4) to BDS(16,6) gives
comparable storage requirements, but still a speedup of 36 %. The verification
key and signature sizes remain unaffected: the verification key size is m and the
signature size remains at t - n + H - m.

4 Implementation and Results

In the following we describe our choices for the cryptographic primitives which
we use to implement the proposed signature scheme described in Sects. 2 and 3.
We then detail on the target platforms and give performance figures for key and
signature generation as well as signature verification.

4.1 A Bounded Leakage Merkle Signature Engine

We implemented two versions with different hash functions g for the Merkle
tree. Both versions use AES-128 in an MJH construction [16]. Using AES-128
as block cipher is favorable from a performance perspective as existing AES co-

. .. . 2n _ .
processors can be used. MJH is collision resistant for up to O (275 198" ) queries

when instantiated with a n-bit block cipher. With AES-128 as an ideal cipher,
this results in 80 bits security [16]. On the downside, MJH produces 256-bit hash
outputs which in the MSS setting leads to an increased key and signature size.
Hence, we also implement a version that shortens the 256-bit output of MJH to
160-bit, resulting in smaller key and signature sizes. This also reduces the number
of times the AES-engine needs to be called when creating nodes in the Merkle
tree. Leakage of ¢ is not an issue, since g only processes public information.

One-way function f is implemented based on AES-128 in an MMO [17,18]
construction: f(z;) := AESyv(z;)®x;. Unlike the PRNG, f is keyless. Hence, for
independent inputs its leakage is inherently 1-limiting and f can thus be viewed
as uniformly seed-preserving. The PRNG defined in (1) is implemented based
on the leakage-2-limiting PRNG proposed in [24]. In particular, PRNG(k;) :=
(AESy, (0128), AESy, (0127||1)), where AESy,, denotes the AES-128 with a 128-bit
key k;, used as seed-preserving function.

Both PRNG and f handle secret inputs. The PRNG processes each SEED,
and SEEDw.ots, as well as the x; for s exactly Ny x(s) times during state
updates and one time during signing OTS;. We exclude the key generation in this
analysis, as it is performed off-chip, assumably in a secure environment. Both
PRNG and f rely on AES-128 as cryptographic building block. The PRNG
executes AES twice under the same secret key (i.e. the PRNG is 2-limiting),
while f touches the secret input only once, making the signature engine overall
leakage-2-limited. The strongest leakage will be observed for the SEED;, resulting
in a total of | = 2- (max(N}LK(s)) + 1) leakages. These [ observations are on
2 different inputs, i.e., there are 1/2 = max(Ny ;(s)) + 1 observations under
the same input (i.e., leakage will only differ by noise). Classical side-channel
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attacks are further mitigated by the fact that intermediate values SEED; of the
key generation PRNG are not output. The adversary will only get access to a
limited number of z;.

4.2 Implementation Platforms

We implement the signature scheme on two different platforms. On the one side
we choose a lightweight and low-cost 8-bit Atmel ATxmega microcontroller and
on the other side a powerful Intel Core i7 notebook CPU.

Intel Core i7-2620M 64-bit CPU. Intel’s off-the-shelf Core i7-2620M 64-
bit Sandy Bridge notebook CPU [12] features two cores running at 2.70 GHz
(with Turbo Boost technology up to 3.40 GHz). For accurate measurement, we
disabled Turbo Boost and hyper-threading during our benchmarks. The CPU
incorporates the recent extensions to the x86 instruction set that improve the
performance when en-/decrypting data using AES. The extension is called AES-
NI and consists of six additional instructions [13]. All standardized key lengths
(128 bit, 192 bit, 256 bit) are supported for a block size of 128 bit.

Atmel AVR ATxmegal28A1 8-bit Microcontroller. We are using the
Atmel evaluation board AVR XPLAIN ([3] that features an ATxmegal28Al
microcontroller [1,2]. The ATxmega offers hardware accelerators for DES and
AES and is clocked at 32 MHz. The hardware acceleration is limited to AES
with 128-bit key and block size. A leakage analysis has been performed on this
processor in Sect. 4.4, as it is a typical example for a low-power embedded plat-
form.

4.3 Performance Results

In the following we give performance figures of the signature scheme for selected
Merkle tree heights H and parameters K and w on both platforms.

