
 123

LN
CS

 8
28

2

20th International Conference
Burnaby, BC, Canada, August 14–16, 2013
Revised Selected Papers

Selected Areas
in Cryptography –
SAC 2013

Tanja Lange
Kristin Lauter
Petr Lisonek (Eds.)

Lecture Notes in Computer Science 8282

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

For further volumes:
http://www.springer.com/series/7410

http://www.springer.com/series/7410

Tanja Lange • Kristin Lauter
Petr Lisoněk (Eds.)

Selected Areas
in Cryptography –
SAC 2013

20th International Conference
Burnaby, BC, Canada, August 14–16, 2013
Revised Selected Papers

123

Editors
Tanja Lange
Technische Universiteit Eindhoven
Eindhoven
The Netherlands

Kristin Lauter
Microsoft Research
Redmond, WA
USA

Petr Lisoněk
Simon Fraser University
Burnaby, BC
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-662-43413-0 ISBN 978-3-662-43414-7 (eBook)
DOI 10.1007/978-3-662-43414-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014939415

LNCS Sublibrary: SL4 – Security and Cryptology

� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Previously called the Workshop on Selected Areas in Cryptography, the Conference
on Selected Areas in Cryptography (SAC) series was initiated in 1994, when the first
workshop was held at Queen’s University in Kingston. The SAC conference has been
held annually since 1994 in various Canadian locations, including Calgary, Kingston,
Montreal, Ottawa, Sackville, St. John’s, Toronto, Waterloo, and Windsor. More
information on SAC conferences can be found at the main SAC conferences website
at http://sacconference.org/.

SAC 2013 was the 20th conference in this series, and for this special occasion it
was extended to a two-and-half day conference, which was attended by 65
participants.

This volume contains revised versions of papers presented at SAC 2013, held
during August 14–16, 2013, at Simon Fraser University in Burnaby, Canada. The
objective of the conference is to present cutting-edge research in the designated areas
of cryptography and to facilitate future research through an informal and friendly
conference setting.

The themes for the SAC 2013 conference were:

– Design and analysis of symmetric key primitives and cryptosystems, including
block and stream ciphers, hash functions and MAC algorithms

– Efficient implementations of symmetric and public key algorithms
– Mathematical and algorithmic aspects of applied cryptology
– Elliptic and hyperelliptic curve cryptography, including theory and applications of

pairings

There were 105 paper submissions, of which seven were withdrawn prior to the
submission deadline, and 98 submissions were refereed. Each submission was
reviewed by at least three Program Committee members. Submissions (co-)authored
by a Program Committee member were reviewed by at least five Program Committee
members. Upon recommendations of the Program Committee, 26 papers were
accepted making the acceptance rate 26/98 = 26.5 %. The program also included four
invited lectures, which were given by Paulo Barreto, Anne Canteaut, Antoine Joux,
and Douglas Stinson. The speakers were invited to submit papers to the proceedings;
these invited papers underwent a thorough reviewing process.

We greatly appreciate the hard work of the SAC 2013 Program Committee. We are
also very grateful to the many others who participated in the review process. The
reviewing process was run using the iChair software, written by Thomas Baignères
from CryptoExperts, France, and Matthieu Finiasz from EPFL, LASEC, Switzerland.
We are grateful to them for letting us use their software.

SAC 2013 was generously supported by its sponsors and partners: Microsoft
Research, Tutte Institute for Mathematics and Computing, Simon Fraser University,
Pacific Institute for the Mathematical Sciences, and Interdisciplinary Research in the

http://sacconference.org/

Mathematical and Computational Sciences Centre (IRMACS) at Simon Fraser Uni-
versity. The conference was held in co-operation with the International Association
for Cryptologic Research (IACR). Hugh Williams from the Tutte Institute delivered
the invited lecture ‘‘The Tutte Institute for Mathematics and Computing.’’

Special thanks go to Carlisle Adams, Huapeng Wu, and Ali Miri for generously
sharing their experience in organizing SAC conferences with us. We would also like
to thank Springer for publishing the SAC proceedings series since 1998 in the Lecture
Notes in Computer Science series.

We would like to thank Pam Borghardt, Zena Bruneau, and Kelly Gardiner for their
hard and tireless work in taking care of the local arrangements.

November 2013 Tanja Lange
Kristin Lauter

Petr Lisoněk

VI Preface

SAC 2013
Conference on Selected Areas in Cryptography

Burnaby, Canada
August 14–16, 2013

Program Chairs

Tanja Lange Technische Universiteit Eindhoven,
The Netherlands

Kristin Lauter Microsoft Research, USA
Petr Lisoněk Simon Fraser University, Canada

Program Committee

Carlisle Adams University of Ottawa, Canada
Jean-Philippe Aumasson Kudelski Security, Switzerland
Paulo S.L.M. Barreto University of São Paulo, Brazil
Lejla Batina Radboud University Nijmegen, The Netherlands

and KU Leuven, Belgium
Daniel J. Bernstein University of Illinois at Chicago, USA

and Technische Universiteit Eindhoven,
The Netherlands

Andrey Bogdanov Technical University of Denmark, Denmark
Joppe Bos Microsoft Research, USA
Christophe De Cannière Google Switzerland, Switzerland
Anne Canteaut Inria Paris-Rocquencourt, France
Sanjit Chatterjee Indian Institute of Science, India
Carlos Cid Royal Holloway, University of London, UK
Craig Costello Microsoft Research, USA
Joan Daemen ST Microelectronics, Belgium
Vassil Dimitrov University of Calgary, Canada
Orr Dunkelman University of Haifa, Israel
Andreas Enge Inria Bordeaux-Sud-Ouest and University

of Bordeaux, France
Matthieu Finiasz CryptoExperts, France
Guang Gong University of Waterloo, Canada
Tim Güneysu Ruhr University Bochum, Germany
Huseyin Hisil Yasar University, Turkey
Sorina Ionica ENS Paris, France
Mike Jacobson University of Calgary, Canada
Dmitry Khovratovich University of Luxembourg, Luxembourg

Tanja Lange (co-chair) Technische Universiteit Eindhoven,
The Netherlands

Kristin Lauter (co-chair) Microsoft Research, USA
Gregor Leander Ruhr University Bochum, Germany
Hyang-Sook Lee Ewha Womans University, Republic of Korea
Jooyoung Lee Sejong University, Seoul, Republic of Korea
Gaëtan Leurent UCL Crypto Group, Belgium
Petr Lisoněk (co-chair) Simon Fraser University, Canada
Stefan Lucks University Weimar, Germany
Alfred Menezes University of Waterloo, Canada
Michael Naehrig Microsoft Research, USA
María Naya-Plasencia Inria Paris-Rocquencourt, France
Kaisa Nyberg Aalto University, Finland
Roger Oyono Université de la Polynésie Française, French

Polynesia
Daniel Page University of Bristol, UK
Christiane Peters Technical University of Denmark, Denmark
Bart Preneel KU Leuven, Belgium
Christian Rechberger Technical University of Denmark, Denmark
Christophe Ritzenthaler Institut de Mathématiques de Luminy, France
Damien Robert Inria Bordeaux Sud-Ouest, France
Francisco Rodríguez-Henríquez CINVESTAV-IPN, Mexico
Yu Sasaki NTT Secure Platform Laboratories, Japan
Renate Scheidler University of Calgary, Canada
Martin Schläffer Graz University of Technology, Austria
Peter Schwabe Radboud University Nijmegen, The Netherlands
Douglas R. Stinson University of Waterloo, Canada
Andrew Sutherland MIT, USA
Vanessa Vitse Université Joseph Fourier, France
Michael J. Wiener Irdeto, Canada

External Reviewers

Hoda A. Alkhzaimi
Farzaneh Abed
Jithra Adikari
Gora Adj
Elena Andreeva
Kazumaro Aoki
Thomas Baignères
Guido Bertoni
Rishiraj Bhattacharyya
Begul Bilgin
Gaetan Bisson

Céline Blondeau
Andrey Bogdanov
Charles Bouillaguet
Christina Boura
Donghoon Chang
Jung Hee Cheon
Itai Dinur
Christophe Doche
Baris Ege
Maria Eichlseder
Xinxin Fan

Sebastian Faust
Robert Fitzpatrick
Christian Forler
Steven Galbraith
Nadia Heninger
Andreas Hülsing
Fei Huo
Kimmo Järvinen
Koray Karabina
Elif Bilge Kavun
Nathan Keller

VIII SAC 2013 Conference on Selected Areas in Cryptography

Taechan Kim
Thomas Korak
Soonhak Kwon
Pascal Lafourcade
Martin Gagné
Cédric Lauradoux
Martin M. Lauridsen
Tancréde Lepoint
Yang Li
Seongan Lim
Eik List
Jake Loftus
Adriana Lopez-Alt
Cuauhtemoc Mancillas
Ingo von Maurich
Florian Mendel
Oliver Mischke
Amir Moradi
Sayantan Mukherjee

Sean Murphy
Samuel Neves
Thomaz Oliveira
Cheol-Min Park
Souradyuti Paul
Thomas Pöppelmann
Gordon Procter
Francesco Regazzoni
Matthieu Rivain
Joern-Marc Schmidt
Michael Schneider
Kyoji Shibutani
Boris Skoric
Hadi Soleimany
Raphael Spreitzer
Damien Stehle
Valentin Suder
Yin Tan
Enrico Thomae

Nicolas Thériault
Mehdi Tibouchi
Elmar Tischhauser
Deniz Toz
Michael Tunstall
Gilles Van Assche
Kerem Varici
Damien Vergnaud
Vincent Verneuil
Vanessa Vitse
Jakob Wenzel
Carolyn Whitnall
Brecht Wyseur
Tolga Yalcin
Bo-Yin Yang
Masaya Yasuda
Yongjin Yeom
Bo Zhu
Ralf Zimmermann

SAC 2013 Conference on Selected Areas in Cryptography IX

Abstract of Invited Talk

Similarities Between Encryption and Decryption:
How Far Can We Go?

Anne Canteaut

INRIA Paris-Rocquencourt, France
anne.canteaut@inria.fr

Abstract. In this talk, I will investigate some approaches for reducing the
hardware footprint of a block cipher for different constraints of the targeted
applications. In this context, I will focus on the strategies which can be
used for minimizing the overhead for decryption on top of encryption.
These strategies include involutive ciphers and the construction used in
PRINCE. In particular, I will discuss the potential weaknesses which might
be introduced by this type of constructions.

Contents

Invited Talk

The Realm of the Pairings . 3
Diego F. Aranha, Paulo S.L.M. Barreto, Patrick Longa,
and Jefferson E. Ricardini

Lattices Part I

A Three-Level Sieve Algorithm for the Shortest Vector Problem 29
Feng Zhang, Yanbin Pan, and Gengran Hu

Improvement and Efficient Implementation of a Lattice-Based
Signature Scheme . 48

Rachid El Bansarkhani and Johannes Buchmann

Towards Practical Lattice-Based Public-Key Encryption on Reconfigurable
Hardware . 68

Thomas Pöppelmann and Tim Güneysu

Invited Talk

Practical Approaches to Varying Network Size in Combinatorial Key
Predistribution Schemes. 89

Kevin Henry, Maura B. Paterson, and Douglas R. Stinson

Discrete Logarithms

A Group Action on Z
�
p and the Generalized DLP with Auxiliary Inputs 121

Jung Hee Cheon, Taechan Kim, and Yong Soo Song

Solving a 6120-bit DLP on a Desktop Computer . 136
Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel

Stream Ciphers and Authenticated Encryption

How to Recover Any Byte of Plaintext on RC4 . 155
Toshihiro Ohigashi, Takanori Isobe, Yuhei Watanabe, and Masakatu Morii

The LOCAL Attack: Cryptanalysis of the Authenticated Encryption
Scheme ALE . 174

Dmitry Khovratovich and Christian Rechberger

http://dx.doi.org/10.1007/978-3-662-43414-7_1
http://dx.doi.org/10.1007/978-3-662-43414-7_2
http://dx.doi.org/10.1007/978-3-662-43414-7_3
http://dx.doi.org/10.1007/978-3-662-43414-7_3
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-662-43414-7_5
http://dx.doi.org/10.1007/978-3-662-43414-7_5
http://dx.doi.org/10.1007/978-3-662-43414-7_6
http://dx.doi.org/10.1007/978-3-662-43414-7_6
http://dx.doi.org/10.1007/978-3-662-43414-7_7
http://dx.doi.org/10.1007/978-3-662-43414-7_7
http://dx.doi.org/10.1007/978-3-662-43414-7_8
http://dx.doi.org/10.1007/978-3-662-43414-7_9
http://dx.doi.org/10.1007/978-3-662-43414-7_9

AEGIS: A Fast Authenticated Encryption Algorithm. 185
Hongjun Wu and Bart Preneel

Post–quantum (Hash-Based and System Solving)

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 205
Charles Bouillaguet, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen,
and Bo-Yin Yang

Faster Hash-Based Signatures with Bounded Leakage 223
Thomas Eisenbarth, Ingo von Maurich, and Xin Ye

White Box Crypto

White-Box Security Notions for Symmetric Encryption Schemes 247
Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain

Two Attacks on a White-Box AES Implementation 265
Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse,
and Bart Preneel

Block Ciphers

Extended Generalized Feistel Networks Using Matrix Representation 289
Thierry P. Berger, Marine Minier, and Gaël Thomas

Zero-Correlation Linear Cryptanalysis with FFT and Improved Attacks
on ISO Standards Camellia and CLEFIA. 306

Andrey Bogdanov, Huizheng Geng, Meiqin Wang, Long Wen,
and Baudoin Collard

Implementing Lightweight Block Ciphers on x86 Architectures 324
Ryad Benadjila, Jian Guo, Victor Lomné, and Thomas Peyrin

Invited Talk

A New Index Calculus Algorithm with Complexity Lð1=4þ oð1ÞÞ
in Small Characteristic . 355

Antoine Joux

Lattices Part II

High Precision Discrete Gaussian Sampling on FPGAs 383
Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede

XIV Contents

http://dx.doi.org/10.1007/978-3-662-43414-7_10
http://dx.doi.org/10.1007/978-3-662-43414-7_11
http://dx.doi.org/10.1007/978-3-662-43414-7_11
http://dx.doi.org/10.1007/978-3-662-43414-7_12
http://dx.doi.org/10.1007/978-3-662-43414-7_13
http://dx.doi.org/10.1007/978-3-662-43414-7_14
http://dx.doi.org/10.1007/978-3-662-43414-7_15
http://dx.doi.org/10.1007/978-3-662-43414-7_16
http://dx.doi.org/10.1007/978-3-662-43414-7_16
http://dx.doi.org/10.1007/978-3-662-43414-7_17
http://dx.doi.org/10.1007/978-3-662-43414-7_18
http://dx.doi.org/10.1007/978-3-662-43414-7_18
http://dx.doi.org/10.1007/978-3-662-43414-7_18
http://dx.doi.org/10.1007/978-3-662-43414-7_19

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling
from a Gaussian Distribution over the Integers. 402

Johannes Buchmann, Daniel Cabarcas, Florian Göpfert,
Andreas Hülsing, and Patrick Weiden

Elliptic Curves, Pairings and RSA

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves
over GFðpÞ. 421

Yuan Ma, Zongbin Liu, Wuqiong Pan, and Jiwu Jing

Exponentiating in Pairing Groups . 438
Joppe W. Bos, Craig Costello, and Michael Naehrig

Faster Repeated Doublings on Binary Elliptic Curves 456
Christophe Doche and Daniel Sutantyo

Montgomery Multiplication Using Vector Instructions 471
Joppe W. Bos, Peter L. Montgomery, Daniel Shumow,
and Gregory M. Zaverucha

Hash Functions and MACs

Improved Single-Key Distinguisher on HMAC-MD5 and Key Recovery
Attacks on Sandwich-MAC-MD5 . 493

Yu Sasaki and Lei Wang

Provable Second Preimage Resistance Revisited. 513
Charles Bouillaguet and Bastien Vayssière

Multiple Limited-Birthday Distinguishers and Applications 533
Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin

Side-Channel Attacks

Horizontal Collision Correlation Attack on Elliptic Curves 553
Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild

When Reverse-Engineering Meets Side-Channel Analysis –
Digital Lockpicking in Practice . 571

David Oswald, Daehyun Strobel, Falk Schellenberg, Timo Kasper,
and Christof Paar

Author Index . 589

Contents XV

http://dx.doi.org/10.1007/978-3-662-43414-7_20
http://dx.doi.org/10.1007/978-3-662-43414-7_20
http://dx.doi.org/10.1007/978-3-662-43414-7_21
http://dx.doi.org/10.1007/978-3-662-43414-7_21
http://dx.doi.org/10.1007/978-3-662-43414-7_22
http://dx.doi.org/10.1007/978-3-662-43414-7_23
http://dx.doi.org/10.1007/978-3-662-43414-7_24
http://dx.doi.org/10.1007/978-3-662-43414-7_25
http://dx.doi.org/10.1007/978-3-662-43414-7_25
http://dx.doi.org/10.1007/978-3-662-43414-7_26
http://dx.doi.org/10.1007/978-3-662-43414-7_27
http://dx.doi.org/10.1007/978-3-662-43414-7_28
http://dx.doi.org/10.1007/978-3-662-43414-7_29
http://dx.doi.org/10.1007/978-3-662-43414-7_29

Invited Talk

The Realm of the Pairings

Diego F. Aranha1, Paulo S.L.M. Barreto2(B), Patrick Longa3,
and Jefferson E. Ricardini2

1 Department of Computer Science, University of Braśılia, Braśılia, Brazil
dfaranha@unb.br

2 Departamento de Engenharia de Computação e Sistemas Digitais,
Escola Politécnica, University of São Paulo, São Paulo, Brazil

{pbarreto,jricardini}@larc.usp.br
3 Microsoft Research, One Microsoft Way, Redmond, USA

plonga@microsoft.com

Abstract. Bilinear maps, or pairings, initially proposed in a cryptologic
context for cryptanalytic purposes, proved afterward to be an amazingly
flexible and useful tool for the construction of cryptosystems with unique
features. Yet, they are notoriously hard to implement efficiently, so that
their effective deployment requires a careful choice of parameters and
algorithms. In this paper we review the evolution of pairing-based cryp-
tosystems, the development of efficient algorithms and the state of the
art in pairing computation, and the challenges yet to be addressed on the
subject, while also presenting some new algorithmic and implementation
refinements in affine and projective coordinates.

Keywords: Pairing-based cryptosystems · Efficient algorithms

1 Introduction

Bilinear maps, or pairings, between the (divisors on the) groups of points
of certain algebraic curves over a finite field, particularly the Weil pairing [94]
and the Tate (or Tate-Lichtenbaum) pairing [45], have been introduced in a
cryptological scope for destructive cryptanalytic purposes, namely, mapping the
discrete logarithm problem on those groups to the discrete logarithm problem
on the multiplicative group of a certain extension of the base field [46,66]: while
the best generic classical (non-quantum) algorithm for the discrete logarithm
problem on the former groups may be exponential, in the latter case subexpo-
nential algorithms are known, so that such a mapping may yield a problem that
is asymptotically easier to solve.

It turned out, perhaps surprisingly, that these same tools have a much more
relevant role in a constructive cryptographic context, as the basis for the def-
inition of cryptosystems with unique properties. This has been shown in the

Supported by CNPq research productivity grant 306935/2012-0.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 3–25, 2014.
DOI: 10.1007/978-3-662-43414-7 1, c∞ Springer-Verlag Berlin Heidelberg 2014

4 D.F. Aranha et al.

seminal works on identity-based non-interactive authenticated key agreement
by Sakai, Ohgishi and Kasahara [84], and on one-round tripartite key agreement
by Joux [56], which then led to an explosion of protocols exploring the possi-
bilities of identity-based cryptography and many other schemes, with ever more
complex features.

All this flexibility comes at a price: pairings are notoriously expensive in
implementation complexity and processing time (and/or storage occupation, in
a trade-off between time and space requirements). This imposes a very careful
choice of algorithms and curves to make them really practical. The pioneering
approach by Miller [67,68] showed that pairings could be computed in polynomial
time, but there is a large gap from there to a truly efficient implementation
approach.

Indeed, progress in this line of research has not only revealed theoretical
bounds on how efficiently a pairing can be computed in the sense of its over-
all order of complexity [93], but actually the literature has now very detailed
approaches on how to attain truly practical, extremely optimized implemen-
tations that cover all operations typically found in a pairing-based cryptosys-
tem, rather than just the pairing itself [4,80]. One can therefore reasonably ask
how far this trend can be pushed, and how “notoriously expensive” pairings
really are (or even whether they really are as expensive as the folklore pictures
them).

Our Contribution. In this paper we review the evolution of pairing-based cryp-
tosystems, the development of efficient algorithms for the computation of pair-
ings and the state of the art in the area, and the challenges yet to be addressed
on the subject.

Furthermore, we provide some new refinements to the pairing computation
in affine and projective coordinates over ordinary curves, perform an up-to-date
analysis of the best algorithms for the realization of pairings with special focus
on the 128-bit security level and present a very efficient implementation for x64
platforms.

Organization. The remainder of this paper is organized as follows. Section 2
introduces essential notions on elliptic curves and bilinear maps for cryptographic
applications, including some of the main pairing-based cryptographic protocols
and their underlying security assumptions. Section 3 reviews the main proposals
for pairing-friendly curves and the fundamental algorithms for their construction
and manipulation. In Sect. 4, we describe some optimizations to formulas in affine
and projective coordinates, carry out a performance analysis of the best available
algorithms and discuss benchmarking results of our high-speed implementation
targeting the 128-bit security level on various x64 platforms. We conclude in
Sect. 5.

The Realm of the Pairings 5

2 Preliminary Concepts

Let q = pm. An elliptic curve E/Fq is a smooth projective algebraic curve of
genus one with at least one point. The affine part satisfies an equation of the form
E : y2 +a1xy +a3y = x3 +a2x

2 +a4x+a6 where ai ∈ Fq. Points on E are affine
points (x, y) ∈ F

2
q satisfying the curve equation, together with an additional

point at infinity, denoted ∞. The set of curve points whose coordinates lie in
a particular extension field Fqk is denoted E(Fqk) for k > 0 (note that the ai

remain in Fq). Let #E(Fq) = n and write n as n = p+1− t; t is called the trace
of the Frobenius endomorphism. By Hasse’s theorem, |t| � 2

√
q.

An (additive) Abelian group structure is defined on E by the well known
chord-and-tangent method [91]. The order of a point P ∈ E is the least nonzero
integer r such that [r]P = ∞, where [r]P is the sum of r terms equal to P .
The order r of a point divides the curve order n. For a given integer r, the set
of all points P ∈ E such that [r]P = ∞ is denoted E[r]. We say that E[r] has
embedding degree k if r | qk − 1 and r � qs − 1 for any 0 < s < k.

The complex multiplication (CM) method [37] constructs an elliptic curve
with a given number of points n over a given finite field Fq as long as n = q+1−t
as required by the Hasse bound, and the norm equation DV 2 = 4q − t2 can be
solved for “small” values of the discriminant D, from which the j-invariant of
the curve (which is a function of the coefficients of the curve equation) can be
computed, and the curve equation is finally given by y2 = x3 + b (for certain
values of b) when j = 0, by y2 = x3 +ax (for certain values of a) when j = 1728,
and by y2 = x3 − 3cx + 2c with c := j/(j − 1728) when j �∈ {0, 1728}.

A divisor is a finite formal sum A =
∑

P aP (P) of points on the curve
E(Fqk). An Abelian group structure is defined on the set of divisors by the
addition of corresponding coefficients in their formal sums; in particular, nA =∑

P (naP)(P). The degree of a divisor A is the sum deg(A) =
∑

P aP . Let
f : E(Fqk) → Fqk be a function on the curve. We define f(A) ≡ ∏

P f(P)aP .
Let ordP (f) denote the multiplicity of the zero or pole of f at P (if f has no
zero or pole at P , then ordP (f) = 0). The divisor of f is (f) :=

∑
P ordP (f)(P).

A divisor A is called principal if A = (f) for some function (f). A divisor A is
principal if and only if deg(A) = 0 and

∑
P aP P = ∞ [65, theorem 2.25]. Two

divisors A and B are equivalent, A ∼ B, if their difference A − B is a principal
divisor. Let P ∈ E(Fq)[r] where r is coprime to q, and let AP be a divisor
equivalent to (P)− (∞); under these circumstances the divisor rAP is principal,
and hence there is a function fP such that (fP) = rAP = r(P) − r(∞).

Given three groups G1, G2, and GT of the same prime order n, a pairing is a
feasibly computable, non-degenerate bilinear map e : G1×G2 → GT . The groups
G1 and G2 are commonly (in the so-called Type III pairing setting) determined
by the eigenspaces of the Frobenius endomorphism φq on some elliptic curve
E/Fq of embedding degree k > 1. More precisely, G1 is taken to be the 1-
eigenspace E[n] ∩ ker(φq − [1]) = E(Fq)[n]. The group G2 is usually taken to
be the preimage E∈(Fqg)[n] of the q-eigenspace E[n] ∩ ker(φq − [q]) ⊆ E(Fqk)[n]
under a twisting isomorphism ψ : E∈ → E, (x, y) ∃→ (μ2x, μ3y) for some μ ∈ F

∗
qk .

In particular, g = k/d where the curve E∈/Fqg is the unique twist of E with

6 D.F. Aranha et al.

largest possible twist degree d | k for which n divides #E∈(Fqg) (see [55] for
details). This means that g is as small as possible.

A Miller function fi,P is a function with divisor (fi,P) = i(P) − ([i]P) −
(i − 1)(∞). Miller functions are at the root of most if not all pairings pro-
posed for cryptographic purposes, which in turn induce efficient algorithms
derived from Miller’s algorithm [67,68]. A Miller function satisfies fa+b,P (Q) =
fa,P (Q) ·fb,P (Q) ·g[a]P,[b]P (Q)/g[a+b]P (Q) up to a constant nonzero factor in Fq,
for all a, b ∈ Z, where the so-called line functions g[a]P,[b]P and g[a+b]P satisfy
(g[a]P,[b]P) = ([a]P) + ([b]P) + (−[a + b]P) − 3(∞), (g[a+b]P) = ([a + b]P) +
(−[a + b]P) − 2(∞). The advantage of Miller functions with respect to ellip-
tic curve arithmetic is now clear, since with these relations the line functions,
and hence the Miller functions themselves, can be efficiently computed as a side
result during the computation of [n]P by means of the usual chord-and-tangent
method.

2.1 Protocols and Assumptions

As an illustration of the enormous flexibility that pairings bring to the con-
struction of cryptographic protocols, we present a (necessarily incomplete) list
of known schemes according to their overall category.

Foremost among pairing-based schemes are the identity-based cryptosystems.
These include plain encryption [17], digital signatures [24,83], (authenticated)
key agreement [25], chameleon hashing [27], and hierarchical extensions thereof
with or without random oracles [22,51].

Other pairing-based schemes are not identity-based but feature special func-
tionalities like secret handshakes [5], short/aggregate/verifiably encrypted/
group/ring/blind signatures [19,20,26,97,98] and signcryption [9,21,61].

Together with the abundance of protocols came a matching abundance of
security assumptions, often tailored to the nature of each particular protocol
although some assumptions found a more general use and became classical. Some
of the most popular and useful security assumptions occurring in security proofs
of pairing-based protocols are the following, with groups G1 and G2 of order n
in multiplicative notation (and G denotes either group):

– q-Strong Diffie-Hellman (q-SDH) [16] and many related assumptions (like the
Inverse Computational Diffie-Hellman (Inv-CDH), the Square Computational
Diffie-Hellman (Squ-CDH), the Bilinear Inverse Diffie-Hellman (BIDH), and
the Bilinear Square Diffie-Hellman (BSDH) assumptions [98]): Given a (q+2)-
tuple (g1, g2, gx

2 , . . . , gxq

2) ∈ G1 ×G
q+1
2 as input, compute a pair (c, g1/(x+c)

1) ∈
Z/nZ × G1.

– Decision Bilinear Diffie-Hellman (DBDH) [18] and related assumptions (like
the k-BDH assumption [14]): Given generators g1 and g2 of G1 and G2

respectively, and given ga
1 , gb

1, gc
1, ga

2 , gb
2, gc

2, e(g1, g2)z determine whether
e(g1, g2)abc = e(g1, g2)z.

– Gap Diffie-Hellman (GDH) assumption [77]: Given (g, ga, gb) ∈ G
3 for a group

G equipped with an oracle for deciding whether gab = gc for any given gc ∈ G,
find gab.

The Realm of the Pairings 7

– (k + 1) Exponent Function meta-assumption: Given a function f : Z/nZ →
Z/nZ and a sequence (g, ga, gf(h1+a), . . . , gf(hk+a)) ∈ G

k+2
1 for some a, h1, . . . ,

hk ∈ Z/nZ, compute gf(h+a) for some h /∈ {h1, . . . , hk}.

The last of these is actually a meta-assumption, since it is parameterized by a
function f on the exponents. This meta-assumption includes the Collusion attack
with k traitors (k-CAA) assumption [70], where f(x) := 1/x, and the (k + 1)
Square Roots ((k + 1)-SR) assumption [96], where f(x) :=

√
x, among others.

Of course, not all choices of f may lead to a consistent security assumption (for
instance, the constant function is certainly a bad choice), so the instantiation of
this meta-assumption must be done in a case-by-case basis.

Also, not all of these assumptions are entirely satisfactory from the point of
view of their relation to the computational complexity of the more fundamental
discrete logarithm problem. In particular, the Cheon attack [28,29] showed that,
contrary to most discrete-logarithm style assumptions, which usually claim a
practical security level of 2λ for 2λ-bit keys due to e.g. the Pollard-ρ attack [81],
the q-SDH assumption may need 3λ-bit keys to attain that security level, accord-
ing to the choice of q.

3 Curves and Algorithms

3.1 Supersingular Curves

Early proposals to obtain efficient pairings invoked the adoption of supersingular
curves [40,49,82], which led to the highly efficient concept of η pairings [7] over
fields of small characteristic. This setting enables the so called Type I pairings,
which are defined with both arguments from the same group [50] and facilitates
the description of many protocols and the construction of formal security proofs.
Unfortunately, recent developments bring that approach into question, since dis-
crete logarithms in the multiplicative groups of the associated extension fields
have proven far easier to compute than anticipated [6].

Certain ordinary curves, on the other hand, are not known to be susceptible
to that line of attack, and also yield very efficient algorithms, as we will see next.

3.2 Generic Constructions

Generic construction methods enable choosing the embedding degree at will,
limited only by efficiency requirements. Two such constructions are known:

– The Cocks-Pinch construction [32] enables the construction of elliptic curves
over Fq containing a pairing-friendly group of order n with lg(q)/ lg(n) ≈ 2.

– The Dupont-Enge-Morain strategy [39] is similarly generic in the sense of
its embedding degree flexibility by maximizing the trace of the Frobenius
endomorphism. Like the Cocks-Pinch method, it only attains lg(q)/ lg(n) ≈ 2.

Because the smallest attainable ratio lg(q)/ lg(n) is relatively large, these
methods do not yield curves of prime order, which are necessary for certain
applications like short signatures, and also tend to improve the overall processing
efficiency.

8 D.F. Aranha et al.

3.3 Sparse Families of Curves

Certain families of curves may be obtained by parameterizing the norm equation
4q − t2 = 4hn − (t − 2)2 = DV 2 with polynomials q(u), t(u), h(u), n(u), then
choosing t(u) and h(u) according to some criteria (for instance, setting h(u) to
be some small constant polynomial yields near-prime order curves), and directly
finding integer solutions (in u and V) to the result. In practice this involves a
clever mapping of the norm equation into a Pell-like equation, whose solutions
lead to actual curve equations via complex multiplication (CM).

The only drawback they present is the relative rarity of suitable curves (the
only embedding degrees that are known to yield solutions are k ∈ {3, 4, 6, 10},
and the size of the integer solutions u grows exponentially), especially those with
prime order. Historically, sparse families are divided into Miyaji-Nakabayashi-
Takano (MNT) curves and Freeman curves.

MNT curves were the first publicly known construction of ordinary pairing-
friendly curves [71]. Given their limited range of admissible embedding degrees
(namely, k ∈ {3, 4, 6}), the apparent finiteness of MNT curves of prime order
[58,63,92], and efficiency considerations (see e.g. [44]), MNT curves are less useful
for higher security levels (say, from about 2112 onward).

Freeman curves [43], with embedding degree k = 10, are far rarer and suffer
more acutely from the fact that the nonexistence of a twist of degree higher
than quadratic forces its G2 group to be defined over Fq5 . Besides, this quintic
extension cannot be constructed using a binomial representation.

3.4 Complete Families of Curves

Instead of trying to solve the partially parameterized norm equation 4h(u)n(u)−
(t(u)−2)2 = DV 2 for u and V directly as for the sparse families of curves, one can
also parameterize V = V (u) as well. Solutions may exist if the parameters can
be further constrained, which is usually done by considering the properties of the
number field Q[u]/n(u), specifically by requiring that it contains a k-th root of
unity where k is the desired embedding degree. Choosing n(u) to be a cyclotomic
polynomial ΦΓ(u) with k | α yields the suitably named cyclotomic family of
curves [10,11,23,44], which enable a reasonably small ratio ρ := lg(q)/ lg(n)
(e.g. ρ = (k + 1)/(k − 1) for prime k ≡ 3 (mod 4)).

Yet, there is one other family of curves that attain ρ ≈ 1, namely, the Barreto-
Naehrig (BN) curves [12]. BN curves arguably constitute one of the most versatile
classes of pairing-friendly elliptic curves. A BN curve is an elliptic curve Eu :
y2 = x3 + b defined over a finite prime1 field Fp of (typically prime) order n,
where p and n are given by p = p(u) = 36u4 + 36u3 + 24u2 + 6u + 1 and
n = n(u) = 36u4 + 36u3 + 18u2 + 6u + 1 (hence t = t(u) = 6u2 + 1) for u ∈ Z.
One can check by straightforward inspection that Φ12(t(u) − 1) = n(u)n(−u),

1 Although there is no theoretical reason not to choose p to be a higher prime power,
in practice such parameters are exceedingly rare and anyway unnecessary, so usually
p is taken to be simply a prime.

The Realm of the Pairings 9

hence Φ12(p(u)) ≡ Φ12(t(u)− 1) ≡ 0 (mod n(u)), so the group of order n(u) has
embedding degree k = 12.

BN curves also have j-invariant 0, so there is no need to resort explicitly to
the CM curve construction method: all one has to do is choose an integer u of
suitable size such that p and n as given by the above polynomials are prime. To
find a corresponding curve, one chooses b ∈ Fp among the six possible classes so
that the curve E : y2 = x3 + b has order n.

Furthermore, BN curves admit a sextic twist (d = 6), so that one can set G2 =
E∈(Fp2)[n]. This twist E∈/Fp2 may be selected by finding a non-square and non-
cube ξ ∈ Fp2 and then checking via scalar multiplication whether the curve E∈ :
y2 = x3 + b∈ given by b∈ = b/ξ or by b∈ = b/ξ5 has order divisible by n. However,
construction methods are known that dispense with such procedure, yielding the
correct curve and its twist directly [80]. For convenience, following [85] we call
the twist E∈ : y2 = x3+b/ξ a D-type twist, and we call the twist E∈ : y2 = x3+bξ
an M -type twist.

3.5 Holistic Families

Early works targeting specifically curves that have some efficiency advantage
have focused on only one or a few implementation aspects, notably the pairing
computation itself [13,15,38,90].

More modern approaches tend to consider most if not all efficiency aspects
that arise in pairing-based schemes [34,36,80]. This means that curves of those
families tend to support not only fast pairing computation, but efficient finite
field arithmetic for all fields involved, curve construction, generator construction
for both G1 and G2, multiplication by a scalar in both G1 and G2, point sampling,
hashing to the curve [42], and potentially other operations as well.

Curiously enough, there is not a great deal of diversity among the most
promising such families, which comprise essentially only BN curves, BLS curves
[10], and KSS curves [57].

3.6 Efficient Algorithms

Ordinary curves with small embedding degree also come equipped with efficient
pairing algorithms, which tend to be variants of the Tate pairing [8,48,55,60,76]
(although some fall back to the Weil pairing while remaining fairly efficient [94]).
In particular, one now knows concrete practical limits to how efficient a pairing
can be, in the form of the so-called optimal pairings [93].

As we pointed out, Miller functions are essential to the definition of most
cryptographic pairings. Although all pairings can be defined individually in for-
mal terms, it is perhaps more instructive to give the following constructive defin-
itions, assuming an underlying curve E/Fq containing a group E(Fq)[n] of prime
order n with embedding degree k and letting z := (qk − 1)/n:

– Weil pairing: w(P,Q) := (−1)nfn,P (Q)/fn,Q(P).
– Tate pairing: τ(P,Q) := fn,P (Q)z.

10 D.F. Aranha et al.

– Eta pairing [7] (called the twisted Ate pairing when defined over an ordinary
curve): η(P,Q) := fλ,P (Q)z where λd ≡ 1 (mod n).

– Ate pairing [55]: a(P,Q) := ft−1,Q(P)z, where t is the trace of the Frobenius.
– Optimized Ate and twisted Ate pairings [64]: ac(P,Q) := f(t−1)c mod n,Q(P)z,

ηc(P,Q) := fλc mod n,P (Q)z, for some 0 < c < k.
– Optimal Ate pairing [93]: aopt(P,Q) := fΓ,Q(P)z for a certain α such that

lg α ≈ (lg n)/ϕ(k).

Optimal pairings achieve the shortest loop length among all of these pairings. To
obtain unique values, most of these pairings (the Weil pairing is an exception)
are reduced via the final exponentiation by z. The very computation of z is the
subject of research per se [89]. In particular, for a BN curve with parameter u
there exists an optimal Ate pairing with loop length α = |6u + 2|.

A clear trend in recent works has been to attain exceptional performance
gains by limiting the allowed curves to a certain subset, sometimes to a single
curve at a useful security level [4,15,75,80]. In the next section, we discuss
aspects pertaining such implementations.

4 Implementation Aspects

The optimal Ate pairing on BN curves has been the focus of intense imple-
mentation research in the last few years. Most remarkably, beginning in 2008,
a series of works improved, each one on top of the preceding one, the practical
performance on Intel 64-bit platforms [15,54,75]. This effort reached its pinnacle
in 2011, when Aranha et al. [4] reported an implementation running in about
half a millisecond (see also [62]). Since then, performance of efficient software
implementations has mostly stabilized, but some aspects of pairing computation
continously improved through the availability of new techniques [47], processor
architecture revisions and instruction set refinements [79]. In this section, we
revisit the problem of efficient pairing computation working on top of the imple-
mentation presented in [4], to explore these latest advances and provide new
performance figures. Our updated implementation achieves high performance
on a variety of modern 64-bit computing platforms, including both relatively old
processors and latest microarchitectures.

4.1 Pairing Algorithm

The BN family of curves is ideal from an implementation point of view. Having
embedding degree k = 12, it is perfectly suited to the 128-bit security level and a
competitive candidate at the 192-bit security level for protocols involving a small
number of pairing computations [2]. Additionally, the size of the family facili-
tates generation [80] and supports many different parameter choices, allowing
for customization of software implementations to radically different computing
architectures [4,52,53]. The optimal Ate pairing construction applied to general
BN curves further provides a rather simple formulation among the potential
candidates [60,76]:

The Realm of the Pairings 11

aopt : G2 × G1 → GT

(Q,P) ∃→ (fΓ,Q(P) · g[Γ]Q,φp(Q)(P) · g[Γ]Q+φp(Q),−φ2
p(Q)(P))

p12−1
n ,

with α = 6u + 2, map φp and groups G1, G2, GT as previously defined; and an
especially efficient modification of Miller’s Algorithm for accumulating all the
required line evaluations in the Miller variable f (Algorithm 1).

The extension field arithmetic involving f is in fact the main building block
of the pairing computation, including Miller’s algorithm and final exponenti-
ation. Hence, its efficient implementation is crucial. To that end, it has been
recommended to implement the extension field through a tower of extensions
built with appropriate choices of irreducible polynomials [15,38,54,80]:

Fp2 = Fp[i]/(i2 − β),with β a non-square, (1)

Fp4 = Fp2 [s]/(s2 − ξ),with ξ a non-square, (2)

Fp6 = Fp2 [v]/(v3 − ξ),with ξ a non-cube, (3)

Fp12 = Fp4 [t]/(t3 − s) (4)

or Fp6 [w]/(w2 − v) (5)

or Fp2 [w]/(w6 − ξ),with ξ a non-square and non-cube. (6)

Note that ξ is the same non-residue used to define the twist equations in Sect. 3.4
and that converting from one towering scheme to another is possible by simply
reordering coefficients. By allowing intermediate values to grow to double pre-
cision and choosing p to be a prime number slightly smaller than a multiple of
the processor word, lazy reduction can be efficiently employed in all levels of the
towering arithmetic [4]. A remarkably efficient set of parameters arising from the
curve choice E(Fp) : y2 = x3+2, with p ≡ 3 (mod 4), is β = −1, ξ = (1+ i) [80],
simultaneously optimizing finite field and curve arithmetic.

4.2 Field Arithmetic

Prime fields involved in pairing computation in the asymmetric setting are com-
monly represented with dense moduli, resulting from the parameterized curve
constructions. While the particular structure of the prime modulus has been
successfully exploited for performance optimization in both software [75] and
hardware [41], current software implementations rely on the standard Mont-
gomery reduction [72] and state-of-the-art hardware implementations on the
parallelization capabilities of the Residue Number System [30].

Arithmetic in the base field is usually implemented in carefully scheduled
Assembly code, but the small number of words required to represent a 256-bit
prime field element in a 64-bit processor encourages the use of Assembly directly
in the quadratic extension field, to avoid penalties related to frequent function
calls [15]. Multiplication and reduction in Fp are implemented through a Comba
strategy [33], but a Schoolbook approach is favored in recent Intel processors,
due to the availability of the carry-preserving multiplication instruction mulx,

12 D.F. Aranha et al.

Algorithm 1. Optimal Ate pairing on general BN curves [4]

Input: P ∈ G1, Q ∈ G2, γ = |6u + 2| =
∑log2(λ)

i=0 γi2
i

Output: aopt(Q, P)

1: d ← gQ,Q(P), T ← 2Q, e ← 1
2: if γ∼log2(λ)∈−1 = 1 then e ← gT,Q(P), T ← T + Q
3: f ← d · e
4: for i = ∪log2(γ)⊕ − 2 downto 0 do
5: f ← f2 · gT,T (P), T ← 2T
6: if γi = 1 then f ← f · gT,Q(P), T ← T + Q
7: end for
8: Q1 ← φp(Q), Q2 ← φ2

p(Q)

9: if u < 0 then T ← −T, f ← fp6

10: d ← gT,Q1(P), T ← T + Q1, e ← gT,−Q2(P), T ← T − Q2, f ← f · (d · e)

11: f ← f (p6−1)(p2+1)(p4−p2+1)/n

12: return f

allowing delayed handling of carries [79]. Future processors will allow similar
speedups on the Comba-based multiplication and Montgomery reduction rou-
tines by carry-preserving addition instructions [78].

Divide-and-conquer approaches are used only for multiplication in Fp2 , Fp6

and Fp12 , because Karatsuba is typically more efficient over extension fields, since
additions are relatively inexpensive in comparison with multiplication. The full
details of the formulas that we use in our implementation of extension field arith-
metic can be found in [4], including the opportunities for reducing the number
of Montgomery reductions via lazy reduction. The case of squaring is relatively
more complex. We use the complex squaring in Fp2 and, for Fp6 and Fp12 , we
employ the faster Chung-Hasan asymmetric SQR3 formula [31]. The sparseness
of the line functions motivates the implementation of specialized multiplication
routines for accumulating the line function into the Miller variable f (sparse
multiplication) or for multiplying line functions together (sparser multiplica-
tion). For sparse multiplication over Fp6 and Fp12 , we use the formulas proposed
by Grewal et al. (see Algorithms 5 and 6 in [53]). Faster formulas for sparser
multiplication can be trivially obtained by adapting the sparse multiplication
formula to remove operations involving the missing subfield elements.

In the following, we closely follow notation for operation costs from [4]. Let
m, s, a, i denote the cost of multiplication, squaring, addition and inversion in Fp,
respectively; m̃, s̃, ã, ı̃ denote the cost of multiplication, squaring, addition and
inversion in Fp2 , respectively; mu, su, r denote the cost of unreduced multipli-
cation and squaring producing double-precision results, and modular reduction
of double-precision integers, respectively; m̃u, s̃u, r̃ denote the cost of unreduced
multiplication and squaring, and modular reduction of double-precision elements
in Fp2 , respectively. To simplify the operation count, we consider the cost of field
subtraction, negation and division by two equivalent to that of field addition.

The Realm of the Pairings 13

Also, one double-precision addition is considered equivalent to the cost of two
single-precision additions.

4.3 Curve Arithmetic

Pairings can be computed over elliptic curves represented in any coordinate
system, but popular choices have been homogeneous projective and affine coor-
dinates, depending on the ratio between inversion and multiplication. Jacobian
coordinates were initially explored in a few implementations [15,75], but ended
superseded by homogeneous coordinates because of their superior efficiency [35].
Point doublings and their corresponding line evaluations usually dominate the
cost of the Miller loop, since efficient parameters tend to minimize the Ham-
ming weight of the Miller variable α and the resulting number of points addi-
tions. Below, we review and slightly refine the best formulas available for the
curve arithmetic involved in pairing computation on affine and homogeneous
projective coordinates.

Affine Coordinates. The choice of affine coordinates has proven more useful
at higher security levels and embedding degrees, due to the action of the norm
map on simplifying the computation of inverses at higher extensions [59,86]. The
main advantages of affine coordinates are the simplicity of implementation and
format of the line functions, allowing faster accumulation inside the Miller loop
if the additional sparsity is exploited. If T = (x1, y1) is a point in E∈(Fp2), one
can compute the point 2T := T + T with the following formula [53]:

λ =
3x2

1

2y1
, x3 = λ2 − 2x1, y3 = (λx1 − y1) − λx3. (7)

When E∈ is a D-type twist given by the twisting isomorphism ψ, the tangent
line evaluated at P = (xP , yP) has the format g2ψ(T)(P) = yP − λxP w + (λx1 −
y1)w3 according to the tower representation given by Eq. (6). This function can
be evaluated at a cost of 3m̃+2s̃+7ã+ ı̃+2m with the precomputation cost of 1a
to compute xP = −xP [53]. By performing more precomputation as y∈

P = 1/yP

and x∈
P = xP /yP , we can simplify the tangent line further:

y∈
P · g2ψ(T)(P) = 1 + λx∈

P w + y∈
P (λx1 − y1)w3.

Since the final exponentiation eliminates any subfield element multiplying the
pairing value, this modification does not change the pairing result. Computing
the simpler line function now requires 3m̃ + 2s̃ + 7ã + ı̃ + 4m with an additional
precomputation cost of (i + m):

A =
1

2y1
, B = 3x2

1, C = AB, D = 2x1, x3 = C2 − D,

E = Cx1 − y1, y3 = E − Cx3, F = Cx∈
P , G = Ey∈

P ,
y∈

P · g2ψ(T)(P) = 1 + Fw + Gw3.

14 D.F. Aranha et al.

This clearly does not save any operations compared to Eq. (7) and increases
the cost by 2m. However, the simpler format allows the faster accumulation
f2 · g2ψ(T)(P) = (f0 + f1w)(1 + g1w), where f0, f1, g1 ∈ Fp6 , by saving 6m
corresponding to the multiplication between yP and each subfield element of f0.
The performance trade-off compared to [53] is thus 4m per Miller doubling step.

When different points T = (x1, y1) and Q = (x2, y2) are considered, the point
T + Q can be computed with the following formula:

λ =
y2 − y1
x2 − x1

, x3 = λ2 − x2 − x1, y3 = λ(x1 − x3) − y1. (8)

Applying the same trick described above gives the same performance trade-
off, with a cost of 3m̃ + s̃ + 6ã + ı̃ + 4m [53]:

A =
1

x2 − x1
, B = y2 − y1, C = AB, D = x1 + x2, x3 = C2 − D,

E = Cx1 − y1, y3 = E − Cx3, F = Cx∈
P , G = Ey∈

P ,
y∈

P · gψ(T),ψ(Q)(P) = 1 + Fw + Gw3.

The technique can be further employed in M -type twists, conserving their
equivalent performance to D-type twists [53], with some slight changes in the
formula format and accumulation multiplier. A generalization for other pairing-
friendly curves with degree-d twists and even embedding degree k would provide
a performance trade-off of (k/2 − k/d) multiplications per step in Miller’s Algo-
rithm. The same idea was independently proposed and slightly improved in [73].

Homogeneous Projective Coordinates. The choice of projective coordi-
nates has proven especially advantageous at the 128-bit security level for single
pairing computation, due to the typically large inversion/multiplication ratio in
this setting. If T = (X1, Y1, Z1) ∈ E∈(Fp2) is a point in homogeneous coordinates,
one can compute the point 2T = (X3, Y3, Z3) with the following formula [4]:

X3 =
X1Y1

2
(Y 2

1 − 9b∈Z2
1),

Y3 =
[
1
2
(Y 2

1 + 9b∈Z2
1)

]2

− 27b∈2Z4
1 , Z3 = 2Y 3

1 Z1.
(9)

The twisting point P can be represented by (xP w, yP). When E∈ is a D-
type twist given by the twisting isomorphism ψ, the tangent line evaluated at
P = (xP , yP) can be computed with the following formula [53]:

g2ψ(T)(P) = −2Y ZyP + 3X2xP w + (3b∈Z2 − Y 2)w3 (10)

Equation (10) is basically the same line evaluation formula presented in [35]
plus an efficient selection of the positioning of terms (obtained by multiplying
the line evaluation by w3), which was suggested in [53] to obtain a fast sparse
multiplication in the Miller loop (in particular, the use of terms 1, w and w3 [53]
induces a sparse multiplication that saves 13ã in comparison to the use of terms

The Realm of the Pairings 15

1, v2 and wv in [4]). The full doubling/line function formulae in [35] costs 2m̃ +
7s̃+23ã+4m+mb∪ . Based on Eqs. (9) and (10), [53] reports a cost of 2m̃+7s̃+
21ã + 4m + mb∪ . We observe that the same formulae can be evaluated at a cost
of only 2m̃+7s̃+19ã+4m+mb∪ with the precomputation cost of 3a to compute
yP = −yP and x∈

P = 3xP . Note that all these costs consider the computation of
X1 · Y1 using the equivalence 2XY = (X + Y)2 − X2 − Y 2. We remark that, as
in Aranha et al. [4], on x64 platforms it is more efficient to compute such term
with a direct multiplication since m̃− s̃ < 3ã. Considering this scenario, the cost
applying our precomputations is then given by 3m̃+6s̃+15ã+4m+mb∪ . Finally,
further improvements are possible if b is cleverly selected [80]. For instance, if
b = 2 then b∈ = 2/(1 + i) = 1 − i, which minimizes the number of additions
and subtractions. Computing the simpler doubling/line function now requires
3m̃ + 6s̃ + 16ã + 4m with the precomputation cost of 3a (in comparison to the
computation proposed in [4,35,53], we save 2ã, 3ã and 5ã, respectively, when
m̃ − s̃ < 3ã):

A = X1 · Y1/2, B = Y 2
1 , C = Z2

1 , D = 3C, E0 = D0 + D1,
E1 = D1 − D0, F = 3E, X3 = A · (B − F), G = (B + F)/2,

Y3 = G2 − 3E2, H = (Y1 + Z1)
2 − (B + C), Z3 = B · H,

g2ψ(T)(P) = HȳP + X2
1x∈

P w + (E − B)w3.

(11)

Similarly, if T = (X1, Y1, Z1) and Q = (x2, y2) ∈ E∈(Fp2) are points in
homogeneous and affine coordinates, respectively, one can compute the point
T + Q = (X3, Y3, Z3) with the following formula:

X3 = λ(λ3 + Z1θ
2 − 2X1λ

2),
Y3 = θ(3X1λ

2 − λ3 − Z1θ
2) − Y1λ

3, Z3 = Z1λ
3,

(12)

where θ = Y1 − y2Z1 and λ = X1 − x2Z1. In the case of a D-type twist, the line
evaluated at P = (xP , yP) can be computed with the following formula [53]:

gψ(T+Q)(P) = −λyP − θxP w + (θX2 − λY2)w3. (13)

Similar to the case of doubling, Eq. (13) is basically the same line evaluation
formula presented in [35] plus an efficient selection of the positioning of terms
suggested in [53] to obtain a fast sparse multiplication inside the Miller loop.
The full mixed addition/line function formulae can be evaluated at a cost of
11m̃ + 2s̃ + 8ã + 4m with the precomputation cost of 2a to compute xP = −xP

and yP = −yP [53]:

A = Y2Z1, B = X2Z1, θ = Y1 − A, λ = X1 − B, C = θ2,
D = λ2, E = λ3, F = Z1C, G = X1D, H = E + F − 2G,

X3 = λH, I = Y1E, Y3 = θ(G − H) − I, Z3 = Z1E, J = θX2 − λY2,
g2ψ(T)(P) = λȳP + θx̄P w + Jw3.

In the case of an M -type twist, the line function evaluated at ψ(P) =
(xP w2, yP w3) can be computed with the same sequence of operations shown
above.

16 D.F. Aranha et al.

4.4 Operation Count

Table 1 presents a detailed operation count for each operation relevant in the
computation of a pairing over a BN curve, considering all the improvements
described in the previous section. Using these partial numbers, we obtain an
operation count for the full pairing computation on a fixed BN curve.

Table 1. Computational cost for arithmetic required by Miller’s Algorithm.

E′(Fp2)-Arithmetic Operation count

Precomp. (Affine) i + m + a

Precomp. (Proj) 4a
Dbl./Eval. (Affine) 3m̃ + 2s̃ + 7ã + ı̃ + 4m

Add./Eval. (Affine) 3m̃ + s̃ + 6ã + ı̃ + 4m

Dbl./Eval. (Proj) 3m̃u + 6s̃u + 8r̃ + 19ã + 4m

Add./Eval. (Proj) 11m̃u + 2s̃u + 11r̃ + 10ã + 4m

p-power Frobenius 2m̃ + 2a

p2-power Frobenius 2m + ã

Negation ã

Fp2 -Arithmetic Operation count

Add./Sub./Neg. ã = 2a

Conjugation a

Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 8a

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a

Multiplication by β a

Multiplication by ξ 2a

Inversion ı̃ = i + 2su + 2mu + 2r + 3a

Fp12 -Arithmetic Operation count

Add./Sub. 6ã

Conjugation 3ã

Multiplication 18m̃u + 6r̃ + 110ã

Sparse Mult. (Affine) 10m̃u + 6r̃ + 31ã

Sparser Mult. (Affine) 5m̃u + 3r̃ + 13ã

Sparse Mult. (Proj) 13m̃u + 6r̃ + 48ã

Sparser Mult. (Proj) 6m̃u + 5r̃ + 22ã

Squaring 3m̃u + 12s̃u + 6r̃ + 93ã

Cyc. Squaring 9s̃u + 6r̃ + 46ã

Comp. Squaring 6s̃u + 4r̃ + 31ã

Simult. Decomp. 9m̃ + 6s̃ + 22ã + ı̃

p-power Frobenius 5m̃ + 6a

p2-power Frobenius 10m + 2ã

p3-power Frobenius 5m̃ + 2ã + 6a

Inversion 23m̃u + 11s̃u + 16r̃ + 129ã + ı̃

The Realm of the Pairings 17

Miller Loop. Sophisticated pairing-based protocols may impose additional
restrictions on the parameter choice along with some performance penalty, for
example requiring the cofactor of the GT group to be a large prime number [87].
For efficiency and a fair comparison with related works, we adopt the parame-
ters β, ξ, b = 2, u = −(262 + 255 + 1) from [80]. For this set of parameters, the
Miller loop in Algorithm 1 and the final line evaluations execute some amount
of precomputation for accelerating the curve arithmetic formulas, 64 points dou-
blings with line evaluations and 6 point additions with line evaluations; a single
p-power Frobenius, a single p2-power Frobenius and 2 negations in E∈(Fp2); and
66 sparse accumulations in the Miller variable, 2 sparser multiplications, 1 mul-
tiplication, 1 conjugation and 63 squarings in Fp12 . The corresponding costs in
affine and homogeneous projective coordinates are, respectively:

MLA = (i + m + a) + 64 · (3m̃ + 2s̃ + 7ã + ı̃ + 4m)
+ 6 · (3m̃ + s̃ + 6ã + ı̃ + 4m) + 2m̃ + 2a + 2m + 2ã

+ 66 · (10m̃u + 6r̃ + 31ã) + 2 · (5m̃u + 3r̃ + 13ã)
+ 3ã + (18m̃u + 6r̃ + 110ã) + 63 · (3m̃u + 12s̃u + 6r̃ + 93ã)
= 1089m̃u + 890s̃u + 1132r̃ + 8530ã + 70ı̃ + i + 283m + 3a.

MLP = (4a) + 64 · (3m̃u + 6s̃u + 8r̃ + 19ã + 4m)
+ 6 · (11m̃u + 2s̃u + 11r̃ + 10ã + 4m) + 2m̃ + 2a + 2m + 2ã

+ 66 · (13m̃u + 6r̃ + 48ã) + 2 · (6m̃u + 5r̃ + 22ã)
+ 3ã + (18m̃u + 6r̃ + 110ã) + 63 · (3m̃u + 12s̃u + 6r̃ + 93ã)
= 1337m̃u + 1152s̃u + 1388r̃ + 10462ã + 282m + 6a.

Final Exponentiation. For computing the final exponentiation, we employ
the state-of-the-art approach by [47] in the context of BN curves. As initially
proposed by [89], power p12−1

r is factored into the easy exponent (p6 −1)(p2 +1)
and the hard exponent p4−p2+1

n . The easy power is computed by a short sequence
of multiplications, conjugations, fast applications of the Frobenius map [15] and
a single inversion in Fp12 . The hard power is computed in the cyclotomic sub-
group, where additional algebraic structure allows elements to be compressed and
squared consecutively in their compressed form, with decompression required
only when performing multiplications [4,74,88].

Moreover, lattice reduction is able to obtain parameterized multiples of the
hard exponent and significantly reduce the length of the addition chain involved
in that exponentiation [47]. In total, the hard part of the final exponentiation
requires 3 exponentiations by parameter u, 3 squarings in the cyclotomic sub-
group, 10 full extension field multiplications and 3 applications of the Frobenius
maps with increasing pth-powers. We refer to [4] for the cost of an exponen-
tiation by our choice of u and compute the exact operation count of the final
exponentiation:

18 D.F. Aranha et al.

FE = (23m̃u + 11s̃u + 16r̃ + 129ã + ı̃) + 3ã + 12 · (18m̃u + 6r̃ + 110ã)
+ 3 · (45m̃u + 378s̃u + 275r̃ + 2164ã + ı̃) + 3 · (9s̃u + 6r̃ + 46ã)
+ (5m̃ + 6a) + 2 · (10m + 2ã) + (5m̃ + 2ã + 6a)
= 384m̃u + 1172s̃u + 941r̃ + 8085ã + 4ı̃ + 20m + 12a.

4.5 Results and Discussion

The combined cost for a pairing computation in homogeneous projective coor-
dinates can then be expressed as:

MLP + FE = 1721m̃u + 2324s̃u + 2329r̃ + 18547ã + 4ı̃ + i + 302m + 18a

= 9811mu + 4658r + 57384a + 4ı̃ + i + 302m + 18a

= 10113mu + 4960r + 57852a + 4ı̃ + i.

A direct comparison with a previous record-setting implementation [4], con-
sidering only the number of multiplications in Fp generated by arithmetic in Fp2

as the performance metric, shows that our updated implementation in projec-
tive coordinates saves 3.4 % of the base field multiplications. This reflects the
faster final exponentiation adopted from [47] and the more efficient formulas
for inversion and squaring in Fp12 . These formulas were not the most efficient
in [4] due to higher number of additions, but this additional cost is now offset
by improved addition handling and faster division by 2. Now comparing the
total number of multiplications with more recent implementations [69,95], our
updated implementation saves 1.9 %, or 198 multiplications.

The pairing code was implemented in the C programming language, with the
performance-critical code implemented in Assembly. The compiler used was GCC
version 4.7.0, with switches turned on for loop unrolling, inlining of small func-
tions to reduce function call overhead and optimization level −O3. Performance
experiments were executed in a broad set of 64-bit Intel-compatible platforms:
older Nehalem Core i5 540M 2.53 GHz and AMD Phenom II 3.0 GHz processors,
and modern Sandy Bridge Xeon E31270 3.4 GHz and Ivy Bridge Core i5 3570
3.4 GHz processors, including a recent Haswell Core i7 4750 HQ 2.0 GHz proces-
sor. All machines had automatic overclocking capabilities disabled to reduce
randomness in the results. Table 2 presents the timings split in the Miller loop
and final exponentiation. This is not only useful for more fine-grained compar-
isons, but also to allow more accurate estimates of the latency of multi-pairings
or precomputed pairings. The complete implementation will be made available
in the next release of the RELIC toolkit [3].

We obtain several performance improvements in comparison with current lit-
erature. Our implementation based on projective coordinates improves results
from [4] by 6 % and 9 % in the Nehalem and Phenom II machines, respectively.
Comparing to an updated version [95] of a previous record setting implementa-
tion [15], our Sandy Bridge timings are faster by 82,000 cycles, or 5 %. When
independently benchmarking their available software in the Ivy Bridge machine,
we observe a latency of 1,403 K cycles, thus an improvement by our software of

The Realm of the Pairings 19

Table 2. Comparison between implementations based on affine and projective coor-
dinates on 64-bit architectures. Timings are presented in 103 clock cycles and were
collected as the average of 104 repetitions of the same operation. Target platforms are
AMD Phenom II (P II) and Intel Nehalem (N), Sandy Bridge (SB), Ivy Bridge (IB),
Haswell (H) with or without support to the mulx instruction.

Platform

Operation N P II SB IB H H+mulx

Affine Miller loop 1,680 1,341 1,365 1,315 1,259 1,212
Projective Miller loop 1,170 862 856 798 721 704
Final exponentiation 745 557 572 537 492 473
Affine pairing 2,425 1,898 1,937 1,852 1,751 1,685
Projective pairing 1,915 1,419 1,428 1,335 1,213 1,177

5 %. Now considering the Haswell results from the same software available at [69],
we obtain a speedup of 8 % without taking into account the mulx instruction and
comparable performance when mulx is employed. It is also interesting to note
that the use of mulx injects a relatively small speedup of 3 %. When exploiting
such an instruction, the lack of carry-preserving addition instructions in the first
generation of Haswell processors makes an efficient implementation of Comba-
based multiplication and Montgomery reduction difficult, favoring the use of the
typically slower Schoolbook versions. We anticipate a better support for Comba
variants with the upcoming addition instructions [78].

In the implementation based on affine coordinates, the state-of-the-art results
at the 128-bit security level is the one described by Acar et al. [1]. Unfortunately,
only the latency of 15,6 million cycles on a Core 2 Duo is provided for 64-bit
Intel architectures. While this does not allow a direct comparison, observing the
small performance improvement between the Core 2 Duo and Nehalem reported
in [4] implies that our affine implementation should be around 6 times faster
than [1] when executed in the same machine.

Despite being slower than our own projective version, our affine implemen-
tation is still considerably faster than some previous speed records on projective
coordinates [15,54,75]. This hints at the possibility that affine pairings could be
improved even further, contrary to the naive intuition that the affine represen-
tation is exceedingly worse than a projective approach.

5 Conclusion

Pairings are amazingly flexible tools that enable the design of innovative crypto-
graphic protocols. Their complex implementation has been the focus of intense
research since the beginning of the millennium in what became a formidable race
to make it efficient and practical.

We have reviewed the theory behind pairings and covered state-of-the-art
algorithms, and also presented some further optimizations to the pairing com-
putation in affine and projective coordinates, and analyzed the performance

20 D.F. Aranha et al.

of the most efficient algorithmic options for pairing computation over ordinary
curves at the 128-bit security level. In particular, our implementations of affine
and projective pairings using Barreto-Naehrig curves shows that the efficiency of
these two approaches are not as contrasting as it might seem, and hints that fur-
ther optimizations might be possible. Remarkably, the combination of advances
in processor technology and carefully crafted algorithms brings the computation
of pairings close to the one million cycle mark.

Acknowledgements. The authors would like to thank Tanja Lange for the many
suggestions to improve the quality of this paper.

References

1. Acar, T., Lauter, K., Naehrig, M., Shumow, D.: Affine pairings on ARM. In:
Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 203–209. Springer,
Heidelberg (2013)

2. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidel-
berg (2013)

3. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography.
http://code.google.com/p/relic-toolkit/

4. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

5. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.C.:
Secret handshakes from pairing-based key agreements. In: IEEE Symposium on
Security and Privacy - S&P 2003, Berkeley, USA, pp. 180–196. IEEE Computer
Society (2003)

6. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm for
discrete logarithm in finite fields of small characteristic. Cryptology ePrint Archive,
Report 2013/400 (2013). http://eprint.iacr.org/2013/400

7. Barreto, P.S.L.M., Galbraith, S.D., ÓhÉigeartaigh, C., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. Des. Codes Crypt. 42(3), 239–271
(2007)

8. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–369. Springer, Heidelberg (2002)

9. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer,
Heidelberg (2005)

10. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

11. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25.
Springer, Heidelberg (2004)

http://code.google.com/p/relic-toolkit/
http://eprint.iacr.org/2013/400

The Realm of the Pairings 21

12. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

13. Benger, N., Scott, M.: Constructing tower extensions of finite fields for implemen-
tation of pairing-based cryptography. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI
2010. LNCS, vol. 6087, pp. 180–195. Springer, Heidelberg (2010)

14. Benson, K., Shacham, H., Waters, B.: The k-BDH assumption family: bilinear
map cryptography from progressively weaker assumptions. In: Dawson, E. (ed.)
CT-RSA 2013. LNCS, vol. 7779, pp. 310–325. Springer, Heidelberg (2013)

15. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over Barreto–Naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

16. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

17. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

18. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

19. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

20. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001)

21. Boyen, X.: Multipurpose identity-based signcryption: A swiss army knife for
identity-based cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 383–399. Springer, Heidelberg (2003)

22. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

23. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des.
Codes Crypt. 37(1), 133–141 (2005)

24. Cha, J.C., Cheon, J.H.: An identity-based signature from gap Diffie-Hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2002)

25. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from
pairings. Int. J. Inf. Secur. 6(4), 213–241 (2007)

26. Chen, X., Zhang, F., Kim, K.: New ID-based group signature from pairings. J.
Electron. (China) 23(6), 892–900 (2006)

27. Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K.: Identity-based chameleon
hash scheme without key exposure. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 200–215. Springer, Heidelberg (2010)

28. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

29. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptology
23(3), 457–476 (2010)

22 D.F. Aranha et al.

30. Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao,
G.X.: FPGA implementation of pairings using residue number system and lazy
reduction. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
421–441. Springer, Heidelberg (2011)

31. Chung, J., Hasan, M.: Asymmetric squaring formulae. In: 18th IEEE Symposium
on Computer Arithmetic - ARITH-18 2007, pp. 113–122 (2007)

32. Cocks, C., Pinch, R.G.E.: Identity-based cryptosystems based on the Weil pairing
(2001) (unpublished manuscript)

33. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29(4),
526–538 (1990)

34. Costello, C.: Particularly friendly members of family trees. Cryptology ePrint
Archive, Report 2012/072 (2012). http://eprint.iacr.org/

35. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with
high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 224–242. Springer, Heidelberg (2010)

36. Costello, C., Lauter, K., Naehrig, M.: Attractive subfamilies of BLS curves for
implementing high-security pairings. In: Bernstein, D.J., Chatterjee, S. (eds.)
INDOCRYPT 2011. LNCS, vol. 7107, pp. 320–342. Springer, Heidelberg (2011)

37. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective.
Springer, Berlin (2001)

38. Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over
Barreto-Naehrig curves. In: Takagi, T., Okamoto, E., Okamoto, T., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)

39. Dupont, R., Enge, A., Morain, F.: Building curves with arbitrary small MOV
degree over finite prime fields. J. Cryptology 18(2), 79–89 (2005)

40. Duursma, I., Lee, H.-S.: Tate pairing implementation for hyperelliptic curves y2 =
xp − x + d. In: Laih, C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123.
Springer, Heidelberg (2003)

41. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient hardware implementation of
Fp-arithmetic for pairing-friendly curves. IEEE Trans. Comput. 61(5), 676–685
(2012)

42. Fouque, P.-A., Tibouchi, M.: Indifferentiable hashing to Barreto-Naehrig curves. In:
Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 1–17. Springer,
Heidelberg (2012)

43. Freeman, D.: Constructing pairing-friendly elliptic curves with embedding degree
10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp.
452–465. Springer, Heidelberg (2006)

44. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

45. Frey, G., Müller, M., Rück, H.: The Tate pairing and the discrete logarithm applied
to elliptic curve cryptosystems. IEEE Trans. Inf. Theory 45(5), 1717–1719 (1999)

46. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm
problem in the divisor class group of curves. Math. Comput. 62, 865–874 (1994)

47. Fuentes-Castañeda, L., Knapp, E., Rodŕıguez-Henŕıquez, F.: Faster hashing to G2.
In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer,
Heidelberg (2012)

48. Galbraith, S.D., Harrison, K., Soldera, D.: Implementing the Tate pairing. In:
Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer,
Heidelberg (2002)

49. Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASI-
ACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)

http://eprint.iacr.org/

The Realm of the Pairings 23

50. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

51. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

52. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography
on sensor networks using the MSP430 microcontroller. In: Roy, B., Sendrier, N.
(eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg
(2009)

53. Grewal, G., Azarderakhsh, R., Longa, P., Hu, S., Jao, D.: Efficient implementation
of bilinear pairings on ARM processors. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 149–165. Springer, Heidelberg (2013)

54. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In:
Identity-Based Cryptography, ch. 12, pp. 188–206. IOS Press, Amsterdam (2008)

55. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theory 52, 4595–4602 (2006)

56. Joux, A.: A one-round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

57. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer,
Heidelberg (2008)

58. Karabina, K., Teske, E.: On prime-order elliptic curves with embedding degrees
k = 3, 4, and 6. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS,
vol. 5011, pp. 102–117. Springer, Heidelberg (2008)

59. Lauter, K., Montgomery, P.L., Naehrig, M.: An analysis of affine coordinates for
pairing computation. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010.
LNCS, vol. 6487, pp. 1–20. Springer, Heidelberg (2010)

60. Lee, E., Lee, H.-S., Park, C.-M.: Efficient and generalized pairing computation on
abelian varieties. IEEE Trans. Inf. Theory 55(4), 1793–1803 (2009)

61. Libert, B., Quisquater. J.-J.: New identity based signcryption schemes from pair-
ings. In: Information Theory Workshop - ITW 2003, pp. 155–158. IEEE (2003)

62. Longa, P.: High-speed elliptic curve and pairing-based cryptography. Ph.D. thesis,
University of Waterloo, April 2011

63. Luca, F., Shparlinski, I.E.: Elliptic curves with low embedding degree. J. Cryptol-
ogy 19(4), 553–562 (2006)

64. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate
and twisted ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007.
LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007)

65. Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Pub-
lishers, Boston (1993)

66. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39, 1639–1646 (1993)

67. Miller, V.S.: Short programs for functions on curves. IBM Thomas J. Watson
Research Center Report (1986). http://crypto.stanford.edu/miller/miller.pdf

68. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptology 17(4),
235–261 (2004)

69. Mitsunari, S.: A fast implementation of the optimal ate pairing over BN curve
on Intel Haswell processor. Cryptology ePrint Archive, Report 2013/362 (2013).
http://eprint.iacr.org/

70. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
dam. E85–A(2), 481–484 (2002)

http://crypto.stanford.edu/miller/miller.pdf
http://eprint.iacr.org/

24 D.F. Aranha et al.

71. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for FR-reduction. IEICE Trans. Fundam. E84–A(5), 1234–1243 (2001)

72. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

73. Mori, Y., Akagi, S., Nogami, Y., Shirase, M.: Pseudo 8-sparse multiplication for
efficient ate-based pairing on Barreto-Naehrig curve. In: Cao, Z., Zhang, F. (eds.)
Pairing 2013. LNCS, vol. 8365, pp. 186–198. Springer, Heidelberg (2014)

74. Naehrig, M., Barreto, P.S.L.M., Schwabe, P.: On compressible pairings and their
computation. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp.
371–388. Springer, Heidelberg (2008)

75. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryp-
tographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

76. Nogami, Y., Akane, M., Sakemi, Y., Kato, H., Morikawa, Y.: Integer variable χ–
based ate pairing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 178–191. Springer, Heidelberg (2008)

77. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

78. Ozturk, E., Guilford, J., Gopal, V.: Large integer squaring on intel architecture
processors. Intel white paper (2013)

79. Ozturk, E., Guilford, J., Gopal, V., Feghali, W.: New instructions supporting large
integer arithmetic on intel architecture processors. Intel white paper (2012)

80. Pereira, G.C.C.F., Simpĺıcio Jr, M.A., Naehrig, M., Barreto, P.S.L.M.: A family
of implementation-friendly BN elliptic curves. J. Syst. Softw. 84(8), 1319–1326
(2011)

81. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32, 918–924 (1978)

82. Rubin, K., Silverberg, A.: Supersingular abelian varieties in cryptology. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 336–353. Springer, Heidelberg (2002)

83. Sakai, R., Kasahara, M.: Cryptosystems based on pairing over elliptic curve. In:
Symposium on Cryptography and Information Security - SCIS 2003, pp. 8C-1,
January 2003

84. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Sym-
posium on Cryptography and Information Security - SCIS 2000, Okinawa, Japan,
January 2000

85. Scott, M.: A note on twists for pairing friendly curves (2009). ftp://ftp.computing.
dcu.ie/pub/resources/crypto/twists.pdf

86. Scott, M.: On the efficient implementation of pairing-based protocols. In: Chen, L.
(ed.) IMACC 2011. LNCS, vol. 7089, pp. 296–308. Springer, Heidelberg (2011)

87. Scott, M.: Unbalancing pairing-based key exchange protocols. Cryptology ePrint
Archive, Report 2013/688 (2013). http://eprint.iacr.org/2013/688

88. Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

89. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

90. Shirase, M.: Barreto-Naehrig curve with fixed coefficient. IACR ePrint Archive,
report 2010/134 (2010). http://eprint.iacr.org/2010/134

ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf
ftp://ftp.computing.dcu.ie/pub/resources/crypto/twists.pdf
http://eprint.iacr.org/2013/688
http://eprint.iacr.org/2010/134

The Realm of the Pairings 25

91. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, vol. 106. Springer, Berlin (1986)

92. Urroz, J.J., Luca, F., Shparlinski, I.: On the number of isogeny classes of pairing-
friendly elliptic curves and statistics of MNT curves. Math. Comput. 81(278),
1093–1110 (2012)

93. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
94. Weil, A.: Sur les fonctions algébriques à corps de constantes fini. Comptes Rendus

de l’Académie des Sciences 210, 592–594 (1940)
95. Zavattoni, E., Domı́nguez-Pérez, L.J., Mitsunari, S., Sánchez, A.H., Teruya, T.,

Rodŕıguez-Henŕıquez, F.: Software implementation of attribute-based encryption
(2013). http://sandia.cs.cinvestav.mx/index.php?n=Site.CPABE

96. Zhang, F., Chen, X.: Yet another short signatures without random oracles from
bilinear pairings. IACR Cryptology ePrint Archive, report 2005/230 (2005)

97. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

98. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear
pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

http://sandia.cs.cinvestav.mx/index.php?n=Site.CPABE

Lattices Part I

A Three-Level Sieve Algorithm for the Shortest
Vector Problem

Feng Zhang(B), Yanbin Pan(B), and Gengran Hu

Key Laboratory of Mathematics Mechanization,
Academy of Mathematics & NCMIS,

Chinese Academy of Sciences, 100190 Beijing, China
{zhangfeng,panyanbin}@amss.ac.cn, hudiran10@mails.ucas.ac.cn

Abstract. In AsiaCCS 2011, Wang et al. proposed a two-level heuris-
tic sieve algorithm for the shortest vector problem in lattices, which
improves the Nguyen-Vidick sieve algorithm. Inspired by their idea, we
present a three-level sieve algorithm in this paper, which is shown to have
better time complexity. More precisely, the time complexity of our algo-
rithm is 20.3778n+o(n) polynomial-time operations and the corresponding
space complexity is 20.2833n+o(n) polynomially many bits.