CPU Performance. On the Intel CPU we measure the time it takes to create
the root node of the Merkle tree, i.e., the verification key generation. We iterate
over all leaves and sign random messages to measure the average computation
time that is needed to create a valid MSS signature. Additionally, we measure
the time it takes to verify an MSS signature. Signature computation includes
creating the signing key, performing a one-time signature with the created signing
key, and generating the next authentication path (the last step can be removed,
as it can be precomputed at any time between two signing operations). The
measurement is done for tree height H = 16 with K = 2 and w = 2. Note,
due to the binary tree structure the root node computation can be parallelized
if more than one CPU core is available, which would bring down the required
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Table 3. Performance figures of a Merkle tree with parameters H = 16, K = 2,w = 2
on an Intel i7 CPU and H = 10, K = 2,w = 2 on an ATxmega microcontroller. f is
implemented using a hardware-accelerated AES-128 (AES-NI instructions, ATxmega
crypto accelerator) in MMO construction. g is implemented using AES-128 in an MJH-
256 construction and with the output truncated to 160 bit. The Intel CPU was clocked
at 2.7 GHz and the ATxmega at 32 MHz.

Hash g MJH-256 w/ AES-128 MJH-160 w/ AES-128
Target [22] our Impr. (%) [22] our Impr. (%)
Core i7 KEYGEN 6546.9ms 6037.5ms 8 4218.7ms 3886.3ms &
Core i7 SIGN 743.9us  401.3us 46 487.1us  256.2us 47
Core i7 VERIFY 76.1us 78.1us -3 50.8 us 49.3 us 3
AVR SIGN 110.0ms 64.9ms 41 70.7 ms 41.7 ms 41
AVR VERIFY 18.4ms 18.4 ms 0 11.0ms 11.0ms 0

computation time by roughly the factor of cores used. We compare our results
against the originally proposed signature scheme [22] in Table 3.

Compared to the previous results of [22] our improved algorithm in combina-
tion with the exchanged PRNG yields on average a performance gain of 46-47 %
for signature generation. The new PRNG improves the computation time on
average by 8 %, the algorithmic changes to the authentication path computation
algorithm yield 38-39 % points.

When generating verification keys an 8 % improvement can be observed. This
is due to the exchanged PRNG which uses a hardware-accelerated AES-engine
since our algorithmic improvements do not affect key generation. Signature ver-
ification is more or less stable, regardless of cipher/algorithm combinations and
is about a factor of 5 faster than signature generation.

Microcontroller Performance. On the microcontroller we measure the aver-
age computation time that is needed to create a valid MSS signature (includ-
ing next authentication path computation) and the time it takes to verify an
MSS signature. We omit the verification key generation since for reasonable tree
heights it is an infeasible task for the microcontroller. Verification keys have to
be computed once on a computer platform when initializing the microcontroller.
The code was compiled using avr-gcc version 3.3.0. We found optimization stage
-02 to provide the best tradeoff between runtime and code size.

The results on the microcontroller are in accordance with the results observed
on the Intel CPU. The average signature generation time improves by 41 % when
using our proposed changes. Signature verification remains stable and is four
times faster than signature generation. The memory consumption is listed in
Table 4. Compared to the setting of [22] we need more flash and SRAM memory
due to the additional storage for the RIGHTNODES array.

Table 5 compares key and signature sizes for different MSS implementations.
Note that the increased signature sizes for [11] enable on-card key generation.
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Table 4. Required memory on the ATxmegal28A1 microcontroller. In total 128 kByte
flash memory and 8 kByte SRAM are available on this device. Memory consumption
is reported in bytes and includes the verification and signature keys.

MJH-256 w/ AES-128 MJH-160 w/ AES-128

[22] our [22] our
H K Flash SRAM  Flash SRAM  Flash SRAM  Flash SRAM
10 2 10,608 1,486 12,070 2,382 10,204 1,066 11,352 1,626
4
6

10 10,726 1,604 11,768 2,084 10,250 1,112 11,138 1,412
10 11,994 2,874 12,752 3,066 11,018 1,878 11,726 1,998

Table 5. Comparison of signing key (sk), verification key (vk), and signature size (sig)
between [22], our improvement, and XMSS™ [11] for common (H, K, w) parameter sets.
All sizes are reported in bytes.

MJH-256 MJH-160 [22] (MJH-256) [22] (MJH-160) XMSS* [11]
H K w sk vk sig sk vk sig sk vk sig sk vk sig sk vk sig

16 2 2 5,335 32 2,640 3,547 20 1,680 2,423 32 2,640 1,727 20 1,680 3,760 544 3,476
16 2 4 5335 32 1,584 3,547 20 1,008 2,423 32 1,584 1,727 20 1,008 3,200 512 1,892
20 4 2 7,049 32 2,768 4,649 20 1,760 3,209 32 2,768 2,249 20 1,760 4,303 608 3,540
20 4 4 7,049 32 1,712 4,649 20 1,088 3,209 32 1,712 2,249 20 1,088 3,744 576 1,956

4.4 Leakage Results

The leakage of the AVR ATxmega processors with respect to power analysis has
been analyzed in [14]. The found leakage is weak: the best attack needs more
than 3000 measurements on random known inputs to recover the secret key.
However, the applied method is not the most powerful®.

In order to get a more thorough leakage analysis of the target platform, we
performed own side-channel experiments. Since all AES computations with criti-
cal leakage are performed by the AES co-processor of the ATxmega processor [2],
we analyzed the leakage of that co-processor. Instead of a correlation based DPA,
we applied a (univariate) template attack [7], the de-facto standard for power
leakage evaluation [23]. The profiled intermediate state is A = pg & ko ® p1 © k1,
where one template was created for each possible A. This is the same intermedi-
ate state that was targeted in [14]. It appears to be the intermediate state with
the strongest leakage. Each recovered A reveals one byte of key information. The
maximum observable leakage is that of the 2-limiting PRNG, which is, at most,
executed 10 times each on two different inputs (for (H, K) = (20, 2)). To capture
this maximal leakage, the experiment builds univariate templates from 10,000
traces and tests over two groups of 10 traces (each group shares the same input).
A total of 5000 experiments are conducted, resulting in a Guessing Entropy [23]
of 85.06 or 6.41 bits for the correct A. This means that the adversary still has

! Both targeting the key xor and using correlation attack are not considered optimal
methods of leakage extraction.
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to test more than 85 hypotheses for that byte on average. The reduction in
entropy is hence less than 0.6 bit?, resulting in well above 100 bit of remaining
key entropy when considering univariate side-channel attacks.

An alternative to plain template attacks are algebraic side-channel attacks [21],
which do not require known input and output and would be more applicable to
attack the PRNG in this work. While being able to exploit several (close to 1000
in [21]) leakages during a single execution of AES, these methods are very sensitive
to noise and need a much stronger leakage than the one observed here. Often, an
almost noise-free Hamming weight leakage is assumed, which is more than 2.5 bits
of information on a byte. This kind of information is not provided by the observed
leakage of the hardware AES of the ATxmega processor.

The remaining point of attack is in the Winternitz signature, where the
adversary actually gets access to hash outputs and some outputs of the PRNG
used to generate the one-time keys. The observed leakage (10 observations for
the same single input, same setup as for the PRNG) has a guessing entropy of
99.53, i.e. less than 0.4 bit of information per byte are revealed. Not much prior
work on side-channel attacks on one-way functions has been performed which is
most likely due to the fact that the adversary gets only single observations of
the leakage.

5 Conclusion

We presented a novel algorithmic improvement for authentication path compu-
tation in MSS that balances leaf computations and reduces side-channel leakage.
The proposed improvements have been implemented on two platforms and were
compared to previous proposed algorithms showing significant improvements.
Furthermore, we gave explicit formulas to quantify the number of leaf computa-
tions when using MSS and showed that the leakage of the secret state is bounded
throughout the entire scheme. The leakage analysis of the ATxmega AES engine
showed that no significant information can be extracted about the secret state,
due to the bounded number of executions under the same key.