Keywords: Lattice · Shortest vector problem · Sieve algorithm · Sphere
covering

1 Introduction

Lattices are discrete subgroups of Rn and have been widely used in cryptology.
The shortest vector problem(SVP) refers the question to find a shortest non-zero
vector in a given lattice, which is one of the most famous and widely studied
computational problems on lattices.

It is well known that SVP is NP-hard under random reductions [2], so no
polynomial time exact algorithms for it are expected to exist. Up to now, only
approximation algorithms, such as [7,8,13,25], are efficient and all known exact
algorithms are proven to cost exponential time. However, almost all known
approximation algorithms (such as [8,25]) invoke some exact algorithm for solv-
ing SVP on some low dimensional lattices to improve the quantity of their out-
puts. Therefore, it is important to know how fast the best exact algorithm can
be. What’s more, algorithms for SVP play a very important role in cryptanaly-
sis (see [19] for a survey). For example, nearly all knapsack-based public-key
cryptosystems have been broken with a lattice algorithm (see [1,14,27]) and
many lattice-based public-key cryptosystems can be broken by solving some

This work was supported in part by the NNSF of China (No.11071285, No.11201458,
and No.61121062), in part by 973 Project (No. 2011CB302401) and in part by the
National Center for Mathematics and Interdisciplinary Sciences, CAS.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 29–47, 2014.
DOI: 10.1007/978-3-662-43414-7 2, c∞ Springer-Verlag Berlin Heidelberg 2014

30 F. Zhang et al.

SVP, including the famous NTRU [10]. Hence, better exact algorithm for SVP
can also help us to know the security of these lattice-based public-key cryptosys-
tems better, and choose more appropriate parameters for these cryptosystems.

The exact algorithms for SVP can be classified into two classes by now:
deterministic algorithms and randomized sieve algorithms.

The first deterministic algorithm to find the shortest vector in a given lattice
was proposed by Fincke, Pohst [5,6] and Kannan [11], by enumerating all lattice
vectors shorter than a prescribed bound. If the input is an LLL-reduced basis,
the running time is 2O(n2) polynomial-time operations. Kannan [11] also showed
the running time can reach 2O(nlogn) polynomial-time operations by choosing a
suitable preprocessing algorithm. Schnorr and Euchner [26] presented a zig-zag
strategy for enumerating the lattice vectors to make the algorithm have a better
performance in practice. In 2010, Gama, Nguyen and Regev [9] introduced an
extreme pruning technique and improved the running time in both theory and
practice. All enumeration algorithms above require a polynomial space com-
plexity. Another deterministic algorithm for SVP was proposed by Micciancio
and Voulgaris [15] in 2010. Different from the previous algorithms, it is based
on Voronoi cell computation and is the first deterministic single exponential
time exact algorithm for SVP. The time complexity is 22n+o(n) polynomial-time
operations. One drawback of the algorithm is that its space requirement is not
polynomial but 2O(n).

The randomized sieve algorithm was discovered by Ajtai, Kumar and Sivaku-
mar (AKS) [3] in 2001. The running time and space requirement were proven to
be 2O(n). Regev’s alternative analysis [22] showed that the hidden constant in
O(n) was at most 16, and it was further decreased to 5.9 by Nguyen and Vidick
[20]. Blömer and Naewe [4] generalized the results of AKS to lp norms. Miccian-
cio and Voulgaris [16] presented a provable sieving variant called the ListSieve
algorithm, whose running time is 23.199n+o(n) polynomial-time operations and
space requirement is 21.325n+o(n) polynomially many bits. Subsequently, Pujol
and Stehlé [21] improved the theoretical bound of the ListSieve algorithm to
running time 22.465n+o(n) and space 21.233n+o(n) by introducing the birthday
attack strategy. In the same work [16], Micciancio and Voulgaris also presented
a heuristic variant of the ListSieve algorithm, called the GaussSieve algorithm.
However, no upper bound on the running time of the GaussSieve Algorithm is
currently known and the space requirement is provably bounded by 20.41n. In
[23], Schneider analyzed the GaussSieve algorithm and showed its strengths and
weakness. What’s more, a parallel implementation of the GaussSieve algorithm
was presented by Milde and Schneider [17]. Recently, Schneider [24] presented
an IdealListSieve algorithm to improve the ListSieve algorithm for the shortest
vector problem in ideal lattices and the practical speed up is linear in the degree
of the field polynomial. He also proposed a variant of the heuristic GaussSieve
algorithm for ideal lattice with the same speedup.

To give a correct analysis of its complexity, the AKS algorithm involves
some perturbations. However, getting rid of the perturbations, Nguyen and
Vidick [20] proposed the first heuristic variant of the AKS algorithm, which in

A Three-Level Sieve Algorithm for the Shortest Vector Problem 31

practice performs better and can solve SVP up to dimension 50. Its running time
was proven to be 20.415n+o(n) polynomial-time operations under some nature
heuristic assumption of uniform distribution of the sieved lattice vectors. By
introducing a two-level technique, Wang et al. [30] gave an algorithm (WLTB)
to improve the Nguyen-Vidick algorithm. Under a similar assumption of the dis-
tribution of sieved lattice vectors, the WLTB algorithm has the best theoretical
time complexity so far, that is, 20.3836n+o(n). Both the heuristic assumptions can
be supported by the experimental results on low dimensional lattices.

Our Contribution. Observing that the WLTB algorithm involves some data
structure like skip list to reduce the time complexity, we present a three-level
sieve algorithm in this paper. To estimate the complexity of the algorithm,
it needs to compute the volume of some irregular spherical cap, which is a
very complicated and tough work. By involving a smart technique, we simplify
the complicated computation and prove that the optimal time complexity is
20.3778n+o(n) polynomial-time operations and the corresponding space complex-
ity is 20.2833n+o(n) polynomially many bits under a similar natural heuristic
assumption.

Table 1 summarizes the complexities of the heuristic variants of AKS algo-
rithm and the GaussSieve algorithm. It can be seen that the latter two algorithms
employ the time-memory tradeoffs that decrease the running time complexity at
the cost of space complexity.

Table 1. Complexities of some heuristic algorithms for SVP

Algorithm Time complexity Space complexity

GaussSieve algorithm - 20.41n+o(n)

Nguyen-Vidick algorithm 20.415n+o(n) 20.2075n+o(n)

WLTB algorithm 20.3836n+o(n) 20.2557n+o(n)

Our three-level algorithm 20.3778n+o(n) 20.2883n+o(n)

A natural question is whether we can improve the time complexity by four-
level or higher-level algorithm. It may have a positive answer. However, by our
work, it seems that the improvements get smaller and smaller, whereas the analy-
sis of the complexity becomes more and more difficult when the number of levels
increases.

Road Map. The rest of the paper is organized as follows. In Sect. 2 we provide
some notations and preliminaries. We present our three-level sieve algorithm and
the detailed analysis of its complexity in Sect. 3. Some experimental results are
described in Sect. 4. Finally, Sect. 5 gives a short conclusion.

2 Notations and Preliminaries

Notations. Bold lower-case letters are used to denote vectors in R
n. Denote by

vi the i-th entry of a vector v. Let ∈ · ∈ and ∞·, ·√ be the Euclidean norm and

32 F. Zhang et al.

inner product of R
n. Matrices are written as bold capital letters and the i-th

column vector of a matrix B is denoted by bi.
Let Bn(x, R) = {y ∈ R

n | ∈y − x∈ → R} be the n-dimensional ball centered
at x with radius R. Let Bn(R) = Bn(O, R). Let Cn(γ,R) = {x ∈ R

n | γR →
∈x∈ → R} be a spherical shell in Bn(R), and Sn = {x ∈ R

n | ∈x∈ = 1} be the
unit sphere in R

n. Denote by |Sn| the area of Sn.

2.1 Lattices

Let B = {b1, b2, . . . , bn} ≡ R
m be a set of n linearly independent vectors. The

lattice L generated by the basis B is defined as L(B) = {∑n
i=1 xibi : xi ∈ Z} . n

is called the rank of the lattice. Denote by λ1(L) the norm of a shortest non-zero
vector of L.

2.2 The Basic Framework of Some Heuristic Sieve Algorithms

The Nguyen-Vidick algorithm and the WLTB algorithm have a common basic
framework, which can be described as Algorithm 1 [30].

Algorithm 1. Finding short lattice vectors based on sieving
Input: An LLL-reduced basis B = [b1, . . . , bn] of a lattice L, sieve factors

and a number N .
Output: A short non-zero vector of L.
1: S∼ ∈ ←
2: for j = 1 to N do
3: S∼ ∈ S∼∪ sampling(B) using Klein’s algorithm [12]
4: end for
5: Remove all zero vectors from S∼

6: Repeat
7: S ∈ S∼

8: S∼ ∈ sieve(S, sieve factors) using Sieve Algorithm
9: Remove all zero vectors from S∼

10: until S∼ = ←
11: Compute v0 ⊕ S such that ◦v0◦ = min{◦v◦, v ⊕ S}
12: Return v0

In general the Sieve Algorithm in Line 8 will output a set S∈ of shorter
lattice vectors than those in S. When we repeat the sieve process enough times,
a shortest vector is expected to be found.

Denote by R∈ (resp. R) the maximum length of those vectors in S∈ (resp. S).
To find S∈, the sieve algorithm usually tries to find a set C of lattice vectors in
S such that the balls centered at these vectors with radius R∈ can cover all the
lattice points in some spherical shell Cn(γ,R). By subtracting the correspond-
ing center from every lattice point in every ball, shorter lattice vectors will be
obtained, which form the set S∈.

A Three-Level Sieve Algorithm for the Shortest Vector Problem 33

Different ways to find C lead to different algorithms. Roughly speaking,

– The Nguyen-Vidick algorithm checks every lattice point in S∈ sequentially to
decide whether it is also in some existing ball or it is a new vector in C (see
Fig. 1 for a geometric description).

– The WLTB algorithm involves a two-level strategy, that is, the big-ball-level
and the small-ball-level. It first covers the spherical shell with big balls cen-
tered at some lattice vectors, then covers the intersection of every big ball and
Cn(γ,R) with small balls centered at some lattice points in the intersection.
The centers of the small balls form C. It can be shown that it is faster to
decide whether a lattice vector is in C or not. We first check whether it is in
some big ball or not. If not, it must be a new point in C. If so, we just check
whether it is in some small ball in the big ball it belongs to, regardless of
those small balls of the other big balls (see Fig. 2 for a geometric description).

For either the Nguyen-Vidick algorithm or the WLTB algorithm, to analyze
its complexity needs a natural assumption below.

Heuristic Assumption 1: At any stage in Algorithm 1, the lattice vectors in
S∈ ∼ Cn(γ,R) are uniformly distributed in Cn(γ,R).

(a) (b)

Fig. 1. Geometric description of Nguyen-Vidick’s sieve algorithm

(a) (b) (c)

Fig. 2. Geometric description of WLTB’s sieve algorithm

34 F. Zhang et al.

3 A Three-Level Sieve Algorithm

3.1 Description of the Three-Level Sieve Algorithm

Different from the two-level algorithm, our algorithm involves a medium-ball-
level. Simply speaking, the algorithm first covers the spherical shell with big
balls, then covers every big ball with medium balls, and at last covers every
medium ball with small balls. Algorithm 2 gives a detailed description of the
three-level sieve algorithm.

Algorithm 2. A three-level sieve algorithm
Input: A subset S ⊆ Bn(R) of vectors in a lattice L where R ∈ maxv∈S ◦v◦

and sieve factors 0.88 < γ3 < 1 < γ2 < γ1 <
√

2γ3.
Output: A subset S∼ ⊆ Bn(γ3R) ∩ L.
1: S∼ ∈ ←, C1 ∈ ←.
2: for v ⊕ S do
3: if ◦v◦ ≤ γ3R then
4: S∼ ∈ S∼ ∪ {v}
5: else
6: if ∃ c1 ⊕ C1, ◦v − c1◦ ≤ γ1R then
7: if ∃ c2 ⊕ Cc1

2 , ◦v − c2◦ ≤ γ2R then \Cc1
2 is initialized as ←\

8: if ∃ c3 ⊕ Cc1,c2
3 , ◦v − c3◦ ≤ γ3R then \Cc1,c2

3 is initialized as ←\
9: S∼ ∈ S∼ ∪ {v − c3}
10: else
11: Cc1,c2

3 ∈ Cc1,c2
3 ∪ {v} \ centers of small balls \

12: end if
13: else
14: Cc1

2 ∈ Cc1
2 ∪ {v} \ centers of medius balls \

15: end if
16: else
17: C1 ∈ C1 ∪ {v} \ centers of big balls \
18: end if
19: end if
20: end for
21: return S∼

In Algorithm 2, 0.88 < γ3 < 1 < γ2 < γ1 <
∩

2γ3. The set C1 is the collection
of centers of big balls with radius γ1R in the first level. For any c1 ∈ C1,
Cc1

2 is the set of centers of medium balls with radius γ2R that cover the big
spherical cap Bn(c1, γ1R) ∼ Cn(γ3, R). It is clear that the elements of Cc1

2 are
chosen from Bn(c1, γ1R) ∼ Cn(γ3, R). For c1 ∈ C1, c2 ∈ Cc1

2 , Cc1,c2
3 is the set

of centers of small balls with radius γ3R that cover the small spherical cap
Bn(c2, γ2R) ∼ Bn(c1, γ1R) ∼ Cn(γ3, R). Also the elements of Cc1,c2

3 are chosen
from the small spherical cap.

A Three-Level Sieve Algorithm for the Shortest Vector Problem 35

3.2 Complexity of the Algorithm

Denote by N1, N2 and N3 the corresponding upper bound on the expected
number of lattice points in C1, Cc1

2 (for any c1 ∈ C1) and Cc1,c2
3 (for any

c1 ∈ C1, c2 ∈ Cc1
2).

The Space Complexity. Notice that the total number of big, medium and
small balls can be bounded by N1, N1N2 and N1N2N3 respectively. As in [20]
and [30], if we sample poly(n)N1N2N3 vectors, after a polynomial number of
iterations in Algorithm 1, it is expected that a shortest non-zero lattice vector
can be obtained with the left vectors. So the space complexity is bounded by
O(N1N2N3).

The Time Complexity. The initial size of S is poly(n)N1N2N3. In each iter-
ation in Algorithm 1, steps 3–19 in Algorithm 2 repeat poly(n)N1N2N3 times,
and in each repeat, at most N1 + N2 + N3 comparisons are needed. There-
fore, the total time complexity can be bounded by O(N1N2N3(N1 + N2 + N3))
polynomial-time operations.

We next give the estimation of N1, N2 and N3. Without loss of generality,
we restrict R = 1 and let Cn(γ) = Cn(γ, 1) = {x ∈ R

n | γR → ∈x∈ → 1} through
our proofs for simplicity.

The Upper Bound of N1. Nguyen and Vidick [20] first gave a proof of the
upper bound N1, and a more refined proof was given by Wang et al. [30].

Theorem 1. (Wang et al. [30]) Let n be a non-negative integer, N be an integer
and 0.88 < γ3 < 1 < γ1 <

∩
2γ3. Let

N1 = cn
H1

⊆3
∩

2πn
3
2 ∃,

where cH1 = 1/(γ1
√

1 − γ2
1
4) and S a subset of Cn(γ3R) of cardinality N whose

points are picked independently at random with uniform distribution. If N1 <
N < 2n, then for any subset C ≈ S of size at least N1 whose points are picked
independently at random with uniform distribution, with overwhelming probabil-
ity, for all v ∈ S, there exists a c ∈ C such that ∈v − c∈ → γ1R.

The Upper Bound of N2. Let

– Ωn(γ1) be the fraction of Cn(γ3) that is covered by a ball of radius γ1 centered
at a point of Cn(γ3),

– Γn(γ1, γ2) be the fraction of Cn(γ3) covered by a big spherical cap Bn(c2, γ2)∼
Bn(c1, γ1)∼ Cn(γ3),

– Ωn(γ1, γ2) be the fraction of Bn(c1, γ1) ∼ Cn(γ3) covered by Bn(c2, γ2) ∼
Bn(c1, γ1) ∼Cn(γ3), where c2 ∈ Cc1

2 , c1 ∈ C1.

Clearly, Ωn(γ1, γ2) = Γn(γ1,γ2)
Ωn(γ1)

. To compute N2, we need the minimal value of
Ωn(γ1, γ2). We estimate Ωn(γ1) and Γn(γ1, γ2) respectively.

36 F. Zhang et al.

Lemma 1. (Wang et al. [30]) Let 0.88 < γ3 < 1 < γ1 <
∩

2γ3, then

1
3
∩

2πn

(sin θ2)n−1

cos θ2
< Ωn(γ1) <

1
√

2π(n − 1)
(sin θ1)n−1

cos θ1
,

where θ1 = arccos(1 − γ2
1

2γ2
3
), θ2 = arccos(1 − γ2

1
2).

Note that the proportion Γn(γ1, γ2) is different from that of Lemma 4 in [30],
as the radius of Bn(c2, γ2) is larger than the inside radius of the shell Cn(γ3).
Thus, it leads to the slightly different bounds of Γn(γ1, γ2) from that of Lemma
4 in [30]. If c2 lies on the sphere of a big ball Bn(c1, γ1), the fraction Γn(γ1, γ2)
is minimal. Lemma 2 gives the minimal and maximal value of Γn(γ1, γ2) when
c2 lies on the sphere of a big ball Bn(c1, γ1).

Lemma 2. Let 0.88 < γ3 < 1 < γ2 < γ1 <
∩

2γ3, where γ3 is very close to 1.
Then

cdn−2
min

2πn
→ Γn(γ1, γ2) → c∈dn−2

max

2π
,

where dmax =

√

1 −
(

γ2
3−γ2

1+1
2γ3

)2

−
(

1
cH2

(
γ2
3+1−γ2

2
2 − (2γ2

3−γ2
1)(γ

2
3−γ2

1+1)

4γ2
3

))2

, dmin

= γ2

√

1 − γ2
2c2H1
4 , cH1 = 1/(γ1

√

1 − γ2
1
4), cH2 = γ1

γ3

√
1 − γ2

1
4γ2

3
, c and c∈ are con-

stants unrelated to n.

o c1

c2

γ1

γ2

γ3

1

Fig. 3. The region of Bn(c2, γ2) ∩ Bn(c1, γ1) ∩ Cn(γ3).

Proof. Note that γ3 is very close to 1. We just consider the proportion on the
sphere covering as in [30].

Without loss of generality, we assume the center of Bn(c1, γ1) is c1 =
(α1, 0, . . . , 0), and the center of Bn(c2, γ2) is c2 = (β1, β2, 0 . . . , 0), where
α, β1, β2 > 0. The spherical cap Bn(c2, γ2) ∼ Bn(c1, γ1) ∼ Cn(γ3) is

⎧
⎨

⎩

x2
1 + x2

2 + . . . + x2
n = 1

(x1 − α1)2 + x2
2 + . . . + x2

n < γ2
1

(x1 − β1)2 + (x2 − β2)2 + . . . + x2
n < γ2

2

A Three-Level Sieve Algorithm for the Shortest Vector Problem 37

where γ3 → α1 → 1, (β1 − α1)2 + β2
2 = γ2

1 and γ2
3 → β2

1 + β2
2 → 1. The region is as

the shadow of the Fig. 3. Denote by Q the volume of the region. By projecting
the target region to the hyperplane orthogonal to x1 and by sphere coordinate
transformation (for details see the proof of Lemma 4 in [30]), we get

cdn−2

2πn
→ Γn(γ1, γ2) =

Q

|Sn| → c∈dn−2

2π

where d =

√

1 −
(

α2
1−γ2

1+1
2α1

)2

−
(

1
β2

(
β2
1+β2

2+1−γ2
2

2 − β1
α2

1−γ2
1+1

2α1

))2

and c, c∈ are

constants unrelated to n. Let α2 =
√

β2
1 + β2

2 . From the equation (β1 − α1)2 +
β2
2 = γ2

1 , we obtain

β1 =
α2
2 + α2

1 − γ2
1

2α1
, β2 =

⎤

α2
2 −

⎥
α2
2 + α2

1 − γ2
1

2α1

⎦2

.

Therefore, d can be regarded as a function with respect to α1, α2, where γ3 →
α1 → 1, γ3 → α2 → 1. Since 0.88 < γ3 < 1 < γ2 < γ1 <

∩
2γ3, it can be proven

that d decreases with α1, α2 increasing. Then dmin can be obtained by letting
α1 = 1, α2 = 1 and dmax can be obtained by letting α1 = γ3, α2 = γ3. Hence,
the lemma follows.

Theorem 2. Let n be a non-negative integer, N be an integer and 0.88 < γ3 <
1 < γ2 < γ1 <

∩
2γ3, where γ3 is very close to 1. Let

N2 = c2(
cH2

dmin
)n⊆n 3

2 ∃,

where cH2 = γ1
γ3

√
1 − γ2

1
4γ2

3
, dmin = γ2

√

1 − γ2
2c2H1
4 , cH1 = 1/(γ1

√

1 − γ2
1
4), and c2

is a positive constant unrelated to n. Let S be a subset of Cn(γ3R)∼Bn(c1, γ1R)∼
Bn(c2, γ2R) of cardinality N whose points are picked independently at random
with uniform distribution. If N2 < N < 2n, then for any subset C ≈ S of
size at least N2 whose points are picked independently at random with uniform
distribution, with overwhelming probability, for all v ∈ S, there exists a c ∈ C
such that ∈v − c∈ → γ2R.

Proof. Combining Lemmas 1 and 2, we have Ωn(γ1, γ2) = Γn(γ1,γ2)
Ωn(γ1)

≥ c∗
2πn

·
(
1 − γ2

1
2γ2

2

)(
dmin
cH2

)n

. The expected fraction of Bn(c1, γ1)∼Cn(γ3) that is not cov-
ered by N2 balls of radius γ2 centered at randomly chosen points of Bn(c1, γ1)∼
Cn(γ3) is (1 − Ωn(γ1, γ2))N2 . So,

N2 log(1 − Ωn(γ1, γ2)) → N2(−Ωn(γ1, γ2))

< c2n
3/2

⎥
cH2

dmin

⎦n

· 1
c2

∩
n

⎥
dmin

cH2

⎦n

→ −n < − log N.

which implies (1 − Ωn(γ1, γ2))N2 < e−n < 1
N . The expected number of uncov-

ered points is smaller than 1. It means that any point in Bn(c1, γ1) ∼ Cn(γ3) is

38 F. Zhang et al.

covered by a ball centered at a vector in Bn(c1, γ1)∼Cn(γ3) with radius γ2 with
probability 1 − e−n.

The Upper Bound of N3. Let

– Γn(γ1, γ2, γ3) be the fraction of Cn(γ3) that is covered by a small spherical
cap Bn(c3, γ3) ∼ Bn(c2, γ2)∼ Bn(c1, γ1)∼ Cn(γ3),

– Ωn(γ1, γ2, γ3) the fraction of Bn(c2, γ2) ∼ Bn(c1, γ1) ∼Cn(γ3) covered by
Bn(c3, γ3) ∼Bn(c2, γ2) ∼ Bn(c1, γ1)∼ Cn(γ3), where c3 ∈ Cc1,c2

3 , c2 ∈ Cc1
2 ,

c1 ∈ C1.

Clearly, Ωn(γ1, γ2, γ3) = Γn(γ1,γ2,γ3)
Γn(γ1,γ2)

. To estimate N3, we need to compute the
lower bound of Ωn(γ1, γ2, γ3). To obtain the lower bound of Γn(γ1, γ2, γ3), we
need to compute the volume of some irregular convex region, which is very com-
plicated. However, using the inscribed triangle of the region, we get a reasonable
lower bound of the volume successfully.

Lemma 3. Let 0.88 < γ3 < 1 < γ2 < γ1 <
∩

2γ3, where γ3 is very close to 1.
We have

Γn(γ1, γ2, γ3) ≥ c∈∈rn−3
min

2π3/2n2
,

where rmin =

√

cH3 −
(
1 − γ2

3
2cH3

)2

, cH3 = γ2
2

⎥

1 − γ2
2c2H1
4

⎦

, c∈∈ is a constant

unrelated to n.

Proof. We consider the proportion on the sphere covering. W.l.o.g., we assume
the centers of Bn(c1, γ1), Bn(c2, γ2), Bn(c3, γ3) are, respectively,

c1 = (α1, 0, . . . , 0), α1 > 0,

c2 = (β1, β2, 0 . . . , 0), β1, β2 > 0,

c3 = (δ1, δ2, δ3, 0 . . . , 0), δ1, δ2, δ3 > 0.

The spherical cap Bn(c3, γ3) ∼ Bn(c2, γ2) ∼ Bn(c1, γ1) ∼ Cn(γ3) is
⎧
⎪⎪⎨

⎪⎪⎩

x2
1 + x2

2 + . . . + x2
n = 1 (E1)

(x1 − α1)2 + x2
2 + . . . + x2

n < γ2
1 (E2)

(x1 − β1)2 + (x2 − β2)2 + x2
3 + . . . + x2

n < γ2
2 (E3)

(x1 − δ1)2 + (x2 − δ2)2 + (x3 − δ3)2 + . . . + x2
n < γ2

3 (E4)

where γ3 → α1 → 1, γ2
3 → β2

1 + β2
2 → 1, (β1 − α1)2 + β2

2 = γ2
1 , γ2

3 → δ21 + δ22 + δ23 →
1, (δ1 − α1)2 + δ22 + δ23 = γ2

1 , (δ1 − β1)2 + (δ2 − β2)2 + δ23 = γ2
2 .

Denote by Q the volume of the region, and project the target region to the
hyperplane orthogonal to x1. Denote by D the projection region. Therefore, the
volume of the target region is

A Three-Level Sieve Algorithm for the Shortest Vector Problem 39

Q =
∫∫

· · ·
∫

D

√
√
√
√1 +

n∑

i=2

⎥
∂x1

∂xi

⎦2

dx2dx3 · · · dxn =
∫∫

· · ·
∫

D

dx2dx3 · · · dxn√
1 − ∑n

i=2 x2
i

.

Now we determine the projection region D. To simplify the expression, we let
α2 =

√
β2
1 + β2

2 , α3 =
√

δ21 + δ22 + δ23 , a = α2
1+1−γ2

1
2α1

, b = α2
2+1−γ2

2
2 , f = α2

3+1−γ2
3

2 .

From the equations (β1 − α1)2 + β2
2 = γ2

1 , (δ1 − α1)2 + δ22 + δ23 = γ2
1 , (δ1 − β1)2 +

(δ2 − β2)2 + δ23 = γ2
2 , it is easy to write β1, β2, δ1, δ2, δ3 as the expressions of

αi, γi, i = 1, 2, 3, i.e.,

β1 =
α2
1 + α2

2 − γ2
1

2α1
, β2 =

⎤

α2
2 −

⎥
α2
2 + α2

1 − γ2
1

2α1

⎦2

,

δ1 =
α2
1 + α2

3 − γ2
1

2α1
, δ2 =

α2
2 + α2

3 − γ2
2 − (α2

1+α2
2−γ2

1)(α2
1+α2

3−γ2
1)

2α2
1

2

√

α2
2 −

(
α2

1+α2
2−γ2

1
2α1

)2
,

δ3 =

(

α2
3 −

⎥
α2
1 + α2

3 − γ2
1

2α1

⎦2

−

⎥

α2
2 + α2

3 − γ2
2 − (α2

1+α2
2−γ2

1)(α2
1+α2

3−γ2
1)

2α2
1

⎦2

4
⎥

α2
2 −

(
α2

1+α2
2−γ2

1
2α1

)2
⎦

) 1
2

.

We project the intersection of equation (E1) and (Ei) to the hyperplane orthog-
onal to x1 and suppose the projection region is Di−1, i = 2, 3, 4. Then D =
D1 ∼ D2 ∼ D3, where

D1 ={(x2, x3, . . . , xn) ∈ R
n−1|x2

2 + x2
3 + · · · + x2

n <1 − a2}.

D1
2 =

{
(x2, x3, . . . , xn) ∈ R

n−1|x2
2 + x2

3 + · · · + x2
n <1 −

⎥
b − β2x2

β1

⎦2

, x2 <
b

β2

}
,

D2
2 =

{
(x2, x3, . . . , xn) ∈ R

n−1|x2
2 + x2

3 + · · · + x2
n <1, x2 ≥ b

β2

}
,

D2 =D1
2 ∪ D2

2.

D1
3 =

{
(x2, x3, . . . , xn) ∈ R

n−1|x2
2 + x2

3 + · · · + x2
n <1 −

⎥
f − δ2x2 − δ2x3

δ1

⎦2

,

f − δ2x2 − δ2x3 > 0
}

,

D2
3 ={(x2, x3, . . . , xn) ∈ R

n−1|x2
2 + x2

3 + · · · + x2
n <1, f − δ2x2 − δ2x3 → 0},

D3 =D1
3 ∪ D2

3.

The region of (x2, x3) for D is the shadow of Fig. 4, and that of (x4, . . . , xn) is an

(n−3)-dimensionalballwithradiusr =

⎤

1− a2 −
(

b−aβ1
β2

)2

−
⎥

f−δ1a−δ2
b−aβ1

β2
δ3

⎦2

.

40 F. Zhang et al.

P1

P2 P3

Fig. 4. The region of (x2, x3) for D.

For (x4, . . . , xn), we adopt hyper sphere coordinate transformation. Let

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x4 = t cos ϕ1

x5 = t sin ϕ1 cos ϕ2

...
xn−1 = t sin ϕ1 · · · sin ϕn−5 cos ϕn−4

xn = t sin ϕ1 · · · sin ϕn−5 sinϕn−4

where 0 → t → r, 0 → ϕk → π, k = 1, . . . , n − 5, 0 → ϕn−4 → 2π.
For a fixed t, denote by D(t) the corresponding region of (x2, x3) and by s(t)

the area of D(t). Let f(t) be the area of triangular �P1P2P3 , then s(t) ≥ f(t).
Thus,

Q =
∫ r

0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

tn−4 sinϕn−5 · · · sinn−4 ϕ1

∫∫

D(t)

dx2dx3√
1 − ∑n

i=2 x2
i

dϕ1 · · · dt

≥
∫ r

0

∫ 2π

0

∫ π

0

· · ·
∫ π

0

tn−4 sinϕn−5 · · · sinn−4 ϕ1

∫∫

D(t)

dx2dx3dϕ1 · · · dϕn−4dt

=2π

∫ r

0

tn−4s(t)dt

n−5∏

k=1

∫ π

0

sink ϕdϕ ≥ 2π

∫ r

0

tn−4f(t)dt

n−5∏

k=1

∫ π

0

sink ϕdϕ,

and

Γn(γ1, γ2, γ3) =
Q

|Sn| ≥ 2Γ (n+2
2)

∏n−5
k=1

∫ π

0
sink ϕdϕ

nπn/2−1

∫ r

0

tn−4f(t)dt. (1)

We next give the lower bounds of 2Γ (n+2
2)
∏n−5

k=1

∫ π
0 sink ϕdϕ

nπn/2−1 and
∫ r

0
tn−4f(t)dt.

A Three-Level Sieve Algorithm for the Shortest Vector Problem 41

Since
∫ π

0
sink ϕdϕ =

∩
π Γ ((k+1)/2)

Γ (k/2+1) and Γ (x) is increasing when x > 2, we
obtain

2Γ (n+2
2)

∏n−5
k=1

∫ π

0
sink ϕdϕ

nπn/2−1
≥ 2Γ (n+2

2)
π3/2nΓ (n−3

2)
≥ n − 3

2π3/2
. (2)

For the lower bound of
∫ r

0
tn−4f(t)dt, we first have the coordinate of P1, P2, P3:

P1 =

⎛

⎝b − aβ1

β2
,

⎤

1 − a2 −
⎥

b − aβ1

β2

⎦2

− t2

⎞

⎠ � (a1, b1),

P2 =
(
k1(s1 −

√
t1 − q1t2) + k2, s1 −

√
t1 − q1t2

)
� (a2, b2),

P3 =

(
f − aδ1 − δ3(s2 −

√
t2 − q2t2)

δ2
, s2 −

√
t2 − q2t2

)

� (a3, b3).

where

h1 = − δ3β2

δ1β2 − δ2β1
, h2 =

fβ2 − bδ2
δ1β2 − δ2β1

, k1 =
δ3β1

δ1β2 − δ2β1
, k2 =

bδ1 − fβ1

δ1β2 − δ2β1
,

s1 = −h1h2 + k1k2

1 + k2
1 + h2

1

, q1 =
1

1 + k2
1 + h2

1

, t1 =
1 − h2

2 − k2
2

1 + k2
1 + h2

1

+

(
h1h2 + k1k2

1 + k2
1 + h2

1

)2

,

s2 =
(f − δ1a)δ3

δ22 + δ23
, q2 =

δ22
δ22 + δ23

, t2 =

(

1 − a2 − (f − δ1a)2

δ22 + δ23

)
δ22

δ22 + δ23
.

The area of �P1P2P3 is f(t) = 1
2 (a1b2+a2b3+a3b1−a3b2−a2b1−a1b3). It can

be verified that f(t) is decreasing when t ∈ [0, r] and f(r) = f ∈(r) = 0, f ∈∈(r) > 0.
We have

∫ r

0

tn−4f(t)dt ≥
∫ r− r

n

0

tn−4f(t)dt ≥ rn−3

n − 3
(1 − 1

n
)n−3f(r − r

n
).

Notice that
(
1 − 1

n

)n−3 ≥ (
1 − 1

n

)n ≈ e−1 when n is sufficiently large, and
by Taylor series for f(r − r

n), f(r − r
n) = Θ(1

n2). We have for some constant c∈∈

unrelated to n, ∫ r

0

tn−4f(t)dt ≥ c∈∈rn−3

n2(n − 3)
. (3)

Combining (1), (2) and (3), we have Γn(γ1, γ2, γ3) ≥ c∪∪rn−3

2π3/2n2 . Now r can be
regarded as a function with respect to α1, α2, α3, where γ3 → α1, α2, α3 → 1.
It can be verified that r decreases with α1, α2, α3 increasing. Let α1 = 1, α2 =

1, α3 = 1, we get the minimal value of r. rmin =

√

cH3 −
(
1 − γ2

3
2cH3

)2

, cH3 =

γ2
2

⎥

1 − γ2
2c2H1
4

⎦

. So, Γn(γ1, γ2, γ3) ≥ c∪∪rn−3
min

2π3/2n2 .

42 F. Zhang et al.

Theorem 3. Let n be a non-negative integer, N be an integer and 0.88 < γ3 <
1 < γ2 < γ1 <

∩
2γ3, where γ3 is very close to 1. Let

N3 = c3n
3(

dmax

rmin
)n,

where dmax =

√

1 −
(

γ2
3−γ2

1+1
2γ3

)2

−
(

1
cH2

(
γ2
3+1−γ2

2
2 − 2γ2

3−γ2
1

2γ3

γ2
3−γ2

1+1
2γ3

))2

, rmin =
√

cH3 −
(
1− γ2

3
2cH3

)2

, cH1 = 1

γ1

√

1− γ2
1
4

, cH2 = γ1
γ3

√
1 − γ2

1
4γ2

3
, cH3 = γ2

2

⎥

1 − γ2
2c2H1
4

⎦

,

and c3 is a positive constant unrelated to n. Let S be a subset of Cn(γ3R) ∼
Bn(c1, γ1R)∼ Bn(c2, γ2R)∼Bn(c3, γ3R) of cardinality N whose points are picked
independently at random with uniform distribution. If N3 < N < 2n, then for
any subset C ≈ S of size at least N3 whose points are picked independently at
random with uniform distribution, with overwhelming probability, for all v ∈ S,
there exists a c ∈ C such that ∈v − c∈ → γ3R.

Proof. Combining Lemmas 2 and 3, we have

Ωn(γ1, γ2, γ3) =
Γn(γ1, γ2, γ3)

Γn(γ1, γ2)
≥ c∈∈

∩
πn2

⎥
rmin

dmax

⎦n

.

Let N3 = c3n
3(dmax

rmin
)n, the remaining proof is similar to that of Theorem 2.

The Optimal Time Complexity. It can be proved that N1N2N3(N1+N2+N3)
decreases with γ3. In fact,

– N1 = (1

γ1

∩
1−γ2

1/4
)n⊆3∩

2πn3/2∃ is unrelated to γ3.

– N2 = c2(
cH2
dmin

)n⊆n 3
2 ∃. Only cH2 = γ1

γ3

√
1 − γ2

1
4γ2

3
=

√
1 − (1 − γ2

1
2γ2

3
)2 is related

to γ3, and it is easy to see that cH2 decreases with respect to γ3, which implies
that N2 is a monotonically decreasing function of γ3.

– N3 = c3n
3

⎛

⎜
⎝

√

1−
(

γ2
3−γ2

1+1
2γ3

)2

−
(

1
cH2

(
γ2
3+1−γ2

2
2 − 2γ2

3−γ2
1

2γ3

γ2
3−γ2

1+1
2γ3

))2

√

cH3−
(

1− γ2
3

2cH3

)2

⎞

⎟
⎠

n

. First, the

denominator of N3 increases with γ3, since cH3 is unrelated to γ3. By γ1 > 1,

we have
(

γ2
3−γ2

1+1
2γ3

)∪

= γ2
3+γ2

1−1

2γ2
3

> 0, and
(

γ2
3+1−γ2

2
2 − 2γ2

3−γ2
1

2γ3

γ2
3−γ2

1+1
2γ3

)∪

=

γ3 − 2γ2
3+γ2

1
2γ2

3

γ2
3−γ2

1+1
2γ3

− 2γ2
3−γ2

1
2γ3

γ2
3+γ2

1−1

2γ2
3

= γ2
1(γ

2
1−1)

2γ3
3

> 0. Together with 1
cH2

increases with γ3, then we have the numerator of N3 decreases with γ3. Thus,
N3 decreases with respect to γ3.

Therefore, N1N2N3(N1 + N2 + N3) decreases with γ3.
Since the expression of the time complexity is complicated, we solve a numer-

ical optimal solution. Take γ3 = 1. Let γ1 go through from 1 to 1.414 by 0.0001
and for a fixed γ1, let γ2 go through from 1 to γ1 by 0.0001, then we can easily
find the minimal value of the exponential constant for the running time. Thus, we
obtain the numerical optimal time complexity of our three-level sieve algorithm.

A Three-Level Sieve Algorithm for the Shortest Vector Problem 43

Theorem 4. The optimal time complexity of the algorithm is 20.3778n+o(n)

poly-nomial-time operations with γ3 → 1, γ1 = 1.1399, γ2 = 1.0677, and the
corresponding space complexity is 20.2833n+o(n) polynomially many bits under
Heuristic Assumption 1.

Remark 1. As in [20], the number of iterations is usually linear in the dimension
of lattices. Regardless of the number of iterations, the polynomial factors hidden
in the time complexity in NV algorithm and WLTB algorithm are respectively
n3 and n4.5. In our three level sieve algorithm, the polynomial parts of N1, N2

and N3 given by Theorem 1, 2, and 3 are n3/2, n3/2 and n3 respectively. So the
hidden polynomial factor in our algorithm is n9 without the number of iterations.

Remark 2. It is natural to extend the three-level sieve algorithm to multiple-
level, such as four-level algorithm. However, the number of small balls will
increase as the number of the levels increases. Therefore, we conjecture that the
time complexity may be decreased with small number levels, but will increase if
the number of levels is greater than some positive integer.

4 Experimental Results

4.1 Comparison with the Other Heuristic Sieve Algorithms

We implemented the NV algorithm, the WLTB algorithm and our three-level
sieve algorithm on a PC with Windows 7 system, 3.00 GHz Intel 4 processor and
2 GByte RAM using Shoup’s NTL library version 5.4.1 [28]. Instead of imple-
menting the GaussSieve algorithm, we directly applied the GaussSieve Alpha
V.01 published by Voulgaris [29] on a PC with Fedora 15 system, 3.00 GHz Intel
4 processor and 2 GByte RAM.

We performed experiments to compare our three-level sieve algorithm with
the other three algorithms. For every dimension n, we first used the method in
[18] to pick some random n-dimensional lattice and computed the LLL-reduced
basis, then we sampled the same number of lattice vectors, and performed the
NV algorithm with γ = 0.97, the WLTB algorithm with γ1 = 1.0927, γ2 = 0.97
and our three-level sieve algorithm with γ1 = 1.1399, γ2 = 1.0667, γ3 = 0.97
using these samples. We performed one experiments on lattices with dimension
10, 20 with more than 100000 samples, but about fifty experiments with fewer
samples, and two experiments on dimension 25, 30, 40, 50. Instead of using
our samples, we just performed the GaussSieve Alpha V.01 with the selected
lattices as its inputs. The experimental results of the four algorithms are shown
in Table 2, where v is the output vector of the corresponding algorithm.

In our experiments, the GaussSieve algorithm is much faster than the others
and succeeds to find the shortest vectors for all the lattices we picked. Besides of
the major reason that the GaussSieve algorithm performs better in practice (it
has been reported that the GaussSieve algorithm is more efficient than the NV
algorithm), another possible reason is that our implementation is a little poor.

44 F. Zhang et al.

Table 2. Experimental results.

Dimension 10 20 25 30 40 50 60
Number of sample 150000 100000 8000 5000 5000 3000 2000
Time of sample (s) 301 810 87833 73375 147445 120607 167916

Time (s) NV algorithm 25005 64351 120 220 625 254 187
WLTB algorithm 23760 18034 35 42 93 46 47
Our algorithm 20942 13947 27 27 57 29 30
GaussSieve algorithm 0.003 0.013 0.068 0.098 0.421 3.181 42.696

‖v‖
λ1

NV algorithm 1 1 23.8 38.3 170.1 323 347.7

WLTB algorithm 1 1 25.9 35.1 170.1 323 347.7
Our three-level algorithm 1 1 21.2 38.3 170.1 323 347.7
GaussSieve algorithm 1 1 1 1 1 1 1

Compared with the NV and WLTB algorithms, it seems that our algorithm
may be slower for low dimensional lattices due to the larger hidden polynomial
factor. However, on one hand, the number of sieved vectors in each iteration
of our algorithm decreases faster because the number of small balls is larger,
which implies that the number of iterations is smaller and the number of the
vectors to be sieved in the next iteration is smaller as well. On the other hand,
the time complexity is for the worst case. In practice, we need not to check
all the big balls, medium balls and small balls to decide which small ball the
sieved vector belongs to. Thus, with the same number of samples in our exper-
iments, our algorithm runs faster than the NV and WLTB algorithms. Since
the sample procedure is very fast when the dimension n is not greater than
twenty, we can sample enough lattice vectors to ensure that the three algo-
rithms can find a shortest nonzero lattice vector. In such case, the time of siev-
ing overwhelms the time of sampling, so our algorithm usually costs the least
total time.

4.2 On Heuristic Assumption 1

To test the validity of the Heuristic Assumption 1 that the distribution of the
sieved vectors remains uniform, we picked four random lattices of dimension 10,
25, 40 and 50, sampled 150000, 8000, 5000, 3000 lattice vectors and then sieved
them respectively. As in [20], we plotted the number of sieved vectors in each
iteration (see Fig. 5). It can be seen that the head and the tail of the curve
change slightly, but most of the curve, the middle part, decreases regularly. The
lost vectors in each iteration are those used as centers or reduced to zero which
means collisions occur. So the curve shows that the numbers of centers and
collisions in most of the iterations are nearly the same, which partially suggests
that the distribution of the sieved vectors is close to uniform throughout the
iterations.

A Three-Level Sieve Algorithm for the Shortest Vector Problem 45

0 10 20 30 40 50 60 70 80
0

30,000

60,000

90,000

120,000

150,000

Iteration of Sieve

No. Vectors sieved

(a) n=10

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

Iteration of Sieve

No. Vectors Sieved

(b) n=25

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iteration of Sieve

No. Vectors sieved

(c) n=40

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

Iteration of Sieve

No. Vectors sieved

(d) n=50

Fig. 5. Cardinality of the set of sieved vectors.

5 Conclusion

In this paper, we propose a three-level heuristic sieve algorithm to solve SVP
and prove that the optimal running time is 20.3778n+o(n) polynomial-time oper-
ations and the space requirement is 20.2833n+o(n) polynomially many bits under
Heuristic Assumption 1.

Acknowledgement. We like to thank Michael Schneider very much for his valuable
suggestions on how to improve this paper. We also thank the anonymous referees for
their helpful comments. We are grateful to Panagiotis Voulgaris for the publication of
his implementation of the GaussSieve algorithm. Pan would like to thank Hai Long for
his help on the programming.

References

1. Adleman, L.M.: On breaking generalized knapsack public key cryptosystems. In:
The 15th Annual ACM Symposium on Theory of Computing Proceedings, pp.
402–412. ACM, April 1983

2. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized reductions.
In: Proceedings of the 30th STOC. ACM (1998)

3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the 33rd STOC, pp. 601–610. ACM (2001)

4. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and
successive minima. Theor. Comput. Sci. 410(18), 1648–1665 (2009)

46 F. Zhang et al.

5. Fincke, U., Pohst, M.: A procedure for determining algebraic integers of given
norm. In: van Hulzen, J.A. (ed.) EUROCAL. LNCS, vol. 162, pp. 194–202.
Springer, Heidelberg (1983)

6. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Math. Comp. 44(170), 463–471 (1985)

7. Gama, N., Howgrave-Graham, N., Koy, H., Nguyên, P.Q.: Rankin’s constant and
blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 112–130. Springer, Heidelberg (2006)

8. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequal-
ity. In: STOC ’08-Proceedings of the 40th ACM Symposium on the Theory of
Computing. ACM (2008)

9. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

10. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

11. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proceedings of the 15th STOC, pp. 193–206. ACM (1983)

12. Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Pro-
ceedings of the SODA, pp. 937–941. ACM (2000)

13. Lenstra, A.K., Lenstra Jr, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 513–534 (1982)

14. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM
32(1), 229–246 (1985)

15. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on Voronoi cell computations. In: Proceedings of the
STOC, pp. 351–358. ACM (2010)

16. Micciancio, D., Voulgaris, P.; Faster exponential time algorithms for the shortest
vector problem. In: The 21st Annual ACM-SIAM Symposium on Discrete Algo-
rithms Proceedings, pp. 1468–1480. SIAM, January 2010

17. Milde, B., Schneider, M.: A parallel implementation of GaussSieve for the shortest
vector problem in lattices. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873,
pp. 452–458. Springer, Heidelberg (2011)

18. Nguyên, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

19. Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

20. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are
practical. J. Math. Cryptology 2(2), 181–207 (2008)

21. Pujol, X., Stehlé, D.: Solving the shortest lattice vector problem in time 22.465n.
Cryptology ePrint Archive, Report 2009/605 (2009)

22. Regev, O.: Lecture notes on lattices in computer science. http://www.cs.tau.ac.il/
odedr/teaching/latticesfall2004/index.html (2004)

23. Schneider, M.: Analysis of Gauss-sieve for solving the shortest vector problem in
lattices. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011. LNCS, vol. 6552, pp.
89–97. Springer, Heidelberg (2011)

24. Schneider, M.: Sieving for shortest vectors in ideal lattices. In: Youssef, A., Nitaj,
A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 375–391.
Springer, Heidelberg (2013)

http://www.cs.tau.ac.il/odedr/teaching/latticesfall2004/index.html
http://www.cs.tau.ac.il/odedr/teaching/latticesfall2004/index.html

A Three-Level Sieve Algorithm for the Shortest Vector Problem 47

25. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. The-
oret. Comput. Sci. 53, 201–224 (1987)

26. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

27. Shamir, A.: A polynomial time algorithm for breading the basic Merkel-Hellman
cryptosystem. In: The 23rd IEEE Symposium on Foundations of Computer Science
Proceedings, pp. 145–152. IEEE (1982)

28. Shoup, V.: NTL: a library for doing number theory. http://www.shoup.net/ntl/
29. Voulgaris, P.: Gauss Sieve alpha V. 0.1 (2010). http://cseweb.ucsd.edu/pvoulgar/

impl.html
30. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick Heuristic sieve algo-

rithm for shortest vector problem. In: The 6th ACM Symposium on Information,
Computer and Communications Security Proceedings, pp. 1–9. ACM (2011)

http://www.shoup.net/ntl/
http://cseweb.ucsd.edu/pvoulgar/impl.html
http://cseweb.ucsd.edu/pvoulgar/impl.html

Improvement and Efficient Implementation
of a Lattice-Based Signature Scheme

Rachid El Bansarkhani(B) and Johannes Buchmann

Fachbereich Informatik Kryptographie und Computeralgebra,
Technische Universität Darmstadt, Hochschulstraße 10,

64289 Darmstadt, Germany
{elbansarkhani,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Lattice-based signature schemes constitute an interesting
alternative to RSA and discrete logarithm based systems which may
become insecure in the future, for example due to the possibility of
quantum attacks. A particularly interesting scheme in this context is the
GPV signature scheme [GPV08] combined with the trapdoor construc-
tion from Micciancio and Peikert [MP12] as it admits strong security
proofs and is believed to be very efficient in practice. This paper con-
firms this belief and shows how to improve the GPV scheme in terms of
space and running time and presents an implementation of the optimized
scheme. A ring variant of this scheme is also introduced which leads to
a more efficient construction. Experimental results show that GPV with
the new trapdoor construction is competitive to the signature schemes
that are currently used in practice.

Keywords: Lattice-based cryptography ·Practicality · Implementations

1 Introduction

The security notion of most cryptographic applications changes in the presence
of quantum computers. In the breakthrough work [Sho97] in 1994, Shor pointed
out that cryptographic schemes with security based on the hardness of number
theoretic assumptions can efficiently be attacked by quantum computers. Since
then, many efforts have been spent on the search for alternatives in order to face
this challenge. Lattice-based cryptography is a promising candidate that has the
potential to meet the security needs of future cryptographic applications. This
is mainly due to Ajtai’s worst-case to average-case reductions [Ajt96], which
attracted a lot of researchers into the field of lattice-based cryptography. Specif-
ically, it states that attacking random instances of a cryptosystem is at least as
hard as solving all instances of the underlying lattice problem. As opposed to the
discrete log problem and factoring, lattice problems are conjectured to withstand
quantum attacks. In the last couples of years, a number of efficient cryptosystems
emerged that base the security on the hardness of well-studied lattice problems.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 48–67, 2014.
DOI: 10.1007/978-3-662-43414-7 3, c∞ Springer-Verlag Berlin Heidelberg 2014

Improvement and Efficient Implementation of a Lattice-Based Signature 49

Unlike number theoretic constructions such as RSA, there exists no subexpo-
nential time attack on lattice problems up to date. All known attacks have
exponential time complexity and thus serve as a further supporting argument
for a replacement by lattice-based cryptosystems. Based on this observation, one
realizes an inherent need to develop new cryptographic primitives that can be
based on worst-case lattice problems.

1.1 Our Contribution

In this paper we give the first software implementation of the GPV signa-
ture [GPV08] scheme using the newest trapdoor construction from Micciancio
and Peikert [MP12]. Moreover, we present an efficient ring variant of the scheme
based on the ring-LWE problem. In addition, we propose improvements that
lower the memory claims for the perturbation matrix by a factor of about 240
compared to the proposal in [MP12]. When generating signatures the perturba-
tion matrix is required to sample integer vectors with a given covariance. In both
variants the matrix and ring variant we considerably improved the running times
of key and signature generation. For instance, the running times of key and sig-
nature generation are lowered by a factor of 30–190 respectively 2–6 in the ring
variant. By providing running times, storage sizes and security levels for different
parameter sets we show that the ring variant has a 3–6 times faster signature
generation engine compared to the matrix variant. At the same time verification
is about 3–9 times faster. Thus, we show that the proposed constructions are
quite efficient and hence competitive regarding the performance.

1.2 Related Work

The construction of lattice based signature schemes appeared to be a big chal-
lenge up to the last couples of years. This is due to the absence of practical
constructions enjoying provable security. First constructions, however, such as
GGH [GGH97] and NTRU Sign [HHGP+03] were completely broken. This fun-
damentally changed in 2008 by introducing the GPV signature scheme by Gentry
et al. [GPV08] and the one time signature LM-OTS by Micciancio and Lyuba-
shevsky [LM08]. The latter one operates in ideal lattices which allows for faster
computations and smaller key sizes while providing provable security. When
using Merkle Trees one can transform LM-OTS into a full signature scheme.
The subsequent works [Lyu08,Lyu09] build upon the one time signature scheme
using the Fiat-Shamir transform [FS87]. Recently, Lyubashevsky proposed an
efficient construction [Lyu12] that performs very well on hardware [GLP12].

The hash-and-sign approach in turn was reconsidered in [GPV08] leading to
constructions that admit security based on the hardness of the SIS Problem.
Specifically, they aim at building a uniform random matrix A ∈ Z

n×m endowed
with a trapdoor S ∈ Z

m×m in such a way that S has small entries and A ·
S ∞ 0 mod q holds. By means of the secret matrix S a signer can produce
short preimages x for the hash value H(μ) of a message μ to be signed such
that Ax ∞ H(μ). The quality of the secret matrix immediately transfers to

50 R. El Bansarkhani and J. Buchmann

the quality of the signatures and hence plays a major role for assessing the
security. Therefore, improving the algorithms for key generation is an ongoing
research objective. Such constructions were considered for the first time in [Ajt99]
and later on improved by [AP09,Pei10], but unfortunately they are inefficient
and thus not suitable for practice. This is because the involved algorithms are
complex and expensive in terms of space and runtime. However, Micciancio and
Peikert recently proposed in [MP12] an elegant trapdoor construction which
allows for fast signature generation while providing an improved output quality.

1.3 Organization

This paper is structured as follows. In Sect. 3 we introduce the GPV signature
scheme together with the most recent trapdoor construction [MP12]. Further-
more, we provide a ring variant for this construction in Sect. 3.2. Section 4 con-
tains a detailed description of our implementation and optimizations. In Sect. 5
we present the experimental results and their analysis.

2 Preliminaries

2.1 Notation

We will use the polynomial rings R = Z[x]/√f(x)〉 and Rq = Zq[x]/√f(x)〉 such
that f(x) is a monic and irreducible polynomial over Z and q denotes the mod-
ulus. Throughout this paper we will mainly consider the case q = 2k, k > N.
For the ring-LWE problem we consider the cyclotomic polynomials, such as
f(x) = xn + 1 for n being a power of 2. The m-th cyclotomic polynomial with
integer coefficients is the polynomial of degree n = φ(m) whose roots are the
primitive m-th roots of unity.

We denote ring elements by boldface lower case letters e.g. p, whereas for
vectors of ring elements we use p̂. For a vector v ∈ R

n, a positive real s,
and a lattice ψ → R

n, let Dλ,v,s denote the n-dimensional discrete Gaussian
distribution over ψ, centered at v, with parameter s. For x ∈ ψ, the dis-
tribution Dλ,v,s assigns the probability Dλ,v,s(x) := λv,s(x)/

∑

z∈λ

λv,s(z) with

λv,s(x) = exp
(
−ρ ≡x − v≡2 /s2

)
. For brevity we write Dλ,s for Dλ,0,s and λs

for λ0,s. Micciancio and Regev introduced the smoothing parameter in [MR04]:

Definition 1. For any n-dimensional lattice ψ and positive real η > 0, the
smoothing parameter ΦΓ(ψ) is the smallest real s > 0 such that λ1/s(ψ∗\{0}) ∼ η

The matrix B̃ stands for the Gram-Schmidt orthogonalized basis of the basis
matrix B. And ≡B≡ denotes the matrix norm of matrix B. By [A|B] we define
the matrix obtained by the concatenation of the matrices A and B.

Improvement and Efficient Implementation of a Lattice-Based Signature 51

3 Trapdoor Signatures

The signature scheme due to Gentry, Peikert and Vaikuntanathan [GPV08]
consists mainly of sampling a preimage from a hash function featured with a
trapdoor. The security of this construction is based on the hardness of α2-SIS.
In [MP12] Micciancio and Peikert provide a new trapdoor notion that improved
all relevant bounds of the previous proposals [Ajt99,AP09].

3.1 Description of the Matrix Version

Similar to the constructions of [Ajt99,AP09], the authors of [MP12] start with a
uniform random matrix Ā ∈ Z

n×m̄ and extend it to a matrix A = [Ā|G−ĀR] ∈
Z

n×m via deterministic transformations [GPV08,MP12]. The main idea behind
this proposal is to use a primitive matrix G ∈ Z

n×φ, which has the property of
generating Z

n
q and for which one can easily sample preimages. Due to the nice

structure of this matrix one can find a basis S ∈ Z
φ×φ satisfying the congruence

relation G · S ∞ 0 mod q.
Below we provide the main algorithms of the GPV signature scheme in con-

junction with the trapdoor construction from [MP12]:

KeyGen(1n) ∩ (A,R): Sample Ā $⊆ Z
n×m̄
q and R $⊆ D such that R ∈

Z
m̄×∅log2(q)⊆·n and D (typically D

Zm̄×∪log2(q)�·n,ψq) is a distribution which
depends on the instantiation [MP12]. Output the signing key R and the
verification key A = [Ā|G − ĀR] ∈ Z

n×m
q where G is a primitive matrix.

Sign(μ,R) ∩ x ∈ Z
m: Compute the syndrome u = H(μ), sample p ⊆

D
Zm,

∃
Σp

and determine the perturbed syndrome v = u−A ·p. Then sam-

ple z ⊆ Dλ⊥
v (G),r with r ≈ 2 ·

√
ln(2n(1 + 1

Γ))/ρ. Compute x = p +
[
R
I

]
z

and output the signature x.
Verify(μ,x, (H,A)) ∩ {0, 1}: Check whether A ·x ∞ H(μ) and ≡x≡2 ∼ s

∃
m.

If so, output 1 (accept), otherwise 0 (reject).

Throughout this paper fix the modulus q to be 2k for some k ∈ N and use
the primitive matrix G as defined in [MP12]. To this end, we start defining the
primitive vector gT := (1, 2, 4, . . . , 2k−1) ∈ Z

k
q since G = In ≥ gT . Due to its

simple structure one can find an associated basis Sk for the lattice ψ⊥
q (gT) which

has the following shape

Sk =

⎧

⎨
⎩

2 0
−1 2

. . .
. . .

0 −1 2

⎤

⎥
⎦ ∈ Z

k×k
q .

By means of the vector gT and the associated basis Sk one can easily create
S ∈ Z

nk×nk
q and the primitive matrix G ∈ Z

n×nk
q , respectively:

G =

⎧

⎩
gT 0

. . .

0 gT

⎤

⎦ , S =

⎪
Sk 0

. . .

0 Sk

]

.

52 R. El Bansarkhani and J. Buchmann

An optimal bound for the smoothing parameter of the lattice ψ⊥
q (gT) is easily

obtained using the orthogonalized basis S̃k = 2 · Ik. Since ≡S̃≡ = ≡S̃k≡ = 2, we

have ΦΓ(ψ⊥
q (G)) ∼ r = 2 ·

√
ln

(
2n

(
1 + 1

Γ

))
/ρ according to [GPV08, Theorem

3.1]. Using this parameter we can bound the preimage length. Due to [Ban93,
Lemma 1.5] the probability of the preimage to be greater or equal to r · ∃

n · k
is bounded by 2−n·k · 1+Γ

1−Γ .

Sampling Algorithms for Preimages and Perturbations. In what follows
we describe the preimage sampling algorithm for a syndrome t ∈ Zq from the
coset ψ⊥

t (g∪) = {x | g∪ · x ∞ t mod q} using the randomized nearest plane
algorithm [MP12]. Due to the nice properties of the orthogonalized basis, the
algorithm reduces to a few steps with a0 = t :

for i = 0, . . . , k − 1 do:

1. vi ⊆ D2Z+ai,r

2. ai+1 = (ai − vi)/2

Output: v = (v0, . . . , vk−1)T

The resulting vector is v ∈ ψ⊥
t (g∪) distributed as Dλ⊥

t (g�),r. Of course,
similarly one can sample preimages from ψ⊥

u (G) for a syndrome vector u ∈ Z
n
q

by independently running n instances of the algorithm on each component of u.
The authors provide two different types of instantiations for the trapdoor

generation algorithm, namely the statistical and computational instantiation.
Regarding the GPV signature scheme we used the latter one in our imple-
mentation because the dimension of A is much smaller. Therefore, we will
always refer to the computational instantiation in the rest of this work. Such
a representation can easily be achieved by generating a uniform random matrix
Ã ∈ Z

n×n and sampling a trapdoor R =
[
R1

R2

]
from the discrete Gaussian dis-

tribution DZ2n×nk,ψq where ξ ∈ R>0 satisfies ξq >
∃

n. The resulting matrix
[Ā|G − (ÃR2 + R1)] with Ā = [In|Ã] is an instance of decision-LWEn,ψ,q and
hence pseudorandom when ignoring the identity submatrix.

Applying the framework of [GPV08] requires to sample a spherically distrib-
uted preimage for a given syndrome u ∈ Z

n
q using Gaussian sampling algorithms

and the trapdoor R. In fact, the spherical distribution is a common tool to make
the distribution of the signature independent from the secret key. The Gaussian
sampling algorithm mainly consists of two parts. The first part involves the
trapdoor R which is used to transform a sample x from the set ψ⊥

u (G) with

parameter r ≈ ≡S̃≡ ·
√

ln(2n(1 + 1
Γ))/ρ to a sample y =

[
R
I

]
·x of the set ψ⊥

u (A).

Due to the fact that
[
R
I

]
is not a square matrix and the non-spherical covariance

COV = r2
[
R
I

]
[RT I] is not of full-rank, the distribution of y is skewed and

hence leaks information about the trapdoor. An attacker could collect samples
and reconstruct the covariance matrix. Therefore, we need the second part to

Improvement and Efficient Implementation of a Lattice-Based Signature 53

correct this flaw. This can be done by adding perturbations from a properly cho-
sen distribution. Using the convolution technique from [Pei10], we can choose
a parameter s in such a way that s2 is slightly larger than the largest absolute
eigenvalue of the covariance COV and generate Gaussian perturbations p ∈ Z

m

having covariance Σp = s2I−COV. In order to obtain a vector b that is from a
spherical Gaussian distribution with parameter s, one samples a preimage y for
an adjusted syndrome v = u− Ap from ψ⊥

v (A). The vector b = p + y provides
a spherical distributed sample satisfying Ab ∞ u mod q.

Parameters. When applying the framework of [RS10] we get Table 1 which
contains different parameter sets with their corresponding estimated sub-lattice
attack dimension d and the more relevant estimated Hermite factor τ. The
SIS norm bound is denoted by ϕ. Columns marked with β provide according
to [GPV08, Proposition 5.7] additional worst-case to average-case hardness sat-
isfying q ≈ ϕ · θ(

√
n log2(n)). The parameters of the scheme should be set in

such a way that τ ∪ 1.0064 in order to ensure about 100 bits of security [RS10].
In Table 4 (see Appendix A.1) we provide a guideline of how to select parameters
in the matrix and ring variant (Construction 1).

Table 1. Parameter sets with the corresponding estimated sublattice attack dimensions
d and Hermite factors δ according to [RS10].

n 128 128β 256 256β 284 284β 384 384β 484 484β 512 512β 1024 1024

k 24 27 24 27 24 28 24 29 24 29 24 30 27 30

m 3328 3712 6656 7424 7384 8520 9984 11136 12584 15004 13312 16384 29696 32768

q 224 227 224 227 224 229 224 229 224 229 224 230 227 230

d 324 346 586 659 650 758 838 1013 1057 1221 1118 1336 2305 2561

ν 4.8e5 5.4e5 1.3e6 1.5e6 1.6e6 1.8e6 2.5e6 3.0e6 3.5e6 4.3e6 3.9e6 4.8e6 1.2e7 1.3e7

δ 1.0203 1.0183 1.0117 1.0106 1.0108 1.0095 1.0085 1.0072 1.0070 1.0060 1.0067 1.0055 1.0034 1.0031

λ bits <75 <75 75 78 78 82 86 94 95 103 97 108 148 158

Different to [MR08] the approach taken in [RS10] requires to determine the
optimal sub-dimension d = {x ∈ Z | q2n/x ∼ ϕ} of the matrix A consisting of
m columns and n rows. The lattice ψ⊥

q (A′) generated by A′ when leaving out
m − d columns from A has still determinant qn with very high probability. This
means that a solution v ∈ ψ⊥

q (A′) with ≡v≡ ∼ ϕ can easily be transformed to
the vector (v,0) such that A·(v,0) ∞ 0 mod q holds. For a given d we obtain the
Hermite factor τ = 2n·log2(q)/d2

implying that a sufficiently good HSVP solver
can find vectors v ∈ ψ⊥

q (A′) bounded by q2n/d. From the Hermite factor one
can compute the effort T (τ) required to solve τ − HSVP according to [RS10,
Conjecture 3]. Subsequently, one maps the result to the corresponding security
levels (e.g. see [RS10, Table 2]).

3.2 The Ring Setting

In [MP12] the authors state that the construction can be adapted to the ring
setting in such a way that the elements of the primitive vector g∪ are considered

54 R. El Bansarkhani and J. Buchmann

as ring elements of Rq = Zq[X]/φm(X) rather than Zq, where φm(X) is the m-th
cyclotomic polynomial. In the following section we present our construction of
this idea and show that a polynomial matrix Ĝ as in the matrix case is indeed
not needed. This results in a more efficient instantiation.

Construction 1. The public key is generated by drawing k samples (āi, āiri +
ei) from the ring-LWE distribution. By this, we obtain a public key that is
pseudorandom and enjoys the hardness of ring-LWE. Following [ACPS09] one
can use the error distribution in order to sample the trapdoor polynomials r̂ ∈ Rk

q

and ê ∈ Rk
q . This does not incur any security flaws. Indeed, this property is

essential for the signature scheme to work due to the need for smaller secret
keys. As in the matrix variant one can use only one uniformly distributed sample
ā1 rather than a set in A. By a standard hybrid argument the hardness of
distinguishing ā1ri + ei from uniformly distributed samples can be reduced to
decision ring-LWE [BPR12]. Thus, we obtain a public key of the following shape:

A = [1, ā1, g1 − (ā1r1 + e1), . . . , gk − (ā1rk + ek)]

Similar to the matrix version ĝ∪ = [1, · · · , 2k−1] defines the primitive vector
of polynomials where each component is considered as a constant polynomial.
Sampling from ψ⊥

u (ĝ∪) = {x̂ ∈ Rk
q | g1x1 + · · · + gkxk = u } is performed as

in the matrix case with y∪ = [x(0)
1 , . . . ,x(0)

k , . . . ,x(n)
1 , . . . ,x(n)

k] satisfying
Gy ∞ u mod q, where x(i)

j is the i-th coefficient of the j-th polynomial. The
resulting vector y is from a spherical Gaussian distribution having covariance
matrix r2I. Sampling a preimage for a syndrome u ∈ Rq requires to sample
polynomials x̂ = (x1, . . . ,xk) from ψ⊥

u (ĝ∪). These are then used to construct

the preimage ẑ = [
k∑

i=1

eixi,
k∑

i=1

rixi, x1, . . . , xk] ∈ Rk+2
q . It can easily be

verified, that Aẑ ∞ u holds. With the same arguments as in the matrix case
we need to add some perturbation to transform the skewed distribution into a
spherical one. Since we mainly operate on rings modulo xn + 1 with n a power
of two, multiplication of polynomials rixi corresponds to matrix multiplication
Rot(ri)xi. The matrix Rot(ri) consists of n columns [ri, rot(ri), · · · , rotn−1(ri)]
with rot(y) = [−yn−1, y0, . . . , yn−2] defining the rotation in anti-cyclic integer
lattices. Of course, other irreducible polynomials are also possible, but have the
drawback of larger expansion factors which imply increased preimage lengths.
The covariance matrix of the preimage has the following shape:

COV = r2
[
R1

R2

I

]

[R�
1 R�

2 I]

with R1 = [Rot(e1) | . . . | Rot(ek)] and R2 = [Rot(r1) | . . . | Rot(rk)]
respectively. One observes, that the computation of this matrix is very sim-
ple since matrix multiplication corresponds to polynomial multiplication with

Improvement and Efficient Implementation of a Lattice-Based Signature 55

β(x) = [x1,−xn,−xn−1, . . . ,−x2] which is the first row of Rot(x):

COV = r2

⎧

⎨
⎩

Rot(
k∑

i=1
eiβ(ei)) Rot(

k∑

i=1
eiβ(ri)) R1

Rot(
k∑

i=1
riβ(ei)) Rot(

k∑

i=1
riβ(ri)) R2

R�
1 R�

2 I

⎤

⎥
⎦ .

Now one can use the techniques from the previous section in order to generate
perturbations. A perturbation vector p ∈ Z

n(k+2) is then split into k+2 parts of
length n. Each part corresponds to a perturbation polynomial pi ∈ Rq. In order
to provide a preimage for a syndrome polynomial u one samples perturbations
p1, . . . ,pk+2 ∈ Rq as shown before. Then we create sample polynomials x̂ from
ψ⊥

u−Ap(ĝ∪). The resulting preimage ẑ is then spherically distributed:

ẑ =
[
p1 + ê · x̂, p2 + r̂ · x̂, p3 + x1, . . . , pk+2 + xk

]
.

Now we give a short description of how to instantiate the ring-LWE problem
and how to sample the secret keys ri and ei for 1 ∼ i ∼ k according to [DD12].
The authors provide different from the work [LPR10] a relatively simple ring-
LWE setting avoiding the work in the dual ring R∨

q or the H-Space [LPR10]
which turns out to be more convenient in certain applications. Following the
paper of [BLP+13] we can take q to be a power of two as in the matrix variant.
Such choices are more suitable for practice since the nice sampling algorithms
introduced in the previous section are applicable. A prime number would involve
costly sampling procedures which lead to a slower signature generation engine.
As stated in [ACPS09] it is possible to generate both the secret key ri and ei from
the same error distribution without affecting the security. Indeed, this property
is important in order to make the trapdoor construction work based on the ring-
LWE assumption. Specifically, we need small keys to provide short preimages. If
one operates in the ring Zq[X]/(Xn + 1) with n a power of two, the coefficients
of both ri and ei are chosen from the Gaussian distribution on the rationals and
then rounded to the nearest integers. In particular, the polynomials ri and ei

are distributed as �DQn,c� for c =
∃

nξq(nl
2 log(nl/2))

1/4 where l is the number of
samples and ξq > θ(

∃
log 2n). In practical applications one can omit the last

term [DD12] or set l = 1 due to the fact that a possible adversary can always
create own samples by using ā1. For other choice of cyclotomic polynomials Φm

it is possible to sample the trapdoor polynomials in extension rings according
to [DD12, Theorem 2]. But a better approach is to use the framework presented
in [LPR13] since it allows to work in arbitrary cyclotomic rings without incurring
any ring-dependent expansion factor. We will provide such a construction in the
full version of this paper.

Construction 2. We briefly explain another ring construction that is derived
from [Mic07]. Take k = �log2 q� and m̄ = O(log2(n)). Then select m̄ uniformly

random polynomials â = [a1, . . . ,am̄] ∈ Rm̄
q . Define by hâ(x̂) =

m̄∑

i=1

aixi a gen-

eralized compact knapsack. Furthermore choose k vectors r̂i for 1 ∼ i ∼ k,

56 R. El Bansarkhani and J. Buchmann

each consisting of m̄ random polynomials ri1, . . . , rim̄ of degree n − 1 with
small coefficients. By [SSTX09, Lemma 6], which is an adapted variant of the
regularity lemma of [Mic07], the function values am̄+i = ha(r̂i) with 1 ∼ i ∼ k
are essentially uniformly distributed. Thus, we can create an almost uniformly
random vector of polynomials A endowed with the trapdoor r̂i ∈ Rm̄

q where
1 ∼ i ∼ k:

A = [a1, . . . , am̄, g1 − am̄+1, . . . , gk − am̄+k] .

To generate a preimage of a given syndrome polynomial u ∈ Rq, one has to
sample a vector x̂ ∈ ψ⊥

u (ĝ∪) using the methods from above. As one can easily
verify, the vector ŷ = [r̂1x1, . . . , r̂kxk , x1, . . . ,xk] is a preimage of the
syndrome u for A. Using the techniques from the descriptions before, one can
produce spherically distributed samples.

4 Improvements and Implementation Details

In our implementation we have to face several challenges that affect the per-
formance of the signature scheme both in the matrix and ring variant. In the
following sections we give a detailed description of our improvements and imple-
mentation results.

4.1 Computation of the Covariance matrix

Firstly, we observed that the computation of the covariance matrix COV is too
expensive in terms of running time. Since the basis matrix COV is sparse, we
were able to significantly reduce the computational efforts. It can be split into
four parts as below. The only block to be computed is the symmetric matrix
RRT .

COV = r2
[
RRT R

RT I

]

In the ring variant the computation of the covariance matrix is much faster
because multiplication is performed in polynomial rings as explained in the
description. Running these parts in parallel offers another source of optimization.

4.2 Estimating the Parameter s

As in [MP12] one sets the parameter s large enough such that it is indepen-
dent from a specific trapdoor. In particular, s is chosen to be not smaller than√

s1(R)2 + 1 · ∃
6 · a, where s1(R) denotes the largest singular value of the

secret key R and a is selected as above. The perturbation covariance matrix
Σp = s2Im − COV is well-defined, if one selects s such that s > s1(

[
R
I

]
) · r

is satisfied. Since R is a subgaussian random variable, the matrix R satisfies
s1(R) ∼ C · (∃2n +

∃
n · k + 4.7) · ξq except with probability ∪ 2−100 according

to [MP12, Lemma 2.9]. The universal constant C is very close to 1/
∃

2ρ.

Improvement and Efficient Implementation of a Lattice-Based Signature 57

4.3 Generation of Perturbation Vectors

One of the main ingredients of the signature scheme is the idea of creating per-
turbations [MP12] in order to get spherically distributed preimages that do not
carry any information about the secret key. A perturbation vector is generated by
means of the distribution D

Zm,
∃

Σp
which outputs random vectors from Z

m with

covariance matrix Σp. By [Pei10] this can be achieved by sampling a vector p
according to �√Σp − a2I·Dm

1 �a, where Dm
1 denotes the m-dimensional Gaussian

distribution. Each vector sampled from Dm
1 has entries coming from the standard

continuous Gaussian distribution with parameter 1. �·�a denotes the randomized

rounding operation from [Pei10] with parameter a = r/2 ≈
√

ln(2n(1 + 1
Γ))/ρ,

which rounds each coordinate of the vector independently to a nearby integer
using the discrete Gaussian distribution. The generation of perturbation vectors
requires the square root computation

√
Σp − a2I. Below we discuss one method

for this purpose and provide improvements through a better analysis.

4.4 Square Root Computation

The Cholesky decomposition splits any positive definite matrix M into the prod-
uct of a lower triangular matrix and its conjugate transpose, i.e. M = L · LT ,
and runs in time O(m3) = O((k+2)3n3). If one selects k = 19, then the constant
factor grows by 9261, which is very high compared to n = 256. The Cholesky
decomposition is needed to generate perturbations that have covariance matrix
Σp, where

√
Σp is the Cholesky matrix. An algorithm for the Cholesky decom-

position is shown in the Appendix A.2 (Algorithm 1). When decomposing the
matrix Σp − a2I into its roots, one can improve the running time by our mod-
ified Cholesky decomposition taking into account the n2k2 − n · k zero entries,
meaning that one can skip line 8 in Algorithm 1 whenever lik or ljk is known
to be zero. Due to the sparsity of Σp − a2I this occurs very often. We call this
optimized algorithm variant 1.

Although this optimization in variant 1 noticeably improves the timings of
key generation, the algorithm is still inefficient and is the main source of slow
key generation. Moreover, the resulting perturbation matrix is dense and has
no structure, which leads to high memory claims in order to store the matrix
of floating entries and to worse signature generation running times. This is due
to the fact that each generation of a perturbation vector requires to multiply a
huge triangular matrix consisting of multi-precision floating point entries with a
floating point vector. To circumvent this problem we applied a pivoting strategy
followed by the Block Cholesky decomposition, meaning that we permute the
covariance matrix such that PΣpP∪ = Σ′

p.

This corresponds to left multiplication of the permutation matrixP =
[

0 Ink

I2n 0

]

to the public key A. It is obvious that this transformation does not cause any secu-
rity flaws because it is a simple reordering. The advantage of using P is a pertur-
bation covariance matrix Σ′

p with a nice structure which enables us to work with

58 R. El Bansarkhani and J. Buchmann

Schur complements [Zha10] in a very efficient way:

Σ′
p = s2Im − r2

[
Ink R�

R RR�

]
=

[
0 Ink

I2n 0

]
Σp

[
0 Ink

I2n 0

]∪
.

Therefore we get an algorithm which outperforms the optimized Cholesky
decomposition applied on the non-permuted matrix by a factor of 30–190. Fur-
thermore, we obtain a signature generation engine which yields a factor improve-
ment of 2–6 in the ring variant. This is due to the sparse matrix and its nice
structure. In both the key and signature generation steps the factor grows as n
increases. In general the Schur complement is defined as follows:

Lemma 1. Let the matrix Si =
[

bi h�
i

hi Ci

]
∈ R

m−i×m−i be symmetric posi-

tive definite with bi > 0. Then the Schur complement Si+1 := Ci − 1
bi

hih∪
i ∈

R
m−i−1×m−i−1 is well-defined and also symmetric positive definite.

This decomposition is successively applied on the submatrices Si ∈ R
m−i×m−i.

Doing this, one obtains an efficient method to construct the columns of the matrix√
Σ′

p − a2I. The first nk colums 1√
b
·
[

b · I
R

]
∈ R

m×nk for b = s2−r2−a2 = s2−5a2

involve only a simple scaling operation. Therefore, we need no additional memory
in order to store these columns. Due to the sparse columns multiplication involves
only the non-zero columns (R)i of the matrix R =

[
R1

R2

]
. Thus, transformations

are focused only on the (2n × 2n) matrix:

Snk = (s2−a2)I−r2RR∪−1
b

nk∑

i=1

(R)i(R)∪
i = (s2−a2)I−(r2+

1
b
)RR∪ ∈ R

2n×2n .

The last sum of vector products reduces to the simple scaling operation
1
bRR∪. Thus, one can save the costly vector product computations. When con-
tinuing the decomposition on the remaining matrix Snk one obtains the Cholesky
decomposition. One can easily verify that

XX∪ = Σ′
p − a2I, X =

[√
bInk 0
R√

b
L

]

holds. Consequently one needs only to store n(2n+1) floating point entries of the
last part L = Decomp(Snk) instead of m(m+1)/2 in the case without permuta-
tion. For instance, this induces an improvement factor of m(m+1)/2n(2n+1) ∪
240 for n = 512 and k = 29. A nice sideeffect of this transformation is a much
faster algorithm for generating perturbations since the number of operations
drastically decreases as the factor grows. In the matrix version, one makes use of
the sparse decomposition matrix. In particular

√
Σp − a2I·Dm

1 is reduced to the

simple scaling operation of
∃

b ·Dnk
1 and the computation

[
1√
b
R L

]
·Dm

1 . Espe-
cially in the ring version we preserve the nice properties of polynomial multipli-
cation and therefore use only the scaled set of trapdoor polynomials 1√

b
ei,

1√
b
ri

Improvement and Efficient Implementation of a Lattice-Based Signature 59

and the lower triangular matrix L =
[
L1

L2

]

in order to generate perturbations.

Specifically, one obtains the perturbation vector p = [p1|p2|p3] ∈ Q
(k+2)n with

p1 =
∃

b · Dnk
1 , p2 = 1√

b

k∑

i=1

riD
n
1 + L1 · Dn

1 and p3 = 1√
b

k∑

i=1

riD
n
1 + L2 · Dn

1 .

Thus, we get a fast signature generation algorithm which is about three times
faster than its matrix analogue. It is also worth to mention that these operations
can also be executed in parallel.

4.5 Sampling

For sampling discrete Gaussian distributed integers in the key generation step we
used the inversion transform method rather than rejection sampling because the
number of stored entries is small and can be deleted afterwards. This improves
the running times of the sampling step significantly. In particular, suppose the
underlying parameter is denoted by s. We precompute a table of cumulative
probabilities pt from the discrete Gaussian distribution with t ∈ Z in the range
[−θ(

∃
log n) ·s, θ(

∃
log n) ·s]. We then choose a uniformly random x ∈ [0, 1) and

find t such that x ∈ [pt−1, pt]. This can be done using binary search. The same
method is applied when sampling preimages from the set ψ⊥

u (G) with parameter
r. This parameter is always fixed and relatively small. Storing this table takes
about 150 Bytes of memory. In this case signature generation is much faster
than with simple rejection sampling. But, unfortunately, this does not apply
in the randomized rounding step because the center always changes and thus
involves a costly recomputation of tables after each sample. Therefore we used
rejection sampling from [GPV08] instead. As for sampling continuous Gaussians
with parameter t = 1, we used the Ziggurat algorithm [MT84] which is one of
the fastest algorithms to produce continuous Gaussians. It belongs to the class
of rejection sampling algorithms and uses precomputed tables. When operating
with multiprecision vectors such as sampling continuous random vectors one
should use at least λ bits of precision for a cryptographic scheme ensuring λ bits
of security (e.g. 16 bytes floating points for λ = 100).

4.6 Random Oracle Instantiation

For the GPV signature scheme a random oracle H(·) is required which on an
input message x outputs a uniformly random response H(x) from its image
space. In most practical applications this is achieved by a cryptographic hash
function together with a pseudorandom generator which provides additional ran-
dom strings in order to extend the output length. In our implementation we used
SHA256 together with the GMSS-PRNG [BDK+07] because strings of arbitrary
size are mapped to vectors from Z

n
q . Each component of the vector has at most

∅log q� bits.

Rand ⊆ H(Seedin), Seedout ⊆ (1 + Seedin + Rand) mod 2n. (1)

60 R. El Bansarkhani and J. Buchmann

The first Seedin is the input message, and the function is repeated until enough
random output Rand is generated.

We implemented the GPV signature scheme, the trapdoor generation and
sampling algorithms in C using the Fast Library for Number Theory (FLINT
2.3) and the GNU Scientific Library (GSL 1.15). FLINT comprises different data
types for matrices and vectors operating in residue classes such as Zq and Zq[X]
whereas the GSL library provides a huge variety of mathematical tools from
linear algebra, that can be applied on different primitive data types. We also
included the Automatically Tuned Linear Algebra Software Library (ATLAS)
which is an empirical tuning system that creates an individual BLAS (Basic Lin-
ear Algebra Subprograms) library on the target platform on which the library is
installed on. Specifically, this library provides optimized BLAS routines which
have a significant impact on the running times of the used mathematical opera-
tions in the key and signature generation steps. So it is always recommended to
include this library whenever one has to work with GSL. For the representation
of matrices in Z

n×m
q FLINT provides the data structure nmod mat t which comes

into use in our implementation of the matrix version. Regarding the ring version,
working with polynomials is performed by using the data structure nmod poly t.
FLINT makes use of a highly optimised Fast Fourier Transform routine for poly-
nomial multiplication and some integer multiplication operations.

5 Experimental Results

In this section we present our experimental results and compare the matrix
version with the ring variant. Regarding the GPV signature scheme we used
Construction 1 operating with a smaller number of polynomials compared to
Construction 2. Hence, we obtain faster signature generation algorithms with
a view to polynomial multiplication, generation of perturbations and sampling
algorithms. We provide running times and file sizes of keys and signatures. The
experiments were performed on a Sun XFire 4400 server with 16 Quad-Core
AMD Opteron(tm) Processor 8356 CPUs running at 2.3 GHz, having 64 GB of
memory and running 64 bit Debian 6.0.6. We used only one core in our exper-
iments. In most works private keys and signature sizes are estimated based
on the underlying distributions ignoring the norm bound of the sampled vec-
tors and thus lead to overestimations of signature sizes. By Lemma 2 we show
that we can ignore the underlying distributions and focus solely on the norm
bound. This allows us to give tighter bounds compared to previous proposals.
For instance, in [Lyu12] signatures y ∈ Z

m are distributed as discrete Gaussians
with standard deviation σ. The estimated signature size is m · �log2(12 · σ)� bits
(ignoring the norm bound). In our case signatures are distributed as discrete
Gaussians with parameter s such that ≡y≡2 < s · ∃

m. Using Lemma 2 the bit
size needed to represent y is bounded by m · (1+�log2(s)�) bits. The private key
R ∈ Z

2n×n·k from Sect. 3.1 can be viewed as a vector r with 2n2k entries such
that ≡r≡2 < ξq ·

∃
2n2k by [Ban93, Lemma 1.5].

Improvement and Efficient Implementation of a Lattice-Based Signature 61

Lemma 2. Let v ∈ Z
n be a vector with ≡v≡2 < b · ∃

n. Then, the maximum
number of bits required to store this vector is bounded by n · (1 + �log2(b)�).

The proof of Lemma 2 is in the Appendix (see A.3). Below we provide two
tables comparing the ring variant with the matrix variant. They contain the
filesizes of the private key, public key, perturbation matrix and the signature
(Table 2 bottom) as well as the running times of key generation, signature gen-
eration and verification (Table 2 top). The last line of the table reflects the
improvement induced by the modification of the public key A and hence the
covariance matrix. The improvement factor is related to the optimized Cholesky
decomposition (variant 1) which makes use of the sparsity of Σp. Indeed, the
improvement factor is much higher when comparing to the original Cholesky
decomposition. The impact of the discrete Gaussian samplers and the ATLAS
library used in our implementation are notably but not addressed in this work.

Table 2. Experimental results for the matrix and ring variant. By ∈ we mean that the
factor grows as n increases.

Running times [ms]

Keygen Signing Verification

n k Ring Mat M/R Ring Mat M/R Ring Mat M/R

128 24 277 984 3.6 5 9 1.8 0.6 1.4 2.3
128 27 317 1,108 3.5 6 11 1.8 0.7 1.7 2.4
256 24 1,070 5,148 4.3 12 30 2.5 1.5 5 3.3
256 27 1,144 5,728 4.1 14 36 2.5 1.7 6 3.5
512 24 4,562 28,449 5.0 27 103 3.8 3 18 6
512 27 5,354 30,458 5.1 31 125 4.0 4 21 5.3
512 29 5,732 34,607 5.4 35 136 3.8 5 22 4.4
1024 27 28,074 172,570 6.0 74 478 6.4 10 97 9.7
1024 29 30,881 198,620 6.3 81 518 6.4 11 102 9.3

Improvement
30-190 ∈ 10 -40 ∈ - 2-6 ∈ 1.4 - 2 ∈ - - - -

factor

Sizes [kB]

Public Key Secret Key Pert. Matrix Signature

n k Ring Mat M/R Ring Mat M/R R and M Ring Mat M/R

128 24 9.4 1200 128 4.4 528 163 257 5.8 5.3 0.9
128 27 11.8 1512 128 5.0 594 163 257 6.5 5.9 0.9
256 24 18.8 4800 256 9.8 2304 236 1026 12.5 11.4 0.9
256 27 23.6 6048 256 11.0 2592 236 1026 14.1 12.8 0.9
512 24 37.5 19,200 512 21.3 9984 469 4100 26.8 24.5 0.9
512 27 47.3 24,192 512 23.9 11232 470 4100 30.1 27.4 0.9
512 29 54.4 27,840 512 25.7 12064 470 4100 32.2 29.4 0.9
1024 27 94.5 96,768 1024 51.7 48384 936 16392 63.8 58.5 0.9
1024 29 108.8 111,360 1024 55.5 51968 936 16392 68.4 62.7 0.9

Improvement
- - - - 170 - 260 - - -

factor

By the modification we obtain a key generation engine that is about 30–190
times faster in the ring variant. For n = 512 and n = 1024 signature generation
is about 3 and respectively 6 times faster. It is also worth to mention that the
authors of [MP12] explain the possibility of splitting the signing algorithm into
an offline and online phase. The task of generating perturbations is independent
from the message to be signed, hence it is possible to generate them in advance

62 R. El Bansarkhani and J. Buchmann

Fig. 1. Breakdown of signing running time into the major parts

or create many samples and store them. This obviously requires to periodically
create the perturbation matrix or storing it. From a practical point of view we do
not consider such a breakdown in our implementations. But indeed, generating
perturbations amounts after the optimizations to more than 60 % (see Fig. 1)
of the running time in the ring variant and 13–30 % in the matrix variant. In
Fig. 1 we present a breakdown of the signing running time into four major parts
which are the most time consuming. In particular, we differentiate the generation
of perturbations p̂, sampling of x̂, computation of the syndrome polynomial
v = Ap̂, polynomial multiplications ê · x̂ and r̂ · x̂. By our experiments for
different parameter sets we obtain Fig. 1 illustrating the average measurements.

In Table 3 we compare our implementation with classical signature schemes
such as ECDSA, DSA and RSA for the same machine (AMD Opteron at 2.3 GHz).
The experiments were performed based on openssl implementations of the cor-
responding schemes. In addition, we provide implementation results of current
post quantum schemes, such as the code-based signature schemes [V97,Ste94]
using the Fiat-Shamir transform [FS87,ADV+12]. As one observes, all classical
schemes have faster signing algorithms compared to our implementation except
for RSA 4096. However, our implementation has a faster signature verification
engine than ECDSA and outperforms the code-based Véron und Stern signature
schemes as well as the software implementations [WHCB13] of the lattice-based
signature scheme [Lyu12]. Newer variants and implementations [GOPS13] are
highly optimized and testify the superiority of lattice-based signature schemes
over number theoretic ones.

Table 5 in the Appendix A.4 depicts the sizes of signatures, secret and public
keys of the most recent lattice-based signature schemes at a glance. A look to
this table reveals that the storage sizes of the GPV signature scheme are still
large compared to [Lyu12,GLP12]. When comparing our scheme with the ring
equivalent of l2-SIS, one observes that the public key and signature sizes are
about 30% higher. The secret key sizes of our implementation are even higher
if one stores the perturbation matrix and does not create it for each signature
(see Table 2). The optimizations due to [GLP12] furtherly improve the sizes of
[Lyu12] by using more aggressive parameters. In [DDLL13] Ducas et al. present
a novel signature scheme that benefits from a highly efficient bimodal discrete

Improvement and Efficient Implementation of a Lattice-Based Signature 63

Table 3. Comparison of different signature schemes.

Scheme Security level Sizes [kB] Running times [ms]

Public key Secret key Signature Signing Verification

GPV Ring ≈90 37.5 21.3 26.8 27 3

(n=512, k=24)

GPV Ring ≈100 47.3 23.9 30.1 31 4

(n=512, k=27)

TSS [WHCB13,Lyu12] 80 12.8 12.9 8.1 40.7 5.6

(n=512)

LyuSig [GOPS13] 100 1.5 0.3 1.2 0.3 0.02

(n=512)

Stern Sign. [Ste94,ADV+12] 80 36 0.05 25 32 23

(rounds=140)

Veron Sign. [V97,ADV+12] 80 36 0.05 25 31 24

(rounds=140)

RSA 2048 112 0.3 2 0.3 5.0 0.05

RSA 4096 ≥ 128 0.5 4 0.5 27.5 0.14

DSA 2048 112 0.3 0.02 0.04 0.7 0.8

ECDSA 233 112 0.06 0.09 0.06 7 3.5

ECDSA 283 128 0.07 0.11 0.07 11.5 6.5

Gaussian sampler and a modified scheme instantiation compared to [Lyu12,
GLP12]. Furthermore, they provide a scheme variant that allows key generation
to be performed in a NTRU-like manner. The corresponding sizes of keys and
signatures for BLISS providing 128 bits of security are also depicted in Table 5.

Acknowledgements. We would like to thank Chris Peikert and Özgür Dagdelen for
the fruitful discussions as well as the reviewers of SAC. The work presented in this
paper was performed within the context of the Software Campus project IT-GiKo. It
was funded by the German Federal Ministry of Education and Research (BMBF).

A Appendix

A.1 Parameter Choices for the Matrix and Ring Variant

Matrix Ring

n e.g. n ← 384 (cf. Table 1) n = 2l, n ← 512

q e.g. power of 2 with q ← 219

k ∪log2(q)⊕
m n(2 + k)

c c = αq >
◦

n c >
◦

nω(
√

log(2n))

r r ← 2 ·
√

ln(2n(1 + 1
ν
))/π

a a ←
√

ln(2(1 + 1
ν
))/π, e.g. a=r/2

s ⊆ C · (
◦

n · k +
◦

2n) · c · r

64 R. El Bansarkhani and J. Buchmann

A.2 Cholesky Decomposition

Algorithm 1: Cholesky decomposition
Data: Matrix L ∈ Z

m×m

Result: Lower triangular part of L
for k = 1 ∩ m do1

lkk =
∃

lkk;2

for i = k + 1 ∩ m do3

lik = lik/lkk;4

end5

for j = k + 1 ∩ m do6

for i = j ∩ m do7

lij = lij − likljk;8

end9

end10

end11

A.3 Proof of Lemma 2

Proof. We determine the maximum number of bits needed to store a vector v
bounded by ≡v≡2 < b · ∃

n by means of Lagrange multipliers [Lar12]. The gen-
eral form of Lagrange multipliers is defined by L(v1, . . . , vn) = f(v1, . . . , vn) +
λ · g(v1, . . . , vn), where g(·) takes into account the constraints and f(·) is the
function to be maximized. Obviously, the maximum number of bits grows with
increasing norm bound. Therefore, let v ∈ N

n (ignoring the signs) be a vector

such that ≡v≡22 =
n∑

i=1

v2
i = nb2. Now, consider the log entries of the vector v,

which are needed to determine the bit size of any vector. Applying simple loga-

rithm rules we have
n∑

i=1

log2(vi) = log2(
n∏

i=1

vi). Since log is monotone increasing,

maximizing of log is equivalent to maximizing the product. The function giving

the constraint is g(v1, . . . , vn) = nb2 −
n∑

i=1

v2
i . We then maximize the function

L(v1, . . . , vn, λ) = f(v1, . . . , vn) + λ · g(v1, . . . , vn), where f(v1, . . . , vn) =
n∏

i=1

vi.

Taking the partial derivatives we get n + 1 equations:

ΔL

Δvi
=

Δf

Δvi
+

λ · Δg

Δvi
=

n∏

j=1,j �=i

vj − 2λvi = 0, ∀1 ∼ i ∼ n

ΔL

Δλ
= nb2 −

n∑

i=1

v2
i = 0 .

By reordering the first n equations, we get λ = v1·...·vi−1·vi+1·...·vn

2vi
, ∀1 ∼

i ∼ n. It is easy to see that the only solution is vi = b, ∀1 ∼ i ∼ n that

Improvement and Efficient Implementation of a Lattice-Based Signature 65

satisfies all equations, because from any two out of the first n equations it fol-
lows vi = vj , i �= j. By the last equation we then obtain vi = b. The only
extremum we obtain is v = (v1, . . . , vn) = (b, . . . , b) with f(v) = bn. Since we
have 0 = f(v′) < bn for the boundary points v′

i = b · ∃
n with v′

j = 0 and
j �= i, the extremum v is a maximum. Therefore the maximum possible bit size
required to store such a vector is bounded by n · �log2(b)�. We need an addi-
tional bit for the sign of each entry. This concludes the proof. The proof can be
extended to any p-norm 1 ∼ p < ∞. ��

A.4 Sizes

This scheme has the following efficiency measures.

Table 4. GPV-Trapdoor storage requirements

Public key (bits) Private key (bits) Signature (bits)

Trapdoor [GPV08,MP12] nmk 2n2k(1 + ∪log2(c)⊕) m · (1 + ∪log2(s)⊕)

Table 5. Comparison of our implementation with other lattice-based schemes with
regard to storage sizes (in kilobytes).

Scheme (n,q) Sizes [kB]
Public key Secret key Signature

GPV ring (512,224) 37.5 21.3 26.8
GPV ring (512,227) 47.3 23.9 30.1
TSS12 [Lyu12, Table 2] (512, 226) 4.9 0.8 2.4
(based on decisional ring-LWE, m=2)
TSS12 [Lyu12, Table 2] (512, 227) 30.4 2.1 19.9
(ring equivalent of l2-SIS, m=17)
LyubSig [GLP12] (512, 223) 1.4 0.2 1.1
(based on decisional ring-LWE, m=2)
BLISS I [DDLL13] (512, 214) 0.9 0.3 0.7
BLISS II [DDLL13] (512, 214) 0.9 0.3 0.6

References

[ACPS09] Applebaum, B., Cash, D., Peikert, Ch., Sahai, A.: Fast cryptographic
primitives and circular-secure encryption based on hard learning prob-
lems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618.
Springer, Heidelberg (2009)

[ADV+12] El Yousfi Alaoui, S.M., Dagdelen, Ö., Véron, P., Galindo, D., Cayrel,
P.-L.: Extended security arguments for signature schemes. In:
Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol.
7374, pp. 19–34. Springer, Heidelberg (2012)

66 R. El Bansarkhani and J. Buchmann

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: 28th Annual ACM Symposium on Theory of Computing,
pp. 99–108. ACM, May 1996

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In:
Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)

[AP09] Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices.
In: STACS, vol. 3 of LIPIcs, pp. 75–86. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2009)

[Ban93] Banaszczyk, W.: New bounds in some transference theorems in the
geometry of numbers. Math. Ann. 296(4), 625–635 (1993)

[BDK+07] Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.:
Merkle signatures with virtually unlimited signature capacity. In: Katz,
J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer,
Heidelberg (2007)

[BLP+13] Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical
hardness of learning with errors. In: STOC (2013)

[BPR12] Banerjee, A., Peikert, Ch., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012)

[DD12] Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–
51. Springer, Heidelberg (2012)

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice sig-
natures and bimodal Gaussians. Cryptology ePrint Archive, Report
2013/383. http://eprint.iacr.org/2013/383 (2013)

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to iden-
tification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GGH97] Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from
lattice reduction problems. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

[GLP12] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based
cryptography: a signature scheme for embedded systems. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547.
Springer, Heidelberg (2012)

[GOPS13] Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed
records for lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto
2013. LNCS, vol. 7932, pp. 67–82. Springer, Heidelberg (2013)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.)
40th Annual ACM Symposium on Theory of Computing, pp. 197–206.
ACM, May 2008

[HHGP+03] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte,
W.: NTRUsign: digital signatures using the NTRU lattice. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg
(2003)

[Lar12] Larson, R.: Brief Calculus: An Applied Approach, vol. 9. (2012)
[LM08] Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based

digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp.
37–54. Springer, Heidelberg (2008)

http://eprint.iacr.org/2013/383

Improvement and Efficient Implementation of a Lattice-Based Signature 67

[LPR10] Lyubashevsky, V., Peikert, Ch., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

[LPR13] Lyubashevsky, V., Peikert, Ch., Regev, O.: A toolkit for ring-LWE cryp-
tography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

[Lyu08] Lyubashevsky, V.: Towards practical lattice-based cryptography (2008)
[Lyu09] Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and

factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–
755. Springer, Heidelberg (2012)

[Mic07] Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and effi-
cient one-way functions. Comput. Complex. 16(4), 365–411 (2007)

[MP12] Micciancio, D., Peikert, Ch.: Trapdoors for lattices: simpler, tighter,
faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on Gaussian measures. In: 45th Annual Symposium on Foundations of
Computer Science, pp. 372–381. IEEE Computer Society, October 2004

[MR08] Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein,
D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography,
pp. 147–191. Springer, Heidelberg (2008)

[MT84] Marsaglia, G., Tsang, W.: A fast, easily implemented method for sam-
pling from decreasing or symmetric unimodal density functions. SIAM
J. Sci. Stat. Comput. 5(2), 349–359 (1984)

[Pei10] Peikert, Ch.: An efficient and parallel Gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010)

[RS10] Rückert, M., Schneider, M.: Estimating the security of lattice-based
cryptosystems. http://eprint.iacr.org/2010/137 (2010)

[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM J. Comput. 26(5),
1484–1509 (1997)

[SSTX09] Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key
encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)

[Ste94] Stern, J.: A new identification scheme based on syndrome decoding. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer,
Heidelberg (1994)

[V97] Vron, P.: Improved identification schemes based on error-correcting
codes. Appl. Algebra Eng. Commun. Comput. 8, 57–69 (1997)

[WHCB13] Weiden, P., Hülsing, A., Cabarcas, D., Buchmann, J.: Instantiating tree-
less signature schemes. IACR Cryptology ePrint Archive (2013)

[Zha10] Zhang, F.: The Schur Complement and its Applications, vol. 4. Springer,
New York (2010)

http://eprint.iacr.org/2010/137

Towards Practical Lattice-Based Public-Key
Encryption on Reconfigurable Hardware

Thomas Pöppelmann(B) and Tim Güneysu

Horst Görtz Institute for IT-Security, Ruhr University Bochum, Bochum, Germany
thomas.poeppelmann@rub.de

Abstract. With this work we provide further evidence that lattice-
based cryptography is a promising and efficient alternative to secure
embedded applications. So far it is known for solid security reductions
but implementations of specific instances have often been reported to
be too complex beyond any practicability. In this work, we present an
efficient and scalable micro-code engine for Ring-LWE encryption that
combines polynomial multiplication based on the Number Theoretic
Transform (NTT), polynomial addition, subtraction, and Gaussian sam-
pling in a single unit. This unit can encrypt and decrypt a block in
26.19 µs and 16.80 µs on a Virtex-6 LX75T FPGA, respectively – at mod-
erate resource requirements of about 1506 slices and a few block RAMs.
Additionally, we provide solutions for several practical issues with Ring-
LWE encryption, including the reduction of ciphertext expansion, error
rate and constant-time operation. We hope that this contribution helps
to pave the way for the deployment of ideal lattice-based encryption in
future real-world systems.

Keywords: Ideal lattices · Ring-LWE · FPGA implementation

1 Introduction and Motivation

Resistance against quantum computers and long term security has been an issue
that cryptographers are trying so solve for some time [12]. However, while quite
a few alternative schemes and problem classes are available, not many of them
received the attention both from cryptanalysts and implementers that would
be needed to establish the confidence and efficiency for their deployment in
real-world systems. In the field of patent-free lattice-based public-key encryp-
tion there are a few promising proposals such as a provably secure NTRU vari-
ant [49] or the cryptosystem based on the (Ring) LWE problem [32,36]. For the
latter scheme Göttert et al. presented a proof-of-concept implementation in [22]
demonstrating that LWE encryption is feasible in software. However, their cor-
responding hardware implementation is quite large and can only be placed fully
on a Virtex-7 2000T and does not even fit onto the largest Xilinx Virtex-6 FPGA

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 68–85, 2014.
DOI: 10.1007/978-3-662-43414-7 4, © Springer-Verlag Berlin Heidelberg 2014

Towards Practical Lattice-Based Public-Key Encryption 69

for secure parameters.1 Several other important aspects for Ring-LWE encryp-
tion have also not been regarded yet, such as the reduction of the extensive
ciphertext expansion and constant-time operation to withstand timing attacks.

Contribution. In this work we aim to resolve the aforementioned deficiencies
and present an efficient hardware implementation of Ring-LWE encryption that
can be placed even on a low-cost Xilinx Spartan-6 FPGA. Our implementa-
tion of Ring-LWE encryption achieves significant performance, namely 42.88µs
to encrypt and 27.51 µs to decrypt a block, even with very moderate resource
requirements on the low-cost Spartan-6 family. Providing the evidence that Ring-
LWE encryption can be both fast and cheap in hardware, we hope to complement
the work by Göttert et al. [22] and demonstrate that lattice-based cryptogra-
phy is indeed a promising and practical alternative for asymmetric encryption
in future real-world systems. In summary, the contributions of this work are as
follows:

1. Efficient hardware implementation of Ring-LWE encryption. We present a
micro-code processor implementing Ring-LWE encryption as proposed by
[32,36] in hardware, capable to perform the Number Theoretic Transform
(NTT), polynomial additions and subtractions as well as Gaussian sampling.
For a fair comparison of our implementation with previous work, we use the
same parameters as in [22] and improve their results by at least an order
of magnitude considering throughput/area on a similar reconfigurable plat-
form. Moreover, our processor is designed as a versatile building block for the
implementation of future ideal lattice-based schemes and is not solely lim-
ited to Ring-LWE encryption. All parts of our implementation have constant
runtime and inherently provide resistance against timing attacks.

2. Efficient Gaussian sampling. We present a constant-time Gaussian sampler
implementing the inverse transform method. The sampler is optimized for
sampling from narrow Gaussian distributions and is the first hardware imple-
mentation of this method in the context of lattice-based cryptography.

3. Reducing ciphertext expansion and decryption failure rates. A major drawback
of Ring-LWE encryption is the large expansion of the ciphertext2 and the
occurrence of (rare) decryption errors. We analyze different approaches to
reduce the impact of both problems and harden Ring-LWE encryption for
deployment in real-world systems.

In order to allow third-party evaluation of our results we will make source
code files, test-benches and documentation available on our website.3

1 The authors report that the utilization of LUTs required for LWE encryption exceeds
the number of available LUTs on a Virtex-6 LX240T by 197 % and 410 % for para-
meters n = 256 and n = 512, respectively. Note that the Virtex-6 LX240T is a very
expensive (above e1000 as of August 2013) and large FPGA.

2 For example, the parameters used for implementation in [22] result in a ciphertext
expansion by a factor of 26.

3 See our web page at http://www.sha.rub.de/research/projects/lattice/

http://www.sha.rub.de/research/projects/lattice/

70 T. Pöppelmann and T. Güneysu

Outline. In Sect. 2 we introduce the implemented ring-based encryption
scheme. The implementation of our processor, the Gaussian sampler and the
cryptosystem are discussed in Sect. 3. In Sect. 4 we give detailed results includ-
ing a comparison with previous and related works and conclude with Sect. 5.

2 The Ring-LWEEncryptCryptosystem

In this section we briefly introduce the original definition of the implemented
Ring-LWE public key encryption system (Ring-LWEEncrypt) and propose
modifications in order to decrease ciphertext expansion and error rate without
affecting the security properties of the scheme.

2.1 Background on LWE

Since the seminal result by Ajtai [2] who proved a worst-case to average-case
reduction between several lattice problems, the whole field of lattice-based cryp-
tography has received significant attention. The reasons for this seems to be that
the underlying lattice problems are very versatile and allow the construction
of hierarchical identity based encryption (HIBE) [1] or homomorphic encryp-
tion [19,42] but have also led to the introduction of reasonably efficient public-
key encryption systems [22,32,36], signature schemes [14,23,34], and even hash
functions [35]. A significant long-term advantage of such schemes is that quan-
tum algorithms do not seem to yield significant improvements over classical ones
and that some schemes exhibit a security reduction that relates the hardness of
breaking the scheme to the presumably intractable problem of solving a worst-
case (ideal) lattice problem. This is a huge advantage to heuristic and patent-
protected schemes like NTRU [29], which are just related to lattice problems but
might suffer from yet not known weaknesses and had to repeatedly raise their
parameters as immediate reaction to attacks [28]. A particular example is the
NTRU signature scheme NTRUSign which has been completely broken [17,43].
As a consequence, while NTRU with larger parameters can be considered secure,
it seems to be worthwhile to investigate possible alternatives.

However, the biggest practical problem of lattice-based cryptography are
huge key sizes and also quite inefficient matrix-vector and matrix-matrix arith-
metic. This led to the definition of cyclic [40] and more generalized ideal lat-
tices [33] which correspond to ideals in the ring Z[x]/∈f∞ for some irreducible
polynomial f of degree n. While certain properties can be established for various
rings, in most cases the ring R = Zq[x]/∈xn +1∞ is used. Some papers proposing
parameters then also follow the methodology to choose n as a power of two and
q a prime such that q √ 1 mod 2n and thus support asymptotic quasi-linear
runtime by direct usage of FFT techniques. Recent work also suggests that q
does not have to be prime in order to allow security reductions [11].

Nowadays, the most popular average-case problem to base lattice-based cryp-
tography on is presumably the learning with errors (LWE) problem [48]. In order
to solve the decisional Ring-LWE problem in the ring R = Zq[x]/∈xn + 1∞, an

Towards Practical Lattice-Based Public-Key Encryption 71

attacker has to decide whether the samples (a1, t1), . . . , (am, tm) ∈ R × R are
chosen uniformly random or whether each ti = ais + ei with s, e1, . . . , em has
small coefficients from a Gaussian distribution Dσ [36].4 This distribution Dσ is
defined as the (one-dimensional) discrete Gaussian distribution on Z with stan-
dard deviation σ and mean 0. The probability of sampling x ∈ Z is ρσ(x)/ρσ(Z)
where ρσ(x) = exp (−x2

2σ2) and ρσ(Z) =
∑∞

k=−∞ ρσ(k). In this simple case the
standard deviation σ completely describes the Gaussian distribution. Note that
some works, e.g., [22,32] use the parameter s =

→
2πσ to describe the Gaussian.

2.2 Ring-LWEEncrypt

The properties of the Ring-LWE problem can be used to realize a semantically
secure public key encryption scheme with a reduction to decisional Ring-LWE.
The scheme has been introduced in the full version [37] of Lyubashevsky et
al. [36] and parameters have been proposed by Lindner and Peikert [32] as well
as Göttert et al. [22]. The scheme (Gen, Enc, Dec) is defined as follows and will
from now on be referred to as Ring-LWEEncrypt:

– Gen(a): Choose r1, r2 ≡ Dσ and let p = r1 − a · r2 ∈ R. The public key is p
and the secret key is r2 while r1 is just noise and not needed anymore after
key generation. The value a ∈ R can be defined as global constant or chosen
uniformly random during key generation.

– Enc(a, p,m ∈ {0, 1}n): Choose the noise terms e1, e2, e3 ≡ Dσ. Let m̄ =
encode(m) ∈ R, and compute the ciphertext [c1 = a · e1 + e2, c2 = p · e1 +
e3 + m̄] ∈ R2

– Dec(c = [c1, c2], r2): Output decode(c1 · r2 + c2) ∈ {0, 1}n.

During encryption the encoded message m̄ is added to pe1+e3 which is uniformly
random and thus hides the message. Decryption is only possible with knowledge
of r2 since otherwise the large term ae1r2 cannot be eliminated when computing
c1r2+c2. According to [32] the polynomial a can be chosen during key generation
(as part of each public key) or regarded as a global constant and should then
be generated from a public verifiable random generator (e.g., using a binary
interpretation of π). The encoding of the message of length n is necessary as
the noise given by e1r1 + e2r2 + e3 is still present after calculating c1r2 + c2 and
would prohibit the retrieval of the binary message after decryption. Note that the
noise is relatively small as all noise terms are sampled from a narrow Gaussian
distribution. With the simple threshold encoding encode(m) = q−1

2 m the value
q−1
2 is assigned only to each binary one of the string m. The corresponding

decoding function needs to test whether a received coefficient z ∈ [0..q − 1] is in
the interval q−1

4 ∼ z < 3 q−1
4 which is interpreted as one and zero otherwise. As

a consequence, the maximum error added to each coefficient must not be larger
that | q

4 | in order to decrypt correctly. The probability of an decryption error

4 Note that this is the definition of Ring-LWE in Hermite normal form where the
secret s is sampled from the noise distribution Dσ instead of uniformly random [37].

72 T. Pöppelmann and T. Güneysu

is mainly dominated by the tailcut and the standard deviation of the Gaussian
σ = s√

2π
. Decreasing s decreases the error probability but also negatively affects

the security of the scheme.

Parameter Selection. For details regarding parameter selection we refer to the
work by Lindner and Peikert [32] who propose the parameter sets (n, q, s) with
(192, 4093, 8.87), (256, 4093, 8.35), and (320, 4093, 8.00) for low, medium, and
high security levels, respectively. In this context, Lindner and Peikert [32] state
that medium security should be roughly considered equivalent to the security
of the symmetric AES-128 block cipher as the decoding attack requires an esti-
mated runtime of approximately 2120 s for the best runtime/advantage ratio.
However, they did not provide bit-security results due to the new nature of the
problem and several trade-offs in their attack.

In this context, the authors of [22] introduced hardware-friendly parameter
sets for medium (256, 7681, 11.31) and high security (512, 12289, 12.18). With
n being a power of two and q a prime such that q = 1 mod 2n, the Fast Fourier
Transform (FFT) in Zq (namely the Number Theoretic Transform (NTT)) can
be directly applied for polynomial multiplication with a quasi-linear runtime of
O(n log n). Increased security parameters (e.g., a larger n) have therefore much
less impact on the efficiency compared to other schemes [36].

Security Implications of Gaussian Sampling. For practical and efficiency reasons
it is common to bound the tail of the Gaussian. As an example, the authors
of the first proof-of-concept implementation of Ring-LWEEncrypt [22] have
chosen to bound their sampler to [−∩2s⊆, ∩2s⊆]. Unfortunately, they do not pro-
vide either a security analysis or justification for this specific value. In this
context, the probability of sampling ±24 which is out of this bound (recall
that ∩2s⊆ = ∩2 · 11.32⊆ = 23) is 6.505 · 10−8 and thus not negligible. How-
ever, when increasing the tail-cut up to a certain level it can be ensured that
certain values will only occur with a negligible probability. For [−48, 48], the
probability of sampling an x = ±49 is 2.4092 · 10−27 < 2−80 which is unlikely
to happen in a real world scenario. The overall quality of a Gaussian random
number generator (GRNG) can be measured by computing the statistical dis-
tance Δ(X,Y) = 1

2

∑
ω∈Ω |X(ω) − Y (ω)| over a finite domain Ω between the

probability of sampling a value x by the GRNG and the probability given by
ρσ(x)/ρσ(Z).

Since in general attacks on LWE work better for smaller secrets (see [3,4]
for a survey on current attacks) the tail-cut will certainly influence the security
level of the scheme. However, we are not aware of any detailed analysis whether
short tails or certain statistical distances lead to better attacks. Moreover, a
recent trend in lattice-based cryptography is to move away from Gaussian to
very small uniform distributions (e.g., −1/0/1) [23,41]. It is therefore not clear
whether a sampler has to have a statistical distance of 2−80 or 2−100 (which is
required for a worst-case to average-case reductions) in order to withstand practi-
cal attacks. Moreover the parameter choices for the Ring-LWEEncrypt scheme
and for most other practical lattice-based schemes already sacrifice the worst-
case to average-case reduction in order to obtain practical parameters (i.e., small

Towards Practical Lattice-Based Public-Key Encryption 73

keys). As a consequence, we primarily implemented a ±∩2s⊆ bound sampler for
straightforward comparison with the work by Göttert et al. [22] but also provide
details and implementation results for larger sampler instantiations that support
a much larger tail.

2.3 Improving Efficiency

In this section we propose efficient modifications to Ring-LWEEncrypt to
decrease the undesirable ciphertext expansion and the error rate at the same
level of security.

Reducing the Ciphertext Expansion. Threshold encoding was proposed in [22,32]
to transfer n bits resulting in an inflated ciphertext of size 2n log2 q. Efficiency is
further reduced if only a part of the n bits is used, for example to transfer a 128-
bit AES key. Moreover, the Ring-LWEEncrypt scheme suffers from random
decryption errors so that redundancy in the message m is required to correct
those errors. In the following we analyze a simple but effective way to reduce the
ciphertext expansion without significantly affecting the error rate. This approach
has been previously applied to homomorphic encryption schemes [9, Sect. 6.4],
[10, Sect. 4.2] and the idea is basically to cut-off a certain number of least signifi-
cant bits of c2 since they mostly carry noise but only few information supporting
the threshold decoding. We experimentally verified the applicability of this app-
roach in practice with regard to concrete parameters by measuring the error
rates for reduced versions of c2 as shown in Table 1 (u = 1).

Table 1. Bit-error rate for the encryption and decryption of 160,000,000 bytes of plain-
text when cutting off a certain number x of least significant bits of every coefficient of
c2 for the parameter set (n = 256, q = 7681, s = 11.31) where u is the parameter of
the additive threshold encoding (see Algorithm 1) and ±∈2s← the tailcut bound. For a
cutoff of 12 or 13 bits almost no message can be recovered.

u Cut-off x bits 0 1 2 3 4 5 6 7 8 9 10 11

1 Errors (103) 46 46 45.5 45.6 46 46.5 48.6 56.1 94.4 381 5359 135771
Error rate (10−5) 3.59 3.59 3.56 3.57 3.59 3.63 3.80 4.38 7.38 29.81 418.7 10610

2 Errors 26 20 26 27 23 21 21 32 71 957 125796 44 · 106

Error rate (10−8) 2.03 1.56 2.03 2.11 1.80 1.64 1.64 2.5 5.55 74.7 9830 34 · 105

As it turns out the error rate does not significantly increase – even if we
remove 7 least significant bits of every coefficient and thus have halved the size
of c2. It would also be possible to cut-off very few bits (e.g., 1 to 3) of c1 at
the cost of an higher error rate. A further extreme option to reduce ciphertext
expansion is to omit whole coefficients of c2 in case they are not used to trans-
fer message bits (e.g., to securely transport a symmetric key). Note that this
approach does not affect the concrete security level of the scheme as the mod-
ification does not involve any knowledge of the secret key or message and thus

74 T. Pöppelmann and T. Güneysu

does not leak any further information. When compared with much more compli-
cated and hardware consuming methods, e.g., the compression function for the
Lyubashevsky signature scheme presented in [23], this straightforward approach
is much more practical.

Decreasing the Error Rate. As noted above decryption of Ring-LWEEncrypt
is prone to undesired message bit-flips with some small probability. Such a faulty
decryption is certainly highly undesirable and can also negatively affect security
properties. One solution can be the subsequent application of forward error cor-
recting codes but such methods obviously introduce additional complexity in
hardware or software. As another approach, the error probability can be lowered
by modifying the threshold encoding scheme, i.e., instead of encoding one bit
into each coefficient of c2, a plaintext bit is now encoded into u coefficients of
c2. This additive threshold encoding algorithm is shown in Fig. 1 where encode
takes as input a plaintext bit-vector m of length ∃n

u≈ and outputs the threshold
encoded vector m̄ of size m. The decoding algorithm is given the encoded mes-
sage vector m̃ affected by an unknown error vector. The impact on the error rate
by using additive threshold encoding (u = 2) jointly with the removal of least
significant bits is shown in Table 1. Note that this significantly lowers the error
rate without any expensive encoding or decoding operations and is much more
efficient than, e.g., a simple repetition code [38].

Algorithm Encode(m = {0, 1}∼ n
u

∈, u)

1: for i=0 to ∪n
u
⊕ − 1 do

2: for j=0 to u-1 do
3: m̄[u · i + j] = m[i] · q−1

2

4: end for
5: end for
6: return m̄

Algorithm Decode(m̃ = {− q−1
2

, q−1
2

}n, u)

1: for i=0 to ∪n
u
⊕ do

2: s = 0
3: for j=0 to u-1 do
4: s = s + |m̃[u · i + j]|
5: end for
6: if s < u·q

4
then

7: m[i] = 0
8: else
9: m[i] = 1

10: end if
11: end for
12: return m

Fig. 1. Additive threshold encoding.

3 Implementation of Ring-LWEEncrypt

In this section we describe the design and implementation of our processor with
special focus on the efficient and flexible implementation of Gaussian sampling.

Towards Practical Lattice-Based Public-Key Encryption 75

3.1 Gaussian Sampling

Beside its versatile applicability in lattice-based cryptography, sampling of
Gaussian distributed numbers is also crucial in electrical engineering and infor-
mation technology, e.g., for the simulation of complex communication systems
(see [51] for a survey from this perspective). However, it is not clear how to
adapt continuous Gaussian samplers, like the ones presented in [25,31,54], for the
requirements of lattice-based cryptography. In the context of discrete Gaussian
sampling for lattice-based cryptography the most straightforward method is
rejection sampling. In this case an uniform integer x ∈ {−τσ, ..., τσ}, where
τ is the “tail-cut” factor, is chosen from a certain range depending on the secu-
rity parameter and then accepted with probability proportional to e−x2/2σ2

[20].
This method has been implemented in software in [22] but the success rate is
only approximately 20 % and requires costly floating point arithmetic (cf. to the
laziness approach in [16]). Another method is a table-based approach where a
memory array is filled with Gaussian distributed values and selected by a ran-
domly generated address. Unfortunately, a large resolution – resulting in a very
large table – is required for accurate sampling. It is not explicitly addressed
in [22] how larger values such as x = ∩2s⊆ for s = 6.67 with a probability of
Pr[x = 14] = 1.46 · 10−7 are accurately sampled from a table with a total reso-
lution of only 1024 entries. We further refer to [15, Table 2] for a comparison of
different methods to sample from a Gaussian distribution and a new approach.

Hardware Implementation Using the Inverse Transform Method. Since the afore-
mentioned methods seem to be unsuitable for an efficient hardware implemen-
tation we decided to use the inverse transform method. When applying this
method in general a table of cumulative probabilities pz = Pr(x � z : x ≡ Dσ)
for integers z ∈ [−τσ, ..., τσ] is computed with a precision of λ bits. For a uni-
formly random chosen value x from the interval [0, 1) the integer y ∈ Z is then
returned (still requiring costly floating point arithmetic) for which it holds that
pz−1 ∼ x < pz [15,18,44].

In hardware we operate with integers instead of floats by feeding a uni-
formly random value into a parallel array of comparators. Each comparator
ci compares its input to the commutative distribution function scaled to the
range of the PRNG outputting r bits. As we have to cut the tail at a certain
point, we compute the accumulated probability over the positive half (as it is
slightly smaller than 0.5) until we reach the maximum value j (e.g., j = ∩2s⊆)
so that w =

∑j
k=0 ρσ(x)/ρσ(Z). We then compute the values fed into the com-

parators as vk = 2r−1−1
w (vk−1 +

∑j
k=0 ρσ(x)/ρσ(Z)) for 0 < k ∼ j and with

v0 = 2r−1−1
2w ρσ(0)/ρσ(Z). Each comparator ci is preloaded with the rounded

value vi and outputs a one bit if the input was smaller or equal to vi. A sub-
sequent circuit then identifies the first comparator cl which returned a one bit
and outputs either l or −l.

The block diagram of the sampler is shown in Fig. 2 for the concrete parame-
ter set (n = 256, q = 7681, s = 11.32) where the output of the sampler is bound
to [−∩2s⊆, ∩2s⊆] = [−5.09σ, 5.09σ] and the amount of required randomness is

76 T. Pöppelmann and T. Güneysu

25 bits per sample. These random bits are supplied by a PRNG for which we
used the output of an AES block cipher operating in counter mode. Each 128-bit
output block of our AES-based PRNG allows sampling of 5 coefficients. One ran-
dom bit is used for sign determination while the other 24 bits form a uniformly
random value. Finally, the output of the sampler is buffered in a FIFO. When
leaving the FIFO, the values are lifted to the target domain [0, q−1]. Although it
is possible to generate a sampler directly in VHDL by computing the cumulative
distribution function on-the-fly during synthesis, we have implemented a Python
script for this purpose. The reason is that the VHDL floating point implemen-
tation only provides double accuracy while the Decimal5 data type supports
arbitrary precision. The Python script also performs a direct evaluation of the
properties of the sampler (e.g., statistical distance).

Fig. 2. Gaussian sampler using the inverse transform sampling method.

3.2 Ring-LWE Processor Architecture

The core of our processor is built around an NTT-based polynomial multiplier
which is described in [45]. The freely available implementation has been further
optimized and the architecture has been extended from a simple polynomial
multiplier into a full-blown and highly configurable micro-code engine. Note that
Aysu et al. [6] recently proposed some improvements to the architecture of [45] in
order to increase the efficiency and area usage of the polynomial multiplier. While
some improvements rely on their decision to fix the modulus q to 216 + 1 other
ideas are clearly applicable in future work and revisions of our implementations.
However, we do not fix q as the design goal of our hardware processor is the native
support for a large variety of ideal lattice-based schemes, including the most
common operations on polynomials like addition, subtraction, multiplication by
the NTT as well as sampling of Gaussian distributed polynomials. By supporting
an arbitrary number of internal registers (each can store one polynomial) realized
in block RAMs and by reusing the data path of the NTT multiplier for other
arithmetic operations we achieve high performance at low resource consumption.

General Description and Instruction Set. The datapath of our engine depicted
in Fig. 3 depends on the size of the reduction prime q and is thus log2 q as
polynomial coefficients are processed serially in a pipeline. Four registers are
5 http://docs.python.org/2/library/decimal.html

http://docs.python.org/2/library/decimal.html

Towards Practical Lattice-Based Public-Key Encryption 77

fixed where register R0 and R1 are part of the NTT block, while the Gaussian
sampler is connected to register R2. Register R3 is exported to upper layers and
operates as I/O port. More registers R4 to Rx can be flexibly enabled during
synthesis where each additional register can hold a polynomial with n elements of
size log2 q. The Switch matrix is a dynamic multiplexer that connects registers
to the ALU and the external interface and is designed to process statements in two-
operand form like R1 ≡ R1+R2. All additional registers Rx for x > 4 are placed
inside of the Register array component. The Decoder unit is responsible for
interpreting instructions that configure the switch matrix, determines whether
the ALU has to be used (SUB, ADD, MOV) or if NTT specific commands need
to invoke the NTT multiplier. To improve resource utilization of the overall
system, the butterfly unit of the NTT core is shared between the NTT multiplier
and the ALU.

Fig. 3. Architecture of our implementation of the Ring-LWEEncryptengine with a
particular instance of our generic lattice processor with three additional registers R4-6.

The most important instructions supported by the processor are the iterative
forward (NTT NTT) as well as the backward transform (NTT INTT) which take
≥n

2 log2 n cycles. Other instructions are for example used for the bit-reversal
step (NTT REV), point-wise multiplication (NTT PW MUL), addition (ADD),
or subtraction (SUB) – each consuming ≥n cycles. Note that the sampler and
the I/O port are just treated as general purpose registers. Thus no specific I/O
or sampling instructions are necessary and for example the MOV command
can be used. Note also that the implementation of the NTT is performed in
place and commands for the backward transformation (e.g., NTT PW MUL, or
NTT INTT) modify only register R1. Therefore, after a backward transform a
value in R0 is still available.

78 T. Pöppelmann and T. Güneysu

Implementation of Ring-LWEEncrypt. For our implementation we used the
medium and high security parameter sets as proposed in [22] which are specifi-
cally optimized for hardware. We further exploit the general characteristic of the
NTT which allows it to “decompose” a multiplication into two forward trans-
forms and one backward transform. If one coefficient is fixed or needed twice it
is wise to directly store it in NTT representation to save subsequent transfor-
mations. In Fig. 4 the modified algorithm is given which is more efficient since
the public constant a as well as the public and private keys p and r2 are stored
in NTT representation.

As a consequence, an encryption operation consists of a certain overhead, one
forward NTT transformation (n + 1

2n log2 n cycles), two backward transforms
(2 ·(2n+ 1

2n log2 n) cycles), two coefficient-wise multiplications (2n cycles), three
calls to the Gaussian sampling routine (3n cycles) and some additions as well
as data movement operations (3n cycles) which return the error vectors. For
decryption, we just need two NTT transformations, one coefficient-wise multi-
plications and one addition.

Domain Parameters
Temporary value: r1 = sample(), Global constant: ã = NTT(a)
Secret key: r̃2 = NTT(sample()), Public key: p̃ = NTT(r1 − INTT(ã◦r̃2))

Algorithm Enc(ã, p̃,m ⊆ {0, 1}n)

1: e1, e2, e3 = sample()
2: ẽ1 = NTT(e1)
3: h̃1 = ã◦ẽ1, h̃2 = p̃◦ẽ1
4: h1 = INTT(h̃1), h2 = INTT(h̃2)
5: c1 = h1 + e2
6: c2 = h2 + e3 + encode(m)

Algorithm Dec(c1, c2, r̃2)

1: h̃1 = NTT(c1)
2: h̃2 = c̃1◦r̃2
3: m = decode(INTT(h̃2) + c2)

Fig. 4. NTT-aware algorithms forRing-LWEEncrypt.

The top-level module (LWEenc) in Fig. 3 instantiates the ideal lattice proces-
sor and uses a block RAM as external interface to export or import ciphertexts
c1, c2, keys r2, p or messages m with straightforward clock domain separation
(see again Fig. 3). The processor is controlled by a finite state machine (FSM)
issuing commands to the lattice processor to perform encryption, decryption,
key import or key generation. It is configured with three general purpose regis-
ters R4-R6 in order to permanently store the public key p, the global constant
a and the private key r2. More registers for several key-pairs are also supported
but optional. The implementation supports pre-initialization of registers so that
all constant values and keys can be directly included in the (encrypted) bit-
stream. Note that, for encryption, the core is run similar to a stream cipher
as c1 and c2 can be computed independently from the message which is then
only added in the last step (e.g., comparable to the XOR operation used within
stream ciphers).

Towards Practical Lattice-Based Public-Key Encryption 79

4 Results and Performance

For performance analysis we primarily focus on Virtex-6 platforms (speed
grade -2) but would also like to emphasize that our solution can be efficiently
implemented even on a small and low-cost Spartan-6 FPGA. All results were
obtained after post-place and route (Post-PAR) with Xilinx ISE 14.2.

4.1 Gaussian Sampling

In Table 2 we summarize resource requirements of six setups of the implemented
comparator-based Gaussian sampler for different tail cuts and statistical dis-
tances. Our random number generator is a round based AES in counter mode
that computes a 128-bit AES block in 13 cycles and comprises 349 slices, 1181/
350 LUT/FF, two 18K block RAMs and runs with a maximum frequency of
about 265 MHz. Combined with this PRNG6, Gaussian sampling based on the
inverse transform method is efficient for small values of s (as typically used for
Ring-LWEEncrypt) but would not be suitable for larger Gaussian parame-
ters like, e.g., s =

→
2π2688 = 6737.8 for the treeless signature scheme presented

in [34]. While our sampler needs a huge number of random inputs, the AES
engine is still able to generate these numbers (for each encryption we need 3n
samples). Table 2 also shows that it is possible to realize an efficient sampler even
for a small statistical distance <2−80 since its resource consumption of roughly
250 slices is quite moderate (setup III/IV). With additional register levels and
pipelining for versions I/II we achieved the overall clock frequency for the whole
core reported in Table 3 in this section. As the PRNG does not provide enough
randomness to sample a value in every clock cycle it is not required to evaluate
the comparator array in every single cycle so that in particular setups III-VI can
use several clock cycles until output is provided. This lowers the critical path
and thus allows higher clock frequencies without costs for pipelining registers.
Setups V/VI are even more accurate and support (theoretical) requirements of a
statistical distance smaller than 2−100 [18]. However, then a faster PRNG would
be required as for n = 256 we would need 105 · 3n = 80640 bits of random input.

4.2 Performance of Ring-LWEEncrypt

Table 3 lists the resource consumption and performance of our implementation
of Ring-LWEEncrypt. As stated in Sect. 3.2 our implementation combines key
generation, encryption and decryption in a holistic design and would not signifi-
cantly benefit from removing any one of these functional units. The only excep-
tion might be a decryption-only core in which no Gaussian sampling is needed.

Table 4 compares the results achieved in this work with the implementation
by Göttert et al. [22] as well as other relevant asymmetric schemes and also
adds performance figures for a Spartan-6 instantiation. Note that a detailed
6 Generation of true random numbers is not in the scope of this work; we refer to the

survey by Varchola [52] how to achieve this.

80 T. Pöppelmann and T. Güneysu

Table 2. Performance, resource consumption, and quality of the core part (shaded
grey in Fig. 2) of the Gaussian sampler on a Virtex-6 LX75T (Post-PAR). The entry
rnd denotes the number of used random bits to sample one value.

Setup s Max s rnd Slices LUT/FF MHz Stat. distance

I 11.32 23 25 42 136/5 115 <2−22

II 12.18 25 25 46 149/5 118 <2−22

III 11.32 48 85 231 863/6 61 <2−80

IV 12.18 51 85 255 911/6 61 <2−80

V 11.32 53 105 314 1157/6 58 <2−100

VI 12.18 57 105 342 1248/6 50 <2−100

Table 3. Resource consumption and performance of the combined key generation,
encryption and decryption engine for the two different security levels on a Virtex-6
LX75T (Post-PAR). The public key requires n log2 q bits (when stored in NTT repre-
sentation), the private key n log2 q bits and the ciphertext 2n log2 q bits.

ytiruceShgiHytiruceSmuideMtcepsA
(n=256,q=7681,s=11.32) (n=512,q=12289,s=12.18)

R
es

o
u
rc

es Slices 1506 1887
LUT/FF 4549/3624 5595/4760
18K BRAM 12 14
DSP48E1 1 1

P
er

fo
rm

a
n
ce MHz 262 251

Key generation (cycles/time) 7235/27.61 s 14532/57.90 s
Encryption (cycles/time) 6861/26.19 s 13769/54.86 s
Decryption (cycles/time) 4404/16.80 s 8883/35.39 s

comparison with [22] is unfair due to inaccuracies of synthesis results (the Virtex-
6 LX240T FPGA used in [22] was overmapped so that the subsequent place-
and-route (PAR) step providing final results could not be performed). Figures
for clock frequency, overall slice consumption, and cycles counts for individual
operations or the whole encryption block are thus not given in [22]. We therefore
can only refer to numbers providing the resource consumption of registers and
LUT usage. For a rough comparison we apply the throughput to area (T/A)
metric and define area equivalent to the usage of LUTs due to the restriction
mentioned above. It turns out that our implementation for n = 256 is 32 times
smaller regarding key generation, 65 times smaller for encryption and 27 times
smaller for decryption, at a loss of a factor of about 2 and 3.3 in performance.
When employing the Bit/s

LUT metric for medium security encryption we achieve
9.77·106Bits
4549LUTs = 2147 while the work presented in [22] gives 31.8·106Bits

298016LUTs = 106. This
results in an improvement of a factor of roughly 20.7

7 For this comparison we assumed that for each encryption 256 bits are transmitted.

Towards Practical Lattice-Based Public-Key Encryption 81

In comparison with a recent implementations of the code-based Niederreiter
scheme [27] we are faster for decryption and we also use fewer resources on the
same platform. Another natural target for comparison is the patent-protected
NTRU scheme which has been implemented on a large number of architec-
tures [5,7,26]. The implementation in [30] is clearly faster than ours. However,
the implemented NTRU(251,3,12) variant in [30] seems to be less secure than
our scheme [28]. Unfortunately, we are not aware of any newer NTRU FPGA
implementations in order to determine the impact of increased security para-
meters on runtime and area consumption. In software, NTRU even seems to
be rather slow for higher security levels what can be obtained from the 256-
bit secure NTRU software implementation (ntruees787ep1) benchmarked using
the eBACS framework [8] with secret/public key sizes of 1854/1574 bytes and
a ciphertext of 1574 bytes. For the ideal lattice-based NTRU version presented
in [49], no implementation and concrete parameters have been published yet. In
comparison with ECC over prime curves (i.e., a single point multiplication [24])
and RSA (random-exponent 1024-bit exponentiation [50]) our implementation is
by an order of magnitude faster, scales better for higher security levels, and also
consumes less resources. However, we are not able to beat the recent binary curve
implementation of Rebeiro et al. [47] in terms of throughput and performance.

Table 4. Performance comparison of our proposal with other public key encryption
schemes (√80..128 bit) comparable to the medium security (n = 256, q = 7681, s =
11.31) parameter set which is capable of transferring 256-bit messages. Our implemen-
tation is versatile enough to perform encryption, decryption and key generation in a
single core. Figures denoted with an asterisk (*) are less accurate results obtained from
synthesis due to extensive overmapping of resources.

Scheme Device Resources Speed

Our work [Gen/Enc/Dec] S6LX16 4121 LUT/3513 FF/ 45.22 µs
(n=256) @160 MHz 14 BRAM(8K)/1 DSP48 42.88µs

27.51 µs
Our work [Gen/Enc/Dec] V6LX75T 4549 LUT/3624 FF/ 27.61 µs
(n=256) @262 MHz 12 BRAM(18K)/1 DSP48 26.19µs

16.80 µs
Ring-LWEEncrypt V6LX240T 146718 LUT/82463 FF -
[Gen/Enc/Dec] (n=256) [22] V6LX240T 298016 LUT/143396 FF 8.05µs*

V6LX240T 124158 LUT/65174 FF 8.10 µs
Niederreiter [Enc/Dec] [27] V6LX240T 888 LUT/875 FF/17 BRAM 0.66µs

V6LX240T 9409 LUT/12861 FF/ 57.78µs
12 BRAM

NTRU [Enc/Dec] [30] XCV1600E 27292 LUT/5160 FF 1.54 µs
1.41 µs

1024-bit mod. Exp. [50] XC4VFX12 3937 SLICE/17 DSP48 1.71 ms
ECC-P224 [24] XC4VFX12 1825 LUT/1892 FF/ 365.1µs

26 DSP48/ 11 BRAM
ECC-B233 [47] XC5VLX85T 18097 LUT/5644 SLICE 12.3 µs

82 T. Pöppelmann and T. Güneysu

4.3 Constant Time Operation

Side-channel attacks are a problem for all physical implementations [39]. A sim-
ple target for a side-channel attack is the use of timing information of the security
algorithm by measuring execution time or cycles. Our implementation of Ring-
LWEEncrypt is fully pipelined and has no data-dependent operations. The
processor core does not support any branches and Gaussian sampling based on
the inverse transform operates in constant time. Summarizing, all cryptographic
operations of our core are timing-invariant.

5 Conclusions and Future Work

In this work we presented a novel implementation of the ideal lattice-based Ring-
LWE encryption scheme that fits even on a low-cost Spartan-6 FPGA. According
to our findings, we improved the results obtained in the previous work of [22] by
at least an order of magnitude using the same FPGA platform and much less
resources.