We stated theoretically achievable performance gains and verified them prac-
tically. The algorithmic improvement decreases the required computation time
for signature creation in theory as well as in practice. The performance figures
show that Merkle signatures are not only practical, but also resource-friendly
and fast and have inherently bounded side-channel leakage. As such they are a
advantageous choice for, e.g., digital signature smartcards.
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2 Note that the guessing entropy for a byte with 2% equiprobable states is 128, i.e.
7 bits as guessing entropy looks for the expected number of guesses.
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A Appendix

Algorithm 1. Improved trechash update

Input: Height A, current index s, RIGHTNODES array
Output: updated RIGHTNODES array, updated Treehash instance TREEHASHj,
Compute the sth leaf: NODE; «LEAFCALC(s)
ifs=2h 1 (mod gh) and NopE;.height() < h then
offset = h(h — 1) /2
RIGHTNODES[offset] «~NODE;
end if
while NODE; has the same height as the top node on TREEHASH;, do
Pop the top node from the stack: NODE; < TREEHASH}, .pop()
Computer their parent node: NODE; « g(NODE2||NODE; )
ifs=2"—1 monh) then
offset = offset 4 1
RIGHTNODES[offset] «~NODE;
end if
end while

Push the parent node on the stack: TREEHASH}, .push(NODE{)

Algorithm 2. Key generation and initial setup for the improved traversal algo-

rithm.
Input: H, K
Output: Public key vy [0], Authentication path, RIGHTNODES array, TREEHASH stacks, RETAIN stacks
1: Public Key Calculate and publish tree root, v [0].
2: Initial Right Nodes
i=0
for h=1to H—- K —1do
for j =0to h—1do

Set RIGHTNODES[i] = v; [22+h i_ 1]_

1=1+1
3: Initial Authentication Nodes
for each h € {0,1,...,H — 1} do

Set AUTHp, = vy, [1].
4: Initial Treehash Stacks
for each h € {0,1,...,H — K — 1} do
Setup TREEHASHj, stack with vy, [3].
5: Initial Retain Stacks
for each h € {H — K,...,H — 2} do

for each j € {2H7h71, R ,0} do
RETAINp, .push(vy [25 + 3]).
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Algorithm 3. Algorithm for authentication path computation as presented
in [6]

Input: s € {0 , H, K, and the algorithm state.

Output: Authentlcatlon path Agyy for leaf s + 1.
1: Let 7 = 0 if leaf s is a left node or let 7 be the height of the first parent of leaf s which is a left
node: 7 — max{h : 2"|(s + 1)}
2: If the parent of leaf s on height 7 4+ 1 is a left node, store the current authentication node on
height 7 in KEEP,:
if |s/27 1] is even and 7 < H — 1 then KEEP, «— AUTH,
3: If leaf s is a left node, it is required for the authentication path of leaf s + 1:
if 7 = 0 then AUTH( < LEAFCALC(s)
4: Otherwise, if leaf s is a right node, the auth. path for leaf s + 1 changes on heights 0, ..., 7:
if 7 > 0 then
a) The authentication path for leaf s + 1 requires a new left node on height
7. It is computed using the current authentication node on height 7 — 1
and the node on height 7 — 1 previously stored in KEEP,_;. The node
stored in KEEP,_; can then be removed:
AUTH, < g (AUTH,_1 || KEEP,_1), remove KEEP,_1
b) The authentication path for leaf s 4+ 1 requires new right nodes on heights
h=0,...,7— 1. For h < H — K these nodes are stored in TREEHASH},
and for h > H — K in RETAINy:
for h=0to 7™ —1do
if h < H — K then AUTH}, <« TREEHASH},.pop()
if h > H — K then AUTH;, < RETAIN,.pop()
c) For heights 0,...,min{7 — 1, H — K — 1} the Treehash instances must be
initialized anew. The Treehash instance on height h is initialized with
the start index s +1+ 3 - oh < oH
for h =0 to min{r —1,H — K — 1} do
TREEHASH, .initialize(s + 1 4 3 - 2")
5: Next we spend the budget of (H — K)/2 updates on the Treehash instances to prepare upcoming
authentication nodes:
repeat (H — K)/2 times
a) We consider only stacks which are initialized and not finished. Let k be
the index of the Treehash instance whose lowest tail node has the lowest
height. In case there is more than one such instance we choose the instance
with the lowest index:

H_

k < min {h : TREEHASHp, .height() = o mIi_In K1 {TREEHASH; .height()}
=0, . H—K—

b) The Treehash instance with index k receives one update: TREEHASHj.update()

6: The last step is to output the authentication path for leaf s + 1: return AUTHg, ..., AUTHy _1.
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