Future work can combine our hardware engine with error correction facili-
ties and CCA2 conversion. Additionally, countermeasures against further side-
channel and fault-injection attacks need to be considered. As we intend to make
our implementation publicly available, our work also offers the chance for third-
party side-channel evaluation and cryptanalysis (e.g., exploiting the concrete
implementation of the Gaussian sampler). Since our processor could also be uti-
lized by other lattice-based cryptosystems, the provably secure NTRU variant
presented in [49] can be another target for implementation. Moreover, a recent
proposal of a lattice-based signature scheme by Ducas et al. [14] uses exactly
the same parameters (n = 512, q = 12289) as Ring-LWEEncrypt and is thus
a natural target for implementation based on our micro-code engine.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert [21], pp. 553–572

2. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

3. Albrecht, M., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the complexity
of BKW algorithm against LWE. In: SCC’12: Proceedings of the 3nd International
Conference on Symbolic Computation and Cryptography, Castro-Urdiales, July
2012, pp. 100–107 (2012)

4. Albrecht, M., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the complex-
ity of the Arora-Ge algorithm against LWE. In: SCC’12: Proceedings of the 3nd
International Conference on Symbolic Computation and Cryptography, Castro-
Urdiales, July 2012, pp. 93–99 (2012)

5. Atici, A.C., Batina, L., Fan, J., Verbauwhede, I., Örs, S.B.: Low-cost implemen-
tations of NTRU for pervasive security. In: ASAP, pp. 79–84. IEEE Computer
Society (2008)

Towards Practical Lattice-Based Public-Key Encryption 83

6. Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient FPGA imple-
mentations of lattice-based cryptography. In: IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 2013. IEEE (2013, to appear)

7. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in
constrained devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001)

8. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems. http://bench.cr.yp.to. Accessed 10 May 2013

9. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-
based fully homomorphic encryption scheme. IACR Cryptol. ePrint Arch. 2013,
75 (2013)

10. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012)

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.)
STOC, pp. 575–584. ACM (2013)

12. Buchmann, J., May, A., Vollmer, U.: Perspectives for cryptographic long-term
security. Commun. ACM 49(9), 50–55 (2006)

13. Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I. LNCS, vol. 8042. Springer,
Heidelberg (2013)

14. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti and Garay [13], pp. 40–56. Proceedings version of
[15]

15. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. IACR Cryptol. ePrint Arch. 2013, 383 (2013). (Full version of
[14])

16. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-point
arithmetic. In: Wang and Sako [53], pp. 415–432

17. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang and Sako [53], pp. 433–450

18. Galbraith, S.D., Dwarakanath, N.C.: Efficient sampling from discrete gaussians for
lattice-based cryptography on a constrained device

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

21. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010)

22. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff
and Schaumont [46], pp. 512–529

23. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff and Schaumont [46],
pp. 530–547

24. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

http://bench.cr.yp.to

84 T. Pöppelmann and T. Güneysu

25. Gutierrez, R., Torres, V., Valls, J.: Hardware architecture of a Gaussian noise
generator based on the inversion method. IEEE Trans. Circ. Syst. 59-II(8), 501–
505 (2012)

26. Hermans, J., Vercauteren, F., Preneel, B.: Speed records for NTRU. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 73–88. Springer, Heidelberg (2010)

27. Heyse, S., Güneysu, T.: Towards one cycle per bit asymmetric encryption: code-
based cryptography on reconfigurable hardware. In: Prouff and Schaumont [46],
pp. 340–355

28. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)

29. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

30. Kamal, A.A., Youssef, A.M.: An FPGA implementation of the NTRUEncrypt
cryptosystem. In: 2009 International Conference on Microelectronics (ICM), pp.
209–212. IEEE (2009)

31. Lee, D.-U., Luk, W., Villasenor, J.D., Zhang, G., Leong, P.H.-W.: A hardware
Gaussian noise generator using the Wallace method. IEEE Trans. Very Large Scale
Integr. VLSI Syst. 13(8), 911–920 (2005)

32. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

33. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

34. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

35. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: a modest pro-
posal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72.
Springer, Heidelberg (2008)

36. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert [21], pp. 1–23. Proceedings version of [37]

37. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. IACR Cryptol. ePrint Arch. 2012, 230 (2012). (Full version of [36])

38. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. vol.
16, 762 pp, Elsevier Science Publishers B. V., North-Holland (2006). ISBN: 0-444-
85193-3

39. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security), 3rd edn. Springer, New York
(2007)

40. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Comput. Complex. 16(4), 365–411 (2007)

41. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti and Garay [13], pp. 21–39

42. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, CCSW ’11, pp. 113–124. ACM, New York (2011)

Towards Practical Lattice-Based Public-Key Encryption 85

43. Nguyên, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006)

44. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

45. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryp-
tography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LatinCrypt
2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012)

46. Prouff, E., Schaumont, P. (eds.): CHES 2012. LNCS, vol. 7428. Springer, Heidel-
berg (2012)

47. Rebeiro, C., Roy, S.S., Mukhopadhyay, D.: Pushing the limits of high-speed
GF(2m) elliptic curve scalar multiplication on FPGAs. In: Prouff and Schaumont
[46], pp. 494–511

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)

49. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011)

50. Suzuki, D.: How to maximize the potential of FPGA resources for modular expo-
nentiation. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 272–288. Springer, Heidelberg (2007)

51. Thomas, D.B., Luk, W., Leong, P.H.W., Villasenor, J.D.: Gaussian random number
generators. ACM Comput. Surv. 39(4), 11:1–11:38 (2007)

52. Varchola, M.: FPGA based true random number generators for embedded crypto-
graphic applications. Ph.D. thesis, Technical University of Kosice (2008)

53. Wang, X., Sako, K. (eds.): ASIACRYPT 2012. LNCS, vol. 7658. Springer, Heidel-
berg (2012)

54. Zhang, G., Leong, P.H.-W., Lee, D.-U., Villasenor, J.D., Cheung, R.C.C., Luk, W.:
Ziggurat-based hardware Gaussian random number generator. In: International
Conference on Field Programmable Logic and Applications, 2005, pp. 275–280
(2005)

Invited Talk

Practical Approaches to Varying Network Size
in Combinatorial Key Predistribution Schemes

Kevin Henry1, Maura B. Paterson2, and Douglas R. Stinson1(B)

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

k2henry@cs.uwaterloo.ca, dstinson@math.uwaterloo.ca
2 Department of Economics, Mathematics and Statistics,

Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
m.paterson@bbk.ac.uk

Abstract. Combinatorial key predistribution schemes can provide a
practical solution to the problem of distributing symmetric keys to the
nodes of a wireless sensor network. Such schemes often inherently suit
networks in which the number of nodes belongs to some restricted set
of values (such as powers of primes). In a recent paper, Bose, Dey and
Mukerjee have suggested that this might pose a problem, since discarding
keyrings to suit a smaller network might adversely affect the properties
of the scheme.

In this paper we explore this issue, with specific reference to classes
of key predistribution schemes based on transversal designs. We demon-
strate through experiments that, for a wide range of parameters, ran-
domly removing keyrings in fact has a negligible and largely predictable
effect on the parameters of the scheme. In order to facilitate these com-
putations, we provide a new, efficient, generally applicable approach
to computing important properties of combinatorial key predistribution
schemes.

We also show that the structure of a resolvable transversal design
can be exploited to give a deterministic method of removing keyrings to
adjust the network size, in such a way that the properties of the resulting
scheme are easy to analyse. We show that these schemes have the same
asymptotic properties as the transversal design schemes on which they
are based, and that for most parameter choices their behaviour is very
similar.

Keywords: Wireless sensor network · Key predistribution scheme ·
Combinatorial design

1 Introduction

In this paper, we consider wireless sensor networks (WSNs) consisting of a
large number m of identical sensor nodes that are randomly deployed over a

D. Stinson’s research is supported by NSERC discovery grant 203114-11.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 89–117, 2014.
DOI: 10.1007/978-3-662-43414-7 5, c∞ Springer-Verlag Berlin Heidelberg 2014

90 K. Henry et al.

target area. After deployment, each node communicates in a wireless manner
with other nodes that are within communication range, thus forming an ad hoc
network. Due to the wireless nature of the communication, it is desirable for
cryptographic tools to be used for provision of secrecy, data integrity, and/or
authentication. The nodes’ restricted computational ability and battery power
mean that, in many situations, it is preferable to use symmetric algorithms
rather than relying on more computationally-intensive public key techniques.
This requires nodes to share keys; one standard approach to providing such keys
is the use of a key predistribution scheme (KPS), in which keys are stored in
the nodes’ keyrings prior to deployment. For example, in the seminal scheme
of Eschenauer and Gligor [4], the keys are randomly drawn from a common
keypool.

After the nodes have been deployed, nodes that are within communication
range execute a shared key discovery protocol to determine which keys they
have in common. Two nodes that share at least φ keys (for some predetermined
intersection threshold φ ∈ 1) use all their common keys to derive a new key that
is used to secure communication between them. This is referred to as a secure
link between these nodes. There exists a large quantity of literature relating to
the construction of KPSs for WSNs; surveys include [2,7,10].

KPSs based on combinatorial structures such as designs or codes have been
studied as an alternative to random schemes (see [6,9] for surveys of combinato-
rial schemes). Such schemes have several advantages over the random schemes:
for instance, they make it possible to prove the scheme has desirable properties
relating to connectivity and resilience, they enable more efficient discovery of
shared keys, and they reduce the amount of randomness required when instan-
tiating the schemes [5].

Key predistribution schemes for WSNs are typically evaluated using certain
metrics that relate to the performance of the resulting networks. Firstly, it is
desirable to restrict the total amount of memory each node must use for stor-
ing keys/keying material. Secondly, after the nodes have been deployed, it is
desirable for there to be as many secure links as possible between neighbouring
nodes, so as to increase the (secure) connectivity of the resulting network. The
extent to which a KPS facilitates achieving this objective is frequently measured
in terms of the quantity Pr1, which denotes the probability that any two given
nodes share at least φ common keys.

Finally, we wish to measure the scheme’s ability to withstand adversarial
attack. A widely studied attack model, which we follow in this paper, is that
of random node capture [4], where the adversary can eavesdrop on all communi-
cation in the network, and can also comprise random nodes in order to extract
any keys/keying material they contain. The resilience of a KPS in the face of an
attacker is expressed in terms of the quantity fail(s), which is defined to be the
probability that a randomly chosen link is broken when an attacker compromises
s nodes uniformly at random, and then extracts their keys.

For simplicity, we focus particularly on fail(1) in this work. In this case, a
link {A,B} is broken by another node C when A ∞ B √ C, where A,B and C
denote the sets of keys held by the three corresponding nodes.

Practical Approaches to Varying Network Size in Combinatorial KPS 91

There is an inherent tension between the need to provide good connectivity
and the need to maintain a high level of resilience without requiring an excessive
number of keys to be stored. Designing a KPS involves finding a scheme that
delivers a good tradeoff between these properties, and which is sufficiently flexible
to be useful for a range of practical choices of parameters such as network size,
available storage and desired level of security.

One feature of combinatorial schemes that could be viewed as a drawback is
the fact that, due to the structure of the combinatorial object used, the number
of nodes in the scheme may be required to be of a particular form, such as a
power of a prime, for example. If the number n of nodes in the network in which
we wish to employ such a scheme is not of this form, then the most commonly
suggested remedy is to take the smallest number of that form that is larger
than n, and simply select some (randomly chosen) subset of n keyrings from the
resulting scheme (e.g., see [5]). In a recent paper [1], Bose, Dey and Mukerjee have
suggested that removing keyrings in this manner from a combinatorial scheme
may adversely affect its properties, thus negating some of the main benefits of
such schemes. Instead, they propose a deterministic KPS in which various block
designs are combined to give a scheme in which the number of keyrings can be
varied directly in a more flexible manner.

In this paper, we examine more closely the actual effects of removing keyrings
from a combinatorial KPS. We focus specifically on the family of schemes pro-
posed by Lee and Stinson based on transversal designs [5], since they have been
shown to behave well for a wide range of parameters [9]. In Sect. 2, we exploit
the structure of resolvable transversal designs to propose a deterministic method
for selecting keyrings to remove from the schemes of Lee and Stinson without
unduly affecting their performance. The properties of these modified schemes
are easy to analyse using the framework established in [9], and we exploit this
feature to compare their performance directly with the combinatorial schemes
from which they were derived, demonstrating that they yield a family of schemes
with a flexible choice of parameters whose properties compare favourably with
those of existing schemes.

In addition, for a broad range of parameter choices, we consider networks
consisting of various numbers of nodes with keyrings chosen uniformly at random
from transversal design KPSs, and we compute the mean and standard deviation
of the resulting values of the security and performance metrics for these schemes.
The results, given in Sect. 3.2, demonstrate that the change in these metrics as
keyrings are removed is in fact very limited, and largely predictable.

Computing properties of schemes obtained by randomly deleting some
number of keyrings from a combinatorial scheme can be time-consuming.
Therefore, in Sect. 4 we describe a new approach to facilitate the efficient
evaluation of metrics for connectivity and resilience in general KPSs. This app-
roach is based on some new formulas for these metrics that are of independent
interest.

92 K. Henry et al.

1.1 Overview of the Construction and Analysis of Combinatorial
Key Predistribution Schemes

A set system (X,A) consists of a finite set X of points, together with a finite
set A of subsets of X, which are known as blocks. A set system can be used to
construct a KPS by associating each key in a certain keyspace with an element
of X and each node with an element of A, so that a node is preloaded with the
keys that correspond to points lying in its corresponding block. The point x acts
as a key identifier for the corresponding secret key. Key identifiers (and which
nodes hold which key identifiers) are public information, whereas the values of
the keys are secret (known only to the nodes that hold them).

Example 1. Let

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and
A = {123, 456, 789, 147, 258, 369,

159, 267, 348, 168, 249, 357}.

Then (X,A) is a set system in which there are nine points and twelve blocks.
Each block contains three points. The associated KPS will have 12 nodes, each
of which possesses three of the nine secret keys.

It is easy to see that, in this model, the Eschenauer-Gligor scheme [4] is
obtained when the underlying set system consists of n random k-subsets of the
v-set X. On the other hand, combinatorial key predistribution schemes are typ-
ically based on set systems arising from combinatorial objects with nice proper-
ties that ensure the resulting schemes perform well and are amenable to analysis.
Particular examples of combinatorial objects that have been proposed for use in
key distribution in this way include projective planes, generalised quadrangles,
configurations, common intersection designs, transversal designs of strength 2 or
3, partially balanced incomplete block designs, inversive planes [3], orthogonal
arrays, Reed-Solomon codes, mutually-orthogonal Latin squares, and rational
normal curves in projective spaces (see [9] for a survey and analysis of such
schemes).

In this paper, we focus mainly on transversal designs, which we define now.

Definition 1. Let t, n and k be positive integers such that t ≤ k ≤ n. A transver-
sal design TD(t,k,n) is a triple (X,H,A), where X is a finite set of cardinality
kn, H is a partition of X into k parts (called groups) of size n and A is a set
of k-subsets of X (called blocks), which satisfy the following properties:

1. |H ∞ A| = 1 for every H → H and every A → A, and
2. every subset of t elements of X from t different groups occurs in exactly one

block in A.

The parameter t is called the strength of the transversal design.

Practical Approaches to Varying Network Size in Combinatorial KPS 93

We note that transversal designs are equivalent to other familiar combinato-
rial objects such as orthogonal arrays and maximum distance separable (MDS)
codes; see [9, Sect. 2.7] for further discussion on these equivalences.

Example 2. Lee and Stinson [5] proposed a family of combinatorial KPSs based
on transversal designs TD(2, k, p). The set systems they use can be constructed
explicitly as follows:

For p a prime and k an integer with 2 ≤ k ≤ p we construct a TD(2, k, p) by
letting the points be all elements of the form (a, b) where a → {0, 1, . . . , k − 1}
and b → Zp. The transversal design has p2 blocks, which are given by the sets of
the form

Ai,j = {(x, ix + j (mod p))|0 ≤ x ≤ k − 1}.

This construction can be generalised in an obvious way by replacing Zp by the
finite field GF(n). Hence, we can obtain a transversal design TD(2, k, n) with n2

blocks for any prime power n. It is straightforward to show that in this scheme
any two nodes share either 1 key or 0 keys; as such we specify that φ = 1 and
hence two neighbouring nodes form a secure link if they share one common key.

To construct a transversal design of strength 3 (a TD(3, k, p)) the points are
taken to be all elements of the form (a, b) where a → {0, 1, . . . , k−1} and b → Zp,
as before. For each of the p3 polynomials f in Zp[x] of degree at most 2 we obtain
a block by taking the set of points of the form

Af = {(x, f(x) (mod p))|0 ≤ x ≤ k − 1}.

Once again, we can replace Zp by the finite field GF(n) in this construction and
obtain a TD(3, k, n) for any prime power n. Two nodes in this scheme share
either 0, 1 or 2 keys. Hence we can choose to use an intersection threshold of
either φ = 1 or φ = 2 for specifying the minimum number of keys that must be
shared by two nodes before they can form a secure link.

The values of fail(1) and Pr1 for these schemes, in the case of strength 2 with
φ = 1 and strength 3 with φ = 1 or φ = 2, are given in Table 1.

For the transversal designs TD(t, k, n) for both t = 2 and t = 3 described
above, the points of the design can be partitioned into k subsets Hi, for 0 ≤ i ≤
k − 1, by setting

Hi = {(i, b)|b → GF(n)}.

These sets Hi are known as the groups of the transversal design. It is straight-
forward to show that each subset of t points of the transversal design from t
different groups occur together in exactly one block of the transversal design.

Example 3. Bose et al. [1] proposed a family of KPSs obtained by combining φ
designs that are the duals of designs derived from association schemes. For the
sake of clarity, we will restrict ourselves to the specific instantiation in which the
designs are all copies of a TD(2, k, n).

94 K. Henry et al.

In the case of φ = 1, the Bose et al. scheme instantiated with a TD(2, k, n)
coincides exactly with Lee and Stinson’s transversal design scheme.

For φ = 2, they take two copies of a TD(2, k, n) and construct a new set
system by letting the set of points be the union of the sets of points of each
of the designs, and by letting the blocks be given by all possible unions of the
form B1 ≡ B2 where B1 is a block of the first TD(2, k, n) and B2 is a block of
the second TD(2, k, n). This scheme has 2kn points, and n4 blocks. Each block
contains 2k points, and two blocks intersect in either 0, 1, 2, k, or k + 1 points.

As observed in [5], combinatorial schemes possess several distinct advantages
as compared to random schemes such as Eschenauer-Gligor:

– the deterministic nature and regular structure of combinatorial schemes ensure
that the precise values of metrics of the scheme such as fail(1) and Pr1 can be
computed exactly, rather than simply the expected value of these quantities;

– combinatorial schemes reduce the quantity of random numbers that must be
generated in setting up the scheme;

– most importantly, for many combinatorial schemes, their regular structure
leads to very efficient algorithms for performing tasks such as shared key
discovery once the nodes are deployed.

As such, combinatorial schemes can represent an efficient and effective way of
establishing keys in many WSN scenarios.

A survey and analysis of many existing combinatorial schemes was carried out
in [9]. The concept of a partially balanced t-design (PBtD) was introduced, and
explicit formulas for evaluating fail(1) and Pr1 were given for any combinatorial
scheme that can be constructed from a PBtD.

Definition 2. For positive integers v, k, t and ψi with 0 ≤ i ≤ t − 1, a t −
(v, k, ψ0, ψ1, . . . , ψt−i)-partially balanced t-design is a pair (X,A) with the fol-
lowing properties:

1. X is a finite set whose elements are referred to as points, and A is a finite
set of k-subsets of X; its elements are referred to as blocks.

2. There are ψ0 blocks in A.
3. For 1 ≤ i ≤ t − 1, each subset of i points of X occurs in either no blocks, or

in exactly ψi blocks.
4. For t ≤ i ≤ k, each subset of i points occurs in either 0 or 1 blocks.

Paterson and Stinson [9] showed that a wide range of existing combinatorial
KPSs (including KPSs constructed from transversal designs) could be modelled
as PBtDs. The advantage of doing so is that the properties of these schemes can
easily be evaluated and compared with the aid of the formulas given in [9]. The
resulting values for a range of schemes are given in Table 1. The transversal-
design based schemes described in Example 2 were shown to provide a good
degree of flexibility for the construction of KPSs relative to other PBtDs, since
they are easily constructed for a wide range of useful parameters, the block size

Practical Approaches to Varying Network Size in Combinatorial KPS 95

can be chosen independently of the network size, and the values of t and φ can
also be varied independently.

The KPSs of Bose et al. [1] are not PBtDs, and hence they cannot be analysed
directly using the approach of [9]. One of the motivations behind their schemes is
to provide constructions that can yield KPSs for a flexible choice of network size;
in [1], they note that “the number of nodes need not be of the particular forms
p2 or p3, with p prime or prime power”. The traditional view of combinatorial
construction of KPSs is that, provided a range of parameters is available, then
if a specific network size n is desired it suffices to choose parameters to give
a scheme that suits a network of size greater than n and simply discard the
unneeded keyrings. Bose et al. [1] object (with particular reference to [5]) that
“if we then discard the unnecessary node allocations to get the final scheme for
use, this final scheme will not preserve the Pr1 and fail(s) values of the original
scheme and hence the properties of the final scheme in this regard can become
quite erratic” [1]. One main goal of our paper is to refute this statement.

1.2 Outline of the Paper

In Sect. 2, we present two approaches to increasing the flexibility of combinatorial
predistribution schemes based on transversal designs. One approach is random-
ized and the other is deterministic. In Sect. 3, we perform extensive comparisons
of our generalized constructions to the original transversal design schemes. In
Sect. 4, we derive new formulas that facilitate the computation of metrics for
connectivity and resilience for arbitrary key predistribution schemes based on
set systems. Finally, Sect. 5 is a short conclusion.

2 Two Approaches to Varying the Network Size in KPSs
based on Transversal Designs

In this section we consider two distinct approaches to varying the network size
in the transversal design-based KPSs of Lee and Stinson. One option is to use
the standard approach of randomly removing blocks from the design.

Scheme 1 (Random scheme). Suppose a KPS is desired for a network con-
taining m nodes. Let n be the smallest prime power satisfying n2 ∈ m. Then by
constructing a TD(2, k, n) and selecting a subset of m blocks uniformly at random
we obtain a set system that can be used to provide a KPS for the network.

Similarly, we can construct a KPS for this network based on a transversal
design of strength 2 by taking n to be the smallest prime power with n3 ∈ m,
and then selecting m blocks uniformly at random from the set of blocks of a
TD(3, k, n).

The benefits of such an approach include its simplicity and the fact that it
can be applied for any value of m. It is a very natural approach, given that it
mirrors precisely the commonly anticipated situation in which a small number of

96 K. Henry et al.

nodes may fail or run out of power after deployment. We will see that this scheme
performs well in practice: in Sect. 3.2 we demonstrate that for a wide range of
parameter choices, restricting to a random subset of blocks of a TD(2, k, n) does
not adversely affect the expected performance of schemes based on these designs.
Furthermore, we still retain some desirable properties of combinatorial schemes
such as efficient shared key discovery.

One of the other underlying motivations of using combinatorial designs to
construct KPSs is the fact that their deterministic and highly structured nature
allows us to guarantee the values they attain for metrics such as fail(1) and Pr1. If
blocks are deleted at random, we lose these guarantees, even though diminished
performance is very unlikely. In this section we propose a second technique, to
overcome this possible drawback. We demonstrate how to exploit the structure
of transversal designs in order to select subsets of the blocks deterministically in
such a way that the precise performance of the resulting structure is straightfor-
ward to evaluate. Specifically, we will make use of resolvable transversal designs
to accomplish this objective.

2.1 Resolvable Transversal Designs of Strength 2

Definition 3. A transversal design TD(2, k, n) is said to be resolvable if it is
possible to partition the blocks of the design into sets B1,B2, . . . ,Bn, such that
each point of the design belongs to precisely one block in each set. The sets Bi

are known as parallel classes of the design.

Resolvable transversal designs have previously been exploited for construct-
ing KPSs suited for networks where there is group deployment of nodes; see [8].
The transversal design KPSs proposed by Lee and Stinson do not require the
resolvability property; however, the transversal designs TD(2, k, n) used in [5]
are in fact resolvable.

Example 4. For the TD(2, k, n) described in Example 2, the parallel classes of
blocks are given by

Bi = {Ai,j |j → GF(n)}, i → GF(n).

It is straightforward to see that no point lies in two distinct blocks of a given
parallel class, since if a point (x, y) were in blocks Ai,j and Ai,h, this would
imply that y = ix + j and also y = ix + h, whence j = h.

A resolvable transversal design TD(2, k, n) has n parallel classes with n blocks
in each class. We propose using such designs for key predistribution as follows:

Scheme 2 (Linear scheme). We construct a set system for use in a KPS by
starting with a resolvable TD(2, k, n), where n is a prime power. Let λ be an
integer between 1 and n. Select λ parallel classes of blocks of the design, and let
the blocks in these parallel classes be the blocks of the set system. We refer to
the resulting set system as a TD(2, k, n, λ).

Practical Approaches to Varying Network Size in Combinatorial KPS 97

As each parallel class contains n blocks, this means that Scheme 2 yields
a KPS with λn keyrings. This number can be varied as required by choosing
an appropriate value of λ: roughly speaking, we require that n ∈ ∼

m and λ ∩
m/n. One nice feature of this method of choosing blocks is that the resulting
incidence structure is in fact a PBtD, and hence its properties can be determined
in a straightforward manner simply by using the formulas given in [9]. We now
perform this analysis to show that Scheme 2 performs well even for comparatively
small values of λ.

Theorem 1. A TD(2, k, n, λ) is a 2-(kn, k, λn, λ)-PBtD

Proof. Take λ parallel classes of blocks from a resolvable TD(2, k, n), and let A
be the set of blocks in these parallel classes. Let X be the set of points in the
TD(2, k, n); we note that X contains kn points. Now, A contains ψ0 = λn blocks,
each containing k points. Every point of X is contained in precisely one block
in each parallel class, and hence is contained in precisely ψ1 = λ blocks of A.
Furthermore, since each pair of points in X is contained in either 0 or 1 blocks
of the TD(2, k, n), it follows that any pair of points is contained in either 0 or 1
blocks of A. Thus (X,A) satisfies all the properties of a 2-(kn, k, λn, λ)-PBtD.

The values of fail(1) and Pr1 for a PBtD are easy to compute systematically
using the explicit formulas given in [9]. For a given block B of a PBtD and a
point C on that block, denote by μ∈(1) the number of blocks A of the PBtD
such that A∞B = {C} (it was shown in [9] that this value is independent of the
choice of point and block.) Define a link to be a pair of blocks with nonempty
intersection. We let L denote the total number of links in a PBtD, we let ρ
denote the number of links in which a given block B is contained, and we let
η denote the number of links {A,C} with B ⊆= A,C such that A ∞ C ∃ B
(again, these values do not depend on the specific choice of B). Then, applying
the formulas of [9] to a 2-(kn, k, λn, λ)-PBtD, we have:

μ∈(1) = ψ1 − 1 = λ − 1,

ρ = kμ∈(1) = k(λ − 1),

η = μ∈(1)
(

ψ1

2
− 1

)

k = (λ − 1)
(

λ

2
− 1

)

k,

L =
bρ

2
=

λnk(λ − 1)
2

,

fail(1) =
η

L − ρ
=

λ − 2
λn − 2

,

Pr1 =
ρ

b − 1
=

k(λ − 1)
λn − 1

.

In the case where λ = n, a TD(2, k, n, λ) is simply a TD(2, k, n), and hence
Scheme 2 is a generalisation of the corresponding scheme of Lee and Stinson.
The formulas computed above for fail(1) and Pr1 can be seen to agree with the
corresponding formulas for Lee and Stinson’s scheme in the case where λ = n.

98 K. Henry et al.

2.2 Transversal Designs of Higher Strength

Just as in the case of transversal designs of strength 2, it is possible to determin-
istically select subsets of blocks from transversal designs of higher strength, such
as the TD(3, k, n) suggested for use in key predistribution by Lee and Stinson,
in a way that allows flexibility in the number of keyrings of the resulting scheme,
while still maintaining good performance. We begin by illustrating a useful app-
roach to partitioning the blocks of the TD(3, k, n) described in Example 2.

Example 5. Let n be a prime power and let X be the set of points of one of the
TD(3, k, n) whose construction is described in Example 2. We can partition the
blocks of this design into sets B1,B2, . . . ,Bn by defining

Bi = {Af |f(x) = ix2 + ax + b for some a, b → GF(n)}, i → GF(n).

We show, for each i, that the incidence structure (X,Bi) is a TD(2, k, n), with
the same groups as the original TD(3, k, n). Suppose this is not the case. Then
there is a pair {(x,A), (y,B)} (where x ⊆= y) that appears in two blocks of the
same Bi. So we have

ix2 + ax + b = A = ix2 + cx + d and iy2 + ay + b = B = iy2 + cy + d.

From this, we get

ax + b = cx + d and ay + b = cy + d.

Since x ⊆= y, we have a = c, which implies b = d. Therefore the two blocks
coincide and we have a contradiction.

Scheme 3 (Quadratic scheme). Let n be a prime power. Starting with a
TD(3, k, n), we define a set system by letting λ be an integer between 1 and n,
selecting λ of the sets Bi, and letting A be the set of blocks in these λ sets. We
refer to the incidence structure (X,A) as a TD(3, k, n, λ). Using a TD(3, k, n, λ)
for constructing a KPS in the standard way yields a scheme with λn2 keyrings,
for which we can choose an intersection threshold of either φ = 1 or φ = 2.

As before, this method of selecting blocks yields a structure that is easy to
analyse:

Theorem 2. A TD(3, k, n, λ) is a 3-(kn, k, λn2, λn, λ)-PBtD.

Proof. A TD(3, k, n, λ) consists of a set of kn points, together with λ disjoint sets
of n2 blocks of k points, and thus has λn2 blocks in total. Every point of the
TD(3, k, n, λ) is contained in n blocks in each of these sets, and therefore is con-
tained in λn blocks in total. If a pair of points belong to a group of the underlying
TD(3, k, n) then they do not occur together in any block of the TD(3, k, n, λ). If
two points lie in different groups, then in each of the λ sets Bi there is precisely
one block that contains them. Thus any pair of points occurs together in either
0 or λ blocks of the TD(3, k, n, λ). Finally, any set of three points occur together
in either 0 or 1 blocks of the TD(3, k, n) and thus also occur together in 0 or 1
blocks of the TD(3, k, n, λ).

Practical Approaches to Varying Network Size in Combinatorial KPS 99

This allows us to use the formulas of [9] to compute fail(1) and Pr1. Defining
μ∈(2) to be the number of blocks C whose intersection with a given block B is a
given set S ∃ B of two points, we have

μ∈(2) = ψ2 − 1 = λ − 1,

μ∈(1) = ψ1 − 1 − (k − 1)μ∈(2) = λn − 1 − (k − 1)(λ − 1).

For a KPS with intersection threshold φ = 2 we have

ρ =
(

k

2

)

μ∈(2) =
(

k

2

)

(λ − 1),

η = μ∈(2)
(

ψ2

2
− 1

)(
k

2

)

= (λ − 1)
(

λ

2
− 1

)(
k

2

)

,

L =
bρ

2
=

λn2(λ − 1)
2

(
k

2

)

,

fail(1) =
η

L − ρ
=

λ − 2
λn2 − 2

,

Pr1 =
ρ

b − 1
=

k(k − 1)(λ − 1)
2(λn2 − 1)

.

Using intersection threshold φ = 1 gives

ρ = kμ∈(1) +
(

k

2

)

μ∈(2) = k(λn − 1) −
(

k

2

)

(λ − 1),

η = μ∈(1)
(

ψ1

2
− 1

)

k + μ∈(2)
(

ψ2

2
− 1

)(
k

2

)

,

= (λn − 1 − (k − 1)(λ − 1)) k

(
λn

2
− 1

)

+ (λ − 1)
(

λ

2
− 1

)(
k

2

)

,

L =
bρ

2
=

λn2
(
k(λn − 1) − (

k
2

)
(λ − 1)

)

2
,

fail(1) =
η

L − ρ
=

2(λn − 1)(λn − 2) − (k − 1)(λ − 1)(2λn − λ − 2)
(λn2 − 2)(2λn − 2 − (k − 1)(λ − 1))

,

Pr1 =
ρ

b − 1
=

k(2λn − 2 − (k − 1)(λ − 1))
2(λn2 − 1)

.

In the case where λ = n, a TD(3, k, n, λ) is simply a TD(3, k, n) and Scheme 2
is a generalisation of the corresponding scheme of Lee and Stinson. When λ = n,
the formulas computed above for fail(1) and Pr1 agree with the corresponding
formulas for Lee and Stinson’s scheme.

2.3 Finer Control Over the Number of Blocks

Scheme 3 provides KPSs with λn2 keyrings by selecting λ disjoint sets of n2

blocks from a TD(3, k, n). Each of these sets of blocks is in fact a resolvable

100 K. Henry et al.

TD(2, k, n). Thus, if a more fine-grained choice of network size is required, it
would be possible to choose λ sets of blocks, together with m parallel classes of
blocks from an (λ + 1)th copy of a TD(2, k, n). This would yield a network with
λn2+mn keyrings; appropriate choices of λ and m thus allow the network size to
be adjusted to the nearest multiple of n. The resulting combinatorial structure
would be a 3-(kn, k, λn2 +mn, λn+m, λ+1)-PBtD, and hence could be analysed
in a similar manner to the schemes based on a TD(3, k, n, λ).

3 Analysis and Comparisons of the New Constructions
with Previous Schemes

In this section, we compare the new schemes (Scheme 1, 2 and 3) with the
transversal design schemes from which they were derived. Recall that Scheme 1
consists of random blocks chosen from a transversal design, while Scheme 2 and
Scheme 3 are deterministic schemes consisting of specified blocks from transversal
designs of strength 2 and 3, respectively.

First, Table 1 summarizes the formulas for six deterministic schemes. The six
schemes considered in Table 1 (denoted A–F) are the following:

A: Scheme 2, based on a TD(2, k, n, λ)
B: Scheme 3, based on a TD(3, k, n, λ), φ = 2
C: Scheme 3, based on a TD(3, k, n, λ), φ = 1
D: Scheme 2, based on a TD(2, k, n) (i.e., Scheme 2 with λ = n)
E: Scheme 3, based on a TD(3, k, n), φ = 2 (i.e., Scheme 3 with λ = n)
F : Scheme 3, based on a TD(3, k, n), φ = 1 (i.e., Scheme 3 with λ = n)

Table 1. Metrics for some transversal design based schemes

Scheme Pr1 fail(1)

A.
k(γ − 1)

γn − 1

γ − 2

γn − 2

B.
k(k − 1)(γ − 1)

2(γn2 − 1)

γ − 2

γn2 − 2

C.
k(2γn − 2 − (k − 1)(γ − 1))

2(γn2 − 1)

2(γn − 1)(γn − 2) − (k − 1)(γ − 1)(2γn − γ − 2)

(γn2 − 2)(2γn − 2 − (k − 1)(γ − 1))

D.
k

n + 1

n − 2

n2 − 2

E.
k(k − 1)

2(n2 + n + 1)

n − 2

n3 − 2

F.
k(2n − k + 3)

2(n2 + n + 1)

2n3 + (4 − 2k)n2 + (k − 5)n + 2k − 6

(2n − k + 3)(n3 − 2)

In Sect. 3.1, we briefly discuss asymptotic comparisons between the deter-
ministic schemes A–F , using the formulas in Table 1. In Sect. 3.2, these formulas
are evaluated for a range of parameter choices to provide a direct comparison
with the corresponding values for equivalent parameter choices in Scheme 1 (the
Random Scheme).

Practical Approaches to Varying Network Size in Combinatorial KPS 101

3.1 Asymptotic Comparisons

It is interesting to compare Scheme 2 and Scheme 3 to the transversal design
schemes on which they are based. In Scheme 2 and Scheme 3, we have an addi-
tional parameter λ ≤ n (the original schemes correspond to λ = n). Suppose
c < 1 is a positive real number and we take λ = cn. We compute the ratio of the
values of Pr1 for schemes labelled A and D in Table 1 using the formulas given
there:

Pr1(scheme A)
Pr1(scheme D)

=
k(cn−1)
cn2−1

k
n+1

=
(cn − 1)(n + 1)

cn2 − 1
.

As n ≈ ≥, it is easy to see that this ratio approaches 1.
Thus, for example, if we use only n/1000 of the n parallel classes, the connec-

tivity of the partial scheme is asymptotically the same as the transversal design
scheme on which it is based. A similar result holds for resilience, as can be seen
by computing the ratios of the relevant fail(1) values. Furthermore, a similar
phenomenon is observed for Scheme 3, for both φ = 1 and φ = 2, i.e., when we
use the formulas for the schemes labelled B and E, as well as for the schemes
labelled C and F . We summarize this as follows.

Theorem 3. Let 0 < c < 1 and let λ = cn in scheme A, B or C from Table 1.
Then

lim
n∗∅

Pr1(scheme A)
Pr1(scheme D)

= lim
n∗∅

fail(1)(scheme A)
fail(1)(scheme D)

= 1,

lim
n∗∅

Pr1(scheme B)
Pr1(scheme E)

= lim
n∗∅

fail(1)(scheme B)
fail(1)(scheme E)

= 1,

and

lim
n∗∅

Pr1(scheme C)
Pr1(scheme F)

= lim
n∗∅

fail(1)(scheme C)
fail(1)(scheme F)

= 1.

3.2 Comparisons for Explicit Parameter Choices

In this section, we compare the random and deterministic schemes we have pre-
sented. We consider transversal designs of strengths 2 and 3 that are appropriate
for maximum network sizes of (approximately) 5000 nodes and 24000 nodes:

– The transversal designs yielding maximum network size 5000 (approximately)
are TD(2,15,71) and TD(3,15,17); note that 712 = 5041 and 173 = 4913. Here
the block size is 15, which means that nodes will each store 15 keys.

– The transversal designs for maximum network size 24000 (approximately)
are TD(2,25,157) and TD(3,25,29); note that 1572 = 24649 and 293 = 24387.
Here the block size is 25, which means that nodes will each store 25 keys.

We analyse and compare the behaviour of Scheme 1, Scheme 2 and Scheme 3
for the parameters listed above; in particular, we evaluate fail(1) and Pr1 for
these schemes. In the case of Scheme 2 and Scheme 3, we have used the formulas
from Table 1 to obtain these values. For each choice of n and k, we evaluated

102 K. Henry et al.

fail(1) and Pr1 for the schemes based on a TD(2, k, n, λ) or TD(3, k, n, λ) with
φ = 1, 2, for every λ between 2 and n inclusive. In the case of Scheme 1, for
each network size m, we constructed 100 random instances of the KPS and we
computed the exact values of fail(1) and Pr1 for each of these 100 instances.

The results of these calculations are presented in graphical form in Figs. 1, 2,
3, 4, 5 and 6. In these figures, we plot the connectivity or resilience of a random
scheme and a corresponding deterministic scheme. The solid lines, labelled “ran-
dom”, refer to Scheme 1; the dashed lines, labelled “parallel”, refer to Scheme 2
or Scheme 3. The dotted lines, labelled “Φ”, indicate the standard deviation of
the values computed for Scheme 1 over the 100 trials (since the standard devia-
tions are quite small, these lines are very close to the bottom of the graphs). The
value m is the number of blocks in the associated set system (i.e., the number
of nodes in the network).

In the case of Scheme 1, we also computed the maximum and minimum values
of fail(1) and Pr1 obtained over the 100 trials, for each value of m. As well, we

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000 5000 6000

Pr
1

m

TD(2,15,71)

random
parallel

σ

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 1000 2000 3000 4000 5000 6000

fa
il(

1)

m

TD(2,15,71)

random
parallel

σ

Fig. 1. Connectivity and resilience of KPSs derived from TD(2,15,71)

Practical Approaches to Varying Network Size in Combinatorial KPS 103

have tabulated the mean and standard deviation over the 100 samples. In these
two tables, the network size is m = λn = 71λ. This data is presented, for the
schemes derived from a TD(2,15,71), in Tables 3 and 4 in the Appendix.

Some of the main observations we can draw from these results are as follows:

– In Figs. 1–6, the plots of the values of fail(1) or Pr1 as blocks are selected
uniformly from a TD(2, k, n) or TD(3, k, n) (Scheme 1) are all essentially
a horizontal line, indicating that on average the values of fail(1) and Pr1
do not change greatly, even if the number of blocks selected is quite small.
This is entirely to be expected: fail(1) and Pr1 by definition are quantities
that represent an average over all the keyrings in the network, so taking the
average over smaller, uniformly selected subsets of keyings should not affect
these values too much. The average values computed in our experiments are
in fact very close to the exact average values that are computed theoretically.

– One quantity of particular interest here is the standard deviation of fail(1)
and Pr1 for Scheme 1, since this determines the extent to which a particu-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 1000 2000 3000 4000 5000

Pr
1

m

TD(3,15,17), η=1

random
parallel

σ

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0 1000 2000 3000 4000 5000

fa
il(

1)

m

TD(3,15,17), η=1

random
parallel

σ

Fig. 2. Connectivity and resilience of KPSs derived from TD(3,15,17) with φ = 1

104 K. Henry et al.

lar random choice of subnetwork may have fail(1) or Pr1 values that differ
from the average values for the scheme as a whole. Naturally, the standard
deviation of these values increases slightly when the number blocks is very
small. However, we can see from Figs. 1–6 that these standard deviations
are still extremely low, especially in the case of schemes obtained from the
larger designs. Moreover, there is a very low range of values of fail(1) and Pr1
encountered in our experiments. This is evident from Tables 3 and 4 in the
Appendix, for the schemes derived from a TD(2,15,71). Schemes derived from
other transversal designs exhibit similar behaviour in terms of the variability
of these metrics. Thus we see that in practice, selecting random subsets of
the keyrings is unlikely to have much of an effect on the values of fail(1) and
Pr1 for the scheme.

– In Scheme 2, when the number λ of parallel classes is very small, the value
of Pr1 is low, due to the fact that no two blocks within a given parallel class
have any points in common. Nevertheless, Figs. 1 and 4 demonstrate that
this value grows rapidly as λ increases, and soon approaches the Pr1 value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1000 2000 3000 4000 5000

Pr
1

m

TD(3,15,17), η = 2

random
parallel

σ

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 1000 2000 3000 4000 5000

fa
il(

1)

m

TD(3,15,17), η = 2

random
parallel

σ

Fig. 3. Connectivity and resilience of KPSs derived from TD(3,15,17) with φ = 2

Practical Approaches to Varying Network Size in Combinatorial KPS 105

attained by Scheme 1. On the other hand, for Scheme 2, the value of fail(1)
is also low initially, and similarly becomes closer to that of Scheme 1 as λ
increases. Thus we see that the properties of Scheme 2 and Scheme 1 are very
similar in practice, for even moderately large values of λ.

– Figures 3 and 6 show that Scheme 3 with intersection threshold φ = 2 exhibits
a similar behaviour to that of Scheme 2: the Pr1 and fail(1) values are low
when λ is small, but increase rapidly as λ becomes larger. The reason for this
is entirely analogous: for any given set Bi of blocks, no two of the blocks in
that set intersect in two points, and hence for φ = 2 there are no secure links
formed between nodes whose keyrings are derived from such blocks.

– Figures 2 and 5 are interesting, as they show a slightly different behaviour
pattern for Scheme 3 in the case of intersection threshold φ = 1. Here the Pr1
and fail(1) values are in fact higher when λ is small, and then decrease for
larger values of λ, eventually approaching the properties of Scheme 1. This is
explained by the fact that two blocks within the same set Bi have probability

k
n+1 of sharing a common key (cf. Table 2), which is higher (for the parameters

under consideration) than the average probability k(2n−k+3)
2(n2+n+1) that two blocks

chosen uniformly from a TD(3, k, n) share at least one key. As in previous
cases, it is clear from these graphs that once a reasonable number of the sets
Bi are chosen, the properties of Scheme 3 are very close to those of Scheme 1.

We conclude that removal of keyrings from a KPS based on transversal
designs, whether randomly or deterministically as in Scheme 2 or 3, causes no
undue disruption to the behaviour of the scheme.

4 An Efficient New Approach to Calculating Connectivity
and Resilience for Arbitrary Set Systems

In this section, we describe a new approach to facilitate the efficient evaluation
of metrics for connectivity and resilience in general KPSs. We were motivated to
do this in order to compute the metrics of our random scheme that consists of
random subsets of blocks of a transversal design. Suppose we start with any set
system (X,A) having blocks of size k. Denote b = |A|. Suppose the maximum
intersection of any two blocks in A is t − 1. (In a given application, the value of
t may already be known beforehand. However, if it were not already known, it
could be computed as the first step of the process we are about to describe.)

For |C| = i where φ ≤ i ≤ t − 1, define ψC to be the number of blocks A → A
containing all the points in C. It will turn out that we can compute Pr1 and
fail(1) fairly easily if we know all the ψC values. This has at least two desirable
consequences:

1. For various types of “structured” set systems (for example, a partially bal-
anced t-design) we know the relevant ψC ’s and so we can compute formulas
for Pr1 and fail(1) in a straightforward manner.

106 K. Henry et al.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

 0 5000 10000 15000 20000 25000

Pr
1

m

TD(2,25,157)

random
parallel

σ

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 5000 10000 15000 20000 25000

fa
il(

1)

m

TD(2,25,157)

random
parallel

σ

Fig. 4. Connectivity and resilience of KPSs derived from TD(2,25,157)

2. For an arbitrary “unstructured” set system, we can use this approach to
compute Pr1 efficiently. In a “naive” approach, we would probably examine all
pairs of blocks to see which pairs form links, which would already require time
α(b2). However, it is straightforward to tabulate all the relevant ψC values in
time α(b), and then apply the formulas we derive, in order to compute Pr1.
This will be discussed further in Sect. 4.3.

4.1 Formulas for Connectivity

For a set of points C with |C| ∈ φ, define a C-link to be a set of two nodes {A,B}
such that A ∞ B = C. The number of C-links is denoted by ψ∈(C); therefore,

ψ∈(C) = |{{A,B} : A,B → A, A ∞ B = C}|.

The next lemma follows easily from the principle of inclusion-exclusion.

Practical Approaches to Varying Network Size in Combinatorial KPS 107

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 5000 10000 15000 20000 25000

Pr
1

m

TD(3,25,29), η=1

random
parallel

σ

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 5000 10000 15000 20000 25000

fa
il(

1)

m

TD(3,25,29), η=1

random
parallel

σ

Fig. 5. Connectivity and resilience of KPSs derived from TD(3,25,29) with φ = 1

Lemma 1. If |C| = i ≤ t − 1, then

ψ∈(C) =
⎧

D⊆X\C,|D|⊥t−1−i

(−1)|D|
(

ψC∪D

2

)

. (1)

In particular, ψ∈(C) =
(
λC

2

)
if |C| = t − 1.

Define an i-link to be any C-link where |C| = i. For φ ≤ i ≤ t − 1, let Li

denote the number of i-links (or course, there are no i-links with i ∈ t). For
φ ≤ i ≤ t − 1, it is clear that

Li =
⎧

|C|=i

ψ∈(C). (2)

The quantity

L =
t−1⎧

i=η

Li (3)

108 K. Henry et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5000 10000 15000 20000 25000

Pr
1

m

TD(3,25,29), η = 2

random
parallel

σ

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0 5000 10000 15000 20000 25000

fa
il(

1)

m

TD(3,25,29), η = 2

random
parallel

σ

Fig. 6. Connectivity and resilience of KPSs derived from TD(3,25,29) with φ = 2

is the total number of links. From this, it immediately follows that

Pr1 =
L
(

b
2

) . (4)

Define

qi =
⎧

|C|=i

(
ψC

2

)

. (5)

We now provide a useful formula for Li.

Lemma 2. For φ ≤ i ≤ t − 1, we have that

Li =
t−1⎧

j=i

(−1)j−i

(
j

i

)

qj . (6)

Practical Approaches to Varying Network Size in Combinatorial KPS 109

Proof. In view of (2), we need to sum (1) over all C with |C| = i. When we do
this, each possible term (−1)|D|(λC∪D

2

)
is included in the sum

(|C∪D|
|C|

)
=

(|D|+i
i

)

times.

For φ ≤ i ≤ t − 1, let

ai =
i⎧

j=η

(−1)i−j

(
i

j

)

. (7)

Then we have the following.

Theorem 4.

L =
t−1⎧

i=η

aiqi, (8)

where the qi’s and ai’s are defined in (5) and (7), respectively.

Proof. We sum the formula (6) as i ranges from φ to t− 1. The number of times
qi is included in the sum is easily seen to be equal to ai.

We present some applications of the formula (8) for small values of t and φ in
Table 2.

Table 2. Applications of Theorem 4

t φ L

2 1 q1
3 2 q2
3 1 q1 − q2
4 3 q3
4 2 q2 − 2q3
4 1 q1 − q2 + q3
5 4 q4
5 3 q3 − 3q4
5 2 q2 − 2q3 + 3q4
5 1 q1 − q2 + q3 − q4

Now, applying (8) and (4), we have the following formula for Pr1.

Corollary 1.

Pr1 =

⎨t−1
i=η aiqi
(

b
2

) . (9)

110 K. Henry et al.

4.2 Formulas for Resilience

Recall that a C-link is a set of two nodes {A,B} such that A ∞ B = C. The
number of C-links is ψ∈(C) and the number of nodes that break the C-link {A,B}
is ψC −2. The probability that the C-link {A,B} is broken by the compromise of
a random node not in the link is (ψC − 2)/(b− 2). Averaging over all L links, we
obtain the following formula for fail(1), which can be viewed as a generalisation
of [9, Corollary 4.6]:

fail(1) =
1
L

⎧

{C:η⊥|C|⊥t−1}

(ψC − 2)ψ∈(C)
b − 2

. (10)

In order to compute fail(1) using (10), we first need to evaluate the expression⎨
ψCψ∈(C). Substituting (1) into this sum, we have

⎧

{C:η⊥|C|⊥t−1}
ψCψ∈(C) =

⎧

{C:η⊥|C|⊥t−1}

⎩

⎤ψC

⎧

D⊆X\C,|D|⊥t−1−i

(−1)|D|
(

ψC∪D

2

)
⎥

⎦

=
⎧

{E:η⊥|E|⊥t−1}

⎩

⎤
(

ψE

2

) ⎧

{C:η⊥|C|,C⊆E}
(−1)|E|−|C|ψC

⎥

⎦ ,

letting E = C ≡ D. As a result, we obtain the following.

Lemma 3.

⎧

{C:η⊥|C|⊥t−1}
ψCψ∈(C) =

⎧

{E:η⊥|E|⊥t−1}
μE

(
ψE

2

)

, (11)

where
μE =

⎧

{C:η⊥|C|,C⊆E}
(−1)|E|−|C|ψC . (12)

For future use, we mention a couple of special cases of (12):

μE =

⎪
ψE if|E| = φ

ψE − ⎨
x∈E ψE\{x} if|E| = φ + 1.

(13)

Next, applying (3) and (2) we have that
⎧

{C:η⊥|C|⊥t−1}
2ψ∈(C) = 2L. (14)

Now we can state our main formula.

Practical Approaches to Varying Network Size in Combinatorial KPS 111

Theorem 5.

fail(1) =
1

L(b − 2)

⎩

⎤
⎧

{E:η⊥|E|⊥t−1}
μE

(
ψE

2

)
⎥

⎦ − 2
b − 2

. (15)

Proof. The result follows immediately from (10), (11) and (14).

4.3 Computing Connectivity and Resilience

Suppose we are given a set system (X,A), where b = |A|. As previously men-
tioned, we assume that value of the parameter t is already known. Here are the
steps that would be followed to compute Pr1 and fail(1).

1. Compute all the values ψC for φ ≤ |C| ≤ t − 1. This can be done efficiently
as follows:
(a) Initialise ψC ∪ 0 for all relevant C.
(b) For every block A → A and for every C √ A such that φ ≤ |C| ≤ t − 1,

set ψC ∪ ψC + 1.
(For fixed values of φ and t, we observe that the ψC ’s can be computed in
time α(b) by this method.)

2. Compute all the values μC for φ ≤ |C| ≤ t − 1, using the formula (12).
3. Compute the values qi for φ ≤ i ≤ t − 1, using the formula (5).
4. Compute L using the formula (8).
5. Compute Pr1 = L/

(
b
2

)
and compute fail(1) using the formula (15).

Remark. If we only wanted to compute Pr1, then step 2 could be omitted.

4.4 Examples

Here are some small examples to illustrate the application of the formulas we
have developed.

Example 6. Suppose X = {1, . . . , 6} and

A = {{123}, {124}, {125}, {456}, {136}}.

It easy to check that t = 3 in this design. Then we have

ψ12 = 3 ψ13 = 2 ψ14 = 1 ψ15 = 1 ψ16 = 1 ψ23 = 1
ψ24 = 1 ψ25 = 1 ψ26 = 0 ψ34 = 0 ψ35 = 0 ψ36 = 1
ψ45 = 1 ψ46 = 1 ψ56 = 1
ψ1 = 4 ψ2 = 3 ψ3 = 2 ψ4 = 2 ψ5 = 2 ψ6 = 2

It is easy to compute q1 = 13 and q2 = 4. When φ = 1, we have L = q1 − q2 = 9
and Pr1 = 9/10; when φ = 2, we have L = q2 = 4 and Pr1 = 4/10.

112 K. Henry et al.

In order to compute fail(1), we also need to compute the μC ’s. First, suppose
φ = 2. Then μC = ψC for |C| = 2, and

fail(1) =
1

4 × 3

(

3
(

3
2

)

+ 2
(

2
2

))

− 2
3

=
1
4
.

When φ = 1, we need to compute ψC when |C| = 1, 2. When |C| = 1, we
have μC = ψC . When |C| = 2, we use (13) to compute μC :

μ12 = −4 μ13 = −4 μ14 = −5 μ15 = −5 μ16 = −5 μ23 = −4
μ24 = −4 μ25 = −4 μ26 = −5 μ34 = −4 μ35 = −4 μ36 = −3
μ45 = −3 μ46 = −3 μ56 = −3

fail(1) =
1

9 × 3

(

4
(

4
2

)

+ 3
(

3
2

)

+ 4 × 2
(

2
2

)

− 4
(

3
2

)

− 4
(

2
2

))

− 2
3

=
7
27

.

Here is an example with t = 4. We just compute Pr1 for this example.

Example 7. Suppose X = {1, . . . , 9} and

A = {{1234}, {1235}, {1367}, {5678}, {4789}}.

Here t = 4 and we compute q1 = 14, q2 = 7 and q3 = 1. When φ = 1, we have
L = q1 − q2 + q3 = 8 and Pr1 = 4/5; when φ = 2, we have L = q2 − 2q3 = 5 and
Pr1 = 1/2; and when φ = 3, we have L = q3 = 1 and Pr1 = 1/10.

5 Conclusion

We have provided two methods of increasing the flexibility of combinatorial key
predistribution schemes. These methods are discussed and evaluated in refer-
ence to the transversal design schemes introduced in [5]. The first method is to
exploit the underlying structure of transversal designs to explicitly describe a
wide range of “partial” designs whose properties can easily be analysed using
existing formulas [9]. The schemes based on these partial designs have proper-
ties very similar to the transversal design schemes from which they are derived.
The second method (e.g., see [5]) is to randomly delete blocks from a speci-
fied set system. We show by running extensive experiments that this method
also does not affect performance adversely, which contradicts assertions made
in [1]. Finally, we develop some new formulas that facilitate the efficient com-
putation of metrics of KPS derived from arbitrary set systems. These formulas
were useful in the experiments we carried out, but they may have additional
applications in the theoretical study of combinatorial KPS for wireless sensor
networks.

Practical Approaches to Varying Network Size in Combinatorial KPS 113

Appendix

Table 3. Resilience of random KPSs derived from TD(2,15,71)

γ fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)

2 0.013749 0.000642 0.011989 0.015357
3 0.013660 0.000381 0.012879 0.014684
4 0.013687 0.000278 0.013134 0.014481
5 0.013702 0.000234 0.013158 0.014362
6 0.013704 0.000179 0.013294 0.014108
7 0.013676 0.000140 0.013338 0.014077
8 0.013687 0.000136 0.013356 0.014063
9 0.013707 0.000109 0.013418 0.013950
10 0.013690 0.000094 0.013476 0.013964
11 0.013682 0.000077 0.013505 0.013850
12 0.013698 0.000071 0.013552 0.013897
13 0.013696 0.000068 0.013517 0.013836
14 0.013685 0.000058 0.013558 0.013820
15 0.013691 0.000055 0.013528 0.013841
16 0.013685 0.000055 0.013586 0.013830
17 0.013694 0.000053 0.013583 0.013862
18 0.013692 0.000044 0.013579 0.013800
19 0.013694 0.000042 0.013602 0.013808
20 0.013694 0.000042 0.013582 0.013812
21 0.013693 0.000037 0.013588 0.013780
22 0.013694 0.000033 0.013602 0.013792
23 0.013687 0.000034 0.013603 0.013760
24 0.013693 0.000031 0.013632 0.013780
25 0.013692 0.000025 0.013614 0.013746
26 0.013690 0.000026 0.013592 0.013749
27 0.013690 0.000025 0.013631 0.013743
28 0.013692 0.000021 0.013630 0.013737
29 0.013691 0.000019 0.013633 0.013730
30 0.013688 0.000019 0.013639 0.013729
31 0.013693 0.000020 0.013655 0.013749
32 0.013693 0.000018 0.013645 0.013732
33 0.013693 0.000016 0.013661 0.013752
34 0.013693 0.000016 0.013659 0.013737
35 0.013695 0.000014 0.013667 0.013724
36 0.013691 0.000014 0.013655 0.013727
37 0.013694 0.000012 0.013664 0.013725
38 0.013694 0.000015 0.013664 0.013735
39 0.013693 0.000012 0.013662 0.013726
40 0.013691 0.000012 0.013668 0.013720
41 0.013693 0.000011 0.013668 0.013726
42 0.013695 0.000013 0.013664 0.013726

114 K. Henry et al.

Table 3. (Continued)

γ fail(1) (mean) fail(1) (std. dev.) fail(1) (min) fail(1) (max)

43 0.013693 0.000010 0.013674 0.013725
44 0.013693 0.000009 0.013664 0.013712
45 0.013692 0.000008 0.013673 0.013715
46 0.013694 0.000007 0.013679 0.013715
47 0.013693 0.000007 0.013679 0.013709
48 0.013693 0.000008 0.013676 0.013715
49 0.013693 0.000007 0.013676 0.013710
50 0.013693 0.000007 0.013673 0.013710
51 0.013694 0.000005 0.013682 0.013709
52 0.013693 0.000006 0.013679 0.013705
53 0.013694 0.000005 0.013683 0.013707
54 0.013694 0.000005 0.013681 0.013704
55 0.013694 0.000004 0.013683 0.013707
56 0.013693 0.000004 0.013683 0.013703
57 0.013693 0.000004 0.013681 0.013706
58 0.013693 0.000003 0.013683 0.013704
59 0.013693 0.000003 0.013684 0.013698
60 0.013693 0.000003 0.013685 0.013700
61 0.013693 0.000002 0.013688 0.013698
62 0.013693 0.000002 0.013688 0.013700
63 0.013693 0.000002 0.013687 0.013702
64 0.013693 0.000002 0.013689 0.013697
65 0.013693 0.000001 0.013689 0.013697
66 0.013693 0.000001 0.013690 0.013697
67 0.013693 0.000001 0.013691 0.013696
68 0.013693 0.000001 0.013692 0.013695
69 0.013693 0.000000 0.013692 0.013694
70 0.013693 0.000000 0.013693 0.013694
71 0.013693 0.000000 0.013693 0.013693

Table 4. Connectivity of random KPSs derived from TD(2,15,71)

γ Pr1 (mean) Pr1 (std. dev.) Pr1 (min) Pr1 (max)

1 0.208129 0.008217 0.185111 0.228169
2 0.208647 0.003964 0.197283 0.218659
3 0.208178 0.002706 0.202719 0.215121
4 0.208296 0.001944 0.204200 0.213159
5 0.208403 0.001608 0.204138 0.212795
6 0.208455 0.001297 0.204861 0.211721
7 0.208241 0.001010 0.205467 0.210976
8 0.208214 0.000963 0.205741 0.210926
9 0.208424 0.000790 0.206175 0.210355
10 0.208313 0.000695 0.206834 0.210374

Practical Approaches to Varying Network Size in Combinatorial KPS 115

Table 4. (Continued)

γ Pr1 (mean) Pr1 (std. dev.) Pr1 (min) Pr1 (max)

11 0.208234 0.000541 0.206914 0.209409
12 0.208359 0.000501 0.207433 0.209764
13 0.208359 0.000477 0.207073 0.209418
14 0.208284 0.000427 0.207436 0.209333
15 0.208332 0.000422 0.207219 0.209515
16 0.208267 0.000397 0.207473 0.209335
17 0.208340 0.000391 0.207518 0.209341
18 0.208324 0.000329 0.207455 0.209105
19 0.208339 0.000311 0.207681 0.209109
20 0.208333 0.000309 0.207523 0.209267
21 0.208333 0.000277 0.207566 0.209007
22 0.208340 0.000243 0.207638 0.209064
23 0.208282 0.000248 0.207686 0.208775
24 0.208336 0.000230 0.207860 0.208999
25 0.208327 0.000184 0.207737 0.208744
26 0.208307 0.000198 0.207572 0.208763
27 0.208309 0.000186 0.207903 0.208706
28 0.208322 0.000160 0.207863 0.208648
29 0.208314 0.000145 0.207887 0.208595
30 0.208295 0.000146 0.207896 0.208618
31 0.208337 0.000148 0.208046 0.208760
32 0.208330 0.000136 0.207953 0.208620
33 0.208334 0.000125 0.208096 0.208799
34 0.208331 0.000122 0.208052 0.208685
35 0.208344 0.000109 0.208120 0.208560
36 0.208318 0.000109 0.208046 0.208621
37 0.208338 0.000094 0.208113 0.208588
38 0.208338 0.000114 0.208114 0.208655
39 0.208330 0.000089 0.208108 0.208568
40 0.208316 0.000091 0.208140 0.208556
41 0.208336 0.000086 0.208144 0.208569
42 0.208345 0.000098 0.208104 0.208569
43 0.208331 0.000074 0.208187 0.208585
44 0.208334 0.000065 0.208109 0.208480
45 0.208328 0.000060 0.208179 0.208492
46 0.208335 0.000053 0.208232 0.208499
47 0.208334 0.000053 0.208223 0.208458
48 0.208331 0.000058 0.208205 0.208499
49 0.208330 0.000050 0.208211 0.208460
50 0.208332 0.000051 0.208178 0.208459
51 0.208339 0.000041 0.208246 0.208457
52 0.208332 0.000042 0.208226 0.208426

116 K. Henry et al.

Table 4. (Continued)

γ Pr1 (mean) Pr1 (std. dev.) Pr1 (min) Pr1 (max)

53 0.208338 0.000034 0.208256 0.208440
54 0.208339 0.000036 0.208245 0.208418
55 0.208336 0.000033 0.208255 0.208437
56 0.208333 0.000030 0.208256 0.208410
57 0.208334 0.000028 0.208241 0.208427
58 0.208329 0.000026 0.208255 0.208417
59 0.208331 0.000023 0.208262 0.208371
60 0.208332 0.000021 0.208273 0.208386
61 0.208333 0.000017 0.208295 0.208371
62 0.208335 0.000017 0.208291 0.208387
63 0.208334 0.000016 0.208285 0.208397
64 0.208332 0.000012 0.208301 0.208361
65 0.208332 0.000010 0.208305 0.208360
66 0.208332 0.000009 0.208312 0.208360
67 0.208333 0.000007 0.208316 0.208358
68 0.208334 0.000005 0.208321 0.208347
69 0.208333 0.000003 0.208324 0.208343
70 0.208333 0.000002 0.208329 0.208339
71 0.208333 0.000000 0.208333 0.208333

References

1. Bose, M., Dey, A., Mukerjee, R.: Key predistribution schemes for distributed sensor
networks via block designs. Des. Codes Crypt. 67(1), 111–136 (2013)

2. Çamtepe, S.A., Yener, B.: Key distribution mechanisms for wireless sensor net-
works: a survey. Technical Report TR-05-07, Rensselaer Polytechnic Institute
(2005)

3. Dong, J., Pei, D., Wang, X.: A key predistribution scheme based on 3-designs.
In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp.
81–92. Springer, Heidelberg (2008)

4. Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor net-
works. In Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 41–47. ACM (2002)

5. Lee, J., Stinson, D.R.: On the construction of practical key predistribution schemes
for distributed sensor networks using combinatorial designs. ACM Trans. Inf.Syst.
Secur. 11(2), 1–35 (2008). (Article No. 1)

6. Martin, K.M.: On the applicability of combinatorial designs to key predistribution
for wireless sensor networks. In: Chee, Y.M., Li, Ch., Ling, S., Wang, H., Xing,
Ch. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 124–145. Springer, Heidelberg (2009)

7. Martin, K.M., Paterson, M.B.: An application-oriented framework for wireless sen-
sor network key establishment. Electron. Notes Theor. Comput. Sci. 192(2), 31–41
(2008)

8. Martin, K.M., Paterson, M.B., Stinson, D.R.: Key predistribution for homogeneous
wireless sensor networks with group deployment of nodes. ACM Trans. Sens. Netw.
7(2), 1–27 (2010). (Article No. 11)

Practical Approaches to Varying Network Size in Combinatorial KPS 117

9. Paterson, M.B., Stinson, D.R.: A unified approach to combinatorial key predistri-
bution schemes for sensor networks. Des. Codes Crypt. 71, 433–457 (2014)

10. Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key
management schemes in wireless sensor networks. Comput. Commun. 30(11–12),
2314–2341 (2007)

Discrete Logarithms

A Group Action on Z
×
p and the Generalized

DLP with Auxiliary Inputs

Jung Hee Cheon(B), Taechan Kim, and Yong Soo Song

Department of Mathematical Sciences and ISaC-RIM,
Seoul National University, Seoul, South Korea

{jhcheon,yoshiki1,lucius05}@snu.ac.kr

Abstract. The Discrete Logarithm Problem with Auxiliary Inputs
(DLPwAI) is an important cryptographic hard problem to compute α ∈
Zp for given g, gα, · · · , gαd

where g is a generator of a group of order
p. In this paper, we introduce a generalized version of this problem, so
called the generalized DLPwAI (GDLPwAI) problem which is asked to
compute α for given g, gαe1

, · · · , gαed
, and propose an efficient algorithm

when K := {e1, · · · , ed} is a multiplicative subgroup of Z
×
p−1. Although

the previous algorithms can only compute α when p±1 has a small divi-
sor d, our algorithm resolves the problem when neither p+1 or p−1 has
an appropriate small divisor. Our method exploits a group action of K
on Z

×
p to partition Z

×
p efficiently.

Keywords: The discrete logarithm problem · The discrete logarithm
problem with auxiliary inputs · Cheon’s algorithm

1 Introduction

The Discrete Logarithm Problem (DLP) is a cryptographic hard problem which
is asked to find φ ∈ Zp for given g and gλ where g is a generator of a group
G of prime order p. In recent decades, many variants of this hard problem such
as the Bilinear Diffie-Hellman Problem (BDHP) [6], the ψ-Strong Diffie-Hellman
Problem (ψ-SDHP) [2], the Bilinear Diffie-Hellman Exponent Problem [7], and
the Bilinear Diffie-Hellman Inverse Problem [1] have been introduced to support
the security of many cryptographic applications using pairing groups such as
ID-based encryption (IBE) [1,6], the short signatures [2], the broadcast encryp-
tion [7], and so on [3–5,8]. In spite of the importance of these computational
problems, there have been only few researches on these assumptions to the best
of our knowledge. The first realization of this importance was done by Brown
and Gallant [9] and Cheon [10,11]. Brown and Gallant presented an algorithm
to compute φ for given g, gλ, gλd

when d divides p − 1. Cheon generalized this
problem into the Discrete Logarithm Problem with Auxiliary Inputs (DLPwAI),
which finds the value φ for given g, gλ, · · · , gλd

, and solved it when either p − 1
or p + 1 has a small divisor d. Jao and Yoshida [14] gave an algorithm to forge
the Boneh-Boyen signatures using the Cheon’s algorithm.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 121–135, 2014.
DOI: 10.1007/978-3-662-43414-7 6, c∞ Springer-Verlag Berlin Heidelberg 2014

122 J.H. Cheon et al.

The idea of Cheon is to utilize the embedding to an auxiliary group such as Fp

or Fp2 . The similar technique to embed into auxiliary groups such as an elliptic
curve group or a finite field can also be found in the famous reduction algorithms
from the DL problem to the DH problem [13,18,19]. After the Cheon’s algorithm,
Satoh [21] tried to generalize the attack using an embedding Fp into a subgroup
of order λk(p) in GL(n,Fp), where λk(x) is the k-th cyclotomic polynomial for
k ∞ 3, but the efficiency of the algorithm was not clear. Finally, Kim [15] realized
that the Satoh’s algorithm essentially uses an embedding from Fp into Fpn

and proved that the algorithm can never be faster than the ordinary algorithm
for the DLP when d|λk(p) for k ∞ 3. All these algorithms are developed by
embedding an element in Fp into a certain auxiliary group. More recently, Kim
and Cheon [16] suggested rather different approach. Their result reduced the
problem to find a polynomial with small value sets. However, finding a good
polynomial with small value sets is not easy and still open.

In this paper, we introduce the generalized version of the DLPwAI called
the GDLPwAI. The GDLPwAI is a problem to compute φ ∈ Zp for given
g, gλe1

, · · · gλed . The rest of the paper is devoted to recover φ efficiently but
heuristically when K := {ei : 1 √ i √ d} is a multiplicative subgroup of
Z

×
p−1 (Theorem 2). Note that in our algorithm ei’s do not divide p − 1 while

the Cheon’s algorithm requires gλd

as an instance for a small divisor d of p ± 1.
The outline of the proof is as follows: (1) For a multiplicative subgroup

K √ Z
×
p−1, we define the K-group action on Z

×
p to partition Z

×
p into orbits

generated by group action. (2) Then we define a polynomial f(x) over Zp which
takes the same value for all elements in an orbit but takes different values for
those elements in different orbits. (3) Finally, for randomly chosen ρ from Z

×
p ,

we find an orbit containing ρ by computing gf(Γ) and finding a collision with
gf(λj) where φj = η−jφ’s are the representatives of distinct orbits. By solving
the equation f(ρ) = f(φj), we can find the desired value φ.

For a multiplicative subgroup K of Z
×
p we define a K-group action on Z

×
p

by (k, x) �→ xk for x ∈ Z
×
p and k ∈ K. Then the orbit generated by x is a set

{xk : k ∈ K}. In particular, an orbit containing just one element is called a
fixed point. We show that the set of fixed points is generated by an element η,
a primitive Φ-th root of unity for Φ := gcd(K − 1), which is defined to be the
greatest common divisor of (k − 1)’s for all integers k such that k mod (p − 1)
belongs to K. Moreover, the collection of orbits (ηiφ)K is pairwise disjoint for
0 √ i < Φ and each orbit contains exactly |K| elements, if φk are distinct for all
k ∈ K. Hence Φ|K| elements of Z

×
p belong to one of orbits (ηiφ)K for some i.

Now define a polynomial fK(x) by
∑

k∈K xk for K. Then fK takes the same
value for the elements in the same orbit and fK(ηix) = ηifK(x) for a fixed
point η. For given gλk

for all k ∈ K, we compute gf(λ) in |K| group multiplica-
tions and compute gf(Γ) for randomly chosen ρ ∈ Z

×
p . If ρ belongs one of orbits

(ηiφ)K , then we can find t ∈ [0, Φ) such that gf(λ) = gφtf(Γ) in O(
≡

Φ) expo-
nentiations using the baby-step giant-step technique. Finally by finding k ∈ K
satisfying φk = ηtρ, we can recover the value φ. Since the probability that a

A Group Action on Z
×
p and the Generalized DLP 123

random ρ ∈ Z
×
p belongs to one of the orbits is Φ|K|/(p − 1), the total complex-

ity is O
(

p
ψ|K| (

≡
Φ + |K|)

)
exponentiations in Zp and G. Under the assumption

that the cost of a group operation in G is a constant times of the cost of a
multiplication in Zp, the total complexity can be lowered down O(p1/3 log p)
multiplications in Zp when

≡
Φ ∼ |K| ∼ p1/3.

It also remains an open question to solve the usual DLPwAI by using our
algorithm to solve the GDLPwAI.

Organization. In Sect. 2, we introduce a new representation for multiplicative
subgroup of Z

×
p−1. In Sect. 3, we define a group action on Z

×
p and develop how

all elements in Z
×
p can be represented with only a few elements. In Sect. 4, we

construct a polynomial over Zp which takes the same value on the same orbit.
Finally, we prove our theorem in Sect. 5 and conclude in Sect. 6.

2 Multiplicative Subgroups of Z
×
n

Before the state of our main theorem, we first introduce somewhat new repre-
sentation for multiplicative subgroup K of Z

×
n . From our observation, elements

of a multiplicative subgroup K √ Z
×
n seem to form an arithmetic sequence in

many cases.

2.1 Representation of a Multiplicative Subgroup of Z
×
n

Definition 1. For any positive integer n, let S be a subset of Zn. We define
gcd (S; Zn) or gcd(S) unless confused, to be the greatest common divisor of all
integers x such that x mod n belongs to S. Given a divisor Φ of n, we define a
subset Kψ of Z

×
n by Kψ := (1+ΦZn)∩Z

×
n , where 1+ΦZn := {1 + Φm : m ∈ Zn}.

We can see that Kψ is a multiplicative subgroup of Z
×
n because it is closed

under the multiplication and inverse. If K is a multiplicative subgroup of Z
×
n ,

then K is a subgroup of Kψ for Φ = gcd(K − 1) where K − 1 = {k − 1 : k ∈
K} ⊆ Zn.

Remark 1. For an even integer n and any multiplicative subgroup K √ Z
×
n ,

every element of K is an odd integer so that gcd(K − 1) is even. It shows that

Kψ = (1 + ΦZn) ∩ Z
×
n = (1 + 2ΦZn) ∩ Z

×
n = K2ψ

for odd Φ. For this reason, we only treat the case that Φ is even.

From now on, we restrict the case to n = p − 1 for odd prime p. The next
proposition determines the size of Kψ in Z

×
p−1 for given divisor Φ of p − 1.

Proposition 1. Let Φ be a divisor of p − 1. Then |Kψ| = p−1
ψ · ∏q∈Q

(
1 − 1

q

)
,

where Q is the set of prime divisors of p−1 which do not divide Φ. In particular, if
gcd(Φ, p−1

ψ) = 1, then |Kψ| = α(p−1
ψ), where α denotes the Euler-totient function.

124 J.H. Cheon et al.

Proof. Note that 1 + Φm ∈ Kψ if and only if gcd(1 + Φm, p − 1) = 1,
which is equivalent to gcd(1 + Φm, q) = 1 for all q ∈ Q. Consider a surjective
homomorphism

ξ : Zp−1 −→ Zψ × Zq1 × · · · × Zqβ

x �−→ (x mod Φ, x mod q1, · · · , x mod qβ) ,

where Q = {q1, · · · , qβ}. Then each element Φm is in the set Kψ − 1 ⊆ Zp−1 if
and only if ξ(Φm) is contained in {0}×T , where T = (Zq1\{−1})×(Zq2\{−1})×
· · · × (Zqβ

\{−1}). Hence

|Kψ| = |Kψ − 1| = |ξ−1 ({0} × T) |
= |T | · | ker(ξ)|
=

∏β
i=1 (qi − 1) ·

(
p−1

ψ·∏β
i=1 qi

)

= p−1
ψ · ∏β

i=1

(
1 − 1

qi

)

Moreover, if gcd
(
Φ, p−1

ψ

)
= 1, then Q is the set of all prime divisors of p−1

ψ .
Thus, we have |Kψ| = α

(
p−1

ψ

)
. ∃≈

Proposition 2. If Φ is an even divisor of p − 1, then gcd(Kψ − 1; Zp−1) = Φ.

Proof. Let us use the same notations in the proof of Proposition 1. First, we note
that an integer x such that x (mod p−1) ∈ Kψ −1 = ξ−1({0}×T) is a multiple
of Φ, and gcd(Kψ − 1; Zp−1) is a multiple of Φ by definition.

Let P = {pj : 1 √ j √ k} be the set of common prime divisors of Φ and p−1
ψ .

Then P
.≥ Q is the set of prime divisors of p−1

ψ . Every element q of Q is greater
than 2, and there exist integers mi for 1 √ i √ ψ satisfying Φmi (mod qi) is not
equal to 0 or −1. Using the Chinese Remainder Theorem, we can find an integer
m such that m ∪ mi (mod qi) for all 1 √ i √ ψ and m ∪ 1 (mod pj) for all
1 √ k √ j.

We can check that 1 + Φm is not divisible by q ∈ Q and 1 + Φm (mod p − 1)
is contained in Kψ. In addition, gcd(Φm; Zp−1) = Φ gcd(m; Z p−1

π
) = Φ since m is

not divisible by every prime divisor of p−1
ψ . Hence, gcd(Kψ − 1; Zp−1) is equal

to Φ. ∃≈
Example 1. Consider a prime p = 29 and Φ = 4 be an even divisor of p − 1.
Then, we have

Kψ = K4 = {1, 5, 9, 13, 17, 21, 25} ∩ Z
×
28,

and 21 is the only element which is not in Z
×
28. Since p−1

ψ = 7, we can see that
the cardinality of K4 is α(7) = 6 as shown in Proposition 1. Also we can check
that gcd(K4 − 1) = 4.

3 A Group Action on Z
×
p

In this section, we consider a K-group action on Z
×
p and partition Z

×
p into disjoint

orbits generated by group action. A group action on a set clearly induces a

A Group Action on Z
×
p and the Generalized DLP 125

partition of the set with orbits. However, what we are dealing here is to partition
Z

×
p with only a few information. Namely, for a certain case, we can represent

almost all elements of Z
×
p with only two elements, one fixed point (i.e. an orbit

with just one element) and the other point not a fixed point. We begin with
defining the group action on Z

×
p . For more information on group theory, refer

to [12,17].

Definition 2. Let K be a multiplicative subgroup of Z
×
p−1. Define a K-action on

Z
×
p by (k, x) �→ xk for k ∈ K and x ∈ Z

×
p . The K-orbit of x is a set xK := {xk :

k ∈ K}. The set of fixed point (Z×
p)K is a set {x ∈ Z

×
p : xk = x for all k ∈ K}

We can easily check that Definition 2 satisfies the definition of group action.
Note that we have |xK | = |K|/|Kx| where Kx is a stabilizer of x which is a set
defined by Kx := {k ∈ K : xk = x}, thus |xK | = |K| if and only if |Kx| = 1.
The next proposition states that if two multiplicative subgroups H and K of
Z

×
p−1 satisfies gcd(H − 1) = gcd(K − 1), then the two sets of fixed points by

H-action and K-action respectively are the same. Furthermore, the set of fixed
points forms a cyclic group of order Φ = gcd(H − 1) = gcd(K − 1).

Proposition 3. Let K be a multiplicative subgroup of Z
×
p−1 and Φ = gcd(K−1).

Then, (Z×
p)K = (Z×

p)Kπ
= {z ∈ Z

×
p : zψ = 1}.

Proof. The set of fixed point by K-action is denoted by (Z×
p)K = {z ∈ Z

×
p :

zk−1 = 1 for all k ∈ K}. Now it is easy to see that zk−1 = 1 for all k ∈ K if and
only if zψ = 1 where Φ = gcd{k−1 : k ∈ K}. Since Φ = gcd(K−1) = gcd(Kψ−1),
we have (Z×

p)K = (Z×
p)Kπ

by the same argument. ∃≈

Let τ be a primitive element in Zp, then η = τ
p−1

π is a generator of a cyclic
group of fixed points (Z×

p)K = 〈η〉 = {z ∈ Z
×
p : zψ = 1}. Note that the orbit

generated by ηix satisfies (ηix)K = ηixK for all 1 √ i √ Φ, since ηk = η for all
k ∈ K. The following proposition considers two orbits generated by ηix and ηjx
are disjoint for 0 √ i, j < Φ and i �= j.

Proposition 4. (Disjoint Orbit Condition) Let K be a multiplicative subgroup
of Z

×
p−1, η a generator of a cyclic group of fixed points {z ∈ Z

×
p : zψ = 1} for

Φ = gcd(K − 1). If gcd(Φ, p−1
ψ) = 1, then two orbits ηixK and ηjxK are disjoint

i.e. (ηixK) ∩ (ηjxK) = ∅ for 0 √ i, j < Φ, i �= j, and x ∈ Z
×
p .

Proof. Note that two orbits are identical or disjoint. Suppose that (ηixK) ∩
(ηjxK) �= ∅ for some i, j. Then, ηixK = ηjxK and y := ηi−j = xk1−k2 for some

k := k1 − k2 ∈ K. Since
(
ηi−j

)ψ = 1 and
(
xk1−k2

) p−1
π = 1 for a non-fixed

point x ∈ Z
×
p , the order of y divides both Φ and p−1

ψ . In other words, it divides
gcd(Φ, p−1

ψ) which equals to 1, following that y must be equal to 1. ∃≈

126 J.H. Cheon et al.

Example 2. Let K := K4 = {1, 5, 9, 13, 17, 25} √ Z
×
28 and consider the K-action

on Z
×
29. Then we have 4 disjoint orbits of length 6,

2K = {2, 25, 29, 213, 217, 225} = {2, 3, 19, 14, 21, 11}
4K = {4, 9, 13, 22, 6, 5}
7K = {7, 16, 20, 25, 24, 23}
8K = {8, 27, 15, 18, 10, 26},

and 4 fixed points {1, 12, 17, 28}. Note that 14 ∪ 124 ∪ 174 ∪ 284 ∪ 1 mod 29.

Since there is an one-to-one correspondence between ηixK and ηjxK for all
i, j, they have the same number of elements. If we define

Ox,K := xK .≥ ηxK .≥ · · · .≥ ηψ−1xK ,

where
.≥ denotes the disjoint union, we have |Ox,K | = |xK |Φ for x ∈ Z

×
p . Along

with the set of fixed points, we have |Ox,K ≥ 〈η〉| = (|xK | + 1)Φ number of
elements in Z

×
p for a non-fixed point x ∈ Z

×
p . From now on, ordp(x) denotes the

order of x modulo p.

Remark 2. The set Ox,K behaves just like an extended orbit, which means that
for x, y ∈ Z

×
p , Ox,K and Oy,K are disjoint or identical. In other words, Ox,K ∩

Oy,K �= ∅ implies y = ηixk and Ox,K = Oy,K . Therefore, Z
×
p can be expressed by

the disjoint union of distinct Ox,K ’s. Moreover, if Ox,K = Oy,K , then y = ηixk

for some 0 √ i < Φ, k ∈ K and yψ = xψk. It implies that ordp(xψ) = ordp(yψ).

The next proposition gives a condition to satisfy |xK | = |K|.
Proposition 5. Let K be a multiplicative subgroup of Z

×
p−1, Φ = gcd(K−1) and

x ∈ Zp. If gcd(Φ, p−1
ψ) = 1, then |xK | = |K| for x satisfying ordp(xψ) = p−1

ψ . In
particular, if p−1

ψ is prime, then |xK | = |K| for x /∈ (Z×
p)K .

Proof. Note that |xK | = |K| if and only if |Kx| = |{k ∈ K : xk = x}| = 1.
Suppose that xk = x for some k = 1 + Φn ∈ K and 0 √ n < p−1

ψ . It implies that
(xψ)n = 1 for some 0 √ n < p−1

ψ . However, since ordp(xψ) = p−1
ψ , n must be

zero. It follows that Kx contains only one element, k = 1.
Since (xψ)

p−1
π ∪ 1 (mod p) for all x ∈ Zp, we have ordp(xψ) divides p−1

ψ .
In addition, ordp(xψ) = 1 if and only if x ∈ (Z×

p)K . Thus, if p−1
ψ is a prime, it

follows that ordp(xψ) = p−1
ψ if and only if x /∈ (Z×

p)K . ∃≈

Example 3. Note that for p = 29 and Φ = 4, we have |K| = |2K | = |4K | =
|7K | = |8K | = 6 for K = K4, and 〈17〉 = {17, 28, 12, 1} forms a cyclic group of
fixed points. It is easily verified that 17 ·2K = 4K , 28 ·2K = 8K and 12 ·2K = 7K ,
thus O2,K = 2K

.≥ 4K
.≥ 8K

.≥ 7K = Z
×
29\〈17〉.

The following proposition shows how many x’s in Z
×
p satisfy ordp(xψ) = p−1

ψ .

A Group Action on Z
×
p and the Generalized DLP 127

Proposition 6. Assume that Φ is a divisor of p − 1. Then there are exactly
Φα(p−1

ψ) elements x in Z
×
p such that ordp(xψ) = p−1

ψ .

Proof. Let τ be a primitive element of Zp. There exists a unique 0 √ j < p
satisfying x = τj for any x ∈ Z

×
p . We will use the fact that ordp(τi) = p−1

gcd(i,p−1)

for all i.
From ordp(xψ) = ordp(τψj) = p−1

gcd(ψj,p−1) = p−1
ψ

1
gcd(j, p−1

π)
, we show that

ordp(xψ) = p−1
ψ if and only if gcd(j, p−1

ψ) = 1. Therefore, there are exactly
α(p−1

ψ)-number of j’s modulo p−1
ψ satisfying gcd(j, p−1

ψ) = 1, thus Φα(p−1
ψ)-

number of x’s in Z
×
p satisfying ordp(xψ) = p−1

ψ . ∃≈

Note that Φα(p−1
ψ) = Φp−1

ψ

∏
q∈Q(1 − 1

q) = (p − 1)
∏

q∈Q(1 − 1
q) where Q is

the set of prime divisors of p−1
ψ . Hence, if we randomly take x in Z

×
p , then the

probability that ordp(xψ) = p−1
ψ is

∏
q∈Q(1− 1

q). Moreover, if p−1
ψ has only large

prime divisors, then the probability
∏

q∈Q(1 − 1
q) will be almost equal to 1.

Combining these results with Proposition 1, we surprisingly obtain an imme-
diate partition of Z

×
p . Recall that for an even divisor Φ of p − 1, we defined a

multiplicative subgroup Kψ = {1 + Φn : n ∈ [0, p−1
ψ) ∩ Z} ∩ Z

×
p−1.

Theorem 1. Let Φ be an even divisor of p−1 satisfying gcd(Φ, p−1
ψ) = 1 and Kψ

be a multiplicative subgroup of Z
×
p−1 defined as above. Consider the Kψ-action

on Z
×
p . Let η be a generator of a cyclic group of fixed points by the Kψ-action,

{z ∈ Z
×
p : zψ = 1}. Then the followings hold:

1. If p−1
ψ = μ is prime, then Z

×
p = Ox,Kπ

.≥ (Z×
p)Kπ

for x /∈ (Z×
p)Kπ

.
2. If p−1

ψ = μ1 · · · μβ is square-free for prime μ1, · · · , μβ, then Z
×
p =

.≥J∗I OxμJ ,Kπ

for x ∈ Z
×
p such that ordp(xψ) = p−1

ψ , where I = {1, 2, · · · , ψ} is an index
set and μJ =

∏
j∈J μj for J ⊆ I (For the convenience, define μ∅ = 1 for the

empty subset ∅ ⊆ I). In particular, OxμI ,Kπ
= (Z×

p)Kπ
.

Proof. If p−1
ψ = μ is prime, then |Kψ| = α(p−1

ψ) = α(μ) = μ−1 by Proposition 1.
Note that Ox,Kπ

and (Z×
p)Kπ

are disjoint subsets of Z
×
p for x /∈ (Z×

p)Kπ
. Thus

we have |Ox,Kπ

.≥ (Z×
p)Kπ

| = |Ox,Kπ
| + |(Z×

p)Kπ
|. By Proposition 5, we obtain

|Ox,Kπ
| = |xKπ |Φ = |Kψ|Φ = (μ − 1)Φ and |(Z×

p)Kπ
| = Φ. Therefore, |Ox,Kπ

.≥
(Z×

p)Kπ
| = p − 1 deduces that Ox,Kπ

.≥ (Z×
p)Kπ

= Z
×
p .

In the case that p−1
ψ = μ1 · · · μβ is square-free and ordp(xψ) = p−1

ψ , we have
|xKπ | = |Kψ| = α(p−1

ψ) = α(μI) =
∏

1⊆j⊆β(μj − 1) by Proposition 1. For a
subset J of I and y = xμJ , we first calculate |yKπ | and |Oy,Kπ

| by using the
fact that |yKπ | = |Kψ|/|(Kψ)y|, where (Kψ)y = {k ∈ Kψ : yk = y}. Since
k = 1 + Φn ∈ (Kψ)y if and only if yk−1 = (xμJ)ψ·n = 1 if and only if μI\J =
μI/μJ divides n, the size of (Kψ)y is equal to the number of n satisfying that
1 + Φn ∈ Z

×
p−1, 0 √ n < μI and μI\J divides n. Therefore, by the similar

argument in Proposition 1, we get

128 J.H. Cheon et al.

|(Kψ)y| =
⎧
⎧
⎨
n ∈ [0, μI) ∩ Z : 1 + Φn ∈ Z

×
p−1 and μI\J |(Φn)

⎩⎧
⎧

=
⎧
⎧
⎨
n ∈ [0, μI) ∩ Z : μj � (1 + Φn) for each j and μI\J |n⎩⎧⎧

=
μI

μI\J
·
⎤

j∈J

⎥

1 − 1
μj

⎦

= μJ ·
⎤

j∈J

⎥

1 − 1
μj

⎦

= α(μJ),

resulting |yKπ | = |Kπ|
|(Kπ)y| = π(μI)

π(μJ) = α(μI\J) and |Oy,Kπ
| = Φ|yKπ | = Φα(μI\J).

Since OxμJ ,Kπ
’s are pairwise disjoint for all J ⊆ I, we have | .≥J∗I OxμJ ,Kπ

| =∑
J∗I |OxμJ ,Kπ

| = Φ
∑

J∗I α(μI\J). Finally, using elementary number theory, we
have

∑
J∗I α(μI\J) =

∑
d|μI

α(d) = μI and | .≥J∗I OxμJ ,Kπ
| = Φ · μI = p − 1

deducing that Z
×
p =

.≥J∗I (OxμJ ,Kπ
). ∃≈

Note that for any given x ∈ Oy,Kπ
, there exist 0 √ i < Φ and k ∈ Kψ

satisfying x = ηiyk. By virtue of Theorem 1, all elements in Z
×
p can be expressed

with only a few information. For example, we can simply partition Z
×
p with only

two elements x ∈ Z
×
p − (Z×

p)Kπ
and η ∈ (Z×

p)Kπ
, when gcd(Φ, p−1

ψ) = 1 and
q = p−1

ψ is prime, so that any of element in Z
×
p is of form ηixk for 0 √ i < Φ and

k ∈ K. In our example, with only x = 2 and η = 17, we can express all elements
in Z

×
29.

In the case of p−1
ψ = μ1 · · · μβ is square-free and ordp(xψ) = p−1

ψ , Remark 2
says that ordp(yψ) = μI\J if y ∈ OxμJ ,Kπ

. The converse is also true because
Z

×
p =

.≥J∗I OxμJ ,Kπ
and y cannot be contained in Oxμ

J∪ ,Kπ
for J �= J ⊥ ⊆ I.

4 Polynomial Construction

In this section, we will define a polynomial f(x) ∈ Zp[x] of degree d having small
value sets. Recently, the similar idea was developed by Kim and Cheon [16]
to solve the DLPwAI. Their approach exploited the fast multipoint evaluation
method, so the degree of their polynomial was restricted to at most d ∼ p1/3

due to the efficiency issue.
The polynomial we will use in this paper is of very large degree which might

be greater than p1/3 but is sparse (all but d coefficients are zero) and have small
value sets. Thus the fast multipoint evaluation method as in [16] seems hardly
to be applied in our case. Instead, we take somewhat different approach with
the idea developed in Sect. 3. We will define a polynomial so that it takes the
same value for all elements in an orbit. In the proof of our main theorem, we will
make some lists of f(φ1), · · · , f(φβ) from f(φ) where φi’s are the representatives
of distinct orbits and φ is a discrete log to find. Then we find an index j such
that f(φj) = f(ρ) for randomly chosen ρ ∈ Z

×
p i.e. we find an orbit in which ρ

is contained. For this process, f(φ) should be nonzero.

A Group Action on Z
×
p and the Generalized DLP 129

Definition 3. Let K be a multiplicative subgroup of Z
×
p−1. Define a polynomial

fK(x) over Zp by fK(x) :=
∑

k∈K xk. We will simply write fK = f if there is
no ambiguity in the meaning.

By the definition, it is clear that fK takes the same value for the elements
in the same orbit defined by K-action.

Proposition 7. For any k ∈ K and x ∈ Z
×
p , we have f(xk) = f(x). If ηi ∈

(Z×
p)K is a fixed point, then f(ηix) = ηif(x).

Since the degree of f = fK might be large (approximately p), it looks hard to
evaluate f(φ1), · · · , f(φβ) in O(ψ) time complexity for random φi’s with fast mul-
tipoint evaluation method. However, for a non-fixed point φ ∈ Z

×
p and a fixed

point (not necessarily generator) η ∈ (Zp)K , we can compute f(φ), f(ηφ) =
ηf(φ), · · · , f(ηβφ) = ηβf(φ) in ψ multiplications by η with O(|K|) exponentia-
tions for computing f(φ). Furthermore, if f(φ) is nonzero, then we can deduce
that all φ, ηφ, · · · , ηβφ are the different representatives for distinct orbits. The
following proposition calculates f(x) explicitly in special cases.

Proposition 8. Assume that Φ is an even divisor of p−1 satisfying gcd(Φ, p−1
ψ)

= 1. Let K = Kψ and f = fK be defined as aforementioned. Then the followings
hold:

1. If p−1
ψ = μ is prime, then f(x) �= 0 for x ∈ Z

×
p .

2. If p−1
ψ = μ1 · · · μβ is square-free for prime μ1, . . . , μβ, then f(x) �= 0 for

x ∈ Z
×
p .

Proof. If p−1
ψ = μ is prime, then |K| = μ − 1 by Proposition 1. Consider a map

from Zμ to itself defined by n �→ (1 + Φn). Since Φ and μ are relatively prime,
this map is bijective. In other words, 1 + Φn for 0 √ n < μ induces complete
residue modulo μ. Thus, there exists a unique 0 √ n0 < μ such that 1 + Φn0 is
divisible by μ. Therefore,

f(x) =
⎪

k∈K

xk =
⎪

0⊆n<μ

x1+ψn − x1+ψn0 = x · xp−1 − 1
xψ − 1

− x1+ψn0 = −x1+ψn0

for x /∈ (Z×
p)K . Otherwise, if xψ = 1 then xk = x for all k ∈ K and f(x) =

(μ − 1)x �= 0.
In the case of p−1

ψ = μ1 · · · μβ is square-free, |K| = α(μ1 · · · μβ) by
Proposition 1. By similar argument as above, for a subset J of an index set
I = {1, 2, · · · ψ}, let μJ =

∏
j∈J μj , and define a map from ZμJ

to itself by
n �→ (1 + Φn). Since Φ and μJ are relatively prime, it also induces the complete
residue modulo μJ . Thus, there exists a unique 0 √ nJ < μJ such that 1+ΦnJ is
divisible by μJ (For convenience, define μJ = 1 and nJ = 0 for empty set J = ∅).
We easily check that nJ ∪ nI (mod μJ) for all J ⊆ I. Now, ordp(xψ) = μI0 for
some I0 ⊆ I since ordp(xψ) is a divisor of p−1

ψ = μI . For J ⊆ I, xψμJ = 1 if and
only if I0 ⊆ J .

130 J.H. Cheon et al.

Using the inclusion–exclusion principle, we have

f(x) =
⎪

k∈K

xk =
⎪

J∗I

(−1)|J| ⎪

n

x1+ψn,

where n in summation runs through 0 √ n < μI satisfying n ∪ nJ (mod μJ).
If I0 � J ⊆ I, then xψμJ �= 1 and

∑
n x1+ψn = x1+ψnJ xp−1−1

xπμJ −1
= 0. Otherwise

I0 ⊆ J ⊆ I, then xψμJ = 1 and
∑

n x1+ψn =
∑

n x1+ψnJ = μI

μJ
x1+ψnJ =

μI\Jx1+ψnI since n in summation is equivalent to nJ modulo μJ , and nJ ∪ nI

(mod μJ).
Finally, we have

f(x) =
⎪

J∗I

(−1)|J| ⎪

n

x1+ψn =
⎪

I0∗J∗I

(−1)|J| ⎪

n

x1+ψn

=x1+ψnI

⎪

I0∗J∗I

(−1)|J|μI\J = x1+ψnI

⎪

J∗I\I0

(−1)|I\J|μJ

=x1+ψnI (−1)β
⎤

j∈I\I0

(1 − μj) �= 0.

In particular, if ordp(xψ) = μI , then f(x) = (−1)βx1+ψnI . ∃≈
The above proposition says that fK(x) is not identically zero for Kψ = K for

even divisor Φ of p − 1. Actually, it appears to be of form fK(x) = −xd where
gcd(d, p − 1) is large, however in our application, it is desirable that fK(x) �= 0
but is not of simple form such as xd, where d has large common divisor with p−1,
since this simple form leads us to the already known Cheon’s p − 1 algorithm.
In many cases, for a non proper subgroup K of Kψ, fK(x) also tends to not to
be identically zero, although it seems hard to show it.

Example 4. For K = K4 = {1, 5, 9, 13, 17, 25} √ Z
×
28, define fK(x) = x + x5 +

x9 + x13 + x17 + x25 = −x21 ∈ Z29[x], where 21 and 28 have common divisor
7. For a subgroup K ⊥ = 〈9〉 = {9, 25, 1} of K, we have K/〈9〉 = {1, 5}. Now
consider fK∪(x) = x + x9 + x25. Then fK∪(x) takes same value for x in the same
orbit. We have 8 disjoint orbits of length 3 and 4 fixed points. Note that the
fixed points for K and K ⊥ are same as shown in Proposition 3.

2K∪
= {2, 19, 11}, 25K∪

= 3K∪
= {3, 14, 21}

4K∪
= {4, 13, 5}, 45K∪

= 9K∪
= {9, 22, 6}

7K∪
= {7, 20, 23}, 75K∪

= 16K∪
= {16, 25, 24}

8K∪
= {8, 15, 26}, 85K∪

= 27K∪
= {27, 18, 10}.

The polynomial fK∪(x) takes nonzero value 2 + 19 + 11 ∪ 3 mod 29 for all
x ∈ 2K∪

, and we can check that fK∪(x) take distinct values for disjoint orbits.

Proposition 9. Assume that Φ is an even divisor of p−1 satisfying gcd(Φ, p−1
ψ)

= 1. Let K = Kψ and f = fK . If p−1
ψ = qe for some prime q and e ∞ 2, then

f(x) = 0 unless xψq = 1 in Z
×
p .

A Group Action on Z
×
p and the Generalized DLP 131

Proof. Since p−1
ψ has only one prime divisor q, we can efficiently express elements

of K and compute f(x). For n ∈ Zμ, 1 + Φn is contained in K if and only if
gcd(1+Φn, q) = 1. Since 1+Φn ∪ 0 (mod q) has exactly one solution n0 ∪ −Φ−1

in modulo q, there exist qe−1-number of solutions {n0 + qm : 0 √ m < qe−1} in
Zμ. Therefore, f(x) is computed by

f(x) =
⎪

n∈[0, p−1
π)∪Z,1+ψn∈K

x1+ψn =
⎪

0⊆n<qe

x1+ψn −
⎪

0⊆m<qe−1

x1+ψ(n0+qm)

=x

⎪

0⊆n<qe

xψn

 − x1+ψn0

⎪

0⊆m<qe−1

xψqm

 ,

and it is equal to zero unless xψq = 1. However, there are only Φq = p−1
qe−1 -number

of such elements x in Z
×
p−1. ∃≈

In general, if p−1
ψ is not square-free, then fKπ

(x) = 0 for most of the elements
in Z

×
p−1. Modifying the proofs of Propositions 8 and 9 easily show it. We will omit

details here.

5 Main Theorem

By using a group action on Z
×
p , we can efficiently partition Z

×
p with only a few

elements. This leads us to a new algorithm that solves the GDLPwAI efficiently.
Now we can state our main theorem as follows.

Theorem 2. Let K be a multiplicative subgroup of Z
×
p−1 with Φ = gcd(K − 1).

Assume that we are given
{(

k, gλk
)

: k ∈ K
}

and |φK | = |K|. Then, we can

solve φ ∈ Zp in O
(

p
ψ

)
exponentiations in Zp and O

(
p

|K|√ψ
+ |K|

)
exponentia-

tions in G unless
∑

k∈K φk = 0.

Proof. We give a sketch of the proof following the next steps.

1. For given gλk

for all k ∈ K, one computes gf(λ) =
∏

k∈K gλk ∈ G in |K|
multiplications in G. Note that gf(λ) �= 1, since f(φ) �= 0.

2. Take a random element ρ from Z
×
p and compute f(ρ) =

∑
k∈K ρk ∈ Zp in

|K| exponentiations in Zp. If ρ ∈ Oλ,K , then there exists a unique 0 √ t < Φ
satisfying φK = ηtρK and f(φ) = ηtf(ρ).

3. To find such t, we use Baby-Step Giant-Step method. Let L := ∀≡Φ�. Make
two lists {gf(φL·iΓ) = (gf(Γ))φL·i ∈ G : 0 √ i < L} and {gf(φ−jλ) = (gf(λ))φ−j ∈
G : 0 √ j < L} in 2

≡
Φ exponentiations in G. If ρ ∈ Oλ,K , these two lists

must have a collision since there exist 0 √ i, j < L satisfying t = Li + j.
4. Repeat the steps 2 and 3 until finding a collision. The expected number of

repetitions is p
|K|ψ , since the probability that ρ ∈ Oλ,K is |Oγ,K |

p = |λK |ψ
p =

|K|ψ
p .

132 J.H. Cheon et al.

5. Locate gφtΓ from the set
{

gλk

: k ∈ K
}

to find k0 ∈ K such that gλk0 = gφtΓ .

This gives φ = (ηtρ)k−1
0 in |K| comparisons in G.

We carry out the above process in
|K| multiplications in G in Step 1, O

(
p

|K|ψ · |K|
)

= O
(

p
ψ

)
exponentiations

in Zp in Steps 2 and O
(

p

|K|√ψ

)
exponentiations in G in Step 3 and 4, and |K|

comparisons in G in Step 5. The overall complexity is as in the theorem. ∃≈
Remark 3. In the proof of Theorem2, we may find a fake collision. That is, some
element ρ ∈ Zp could satisfy f(φ) = ηtf(ρ) but ηtρ /∈ φK . If a fake collision
occurs in Step 3 and 4, there would be no element k0 ∈ K such that φk0 = ηtρ
and we can check it in Step 5. They do not affect the total complexity.

For any multiplicative subgroup K of Z
×
p−1, K is a multiplicative subgroup

of Kψ where Φ = gcd(K − 1). Hence we can define ϕ = [Kψ : K].

Corollary 1. For a multiplicative subgroup K of Z
×
p , set Φ = gcd(K − 1) and

define ϕ = [K : Kψ]. Assume that the computational cost for the multiplications
in G is a constant times of the cost for the multiplications in Zp. Then we can

solve the GDLPwAI in O
((

ϕ
≡

Φ + p
ψ

)
log p

)
multiplications in Zp.

Proof. In Proposition 1, we showed that |Kψ| = p−1
ψ

∏
q∈Q(1− 1

q) where Q is the
set of prime divisors of p − 1 not dividing Φ. We may assume that

∏
q∈Q(1 − 1

q)

is a constant greater than zero since
∏

q∈Q(1 − 1
q) ∞ π(p−1

π)
p−1

π

∞ 1
6 log log p−1

π

and

log log p−1
ψ is not so large for usual size of p. In fact,

∏
q∈Q(1− 1

q) is much greater

than this lower bound in almost cases. Then we have |K| = |Kπ|
δ = O

(
p

ψδ

)
and

p

|K|√ψ
= O

(
ϕ
≡

Φ
)
.

By Theorem 2, the overall complexity is O(|K| log p) = O
(

p
ψ log p

)

multiplications in Zp and O
((

|K| + p

|K|√ψ

)
log p

)
= O

((
ϕ
≡

Φ + p
ψ

)
log p

)

multiplications in G. By the assumption, we can put them together in one
notation. ∃≈
Example 5. Consider a multiplicative group Z

×
q for prime q = 1984044749. The

element g = 268435456 ∈ Z
×
q generates the multiplicative subgroup G = 〈g〉 of

20-bit prime order p = 70858741. Suppose that we are given
{(

k, gλk
)

: k ∈ K
}

= {(1, 368141755), (9447833, 908277040), (14171749, 1018628336), (51963077,
651549246)} for the multiplicative subgroup K of Z

×
p−1 with Φ = gcd(K; Zp−1) =

4723916. Following Theorem 2, we have gf(λ) = 104646375 and f(ρ) = 29994755
for randomly chosen ρ = 27015355 in G. Using the BSGS technique, we find
t = 993142 satisfying gf(λ) = gφtf(Γ) for a primitive element τ and a fixed point
η = τ

p−1
π . Then we find out that φk0 = ηtρ for k0 = 51963077 by comparing

gφtΓ with {gλk

: k ∈ K}. Finally, we have φ = (ηtρ)k−1
0 = 37217684.

A Group Action on Z
×
p and the Generalized DLP 133

Example 6. We use the same notations with Example 5. Set q =
8307519720650407, g = 3814697265625 ∈ Z

×
q . The element g has the order

p = 461528873369467 of 50-bit prime. We are given our instance for a multiplica-
tive subgroup K of Kψ such that Φ = 4742043558, |Kψ| = 97326, |K| = 16221.
Our algorithm finds that

φ = ηtρ = 55526261320836

for η = 265871590696697, ρ = 257387303120427 and t = 275438533.

In summary, if we are given gλk

for all k ∈ Kψ, then ϕ = 1 and we can solve
the GSDL problem in O

((≡
Φ + p

ψ

)
log p

)
. However, in this case, gfKπ

(λ) = g−d

with nontrivial gcd(d, p−1), which falls into the Cheon’s p−1 algorithm. When
we are working with |K| < |Kψ|, then we need to carry out O

((
ϕ
≡

Φ + p
ψ

)
log p

)

multiplications, so we want ϕ > 1 to be sufficiently small. The computation
amount can be reduced to O

(
p1/3 log p

)
, when ϕ is small enough and Φ ∼ p2/3.

Remark 4. If we assume that φ is chosen randomly in Z
×
p , the condition |φK | =

|K| is satisfied with high probability. As we mentioned in Proposition 5 and
Proposition 6, there are Φα(p−1

ψ)-number of x’s in Z
×
p such that ordp(xψ) =

p−1
ψ , and they satisfy |xK | = |K|. Therefore, the probability is greater than

1
6 log log(p−1) , since ψπ(p−1

π)

p−1 ∞ π(p−1)
p−1 and π(n)

n ∞ 1
6 log log n for all n ∞ 5 [20].

Remark 5. It is hard to compute the probability of
∑

k∈K φk = 0 in general, but
we can predict that fK(x) = 0 has not so many roots in Zp if p−1

ψ is a square-free
which is relatively prime to Φ. Let ϕ = [Kψ : K] and {k1, · · · kδ} be elements of
distinct left cosets of K in Kψ. Then we have fKπ

(x) =
∑δ

i=1 fK(xki). We saw
in Proposition 8 that if p−1

ψ is a square-free which is relatively prime to Φ, then
fKπ

is a monomial and hence it is never zero on Zp. Therefore, we can say that
the condition fK(φ) �= 0 in Theorem 2 is not so unnatural in this case. In the
contrary, it may be harder to satisfy the condition fK(φ) �= 0 if p−1

ψ has prime
powers. The case of Proposition 9 is a typical example.

We have another strategy to avoid ‘bad cases’ aforementioned by randomizing
φ. In the case of |φK | �= |K|, take a random element β in Z

×
p and compute new

parameters {(gλk

)ϕk

: k ∈ K}, which can be done in |K| exponentiations in Zp

and G. We repeat this process until finding β which satisfies |(φβ)K | = |K|, and
the expected number of repetition is less than 6 log log(p−1). Finally, we can com-
pute φβ in O

(
p

ψ|K| (
≡

Φ + |K|)
)

exponentiations by Theorem 2, and get φ = (φβ)·
β−1. The total number of computations is O

(
|K| log log p + p

ψ|K| (
≡

Φ + |K|)
)
,

which does not have significant difference with O
(

p
ψ|K| (

≡
Φ + |K|)

)
.

This strategy can be also used in the case of fK(φ) = 0. We can compute
new parameters {(gλk

)ϕk

: k ∈ K} in |K| exponentiations in Zp, and check

134 J.H. Cheon et al.

whether fK(φβ) is equal to zero or not in |K| multiplications in G. The expected
number of repetition depends on the number of roots of fK(x) = 0 in Zp−1. This
algorithm must be more efficient than the above, but the exact complexity is
not resolved yet.

6 Conclusion

In this paper, we generalized the discrete logarithm problem with auxiliary
inputs and proposed an algorithm to solve this problem efficiently. Precisely,
our algorithm takes g, gλ, gλe1

, · · · , gλed−1 as an instance where ei’s form a mul-
tiplicative subgroup in Z

×
p−1. If d ∼ p1/3 is a prime (or square-free) divisor of

p − 1 and ei = 1 + p−1
d · ni ∈ Z

×
p−1 for some 0 √ ni < d, then our algorithm

solves φ ∈ Zp in O(p1/3) group operations.
The main part of our technique is to partition the set Z

×
p using a group

action. In particular, if d is square-free with ψ prime factors, then all elements
in Z

×
p can be represented by using only 2β elements.

It would be of interest to find an algorithm to solve the DLPwAI using our
algorithm, that is, to convert an instance of the form g, gλ, · · · , gλd

for d < p1/3

into gλk

’s with k ∈ K for a multiplicative subgroup K of Z
×
p−1.

Acknowledgement. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0018345).
Yongsoo Song was partially supported by NRF-12-Global Ph.D. Fellowship Program.

References

1. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, Ch., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, Ch.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)

A Group Action on Z
×
p and the Generalized DLP 135

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

9. Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. IACR Cryptol-
ogy ePrint Archive. http://eprint.iacr.org/2004/306 (2004)

10. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

11. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3),
457–476 (2010)

12. Conrad, K.: Group theory. http://www.math.uconn.edu/∼kconrad/blurbs/
13. den Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In: Gold-

wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, Heidelberg
(1990)

14. Jao, D., Yoshida, K.: Boneh-Boyen signatures and the strong Diffie-Hellman prob-
lem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1–16.
Springer, Heidelberg (2009)

15. Kim, M.: Integer factorization and discrete logarithm with additional information.
Ph.D. dissertation, Seoul National University (2011)

16. Kim, T., Cheon, J.H.: A new approach to discrete logarithm problem with auxiliary
inputs. IACR Cryptology ePrint Archive. http://eprint.iacr.org/2012/609 (2012)

17. Lang, S.: Algebra, 3rd edn. Springer, New York (2002)
18. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and

computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol.
839, pp. 271–281. Springer, Heidelberg (1994)

19. Maurer, U.M., Wolf, S.: The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM J. Comput. 28(5), 1689–1721
(1999)

20. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

21. Satoh, T.: On generalization of Cheon’s algorithm. IACR Cryptology ePrint
Archive. http://eprint.iacr.org/2009/058 (2009)

http://eprint.iacr.org/2004/306
http://www.math.uconn.edu/~kconrad/blurbs/
http://eprint.iacr.org/2012/609
http://eprint.iacr.org/2009/058

Solving a 6120-bit DLP on a Desktop Computer

Faruk Göloğlu, Robert Granger, Gary McGuire, and Jens Zumbrägel(B)

Complex and Adaptive Systems Laboratory, School of Mathematical Sciences,
University College Dublin, Dublin, Ireland

{farukgologlu,robbiegranger}@gmail.com,
{gary.mcguire,jens.zumbragel}@ucd.ie

Abstract. In this paper we show how some recent ideas regarding the
discrete logarithm problem (DLP) in finite fields of small characteristic
may be applied to compute logarithms in some very large fields extremely
efficiently. By combining the polynomial time relation generation from
the authors’ CRYPTO 2013 paper, an improved degree two elimination
technique, and an analogue of Joux’s recent small-degree elimination
method, we solved a DLP in the record-sized finite field of 26120 elements,
using just a single core-month. Relative to the previous record set by
Joux in the field of 24080 elements, this represents a 50 % increase in the
bitlength, using just 5 % of the core-hours. We also show that for the
fields considered, the parameters for Joux’s LQ(1/4 + o(1)) algorithm
may be optimised to produce an LQ(1/4) algorithm.

Keywords: Discrete logarithm problem · Binary finite fields

1 Introduction

The understanding of the hardness of the DLP in the multiplicative group of
finite extension fields could be said to be undergoing a mini-revolution. It began
with Joux’s 2012 paper in which he introduced a method of relation generation
dubbed ‘pinpointing’, which reduces the time required to obtain the logarithms of
the elements of the factor base [11]. For medium-sized base fields, this technique
has heuristic complexity as low as LQ(1/3, 2/32/3) ∈ LQ(1/3, 0.961)1, where

LQ(a, c) = exp
(
(c + o(1)) (log Q)a(log log Q)1−a

)
,

and Q is the cardinality of the finite field. This improves upon the previous best
by Joux and Lercier [17] of LQ(1/3, 31/3) ∈ LQ(1/3, 1.442). To demonstrate the
practicality of this approach, Joux solved two example DLPs in fields of bitlength
1175 and 1425 respectively, both with prime base fields.

Research supported by the Claude Shannon Institute, Science Foundation Ireland
Grant 06/MI/006. The fourth author was in addition supported by SFI Grant
08/IN.1/I1950.

1 On foot of recent communications [13], the complexity may in fact be LQ(1/3, 21/3).

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 136–152, 2014.
DOI: 10.1007/978-3-662-43414-7 7, c∞ Springer-Verlag Berlin Heidelberg 2014

Solving a 6120-bit DLP on a Desktop Computer 137

Soon afterwards the present authors showed that in the context of binary
fields (and more generally small characteristic fields), finding relations for the
factor base can be polynomial time in the size of the field [6]. By extending
the basic idea to eliminate degree two elements during the descent phase, for
medium-sized base fields a heuristic complexity as low as LQ(1/3, (4/9)1/3) ∈
LQ(1/3, 0.763) was achieved; this approach was demonstrated via the solution
of a DLP in the field F21971 [7], and in the field F23164 .

After the initial publication of [6], Joux released a preprint [12] detailing an
algorithm for solving the discrete logarithm problem for fields of the form Fq2n ,
with q = pλ and n ∈ q, which was used in the solving of a DLP in F21778 [14],
and later in F24080 [15]. This algorithm has heuristic complexity LQ(1/4 + o(1)),
and also has a heuristic polynomial time relation generation method, similar in
principle to that in [6]. While the degree two element elimination in [6] is arguably
superior, for other small degrees, Joux’s elimination method is faster, resulting
in the stated complexity. Joux’s discrete logarithm computation in F24080 [15]
required about 14,100 core-hours: 9,300 core-hours for the computation of the
logarithms of all degree one and two elements; and 4,800 core-hours for the
descent step, i.e., for computing the logarithm of an arbitrary element. For this
computation, the field F24080 was represented as a degree 255 Kummer extension
of F216 , i.e., F(q2)q−1 with q = 28, as per [12]. The use of Kummer extensions
(with extension degree either q − 1 or q + 1) gives a reduction in the size of the
degree one and two factor base [11,12,17]; they are therefore preferable when it
comes to setting record DLP computations.

The relation generation method in [6, Sect. 3.3] applies to larger base fields of
the form Fqk with k ∞ 3 (rather than k = 2) and extension degrees up to n ∈ qφ1
with φ1 ∞ 1 a small integer. Hence the methods in this paper naturally apply to
any extension degree. Note that this representation offers greater flexibility than
Joux’s (which can represent extension degrees up to q + φ∈

1) for essentially the
same algorithmic cost, and may therefore provide a more practical DLP break
when small base fields need to be embedded into larger ones in order to apply
the attacks. However, here we choose to focus on Kummer extensions of degree
q±1, as these optimise the relation generation efficiency [6, Sect. 3.4], and linear
algebra step. While the two DLP breaks in the fields F21971 and F23164 contained
therein did not fully exploit the above ‘extreme’ fields in which the extension
degree is polynomially related to the size of the base field, thanks to Joux’s fast
small-degree elimination method, one can now do this more efficiently. Hence,
with a view to solving the DLP in larger fields than before and in as short a
time as possible, in this work we identify a family of fields for which the DLP is
very easily solved, relative to other fields of a similar size. While this does not
mean other fields of a similar size are infeasible to break, it requires more time in
practice to find the logarithms of the factor base elements, with the complexities
remaining the same.

One benefit of using base fields with k ∞ 3 is that there is an efficient proba-
bilistic elimination technique for degree two elements [6, Sect. 4.1]. For any fixed
k ∞ 4 the elimination probability very quickly tends to 1 for increasing q. In this
paper we present an improved technique which allows one to find the logarithm

138 F. Göloğlu et al.

of degree two elements extremely fast, once the logarithms of all degree one ele-
ments are known. However, for k = 3 the elimination probability is 1/(2(φ1−1)!),
or exactly 1/2 for F26120 = F(q3)q−1 with q = 28. Therefore the natural next choice
is to set k = 4 and solve a DLP in F28160 = F(q4)q−1 . This would require solv-
ing a sparse linear system in ∈ 4.2 · 106 variables, and a slightly more costly
descent step. Instead of carrying out this computation, we devised a technique
for the 6120 bit case for which the elimination of each degree two element took
only 0.03 s, and which required solving a much smaller linear system in 21,932
variables. This culminated in the resolution of a DLP in F26120 in under 750
core-hours [8], which represents a 50% increase in bitlength over the previous
record, whilst requiring just 5% of the computation time.

We note that the solving of DLPs in F26120 = F224·255 renders insecure all
pairing-based protocols based on supersingular curves of genus one and two over
F2255 , since the correponding embedding degrees are 4 and 12 (in the best cases),
respectively [1]. However, since 255 is not prime, such curves would not be rec-
ommended due to possible Weil descent attacks [5]. In any case, the Jacobians
of the curves do not have prime or nearly prime order and so are not crypto-
graphically interesting. As stated above, we could just as easily have solved the
corresponding DLP with extension degree q+1 rather than q−1, i.e., with exten-
sion degree 257 rather than 255. However, since the full factorisation of 26120 −1
is known, we were able to use a proven generator and so for completeness we
chose to solve this case2.

Since our break of the DLP in F26120 may be considered as a proof-of-concept
implementation for our approach, at the time we were not overly concerned with
the issue of complexity. Indeed, as the elimination times are reasonable and as
just noted, comparable to Joux’s elimination timings, further experimentation is
needed to ascertain if the performance is comparable for larger systems. However,
one basic difference between the two approaches is that the quadratic systems
which arise when using our analogue of Joux’s small-degree elimination method
are not bilinear, and hence are not guaranteed to enjoy the same resolution
complexity, as given in Spaenlehauer’s thesis [25, Corollary 6.30]. Therefore, we
can not currently argue that the heuristic complexity is the same. Nevertheless,
we show that with a better choice of parameter and a tighter analysis, the final
part of the descent in Joux’s LQ(1/4 + o(1)) algorithm may be improved to an
LQ(1/4) algorithm, for the fields we consider, i.e., those for which the extension
degree is polynomially related to the size of the basefield. Since the other phases
of the algorithm have complexity LQ(1/4), or lower, the overall complexity for
solving the DLP is LQ(1/4) as well.

2 Forty days after the announcement of our full DLP break in F26120 = F224·255 [8] – and
after the submission of this paper – Joux announced a break of the DLP in a 1843-
bit subgroup of F

×
26168

= F
×
224·257 , using a nearly identical degree two elimination

technique and the same descent parameters, in under 550 core-hours [16]. Noting
that the logarithms were not computed in the full multiplicative group and that this
computation was performed on faster processors, it is clear that the number of our
core-hours and Joux’s are comparable. In this case too the corresponding Jacobians
do not have prime or nearly prime order.

Solving a 6120-bit DLP on a Desktop Computer 139

The remainder of the paper is organised as follows. Section 2 explains our
field setup and algorithm in detail. Section 3 covers the other essential algorithms
and issues regarding the computation. Section 4 gives the details of a discrete
logarithm computation in F26120 , while finally in Sect. 5 we briefly address the
issue of complexity.

2 The Algorithm

The following describes the field setup and index calculus method that we use
for our discrete logarithm computation.

2.1 Setup

We consider here Kummer extensions, which are our focus for efficiency reasons;
the general case can be found in [6, Sect. 3.3] and is recalled in Sect. 5.

Let ψ, k be positive integers, q := 2λ, and n := q − 1. We construct the finite
field F(qk)n of bit length ψkn = ψk(q − 1) in which we solve the DLP, as follows3.
As stated in the introduction, the case n := q + 1 follows mutatis mutandis.

We express our base field Fqk as a degree k extension of Fq. Then we choose
λ √ Fqk such that the polynomial Xn + λ is irreducible in Fqk [X] and define
F(qk)n as the Kummer extension

Fqk(x) ∼= Fqk [X]/
(
(Xn + λ)Fqk [X]

)
,

where x is a root of the polynomial Xn + λ in F(qk)n . Note that a Kummer
extension of degree n over Fqk exists if and only if n | qk − 1. Throughout
the paper, the upper case letters X,W, . . . are used for indeterminates and the
lower case letters x,w, . . . are reserved for finite fields elements that are roots of
polynomials.

The following table displays the bit length ψkn of the finite field F(qk)n for
various choices of the numbers ψ and k.

k \ γ 6 7 8 9

3 1134 2667 6120 13797
4 1512 3556 8160 18396
5 1890 4445 10200 22995
6 2268 5334 12240 27594

In Sect. 4, we will give the details of the discrete logarithm computation when
ψkn = 6120. The algorithm we explain in this section may be successfully applied
to any of the above parameters with k ∞ 4, whereas for k = 3 one would normally
be required to precompute the logarithms of all degree two elements using a
method analogous to Joux’s [12]. However, for k = 3 and ψ = 8, precomputation
can be avoided entirely; see Sect. 4.4.
3 Our choice of representation of the finite field F(qk)n will be advantageous for our

method to solve the DLP. Note that it is a computationally easy problem to switch
between two different representations of a finite field [22].

140 F. Göloğlu et al.

2.2 Factor Base and Automorphisms

The factor base we use consists of the elements in F(qk)n which have degree
one in the polynomial representation over Fqk , i.e., we consider the set {x + a |
a √ Fqk}. As noted in [6,11,17], factor base preserving automorphisms of F(qk)n ,
which are provided by Kummer extensions, can be used to significantly reduce
the number of variables involved in the linear algebra step. Indeed, the map
ρ := Frobλ : η → ηq satisfies ρ(x) = λx with λ √ Fqk , and thus preserves the
factor base. Furthermore, for Φ := ρk = Frobλk : η → ηqk

we have Φ(x) = μx
with μ √ Fq a primitive n-th root of unity, and thus we find

(x + a)qkj+i

= ρkj+i(x + a) = ρi(Φj(x + a)) = ρi(μjx + a) = μjλeix + aqi

,

where e0 = 0 and ei = qei−1 + 1 for 1 ≡ i < k; thus it follows that

log
(
x +

aqi

μjλei

)
= qkj+i log(x + a)

for all 0 ≡ j < n and 0 ≡ i < k.
The automorphism ρ generates a group of order kn, which acts on the set

of qk factor base elements, thus dividing the factor base into about N orbits,
where N ∈ qk

kn ∈ 1
k qk−1 is the number of variables to consider.

2.3 Relation Generation

In order to generate relations between the factor base elements we use the method
from [6, Sect. 3.1–4]. We exploit properties of polynomials of the form

FB(X) := Xq+1 + BX + B ,

which have been studied by Bluher [2] and Helleseth/Kholosha [10]. We recall
in particular the following result of Bluher [2] (see also [6,10]):

Theorem 1. The number of elements B √ F
×
qk such that the polynomial FB(X)

splits completely over Fqk equals

qk−1 − 1
q2 − 1

if k odd ,
qk−1 − q

q2 − 1
if k even .

Let B √ F
×
qk be an element such that FB(X) splits and denote its roots by

μi, for i = 1, . . . , q + 1. For arbitrary a, b √ Fqk (with aq ∼= b) there exists c √ Fqk

with (aq + b)q+1 = B (ab + c)q and we then find that

f(X) := FB

(ab + c

aq + b
X + a

)
= Xq+1 + aXq + bX + c

and that f(X) also splits over Fqk , with roots αi := ab+c
aq+b μi + a.

Solving a 6120-bit DLP on a Desktop Computer 141

Now by the definition of F(qk)n we have xn = λ and thus xq = λx, with
λ √ Fqk . Hence in F(qk)n we have

f(x) = λx2 + aλx + bx + c = λ(x2 + (a + b
Γ)x + c

Γ) = λg(x) ,

where g(X) := X2 + (a + b
Γ)X + c

Γ . Hence, if the polynomial g(X) splits, i.e., if
g(X) = (X + ξ1)(X + ξ2), which heuristically occurs with probability 1/2, then
we find a relation of factor base elements, namely

q+1∏

i=1

(x + αi) = λ(x + ξ1)(x + ξ2) .

Such a relation corresponds to a linear relation between the logarithms of the
factor base elements. Once we have found more than N relations we can solve
the discrete logarithms of the factor base elements by means of linear algebra;
see Sect. 3.3.

2.4 Individual Logarithms

After the logarithms of the factor base elements have been found, a general
individual discrete logarithm can be computed, as is common, by a descent
strategy. The basic idea of this method is trying to write an element, given by its
polynomial representation over Fqk , as a product in F(qk)n of factors represented
by lower degree polynomials. By applying this principle recursively a descent
tree is constructed, and one can eventually express a given target element by a
product of factor base elements, thus solving the DLP.

While for large degree polynomials it is relatively easy to find an expression
involving lower degree polynomials by a standard approach, this method becomes
increasingly less efficient as the degree becomes smaller. In addition, the number
of small degree polynomials in the descent tree grows significantly with lower
degree. We therefore propose new methods for degree 2 elimination and small
degree descent, which are inspired by the recent works [6] and [12] respectively.

Degree 2 Elimination. Given a polynomial Q(X) := X2 + q1X + q0 √ Fqk [X]
we aim at expressing the corresponding finite field element Q(x) √ F(qk)n as a
product of factor base elements. In essence, what we do is just the reverse of the
degree one relation generation, with the polynomial g(X) set to be Q(X).

In particular, we compute – when possible – a, b, c √ Fqk such that, up to
a multiplicative constant in F

×
qk , Q(x) = x2 + q1x + q0 equals xq+1 + axq +

bx + c where the polynomial Xq+1 + aXq + bX + c splits into linear factors (cf.
[6, Sect. 4.1]).

As xn = λ holds, we have xq+1 + axq + bx + c = λ(x2 + (a + b
Γ)x + c

Γ) and
comparing coefficients we find λq0 = c and λq1 = λa + b. Now letting B √ F

×
qk

142 F. Göloğlu et al.

be an element satisfying the splitting property of Theorem 1 and combining the
previous equations with (aq + b)q+1 = B (ab + c)q we arrive at the condition

(aq + λa + λq1)q+1 + B(λa2 + λq1a + λq0)q = 0 .

Considering Fqk as a degree k extension over Fq this equation gives a quadratic
system in the k Fq-components of a, which can be solved very fast by a Gröbner
basis method.

Heuristically, for each of the above B’s the probability of success of this
method, i.e., when an a √ Fqk as above exists, is 1/2. Note that if k = 3 there
is just one single B in the context of Theorem 1, and so this direct method fails
in half of the cases. However, as noted earlier, this issue can be resolved under
certain circumstances, e.g., for ψ = 8; see Sect. 4.4.

Small Degree Descent. The following describes the Gröbner basis descent of
Joux [12] applied in the context of the polynomials FB(X) = Xq+1 + BX + B
of Theorem 1. Let f(X) and g(X) be polynomials over Fqk of degree φf and φg

respectively. We substitute X by the rational function f(X)
g(X) and thus find that

the polynomial

P (X) := f(X)q+1 + Bf(X) g(X)q + Bg(X)q+1

factors into polynomials of degree at most φ = max{φf , φg}. Since xq = λx holds
in F(qk)n the element P (x) can also be represented by a polynomial of degree 2φ.

Now given a monic polynomial Q(X) √ Fqk [X] of degree 2φ (resp. 2φ − 1) to
be eliminated we consider the equation P (x) = Q(x) (resp. P (x) = (x + a)Q(x)
with some random fixed a √ Fqk). It results as above in a quadratic system
of Fq-variables representing the coefficients of f(X) and g(X) in Fqk , and can
be solved by a Gröbner basis algorithm. In order to minimise the number of
variables involved we set f(X) to be monic of degree φf = φ and g(X) of degree
φg = φ − 1, resulting in kφ + kφ = 2kφ variables in Fq. Since the number of
equations to be satisfied equals 2kφ as well, we find a solution of this system
with good probability.

Large Degree Descent. This part of the descent is somewhat classical (see [17]
for example), but includes the degree balancing technique described in [6, Sect. 4],
which makes the descent far more rapid when the base field Fqk is a degree k
extension of a non-prime field. In the finite field F(qk)n we let y := xq and
x̄ := x2�−a

for some suitably chosen integer 1 < a < k. Then y = x̄2a

and
x̄ = (y

Γ)2
�−a

holds. Now for given Q(X) √ Fqk [X] of degree d representing Q(y)
we consider the lattice

L :=
{
(w0, w1) : Q(X) | (X

Γ)2
�−a

w0(X) + w1(X)
} ∩ Fqk [X]2 .

By Gaussian lattice reduction we find a basis (u0, u1), (v0, v1) of L of degree
∈ d/2 and can thus generate lattice elements (w0, w1) = r(u0, u1) + s(v0, v1) of

Solving a 6120-bit DLP on a Desktop Computer 143

low degree. In F(qk)n we then consider the equation

x̄w0(x̄2a

) + w1(x̄2a

) = x̄w0(y) + w1(y) = (y
Γ)2

�−a

w0(y) + w1(y) ,

where the right-hand side is divisible by Q(y) by construction, and a is chosen so
as to make the degrees of both sides as close as possible. The descent is successful
whenever a lattice element (w0, w1) is found such that the involved polynomials
Xw0(X2a

)+w1(X2a

) and 1
Q(x) (X

2�−a

w0(X)+λ2�−a

w1(X)) are (d−1)-smooth,
i.e., have only factors of degree less than d.

3 Other Essentials

In this section we give an explicit account of further basics required for a discrete
logarithm computation.

3.1 Factorisation of the Group Order

The factorisation of the group order |F×
(qk)n | = 2λkn − 1 is of interest for several

reasons. Firstly it indicates the difficulty of solving the associated DLP using the
Pohlig-Hellman algorithm. Secondly it enables one to provably find a generator.
Finally, it determines the small factors for which we apply Pollard’s rho method,
and the large factors for the linear algebra computation. Since the complexity
of the Special Number Field Sieve [20] is much higher than the present DLP
algorithms, it is unlikely that one can completely factorise 2λkn − 1 in cases of
interest in a reasonable time. In these cases it is vital to at least know all the
small prime factors of the group order, which can be accomplished using the
Elliptic Curve Method [21] and the identity

2λkn − 1 =
∏

d|λkn

τd(2) ,

where τd √ Z[x] denotes the d-th cyclotomic polynomial.

3.2 Pohlig-Hellman and Pollard’s Rho Method

In order to compute a discrete logarithm in a group G of order m we can use any
factorisation of m = m1 · . . . · mr into pairwise coprime factors mi and compute
the discrete log modulo each factor. Indeed, if we are to compute z = logφ ϕ
it suffices to compute logφci ϕci with ci = m/mi, which determines z mod mi.
With the information of z mod mi for all i one easily determines z (mod m) by
the Chinese Remainder theorem.

For the small prime (power) factors of m we use Pollard’s rho method to
compute the discrete logarithm modulo each factor. Regarding the large factors
of m we find it most efficient to combine them into a single product m∗, so that
in the linear algebra step of the index calculus method we work over the ring
Zm∗ . Note that each iteration of the Lanczos method that we use for the linear
algebra problem requires the inversion of a random element in Zm∗ ; this is the
reason why we separate the small factors of the group order from the large ones.

144 F. Göloğlu et al.

3.3 Linear Algebra

The relation generation phase of the index calculus method produces linear rela-
tions among the logarithms of the factor base elements. As the factor base logs
are also related by the automorphism group as explained in Sect. 2.2 the number
N of variables is reduced and the linear relations will have coefficients being
powers of 2. Once M > N relations have been generated we have to find a
nonzero solution vector for the linear system. To ensure that the matrix is of
maximal rank N − 1 we generate M ∈ N + 100 relations. As noted earlier the
number of variables N is expected to be about qk

kn ∈ 1
k qk−1.

We let B be the M ×N matrix of the relations’ coefficients, which is a matrix
of constant row-weight q + 3. We have to find a nonzero vector v of length N
such that Bv = 0 modulo m∗, the product of the large prime factors of the
group order m. A common approach in index calculus algorithms is to reduce
the matrix size at this stage by using a structured Gaussian elimination (SGE)
method. In our case, however, the matrix is not extremely sparse while its size
is quite moderate, hence the expected benefit from SGE would be minimal and
we refrained from this step.

We use the iterative Lanczos method [18,19] to solve the linear algebra prob-
lem, which we briefly describe here. Let A = BtB, which is a symmetric N × N
matrix. We let v √ Z

N
m∗ be random, w = Av, and find a vector x √ Z

N
m∗ such

that Ax = w holds (since A(x − v) = 0 we have thus found a kernel element).
We compute the following iteration

w0 = w, v0 = Aw0, w1 = v0 − (v0,v0)
(v0,w0)

w0

vi = Awi, wi+1 = vi − (vi,vi)
(vi,wi)

wi − (vi,vi−1)
(vi−1,wi−1)

wi−1

and stop once (vj , wj) = 0; if wj ∼= 0 the algorithm fails, otherwise we find the
solution vector

x =
j−1∑

i=0

(w,wi)
(vi, wi)

wi .

Performing the above iteration consists essentially of several matrix-vector
products, scalar-vector multiplications, and vector-vector inner products. As the
matrix is sparse and consists of entries being powers of 2 the matrix-vector
products can be carried out quite efficiently. Therefore, the scalar multiplications
and inner products consume a significant part of the computation time. We have
used a way to reduce the number of inner products per iteration, as was suggested
recently [23].

Indeed, using the A-orthogonality (vi, wj) = wt
iAwj = 0 for i ∼= j we find

that

(vi, vi−1) = (vi, wi) and (w,wi+1) = − (vi, vi)
(vi, wi)

(w,wi)− (vi, vi−1)
(vi−1, wi−1)

(w,wi−1).

Now at each iteration, given wi we compute the matrix-vector product Bwi and
the inner product ai := (vi, wi) = (Bwi, Bwi), as well as vi = Awi = Bt(Bwi)

Solving a 6120-bit DLP on a Desktop Computer 145

and bi := (vi, vi) = (Awi, Awi). We then have the simplified iteration

w0 = w , w1 = v0 − b0
a0

w0 , wi+1 = vi − bi

ai
wi − ai

ai−1
wi−1

and the solution vector x =
∑j−1

i=0
ci

ai
wi, where ci := (w,wi) can be computed

by the iteration

c0 = (w,w) , c1 = a0 − b0
a0

c0 , ci+1 = − bi

ai
ci − ai

ai−1
ci−1 .

We see that each iteration requires merely two matrix-vector products, three
scalar multiplications, and two inner products.

3.4 Target Element

In order to set ourselves a DLP challenge we construct the ‘random’ target
element ϕ √ F(qk)n using the binary digits expansion of the mathematical con-
stant β. More precisely, considering the qk-ary expansion

β = 3 +
∅∑

i=1

ci q−ki with ci √ Sqk := {0, 1, . . . , qk − 1}

we use a bijection between the sets Sqk and Fqk , which is defined by the map-
pings Φq : Fq → {0, . . . , q − 1}:

∑λ−1
i=0 ait

i ⊆→ ∑λ−1
i=0 ai2i and Φ : Fqk → Sqk :

∑k−1
j=0 bjw

j ⊆→ ∑k−1
j=0 Φq(bj)qj , and construct in this way the target element

ϕψ :=
n−1∑

i=0

Φ−1(ci+1)xi √ F(qk)n .

4 Discrete Logarithms in F26120

In this section we document the breaking of a DLP in the case ψ = 8 and k = 3,
i.e., in F26120 . The salient features of the computation are:

– The relation generation for degree one elements took 15 s4.
– The corresponding linear algebra took 60.5 core-hours.
– In contrast to [12,15], we computed the logarithm of degree 2 irreducibles on

the fly; each took on average 0.03 s.
– The descent was designed so as to significantly reduce the number of bottle-

neck (degree 6) eliminations. As a result, the individual logarithm phase took
just under 689 core-hours.

4 In our inital announcement [8] we stated a running time of 60 s for the relation
generation. The reason for this higher running time was an unnecessary step of
ordering the matrix entries, which we have discounted here.

146 F. Göloğlu et al.

4.1 Setup

We first defined F28 using the irreducible polynomial T 8 + T 4 + T 3 + T + 1.
Letting t be a root of this polynomial, we defined F224/F28 using the irreducible
polynomial W 3 + t. Letting w be a root of this polynomial, we finally defined
F26120/F224 using the irreducible polynomial X255 + w + 1, where we denote a
root of this polynomial by x.

We chose as a generator g = x+w, which has order 26120−1; this was proven
via the prime factorisation of 26120 − 1, which is provided in [8]. As usual, the
target element was set to be ϕψ as explained in Sect. 3.4.

4.2 Relation Generation

Our factor base is simply the set of degree one elements of F26120/F224 . As detailed
in Sect. 2.2, quotienting out by the action of the 8-th power of Frobenius produces
21,932 distinct orbits. To obtain relations, as explained in Sect. 2.3, we make
essential use of the single polynomial X257 + X + 1, which splits completely
over F224 . In particular, letting y := x256 so that x = y

w+1 , the F26120 element
xy + ay + bx + c corresponds to X257 + aX256 + bX + c on the one hand, and
X2

w+1 +aX + bX
w+1 +c on the other. The first of these transforms to X257+X +1 if

and only if (a256+b)257 = (ab+c)256. So for randomly chosen (a, b) we compute c
and check whether the corresponding quadratic splits. If it does – which occurs
with probability 1/2 – we obtain a relation. Thanks to the simplicity of this
approach, we collected 22,932 relations and wrote these to a matrix in 15 s using
C++/NTL [24].

4.3 Linear Algebra

We took as our modulus the product of the largest 35 factors of 26120 − 1 listed
in [8], which has bitlength 5121. We ran a parallelised C/GMP [9] implementa-
tion of Lanczos’ algorithm on four of the Intel (Westmere) Xeon E5650 hex-core
processors of ICHEC’s SGI Altix ICE 8200EX Stokes cluster. This took 60.5
core-hours (just over 2.5 h wall time).

4.4 Individual Logarithm

Degree 2 Elimination. For computing the discrete logarithm of a degree two
element Q(x) = x2 + q1x + q0 we try to equate Q(x) with x257 + ax256 + bx + c,
where (a256 + b)257 = (ab + c)256. If this fails we apply the following strategy,
making use of the fact that F224 can also be viewed as a field extension of F26 .
We consider y = x256 and x̄ = x4, so that y = x̄64 and x̄ = (y

Γ)4 holds, and
apply the large degree descent method to Q̄(X) := Q(X

Γ) (note that Q̄(y) =
Q(x)). Considering the lattice L (see Sect. 2.4) we construct a basis of the form
(X + u0, u1), (v0,X + v1), where u0, u1, v0, v1 √ F224 . Then for s √ F224 we have

Solving a 6120-bit DLP on a Desktop Computer 147

lattice elements (X + u0 + sv0, sX + u1 + sv1) √ L. Now for each B √ F224 such
that X65 + BX + B splits, we solve for s √ F224 satisfying

(v0s2 + (u0 + v1)s + u1)64 = B (s64 + v0s + u0)65 ,

which can be expressed as a quadratic system in the F26 -components of s, and
thus solved by a Gröbner basis computation over F26 . We then have an equation

x̄65 + ax̄64 + bx̄ + c = 1
Γ4 (y5 + by4 + aλ4y + cλ4)

with a = s, b = λs + q1, and c = q0
Γ , where the left-hand side polynomial splits,

while the right-hand side polynomial contains Q̄(X).
The polynomial X5 + bX4 +aλ4X + cλ4 = Q̄(X)R(X) has the property that

R(X) always factors into a linear and an irreducible quadratic polynomial over
Fqk . Indeed, by a result of Bluher [2, Theorem 4.3], for any B √ F224 and any
d ∞ 1, the number of roots in F224d of the polynomial FB(X) = X5 + BX + B
equals either 0, 1, 2, or 5. Since X5 + bX4 + aλ4X + cλ4 can be rewritten as
X5+BX+B via a linear transformation (except when aλ4 = b4), the same holds
also regarding the F224d-roots of this polynomial. Now applying Bluher’s result
for d = 1 we see that R(X) can not split into linear factors, and by Bluher’s
result for d = 3 we conclude that R(X) can not be irreducible. Hence, R(X) is
the product of linear and a quadratic polynomial, which we call Q∈(X).

Now if Q∈(X) is resolvable by the direct method, we have successfully elimi-
nated the original polynomial Q(X). The number of B such that X65 +BX +B
splits over Fq equals 64, according to Theorem 1, and by experiment, for each
one the success probability to find a resolvable polynomial Q∈(X) is about 0.4.

Performing the Descent. Using C++/NTL we first used continued fractions
to express the target element ϕψ as a ratio of two 27-smooth polynomials, which
took 10 core-hours, and then we applied the three different descent strategies as
explained in Sect. 2.4.

We used the large degree descent strategy to express all of the featured
polynomials using polynomials of degree 6 or less. This took a further 495 core-
hours. While we could have performed this part of the descent more efficiently,
as noted above we opted to find expressions which resulted in a relatively small
number of degree 6 polynomials – which are the bottleneck eliminations for the
subsequent descent – namely 326.

For degrees 6 down to 3 we used the analogue of Joux’s small degree elimina-
tion method, based on the same polynomial that we used for relation generation,
i.e., X257 + X + 1, rather than the polynomial X256 + X that was used in [15],
since the resulting performance was slightly better. Finally, we performed the
degree 2 elimination as outlined above.

For convenience we coded the eliminations of polynomials of degrees 6 down
to 2 in Magma [3] V2.16-12, using Faugere’s F4 algorithm [4]. The total time for
this part was just over 183.5 core-hours on a 2 GHz AMD Opteron computer.

148 F. Göloğlu et al.

For the logarithm modulo the cofactor of our modulus we used either linear
search or Pollard’s rho method, which took 20 min in total in C++/NTL. Thus
the total time for the descent was just under 689 h.

Finally, we found5 that ϕψ = glog, with log =

13858759836397869262547571128312317100923636150389699236649593170451770028

01271780222348940986175813601314418350742563637306244268142932334742725215

98166126957928116825443110965404253837938808595404111035238027107772178822

93928187340345199973181514007348176651371535844927931455679735244624686031

79467501244756894744062749423560359365016740509334489092010298345222267322

47771897083223217282051573645013603613042367782716361877817938374393824313

01907362478638761841403754168112028404465938319290743685252639208772430477

54516312718252509681114514005027334043817696752552891273466393500982215708

44400380788516332496583882522436381918008200167032186350245107751346979596

31469615366671616895148194809106006673018476675813777394430387542983086720

54639181442568439117307472651461541934380416278336617397750571612363460962

36566875251277843062329973044475486561062204356908568471471279383781038538

81888446379698990607607984324812725202083970588643607121365057518670745694

85840723789169429253691408684171964795734810327114810217291628659735881740

96389913305607677858033996361734905537150362024720515772660781208855505434

33105576657001421187560294063357576385045750307908707437658530447052041132

02462922553757114575735552860602366993170394544793267182811289614232751427

87569425690532833283344049635521302596000897192512036695298807294032964530

95969137708720454634896013276009554410598019825524549320241283159389198478

81524179576919398171123661820636875299153651503611802144512343876568832561

49355994405051149585969163075307026647956035683671589546448539955132726112

03493865596129185620342224768038702907847352095116033447252547507168067262

36615872927203296061825120443121943571561392013409520378729752432544760815

54937002122953415949407262137232099852298394838422907643191397673290238344

1830460409758599159285365304456971453176680449737096483324156185041.

4.5 Total Running Time

The total running time is 689 + 60.5 = 749.5 core-hours. Note that most of the
computation (all except the linear algebra part) was performed on a personal
computer. On a modern quad-core PC, the total running time would be around
a week.

5 Magma verification code for this solution is available from [8].

Solving a 6120-bit DLP on a Desktop Computer 149

5 Complexity Considerations

In this section we prove a tighter complexity result than that given in [12] for the
new small-degree stage of the descent. As stated in Sect. 1, the systems arising
from the small-degree elimination in Sect. 2.4 are quadratic, but not bilinear.
As such, they do not necessarily enjoy the same resolution complexity as bilin-
ear quadratic systems, as given by a theorem due to Spaenlehauer [25, Corol-
lary 6.30]. However, if one instead reverts to using the polynomial Xq −X, then
one can argue as follows.

Let the fields under consideration be F(qk)n , with k ∞ 3 fixed, n ∈ qφ1 and
φ1 ∞ 1 a small integer, as per the field representation described in [6, Sect. 3.3],
and q → ∃. This is achieved by finding a polynomial p1 of degree φ1 such that
p1(Xq) − X ≈ 0 (mod I(X)), with I(X) irreducible of degree n. By letting
x √ F(qk)n be a root of I(X) and y := xq, one also has x = p1(y), and therefore
two related representations of F(qk)n .

For simplicity we assume φ1 = 1; the case φ1 > 1 can be treated similarly.
The cardinality of F(qk)n is ∈ qkq and we have

Lqkq (1/4, c) = exp
(
(c + o(1))(kq log q)1/4(log(kq log q))3/4

)

= exp
(
(ck1/4 + o(1)) q1/4 log q

)
. (1)

We now recall Joux’s elimination method. The final part of the descent starts
with an element Q(x) of degree D ∈ η1q

1/2 which is to be eliminated; here, η1 is
a constant that depends on the efficiency of the classical large-degree descent. For
a parameter 1 < d < D/2 yet to be optimised, we substitute X = f(X)/g(X)
into Xq−X with deg(f) = d and deg(g) = D−d, both with yet-to-be determined
Fqk coefficients. In this case one has the F(qk)n-relation

f(x)qg(x) − f(x)g(x)q =
(
f(x)qg(x) − f(x)g(x)q

)
mod I(x). (2)

By the factorisation of Xq − X over Fq, the LHS of Eq. (2) has irreducible
factors of degree at most D − d. On the RHS one stipulates that it be zero mod
Q(x). This condition can be expressed as a bilinear quadratic system in the dk
Fq-components of the coefficients of f and the (D − d)k Fq-components of the
coefficients of g. Since Q(x) has D coefficients in Fqk one expects there to be
O(1) solutions to this system when both f and g are monic. Hence by varying
the leading coefficient of one of them, one expects many solutions.

The degree of the RHS of Eq. (2) depends on the representation of the field
F(qk)n . Recall that in Joux’s field representation, one has h0(X), h1(X) of very
low degree φh0 , φh1 such that h1(X)Xq − h0(X) ≈ 0 (mod I(X)), with I(X)
irreducible of degree n and n ∈ q. Now on the RHS of Eq. (2) one replaces each
occurrence of xq by h0(x)/h1(x), and thus the cofactor of Q(x) on the RHS has
degree (D − d)(max{φh0 , φh1} − 1). For each solution to the bilinear quadratic
system, it is tested for (D − d)-smoothness, and when it is, one has successfully
represented Q(x) as a product of at most q field elements of degree at most D−d
(ignoring the negligible number of factors from the cofactor).

150 F. Göloğlu et al.

Using our field representation, recall that y = xq and hence

f(x)q =
d∑

i=0

fq
i yi and g(x)q =

D−d∑

j=0

gq
j yj .

Then also using x = p1(y), the RHS of Eq. (2) becomes:

(d∑

i=0

fq
i yi

)(D−d∑

j=0

gjp1(y)j

)

−
(d∑

i=0

fip1(y)i

) (D−d∑

j=0

gq
j yj

)

,

so that the cofactor of Q(y) has degree (D − d)(φ1 − 1) in y.
By repeating the above elimination technique recursively for each element

occurring in the product until only degree one or degree two elements remain,
the logarithm of Q(x) is computed. So what is the optimal d? Joux’s analysis [12]
indicates that d = O(q1/4(log q)1/2) should be used, giving an overall complexity
of exp

(
(c∈ + o(1)) q1/4(log q)3/2

)
for some c∈, which is Lqkq (1/4 + o(1), c∈), due

to the presence of the extra (log q)1/2 factor, relative to Eq. (1).
However, one can instead set d ∈ η2q

1/4, as we now show (the constant
η2 is to be optimised later). Let C(D, d) be the cost of expressing a degree D
element as a product of elements of degree at most d, when the numerator f
has degree d at each step. If C0(D, d) is the cost of resolving the corresponding
bilinear quadratic system, we have

C(D, d) = C0(D, d) + q C(D − d, d)

= C0(D, d) + q
(
C0(D − d, d) + q C(D − 2d, d)

)

= · · · =
⊆D/d⊥−1∑

i=0

qiC0(D − id, d) .

Since C0(D − id, d) ≡ C0(D, d) for all i and since
∑⊆D/d⊥−1

i=0 qi ≡ qD/d we get
the upper bound

C(D, d) ≡ qD/dC0(D, d) .

As in [12], we need the following essential lemma.

Lemma 1. ([25, Corollary 6.30]) The arithmetic complexity (measured in
Fq-operations) of computing a Gröbner basis of a generic bilinear system
f1, . . . , fnx+ny

√ Fq[x0, . . . , xnx−1, y0, . . . , yny−1] with Faugere’s F4 algorithm [4]
is bounded by

O
(

min(nx, ny) (nx + ny)
(

nx + ny + min(nx, ny) + 2
min(nx, ny) + 2

)β)
,

where θ is the exponent of matrix multiplication.

Solving a 6120-bit DLP on a Desktop Computer 151

Hence, using the estimate
(
a+2
b+2

) ≡ (a
b)2

(
a
b

) ≡ (a
b)2(e a

b)b = eb(a
b)b+2, we have

C0(D, d) = O
(
k2Dd

(
k(D + d) + 2

kd + 2

)β)
= O

(
k2Ddekβd

(
D + d

d

)kβd+2β)
,

and, neglecting the lower order terms, we get

log C0(D, d) =
(
kθd log(D/d)

)
(1 + o(1)) .

Therefore, we have

log C(D, d) =
(
(D/d) log q + kθd log(D/d)

)
(1 + o(1))

=
((

η1

η2
+

kθη2

4

)

q1/4 log q
)
(1 + o(1)) ,

and in particular, for the optimal choice η2 = (4η1/kθ)1/2, we get

log C(D, d) =
(
(kθη1)1/2q1/4 log q

)
(1 + o(1)) .

Thus, taking into account Eq. (1), we arrive at the complexity

C(D, d) = Lqkq (1/4 , k1/4(θη1)1/2) . (3)

Observe that the number of degree d ∈ η2q
1/4 elements in such an expression

for the initial degree D ∈ η1q
1/2 element is O(q(φ1/φ2)q

1/4
). Note that this choice

of d represents the optimal balance between the number of nodes in the descent
tree at level d and the cost of resolving the bilinear systems.

Moreover, exactly the same argument shows that C(ηjq
1/2j

, ηj+1q
1/2j+1

) =
Lqkq (1/2j+1), and so the cost of expressing each of the Lqkq (1/4) degree η2q

1/4

elements in terms of elements of degree η3q
1/8 is Lqkq (1/8), and therefore for

any j > 1 the total cost down to degree ηjq
1/2j

never exceeds Lqkq (1/4). After
j = ≥log2 log2 q∪ of the above sequence of steps we have �q1/2j � = 1, and the
total cost is precisely that given in Eq. (3).

As the complexity of the initial splitting of a target element into a product of
elements of degree at most η0q

3/4 is Lqkq (1/4), as is the complexity of classical
descent from degree η0q

3/4 to degree η1q
1/2, the above tighter analysis demon-

strates that for the fields considered, Joux’s algorithm has complexity Lqkq (1/4)
as well, for both his and our field representations. We have omitted the determi-
nation of the optimal parameters η0 and η1, since this is beyond our focus on
proving that the full algorithm is L(1/4).

References

1. Barreto, P.S.L.M., Galbraith, S.D., Ó’ hÉigeartaigh, C., Scott, M.: Efficient pair-
ing computation on supersingular abelian varieties. Des. Codes Cryptogr. 42(3),
239–271 (2007)

152 F. Göloğlu et al.

2. Bluher, A.W.: On xq+1 + ax + b. Finite Fields Appl. 10(3), 285–305 (2004)
3. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. I. The user

language. J. Symbolic Comput. 24(3–4), 235–265 (1997)
4. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure

Appl. Algebra 139(1–3), 61–88 (1999)
5. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of weil

descent on elliptic curves. J. Cryptol. 15(1), 19–46 (2002)
6. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve

and the impact of higher splitting probabilities: application to discrete logarithms
in F21971 and F23164 . In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II.
LNCS, vol. 8043, pp. 109–128. Springer, Heidelberg (2013)

7. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: Discrete Logarithms in
GF (21971). NMBRTHRY list, 19 Feb 2013

8. Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: Discrete Logarithms in
GF (26120). NMBRTHRY list, 11 Apr 2013

9. Granlund, T.: The GMP development team: GNU MP: The GNU Multiple Preci-
sion Arithmetic Library, 5.0.5 edn. http://gmplib.org/ (2012)

10. Helleseth, T., Kholosha, A.: x2l+1 +x+a and related affine polynomials over (2k).
Cryptogr. Commun. 2(1), 85–109 (2010)

11. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit
and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

12. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very
small characteristic. Cryptology ePrint Archive, report 2013/095. http://eprint.
iacr.org/ (2013)

13. Joux, A.: Personal communication (2013)
14. Joux, A.: Discrete Logarithms in GF (21778). NMBRTHRY list, 11 Feb 2013
15. Joux, A.: Discrete Logarithms in GF (24080). NMBRTHRY list, 22 Mar 2013
16. Joux, A.: Discrete Logarithms in GF (26168). NMBRTHRY list, 21 May 2013
17. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In: Vau-

denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Hei-
delberg (2006)

18. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp.
109–133. Springer, Heidelberg (1991)

19. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Nat. Bur. Stan. 45, 255–282 (1950)

20. Lenstra, A.K., Lenstra Jr, H.W. (eds.): The Development of the Number Field
Sieve. LNM, vol. 1554. Springer, Heidelberg (1993)

21. Lenstra Jr, H.W.: Factoring integers with elliptic curves. Ann. Math. (2) 126(3),
649–673 (1987)

22. Lenstra Jr, H.W.: Finding isomorphisms between finite fields. Math. Comp.
56(193), 329–347 (1991)

23. Popovyan, I.: Efficient parallelization of lanczos type algorithms. Cryptology ePrint
Archive, Report 2011/416. http://eprint.iacr.org/ (2011)

24. Shoup, V.: NTL: A library for doing number theory, 5.5.2 edn. http://www.shoup.
net/ntl/ (2009)

25. Spaenlehauer, P.J.: Solving multihomogeneous and determinantal systems algo-
rithms - complexity - applications. Ph.D. thesis, Université Pierre et Marie Curie
(UPMC) (2012)

http://gmplib.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Stream Ciphers
and Authenticated Encryption

How to Recover Any Byte of Plaintext on RC4

Toshihiro Ohigashi1(B), Takanori Isobe2, Yuhei Watanabe2,
and Masakatu Morii2

1 Hiroshima University, 1-4-2 Kagamiyama,
Higashi-Hiroshima, Hiroshima 739-8511, Japan

ohigashi@hiroshima-u.ac.jp
2 Kobe University, 1-1 Rokkoudai, Nada-ku, Kobe 657-8501, Japan

Takanori.Isobe@jp.sony.com

yuheiwatanabe@stu.kobe-u.ac.jp

mmorii@kobe-u.ac.jp

Abstract. In FSE 2013, Isobe et al. proposed efficient plaintext recovery
attacks on RC4 in the broadcast setting where the same plaintext is
encrypted with different user keys. Their attack is able to recover first
1000 terabytes of a plaintext with probability of almost one, given 234

ciphertexts encrypted by different keys. Since their attack essentially
exploits biases in the initial (1st to 257th) bytes of the keystream, it
does not work any more if such initial bytes are disregarded. This paper
proposes two advanced plaintext recovery attacks that can recover any
byte of a plaintext without relying on initial biases, i.e., our attacks are
feasible even if initial bytes of the keystream are disregarded. The first
attack is the modified Isobe et al.’s attack. Using the partial knowledge
of the target plaintext, e.g., only 6 bytes of the plaintext, the other bytes
can be recovered with the high probability from 234 ciphertexts. The
second attack does not require any previous knowledge of a plaintext. In
order to achieve it, we develop a guess-and-determine plaintext recovery
method based on two strong long-term biases. Given 235 ciphertexts, any
byte of a plaintext can be recovered with probability close to one.

Keywords: RC4 · Broadcast setting · Plaintext recovery attack · Bias ·
Guess-and-determine attack · Multi-session setting · RC4-drop

1 Introduction

RC4, designed by Rivest in 1987, is one of most widely used stream ciphers in
the world. It is adopted in many software applications and standard protocols
such as SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. RC4 consists
of a key scheduling algorithm (KSA) and a pseudo-random generation algorithm
(PRGA). The KSA converts a user-provided variable-length key (typically, 5–32
bytes) into an initial state S consisting of a permutation of {0, 1, 2, . . . , N − 1},
where N is typically 256. The PRGA generates a keystream Z1, Z2, . . ., Zr,
. . . from S, where r is a round number of the PRGA. Zr is XOR-ed with the

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 155–173, 2014.
DOI: 10.1007/978-3-662-43414-7 8, c∞ Springer-Verlag Berlin Heidelberg 2014

156 T. Ohigashi et al.

r-th plaintext byte Pr to obtain the ciphertext byte Cr. The algorithm of RC4
is shown in Algorithm 1, where + denotes arithmetic addition modulo N , φ is
the key length, and i and j are used to point to the locations of S, respectively.
Then, S[x] denotes the value of S indexed x.

In FSE 2001, Mantin and Shamir proposed a plaintext recovery attack on
RC4 in the broadcast setting where the same plaintext is encrypted with different
user keys [12]. Using a bias of Z2, a second byte of the plaintext is recovered from
ψ(N) ciphertexts encrypted with randomly-chosen different keys. In FSE 2011,
Maitra, Paul and Sen Gupta showed that Z3, Z4, . . . , Z255 are also biased to
0 [9]. The bytes 3 to 255 are also obtained in the broadcast setting, from ψ(N3)
ciphertexts. In FSE 2013, Isobe et al. introduced several new biases in the initial
bytes of the RC4 keystream, and constructed a cumulative list of strong biases
in the first 257 bytes with theoretical reasons [7]. They demonstrated plaintext
recovery attacks using their strong biases set with typical parameters of N = 256
and φ = 16 (128-bit key). 232 ciphertexts encrypting the same plaintext enable
to extract first 257 bytes of a plaintext with probability more than 0.8. Using
these initial biases in conjunction with the digraph repetition bias proposed
by Mantin in EUROCRYPT 2005 [11], the consecutive first 1000 terabytes of
a plaintext is theoretically recovered with probability of almost one from 234

ciphertexts encrypted by different keys. After that, AlFardan et al. also proposed
similar plaintext recovery attack of the first 256 bytes [1] independently of [7],
and this attack can recover first 256 bytes of a plaintext with probability more
than 0.96 from 232 ciphertexts encrypted by different keys. Note that broadcast
attacks [1,7] can be converted into the attacks for the multi-session setting of
SSL/TLS where the target plaintext blocks are repeatedly sent in the same
position in the plaintexts in multiple sessions [3].

Previous plaintext recovery attacks essentially exploit biases in the 1st to
257th bytes of the keystream. If the initial 256/512/768 bytes of the keystream
are disregarded, as recommended in case of RC4 usages, it does not work any
more as mentioned in [7]. Thus, RC4 that disregards the first n bytes of a
keystream seem to be secure against above attacks for n > 257.

This paper proposes two advanced plaintext recovery attacks that can recover
any byte of a plaintext without relying on initial biases of the keystream, i.e.,
our attacks are feasible even if initial bytes of the keystream are disregarded,
unlike Isobe et al. and AlFardan et al.’s attacks. To begin with, we improve
Isobe et al.’s attack so that it works without initial biases of a keystream. In
particular, we assume that an attacker knows some bytes of the target plaintext,
e.g., fixed header information. Using the digraph repetition biases in forward
and backward manners, the other bytes of the plaintext are recovered from the
partial knowledge of the plaintext. In our attack, if only consecutive 6 bytes of
the target plaintexts are known, 1000 terabytes of the target plaintext can be
recovered with probability of about 0.636 from 234 ciphertexts. The number of
required ciphertexts of this attack is same as that of Isobe et al.’s attack, while
Isobe et al.’s attack needs the initial 257 bytes of the keystream. The second
attack does not require any previous knowledge of a plaintext. In order to achieve

How to Recover Any Byte of Plaintext on RC4 157

Algorithm 1. RC4 Algorithm
KSA(K[0 . . . γ − 1]):

for i = 0 to N − 1 do
S[i] ∈ i

end for
j ∈ 0
for i = 0 to N − 1 do

j ∈ j + S[i] + K[i mod γ]
Swap S[i] and S[j]

end for

PRGA(K):

i ∈ 0
j ∈ 0
S ∈ KSA(K)
loop

i ∈ i + 1
j ∈ j + S[i]
Swap S[i] and S[j]
Output Z ∈ S[S[i] + S[j]]

end loop

it, we develop a novel guess-and-determine plaintext recovery method based on
two strong long-term biases, i.e., digraph repetition biases [11] and Fluhrer-
McGrew biases [4]. The basic idea behind our guess-and-determine attack is
that two biases are used for the detection the wrong candidates of plaintext
bytes. Given 235 ciphertext encrypted by different keys, any byte of a plaintext
can be recovered with probability close to one1.

We emphasize that our attacks are applicable even if any number of initial
bytes of the keystream are disregarded, with almost same amount of ciphertexts
as Isobe et al.’s attack. Therefore, our work reveals that the RC4 implementation
that disregards the first n bytes of a keystream is also not secure even if n is
enough large (e.g. n = 3072).

2 Preliminary

In this section, we introduce two known long-term biases, which occur in any
keystream bytes, because our attacks are based on them. Then we describe
previous plaintext recovery attacks on RC4 in the broadcast setting.

2.1 Long-term Bias

As a long-term bias, following two types of biases were proposed.

Bias of Digraph Probabilities (FM00 Bias). Fluhrer and McGrew showed
a long-term bias of digraph probabilities in the RC4 keystream, called the FM00
bias. It is a bias of 2-byte word of the keystream with the condition of index i
(= r mod N) [4], and consists of 12 positive or negative events. The detail of
the FM00 bias is shown in Table 1.
1 Independently of our work, other plaintext recovery attacks on RC4 implementation

which disregards the first n bytes of a keystream, was recently reported in [1,2].
The attack uses only the Fluhrer-McGrew biases with the sophisticated count-up
method, and obtains experimental results similar to that of our attack.

158 T. Ohigashi et al.

Table 1. Events of the FM00 bias with the condition of index i (= r mod N)

Condition of event Digraph (Zr, Zr+1) Pr(Zr ← Zr+1)

i = 1 (0, 0) N−2 · (1 + 2 · N−1)
i ∪= 1, N − 1 (0, 0) N−2 · (1 + N−1)
i ∪= 0, 1 (0, 1) N−2 · (1 + N−1)
i ∪= N − 2 (i + 1, N − 1) N−2 · (1 + N−1)
i ∪= 1, N − 2 (N − 1, i + 1) N−2 · (1 + N−1)
i ∪= 0, N − 3, N − 2, N − 1 (N − 1, i + 2) N−2 · (1 + N−1)
i = N − 2 (N − 1, 0) N−2 · (1 + N−1)
i = N − 1 (N − 1, 1) N−2 · (1 + N−1)
i = 0, 1 (N − 1, 2) N−2 · (1 + N−1)
i = 2 (N/2 + 1, N/2 + 1) N−2 · (1 + N−1)
i ∪= N − 2 (N − 1, N − 1) N−2 · (1 − N−1)
i ∪= 0, N − 1 (0, i + 1) N−2 · (1 − N−1)

The Digraph Repetition Bias (ABSAB Bias). Mantin found another long-
term bias of digraph distribution in the RC4 keystream [11], called the ABSAB
bias. Assuming A and B are two words of the keystream, the digraph AB tends to
repeat with short gaps S between them, e.g., ABAB, ABCAB and ABCDAB,
where gap S is defined as zero, C, and CD, respectively. The detail of the
ABSAB bias is as follows,

Zr || Zr+1 = Zr+2+G || Zr+3+G for G ∈ 0, (1)

where || is a concatenation. The probability that Eq. (1) holds is given as
Theorem 1.

Theorem 1 [11]. For small values of G the probability of the pattern ABSAB
in RC4 keystream, where S is a G-byte string, is (1 + e(−4−8G)/N/N) · 1/N2.

2.2 Previous Works

This section briefly reviews known attacks on RC4 in the broadcast setting where
the same plaintext is encrypted with different randomly-chosen keys.

Mantin-Shamir (MS) Attack. Mantin and Shamir first presented broadcast
RC4 attacks. Their attacks exploit a bias of second byte of keystream, Z2 [12]
as follows.

Theorem 2 [12]. Assume that the initial permutation S is randomly chosen
from the set of all the possible permutations of {0, 1, 2, . . . , N − 1}. Then the
probability that the second output byte of RC4 is 0 is approximately 2

N .

This probability is estimated as 2
256 when N = 256. Based on this bias, a distin-

guishing attack and a plaintext recovery attack on RC4 in the broadcast setting
are demonstrated by Theorems 3 and 4, respectively.

How to Recover Any Byte of Plaintext on RC4 159

Theorem 3 [12]. Let X and Y be two distributions, and suppose that the event
e happens in X with probability p and in Y with probability p · (1 + q). Then for
small p and q, O(1

p·q2) samples suffice to distinguish X from Y with a constant
probability of success.

In this case, p and q are given as p = 1/N and q = 1. The number of samples is
about 1

p·q2 = N .

Theorem 4 [12]. Let P be a plaintext, and let C(1), C(2), . . . , C(k) be the RC4
encryptions of P under k uniformly distributed keys. Then, if k = ψ(N), the
second byte of P can be reliably extracted from C(1), C(2), . . . , C(k).

According to the relation C
(i)
2 = P

(i)
2 ∞ Z

(i)
2 , if Z

(i)
2 = 0 holds, then C

(i)
2 is same

as P
(i)
2 . From Theorem 2, Z2 = 0 occurs with twice the expected probability of

a random one. Thus, most frequent byte in amongst C
(1)
2 , C

(2)
2 , . . . , C

(k)
2 is likely

to be P2 itself. When N = 256, it requires more than 28 ciphertexts encrypted
with randomly-chosen keys.

Maitra-Paul-Sen Gupta (MPS) Attack. Maitra, Paul and Sen Gupta
showed that Z3, Z4, . . . , Z255 are also biased to 0 [6,9]. Although Mantin and
Shamir assume that an initial permutation S is random, Maitra et al. exploit
biases of S after the KSA [10]. Then the 3rd to 255th bytes of a plaintext are
obtained from ψ(N3) ciphertexts encrypted with different keys.

Isobe-Ohigashi-Watanabe-Morii (IOWM) Attack. Isobe et al. proposed a
full plaintext recovery attack, which is able to extract the full bytes of a plaintext
on RC4 from ciphertexts in the broadcast setting [7]. Their attack consists of
two phases: an initial byte recovery phase and a sequential recovery phase for
finding later bytes of a plaintext.

In the initial byte recovery phase, the first 257 bytes of a plaintext are
recovered by using the cumulative bias set of Z1, Z2, . . . , Z257. Their cumula-
tive bias set includes a conditional bias Z1 = 0|Z2 = 0 [7] and single byte
biases Z2 = 0 [12], Z3 = 131 [7], Zr = 0 for 3 √ r √ 255 [6,9], Zr = r for
3 √ r √ 255 [7], Z16 = 240 [5], Zr = (256 − r) for r = 32, 48, 64, 80, 96, 112 [7],
and Z256 �= 0 [7], Z257 = 0 [7] (when N = 256 and φ = 16). Given 232 cipher-
texts encrypted by randomly-chosen keys, the first 257 bytes of a plaintext are
extracted with probability more than 0.8.

In the sequential recovery phase, the later bytes (after P258) are sequentially
recovered with the first 257 bytes of the plaintext, which were already obtained in
the initial byte recovery phase. The sequential algorithm effectively uses a long-
term bias, the ABSAB bias [11]. In particular, ABSAB biases with different
G are simultaneously used for enhancing the attack, using the following lemmas
for the discrimination.

Lemma 1 [11]. Let X and Y be two distributions and suppose that the inde-
pendent events {ei: 1 √ i √ k} occur with probabilities PrX(ei) = pi in X and

160 T. Ohigashi et al.

PrY (ei) = (1 + qi) · pi in Y . Then the discrimination D of the distributions is∑
i pi · q2i .

The number of required samples for distinguishing the biased distribution from
the random distribution with probability of 1−λ is given as the following lemma.

Lemma 2 [11]. The number of samples that is required for distinguishing two
distributions that have discrimination D with success rate 1 − λ (for both direc-
tions) is (1/D) · (1 − 2λ) · log2

1−α
α .

This lemma shows that in the broadcast RC4 attack, once the discrimination D
and the number of samples k are given, the success probability Prdistinguish for
distinguishing the distribution of correct candidate plaintext byte (the biased
distribution) from the distribution of one wrong candidate of plaintext byte
(a random distribution) always becomes constant. The success probability for
recovering plaintext bytes depends on Prdistinguish. Thus if k is fixed, the success
probability only depends on D.

In their attack, the following equation regarding the ABSAB bias is used.

(Cr || Cr+1) ∞ (Cr+2+G || Cr+3+G)
= (Pr ∞ Zr || Pr+1 ∞ Zr+1) ∞ (Pr+2+G ∞ Zr+2+G || Pr+3+G ∞ Zr+3+G)
= (Pr ∞ Pr+2+G ∞ Zr ∞ Zr+2+G || Pr+1 ∞ Pr+3+G ∞ Zr+1 ∞ Zr+3+G). (2)

Assuming that Eq. (1) (event of the ABSAB bias) holds, the relation of plain-
texts and ciphertexts without keystreams is obtained, i.e., (Cr || Cr+1)∞(Cr+2+G

|| Cr+3+G) = (Pr∞Pr+2+G || Pr+1∞Pr+3+G) = (Pr || Pr+1)∞(Pr+2+G || Pr+3+G).
For combining these relations with different G to enhance the biases, the algo-
rithm uses the knowledge of pre-guessed plaintext bytes. For example, in the
cases of (r = r∈ and G = 1) and (r = r∈ + 1 and G = 0), right parts of equations
are given as (Pr∪ || Pr∪+1)∞(Pr∪+3 || Pr∪+4) and (Pr∪+1 || Pr∪+2)∞(Pr∪+3 || Pr∪+4),
respectively. Then, if Pr∪ , Pr∪+1, and Pr∪+2 are already known, the two equations
with respected to (Pr∪+3 || Pr∪+4) is obtained by transposing Pr∪ , Pr∪+1, and Pr∪+2

to the left part of the equation. Then, these equations with different G can be
merged.

Suppose that P1, P2, . . . , P257 are guessed by the cumulative bias set. Then,
the sequential algorithm for recovering Pr for r = 258, 259, . . . , PMAX , from k
ciphertexts C(1), C(2), . . . , C(k) encrypted by different keys, by using ABSAB
biases of G = 0, 1, . . . , GMAX is given as follows.

Step 1 Obtain C258−3−GMAX
, C258−2−GMAX

, . . . , CPMAX
in each ciphertext,

and make frequency tables Tcount[r][G] of (Cr−3−G || Cr−2−G)∞(Cr−1 || Cr)
for all r = 258, 259, . . . , PMAX and G = 0, 1, . . . , GMAX , where (Cr−3−G ||
Cr−2−G) ∞ (Cr−1 || Cr) = (Pr−3−G || Pr−2−G) ∞ (Pr−1 || Pr) only if Eq. (1)
holds.

Step 2 Set r = 258.
Step 3 Guess the value of Pr.

How to Recover Any Byte of Plaintext on RC4 161

Step 3.1 For G = 0, 1, . . . , GMAX , convert Tcount[r][G] into a frequency
table Tmarge[r] of (Pr−1 || Pr) by using pre-guessed values of Pr−3−GMAX

,
. . . , Pr−2, and merge counter values of all tables.

Step 3.2 Make a frequency table Tguess[r] indexed by only Pr from Tmarge[r]
with knowledge of the Pr−1. To put it more precisely, using a pre-guessed
value of Pr−1, only tables Tmarge[r] corresponding to the value of Pr−1

is taken into consideration. Finally, regard most frequency one in table
Tguess[r] as the correct Pr.

Step 4 Increment r. If r = PMAX + 1, terminate this algorithm. Otherwise, go
to Step 3.

Isobe et al. theoretically showed that this algorithm can recover consecutive
1000 terabytes of a plaintext from 234 ciphertexts when GMAX = 63 (D =
2−28.03) is adopted.

Countermeasure. These attacks essentially exploit biases in the initial (1st
to 257th) bytes of the RC4 keystream. If initial bytes of the keystream are
disregarded, it does not work any more as mentioned in [7]. Thus, the RC4-
drop(257) is considered as a countermeasure against previous plaintext recovery
attacks, where RC4-drop(n) is an RC4 implementation that disregards the first
n bytes of a keystream2.

In addition, Mironov also recommended n = 512 or 768, and gave a conser-
vative recommended parameter n = 3072 based on the experimental data for
avoiding initial bytes biases [13].

3 Plaintext Recovery Attack Using Known Partial
Plaintext Bytes

In this section, we propose a plaintext recovery attack that is feasible even if
initial bytes of a keystream are disregarded, unlike previous attacks. We improve
Isobe et al.’s attack so that it works without initial biases of the keystream. In
particular, we suppose that an attacker has the partial knowledge of a target
plaintext, e.g., fixed header information. This assumption is reasonable in the
practical usage on RC4. Then, with partial knowledge of the target plaintext,
the other bytes of the plaintext can be recovered by using ABSAB biases.

For the simplification, the encryption on RC4-drop(n) denotes Cr = Pr ∞
Zr+n = Pr ∞ Zr∗ where r∗ = r + n.

3.1 Attack Functions

We give two functions based on ABSAB biases for recovering an unknown byte
of the plaintext.
2 RC4-drop(n) is a generalized implementation of the countermeasure written by [13],

and this is defined at http://www.users.zetnet.co.uk/hopwood/crypto/scan/cs.html.

http://www.users.zetnet.co.uk/hopwood/crypto/scan/cs.html

162 T. Ohigashi et al.

Algorithm 2. fABSAB F ()
Require: r, /* round number of a plaintext to be guessed */

GMAX , /* parameter of the ABSAB bias*/
Pr−GMAX−3, . . . , Pr−1, /* known plaintext bytes */
(Cr−GMAX−3, . . . , Cr)s of C(1), C(2), . . . , C(k) /* bytes of k ciphertexts encrypted
by different keys */

Ensure: Pr

1: for G = 0 to GMAX do
2: Make frequency tables Tcount[r][G] of (Cr−3−G || Cr−2−G) ⊕ (Cr−1 || Cr) from

all ciphertexts C(1), C(2), . . . , C(k).
3: Convert Tcount[r][G] into a frequency table Tmarge[r] of (Pr−1 || Pr) by

Pr−3−GMAX , . . . , Pr−2, and merge counter values of all tables.
4: end for
5: Make a frequency table Tguess[r] indexed by only Pr from Tmarge[r] with knowledge

of Pr−1. To put it more precisely, using a pre-guessed value of Pr−1, only tables
Tmarge[r] corresponding to the value of Pr−1 is taken into consideration.

6: Regard most frequency one in table Tguess[r] as the correct Pr.
7: Output Pr

fABSAB F () : Find an unknown byte Pr from pre-known consecutive (GMAX +
3) bytes of a plaintext Pr−GMAX−3, . . . , Pr−1 (See Algorithm 2).

fABSAB B() : Find an unknown byte Pr from pre-known consecutive (GMAX +
3) bytes of a plaintext Pr+1, . . . , Pr+GMAX+3.

The algorithm of fABSAB B() is given by replacing “−” of subscripts of vari-
ables in Algorithm 2 to “+”. These functions can be obtained from Step 1
and Step 3 of the IOWM attack. Figure 1 (Fig. 3) illustrates the procedures of
fABSAB F () and fABSAB B(). By using above two functions, all plaintext bytes
can be recovered from the partial knowledge of the plaintext and the correspond-
ing ciphertexts.

3.2 Attack Procedure

Suppose that x bytes of a target plaintext, Pr, . . . Pr+x−1, are given. An attacker
aims to recover the next byte (Pr+x) or the previous byte (Pr−1) of the known
plaintext bytes by using fABSAB F () or fABSAB B(), respectively. If (Pr+x) or
(Pr−1) is successfully recovered, the attacker recovers (Pr+x+1) or (Pr−2) with
knowledge of (Pr+x) or (Pr−1). Since GMAX increases, the probability for recov-
ering a plaintext byte also increases in the next step.

Our attack repeats above procedure until the all plaintext bytes are found.
After GMAX reaches 63, GMAX is fixed since the increase of D is converged
around GMAX = 63 as mentioned in [7]. Figure 2 shows that our plaintext
recovery attack using known partial plaintext bytes when consecutive 6 bytes of
a target plaintext are given.

How to Recover Any Byte of Plaintext on RC4 163

Pr-GMAX-3 ... Pr-2 Pr-1 Pr

recoverfABSAB_F ()

 Pr Pr+1 Pr+2 ... Pr+GMAX+3

recover fABSAB_B ()

Fig. 1. Forward and backward functions for recovering one byte of a target plaintext
using the partial knowledge of the plaintext and ABSAB biases

Pr-6 Pr-5 ... Pr-2 Pr-1 Pr

fABSAB_F ()

GMAX = 3

Pr-6 Pr-5 ... Pr-2 Pr-1 Pr Pr+1

fABSAB_F ()

GMAX = 4

Pr-6 Pr-5 ... Pr-2 Pr-1 Pr Pr+1 Pr+2

fABSAB_F ()

GMAX = 5

Pr-6 Pr-5 ... Pr-2 Pr-1 Pr Pr+1 Pr+2 ... Pr+59 Pr+60

fABSAB_F ()

GMAX = 63

Pr-6 Pr-5 ... Pr-2 Pr-1 Pr Pr+1 Pr+2 ... Pr+59 Pr+60 Pr+61

fABSAB_F ()

GMAX = 63

Fig. 2. A plaintext recovery attack using the known partial plaintext bytes when con-
secutive 6 bytes of a target plaintext are known

3.3 Experimental Results

We evaluate our plaintext recovery attack on RC4-drop(n) in the broadcast set-
ting by the computer experiment when N = 256 and n = 3072, which is a con-
servative recommended parameter given in [13]. Then, ciphertext C is expressed
as (C1, C2, . . . , Cr, . . .) = (P1 ∞ Z1+3072, P2 ∞ Z2+3072, . . . , Pr ∞ Zr+3072, . . .).

In order to estimate the success probability of our attack, we evaluate the
probabilities for recovering the one byte of the target plaintext by fABSAB F ()
and fABSAB B(). The probabilities dependent on GMAX and the number of
obtained ciphertexts, but does not depend on the round number r. Thus, our
experiment uses parameters such that GMAX = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 31, 63
and 231, 232, . . . , 236 ciphertexts.

Table 2 shows the experimental result for 128 different plaintexts when r =
128, n = 3072, and the number of known plaintext bytes and the discrimination
D and corresponding GMAX . The success probability for recovering Pr increases
with the increasing the value of GMAX and D.

For the estimation of the impact in the realistic environment, let us consider
the situation of Fig. 2 where an attacker knows consecutive only 6 bytes of a tar-
get plaintext. Suppose that 234 ciphertexts encrypted by randomly-chosen keys
are obtained, the probability for recovering Pr by fABSAB F () with GMAX = 3 is
estimated as 0.8125. Similarly, Pr+1, Pr+2, . . . Pr+5 are recovered by fABSAB F ()

164 T. Ohigashi et al.

Table 2. The probabilities for recovering P128 by using fABSAB F () and P128−GMAX−3,
. . . , P127 when n = 3072

of known # of ciphertexts

plaintext bytes GMAX D 231 232 233 234 235 236

3 0 2−32.05 0.0078 0.0547 0.0625 0.1250 0.4609 0.8750
4 1 2−31.09 0.0156 0.0469 0.1797 0.4141 0.8516 0.9766
5 2 2−31.55 0.0625 0.1484 0.3516 0.6641 0.9688 1.0000
6 3 2−30.18 0.0703 0.1875 0.4297 0.8125 0.9922 1.0000
7 4 2−29.90 0.1172 0.2266 0.5156 0.8750 0.9922 1.0000
8 5 2−29.68 0.0938 0.2656 0.6250 0.9375 1.0000 1.0000
9 6 2−29.50 0.1563 0.3438 0.7344 0.9688 1.0000 n/a

10 7 2−29.35 0.1484 0.3594 0.7656 0.9922 1.0000 n/a
11 8 2−29.22 0.1484 0.4063 0.7578 0.9922 1.0000 n/a
12 9 2−29.11 0.1484 0.4922 0.8203 1.0000 1.0000 n/a
18 15 2−28.66 0.2969 0.6172 0.9453 1.0000 1.0000 n/a
34 31 2−28.21 0.3359 0.7656 0.9766 1.0000 n/a n/a
66 63 2−28.03 0.3672 0.7656 0.9766 1.0000 n/a n/a

with probabilities of 0.8750, 0.9375, 0.9688, 0.9922, 0.9922, where these parame-
ters are GMAX = 4, 5, 6, 7, 8, respectively. Then, the attacker obtains the consec-
utive 12(= 6+6) bytes with probability of (0.8125) · (0.8750) · (0.9375) · (0.9688) ·
(0.9922) · (0.9922) → 0.636. Pr+6, Pr+7, . . . , Pr+59 are expected to be recovered
by fABSAB F () with probability of one from Table 2. After that, other bytes
of the target plaintexts can be recovered with probability of one similar to the
IOWM attack because the parameter becomes GMAX = 63. Therefore, in our
attack, the only knowledge of consecutive 6 bytes of the target plaintexts enables
to recover 1000 terabytes of the target plaintext with probability of about 0.636
from 234 ciphertexts. The number of required ciphertexts of this attack is same
as that of IOWM attack, while IOWM attack uses the initial 257 bytes of the
keystream.

4 Guess-and-Determine Plaintext Recovery Attack (GD
Attack)

This section gives a plaintext recovery attack which does not require any previous
knowledge of the plaintext unlike the attack in Sect. 3. In order to achieve it,
we develop a guess-and-determine (GD) plaintext recovery method based on
two strong long-term biases, the FM00 bias and the ABSAB bias. Generally, in
stream ciphers, the guess-and-determine method is considered as a technique for
internal state recovery attacks such that a part of an internal state is determined
from the other parts by exploiting the relations between the state and keystream.
Our method seems to be a new class of the guess-and-determine methods for the
plaintext recovery attack.

How to Recover Any Byte of Plaintext on RC4 165

Assuming Pr is the target byte, the overview of our GD attack is given as
follows.

1. Guess the value of Pr.
2. Recover x bytes of the plaintext, Pr−x, . . . , Pr−1, from Pr (guessed in Step 1)

by using the FM00 bias.
3. Recover P ∈

r from Pr−x, . . . , Pr−1 (guessed in Step 2) by using the ABSAB
bias.

4. If P ∈
r is not equal to Pr guessed in Step 1, the value is wrong. Otherwise the

value is regarded as a candidate of correct Pr.

For each candidate of Pr, Step 1–4 are performed. The basic idea behind our
GD attack is that if the value of Pr guessed in Step 1 is correct, P ∈

r is surely
same as Pr guessed in Step 1. Two biases are used for the detection the wrong
candidates of plaintext bytes.

In this section, we firstly give attack functions based on the FM00 bias for
guess-and-determine methods. Then, we explain the detailed algorithm of guess-
and-determine methods. Finally we evaluate this attack.

4.1 FM00 Bias for GD Attack

The FM00 bias is a two-word bias (See Table 1), and is relatively weaker than
the ABSAB bias. If the simple count-up method for guessing correct plaintext
byte is used, the FM00 bias is not directly used for efficient plaintext recovery
attacks, because some events indexed by same r∗ are dependent each other.

For example, let us consider two events of (Zr∗ , Zr∗+1) = (0, 0) and (Zr∗ ,
Zr∗+1) = (0, 1), whose probabilities are same. Here, the relation of plaintext
and ciphertext is given as (Pr, Pr+1) = (Cr ∞ Zr∗ , Cr+1 ∞ Zr∗+1). If the event
of (Zr∗ , Zr∗+1) = (0, 0) occurs, the relation of (Pr, Pr+1) = (Cr, Cr+1) hold.
On the other hand, if the event of (Zr∗ , Zr∗+1) = (0, 1) occurs, (Pr, Pr+1 ∞
1) = (Cr, Cr+1) holds. Since these probabilities are same, we can not determine
whether most frequency (Cr, Cr+1) is equal to (Pr, Pr+1) or (Pr, Pr+1 ∞ 1) in
the plaintext recovery attack3.

Conditional Bias Regarding the FM00 Bias. So that FM00 biases can be
independently used for the plaintext recovery attack, we convert the FM00 bias
into conditional bias such that Pr(Zr∗+1|Zr∗) (the forward) or Pr(Zr∗ |Zr∗+1)
(the backward), assuming that one byte of the plaintext can be known. Here, we
consider the forward and backward conditional biases for previous two events
(Zr∗ , Zr∗+1) = (0, 0) and (Zr∗ , Zr∗+1) = (0, 1).

The backward conditional biases, (Zr∗ = 0|Zr∗+1 = 0) and (Zr∗ = 0|Zr∗+1 =
1), are independently used for the plaintext recovery attack. Suppose that Pr+1

3 Yarrkov showed a plaintext recovery attack using the FM00 bias on his web page
[15] before our results. However, the detailed description of attacks and estimations
are not given, and only the source code is given.

166 T. Ohigashi et al.

Algorithm 3. fFM00 B()
Require: r, /* round number of plaintext to be guessed */

Pr+1, /* known plaintext bytes */
(Cr, Cr+1)s of C(1), C(2), . . . , C(k) /* bytes of k ciphertexts encrypted by different
keys */

Ensure: Pr

1: Make frequency tables of Tcount[bias] of Pr and Pr+1 for all FM00 biases regarding
Pr+1 from all ciphertexts C(1), C(2), . . . , C(k).

2: Convert Tcount[bias] into a frequency table Tguess[r] indexed by only Pr with knowl-
edge of Pr+1. Here, we only deal with the bias independent of other biases.

3: Regard most frequency one in table Tguess[r] as the correct Pr.
4: Output Pr

is obtained, the values of Zr∗+1 = 0 is computed by Zr∗+1 = Cr+1∞Pr+1. Then,
two tables of Zr∗ = 0 are obtained from two backward conditional biases (Zr∗ =
0|Zr∗+1 = 0) and (Zr∗ = 0|Zr∗+1 = 1). In these tables, it is expected that most
frequency values of these tables indicate same value of the plaintext, because
source event Zr∗+1 are different. Thus, these frequency tables are efficiently
merged to recover the plaintext byte Pr.

On the other hand, the forward conditional biases (Zr∗+1 = 0|Zr∗ = 0) and
(Zr∗+1 = 1|Zr∗ = 0) are not independently used. Even if two tables of Zr∗ = 0
obtained from (Zr∗+1 = 0|Zr∗ = 0) and (Zr∗+1 = 1|Zr∗ = 0) are merged, it is
expected that two peaks of Zr∗+1 = 0 and Zr∗+1 = 1 are observed due to same
source event Zr∗ = 0.

Therefore, if the source events of conditional bias (the forward is Zr∗ and
the backward is Zr∗+1) are different, these events can be independently used.
Note that events for positive bias and negative bias are not dependent even if
the source events of conditional bias are same.

Attack Functions Based on the FM00 Bias. By using all the independent
conditional biases, we construct the forward and backward functions for the
guess-and-determine attack based on the FM00 bias as follows:

fFM00 F () : Find an unknown byte Pr from pre-known a byte of a plaintext
Pr−1.

fFM00 B() : Find an unknown byte Pr from pre-known a byte of a plaintext
Pr+1 (See Algorithm 3).

The algorithm of fFM00 F () is given by replacing “+” of subscripts of variables
in Algorithm 3 to “−”. Figure 3 illustrates the procedures of fFM00 F () and
fFM00 B().

The number of independent events of the forward conditional bias Nf and
that of the backward conditional bias Nb in each index i are shown in Table 3.
When index i = 0, the all events of backward conditional bias are independent,
and Nb = 5. On the other hand, two events of forward conditional bias Zr∗+1 =
1|Zr∗ = N − 1 and Zr∗+1 = 2|Zr∗ = N − 1 are not independent, and Nf =

How to Recover Any Byte of Plaintext on RC4 167

Pr-1 Pr

recoverfFM00_F ()

 Pr Pr+1

recover fFM00_B ()

Fig. 3. The guess-and-determine methods based on the conditional bias of the FM00
bias

5 − 2 = 3. For all index i, Nb is larger than Nf . Hence, the success probability
of fFM00 B() is larger than that of fFM00 F ().

4.2 Plaintext Recovery Method for Recovering Any Plaintext Byte

Our GD attack utilizes the backward conditional bias of the FM00 bias and the
forward ABSAB bias.

To begin with, a plaintext byte Pr is guessed from N candidates. Then, our
attack sequentially recovers Pr−1 ≡ Pr−2 ≡ . . . from Pr and the ciphertexts by
using fFM00 B() in the backward manner. Since the number of the candidates
of Px is N , the number of candidates of (Pr, Pr−1, Pr−2, . . .) is also N . In order
to detect the wrong candidates of Pr, we use fABSAB F (), which is based on
the other bias. In particular, P ∈

r is obtained from ciphertexts and the candidate
of plaintext bytes (Pr−1, Pr−2, . . .) by using fABSAB F () with GMAX . If the
number of ciphertexts is enough larger and Pr is correctly guessed, the relation of
Pr = P ∈

r surely holds. Otherwise the probability that Pr = P ∈
r holds is 1/N . After

this method, about two candidates of Pr are expected to be left. If the number of
the candidates of Pr is not one, the same method is repeated for P ∈

r−1, P
∈
r−2, . . . ,

which are obtained by Pr. If Pr is correct, these method correctly works. In most
cases, the number of repeating this method Nrepeat is less than three. Figure 4
shows the procedure of our plaintext recovery attack for recovering any plaintext
byte. The detail of our attack for recovering any plaintext byte Pr is given in
Algorithm 4.

We consider the parameter GMAX for the ABSAB bias. It should be chosen
so that ABSAB bias is stronger than the FM00 bias to efficiently detect wrong
candidates. From Lemma 2, given 1/D samples, Prdistinguish become constant.
Since the probability of the plaintext recovery attack depends on Prdistinguish,
we evaluate our attack by the number of required ciphertexts for obtaining 1/D
samples. For example, D of the backward conditional bias of the FM00 bias is
estimated as D = N−3 = 2−24 for N = 256 and i = 3, 4, . . . , N − 4. From
Table 3, there are seven independent events of the FM00 conditional biases in
this case. As mentioned before, these biases are independently used. Thus, the
probability that a ciphertext matches one of these source events is 7/N . The
number of the required ciphertexts is (N/7) · (1/D) = 229.19 for 1/D samples.
On the other hand, discriminations D of the ABSAB bias and these number of

168 T. Ohigashi et al.

Table 3. Events of the conditional bias of the FM00 bias in each index i (= r∼ mod N)

Index i Zr∗ Zr∗+1 Conditional probability Nf Nb

0 0 N−1 · (1 + N−1)
1 N − 1 N−1 · (1 + N−1)

0 N − 1 1 N−1 · (1 + N−1) 3 5
N − 1 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)

0 0 N−1 · (1 + 2 · N−1)
2 N − 1 N−1 · (1 + N−1)

1 N − 1 3 N−1 · (1 + N−1) 4 6
N − 1 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 2 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
0 1 N−1 · (1 + N−1)
3 N − 1 N−1 · (1 + N−1)

2 N − 1 3 N−1 · (1 + N−1) 4 8
N − 1 4 N−1 · (1 + N−1)
N/2 + 1 N/2 + 1 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 3 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
0 1 N−1 · (1 + N−1)
i + 1 N − 1 N−1 · (1 + N−1)

3, 4, . . . , N − 4 N − 1 i + 1 N−1 · (1 + N−1) 3 7
N − 1 i + 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 i + 1 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
0 1 N−1 · (1 + N−1)

N − 3 N − 2 N − 1 N−1 · (1 + N−1) 4 6
N − 1 N − 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 N − 2 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
N − 2 0 1 N−1 · (1 + N−1) 2 2

N − 1 0 N−1 · (1 + N−1)
0 N − 1 N−1 · (1 − N−1)

0 1 N−1 · (1 + N−1)
0 N − 1 N−1 · (1 + N−1)

N − 1 N − 1 0 N−1 · (1 + N−1) 1 3
N − 1 1 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)

How to Recover Any Byte of Plaintext on RC4 169

Algorithm 4. Plaintext Recovery Attack for Recovering Any Plaintext
Byte
Require: r, /* round number of plaintext to be guessed */

GMAX , /* parameter of the ABSAB bias*/
C(1), C(2), . . . , C(k) /* k ciphertexts encrypted by different keys */

Ensure: Pr

1: Set all N candidates of a plaintext byte Pr into table Tcand.
2: Set Nrepeat = 0.
3: for all Pr ◦ Tcand do
4: Recover GMAX + 3 + Nrepeat bytes of the plaintext,

Pr−GMAX−3−Nrepeat , . . . , Pr−1, from a candidate Pr by using fFM00 B()

and k ciphertexts C(1), C(2), . . . , C(k).
5: Recover P ∈

r−Nrepeat
from Pr−GMAX−3−Nrepeat , . . . , Pr−1−Nrepeat (guessed in Step

4) by using fABSAB F () and k ciphertexts C(1), C(2), . . . , C(k).
6: if Pr−Nrepeat ∪= P ∈

r−Nrepeat
then

7: The candidate of Pr is removed from Tcand.
8: end if
9: end for

10: if the number of candidates in Tcand is one then
11: Output Pr, and the algorithm stops.
12: else if the number of candidates in Tcand is zero then
13: Our attack fails, and the algorithm stops.
14: else
15: Increment Nrepeat, and go back to Step 3.
16: end if

required ciphertexts for recovering a plaintext byte are shown as (D = 2−29.22,
1/D = 229.22 ciphertexts) for GMAX = 8 and (D = 2−29.11, 1/D = 229.11

ciphertexts) for GMAX = 9. Therefore GMAX = 9 is chosen for N = 256 and
i = 3, 4, . . . , N − 4.

4.3 Experimental Results

We perform the computer experiment for demonstrating the effectiveness of our
attack with GMAX on RC4-drop(n) in the broadcast setting when N = 256 and
n = 3072. In this experiment, P128 is recovered from ciphertexts without the
knowledge of the target plaintext. The parameters of the backward conditional
bias of the FM00 bias, index i, satisfy r∗ mod 256 = i ∼ {3, 4, . . . , N −4}. Hence,
GMAX = 9 is used as the parameter of the ABSAB bias.

First, in order to evaluate fFM00 B(), we obtain the success probability for
recovering P114, . . . , P127 under the condition that the correct P128 is given. The
success probabilities when 229 to 235 ciphertexts are given is shown in Table 4,
where the number of tests is 256. The experimental result shows that all bytes
of P114, . . . , P127 are recovered from 235 ciphertexts encrypted by randomly-
chosen different keys with probability of one by using fFM00 B(). This results
also shows that if one byte of the plaintext is known, 233 ciphertexts enable to

170 T. Ohigashi et al.

Pr-12 Pr-11 ... Pr-2 Pr-1 Pr

fABSAB_F ()

Pr-12 Pr-11 ... Pr-2 Pr-1 Pr

fFM00_B ()

Pr-2 Pr-1 Pr

fFM00_B ()

Pr-1 Pr

fFM00_B ()

Pr

P’r

Compare Pr

with P’r

Start

(2) Recover
Pr-1 to Pr-12

 by fFM00_B ()

(3) Check Pr

 by fABSAB_F ()

The procedure for one candidate of Pr Pr = 0 Pr = 1 Pr = N-1

Pr-13 Pr-12 Pr-11 ... Pr-2 Pr-1 Pr

fABSAB_F ()

P’r-1

Compare Pr-1

with P’r-1

fFM00_B ()

If the number of candidates
of Pr is larger than 1

(1) Set a
 candidate
 of Pr

Fig. 4. The procedure of our plaintext recovery attack for recovering any plaintext
byte (GMAX = 9)

recover the other one byte with probability of about 0.8. Interestingly, it is more
efficient than the attack in Sect. 3 when GMAX is small. The attack in Sect. 3 are
improved by using fFM00 B(). If consecutive 6 bytes of the plaintext are known,
the other bytes can be recovered from 234 with probability of about 0.984, while
that of the attack in Sect. 3 is about 0.636.

Then, we estimate the success probability for recovering P128 from only
ciphertexts by our plaintext recovery attack. The success probability when 232

to 235 ciphertexts are given is shown in Table 5, where the number of tests is
256. This experiment requires about one week with one CPU core (Intel(R)
Core(TM) i7 CPU 920@ 2.67 GHz) to obtain the result of one plaintext. The
experimental result shows that our attack can recover the target plaintext byte
P128 with probability of one from 235 ciphertexts encrypted by randomly-chosen
different keys. Remaining plaintext bytes, namely Pr(r �= 128) can be recovered
by repeating our attack or using our attack functions fABSAB F (), fABSAB B(),
fFM00 F (), and fFM00 B(). Especially, in the cases of i = N − 2, N − 1, the suc-
cess probabilities of conditional bias of the FM00 bias are relatively small than
that of others cases. These bytes should be recovered by using fABSAB F (),
fABSAB B() for an efficient recovery attack after other bytes are recovered by
using our GD attack.

How to Recover Any Byte of Plaintext on RC4 171

Table 4. Success probabilities of fFM00 B() for recovering (P114, . . . , P127) under the
condition that the correct P128 is given when n = 3072

of ciphertexts

229 230 231 232 233 234 235

P114 0.0039 0.0039 0.0039 0.0078 0.0781 0.8750 1.0000
P115 0.0039 0.0039 0.0078 0.0117 0.1055 0.8828 1.0000
P116 0.0078 0.0000 0.0078 0.0117 0.1133 0.8828 1.0000
P117 0.0039 0.0039 0.0078 0.0078 0.1328 0.8945 1.0000
P118 0.0078 0.0195 0.0078 0.0078 0.1758 0.9023 1.0000
P119 0.0078 0.0000 0.0078 0.0117 0.1992 0.9180 1.0000
P120 0.0039 0.0039 0.0078 0.0156 0.2422 0.9258 1.0000
P121 0.0039 0.0039 0.0117 0.0078 0.2773 0.9492 1.0000
P122 0.0039 0.0078 0.0039 0.0117 0.3203 0.9570 1.0000
P123 0.0000 0.0117 0.0117 0.0195 0.3672 0.9688 1.0000
P124 0.0078 0.0039 0.0195 0.0391 0.4727 0.9844 1.0000
P125 0.0078 0.0039 0.0078 0.0742 0.5820 0.9883 1.0000
P126 0.0039 0.0078 0.0391 0.1602 0.6680 0.9922 1.0000
P127 0.0430 0.0898 0.1719 0.3984 0.8008 0.9922 1.0000

Table 5. Success probabilities of our attack for recovering P128 when n = 3072

of ciphertexts

232 233 234 235

P128 0.0039 0.1133 0.9102 1.0000

Given 234 ciphertexts encrypted by randomly-chosen different keys, our
attack can recover any plaintext byte with probability of about 0.91. The number
of required ciphertexts are same as that of IOWM attack on original RC4, which
does not discard initial keystream bytes. In addition, even if 233 ciphertexts are
given, our attack is more efficient than a random guess.

Also, this attack is applicable to original RC4 with constant success probabil-
ity regardless of the position of plaintext bytes, while that of the IOWM attack
decrease for the later plaintext byte. It is an advantage of our attack from the
IOWM attack on the original RC4.

5 Conclusion

In this paper, we have evaluated the security of relatively secure RC4 implemen-
tation called RC4-drop(n), which discards the first n bytes of the keystream. We
proposed two advanced plaintext recovery attacks that can recover any byte of a
plaintext on RC4-drop(n) in the broadcast setting or the multi-session setting.
The first attack is the modified IOWM attack. Using partial knowledge of the
target plaintext, the other bytes can be recovered from ciphertexts encrypted
by different keys. The attack can recover 1000 terabytes of a target plaintext

172 T. Ohigashi et al.

with the high probability from 234 ciphertexts encrypted by different keys if the
knowledge of only consecutive 6 bytes of the target plaintext is given. The sec-
ond attack does not rely on any previous knowledge of a plaintext. In order to
achieve it, we developed a guess-and-determine plaintext recovery method based
two strong long-term biases. Given 235 ciphertext encrypted by different keys,
any byte of a plaintext can be recovered with probability close to one from only
ciphertexts. The amount of ciphertext is almost same as the IOWM attack on
original RC4. Therefore, RC4 is not secure even if the enough initial keystream
bytes are disregarded.

We recommend to replace RC4 with other stream ciphers [8] or the algorithms
of authenticated encryption in the practical protocols and software applications.

A future work is to compare our attack with the method of [1,2] in the same
conditions. In addition, we will combine our attack with the method of [1,2] for
obtaining more efficient attacks.

Acknowledgments. This work was supported in part by Grant-in-Aid for Scientific
Research (C) (KAKENHI 23560455) and Grant-in-Aid for Young Scientists (B) (KAK-
ENHI 25730085) for Japan Society for the Promotion of Science.

References

1. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: USENIX Security 2013 (2013) (to appear)

2. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS and WPA. http://www.isg.rhul.ac.uk/tls/
RC4biases.pdf (2013)

3. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

4. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Schneier [14], pp. 19–30

5. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S.: Proof of empirical RC4 biases and
new key correlations. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 151–168. Springer, Heidelberg (2012)

6. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S.: (Non-)random sequences from
(Non-) random permutations - analysis of RC4 stream cipher. J. Cryptol. 1–42
(2012). http://dblp.uni-trier.de/rec/bibtex/journals/joc/GuptaMPS14

7. Isobe, T., Ohigashi, T., Watanabe, Y., Morii, M.: Full plaintext recovery attack
on broadcast RC4. Preproceeding of Fast Software Encryption (FSE) (2013)

8. Josefsson, S., Strombergson, J., Mavrogiannopoulos, N.: The salsa20 stream cipher
for transport layer security (TLS) and datagram transport layer security (DTLS).
Network Working Group Internet-Draft, March 2013. http://tools.ietf.org/html/
draft-josefsson-salsa20-tls-01 (2013)

9. Maitra, S., Paul, G., Sen Gupta, S.: Attack on broadcast RC4 revisited. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 199–217. Springer, Heidelberg (2011)

10. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weiz-
mann Institute of Science, Israel. http://www.wisdom.weizmann.ac.il/itsik/RC4/
rc4.html (2001)

http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
http://dblp.uni-trier.de/rec/bibtex/journals/joc/GuptaMPS14
http://tools.ietf.org/html/draft-josefsson-salsa20-tls-01
http://tools.ietf.org/html/draft-josefsson-salsa20-tls-01
http://www.wisdom.weizmann.ac.il/itsik/RC4/rc4.html
http://www.wisdom.weizmann.ac.il/itsik/RC4/rc4.html

How to Recover Any Byte of Plaintext on RC4 173

11. Mantin, I.: Predicting and distinguishing attacks on RC4 keystream generator. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

12. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

13. Mironov, I.: (not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

14. Schneier, B. (ed.): FSE 2000. LNCS, vol. 1978. Springer, Heidelberg (2001)
15. Yarrkov, E.: Why the recent RC4 attack doesn’t surprise me. https://cipherdev.

org/rc4 2013-03-13.html (2013)

https://cipherdev.org/rc4_2013-03-13.html
https://cipherdev.org/rc4_2013-03-13.html

The LOCAL Attack: Cryptanalysis
of the Authenticated Encryption Scheme ALE

Dmitry Khovratovich1 and Christian Rechberger2(B)

1 University of Luxembourg, Walferdange, Luxembourg
dmitry.khovratovich@uni.lu

2 DTU, Kongens Lyngby, Denmark
crec@dtu.dk

Abstract. We show how to produce a forged (ciphertext, tag) pair for
the scheme ALE with data and time complexity of 2102 ALE encryptions
of short messages and the same number of authentication attempts. We
use a differential attack based on a local collision, which exploits the
availability of extracted state bytes to the adversary. Our approach allows
for a time-data complexity tradeoff, with an extreme case of a forgery
produced after 2119 attempts and based on a single authenticated mes-
sage. Our attack is further turned into a state recovery and a universal
forgery attack with a time complexity of 2120 verification attempts using
only a single authenticated 48-byte message.

1 Introduction

Cryptanalysis and design of authenticated encryption primitives are getting
renewed interest, not least because of the CAESAR initiative [1]. Recently, at
DIAC 2012 and FSE 2013, a proposal named ALE was presented by
Bogdanov et al. [6]. ALE provides online single-pass encryption and authen-
tication functionality with optional processing of associated data in a single
primitive. The design borrows well tested ideas from Pelican-MAC [9] and the
AES-based stream-cipher LEX [3]. From an implementation point of view it is
an attractive proposal as it both lends itself to lightweight hardware implemen-
tation, and at the same time offers very high speed software implementations on
platforms with AES instructions available.

The designers claim 128-bit security against state recovery, key recovery, or
forgery attacks, under the assumptions that nonces are not re-used. Our crypt-
analysis suggests that the security against forgery and state recovery attacks is
less than expected and claimed. Even though the designers limited the amount
of data that can be authenticated or both authenticated and encrypted to 245

bytes, our forgery attack will likely succeed. In fact, for a variant of our approach,
as little as 32 bytes of available data are enough. Furthermore our approach can
be extended to recover the full 256-bit internal state of ALE.

Our methods. We use differential cryptanalysis despite the designers’ intention
of making these attacks unlikely. Their motivation comes from the good prop-
erties of the AES round function when iterated a few times, leading to very low

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 174–184, 2014.
DOI: 10.1007/978-3-662-43414-7 9, c∞ Springer-Verlag Berlin Heidelberg 2014

The LOCAL Attack 175

bounds for the probability of differential characteristics and differentials. Study
of so-called extinguishing differentials in the context of Pelican-MAC backs up
this analysis.

Our attack uses differentials of a particular type, called “local collisions”,
as they lead to the same tags for different plaintexts. These seem to have been
first used in the collision search of SHA-0 [7], and more recently in related-key
key-recovery attacks on AES-192 and AES-256 [4], and are also related to the
aforementioned extinguishing differentials from the security analysis of Pelican-
MAC [9]. However, as we discovered, using information that is leaked via the
ciphertext these local collisions can be constructed much faster than expected, in
turn leading to forgery attacks. Because of these properties, we call our method
the LOCAL method: “LOcal-Collision Amplification via Leakage”.

Outline of the paper and our results. We give a short introduction into the
state of the art in the authenticated encryption in Sect. 2. We also provide a
detailed description of ALE and discuss its similarities and differences to LEX.
Then we proceed with the description of our attack in Sect. 3. We show that
each encrypted message has many counterparts which yield the same tag with
probability from 2−119 to 2−102. Hence we can use a time-data tradeoff and
demonstrate the fastest attack when 2102 messages are available, and the slowest
with complexity 2119 when only a single message is available. In Sect. 4 we turn
this attack into a stronger attack, allowing for state recovery and hence universal
forgery. We discuss various repair strategies in Sect. 5 and conclude that a version
of ALE resistant to our attack would have to suffer about 30 % in performance.

2 Authenticated Encryption Schemes and ALE

It has been known for a while that the encryption modes CBC, CFB, and CTR do
not provide any sort of data integrity. Whenever a recipient of a ciphertext needs
to check whether it was not modified by an adversary, a separate mechanism is
needed. A traditional way to authenticate the ciphertext is to compute a message
authentication code (MAC) of it, also called a tag. A secure way to do it, known
as Encrypt-then-MAC, is to produce a MAC on another key and couple it with
the ciphertext. A combination of a secure mode of operation and a secure MAC
yields a secure authenticated encryption scheme [2], which provides

– Confidentiality (inability to distinguish the ciphertext from a random string);
– Ciphertext integrity (inability to find a valid pair (ciphertext, tag)).

Apart from using two different constructions, this approach has one clear
disadvantage: it uses two different keys, which puts additional burden on the
end user.

Since at least the year of 2000, cryptographers have tried to design an authen-
ticated encryption scheme, which would use a single key and would be at least
as efficient as Encrypt-then-MAC. The research went in two directions. The
first one deals with new modes of operation which use an arbitrary block cipher.

176 D. Khovratovich and C. Rechberger

The ISO standards GCM, CCM, and OCB are typical examples [16]. The patented
OCB mode runs almost as fast as the counter encryption mode, which yields
the speed below one cycle per byte on modern CPUs if used with AES [12].
The second approach deals with dedicated AE schemes, such as Nessie submis-
sions like Helix or Sober-128, the eStream candidate Phelix, or Grain128a. Both
approaches typically use probabilistic encryption to achieve confidentiality, and
nonces are the usual source of randomness.

Modern authenticated encryption schemes are also able to authenticate so
called associated data (AD) without encrypting it [15]. A typical application
is Internet packets, whose contents are encrypted, whereas headers are not for
routing purposes, while they still should be bound to the encrypted data.

Syntax of authenticated encryption. It is customary to use the following
syntax for a nonce-based authenticated encryption scheme with associated data.
The encryption function E operates as follows:

E : K × M × N × A −→ C,

where K is the key space, M is the message (plaintext) space, N is the nonce
space, A is the associated data space, and C is the ciphertext space. The authen-
tication part of the ciphertext may be syntactically separated and called a
tag T ∈ T .

The decryption function decrypts valid ciphertexts into plaintexts, and invalid
ciphertexts into an error (⊥):

D : K × C × N × A −→ M ∪ {⊥}.
Security against forgery attacks comes from the inability of the computati-

onally bounded adversary to produce a ciphertext that does not decrypt to ⊥.

Attack model. Though particular applications may have their own restrictions,
the security of the authenticated encryption scheme is defined with respect to a
quite powerful adversary [15]. She may ask almost arbitrary requests to encryp-
tion and decryption oracles, with the main restriction that nonces do not repeat
in encryption requests (so called nonce-respective adversary). Usually, no secu-
rity is offered if the sender reuses the nonce. However, the receiver usually does
not have technical means to check whether the nonce has not been used in
another communication. Hence an adversary may ask to decrypt several tuples
(C,N,A) with the same nonce (authenticating herself to distinct receivers if
needed). A secure authenticated encryption scheme returns ⊥ even in this case.

It is said that the adversary can create a forgery, if she is able to submit a
tuple (C,N,A) to the decryption oracle such that
– It does not return ⊥.
– There have been no encryption request which contained N and A and

returned C.

This definition does not specify whether the adversary can choose the message
she wants to be authenticated. From the practical point of view, we say that the
adversary constructs a universal forgery if she indeed can choose the message at
her own, and an existential forgery if she cannot.

The LOCAL Attack 177

Description of ALE

The authenticated encryption scheme ALE [6] is a dedicated scheme, which uses
components of the AES-128 block cipher [8].

AES. AES-128 operates on a 16-byte block, which is traditionally represented
as a matrix:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Plaintext of AES-128 undergoes a sequence of 10 rounds, each preceded with
a subkey addition. One round consists of the following invertible transformations:

– SubBytes (SB) — nonlinear bytewise transformation. Each byte enters a so
called S-box (the same for the whole cipher). S-box has a maximal differential
probability of 2−6 (four conforming inputs), but the majority of differentials
have probability of either 2−7 or zero;

– ShiftRows (SR) — rotates row i in the array (counting from 0) by i positions
to the left;

– MixColumns (MC) — linear columnwise transformation. Is invertible, has
branch number 5, i.e. two inputs differing in k bytes have outputs differing in
at least 5 − k bytes, and vice versa.

The last, tenth round lacks MixColumns but is followed by another subkey addi-
tion. The key schedule of AES-128 is a lightweight transformation that produce
subkeys in an invertible way.

ALE. ALE encrypts plaintexts up to 245 bytes long. The nonces and keys are
128-bit strings. The encryption proceeds as follows (Fig. 1). During the initial-
ization phase the 128-bit nonce N is encrypted on the 128-bit master key K to
produce the temporary key K1. The zero 128-bit string is encrypted on K to
produce the temporary state S1. The state S1 is then encrypted on K1 with 10
AES rounds. The last subkey of the latter encryption is denoted by K2.

The associated data is appropriately padded and split into 16-byte blocks.
The associated data phase alternates injecting the AD blocks into the state with
encrypting the state with 4 AES rounds. The AD blocks are 16 bytes long and
are simply xored into the internal state. The encryption subkeys are taken from
the AES key schedule algorithm applied to K2 and extended for as many rounds
as needed (the original paper is a bit vague on the details, and we’ll return to
this issue in Sect. 4). This process continues in the message processing phase.

The message is partitioned into 16-byte blocks. For the sake of simplicity, we
consider only the case where the message byte length is a multiple of 16. Then the
message processing phase alternates groups of four leaking rounds with message
block injections. Every odd round the scheme extracts bytes 0, 2, 8, 10, and
every even round it extracts bytes 4, 6, 12, 14. The bytes are extracted after the
SubBytes operation.

178 D. Khovratovich and C. Rechberger

Fig. 1. Outline of authenticated encryption scheme ALE for messages multiple of block
length.

A message block is xored to the internal state and is simultaneously xored
to the last 16 bytes extracted, which forms a new block of ciphertext C. After
the full message is processed, the scheme encrypts the state with four rounds
using the previous subkeys, xors 0x70 to byte 0, and encrypts the state again
with the key K for the full 10 rounds of AES-128. The result is declared the
authentication tag T .

Security claims. ALE designers claim the following: “Any forgery attack not
involving key recovery/internal state recovery has a success probability at
most 2−128”.

Differences between LEX and ALE and design weaknesses. ALE inherited a lot
from the stream cipher LEX [3], which generates the keystream also by out-
putting specific bytes of the AES internal state. There are two crucial differences
between them apart of the authentication option: first, LEX uses the same key
in all its 10-group rounds, and second, LEX does not feed any data to the inter-
nal state. The former property led to distinguishing attacks on LEX based on
colliding states [10]. Distinct keys in ALE make these attacks irrelevant.

However, the latter difference actually weakens the design, as the attacker is
now able to manipulate the internal state, whose contents he has just observed
via leakage. Even though the extracted bytes and the message injections are
separated by subkey additions, a classical differential analysis bypasses this
countermeasure, as we see below.

The LOCAL Attack 179

3 Forgery Attack

Outline. In this section we demonstrate a forgery attack on ALE. Our goal is to
produce a fresh tuple (C,N,A) that does not decrypt to ⊥ (here C includes the
tag T). An adversary first asks for the encryption of some messages, and then
attempts to forge the tag by modifying ciphertexts. Even though nonces repeat
in forgery attempts, they do not repeat in encryption requests. Therefore, our
attack operates in a standard model.

Attack overview. The attack proceeds as follows. We ask for the encryption
of a message M = (M1,M2):

EK(M,N,A) = C.

We do not care about the message contents, the nonce, and the associated data,
so the attack can be entirely known-plaintext as long as the plaintexts are at least
two blocks long. Then we attempt to construct a pair of differences Δ = (Δ1,Δ2),
which yields a local collision in ALE if being applied to (M1,M2), meaning that
the two differences compensate each other. If the local collision property holds,
the authentication tag remains the same, and the ciphertext is simply xored with
ΔC = (Δ1,Δ2, 0128):

DK(C ⊕ ΔC , N,A) = M.

If it does not hold, we repeat the procedure for another difference or another
message, as explained below.

The designers of ALE supposedly ruled out such an attack, since the group
of four rounds of AES between the message injection benefits from the wide
trail strategy. The latter concept enables to prove that any 4-round differential
trail activates at least 25 S-boxes, which yields the maximum probability of
2−25·6 = 2−150. It should make any differential event, including the local collision,
highly unlikely. However, this idea does not take into account the fact that as
many as 16 bytes from the internal states have been extracted during these four
rounds. Since they are known to the adversary, he can select the differential trail
so that it has higher probability than the wide trail strategy offers. A differential
trail is easily converted to a verification attempt.

Attack details. First we note that the extracted bytes are the S-box outputs
(the inputs would work too). Hence whenever a trail activates an S-box whose
value is extracted, the difference propagation is deterministic in this S-box, and
it does not add a factor to the total probability. Thus we attempt to find a trail
that has low weight and this weight consists of as many “extraction” S-boxes as
possible.

We did not do an exhaustive search for all low-weight trails, but the following
round weights are good enough for our purposes:

16
SR,MC−−−−−→ 4

SR,MC−−−−−→ 1
SR,MC−−−−−→ 4

SR,MC−−−−−→ 16.

The optimal layout for active S-boxes is to be determined, but the one at Fig. 2 is
good enough, as only 17 active S-boxes out of 25 add a factor to the probability.

180 D. Khovratovich and C. Rechberger

Fig. 2. Differential trail for a local collision: overview. Orange cells are active extraction
S-boxes, violet cells are the other active S-boxes.

These trails can be constructed online very quickly in the start-from-the-
middle framework [13]. We select a random difference in state #3 and expand it
in both directions. Whenever we encounter extraction S-boxes or MixColumns,
the difference evolves deterministically. For each active non-extraction S-box
we select an output difference so that the differential probability equals the
maximum 2−6. Eventually, we obtain values of Δ1 and Δ2. Hence for every
extraction tuple it is easy to obtain a differential trail that holds with probability
2−17·6 = 2−102.

Therefore, for each encrypted 2-block message we can construct a counterpart
that yields the same authentication tag with probability 2−102. Hence we can
construct a forgery for ALE with complexity of 2102 ALE encryptions of two-
block messages and 2102 verification attempts. While it is enough to constitute
a weakness in ALE, the data complexity should be reduced further to match the
design restrictions.

Reducing the data complexity. The specification [6] requires that no more
than 240 2-block messages be authenticated with a single key. In order to match
this condition, we use a simple tradeoff by allowing some r ≤ 17 S-boxes in
a trail to have non-maximal differential probability. Instead of one choice per
S-box, we now have 27 choices per non-optimal S-box, and hence many more
trails for the same message. The value r = 8 yields

(
17
8

)
256 ≈ 270.5 trails with

probability 2−110. Hence we can use 240 plaintexts to generate 2110.5 verification
attempts with the total attack probability close to 1. By further increasing r we
can work with very low data complexity up to the extreme case of one message
block, where we have to use all the degrees of freedom in each S-box so that the
attack complexity increases to 27·17 = 2119.

The memory complexity of our attack is negligible, as we store only several
AES internal states and the S-box difference distribution table.

4 Turning the Forgery into a State Recovery Attack

The fact that the forgery from above is the result of a differential attack reveals
much information about the internal state. Indeed, as long as the differential trail
holds, each active S-boxes takes at most 4 possible values (2 if the probability
is 2−7). Hence we obtain at least 12 · 7 + 4 · 8 = 116 bits of information about

The LOCAL Attack 181

Fig. 3. Outline of the state recovery attack on ALE.

the state #1. This may seem insufficient to fully recover the state and the key,
as they take 256 bits altogether.

However, we note that the local collision attack can be repeated for the same
message but another pair of blocks (Fig. 3). Assume that we have mounted the
forgery attack with a local collision based on blocks (M2,M3), whereas the first
block is M1. Then we attempt to construct another local collision based on blocks
(M1,M2) with a trail of the following form (again, SB and AK are omitted):

4
SR,MC−−−−−→ 1

SR,MC−−−−−→ 4
SR,MC−−−−−→ 16

SR,MC−−−−−→ 16

As soon as we construct the second forged ciphertext, we obtain information
about the internal state in the last round where all S-boxes are active. Having
4 S-boxes extracted, we obtain 12 · 7 + 4 · 8 = 116 bits of information — the
same as for the first local collision. Let us guess the unknown 12 bits in both
fully active states and recompute the states towards the injection of M2. Let us
denote the subkeys encompassing the injection of M2 by Ka and Kb. Then we
obtain the following equation:

C0 ⊕ Ka ⊕ M2 ⊕ Kb = C1,

where C0 and C1 are known constants. Hence we obtain the value Ka ⊕ Kb.
The original specification says that Kb is derived from Ka by applying an

AES key schedule round with a specific constant:

Kb[0 . . . 3] = F (Ka[12 . . . 15]) ⊕ Ka[0 . . . 3];
Kb[4 . . . 7] = Kb[0 . . . 3] ⊕ Ka[4 . . . 7];

182 D. Khovratovich and C. Rechberger

Kb[8 . . . 11] = Kb[4 . . . 7] ⊕ Ka[8 . . . 11];
Kb[12 . . . 15] = Kb[8 . . . 11] ⊕ Ka[12 . . . 15].

where F is an invertible nonlinear function, and K[x..y] is a tuple of the key
state bytes from x till y included.

It is easy to see that we can derive Kb[0 . . . 11] and F (Ka[12 . . . 15]) from
Ka ⊕ Kb, which easily yields the full Kb. Since the key schedule is invertible, we
can recover all the subkeys used in ALE. Furthermore, we obtain S1 = EK(0)
and K1 = EK(N), where K is the master key and N is the nonce. While we
cannot recover the master key, we have got enough information to encrypt and
authenticate any message with nonce N .

Attack complexity. From Sect. 3 we have that the first local collision can be
obtained in time from 2102 to 2119, depending on the amount of available data
(Sect. 3). However, for the second collision we are restricted to the same message.
Hence we have to test possible differential trails one by one till we find one that
yields the local collision. The complexity of this step is equal to that of the
forgery attack with a single message — 2119. As soon as both local collisions are
constructed, the state recovery takes negligible time, as we only have to test 224

state values conforming to the active S-boxes. The memory complexity is also
negligible. The total time complexity equals 2120 forgery attempts of 48-byte
messages.

5 Strengthening ALE

It is a natural question if ALE can be strengthened to prevent our attack. One
may think that using five AES rounds would be enough, with the last round not
extracting any values. Indeed, our trail would expand to a fully active state in
the final round. However, there is a 5-round trail with only 26 active S-boxes, of
which 8 ones are extracted:

1
SR,MC−−−−−→ 4

SR,MC−−−−−→ 16
SR,MC−−−−−→ 4

SR,MC−−−−−→ 1
SR,MC−−−−−→ 4.

The total probability of the trail hence decreases to 2−110 (see Fig. 4 for illus-
tration). However, much fewer trails can be built for a single message. For each
particular truncated differential trail we estimate with the rebound technique [14]
that for each set of extracted values there are 214 valid trails. Hence the data
complexity would be about 296. By playing with the trail layout and by adding
one more active S-box we can further reduce it to about 280. Even though it
violates the data restriction, the security margin seems to be quite thin. Adding
one more round seem to solve the problem completely, as the best trail seems to
have 22 active non-extracted S-boxes. Hence we believe that at least 6 rounds
are required to counteract our attack.

Another countermeasure could be to decrease the number of extracted bytes.
If only 3 bytes are extracted at each round, so that 12 bytes are injected, it
might be difficult to construct a trail that yields a local collision. A much more

The LOCAL Attack 183

Fig. 4. Local collision trail for a 5-round variant of ALE.

elaborate analysis is needed to investigate this option. Still, it would give quite
a penalty on the performance, but not that big as using 6 rounds instead of 4.

A third countermeasure could be to introduce key information into the round
transformations with the aim to separate the leaked bytes from the S-boxes
before and after the leak, as this has been done in ASC-1 [11]. This would
affect the performance only very moderately, however depending on how exactly
this key information would be derived, guess-and-determine extensions of the
LOCAL approach would need to be considered as well.

6 Conclusion

We have demonstrated how to construct forgeries for ALE within the security
claim limits. We show that the mere weight of a differential trail is a poor measure
of the scheme resistance to differential attack as long as the values of active S-
boxes are partially extracted or leaked. By choosing the trail values according
to the extracted bytes, we can amplify its probability and eventually construct a
forgery using 245 encrypted messages and 2110 time. The inability of the receiver
in a general case to avoid the nonce reuse enables us to reconstruct the internal
state of the encryption out of two forgeries on the same message, which in turn
leads to the universal forgery attack. One can hence say that ALE, similarly to
GCM, has high reforgeability [5].

We have also proposed several ways to strengthen ALE against our attack,
which include a larger number of rounds and a different leakage scheme (Table 1)

Table 1. Summary of attacks on ALE

Data Verification attempts Memory Security claim

Forgery

2102 2102 negl. not violated
240 2110 negl. violated
1 2119 negl. violated
1 1 negl. violated, success rate 2−102

State recovery

1 2120 negl. violated

184 D. Khovratovich and C. Rechberger

Acknowledgements. We thank Florian Mendel and the anonymous reviewers for
helpful comments.

References

1. http://competitions.cr.yp.to/caesar.html
2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions

and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Biryukov, A.: The design of a stream cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

4. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

5. Black, J., Cochran, M.: MAC reforgeability. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 345–362. Springer, Heidelberg (2009)

6. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
based lightweight authenticated encryption. In: FSE’13, to appear (2013)

7. Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

9. Daemen, J., Rijmen, V.: The pelican MAC function. IACR Cryptology ePrint
Archive 2005: 88 (2005)

10. Dunkelman, O., Keller, N.: A new attack on the LEX stream cipher. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 539–556. Springer, Heidelberg
(2008)

11. Jakimoski, G., Khajuria, S.: ASC-1: an authenticated encryption stream cipher. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 356–372. Springer,
Heidelberg (2012)

12. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

13. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the
reduced grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16–35. Springer, Heidelberg (2009)

14. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.: The rebound attack: crypt-
analysis of reduced whirlpool and grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

15. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM Conference
on Computer and Communications Security’02, pp. 98–107 (2002)

16. ISO/IEC 19772 JTC 1 SC 27. Information technology – Security techniques –
Authenticated encryption (2009)

http://competitions.cr.yp.to/caesar.html

AEGIS: A Fast Authenticated Encryption
Algorithm

Hongjun Wu1(B) and Bart Preneel2

1 School of Physical and Mathematical Sciences,
Nanyang Technological University, Nanyang Link, Singapore

wuhj@ntu.edu.sg
2 Dept. Elektrotechniek-ESAT/COSIC,

KU Leuven and iMinds, Leuven, Belgium
bart.preneel@esat.kuleuven.be

Abstract. This paper introduces a dedicated authenticated encryption
algorithm AEGIS; AEGIS allows for the protection of associated data
which makes it very suitable for protecting network packets. AEGIS-
128 uses five AES round functions to process a 16-byte message block
(one step); AES-256 uses six AES round functions. The security analysis
shows that both algorithms offer a high level of security. On the Intel
Sandy Bridge Core i5 processor, the speed of AEGIS is around 0.7 clock
cycles/byte (cpb) for 4096-byte messages. This is comparable in speed
to the CTR mode (that offers only encryption) and substantially faster
than the CCM, GCM and OCB modes.

Keywords: Authenticated encryption · AEGIS · AES-NI

1 Introduction

The protection of a message typically requires the protection of both confiden-
tiality and authenticity. There are two main approaches to authenticate and
encrypt a message. One approach is to treat the encryption and authentication
separately. The plaintext is encrypted with a block cipher or stream cipher, and
a MAC algorithm is used to authenticate the ciphertext. For example, we may
apply AES [17] in CBC mode [18] to the plaintext, then apply AES-CMAC [22]
(or Pelican MAC [6] or HMAC [19]) to the ciphertext to generate an authen-
tication tag. This approach is relatively easy to analyze since the security of
authentication and encryption can be analyzed almost separately. Bellare and
Namprempre have performed a detailed analysis of this type of authenticated
encryption for randomized encryption [2]. Another approach is to apply an inte-
grated authenticated encryption algorithm to the message; one can expect that
this is more efficient since authentication and encryption can share part of the
computation.

There are three approaches to design an integrated authenticated encryption
algorithm. The first approach is to use a block cipher in a special mode (the block

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 185–201, 2014.
DOI: 10.1007/978-3-662-43414-7 10, c∞ Springer-Verlag Berlin Heidelberg 2014

186 H. Wu and B. Preneel

cipher is treated as a black box). The research on this approach started about ten
years ago [9,12,14]. There are now two NIST recommended modes of operation
for authenticated encryption, namely, CCM [20] and GCM [21]. OCB [15,24,25]
is a widely known authenticated encryption mode, and OCB2 is an ISO standard.
The second approach is to use a stream cipher (the stream cipher is treated as a
black box). The keystream is divided into two parts: one part for encryption and
another part for authentication. A typical example of this approach is Grain-
128a [1]. The third approach is to design dedicated authenticated encryption
algorithms. In this approach, a message is used to update the state of the cipher,
and message authentication can be achieved almost for free. Two examples of this
approach are Helix [8] and Phelix [26]. The attack against Phelix [27] shows that
it is unlikely that this type of authenticated encryption algorithm can withstand
nonce-reuse attacks if it requires much less computation than a block cipher.

In this paper, we propose a dedicated authenticated encryption algorithm
AEGIS following the third approach above. AEGIS is constructed from the AES
encryption round function (not the last round). AEGIS-128 processes a 16-byte
message block with 5 AES round functions, and AEGIS-256 uses 6 AES round
functions. The computational cost of AEGIS is about half that of AES. AEGIS
is very fast. On the Intel Sandy Bridge processor Core-i5, the encryption speeds
of AEGIS-128 and AEGIS-256 are about 0.66 cpb and 0.70 cpb, respectively. The
speeds are close to that of AES in counter (CTR) mode, and are about 8 times
that of AES encryption in CBC mode. AEGIS offers a very high security. As long
as the nonce is not reused, it is impossible to recover the AEGIS state and key
faster than exhaustive key search (under the assumption that a 128-bit authen-
tication tag is used, and the forgery attack cannot be repeated for the same key
for more than 2128 times). AEGIS is suitable for network communication since
it is straightforward to use AEGIS to protect a packet while leaving the packet
header (associated data) unencrypted.

This paper is organized as follows. The operations, variables and functions
are introduced in Sect. 2. The specifications of AEGIS-128 and AEGIS-256 are
given in Sect. 3 and Sect. 4, respectively. Section 5 gives the security analysis of
AEGIS-128 and AEGIS-256. The software performance of AEGIS is given in
Sect. 6. The design rationale is given in Sect. 7. Section 8 concludes this paper.

2 Operations, Variables and Functions

2.1 Operations

The following operations are used in AEGIS:

∈ : bit-wise exclusive OR
& : bit-wise AND
← : concatenation
∪x⊕ : ceiling operation, ∪x⊕ is the smallest integer not less than x

AEGIS: A Fast Authenticated Encryption Algorithm 187

2.2 Variables and Constants

The following variables and constants are used in AEGIS:

AD : associated data (this data will not be encrypted or decrypted).
ADi : a 16-byte associated data block (the last block may be a partial block).
adlen : bit length of the associated data with 0 ◦ adlen < 264.
C : ciphertext.
Ci : a 16-byte ciphertext block (the last block may be a partial block).
const : a 32-byte constant in the hexadecimal format; const = 00 ← 01 ← 01 ← 02 ←

03 ← 05 ← 08 ← 0d ← 15 ← 22 ← 37 ← 59 ← 90 ← e9 ← 79 ← 62 ← db ← 3d ← 18 ←
55 ← 6d ← c2 ← 2f ← f1 ← 20 ← 11 ← 31 ← 42 ← 73 ← b5 ← 28 ← dd. This is the
Fibonacci sequence modulo 256.

const0 : first 16 bytes of const.
const1 : last 16 bytes of const.
IV 128 : 128-bit initialization vector of AEGIS-128.
IV 256 : 256-bit initialization vector of AEGIS-256.
IV 256,0 : first half of IV 256.
IV 256,1 : second half of IV 256.
K128 : 128-bit key of AEGIS-128.
K256 : 256-bit key of AEGIS-256.
K256,0 : first half of K256.
K256,1 : second half of K256.
msglen : bit length of the plaintext/ciphertext with 0 ◦ msglen < 264.
mi : a 16-byte data block.
P : plaintext.
Pi : a 16-byte plaintext block (the last block may be a partial block).
Si : state at the beginning of the ith step.
Si,j : j-th 16-byte element of the state Si . For AEGIS-128, 0 ◦ j ◦ 4; for

AEGIS-256, 0 ◦ j ◦ 5.
T : authentication tag.
t : bit length of the authentication tag with 64 ◦ t ◦ 128.
u : u = ∪adlen

128
⊕.

v : v = ∪msglen
128

⊕.

2.3 Functions

The AES encryption round function (not the last round) is used in AEGIS:
AESRound(A,B): A is the 16-byte state, B is the 16-byte round key. This func-
tion mapping 2 16-byte inputs to a 16-byte output can be implemented efficiently
on recent x86 processors using the AES instruction m128 aesenc si128(A, B),
where A and B are two 128-bit integers m128i.

3 AEGIS-128

In this section, we describe AEGIS-128. With a 128-bit key and a 128-bit initial-
ization vector, AEGIS-128 encrypts and authenticates a message. The associated
data length and the plaintext length are less than 264 bits. The authentication
tag length is less than or equal to 128 bits. We strongly recommend the use of
a 128-bit tag.

188 H. Wu and B. Preneel

Fig. 1. The state update function of AEGIS-128. R indicates the AES encryption round
function without XORing with the round key and w is a temporary 16-byte word.

3.1 The State Update Function of AEGIS-128

The state update function updates the 80-byte state Si with a 16-byte message
block mi. Si+1 = StateUpdate128(Si,mi) is given as follows:

Si+1,0 = AESRound(Si,4, Si,0 ∈ mi);
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4).

The state update function is shown in Fig. 1.

3.2 The Initialization of AEGIS-128

The initialization of AEGIS-128 consists of loading the key and IV into the
state, and running the cipher for 10 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:

S−10,0 = K128 ∈ IV 128;
S−10,1 = const1;
S−10,2 = const0;
S−10,3 = K128 ∈ const0;
S−10,4 = K128 ∈ const1.

2. For i = −5 to −1, m2i = K128; m2i+1 = K128 ∈ IV 128.
3. For i = −10 to −1, Si+1 = StateUpdate128(Si,mi).

3.3 Processing the Authenticated Data

After the initialization, the associated data AD is used to update the state.

AEGIS: A Fast Authenticated Encryption Algorithm 189

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that if
adlen = 0, the state will not be updated.

2. For i = 0 to ∞adlen
128 √ − 1, we update the state:

Si+1 = StateUpdate128(Si, ADi).

3.4 The Encryption of AEGIS-128

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128 bits,
and the padded full block is used to update the state. But only the partial
block is encrypted. Note that if msglen = 0, the state will not get updated,
and there is no encryption.

2. Let u = ∞adlen
128 √ and v = ∞msglen

128 √. For i = 0 to v − 1, we perform encryption
and update the state:

Ci = Pi ∈ Su+i,1 ∈ Su+i,4 ∈ (Su+i,2&Su+i,3);
Su+i+1 = StateUpdate128(Su+i, Pi).

3.5 The Finalization of AEGIS-128

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.

1. Let tmp = Su+v,3 ∈ (adlen ‖ msglen), where adlen and msglen are repre-
sented as 64-bit integers.

2. For i = u + v to u + v + 6, we update the state:

Si+1 = StateUpdate128(Si, tmp).

3. We generate the authentication tag from the state Su+v+7 as follows:

T ∈ =
⊕4

i=0Su+v+7,i.

The authentication tag T consists of the first t bits of T ∈.

3.6 The Decryption and Verification of AEGIS-128

The exact values of key size, IV size, and tag size should be known to the
decryption and verification processes. The decryption starts with the initializa-
tion and the processing of authenticated data. Then the ciphertext is decrypted
as follows:

190 H. Wu and B. Preneel

1. If the last ciphertext block is not a full block, decrypt only the partial cipher-
text block. The partial plaintext block is padded with 0 bits, and the padded
full plaintext block is used to update the state.

2. For i = 0 to v − 1, we perform decryption and update the state.

Pi = Ci ∈ Su+i,1 ∈ Su+i,4 ∈ (Su+i,2&Su+i,3);
Su+i+1 = StateUpdate128(Su+i, Pi).

The finalization in the decryption process is the same as that in the encryp-
tion process. We emphasize that if the verification fails, the ciphertext and the
newly generated authentication tag should not be given as output; otherwise,
the state of AEGIS-128 is vulnerable to known-plaintext or chosen-ciphertext
attacks (using a fixed IV). This requirement also applies to AEGIS-256.

4 AEGIS-256

In this section, we describe AEGIS-256. With a 256-bit key and a 256-bit initial-
ization vector, AEGIS-256 encrypts and authenticates a message. The associated
data length and the plaintext length are less than 264 bits. The authentication
tag length is less than or equal to 128 bits. We strongly recommend the use of
a 128-bit tag.

4.1 The State Update Function of AEGIS-256

The state update function updates the 96-byte state Si with a 16-byte message
block mi. Si+1 = StateUpdate256(Si,mi) is illustrated as follows:

Si+1,0 = AESRound(Si,5, Si,0 ∈ mi);
Si+1,1 = AESRound(Si,0, Si,1);
Si+1,2 = AESRound(Si,1, Si,2);
Si+1,3 = AESRound(Si,2, Si,3);
Si+1,4 = AESRound(Si,3, Si,4);
Si+1,5 = AESRound(Si,4, Si,5).

4.2 The Initialization of AEGIS-256

The initialization of AEGIS-256 consists of loading the key and IV into the
state, and running the cipher for 16 steps with the key and IV being used as
message.

1. Load the key and IV into the state as follows:

S−16,0 = K256,0 ∈ IV 256,0;
S−16,1 = K256,1 ∈ IV 256,1;
S−16,2 = const1;
S−16,3 = const0;
S−16,4 = K256,0 ∈ const0;
S−16,5 = K256,1 ∈ const1.

AEGIS: A Fast Authenticated Encryption Algorithm 191

2. For i = −4 to −1,

m4i = K256,0;
m4i+1 = K256,1;
m4i+2 = K256,0 ∈ IV 256,0;
m4i+3 = K256,1 ∈ IV 256,1 .

3. For i = −16 to −1, Si+1 = StateUpdate256(Si,mi).

4.3 Processing the Authenticated Data

After the initialization, the associated data AD is used to update the state.

1. If the last associated data block is not a full block, use 0 bits to pad it to
128 bits, and the padded full block is used to update the state. Note that if
adlen = 0, the state will not get updated.

2. For i = 0 to ∞adlen
128 √ − 1, we update the state.

Si+1 = StateUpdate256(Si, ADi).

4.4 The Encryption of AEGIS-256

After processing the associated data, at each step of the encryption, a 16-byte
plaintext block Pi is used to update the state, and Pi is encrypted to Ci.

1. If the last plaintext block is not a full block, use 0 bits to pad it to 128 bits,
and the padded full block is used to update the state. But only the partial
block is encrypted. Note that if msglen = 0, the state will not get updated,
and there is no encryption.

2. Let u = ∞adlen
128 √ and v = ∞msglen

128 √. For i = 0 to v − 1, we perform encryption
and update the state:

Ci = Pi ∈ Su+i,1 ∈ Su+i,4 ∈ Su+i,5 ∈ (Su+i,2&Su+i,3);
Su+i+1 = StateUpdate256(Su+i, Pi).

4.5 The Finalization of AEGIS-256

After encrypting all the plaintext blocks, we generate the authentication tag
using seven more steps. The length of the associated data and the length of the
message are used to update the state.

1. Let tmp = Su+v,3 ∈ (adlen ‖ msglen), where adlen and msglen are repre-
sented as 64-bit integers.

2. For i = u + v to u + v + 6, we update the state:

Si+1 = StateUpdate256(Si, tmp).

3. We generate the authentication tag from the state Su+v+7 as follows:

T ∈ =
⊕5

i=0Su+v+7,i.

The authentication tag T consists of the first t bits of T ∈.

192 H. Wu and B. Preneel

5 The Security of AEGIS

The following requirements should be satisfied in order to use AEGIS securely.

1. Each key should be generated uniformly at random.
2. Each key and IV pair should not be used to protect more than one message;

and each key and IV pair should not be used with two different tag sizes.
3. If verification fails, the decrypted plaintext and the wrong authentication tag

should not be given as output.

If the above requirements are satisfied, we have the following security claims:

Claim 1. The success rate of a forgery attack is 2−t, where t is the tag size. If
the forgery attack is repeated n times, the success rate of a forgery
attack is about n × 2−t.

Claim 2. The state and key cannot be recovered faster than exhaustive key
search if the forgery attack is not successful. We recommend the use
of a 128-bit tag size for AEGIS in order to resist repeated forgery
attacks. (Note that with 128-bit tag, the state of AEGIS-256 can
be recovered faster than exhaustive key search if a forgery attack is
repeated for about 2128 times for the same key and IV pair.)

5.1 The Security of the Initialization

A difference in IV is the main threat to the security of the initialization of
AEGIS. A difference in IV would eventually propagate into the ciphertexts,
and thus it is possible to apply a differential attack against AEGIS. In AEGIS-
128, there are 50 AES round functions (10 steps) in the initialization. If there
is a difference in IV , the difference would pass through more than 10 AES
round functions. In AEGIS-256, there are 96 AES round functions (16 steps)
in the initialization. If there is a difference in IV , the difference would pass
through more than 16 AES round functions. Furthermore, in order to prevent
the difference in the state being eliminated completely in the middle of the
initialization, we inject the IV difference repeatedly into the state (5 and 8
times into the state of AEGIS-128 and AEGIS-256, respectively). We expect
that a differential attack against the initialization would be more expensive than
exhaustive key search.

5.2 The Security of the Encryption Process

We emphasize here that AEGIS encryption is a stream cipher with a large state
that is updated continuously. The attacks against a block cipher cannot be
applied directly to AEGIS. The state update function involves five AES round
functions in AEGIS-128, and six AES round functions in AEGIS-256. We should
ensure that IV is not reused for the same key; otherwise, the states of AEGIS
can be recovered easily with either known-plaintext attacks or chosen plaintext
attacks. For example, if we re-use an IV and inject a difference into Pi, the

AEGIS: A Fast Authenticated Encryption Algorithm 193

difference would propagate into Ci+2, and part of the state can be attacked by
analyzing the difference pair (ΔPi,ΔCi+2). If an authenticated encryption algo-
rithm is secure for re-used IV s, we expect that such an algorithm can only be
as fast as a block cipher, as pointed out in [27]. This can be argued as follows:
once an IV is re-used, the attacks that are relevant for a block cipher can be
applied to attack the state.

Statistical Attacks. If the IV is used only once for each key, it is impossible to
apply a differential attack to the encryption process. It is extremely difficult to
apply a linear attack (or correlation attack) to recover the secret state since the
state of AEGIS is updated in a nonlinear way. In general, it would be difficult
to apply any statistical attack to recover the secret state due to the nonlinear
state update function (the statistical correlation between any two states vanishes
quickly as the distance between them increases).

LEX [3,4] is an AES-based stream cipher that generates keystream from part
of the state. We would like to mention here that AEGIS is not vulnerable to the
attack against LEX [7]. There is a fundamental reason why LEX is vulnerable
to a statistical attack while AEGIS is not: the round keys used in LEX are fixed,
while the whole state of AEGIS is updated continuously in a nonlinear way.

5.3 The Security of Message Authentication

There are two main approaches to attack a MAC algorithm. One approach is to
recover the secret key or secret state, another approach is to introduce/detect an
internal state collision. Besides these two approaches, when we analyze the secu-
rity of message authentication, we need to consider that the AEGIS encryption
may affect the security of message authentication.

Recovering Key or State. From Sect. 5.1, we expect that the secret key can-
not be recovered faster than exhaustive search by attacking the initialization.
From Sect. 5.2, we expect that the state cannot be recovered faster than exhaus-
tive search by attacking the encryption process if the IV is used only once.
Similarly, we expect that the state cannot be recovered faster than exhaustive
search by attacking the tag generation process if IV is not reused.

An attacker can still inject a difference into the state in the tag verification
process and obtain the decrypted plaintext if the forgery attack is allowed to be
repeated for multiple times for the same key and IV pair. In a forgery attack,
the decrypted plaintext is known to the attacker with probability 2−t (if the
verification is successful). It becomes possible to recover the state if the forgery
attack is repeated many times. We recommend the use of 128-bit tag so that
recovering the state requires at least 2128 forgery attempts.

The security level of the AEGIS-256 state is only 128 bits with a 128-bit tag
(if we consider that a forgery attack becomes successful). However, we believe
that repeating the forgery attack for around 2128 times to recover a state is
impractical.

194 H. Wu and B. Preneel

Internal Collisions. A powerful attack against MAC is to introduce and detect
internal collisions. A general approach based on the birthday attack was given by
Preneel and van Oorschot [23]: an internal collision can be detected after a key
is used to generate the authentication tags of about 2n/2 chosen messages, where
n is the state size and tag size in bits. The internal collision can be exploited
to forge the tags of new messages. The birthday attack was later applied to
other MAC algorithms [28]. AEGIS resists this type of attacks due to its large
state size. Another approach to introduce internal collision is through differential
cryptanalysis. Suppose that the difference cancellation in the state occurs with
probability 2−a; then we can detect an internal collision after a secret key is used
to generate the tags of those 2a message pairs. The resulting internal collision
can be used to forge the tags of new messages.

An attacker can inject a difference into the state in the decryption and tag
verification process by modifying the ciphertext. However, AEGIS provides an
extremely large security margin against this type of attack since differences are
introduced into a large state. Obviously the security of AEGIS against forgery
attack is stronger than that of Pelican MAC when the message or the tag gets
modified. In Pelican MAC, four AES round functions are used to process each
16-byte message block; while in AEGIS, at least five AES round functions are
used. Furthermore, the state size of AEGIS-128 is at least 5 times that of Pelican
MAC, and it becomes much more difficult to eliminate the difference in the large
state. A simple description of our analysis is given below. We notice that the
first difference being injected into ciphertext would pass through five round func-
tions without being affected by another ciphertext difference in AEGIS-128, and
there are at least 26 active Sboxes being involved. Furthermore, when a difference
passes through five AES round functions, the difference would be injected into
each 16-byte element in the state. The difference cancellation in the state would
involve at least 52 active Sboxes (at least 26 active Sboxes for generating the
difference patterns, and 26 active Sboxes for generating the proper differences for
difference cancellation). If we consider only a single differential path, the proba-
bility of the difference cancellation in the state is less than 2−6×52 = 2−312. This
means that generating a state collision in the verification process requires at
least 2312 modifications to the ciphertext. Note that the differential attack here
is slightly different from that against block cipher since the AEGIS verification
process would guarantee that each forgery attack generates only one useful dif-
ference pair (the failed forgery attacks would not give outputs). The complexity
2312 is significantly larger than that of the forgery based key recovery attack
(2128, as illustrated at the beginning of Sect. 5.3). It shows that AEGIS-128 is
strong against forgery attack when the ciphertext or tag gets modified. Multiple
differential paths would not have a significant effect on the forgery attack here,
since each differential path has to cancel its own differences being left in the
state. Attacking AEGIS-256 is more difficult since it involves a larger state and
more AES round functions.

We now analyze whether the noninvertible AEGIS state update function
affects the security of the authentication of AEGIS. In AEGIS, a difference in

AEGIS: A Fast Authenticated Encryption Algorithm 195

the state could be eliminated even if there is no difference being introduced
to cancel it. However, it would only happen if the difference in every 16-byte
element is able to eliminate the difference in the next element after passing
through an AES round function. It means that at least 26 active Sboxes are
involved in this difference elimination process in AEGIS-128, and generating
these particular differences in the state involves more than 26 additional active
Sboxes. We consider that this type of weak state difference has a negligible effect
on the security of the authentication of AEGIS.

The analysis given above shows that the authentication of AEGIS is very
strong.

5.4 Other Attacks

There are weak states in AEGIS. In one type of weak states, all the 16-byte
elements in a state are equal: consequently all the 16-byte elements in the next
state would be equal (if the message block is 0). However, there are only 2128 such
states, so this type of weak state appears with probabilities 2−512 and 2−640 for
AEGIS-128 and AEGIS-256, respectively. In another type of weak states, the four
columns in each 16-byte element are equal and every 16-byte element has such a
property: in this case, the same property would appear in the next state (if the
message block also has such a property). However, there are only 232×5 = 2160

such states in AEGIS-128 and 232×6 = 2192 such states in AEGIS-256, so we
expect that this type of weak state appears with probabilities 2−480 and 2−608

for AEGIS-128 and AEGIS-256, respectively.

6 The Performance of AEGIS

To process a 16-byte message block, AEGIS-128 and AEGIS-256 use five and six
AES round functions, respectively. In AEGIS, the critical path for processing
a 16-byte message block is about one AES round. The computational cost of
AEGIS is about half that of AES for each message block, thus the speed of
AEGIS is about twice that of AES when they are implemented using table
lookups. For implementations based on bit-slicing techniques (e.g. Käsper and
Schwabe [13]), the difference is smaller as AEGIS allows for 5 or 6 parallel AES
operations rather than 8. AEGIS is very efficient when it is implemented using
the AES new instructions (AES-NI) available on some x86 processors since 2010.
With parallel AES round functions at each step, AEGIS can fully utilize the 3-
stage pipeline in AES-NI in Intel Westmere processor, and can utilize most of
the 8-stage pipeline in the AES-NI on the Intel Sandy Bridge processor. When
implemented using AES-NI on the Sandy Bridge processor, the speed of AEGIS
is about 8 times that of AES in CBC mode (encryption), and it is slightly faster
than AES-CTR.

We implemented AEGIS in C code using AES-NI. We tested the speed on
Intel Core i5-2540M 2.6 GHz processor (Sandy Bridge) running 64-bit Ubuntu
11.04 and turning off the Turbo Boost. The compiler being used is gcc 4.5.2, and

196 H. Wu and B. Preneel

Table 1. The speed comparison (in cycles per byte) for different message length. A
plus sign (+) indicates that the data are from the ALE designers and the performance
is measured on the Intel i5-2400 microprocessor.

64 B 128 B 256 B 512 B 1024 B 4096 B

AES-128-CTR+ – 1.61 1.22 0.99 0.87 0.77
AES-128-CCM 7.26 6.31 5.65 5.19 5.17 5.05
AES-128-GCM+ – 4.95 3.88 3.33 3.05 2.90
AES-128-OCB3+ – 2.69 1.79 1.34 1.12 0.88
ALE+ – 6.63 5.11 4.34 3.96 3.68
ASC-1+ – 7.74 4.80 3.69 2.88 2.64

AEGIS-128(EAa) 3.37 1.99 1.30 0.96 0.80 0.66

AEGIS-128(DVb) 3.78 2.17 1.36 1.02 0.84 0.67
AEGIS-256(EA) 3.51 2.10 1.34 1.03 0.86 0.70
AEGIS-256(DV) 4.00 2.35 1.51 1.09 0.90 0.74

aEA: Encryption-Authentication
bDV: Decryption-Verification

the options “-O3 -msse2 -maes -mavx” are used. In our test, associated data is
not considered, and 128-bit tag is used. The test is performed by processing a
message repeatedly and printing out the final message. To ensure that the tag
generation is not removed in the compiler optimization process, we use the tag
as IV for the next message. To ensure that the tag verification is not removed
in the compiler optimization process, we count the number of failed verifications
and print out the final result.

The performance is given in Table 1. For 4096-byte messages, the speed of
AEGIS is around 0.7 cpb. According to Table 1, the performance of AEGIS is
better than that of CCM, GCM and OCB3, ALE [5] and ASC-1 [11]. ALE and
ASC-1 are two new authenticated encryption algorithms using AES instructions.
In Table 1, the speed for multiple messages is not included since it is a common
practice to compare the speeds for a single message. (For multiple long messages,
the speeds of ALE and CCM are 1.2 and 3.1 cpb, respectively [5].) Note that the
speeds given in Table 1 are for reference only since the ciphers are not evaluated
under the same conditions.

In Table 1, AEGIS decryption-verification is slightly slower than encryption-
authentication for two reasons: a ciphertext block needs to be decrypted first
before it can be applied to update the state; and the verification process is
slightly more expensive than tag generation. AEGIS-128 is only slightly slower
than AEGIS-256 for long messages, although the computational cost of AEGIS-
256 is about 20 % more than that of AEGIS-128. The reason is that on the Sandy
Bridge microprocessor, AES-NI is implemented with an eight-stage pipeline,
and both AEGIS-128 and AEGIS-256 do not fully utilize the pipeline, so the
performance of AEGIS-128 is close to that of AEGIS-256. On the Intel Westmere
microprocessors with a 3-stage AES-NI, AEGIS-256 is about 20 % slower than
AEGIS-128.

AEGIS: A Fast Authenticated Encryption Algorithm 197

7 Design Rationale

The goal of AEGIS is to achieve high performance and strong security. To achieve
high performance, we use the AES round function which is now implemented on
the latest Intel and AMD microprocessors as Intel AES New Instructions (AES-
NI). AES-NI is very efficient for achieving diffusion and confusion on a modern
microprocessor. In the design of AEGIS, we use several parallel AES round
functions in each step so as to use most of the pipeline stages in AES instruc-
tion. AES instructions are implemented on Intel Westmere (06 25H, 06 2CH,
06 2FH) microprocessors with a three-stage pipeline (6 clock cycles), and are
implemented on Intel Sandy Bridge (06 2AH) microprocessors with an eight-
stage pipeline (8 clock cycles) [10]. Using several parallel AES round functions
in AEGIS significantly improves its performance by utilizing the pipeline of
AES-NI.

To achieve strong encryption security, we ensure that the IV difference is
randomized at the initialization stage, and the state cannot be recovered from
the ciphertext. There are 10 steps and 16 steps in the initialization of AEGIS-
128 and AEGIS-256, so we expect that the initialization of AEGIS is strong.
To ensure that the state cannot be recovered from the ciphertext faster than
brute force key search, we use a state in the design (80 bytes for AEGIS-128
and 96 bytes for AEGIS-256) in order to ensure that at least 20 and 30 AES
round functions are involved in the state recovery attack against AEGIS-128
and AEGIS-256, respectively (the detailed analysis was omitted due to space
restrictions). We avoid using a 64-byte state in AEGIS-128 since only 12 AES
round functions would be involved in the state recovery attack, and we are not
comfortable with its security.

To achieve strong authentication security, we try to ensure that any differ-
ence being introduced into the state would result in a particular difference with
sufficiently small probability, so that it is difficult to launch a forgery attack.
Our design is partly motivated by the design of Pelican MAC [6]. In Pelican
MAC, a difference would pass through 4 AES round functions before meeting
with another difference, so at least 25 active Sboxes are involved. The security
proof against differential forgery attack is very simple for Pelican MAC (however,
there is a birthday type attack against Pelican MAC due to its 128-bit size [28]).
In AEGIS, the first difference in the state would pass through at least 5 AES
round functions before being affected by another difference. In addition, when a
difference passes through AES round functions, the differences are injected into
every element in the state, so it becomes more difficult to eliminate the difference
in the state.

8 Conclusion

In this paper, we introduced a dedicated authenticated encryption algorithm
AEGIS. AEGIS is fast for both short and long messages, and it is the fastest
authenticated encryption algorithm on the microprocessors with the AES instruc-
tion set. We performed a security analysis of the encryption and authentication

198 H. Wu and B. Preneel

of AEGIS. Our analysis shows that the encryption and authentication of AEGIS
are strong. We welcome the security analysis of this new authenticated encryp-
tion algorithm.

Finally we state that AEGIS is not patented and it is freely available for all
applications.

Acknowledgements. We would like to thank the anonymous reviewers for their help-
ful comments, especially the idea of fully utilizing the 8-stage pipeline of AES-NI on
the Sandy Bridge processor to achieve higher performance by increasing the state size
(this idea is not used in this paper since we have not fully analyzed its security). The
second author has been funded in part by the Research Council KU Leuven (GOA
TENSE) and the FWO Flanders.

A Test Vectors

The test vectors (in hexadecimal format) of AEGIS-128 and AEGIS-256 are
given below.

A.1 Test Vectors of AEGIS-128

associated data: 0 bits plaintext: 128 bits
K128 = 00000000000000000000000000000000
IV128 = 00000000000000000000000000000000
plaintext = 00000000000000000000000000000000
ciphertext = 951b050fa72b1a2fc16d2e1f01b07d7e
tag = a7d2a99773249542f422217ee888d5f1

associated data: 128 bits plaintext: 128 bits
K128 = 00000000000000000000000000000000
IV128 = 00000000000000000000000000000000
assoc. data = 00000000000000000000000000000000
plaintext = 00000000000000000000000000000000
ciphertext = 10b0dee65a97d751205c128a992473a1
tag = 46dcb9ee93c46cf13731d41b9646c131

associated data: 32 bits plaintext: 128 bits
K128 = 00010000000000000000000000000000
IV128 = 00000200000000000000000000000000
assoc. data = 00010203
plaintext = 00000000000000000000000000000000
ciphertext = 2b78f5c1618da39afbb2920f5dae02b0
tag = 74759cd0e19314650d6c635b563d80fd

associated data: 64 bits plaintext: 256 bits
K128 = 10010000000000000000000000000000

AEGIS: A Fast Authenticated Encryption Algorithm 199

IV128 = 10000200000000000000000000000000
assoc. data = 0001020304050607
plaintext = 000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f
ciphertext = e08ec10685d63c7364eca78ff6e1a1dd

fdfc15d5311a7f2988a0471a13973fd7
tag = 27e84b6c4cc46cb6ece8f1f3e4aa0e78

A.2 Test Vectors of AEGIS-256

associated data: 0 bits plaintext: 128 bits
K128 = 00000000000000000000000000000000

00000000000000000000000000000000
IV128 = 00000000000000000000000000000000

00000000000000000000000000000000
plaintext = 00000000000000000000000000000000
ciphertext = b98f03a947807713d75a4fff9fc277a6
tag = a008acb1d372d73932ec5e6df9aca70a

associated data: 128 bits plaintext: 128 bits
K128 = 00000000000000000000000000000000

00000000000000000000000000000000
IV128 = 00000000000000000000000000000000

00000000000000000000000000000000
assoc. data = 00000000000000000000000000000000
plaintext = 00000000000000000000000000000000
ciphertext = b286705e6ccf368974ade9ff5550a4c5
tag = 367f3f14897b31c6a66eb7b540eccc8b
associated data: 32 bits plaintext: 128 bits
K128 = 00010000000000000000000000000000

00000000000000000000000000000000
IV128 = 00000200000000000000000000000000

00000000000000000000000000000000
assoc. data = 00010203
plaintext = 00000000000000000000000000000000
ciphertext = 1f452a22fc07f2471ab4345d7ab121b1
tag = 0d80d9c73cd4b8b3422b66cdaa45ae8a

associated data: 64 bits plaintext: 256 bits
K128 = 10010000000000000000000000000000

00000000000000000000000000000000
IV128 = 10000200000000000000000000000000

00000000000000000000000000000000
assoc. data = 0001020304050607
plaintext = 000102030405060708090a0b0c0d0e0f

101112131415161718191a1b1c1d1e1f

200 H. Wu and B. Preneel

ciphertext = f373079ed84b2709faee373584585d60
accd191db310ef5d8b11833df9dec711

tag = 787347bc96d3d0fdb33ddc8ee5ef4924

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. Int. J. Wireless Mobile Comput. 5(1), 48–59
(2011)

2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

3. Biryukov, A.: The design of a stream cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

4. Biryukov, A.: The Tweak for LEX-128, LEX-192, LEX-256. ECRYPT stream
cipher project report 2006/037. http://www.ecrypt.eu.org/stream

5. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
based lightweight authenticated encryption. Fast Software Encryption - FSE 2013

6. Daemen, J., Rijmen, V.: The Pelican MAC function. IACR Cryptol. ePrint Arch.
2005, 88 (2005)

7. Dunkelman, O., Keller, N.: A new attack on the LEX stream cipher. In: Pieprzyk,
J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 539–556. Springer, Heidelberg
(2008)

8. Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix: fast
encryption and authentication in a single cryptographic primitive. In: Johansson,
T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 330–346. Springer, Heidelberg (2003)

9. Gligor, V.D., Donescu, P.: Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355,
pp. 92–108. Springer, Heidelberg (2002)

10. Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual. http://
www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-
manual.pdf

11. Jakimoski, G., Khajuria, S.: ASC-1: an authenticated encryption stream cipher. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 356–372. Springer,
Heidelberg (2012)

12. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

13. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009)

14. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (2001)

15. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

16. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)

http://www.ecrypt.eu.org/stream
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

AEGIS: A Fast Authenticated Encryption Algorithm 201

17. National Institute of Standards and Technology. Advanced Encryption Standard.
FIPS 197

18. National Institute of Standards and Technology. Recommendation for Block Cipher
Modes of Operation. NIST special publication 800-38A, 2001 Edition

19. National Institute of Standards and Technology. The Keyed-Hash Message Authen-
tication Code (HMAC). FIPS PUB 198

20. National Institute of Standards and Technology. Recommendations for Block
Cipher Modes of Operation: The CCM Mode for Authentication and Confiden-
tiality. NIST special publication 800-38C, May 2004

21. National Institute of Standards and Technology. Recommendations for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST spe-
cial publication 800-38D, Nov 2007

22. National Institute of Standards and Technology. Recommendation for Block Cipher
Modes of Operation: The CMAC Mode for Authentication. NIST special publica-
tion 800-38B

23. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication
codes. IEEE Trans. Inf. Theory 45(1), 188–199 (1999)

24. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003). Earlier version, with T. Krovetz, in CCS 2001

25. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

26. Whiting, D., Schneier, B., Lucks, S., Muller, F.: Phelix: Fast Encryption and
Authentication in a Single Cryptographic Primitive. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/027

27. Wu, H., Preneel, B.: Differential-linear attacks against the stream cipher Phelix.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 87–100. Springer, Heidelberg
(2007)

28. Yuan, Z., Wang, W., Jia, K., Xu, G., Wang, X.: New birthday attacks on some
MACs based on block ciphers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 209–230. Springer, Heidelberg (2009)

Post–quantum (Hash-Based
and System Solving)

Fast Exhaustive Search for Quadratic Systems
in F2 on FPGAs

Charles Bouillaguet1, Chen-Mou Cheng2, Tung Chou3,
Ruben Niederhagen4(B), and Bo-Yin Yang4

1 Université de Lille, Lille, France
charles.bouillaguet@lifl.fr

2 National Taiwan University, Taipei, Taiwan
doug@crypto.tw

3 Technische Universiteit Eindhoven, Eindhoven, The Netherlands
blueprint@crypto.tw

4 Academia Sinica, Taipei, Taiwan
ruben@polycephaly.org, by@crypto.tw

Abstract. In 2010, Bouillaguet et al. proposed an efficient solver for
polynomial systems over F2 that trades memory for speed [BCC+10].
As a result, 48 quadratic equations in 48 variables can be solved on
a graphics processing unit (GPU) in 21 min. The research question that
we would like to answer in this paper is how specifically designed
hardware performs on this task. We approach the answer by solving
multivariate quadratic systems on reconfigurable hardware, namely
Field-Programmable Gate Arrays (FPGAs). We show that, although the
algorithm proposed in [BCC+10] has a better asymptotic time complex-
ity than traditional enumeration algorithms, it does not have a better
asymptotic complexity in terms of silicon area. Nevertheless, our FPGA
implementation consumes 20–25 times less energy than its GPU coun-
terpart. This is a significant improvement, not to mention that the mon-
etary cost per unit of computational power for FPGAs is generally much
cheaper than that of GPUs.

Keywords: Multivariate quadratic polynomials · Solving systems of
equations · Exhaustive search · Parallelization · Field-Programmable
Gate Arrays (FPGAs)

1 Introduction

Solving a system of m nonlinear multivariate polynomial equations in n variables
over Fq is called the MP problem. It is known to be NP-hard even if q = 2 and if
we restrict ourselves to multivariate quadratic equations (in which case we call
the problem MQ). These problems are mathematical problems of natural interest
to cryptographers since an NP-hard problem whose random instances seem hard

See IACR ePrint Archive, Report 2013/436 [BCC+13], for an extended version.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 205–222, 2014.
DOI: 10.1007/978-3-662-43414-7 11, c∞ Springer-Verlag Berlin Heidelberg 2014

206 C. Bouillaguet et al.

could be used to design cryptographic primitives. Indeed, a seldom challenged
standard conjecture is “any probabilistic Turing machine has negligible chance of
successfully solving a random MQ instance with a given sub-exponential (in n)
complexity when m/n is a constant” [BGP06].

This led to the development of multivariate public-key cryptography over the
last decades, using one-way trapdoor functions to build cryptosystems such as
HFE [Pat96], SFLASH [CGP02], and QUARTZ [PCG01]. It also led to the study
of “provably-secure” stream ciphers like QUAD [BGP06].

In algebraic cryptanalysis, on the other hand, one distills from a crypto-
graphic primitive a system of multivariate polynomial equations with the secret
among the variables. This does not break AES as first advertised, but does break
KeeLoq [CBW08], for a recent example. Fast solving would also be a very useful
subroutine in attacks such as [BFJ+09].

Fast Exhaustive Search. When evaluating a quadratic system with n vari-
ables over F2, each variable can be chosen as either 0 or 1. Thus, a straight for-
ward approach is to evaluate each equation for all of the 2n choices of inputs and
to return any input that is evaluated to 0 by every single equation. The 2n inputs
can be enumerated by, e.g., using the binary representation of a counter of n bits
where bit i is used as value for xi. Since there are n·(n−1)

2 pairs of variables and
since in a generic (random) system each coefficient is 1 with probability 1

2 , each
generic equation has about n·(n−1)

2 · 1
2 quadratic terms. Therefore, this approach

has an asymptotic time complexity of O(2n ·m· n·(n−1)
2 · 12). Obviously, the second

equation only needs to be evaluated in case the first one evaluates to 0 which
happens for about 50 % of the inputs. The third one only needs to be evaluated
if the second one evaluated to 0 and so forth. The expected number of equations
that need to be evaluated per iteration is

∑m
i=1 21−i < 2. Thus, the overall com-

plexity can be reduced to O(2n ·2· n·(n−1)
2 · 12) = O(2n−1(n−1)n) or more roughly

O(2nn2). Observe that the asymptotic time complexity is independent of m, the
number of equations in the system, and only depends on n, the number of vari-
ables. This straight forward approach will be called full-evaluation approach in
the remainder of this paper.

The full-evaluation approach requires a small amount of memory. The equa-
tion system is known beforehand and can be hard-coded into program code. It
requires only n bits to store the current input value plus a small number of reg-
isters for the program state and temporary results. Thus, it has an asymptotic
memory complexity of O(n).

However, [BCC+10] suggests that we can trade memory for speed. The full-
evaluation approach has the disadvantage that computations are repeated since
the input of two consecutive computations may be only slightly different. For
example, for a counter step from 16 (10000b) to 17 (10001b) only the least signifi-
cant bit and thus the value of x0 has changed; all the other inputs do not change,
the computations not involving x0 are exactly the same as in the previous step.
In other examples, e.g., stepping from 15 (01111b) to 16 (10000b) more bits and
therefore more variables are affected. Nevertheless, it is not important in which

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 207

order the inputs are enumerated. The authors of [BCC+10] point out that, by
enumerating the inputs in Gray-code order, we ensure that between two con-
secutive enumeration steps only exactly one bit and therefore only one variable
is changed. Therefore only those parts of an equation need to be recomputed
that are affected by the change of that single variable xi. Being in F2, we only
need to add ∂f

∂xi
(x) to the previous result. This reduces the computational cost

from evaluating a quadratic multivariate equation in each enumeration step to
evaluating a linear multivariate equation.

Furthermore, the authors of [BCC+10] prove that between two consecutive
evaluations of ∂f

∂xi
(x) for a particular variable xi only one other variable xj of

the input has changed. That is, the partial derivative of each variable is also
evaluated in Gray-code order, and hence the trick can be applied recursively.
Thus, by storing the result of the previous evaluation of ∂f

∂xi
(x), we only need

to compute the change in regard to that particular variable xj , i.e., the second
derivative ∂2f

∂xi∂xj
(x), which is a constant value for quadratic equations.

Therefore, we can trade larger memory for less computation by storing the
second derivatives in respect to all pairs of variables in a constant lookup table
and by storing the first derivative in respect to each variable in registers. This
requires n·(n−1)

2 bits for the constant lookup table of the second derivatives and n
bits of registers for the first derivatives. The computational cost of each iteration
step is reduced to two additions in F2, one for updating the value of a particular
first derivative and one for computing the result of the evaluation.

The computational cost for each equation is independent from the values of n
and m and thus will be considered constant for asymptotic estimations. However,
since a state is updated in every iteration, all equations need to be computed (in
parallel, e.g., using the bitslicing technique as suggested in [BCC+10]) in every
single iteration. Therefore, the asymptotic time complexity for this approach
is O(2n · m). The asymptotic memory complexity is O(m · (n(n−1)

2 + n)) =
O(mn(n+1)

2) or more roughly O(n2m).
Note that both the Gray-code approach and the full-evaluation approach

can be combined by using only mg equations for the Gray-code approach, thus
producing about 2n−mg solution candidates to be tested by the remaining m−mg

equations using full evaluation.
Lastly, we note that Gröbner-basis methods like XL [CKP+00] and F5 [Fau02]

using sparse linear solvers such as Wiedemann might have better performance
than exhaustive search even over F2. For example, they are claimed to asymp-
totically outperform exhaustive search when m = n with guessing of ∈ 0.45n
variables [YCC04,BFS+13]. However, as with all asymptotic results, one must
carefully check all explicit and implicit assumptions to see how they hold in
practice. When taking into account the true cost of Gröbner-basis methods, e.g.,
communication involved in running large-memory machines, the cross-over point
is expected to be much higher than n = 200 as predicted in [BFS+13]. However,
even systems in 200 variables are out of reach for today’s computing capabilities.

208 C. Bouillaguet et al.

The Research Question. The implementation of the Gray-code approach
described in [BCC+10] for x86 CPUs and GPUs solves 48 quadratic equations
in 48 binary variables using one NVIDIA GTX 295 graphics card in 21 min.
The research question that we would like to answer in this paper is how specif-
ically designed hardware would perform on this task. We approach the answer
by solving multivariate quadratic systems on reconfigurable hardware, namely
Field-Programmable Gate Arrays (FPGAs).

While the Gray-code approach has a lower asymptotic time complexity than
full evaluation and is — given a sufficient amount of memory — the best choice
for a software implementation, we show in Sect. 2.2 that both approaches have
the same asymptotic area complexity. Therefore, for an FPGA implementation
the choice of using either Gray code or full evaluation depends on the spe-
cific parameters and the target architecture of the implementation. We motivate
our choice and describe our implementation for the Xilinx Spartan-6 FPGA
in Sect. 2.

For a massively parallel implementation on FPGAs, it is most efficient to
work on a set of input values in a batch. This increases the probability of having
collisions of solutions during the computation, i.e. cases in which more than
one input value in a batch is a solution candidate for the equation system. The
implementation must guarantee that no solution is silently dropped. We discuss
this effect in detail in Sect. 3, followed by the discussion of the implementation
results and the conclusion of this paper in Sect. 4.

Source Code. The source code of our implementation is available under MIT
License at http://www.polycephaly.org/forcemq/.

2 Implementation

The target hardware platform of our implementation is a Xilinx FPGA of the
Spartan-6 architecture, device xc6slx150, package fgg676, and speed grade -3.
The Spartan-6 architecture offers three different types of logic slices: SLICEX,
SLICEL, and SLICEM.

The largest amount with about 50 % of the slices is of type SLICEX. These
slices offer four 6-input lookup tables (LUTs) and eight flip-flops. The LUTs can
either be treated as logic or as memory: Seen as logic, each LUT-6 is computing
the output value of any logical expression in 6 binary variables; seen as memory,
each LUT-6 uses the 6 input wires to address a bit in a 64-bit read-only memory.
Alternatively, each LUT-6 can be used as two LUT-5 with five identical input
wires and two independent output wires.

About 25 % of the slices are of type SLICEL, additionally offering wide mul-
tiplexers and carry logic for large adders. Another roughly 25 % of the slices are
of type SLICEM, which offer all of the above; in addition, the LUTs of these
slices can be used as shift registers or as distributed read-and-write memory.

Please refer to [UG384] for more details on the Spartan-6 architecture.

http://www.polycephaly.org/forcemq/

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 209

2.1 Parallelization Using Accelerators

Exhaustive search for solutions of multivariate systems is embarrassingly parallel
— all inputs are independent from each other and can be tested in parallel on
as many computing devices as physically available. Furthermore, resources can
be shared during the computation of inputs that have the same value for some
of the variables.

Assume that we want to compute 2i instances in parallel. We simply clamp
the values of i variables such that xn−i, . . . , xn−1 are constant for each instance,
e.g., in case i = 4 for instance 5 = 0101b variable xn−1 = 0, xn−2 = 1, xn−3 = 0,
and xn−4 = 1. Therefore, the 2n inputs for computations of a system in n
variables can be split into 2i new systems of 2n−i inputs for n − i variables
using precomputation. These 2i independent systems can either be computed
in parallel on 2i computing devices or sequentially on any smaller number of
devices. (Obviously there is a limit on the efficiency of this approach; choosing
i = n would result in solving the whole original system during precomputation.)
The same procedure of fixing variables can be repeated to cut the workload into
parallel instances to exploit parallelism on each computing device.

After fixing variables xn−i, . . . , xn−1, all 2i instances of one polynomial share
the same quadratic terms; all terms involving xn−i, . . . , xn−1 become either
linear terms or constant terms. Therefore, the computations of the quadratic
terms can be shared: For the Gray-code approach, the second derivatives can
be shared between all instances while one set of first derivatives needs to be
stored per instance; for full evaluation, the logic for the quadratic terms can be
shared while the logic for the linear terms differs between the instances. Sharing
resources requires communication between the instances and therefore is partic-
ularly suitable for computations on one single device. Given a sufficient amount
of instances, the total area consumption is dominated by the instances doing the
linear computations rather than by the shared computations on the quadratic
part; therefore, the computations on the linear part require the most attention
for an efficient implementation.

In the following, we investigate the optimal choices of n and m and the num-
ber of instances to exhaust the resources of one single FPGA most efficiently.
Larger values of n can easily be achieved by running such a design several times
or in parallel on several FPGAs. Larger values of m can be achieved by com-
puting solutions for a subset of equations on the FPGA and forwarding those
solution candidates from the FPGA to a host computer to be checked for the
remaining equations. The flexibility in choosing n and m allows to cut the total
workload into pieces that take a moderate amount of computation time on a
single FPGA. This has the benefit of recovering from hardware failures or power
outages without loss of too many computations.

2.2 Full Evaluation or Gray Code?

The asymptotic time and memory complexities of the full-evaluation approach
and the Gray-code approach are summarized in Table 1. Considering a software

210 C. Bouillaguet et al.

Table 1. Asymptotic complexities of the two approaches for exhaustive search.

Time Memory Comp. logic Area

Full evaluation O(2nn2) O(n) O(n2m) O(n2m)
Gray code O(2nm) O(n2m) O(m) O(n2m)

implementation, for larger systems the Gray-code approach obviously is the more
efficient choice, since it has a significantly lower time complexity and it is rather
computational than memory bound. Because the memory complexity is much
smaller than the time complexity, the memory demand can be handled easily by
most modern architectures for such choices of parameters n and m that can be
computed in realistic time.

However, a key measure for the complexity of a hardware design is the
area consumption of the implementation: A smaller area consumption of a sin-
gle instance of the implementation allows either to reduce cost or to increase
the number of parallel instances and thus to reduce the total runtime. The
area can be estimated as the sum of the area for computational logic and the
area required for memory: The asymptotic complexity for the computational
logic of the full-evaluation approach is about O(n2) for each equation, thus
in total O(n2m). The memory complexity is O(n), so the area complexity is
O(n + n2m) = O(n2m). We point out that in contrast to the time complexity,
the area complexity depends on m. The asymptotic complexity for the compu-
tational logic of the Gray-code approach is O(m), the memory complexity is
O(n2m); the area complexity in total is O(n2m+m) = O(n2m). Therefore, the
asymptotic area complexity of the full-evaluation approach is equal to the area
complexity of the Gray-code approach.

In contrast to a software implementation, it is not obvious from the asymp-
totic complexities, which approach eventually gives the best performance for
specific hardware and specific values of n and m. The question is: which app-
roach is using the resources of an FPGA more efficiently.

Choosing the Most Efficient Approach. For fixed parameters n and m
we want to run as many parallel instances as possible on the given hardware.
Since the quadratic terms are shared by the instances, the optimization goal is
to minimize the resource requirements for the computations on the linear terms.

The main disadvantage of the Gray-code approach is that it requires access
to read-and-write memory to keep track of the first derivatives. The on-chip
memory resources, i.e., block memory and distributed memory using slices of
type SLICEM, are quite limited. In contrast, the full-evaluation approach “only”
requires logic that can be implemented using the LUTs of all types of slices.

However, each LUT in a SLICEM stores 64 bits; this is sufficient space for
the first derivatives of 64 variables using the Gray-code approach. On the other
hand, there are four times more logic-LUTs than RAM-LUTs. Four LUT-6 cover
the evaluation of at most 24 variables. Therefore, the Gray-code approach is
using the available input ports more efficiently. This is due to the fact that the

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 211

inputs for the Gray-code approach are addresses of width O(logn), whereas full
evaluation requires O(n) inputs for the variables. Thus, the Gray-code approach
requires smaller bus widths and buffer sizes for pipelining.

Finally, the Gray-code approach allows to easily reuse a placed and routed
design for different equation systems by exchanging the data in the lookup tables.
An area-optimized implementation of the full-evaluation approach only requires
logic for those terms of an equation that have a non-zero coefficient. To be able
to use the same design for different equation systems, one would have to provide
logic for all terms regardless of their coefficients, thus roughly doubling the
required logic compared to the optimal solution. The Xilinx tool chain does not
include a tool to exchange the LUT data from a fully placed and routed design,
so we implemented our own tool for this purpose.

All in all, the Gray-code approach has several benefits compared to the full-
evaluation approach which make it more suitable and more efficient for an FPGA
implementation on a Spartan-6. The figures might be different, e.g., for an ASIC
implementation or for FPGAs with different LUT sizes. We decided to use the
Gray-code approach for the main part of our implementation to produce a num-
ber of solution candidates from a subset of the equations. These candidates are
then checked for the remaining equations using full evaluation, partly on the
FPGA, partly on the host computer.

2.3 Implementation of the Gray-Code Approach

As described in Sect. 1, the Gray-code approach trades larger memory for less
computation. Algorithm 1 shows the pseudo code of the Gray-code approach
(see the extended version of [BCC+10]). In case of the FPGA implementation,
the initialization (Algorithm 1, lines 20 to 35) is performed offline and is hard-
coded into the program file. Figure 1 shows the structure of the module solver for
solving a system of m equations in n variables with 2i instances of mg equations
using the Gray-code approach and m − mg full evaluations for the remaining
equations.

The implementation of the Gray-code approach works as follows: First and
second derivatives in respect to each variable are stored in lookup tables d∈ and d∈∈

(Algorithm 1, lines 27 and 32). The second derivatives are constant and thus only
require read-only memory. They require a quadratic amount of bits depending on
the number of variables n. The first derivatives are computed in each iteration
step based on their previous value (Algorithm 1, line 16). Therefore, the first
derivatives are stored in a relatively small random access memory with a size
linear to n.

Due to the structure of the Gray code, when looking at two consecutive
values vi−1, vi in Gray-code enumeration, the position k1 of the least-significant
non-zero bit in the binary representation of i is the particular bit that is toggled
when stepping from vi−1 to vi. Therefore, the first derivative ∂f

∂xk1
in respect to

variable xk1 needs to be considered for the evaluation. Furthermore, since the
last time the bit k1 had toggled, only the bit at the position k2 of the second

212 C. Bouillaguet et al.

1: function RUN(f, n)
2: s INIT(f, n);
3: while s.i 2n do
4: NEXT s ;
5: if s.y 0 then
6: return s.i SHR1 s.i ;
7: end if
8: end while
9: end function

10:
11: function NEXT(s)
12: s.i s.i 1;
13: k1 BIT1 s.i ;
14: k2 BIT2 s.i ;
15: if k2 valid then
16: s.d k1 s.d k1 s.d k1, k2 ;
17: end if
18: s.y s.y s.d k1 ;
19: end function

20: function INIT(f an 1,n 2xn 1xn 2

an 1,n 3xn 1xn 3 a1,0x1x0

an 1xn 1 an 2xn 2 a0x0 a, n)
21: state s;
22: s.i 0;
23: s.x 0;
24: s.y a;
25: for all k, 0 k n, do
26: for all j, 0 j k, do
27: s.d k, j ak,j ;
28: end for
29: end for
30: s.d 0 a0;
31: for all k, 1 k n, do
32: s.d k s.d k, k 1 ak;
33: end for
34: return s;
35: end function

Algorithm 1. Pseudo code for the Gray-code approach (see [BCC+10]). The
functions BIT1 and BIT2 return the positions of the first and second least-
significant non-zero bits respectively and SHR1 is a logical shift right by one
position.

least-significant non-zero bit in i has changed. So we need to access ∂2f
∂xk1∂xk2

in
the static lookup table.

To compute k1 and k2 (Algorithm 1, lines 13 and 14), we use a module
counter (Fig. 1, bottom) that is incrementing a counter by 1 in each cycle (cf.
Algorithm 1, line 12). The counter counts from 0 to 2n−i. To determine its first
and second least-significant non-zero bits, we feed the counter value to a module
called gray tree that derives the index positions of the first and the second non-
zero bit based on a divide-and-conquer approach. The output of the gray tree
module are buses k1 and k2 of width ∞log2(n)√ and two wires enable1 and enable2
(not shown in the figure) indicating whether k1 and k2 contain valid information
(e.g., for all counter values 2j , j ≥ 0, the output k2 is invalid since the binary
representation of 2j has only one non-zero bit).

Next, we compute the address addr of the second derivative in the lookup
table from the values k1 and k2 as addr = k2(k2 − 1)/2 + k1 (cf. Algorithm 1,
line 16). The computation is implemented fully pipelined to guarantee short data
paths and a high frequency at runtime. The modules counter and gray tree and
the computation of the address for the lookup in the table are the same for all
instances of all equations and therefore are required only once.

Now, the address is forwarded to the logic for the first equation eq0. Here, the
buses addr and k1 are buffered and in the next cycle forwarded to the lookup
table of equation eq1 and so on. The address is fed to the constant memory
that returns the value of the second derivative d∈∈

0 . We implement the constant

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 213

pillar1

pillar0

eq0 eq1 eqmg 1

gray codefifo

bus

countergray treeaddr k2 k2 1 2 k1

table d0 table d1
. . . table dmg 1

inst0,0...3

inst0,4...7

inst0,...2i 1

inst1,0...3

inst1,4...7

inst1,...2i 1

instmg 1,0...3

instmg 1,4...7

instmg 1,...2i 1

. . .

. . .

. . .

ctr

k2

k1

k1addr

addr

k1

addr

k1

0
sol0,0...3 sol1,0...3

solmg 1,0...3

id0

0
sol0,4...7 sol1,4...7

solmg 1,4...7

id1

0
sol0,...2i 1 sol1,...2i 1

solmg 1,...2i 1

id2i 3

k1d0

k1d0

k1d0

k1d1

k1d1

k1d1

k1dmg

k1dmg

k1dmg

eqmg eqmg 1 eqm 1

counter2merge

x

sol

x

sol

ctr2

x sol
xmg

solmg

xmg 1

solmg 1 sol

x x

sol

warn

solver

Fig. 1. Structure of the overall architecture.

memory using LUTs. The address of an element in the lookup table is split into
segment and offset: The segment specifies the LUT that is storing the bit, the 6
least significant bits of the addresses are the offset of the bit in that LUT.

After value d∈∈
0 of the second derivative of eq0 has been read from the lookup

table, it is forwarded together with k1 to the first instance inst0,0 of eq0, where
instj,k denotes the k-th instance of equation eqj . Here, d∈∈

0 and k1 are buffered
and forwarded in the next clock cycle to the instance inst0,1 of eq0 and so on.

In instance inst0,0, the value of the first derivative in respect to xk1 is updated
and its xor with the previous result y is computed. For the random access mem-
ory storing the first derivatives we are using distributed memory implemented
by slices of type SLICEM. Figure 2 shows a schematic of a Gray-code instance
instj,k. Storing the first derivative requires one single LUT-6 for up to 64 vari-
ables. Storing the result y of each iteration step requires a one-bit storage; we
use a flip-flop for this purpose. The logic for updating the first derivative requires
three inputs: d∈∈, the first derivative d∈, and enable2 to distinguish whether d∈∈

is valid (see Algorithm 1, line 15 and 16). The logic for updating y requires two
inputs, the new first derivative d∈ and the previous value of y (Algorithm 1, line
18). We combine both computations in one single LUT-6 by using one LUT-6 as

214 C. Bouillaguet et al.

instj,k...k 3

instj,k 0

instj,k 1

instj,k 2

instj,k 3

if enable2 then
dnew d d ;
ynew d d y;

LUT-6
RAM

flip
flop

or

input
buffer

output
buffer

enable2 d k1

solj,k...k 3

dnew
d

y

ynew

Fig. 2. Schematic of a Gray-code instance group.

two LUT-5, giving four inputs d∈∈, d∈, enable2, and y and receiving two outputs
for the new first derivative and for the new y. Furthermore, we compute the or
with the solutions of the previous equations as solj,k = solj−1,k → y. The inputs
d∈∈, enable2, and k1 as well as the output are buffered using flip-flops.

Finally, the buffered result solj,k is forwarded to instj+1,k of eqj+1 in the
next cycle. After the result of instj+1,k has been computed as described before,
the cumulated result solj+1,k = solj,k →y is computed and forwarded to instance
instj+2,k and so on.

Each SLICEM has four LUTs that can be addressed as memory. However,
they can only be written to if they all share the same address wires as input.
Therefore, we combine four instances instj,k...k+3 of an equation j in one SLICEM
using the same data as input. As a side effect, this reduces the number of buffers
that are required for the now four-fold shared inputs. All in all, for up to 64
variables, a group of four instances for one equation requires 4 slices, one of
them being a SLICEM.

Eventually, the four results solmg−1,k...k+3 of an instance group are put on a
bus together with a group ID that defines the value of the clamped variables. If
more than one instance group finds a solution candidate in the same enumeration
step, there might be a collision on the bus. We describe these collisions and our
counter measures in detail in Sect. 3.

In each cycle, the solution candidates together with their ID are forwarded
from one bus segment to the next, each connected to an instance group, until
they eventually are leaving the bus after the last segment has been reached.

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 215

We are using the remaining resources of the FPGA to compute the actual
solutions of the equation system. The computations on a subset of mg equations
using the Gray-code approach drastically reduce the search space from 2n to
2n−mg . Therefore, we only need single instances of the remaining equations to
check the solution candidates we receive from the Gray-code part. Since the
inputs are quasi-random, we use full evaluation to check the candidates. If the
system has more equations than we can fit on the FPGA, the remaining solution
candidates are eventually forwarded to the host for final processing.

In order to check a solution candidate on the FPGA, we need to compute
the actual Gray code for the input first. Since the design is fully pipelined, the
value of each solution candidate from the Gray-code part is uniquely defined by
the cycle when it appears. Therefore, we use a second counter (counter2) that
runs in sync, delayed by the pipeline length, to the original counter (counter).
We compute the corresponding Gray code from the value ctr2 of this counter
as x = ctr2 ≡ SHR1(ctr2) (see Algorithm 1, line 6). This value is appended to
the ID and xmg−1 = (id, x) is forwarded into a FIFO queue.

To give some flexibility when fitting the design to the physical resources on
the FPGA, our design allows the instances to be split into several pillars, each
with their own bus, gray code module and FIFO queue. The data paths are
merged by selecting one solution candidate per cycle from the FIFO queues in
a round-robin fashion.

Each solution candidate is forwarded to a module eqmg
which simply evalu-

ates equation mg for the given input. To implement the full evaluation, we use a
Greedy algorithm to map the terms of each equation to as few LUTs as possible
(for more details please refer to the extended version [BCC+13] of this paper).
The result of eqmg

is or-ed to solmg−1 and forwarded to eqmg+1 together with
a buffered copy of xmg−1 and so on.

Eventually, a vector x, its solution sol, and a warning signal warn are
returned by the module solver. In case sol is equal to zero, i.e., all equations
evaluated to zero for input x, the vector x is sent to the host.

3 Collisions, or Overabundance of Solution Candidates

Our implementation is akin to a map-reduce process, wherein V = 2n input
vectors (n being the number of variables) are passed to many instances that
each screen a portion of the inputs against a subset of mg equations. Solution
candidates which pass this stage move to a stage where they are checked against
the remaining equations.

As mentioned in the previous section, the solution candidates that are com-
puted in the first stage are collected by a sequential bus that connects all
instances. This bus must provide a sufficient amount of resources to transfer all
solution candidates to the second stage. Problems occur, if two or more instances
find a solution candidate in the same iteration step. Every input processed by
each screening instance may become a solution candidate with probability 2−mg .
This is a highly unlikely event for a specific instance, but with a large number
of instances, the probability of finding a solution candidate grows.

216 C. Bouillaguet et al.

3.1 Expected Collisions

Let us assume that each of V = 2n input vectors is checked against mg equations
by I = 2i instances. A reasonable setup on a Spartan-6 FPGA might have
(n,mg, i) = (48, 28, 9) or (n,mg, i) = (48, 14, 10).

A back-of-the-envelope calculation would go as follows: There are approxi-
mately V/2mg = 2n−mg solution candidates, randomly spread over V/I = 2n−i

iteration steps. The birthday paradox says that we may reasonably expect one
or more collisions from x balls (solution candidates) in y bins (iteration steps)
as soon as x � ∼

2y. Therefore, we should expect a small but non-zero number
of “collisions”, iteration steps that have more than one solution candidate.

To articulate the above differently, each input vector has a probability of 2−mg

to pass screening, and the event for each vector may be considered independent.
Thus, the probability to have two or more solutions among I instances in the
same iteration step is given by the sum of all coefficients of the quadratic and
higher terms in the expansion of (1 + (x − 1)/2mg)I . The quadratic term rep-
resents the probability of having a collision of two values, the cubic term the
probability of three values, and so on. The quadratic coefficient can be expected
to be the largest and contribute to most of the sum. The expected number of
collisions among all inputs is V/I times this sum, which is roughly

(V/I)
[
x2

] (
(1 − 2−mg) + 2−mgx

)I = (1 − 2−mg)I−2 (I − 1)
22mg−n+1

∈ 2i+n−2mg−1,

where
[
xk

]
f(x) denotes the coefficient of xk in the expansion of f .

The last approximation holds when (1−2−mg)I−2 ∈ exp
(
2−(mg−i)

) ∈ 1 and
I ∩ 1. We can judge the quality of this approximation by the ratio between
the quadratic and cubic term coefficients, which is (I − 2)2−mg/3 � 2−(mg+1−i).
In other words, if mg − i > 3, the number of expected collisions is roughly
2n+i−(2mg+1) with an error bar of 5 % or less. Similarly the expected number of
c-collisions (with at least c solutions within the same iteration step) is

(V/I) [xc]
(
(1 − 2−mg) + 2−mgx

)I ∈ 2n−ck+(c−1)i/c!.

3.2 Choosing Parameters

In case of the Spartan-6 xc6slx150-fgg676-3 FPGA, the slices are physically
located in a quite regular, rectangular grid of 128 columns and 192 rows. The
grid has some large gaps on top and in the bottom as well as several vertical and
horizontal gaps. By picking a subset of slices in the center of the FPGA we obtain
a regular grid structure of 116 columns and 144 rows. Each row has 29 groups of
4 slices: one SLICEM, one SLICEL and two SLICEX. Such a group has enough
resources for four Gray-code instances each. Therefore, the whole region can be
used for up to 29 ·4 ·144 = 16, 704 Gray-code instances. The area below the slices
for the Gray-code instances is used for the modules counter and gray tree, for the
computation of the address, and for the second-derivative tables. The area above

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 217

the instances contains enough logic for evaluating the remaining equations using
full evaluation and for the logic required for FPGA-to-host communication.

Using 128 rows, we could fit I = 128 · 4 = 512 = 29 instances of mg = 28
equations of the Gray-code approach onto the FPGA — one equation per col-
umn, four instances per row — while guaranteeing short signal paths, leaving
space of four slice columns for the bus, and giving more space for full evaluation
on the top. With 28 equations in 29 instances, collisions of two solutions dur-
ing one cycle are very rare and easy to handle by the host CPU. The obvious
optimization to double the performance is to double I, the number of system
instances, and to halve mg, the number of equations evaluated with the Gray-
code approach. However, this optimization introduces additional complications:
Even if we can fit I = 210 instances of mg = 14 equations using the Gray-code
approach into the FPGA, Sect. 3.1 shows that one collision appears every 210

cycles on average. We can no longer use the simple approach of re-checking all
blocks with collisions on the CPU, we have to handle collisions on the FPGA.
We describe in the following how to achieve 210 instances for up to 14 (actually
only 12) equations.

3.3 Handling of Collisions

Due to the physical layout of the FPGA and in order to save space for input-
buffers, our implementation groups four instances with the same inputs together
into an instance group. Instead of resolving a collision within an instance group
right away, we forward a word of four bits, one for each instance, to the bus and
cope with those collision later.

Whenever there is a collision at a instance group j, i.e., there is already a
solution candidate on the bus in bus segment j, the candidate of group j is
postponed giving precedence to the candidate on the bus. However, the actual
input giving this solution candidate is not stored in the Gray-code instances
but is later derived from the cycle in which the solution was found. Therefore,
delaying the solution distorts the computation of the input value. Computing
the input value immediately at each bus segment would require a lot of logic
and would increase the bus width to n. Instead, we count how many cycles each
solution candidate is delayed before being placed on the bus. Since the resources
are limited, we can use at most 4 bits for this counter. For a push-back of up to
14 cycles, we can compute the exact corresponding solution candidate from each
counter value. In case of 15 or more cycles of push-back, 1111b is put on the bus
to signal an error condition to the follow-up logic.

Since the delay has a very limited maximum number of cycles, we can not
use classical bus congestion techniques like exponential backoff; we must ensure
that candidates are pushed onto the bus as soon as possible. This leads to high
congestion in particular at the end of the bus.

Due to the push-back, our collision pool has become temporal as well as
spatial. That is, it might happen that another solution candidate is produced by
the same instance group before the previous one is handed to the bus. Therefore,
we provide four buffer slots for each instance group to handle the rare cases where

218 C. Bouillaguet et al.

candidates are pushed back for several cycles while further candidates come up.
If there are more candidates than there are buffer slots available, a warning
signal is fired up and the involved input values are recomputed by the host.

All in all, the bus is transporting i+7 signals for 2i instances; i−2 signals for the
instance-group ID of the solution candidate, 4 signals for the push-back counter,
4 signals for the four outputs of a group of instances, and 1 warning signal.

Figure 3 shows a schematic of a bus segment. The solutions from an instance
group of equation eqmg−1 are sent in from the left using signal sol ; the inputs
from the previous bus segment are shown in the bottom. Whenever there is no
signal on the bus, i.e., sol in is all high, the control logic sets the signal step to
high and a buffered result is pushed onto the bus; further delayed results are
forwarded to the next buffer. If an available result can not be sent to the bus
because there is already data on the bus, the step signal is set to low and each
cycle counter in the counter buffers is incremented by one.

bus segment

sol
buf

sol
buf

sol
buf

sol
buf

ctr
buf

ctr
buf

ctr
buf

ctr
buf

mux ctr
1 0

mux sol1 0

mux id1 0control
logic

warn in

warn out

ctr in

ctr out

sol in

sol out

id in

id out

sol

step

ID

0

Fig. 3. Schematic of a bus segment.

The logic for each bus segment covering a group of 4 instances requires 10
slices (the area of 2.5 Gray-Code instance groups, i.e. four instances of a single
equation) including buffers, counters, and multiplexers. Therefore, even though
29 Gray-Code instance groups would fit into one row on the FPGA, with two
buses and two pillars of instances per row, we can only fit instances of 12 equa-
tions: 2 · (12 + 2.5) = 29. However, we achieve the goal of the desired 210 = 1024
parallel instances.

At the end of the buses, two FIFOs buffer the solution candidates so that
the two data streams can be joined safely to forward a single data stream to the
following logic for further handling of solution candidates (see Fig. 1). Here also
the occasional collisions of solutions are resolved that might occur in an instance
group of four instances as described above. Since the Gray-code part is using
210 instances and 12 equations, there is one solution candidate on average every
212−10 = 4 cycles going into full evaluation.

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 219

With each bus averaging 1/8 new entries and being capable of dispatching
1 entry every cycle, the buses should not suffer from too much congestion (con-
firmed by simulations and tests). With a push-back of at most 14 cycles, an
unhandleable super-collision should only happen if 15 candidates appear within
15 consecutive 4-instance groups each with probability 2−10, all within 15 cycles.
We can do a back-of-the-envelope calculation for the probability like in Sect. 3.1
to find an upper bound of

(
225
15

) (
2−10

)15 ∈ 6.4 × 10−21. Just to be very sure,
such super-collisions are still detected and passed to the host CPU, which re-
checks the affected inputs. In all our tests and simulations, we did not detect
any super-collisions, which confirms that our push-back buffer and counter sizes
are sufficient.

We are able to fit logic for full evaluation of at least 42 more equations on
the chip, giving 54 equations in the FPGA in total. This reduces the amount of
outgoing solution candidates from the FPGA to the host computer to a marginal
amount. Therefore, the host computer is able to serve a large amount of FPGAs
even for a large total amount of equations in the system.

4 Performance Results and Concluding Remarks

We tested our implementation on a “RIVYERA S6-LX150 FPGA Cluster” from
SciEngines. The RIVYERA has a 19-inch chassis of 4U height with an off-the-
shelf host PC that controls 16 to 128 Spartan-6 LX150 FPGAs (xc6slx150-
fgg676-3) and up to 256 FPGAs in the high density version “RIVYERA
S6-LX150 HD”; our RIVYERA S6-LX150 has 16 FPGAs. The FPGAs are
mounted on extension cards of 8 FPGAs (16 in the HD version) each with an
extra FPGA exclusively for the communication with the host via PCIe.

We are using LOC constraints to explicitly place the Gray-code instances.
Therefore, we achieve a tight packing and short data paths which allows us to
run our design at up to 200 MHz. Due to the overall architecture we can compute
systems of up to 64 variables using 210 instances on a single FPGA. At a clock
frequency of 200 MHz, solving a system in 64 variables in a single run requires
264−10/200MHz ∈ 1042 days; to reduce data loss in case of system failures or
power outages, we recommend to divide the workload into smaller pieces with
a shorter runtime. Our reference design is using n = 54 variables and m = 54
equations. In this case, a single run is finished after 254−10/200MHz ∈ 24.5 h.
Preparing and exchanging the LUT data in the program file using our tools takes
about 10 s. Therefore a system of 64 variables can be solved in 264−54 = 1024
separate runs with a negligible overhead.

Area Consumption. The Spartan-6 LX150 FPGA has 23,038 slices. In total,
our logic occupies 18,613 slices (80.79 %) of the FPGA. We are using 63.44 % of
the LUTs and 44.47 % of the registers.

The logic for the Gray-code evaluation occupies the largest area with 15,281
slices (67.43 %). Only 253 of those slices are used for the second-derivative tables,

220 C. Bouillaguet et al.

Table 2. Comparison of the runtime and cost for systems in 48, 64, and 80 variables.

Time Energy Energy cost
Germany USA

48 variables Spartan-6 23 min 3.4 Wh – –
GTX 295 21 min 82.3 Wh – –

64 variables Spartan-6 1,042 days 216 kWh e56 US$28
GTX 295 956 days 5,390 kWh e1,401 US$701

80 variables Spartan-6 187,182 years 14.4 GWh e3.7 mil. US$1.9 mil.
GTX 295 171,603 years 353.3 GWh e91.8 mil. US$45.9 mil.

the counter, and address calculation. The bus occupies 2,740 slices, the remaining
12,288 slices are used for the 1,024 instances of 12 equations.

The logic for full evaluation of the remaining 42 equations, the FIFO queues,
and the remaining solver logic requires 1,702 slices (7.39 %). Each equation in
54 variables requires 88 LUTs for computational logic, thus about 22 slices. All
these slices are located in an area above the Gray-code logic. More than 50 % of
the slices in this area are still available, leaving space to evaluate more equations
using full evaluation if required.

The logic for communication with the host using SciEngine’s API requires
1,377 slices (5.98 %).

Performance Evaluation. Our Spartan-6 FPGA design runs at 200 MHz.
The design is fully pipelined and evaluates 210 input values in each clock cycle.
Thus, we compute all solutions of a system of 48 variables and 48 equations
by evaluating all possible 248 input values in 248−10/200MHz = 23min with a
single FPGA. The GPU implementation of [BCC+10] computes all solutions on
a GTX 295 graphics card in 21min. Therefore, the Spartan-6 performs about
the same as the GTX 295.

However, total runtime is not the only factor that affects the overall cost
of the computation; power consumption is another important factor. We mea-
sured both the power consumptions of the Spartan-6 FPGA and the GTX 295
during computation: Our RIVYERA requires 305 W on average during the com-
putation using all 16 FPGAs. The host computer with all FPGA cards removed
requires 165 W. Therefore, a single FPGA requires (305W−165W)/16 = 8.8W
on average, including communication overhead. We measured the power con-
sumption of the GTX 295 in the same way: During computation on the GTX 295,
the whole machine required 357W on average. Without the graphics card, the
GPU-host computer requires 122 W. Therefore, the GTX 295 requires 235 W on
average during computation. For a system of 48 variables, a single Spartan-6
FPGA requires 8.8W · 23min = 3.4Wh for the whole computation. The GPU
requires 235W · 21min = 82.3Wh. Therefore, the Spartan-6 FPGA requires
about 25 times less energy than the GTX 295 graphics card.

For a system of 64 variables, the very same FPGA design needs about
264−10/200MHz = 1042 days and therefore about 216 kWh. For this system, the

Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs 221

GPU requires about 965 days and roughly 5, 390 kWh. A single kWh costs, e.g.,
about e0.26 in Germany1 and about US$0.13 in the USA2. Therefore, solving a
system of 64 variables with an FPGA costs about 216 kWh · e0.26/kWh = e56
in Germany and 216 kWh · US$0.13/kWh = US$28 in the US. Solving the same
system using a GTX 295 graphics card costs e1, 401 or US$701. Table 2 shows
an overview for systems in 48, 64, and 80 variables.

Development of GPU Hardware. The GPU implementation of [BCC+10]
from 2010 uses a GTX 295 graphics card. We also measured the performance
of their CUDA program on a GTX 780 graphics card which is state-of-the-
art in 2013. However, the computations took slightly more time, although the
GTX 780 should be more than three times faster than the GTX 295: the GTX 780
has 2304 ALUs running at 863 MHz while the GTX 295 has 480 ALUs running
at 1242 MHz.

We suspect that the relative decrease of SRAM compared to the number
of ALUs and the new instruction scheduling of the new generation of NVIDIA
GPUs is responsible for the tremendous performance gap. To get full performance
on the GTX 780 a thorough adaption and hardware-specific optimization of the
algorithm would be required; the claim of NVIDIA that CUDA kernels can just
be recompiled to profit from new hardware generations does not apply.

Nevertheless, running the code from [BCC+10] on a GTX 780 graphics card
requires about 20 % less energy than on the GTX 295, about 20 times more than
our FPGA implementation.

80-bit Security. We want to point out that it is actually feasible to solve a
system in 80 variables in a reasonable time: using 280−64 = 216 = 65,536 FPGAs
in parallel, such a system could be solved in 1042 days. Building such a large
system is possible; e.g., the Tianhe-2 supercomputer has 80, 000 CPUs.

Each RIVYERA S6-LX150 HD has up to 256 FPGAs; therefore, this compu-
tation would require 216/256 = 256 RIVYERA-HD computers. The list price for
one RIVYERA-HD is e110,000, about US$145,000; the price for 256 machines
is at most 256 · US$145,000 ∈ US$37million. Therefore, solving a system in
80 variables in 1042 days costs US$39 million, including the electricity bill of
US$2 million for a continuous supply of ((256 · 8.8W) + 165W) · 256 = 620kW.
For comparison, the budget for the Tianhe-2 supercomputer was 2.4 billion Yuan
(US$390 million), not including the electricity bill for its peak power consump-
tion of 17.8 MW. Therefore, 80-bit security coming from solving 80-variable sys-
tems over F2 is, as more cryptographers gradually acknowledge, no longer secure
against institutional attackers and today’s computing technology.

Acknowledgments. We would like to thank SciEngines for their support to get our
design running on the RIVYERA, Ralf Zimmermann for his answers to our FPGA-
related questions, and the anonymous reviewers for their valuable feedback. This
research was partially sponsored by Academia Sinica under Bo-Yin Yang’s Career
Award and by the National Science Council project 100-2628-E-001-004-MY3.

1 Average in 2012 according to the Agentur für Erneuerbare Energien.
2 Average in 2012 according to the Bureau of Labor Statistics.

222 C. Bouillaguet et al.

References

[BCC+10] Bouillaguet, C., Chen, H.-C., Cheng, C.-M., Chou, T., Niederhagen, R.,
Shamir, A., Yang, B.-Y.: Fast exhaustive search for polynomial sys-
tems in F2. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 203–218. Springer, Heidelberg (2010). Extended Version:
http://www.lifl.fr/∼bouillag/pub.html

[BCC+13] Bouillaguet, C., Cheng, C.-M., Chou, T., Niederhagen, R., Yang, B.-Y.:
Fast exhaustive search for quadratic systems in F2 on FPGAs. Extended
Version. IACR Cryptology ePrint Archive, Report 2013/436. http://
eprint.iacr.org/2013/436 (2013)

[BFJ+09] Bouillaguet, C., Fouque, P.-A., Joux, A., Treger, J.: A family of weak keys
in HFE (and the corresponding practical key-recovery). IACR Cryptology
ePrint Archive, Report 2009/619. http://eprint.iacr.org/2009/619 (2009)

[BFS+13] Bardet, M., Faugère, J.-C., Salvy, B., Spaenlehauer, P.-J.: On the com-
plexity of solving quadratic boolean systems. J. Complex. 29(1), 53–75
(2013)

[BGP06] Berbain, C., Gilbert, H., Patarin, J.: QUAD: a practical stream cipher
with provable security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 109–128. Springer, Heidelberg (2006)

[CBW08] Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and slide attacks on
KeeLoq. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115.
Springer, Heidelberg (2008)

[CGP02] Courtois, N., Goubin, L., Patarin, J.: SFLASH, A Fast Asymmetric Sig-
nature Scheme for Low-Cost Smartcards: Primitive Specification, Second
Revised Version. https://www.cosic.esat.kuleuven.be/nessie/tweaks.html
(2002)

[CKP+00] Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient algorithms
for solving overdefined systems of multivariate polynomial equations. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407.
Springer, Heidelberg (2000)

[Fau02] Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5). In: International Symposium on Symbolic
and Algebraic Computation – ISSAC 2002, July 2002, pp. 75–83. ACM
Press (2002)

[Pat96] Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polyno-
mials (IP): two new families of asymmetric algorithms. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidel-
berg (1996)

[PCG01] Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-bit long digital
signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
282–297. Springer, Heidelberg (2001)

[UG384] Spartan-6 FPGA Configurable Logic Block — User Guide. v1.1 UG384.
Xilinx Inc., Feb. 2010

[YCC04] Yang, B.-Y., Chen, J.-M., Courtois, N.T.: On asymptotic security esti-
mates in XL and Gröbner bases-related algebraic cryptanalysis. In: López,
J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–
413. Springer, Heidelberg (2004)

http://eprint.iacr.org/2013/436
http://eprint.iacr.org/2013/436
http://eprint.iacr.org/2009/619
https://www.cosic.esat.kuleuven.be/nessie/tweaks.html

Faster Hash-Based Signatures
with Bounded Leakage

Thomas Eisenbarth1, Ingo von Maurich2(B), and Xin Ye1

1 Worcester Polytechnic Institute, Worcester, MA, USA
2 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Bochum, Germany

{teisenbarth,xye}@wpi.edu, ingo.vonmaurich@rub.de

Abstract. Digital signatures have become a key component of many
embedded system solutions and are facing strong security and efficiency
requirements. At the same time side-channel resistance is essential for a
signature scheme to be accepted in real-world applications. Based on the
Merkle signature scheme and Winternitz one-time signatures we propose
a signature scheme with bounded side-channel leakage that is secure in
a post-quantum setting. Novel algorithmic improvements for the authen-
tication path computation bound side-channel leakage and improve the
average signature computation time by close to 50 % when compared to
state-of-the-art algorithms. The proposed scheme is implemented on an
Intel Core i7 CPU and an AVR ATxmega microcontroller with carefully
optimized versions for the respective target platform. The theoretical
algorithmic improvements are verified in the implementations and
cryptographic hardware accelerators are used to achieve competitive
performance.

Keywords: Hash-based cryptography · Signatures · Side-channel leak-
age · Software · Microcontroller · Post-quantum cryptography

1 Motivation

With the increasing popularity of contactless smart cards and near field commu-
nication, digital signature engines have become a key component of many embed-
ded system solutions. The applications of digital signatures are numerous, ranging
from identification over electronic payments to firmware updates and protection
against product counterfeiting. Due to the high computational requirements for
public-key cryptography, providing efficient signatures on embedded microproces-
sors without dedicated co-processors is a challenge. At the same time, side channel
attacks are considered a serious threat for such embedded implementations. On
the downside, adding effective protection against attacks like power or EM analy-
sis is costly in terms of space and computation time. Hence, side-channel resistant
public key engines are often just too bulky for widespread adoption. Exploring
public key schemes that are both efficient on embedded platforms and offer inher-
ent side-channel resistance can be a superior alternative to the prevailing choices
of (EC-)DSA and RSA.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 223–243, 2014.
DOI: 10.1007/978-3-662-43414-7 12, c∞ Springer-Verlag Berlin Heidelberg 2014

224 T. Eisenbarth et al.

New research directions in theoretical cryptography, namely leakage resilient
cryptographic schemes, suggest that performing cryptographic algorithms in a
different way might make them inherently resistant against side-channel attacks
without the need of further implementational countermeasures. Instead of pro-
tecting a key that is used over and over again, these schemes limit the leakage
that an attacker can observe for a given key (or state) by limiting the number
of accesses to it. The groundbreaking work of Faust et al. [9] shows a scheme
that provides choosable many leakage resilient signatures. The approach builds
on a signature scheme that only leaks an admissible amount of information
when executed up to three times. The scheme does not explicitly propose or
recommend an underlying signature scheme. But when instantiated with one of
the prevailing signature schemes, the leakage resilient signature engine becomes
practically infeasible: each generated leakage-resilient signature requires three
signature generations and two key generations of the underlying signature.

Prior work by Rohde et al. [22] as well as by Hülsing et al. [11] suggest that
the Merkle Signature Scheme (MSS) in combination with Winternitz One-Time
Signatures (W-OTS) is a possible choice for a time-limited signature scheme and
can be efficiently implemented in embedded systems. We analyze and extend the
proposal by Rohde et al. and propose several modifications that lead to signifi-
cant performance improvements and bounded side-channel leakage. One of the
key components of the analyzed MSS engine is the Pseudo Random Number
Generator (PRNG) used to generate the private signing key. The PRNG is a
self-contained component and is desired to be leakage resilient. Another build-
ing block for the one-time signatures is a one-way function that needs to have
bounded leakage. Other parts of the engine, such as a collision resistant hash
function needed for the Merkle tree only process public knowledge and are thus
leakage-agnostic.

Contribution. Compared to the state-of-the-art, the proposed scheme pro-
vides bounded leakage at comparable cost to an unprotected ECC engine, which
enables and encourages a wide deployment. We implement the proposed sig-
nature scheme on two wide-spread platforms (Intel Core i7 CPU and low-cost
AVR 8-bit microcontroller) targeting a security level of 80-bit and making use of
available cryptographic hardware accelerators to gain maximum efficiency. Fur-
thermore, we propose an improved algorithm for the authentication path com-
putation of a Merkle tree which limits side-channel leakage when signature keys
are generated using a secure PRNG. At the same time we decrease the average
computation time by close to 50 % compared to the most efficient authentica-
tion path computation algorithm at the price of a slightly increased memory
consumption. Explicit formulas are developed to quantify the amount each leaf
of the Merkle tree is computed during the authentication path computation. The
drawback of current authentication path computation algorithms is the unbal-
anced number of computations per leaf. Our improved algorithm mitigates this
issue by reducing the number of computations for often used leaves and allows
for more efficient computation of the authentication path.

Faster Hash-Based Signatures with Bounded Leakage 225

2 Hash-Based Signatures

In the following we describe the foundations of the Merkle signature scheme. It
was introduced in [19] and a detailed description of MSS can be found in [6].
Details about the implementation inspiring our work are given in [22]. We use
Winternitz one-time signatures [8] for message signing. The one-time keys are
generated using a PRNG to minimize storage requirements as proposed in [22].

The following components use an at least second preimage resistant, unde-
tectable n-bit one-way function f and a cryptographic m-bit hash function g:

f : {0, 1}n ∈ {0, 1}n
, g : {0, 1}∈ ∈ {0, 1}m

2.1 The Merkle Signature Scheme

Given a One-Time Signature Scheme (OTSS) a tree height H is chosen to allow
for the creation of 2H signatures that are verifiable with the same verification
key. Let the nodes of the Merkle tree be denoted as νh [s] with h ∞ {0, . . . , H}
being the height of the node and s ∞ {

0, . . . , 2H−h − 1
}

being the node index
on height h.

Key Generation. The 2H leaves of the Merkle tree are defined to be digests
g (Yi) of one-time verification keys Yi. Starting from the leaves, the MSS verifi-
cation key which is the root node of the Merkle tree νH [0] is generated following

νh+1 [i] = g (νh [2i] || νh [2i + 1]) , 0 √ h < H, 0 √ i < 2H−h−1,

meaning that a parent node is generated by hashing the concatenation of its two
child nodes.

Signature Generation. A Merkle signature σs (d) of a digest d = g (M) of a
message M consists of a signature index s, a one-time signature σOTS, a one-
time verification key Ys, and an authentication path (Auth0, . . . ,AuthH−1)
that allows the verification of the one-time signature with respect to the public
MSS verification key, hence

σs (d) = (s, σOTS, Ys, (Auth0, . . . ,AuthH−1)) .

The signature index s ∞ {
0, . . . , 2H − 1

}
is incremented with every issued sig-

nature. The OTSS is applied using signature key Xs to generate the signature
σOTS = SignOTS(d,Xs) of the message digest d. The authentication path for the
sth leaf are all sibling nodes Authh, h ∞ {0, . . . , H − 1} on the path from leaf
ν0 [s] to the root node νH [0]. It enables the verifier to recompute the root node
of the Merkle tree and authenticates the current one-time signature.

We would like to stress that the signature generation reflects the structure
of an online/offline signature scheme. The authentication path only depends on
the OTSS verification key Ys which is known prior to the message and hence can
be precomputed.

226 T. Eisenbarth et al.

Signature Verification. Given a message digest d = g (M) and a signature
σs (d) the verifier checks the one-time signature σOTS with the underlying one-
time signature verification algorithm VerifyOTS (d, σs(d)). In addition, the root
node is reconstructed using the provided authentication path

φh+1 =

{
g (φh ||Authh) , if �s/2h→ ≡ 0mod 2

g (Authh ||φh) , if �s/2h→ ≡ 1mod 2
, φ0 = ν0 [s] , h = 0, . . . , H − 1.

If the one-time signature σOTS is successfully verified and φH is equal to νH [0]
the MSS signature is accepted.

2.2 Winternitz One-Time Signatures

Winternitz OTS [8] are a convenient choice for the one-time signature scheme,
as they reduce the overall signature length. The Winternitz parameter w ∼ 2
determines how many bits are signed simultaneously and t determines of how
many random n-bit strings xi the Winternitz signature keys consist.

t = t1 + t2, t1 =
⌈ n

w

⌉
, t2 =

⌈�log2 t1→ + 1 + w

w

⌉

Key Generation. A W-OTS signature key X = (x0, . . . , xt−1) is generated by
selecting t random bit strings xi ∞ {0, 1}n

, 0 √ i < t. The W-OTS verification
key Y = g (y0 || . . . || yt−1) is computed from the signature key by applying f
2w − 1 times to each xi giving yi = f2w−1 (xi) , 0 √ i < t and computing the
hash of the concatenated yi’s. Note, the superscript denotes multiple executions
of f , e.g., f2 (xi) = f (f (xi)) and f0 (xi) = xi.

Signature Generation. A signature for a message M is created by signing its
digest d = g (M) under key X. Digest d is divided into t1 blocks b0, . . . , bt1−1

of length w and a checksum c =
∑t1−1

i=0 (2w − bi) is computed. Checksum c is
divided into t2 blocks bt1 , . . . , bt−1 of length w (zero-padding to the left is applied
if c or d are no multiples of w). The W-OTS signature σW-OTS = (σ0, . . . , σt−1)
is computed with σi = f bi (xi) , 0 √ i < t.

Signature Verification. Given a message digest d = g (M), a signature σW-OTS

and a verification key Ys the verifier generates blocks b0, . . . , bt−1 from d as in
signature generation and reconstructs

Y ∗
s = g

(
f2w−1−b0 (σ0) || . . . || f2w−1−bt−1 (σt−1)

)
.

If Y ∗
s equals Ys the signature is valid, otherwise it has to be rejected. When

using W-OTS signatures in MSS, transmitting Ys and comparing Ys to Y ∗
s can

be omitted. Y ∗
s can simply be used together with the nodes of the authentication

path to recompute the root of the Merkle tree. If the recomputed root equals
the MSS public key, then Y ∗

s is a valid OTS verification key.

Faster Hash-Based Signatures with Bounded Leakage 227

2.3 Private Key Generation

Storing 2H one-time signature or verification keys can be an infeasible task,
especially on constrained implementation platforms. Generating keys on-the-fly
by using a PRNG significantly reduces the required storage space (cf. [22]).

Each W-OTS signature key Xi = (x0, . . . , xt−1) , 0 √ i < 2H is generated by
the PRNG from a seed SeedW-OTSi . These seeds in turn are also generated by
the PRNG from a initial randomly selected seed Seed0 ∞R {0, 1}n which serves
as the MSS signature key. On input of ki the PRNG outputs a random string
ri+1 and an updated seed ki+1.

Prng : {0, 1}n ∈ {0, 1}n × {0, 1}n
, ki ∈ (ki+1, ri+1) (1)

Starting from the initial Seed0 the seeds for the signature keys SeedW-OTSi are
created by

(Seedi+1,SeedW-OTSi
) ∩ Prng (Seedi) , 0 √ i < 2H .

The t n-bit strings of the i-th W-OTS signature key Xi = (x0, . . . , xt−1) , 0 √
i < 2H are then generated by

(SeedW-OTSi
, xj) ∩ Prng (SeedW-OTSi

) , 0 √ j < t.

2.4 Authentication Path Computation

Creating an authentication path for a specific leaf s can be accomplished by stor-
ing all tree nodes in memory and looking up the required nodes when needed.
However, because of the exponential growth of nodes in tree height H this app-
roach becomes infeasible for reasonable practical applications. Hence, algorithms
for efficient on-the-fly authentication path computation during signature gener-
ation are required.

The currently best known algorithm for on-the-fly computation of authentica-
tion nodes is the BDS algorithm [6] (Algorithm 3, cf. Appendix). It makes use of
several treehash algorithm instances Treehashh for heights 0 √ h √ H −K −1.
The treehash algorithm was introduced in [19] and modified in [25]. It allows
to efficiently create (parts of) Merkle trees. In the BDS algorithm each instance
is initialized with a leaf index s to which it computes the corresponding node
value. Each instance is updated until the required authentication node is com-
puted. During a treehash update the next leaf is created and parent nodes are
computed if possible.

The generation of the authentication path is split up into two parts that go
alongside with the key and signature generation of MSS. During key genera-
tion all treehash instances Treehashh are initialized with νh [3] and the first
authentication path stored is Authh = νh [1] , 0 √ h √ H − 1.

The BDS algorithm generates left authentication nodes either by comput-
ing the leaf value or by one hash-function evaluation of the concatenation of
two previously computed nodes that are held in memory. Right authentication

228 T. Eisenbarth et al.

nodes in contrast are computed from the leaf up, which is computationally more
expensive. Since right nodes close to the top are expensive to compute a positive
integer K ∼ 2, (H − K even) decides how many of these nodes are stored in
Retainh,H − K √ h √ H − 2 during key generation.

Authentication nodes change every 2h steps for height h. During signature
generation the treehash instances are updated and if a authentication node from
a treehash instance is used, the instance is re-initialized to compute the next
authentication node for that height.

2.5 Security of MSS

The security properties of the signature scheme described above is discussed
in [6]. Specifically, the work shows that the Lamport-Diffie one-time signa-
tures [15] are existentially unforgeable under an adaptive chosen message attack
(i.e., CMA-secure), if the chosen one-way function is preimage resistant. The
employed Merkle signature scheme is also CMA-secure if the underlying OTS
is CMA-secure and if the underlying hash function is collision resistant. For
increased efficiency (and shorter signatures) we chose Winternitz OTS rather
than the classic Lamport-Diffie OTS. The security of the Winternitz one-time
signatures is discussed in [4,8,10]. The findings in [4]and [10] show that Win-
ternitz OTS are CMA-secure if used with pseudo-random functions or collision-
resistant, undetectable one-way functions, respectively. The level of bit security
lost by using a small Winternitz-parameter is in both cases rather small. In our
case, the biggest Winternitz parameter is w = 4, hence we still provide a security
level of approx. 95 bits for a 128-bit PRF or 116 bits for W-OTS+ [10]). Related
discussions for a similar MSS scheme can also be found in [5].

2.6 Bounded Leakage for MSS

The presented design has several features that bound leakage of secret informa-
tion. First, the design consists of many one-time signatures with independent
keys. This means there is no key reuse, and hence leakage of one OTS key does
not reveal information about the other keys. Major parts of the performed com-
putations are in the Merkle tree. Since the Merkle tree is public, computations
within the tree do not leak any secret information. Hence, leakage of g is not an
issue.

Secret information is only processed during signing and key generation. Key
generation usually takes place in a secure environment, as key generation is usu-
ally too costly to be performed on the embedded system. However, even if key
generation leaks, it is a single sequence of leakage for all parts of the key, i.e., all
one-time keys leak exactly once. Critical information leakage can only happen
during signing. If all OTS keys would be stored, they could be chosen indepen-
dently and would leak exactly once, when used for signing (assuming that only
computation leaks information [20]). In this case, an adversary would get, at
most, two observations per key (one during key generation and one at signing),
outperforming the scheme described in [9]. However, as described in Sect. 2.3,

Faster Hash-Based Signatures with Bounded Leakage 229

the OTS keys are generated on-the-fly using a PRNG to achieve a scheme suited
for embedded devices. In this case each signing operation consists of three steps:
(i) performing one OTS, (ii) updating the state (requires recomputation of ver-
ification keys), and (iii) computing the authentication path. Since the Merkle
tree is public, no secret information is revealed during authentication path com-
putation. The OTS itself only leaks information about the current OTS key, i.e.
one additional leakage for each key. The main leakage occurs during the state
updates, which result in repeated execution of the PRNG and recomputation of
verification keys that leak information about the corresponding OTS key.

Each PRNG update reveals information about one OTS key and the internal
state of the PRNG. As the described scheme generates several one-time keys
more than once, the PRNG can be executed l times on the same input, where l
is determined by the parameters of the BDS algorithm. That is, each Seedi has
up to l leakages as PRNG input. The OTS keys xi are derived from an initial
seed SeedW-OTSi by the same PRNG. The xi serve as input for the one-way
function f . That is, each SeedW-OTSi

has up to l leakages as input to PRNG;
each xi is either known by the adversary (as part of the signature) or has up to
l leakages as input of f during verification key recomputation and signing.

3 Optimized Authentication Path Computation

Since the Merkle-tree is not stored, the parts of the Merkle tree needed for
the authentication path must be generated. One optimized algorithm for this
purpose is the BDS algorithm [6]. Its design goal was to minimize costly leaf
computations. However, to minimize the leakage, it is also important to bal-
ance leaf computations. In the following we describe further optimizations that
reduce the number of computations for each individual leaf, thereby minimizing
the maximum leakage per private key computation. We furthermore reduce the
overall computation time by close to 50 %, at the cost of a slightly increased
memory usage.

3.1 Authentication Path Computation

The authentication path consists of nodes of the Merkle tree. For the com-
putation of upcoming authentication nodes we use several stacks of nodes for
different heights of the tree. Treehash instances Treehashh are used for heights
0 √ h √ H−K−1. Each instance is initialized with a leaf index s and is updated
in Algorithm 3 until the required authentication node is computed. During a tree-
hash update the next leaf is created and parent nodes are computed by hashing
previously created nodes if possible. Authentication nodes change every 2h steps
for height h and if an authentication node is used from a treehash instance, this
instance is re-initialized to compute the following authentication node for that
height.

230 T. Eisenbarth et al.

Preliminaries. The total number of leaf computations that occur during execu-
tion of Algorithm 3 can be calculated by counting all invocations of Leafcalc,
a function that on input s outputs leaf ν0 [s]. As mentioned in [6] it is possible to
omit Leafcalc in Step 3 of Algorithm 3 since the sth W-OTS key pair is used
to sign the current message, hence the verification key can be computed from the
signature and one additional hash computation yields leaf ν0 [s]. If a different
OTSS is used the verification key is part of the OTS and can be hashed to create
ν0 [s]. This saves 2H−1

Leafcalc invocations. Careful analysis of Algorithm 3
leads to the total number of leaf computations in the BDS algorithm

NH,Ktotal
=

H−K−1∑

h=0

(
2H−1 − 2h+1

)
= (H − K) 2H−1 − 2H−K+1 + 2.

In order to count the necessary computations for a specific leaf s during exe-
cution of Algorithm 3 we have to consider all occurrences of s as parameter of
Leafcalc, except for when s is a left leaf (Step 3 of Algorithm 3), as explained
above. To determine if leaf s is computed in treehash instance Treehashh we
make the following observation: Treehash0 computes leaves (5), (7), (9), . . . ,
Treehash1 computes leaves (10, 11), (14, 15), . . . , Treehash2 computes leaves
(20, 21, 22, 23), (28, 29, 30, 31), . . . and so forth. Hence, the total number of com-
putations for leaf s is given by

NH,K (s) =
H−K−1∑

h=0

⌊
s mod 2h+1

2h

⌋

·
⌈⌊

s
5·2h

⌋

2H

⌉

Drawbacks. A drawback of the BDS algorithm (Algorithm 3) is that it does
not balance the computation of leaf nodes. There are leaves that are calculated
various times, while others are barely touched. In terms of side-channel leakage
this is undesirable. On average each leaf of the Merkle tree is computed NH,K =
NH,Ktotal

/2H ⊆ 1
2 (H − K) times. However, the computations per leaf deviate

from the average as shown in Fig. 1 for a Merkle tree (H = 10,K = 2) with 1024
leaves.

3.2 Balanced Authentication Path Computation

Since the rightmost nodes of each treehash instance are calculated most fre-
quently, we propose to cache and reuse them for balancing the leaf computa-
tions. We use an array Rightnodes to store those nodes. Note, the root of
each treehash instance and the complete treehash instance Treehash0 are not
stored since lower treehash instances do not require those nodes. Besides reducing
the side-channel leakage for heavy duty leaves, this also leads to a significantly
reduced computation time, at the cost of an increased memory consumption.

From Treehash1 we store node ν0 [7], from Treehash2 we store nodes
ν1 [7] and ν0 [15] and so on. More generally, we store h nodes νj

[
22+h−j − 1

]
,

Faster Hash-Based Signatures with Bounded Leakage 231

j = 0, . . . , h−1 for each instance Treehashh, 1 √ h √ H −K −1. The required
storage space is

SRightNodes (H,K) =
H−K−1∑

h=1

h =
(

H − K

2

)

= ∃H−K−1.

Table 1 lists the storage requirements for common H −K values. The initial-
ization of the Rightnodes array is done during the computation of the public
key of the Merkle tree. The updated initial setup is formalized in Algorithm 2.

Table 1. Storage space required by the Rightnodes array where the rightmost nodes
of each treehash instance Treehashh, h = 1, . . . , H − K − 1 are stored for reusage by
lower treehash instances.

H − K ∈H−K−1 128-bit digest (byte) 160-bit digest (byte) 256-bit digest (byte)

6 15 240 300 480
8 28 448 560 896

10 45 720 900 1440
12 66 1056 1320 2112
14 91 1456 1820 2912
16 120 1920 2400 3840
18 153 2448 3060 4896

In Step 5 of Algorithm 3 the treehash instances receive updates if they are
initialized and not finished. In every update one leaf is computed and higher
nodes are generated if possible by hashing concatenated nodes from the stack.
During the last update before the treehash instance is finished, the rightmost
leaf of this treehash instance is computed and all other rightmost nodes of this
treehash instance are consecutively generated. If the leaf index s ≡ 2h−1 mod 2h

in instance Treehashh, we store the following nodes in the Rightnodes array
starting from offset h (h − 1) /2. An adapted version of the treehash update
algorithm is given in Algorithm 1.

In every second re-initialization of treehash instances Treehashh, h = 0, . . . ,
H − K − 2 the authentication node can be copied from the Rightnodes array
because it has been computed before by treehash instance Treehashh+1. If
s + 1 ≡ 0 mod 2h+2 the authentication node can be copied from the Rightn-

odes array and if s + 1 ≡ 2h+1 mod 2h+2 the authentication node has to be
computed. If we can reuse nodes, we not only copy the authentication node
(root of Treehashh) but also its rightmost child nodes from Rightnodes, so
they can be reused for instances Treehashj , j < h. This improvement can be
easily integrated into the BDS algorithm by modifying Step 4c) accordingly.

Comparison. In order to quantify our improvements, we give the total amount
of leaf computations and show how to determine the leaf computations for a

232 T. Eisenbarth et al.

specific leaf s. As before, each instance Treehashh computes 2h leaves until
they are finished. The re-initializations however are halved for treehash instances
Treehashh, h = 0, . . . , H − K − 2, to 2H−h−2 − 1 re-initializations because in
half of all cases previously computed nodes can be copied from the Rightnodes

array and the Leafcalc computations are skipped. Hence, the number of calls
to Leafcalc from each Treehashh instance is 2H−2−2h The treehash instance
TreehashH−K−1 cannot copy nodes from higher instances since it is the top-
most treehash instance. It calls Leafcalc as before, resulting in 2H−1 − 2H−K

computations. The total number of leaf computations is

N ∗
H,Ktotal

=
H−K−2∑

h=0

(
2H−2 − 2h

)
+ 2H−1 − 2H−K

= (H − K + 1) 2H−2 − 3 · 2H−K−1 + 1.

When compared to NH,Ktotal
of the BDS algorithm this is nearly a 50 % reduction.

To retrieve the number of leaf computations in the improved version for a
specific leaf s we have to check whether s is a left or a right leaf. If s is even, it is a
left leaf and can be computed from the current one-time signature or verification
key as mentioned in Sect. 3.1 for Step 3 of Algorithm 3. If s is odd, it is a right
leaf thus Leafcalc is not executed directly. To determine if s is computed in
treehash instance Treehashh, h = 0, . . . , H − K − 2, we have to consider that
in half of all cases it is copied and not computed. For this purpose we construct
function δ∗

H,K (s) that returns the number of times leaf s is computed in treehash
instances Treehashh, h = 0, . . . , H − K − 2.

δ∗
H,K (s) =

H−K−2∑

h=0

⌊
s mod 2h+1

2h

⌋

·
⌈⌊

s
5·2h

⌋

2H

⌉

·
(

1 −
⌊

s mod 2h+2

2h+1

⌋)

The topmost treehash instance TreehashH−K−1 cannot copy nodes from
the Rightnodes array because the required nodes have not been computed so
far. Thus, we have to count the number of computations for this instance as in
the unoptimized version. The total number of times leaf s is generated during
the computation of all authentication nodes can now be summed up to

N ∗
H,K (s) =

⌊
s mod 2H−K

2H−K−1

⌋

·
⌈⌊

s
5·2H−K−1

⌋

2H

⌉

+ δ∗
H,K (s) .

On average each leaf is now computed N ∗
H,K = N ∗

H,Ktotal
/2H ⊆ 1

4 (H − K + 1)
times. The reduced number of computations for each leaf is shown in Fig. 2. Visual
comparison between Figs. 1 and 2 already gives an intuition of the reduction and
balancing of leaf computations. For further comparisons see Fig. 3 in the appen-
dix. Table 2 compares the total number of leaf computations, how often a leaf has
to be computed in the worst-case, and the average number of leaf computations
for common heights H = {10, 16, 20} and K = {2, 4}. The total number of leaf

Faster Hash-Based Signatures with Bounded Leakage 233

Fig. 1. Number of times each leaf is
computed by the original BDS algo-
rithm for a Merkle tree of height H =
10 and K = 2.

Fig. 2. Number of times each leaf is
computed by our variation for a Merkle
tree of height H = 10 and K = 2.

computations as well as the average computations per leaf are decreased by about
38–48 % for the chosen parameters of H and K. Both the worst-case computa-
tion time as well as the average signature computation time are decreased. E.g.,
battery-powered devices greatly profit from the reduced overall computation time
which directly relates to the overall power consumption.

Table 2. Overview of the necessary computations for a Merkle tree with parameters
H and K when executing Algorithm 3. Furthermore, the worst-case computations for
a leaf is listed together with the average computations NH,K and N ∼

H,K . The variance

of NH,K (s) and N ∼
H,K (s) is denoted by σ2

H,K and σ∼2
H,K .

max. max.

H K NH,Ktot N ∼
H,Ktot

NH,K N ∼
H,K % σ2

H,K σ∼2
H,K % NH,K (s) N ∼

H,K (s) %

10 2 3586 1921 3.50 1.88 46.4 2.24 0.73 67.3 8 4 50.0
10 4 2946 1697 2.88 1.66 42.4 1.60 0.50 68.5 6 3 50.0
10 6 2018 1257 1.97 1.23 37.7 1.02 0.33 67.9 4 2 50.0
16 2 425986 221185 6.50 3.38 48.1 3.75 1.11 70.4 14 7 50.0
16 4 385026 206849 5.88 3.16 46.3 3.11 0.88 71.6 12 6 50.0
16 6 325634 178689 4.97 2.73 45.1 2.53 0.71 72.1 10 5 50.0
20 2 8912898 4587521 8.50 4.38 48.5 4.75 1.36 71.4 18 9 50.0
20 4 8257538 4358145 7.88 4.16 47.2 4.11 1.13 72.5 16 8 50.0
20 6 7307266 3907585 6.97 3.73 46.5 3.53 0.96 72.9 14 7 50.0

Since all but the topmost treehash instance only need to be computed every
second time, the number of updates per signature (Algorithm 3, Step 5) can
be reduced from ≈(H − K)/2≥ to ≈(H − K + 1)/4≥. As a result, the average
update time is much better balanced than in Algorithm 3 and the worst case
computation time is also improved. The BDS algorithm needs to store 3H +
�H/2→ − 3K + 2K − 2 tree nodes and 2 (H − K) + 1 PRNG seeds as signature
key. Due to storing the rightmost nodes our improved algorithm increases the

234 T. Eisenbarth et al.

Fig. 3. Comparison of NH,K (s) and N ∼
H,K (s) for H = {10, 16, 20} and K = {2, 4} for

all leaves s of the respective tree.

Faster Hash-Based Signatures with Bounded Leakage 235

number of tree nodes that have to be stored by
(
H−K

2

)
. Even if the additional

memory is used to increase K for the original BDS algorithm, the speedup
is still significant. E.g., comparing our (H,K) = (16, 4) to BDS(16, 6) gives
comparable storage requirements, but still a speedup of 36 %. The verification
key and signature sizes remain unaffected: the verification key size is m and the
signature size remains at t · n + H · m.

4 Implementation and Results

In the following we describe our choices for the cryptographic primitives which
we use to implement the proposed signature scheme described in Sects. 2 and 3.
We then detail on the target platforms and give performance figures for key and
signature generation as well as signature verification.

4.1 A Bounded Leakage Merkle Signature Engine

We implemented two versions with different hash functions g for the Merkle
tree. Both versions use AES-128 in an MJH construction [16]. Using AES-128
as block cipher is favorable from a performance perspective as existing AES co-
processors can be used. MJH is collision resistant for up to O

(
2

2n
3 −log n

)
queries

when instantiated with a n-bit block cipher. With AES-128 as an ideal cipher,
this results in 80 bits security [16]. On the downside, MJH produces 256-bit hash
outputs which in the MSS setting leads to an increased key and signature size.
Hence, we also implement a version that shortens the 256-bit output of MJH to
160-bit, resulting in smaller key and signature sizes. This also reduces the number
of times the AES-engine needs to be called when creating nodes in the Merkle
tree. Leakage of g is not an issue, since g only processes public information.

One-way function f is implemented based on AES-128 in an MMO [17,18]
construction: f(xi) := AESIV(xi)∪xi. Unlike the PRNG, f is keyless. Hence, for
independent inputs its leakage is inherently 1-limiting and f can thus be viewed
as uniformly seed-preserving. The PRNG defined in (1) is implemented based
on the leakage-2-limiting PRNG proposed in [24]. In particular, PRNG(ki) :=
(AESki

(0128), AESki
(0127||1)), where AESki

denotes the AES-128 with a 128-bit
key ki, used as seed-preserving function.

Both PRNG and f handle secret inputs. The PRNG processes each Seeds

and SeedW-OTSs
as well as the xi for s exactly N ∗

H,K(s) times during state
updates and one time during signing OTSs. We exclude the key generation in this
analysis, as it is performed off-chip, assumably in a secure environment. Both
PRNG and f rely on AES-128 as cryptographic building block. The PRNG
executes AES twice under the same secret key (i.e. the PRNG is 2-limiting),
while f touches the secret input only once, making the signature engine overall
leakage-2-limited. The strongest leakage will be observed for the Seedi, resulting
in a total of l = 2 · (

max(N ∗
H,K(s)) + 1

)
leakages. These l observations are on

2 different inputs, i.e., there are l/2 = max(N ∗
H,K(s)) + 1 observations under

the same input (i.e., leakage will only differ by noise). Classical side-channel

236 T. Eisenbarth et al.

attacks are further mitigated by the fact that intermediate values Seedi of the
key generation PRNG are not output. The adversary will only get access to a
limited number of xi.

4.2 Implementation Platforms

We implement the signature scheme on two different platforms. On the one side
we choose a lightweight and low-cost 8-bit Atmel ATxmega microcontroller and
on the other side a powerful Intel Core i7 notebook CPU.

Intel Core i7-2620M 64-bit CPU. Intel’s off-the-shelf Core i7-2620M 64-
bit Sandy Bridge notebook CPU [12] features two cores running at 2.70 GHz
(with Turbo Boost technology up to 3.40 GHz). For accurate measurement, we
disabled Turbo Boost and hyper-threading during our benchmarks. The CPU
incorporates the recent extensions to the x86 instruction set that improve the
performance when en-/decrypting data using AES. The extension is called AES-
NI and consists of six additional instructions [13]. All standardized key lengths
(128 bit, 192 bit, 256 bit) are supported for a block size of 128 bit.

Atmel AVR ATxmega128A1 8-bit Microcontroller. We are using the
Atmel evaluation board AVR XPLAIN [3] that features an ATxmega128A1
microcontroller [1,2]. The ATxmega offers hardware accelerators for DES and
AES and is clocked at 32 MHz. The hardware acceleration is limited to AES
with 128-bit key and block size. A leakage analysis has been performed on this
processor in Sect. 4.4, as it is a typical example for a low-power embedded plat-
form.

4.3 Performance Results

In the following we give performance figures of the signature scheme for selected
Merkle tree heights H and parameters K and w on both platforms.

CPU Performance. On the Intel CPU we measure the time it takes to create
the root node of the Merkle tree, i.e., the verification key generation. We iterate
over all leaves and sign random messages to measure the average computation
time that is needed to create a valid MSS signature. Additionally, we measure
the time it takes to verify an MSS signature. Signature computation includes
creating the signing key, performing a one-time signature with the created signing
key, and generating the next authentication path (the last step can be removed,
as it can be precomputed at any time between two signing operations). The
measurement is done for tree height H = 16 with K = 2 and w = 2. Note,
due to the binary tree structure the root node computation can be parallelized
if more than one CPU core is available, which would bring down the required

Faster Hash-Based Signatures with Bounded Leakage 237

Table 3. Performance figures of a Merkle tree with parameters H = 16, K = 2, w = 2
on an Intel i7 CPU and H = 10, K = 2, w = 2 on an ATxmega microcontroller. f is
implemented using a hardware-accelerated AES-128 (AES-NI instructions, ATxmega
crypto accelerator) in MMO construction. g is implemented using AES-128 in an MJH-
256 construction and with the output truncated to 160 bit. The Intel CPU was clocked
at 2.7 GHz and the ATxmega at 32 MHz.

Hash g MJH-256 w/ AES-128 MJH-160 w/ AES-128
Target [22] our Impr. (%) [22] our Impr. (%)

Core i7 KeyGen 6546.9 ms 6037.5 ms 8 4218.7 ms 3886.3 ms 8
Core i7 Sign 743.9 us 401.3 us 46 487.1 us 256.2 us 47
Core i7 Verify 76.1 us 78.1 us -3 50.8 us 49.3 us 3

AVR Sign 110.0 ms 64.9 ms 41 70.7 ms 41.7 ms 41
AVR Verify 18.4 ms 18.4 ms 0 11.0 ms 11.0 ms 0

computation time by roughly the factor of cores used. We compare our results
against the originally proposed signature scheme [22] in Table 3.

Compared to the previous results of [22] our improved algorithm in combina-
tion with the exchanged PRNG yields on average a performance gain of 46–47 %
for signature generation. The new PRNG improves the computation time on
average by 8 %, the algorithmic changes to the authentication path computation
algorithm yield 38–39 % points.

When generating verification keys an 8 % improvement can be observed. This
is due to the exchanged PRNG which uses a hardware-accelerated AES-engine
since our algorithmic improvements do not affect key generation. Signature ver-
ification is more or less stable, regardless of cipher/algorithm combinations and
is about a factor of 5 faster than signature generation.

Microcontroller Performance. On the microcontroller we measure the aver-
age computation time that is needed to create a valid MSS signature (includ-
ing next authentication path computation) and the time it takes to verify an
MSS signature. We omit the verification key generation since for reasonable tree
heights it is an infeasible task for the microcontroller. Verification keys have to
be computed once on a computer platform when initializing the microcontroller.
The code was compiled using avr-gcc version 3.3.0. We found optimization stage
-O2 to provide the best tradeoff between runtime and code size.

The results on the microcontroller are in accordance with the results observed
on the Intel CPU. The average signature generation time improves by 41 % when
using our proposed changes. Signature verification remains stable and is four
times faster than signature generation. The memory consumption is listed in
Table 4. Compared to the setting of [22] we need more flash and SRAM memory
due to the additional storage for the Rightnodes array.

Table 5 compares key and signature sizes for different MSS implementations.
Note that the increased signature sizes for [11] enable on-card key generation.

238 T. Eisenbarth et al.

Table 4. Required memory on the ATxmega128A1 microcontroller. In total 128 kByte
flash memory and 8 kByte SRAM are available on this device. Memory consumption
is reported in bytes and includes the verification and signature keys.

MJH-256 w/ AES-128 MJH-160 w/ AES-128
[22] our [22] our

H K Flash SRAM Flash SRAM Flash SRAM Flash SRAM

10 2 10,608 1,486 12,070 2,382 10,204 1,066 11,352 1,626
10 4 10,726 1,604 11,768 2,084 10,250 1,112 11,138 1,412
10 6 11,994 2,874 12,752 3,066 11,018 1,878 11,726 1,998

Table 5. Comparison of signing key (sk), verification key (vk), and signature size (sig)
between [22], our improvement, and XMSS+ [11] for common (H, K, w) parameter sets.
All sizes are reported in bytes.

MJH-256 MJH-160 [22] (MJH-256) [22] (MJH-160) XMSS+ [11]
H K w sk vk sig sk vk sig sk vk sig sk vk sig sk vk sig

16 2 2 5,335 32 2,640 3,547 20 1,680 2,423 32 2,640 1,727 20 1,680 3,760 544 3,476
16 2 4 5,335 32 1,584 3,547 20 1,008 2,423 32 1,584 1,727 20 1,008 3,200 512 1,892
20 4 2 7,049 32 2,768 4,649 20 1,760 3,209 32 2,768 2,249 20 1,760 4,303 608 3,540
20 4 4 7,049 32 1,712 4,649 20 1,088 3,209 32 1,712 2,249 20 1,088 3,744 576 1,956

4.4 Leakage Results

The leakage of the AVR ATxmega processors with respect to power analysis has
been analyzed in [14]. The found leakage is weak: the best attack needs more
than 3000 measurements on random known inputs to recover the secret key.
However, the applied method is not the most powerful1.

In order to get a more thorough leakage analysis of the target platform, we
performed own side-channel experiments. Since all AES computations with criti-
cal leakage are performed by the AES co-processor of the ATxmega processor [2],
we analyzed the leakage of that co-processor. Instead of a correlation based DPA,
we applied a (univariate) template attack [7], the de-facto standard for power
leakage evaluation [23]. The profiled intermediate state is Δ = p0 ∪ k0 ∪ p1 ∪ k1,
where one template was created for each possible Δ. This is the same intermedi-
ate state that was targeted in [14]. It appears to be the intermediate state with
the strongest leakage. Each recovered Δ reveals one byte of key information. The
maximum observable leakage is that of the 2-limiting PRNG, which is, at most,
executed 10 times each on two different inputs (for (H,K) = (20, 2)). To capture
this maximal leakage, the experiment builds univariate templates from 10,000
traces and tests over two groups of 10 traces (each group shares the same input).
A total of 5000 experiments are conducted, resulting in a Guessing Entropy [23]
of 85.06 or 6.41 bits for the correct Δ. This means that the adversary still has
1 Both targeting the key xor and using correlation attack are not considered optimal

methods of leakage extraction.

Faster Hash-Based Signatures with Bounded Leakage 239

to test more than 85 hypotheses for that byte on average. The reduction in
entropy is hence less than 0.6 bit2, resulting in well above 100 bit of remaining
key entropy when considering univariate side-channel attacks.

An alternative to plain template attacks are algebraic side-channel attacks [21],
which do not require known input and output and would be more applicable to
attack the PRNG in this work. While being able to exploit several (close to 1000
in [21]) leakages during a single execution of AES, these methods are very sensitive
to noise and need a much stronger leakage than the one observed here. Often, an
almost noise-free Hamming weight leakage is assumed, which is more than 2.5 bits
of information on a byte. This kind of information is not provided by the observed
leakage of the hardware AES of the ATxmega processor.

The remaining point of attack is in the Winternitz signature, where the
adversary actually gets access to hash outputs and some outputs of the PRNG
used to generate the one-time keys. The observed leakage (10 observations for
the same single input, same setup as for the PRNG) has a guessing entropy of
99.53, i.e. less than 0.4 bit of information per byte are revealed. Not much prior
work on side-channel attacks on one-way functions has been performed which is
most likely due to the fact that the adversary gets only single observations of
the leakage.

5 Conclusion

We presented a novel algorithmic improvement for authentication path compu-
tation in MSS that balances leaf computations and reduces side-channel leakage.
The proposed improvements have been implemented on two platforms and were
compared to previous proposed algorithms showing significant improvements.
Furthermore, we gave explicit formulas to quantify the number of leaf computa-
tions when using MSS and showed that the leakage of the secret state is bounded
throughout the entire scheme. The leakage analysis of the ATxmega AES engine
showed that no significant information can be extracted about the secret state,
due to the bounded number of executions under the same key.

We stated theoretically achievable performance gains and verified them prac-
tically. The algorithmic improvement decreases the required computation time
for signature creation in theory as well as in practice. The performance figures
show that Merkle signatures are not only practical, but also resource-friendly
and fast and have inherently bounded side-channel leakage. As such they are a
advantageous choice for, e.g., digital signature smartcards.

Acknowledgments. This material is based in part upon work supported by the
National Science Foundation under Grant No. 1261399 and by grant 01ME12025 Sec-
Mobil of the German Federal Ministry of Economics and Technology. We would like to
thank the anonymous reviewers for their helpful comments.

2 Note that the guessing entropy for a byte with 28 equiprobable states is 128, i.e.
7 bits as guessing entropy looks for the expected number of guesses.

240 T. Eisenbarth et al.

A Appendix

Algorithm 1. Improved treehash update
Input: Height h, current index s, Rightnodes array
Output: updated Rightnodes array, updated Treehash instance Treehashh

Compute the sth leaf: Node1 ∅Leafcalc(s)

if s ⊆ 2h − 1
(
mod 2h

)
and Node1.height() < h then

offset = h (h − 1) /2
Rightnodes[offset] ∅Node1

end if
while Node1 has the same height as the top node on Treehashh do

Pop the top node from the stack: Node2 ∅Treehashh.pop()
Computer their parent node: Node1 ∅ g(Node2⊥Node1)

if s ⊆ 2h − 1
(
mod 2h

)
then

offset = offset + 1
Rightnodes[offset] ∅Node1

end if
end while

Push the parent node on the stack: Treehashh.push(Node1)

Algorithm 2. Key generation and initial setup for the improved traversal algo-
rithm.
Input: H, K
Output: Public key νH [0], Authentication path, Rightnodes array, Treehash stacks, Retain stacks
1: Public Key Calculate and publish tree root, νH [0].
2: Initial Right Nodes

i = 0
for h = 1 to H − K − 1 do

for j = 0 to h − 1 do

Set Rightnodes[i] = νj

[
22+h−j − 1

]
.

i = i + 1
3: Initial Authentication Nodes

for each h ∪ {0, 1, . . . , H − 1} do
Set Authh = νh [1].

4: Initial Treehash Stacks
for each h ∪ {0, 1, . . . , H − K − 1} do

Setup Treehashh stack with νh [3].
5: Initial Retain Stacks

for each h ∪ {H − K, . . . , H − 2} do

for each j ∪
{

2H−h−1, . . . , 0
}

do

Retainh.push(νh [2j + 3]).

Faster Hash-Based Signatures with Bounded Leakage 241

Algorithm 3. Algorithm for authentication path computation as presented
in [6]
Input: s ∪

{
0, . . . , 2H − 2

}
, H, K, and the algorithm state.

Output: Authentication path As+1 for leaf s + 1.
1: Let τ = 0 if leaf s is a left node or let τ be the height of the first parent of leaf s which is a left

node: τ ∅ max{h : 2h|(s + 1)}
2: If the parent of leaf s on height τ + 1 is a left node, store the current authentication node on

height τ in Keepτ :
if 	s/2τ+1∨ is even and τ < H − 1 then Keepτ ∅ Authτ

3: If leaf s is a left node, it is required for the authentication path of leaf s + 1:
if τ = 0 then Auth0 ∅ Leafcalc(s)

4: Otherwise, if leaf s is a right node, the auth. path for leaf s + 1 changes on heights 0, . . . , τ :
if τ > 0 then
a) The authentication path for leaf s + 1 requires a new left node on height

τ . It is computed using the current authentication node on height τ − 1
and the node on height τ − 1 previously stored in Keepτ−1. The node
stored in Keepτ−1 can then be removed:
Authτ ∅ g (Authτ−1 ⊥Keepτ−1), remove Keepτ−1

b) The authentication path for leaf s + 1 requires new right nodes on heights
h = 0, . . . , τ − 1. For h < H − K these nodes are stored in Treehashh

and for h ≥ H − K in Retainh:
for h = 0 to τ − 1 do

if h < H − K then Authh ∅ Treehashh.pop()
if h ≥ H − K then Authh ∅ Retainh.pop()

c) For heights 0, . . . , min{τ − 1, H − K − 1} the Treehash instances must be
initialized anew. The Treehash instance on height h is initialized with
the start index s + 1 + 3 · 2h < 2H :
for h = 0 to min{τ − 1, H − K − 1} do

Treehashh.initialize(s + 1 + 3 · 2h)
5: Next we spend the budget of (H −K)/2 updates on the Treehash instances to prepare upcoming

authentication nodes:
repeat (H − K)/2 times
a) We consider only stacks which are initialized and not finished. Let k be

the index of the Treehash instance whose lowest tail node has the lowest
height. In case there is more than one such instance we choose the instance
with the lowest index:

k ∅ min

{

h : Treehashh.height() = min
j=0,...,H−K−1

{Treehashj .height()}
}

b) The Treehash instance with index k receives one update: Treehashk.update()

6: The last step is to output the authentication path for leaf s + 1: return Auth0, . . . ,AuthH−1.

References

1. Atmel. ATxmega128A1 Data Sheet. http://www.atmel.com/dyn/resources/prod
documents/doc8067.pdf

2. Atmel. AVR XMEGA A Manual. http://www.atmel.com/dyn/resources/prod
documents/doc8077.pdf

3. Atmel. AVR XPLAIN board. http://www.atmel.com/dyn/resources/prod
documents/doc8203.pdf

4. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the secu-
rity of the winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D.
(eds.) Progress in Cryptology AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–
378. Springer, Berlin / Heidelberg (2011)

5. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure
signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)

http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8067.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8077.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8203.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8203.pdf

242 T. Eisenbarth et al.

6. Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based digital signature schemes. In:
Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography,
pp. 35–93. Springer, Heidelberg (2009)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski, B.S., Koç, çK,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

8. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005)

9. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

10. Hülsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013)

11. Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart cards.
In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 66–80. Springer,
Heidelberg (2013)

12. Intel. Intel Core i7 2620M Specifications. http://ark.intel.com/products/52231/
Intel-Core-i7-2620M-Processor-(4M-Cache-2 70-GHz)

13. Intel. Whitepaper on the Intel AES Instructions Set. http://software.intel.com/
file/24917

14. Kizhvatov, I.: Side channel analysis of AVR XMEGA crypto engine. In: Proceedings
of the 4th Workshop on Embedded Systems Security, WESS ’09, pp. 8:1–8:7. ACM
(2009)

15. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report, CSL-98, SRI, International (1979)

16. Lee, J., Stam, M.: MJH: a faster alternative to MDC-2. In: Kiayias, A. (ed.) Topics
in Cryptology CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Berlin /
Heidelberg (2011)

17. Matyas, S.M., Meyer, C.H., Oseas, J.: Generating strong one-way functions with
cryptographic algorithm. IBM Tech. Discl. Bull. 27(10A), 5658–5659 (1985)

18. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1997). Algorithm 9.41

19. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

20. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

21. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

22. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast hash-
based signatures on constrained devices. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 104–117. Springer, Heidelberg (2008)

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

http://ark.intel.com/products/52231/Intel-Core-i7-2620M-Processor-(4M-Cache-2_70-GHz)
http://ark.intel.com/products/52231/Intel-Core-i7-2620M-Processor-(4M-Cache-2_70-GHz)
http://software.intel.com/file/24917
http://software.intel.com/file/24917

Faster Hash-Based Signatures with Bounded Leakage 243

24. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage resilient cryptography in practice. In: Sadeghi, A.-R., Naccache, D., Basin,
D., Maurer, U. (eds.) Towards Hardware-Intrinsic Security. Information Security
and Cryptography, pp. 99–134. Springer, Heidelberg (2010)

25. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg
(2004)

White Box Crypto

White-Box Security Notions
for Symmetric Encryption Schemes

Cécile Delerablée1, Tancrède Lepoint1,2,
Pascal Paillier1, and Matthieu Rivain1(B)

1 CryptoExperts, 41 Boulevard des Capucines, 75002 Paris, France
{cecile.delerablee,tancrede.lepoint,

pascal.paillier,matthieu.rivain}@cryptoexperts.com
2 École Normale Supérieure, 45 Rue D’Ulm, 75005 Paris, France

Abstract. White-box cryptography has attracted a growing interest
from researchers in the last decade. Several white-box implementations of
standard block-ciphers (DES, AES) have been proposed but they have
all been broken. On the other hand, neither evidence of existence nor
proofs of impossibility have been provided for this particular setting.
This might be in part because it is still quite unclear what white-box
cryptography really aims to achieve and which security properties are
expected from white-box programs in applications. This paper builds
a first step towards a practical answer to this question by translating
folklore intuitions behind white-box cryptography into concrete security
notions. Specifically, we introduce the notion of white-box compiler that
turns a symmetric encryption scheme into randomized white-box pro-
grams, and we capture several desired security properties such as one-
wayness, incompressibility and traceability for white-box programs. We
also give concrete examples of white-box compilers that already achieve
some of these notions. Overall, our results open new perspectives on
the design of white-box programs that securely implement symmetric
encryption.

Keywords: White-box cryptography · Security notions · Attack mod-
els · Security games · Traitor tracing

1 Introduction

Traditionally, to prove the security of a cryptosystem, cryptographers consider
attack scenarios where an adversary is only given a black-box access to the crypto-
graphic system, namely to the inputs and outputs of its underlying algorithms.
Security notions are built on the standard paradigm that the algorithms are
known and that computing platforms can be trusted to effectively protect the
secrecy of the private key.

However attacks on implementations of cryptographic primitives have become
a major threat due to side-channel information leakage (see for example [18,
28]) such as execution time, power consumption or electromagnetic emanations.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 247–264, 2014.
DOI: 10.1007/978-3-662-43414-7 13, c∞ Springer-Verlag Berlin Heidelberg 2014

248 C. Delerablée et al.

More generally, the increasing penetration of cryptographic applications onto
untrusted platform (the end points being possibly controlled by a malicious
party) makes the black-box model too restrictive to guaranty the security of
programs implementing cryptographic primitives.

White-box cryptography was introduced in 2002 by Chow, Eisen, Johnson
and van Oorschot [10,11] as the ultimate, worst-case attack model. This model
considers an attacker far more powerful than in the classical black-box model
(and thus more representative of real-world attackers); namely the attacker is
given full knowledge and full control on both the algorithm and its execution
environment. However, even such powerful capabilities should not allow her to
e.g. extract the embedded key1. White-box cryptography can hence be seen as a
restriction of general obfuscation where the function to protect belongs to some
narrower class of cryptographic functions indexed by a secret key. From that
angle, the ultimate goal of a white-box implementation is to leak nothing more
than what a black-box access to the function would reveal. An implementation
achieving this strong property would be as secure as in the black-box model,
in particular it would resist all existing and future side-channel and fault-based
attacks. Although we know that general obfuscation of any function is impossible
to achieve [1], there is no known impossibility result for white-box cryptography
and positive examples have even been discovered [7,15]. On the other hand, the
work of Chow et al. gave rise to several proposals for white-box implementations
of symmetric ciphers, specifically DES [10,21,32] and AES [6,11,19,33], even
though all these proposals have been broken [3,13,16,20,22–24,31].

Our belief is that the dearth of promising white-box implementations is
also a consequence of the absence of well-understood security goals to achieve.
A first step towards a theoretical model was proposed by Saxena, Wyseur and
Preneel [29], and subsequently extended by Wyseur in his PhD thesis [30]. These
results show how to translate any security notion in the black-box model into a
security notion in the white-box model. They introduce the white-box property
for an obfuscator as the ability to turn a program (modeled as a polynomial
Turing machine) which is secure with respect to some black-box notion into a
program secure with respect to the corresponding white-box notion. The authors
then give an example of obfuscator for a symmetric encryption scheme achiev-
ing the white-box equivalent of semantic security. In other words, the symmetric
encryption scheme is turned into a secure asymmetric encryption scheme. While
these advances describe a generic model to translate a given notion from the
black-box to the white-box setting, our aim in this paper is to define explicit
security notions that white-box cryptography should realize in practice. As a
matter of fact, some of our security notions are not black-box notions that one
would wish to preserve in the white-box setting, but arise from new features
potentially introduced by the white-box compilation. Note that although we use
a different formalism and pursue different goals, our work and those in [29,30]
are not in contradiction but rather co-exist in a wider framework.
1 Quoting [10], the “choice of the implementation is the sole remaining line of defense

and is precisely what is pursued in white-box cryptography”.

White-Box Security Notions for Symmetric Encryption Schemes 249

Our Contributions. We formalize the notion of white-box compilers for a
symmetric encryption scheme and introduce several security notions for such
compilers. As traditionally done in provable security (e.g. [2]), we consider sepa-
rately various adversarial goals (e.g. decrypt some ciphertext) and attack models
(e.g. chosen ciphertext attack), and then obtain distinct security definitions by
pairing a particular goal with a particular attack model. We consider four dif-
ferent attack models in the white-box context: the chosen plaintext attack, the
chosen ciphertext attack, the recompilation attack and the chosen ciphertext
and recompilation attack. We formalize the main security objective of white-box
cryptography which is to protect the secret key as a notion of unbreakability.
We show that additional security notions should be considered in applications
and translate folklore intuitions behind white-box cryptography into concrete
security notions; namely the one-wayness, incompressibility and traceability of
white-box programs. For the first two notions, we show an example of a simple
symmetric encryption scheme over an RSA group for which an efficient white-
box compiler exists that provably achieves both notions. We finally show that
white-box programs are efficiently traceable by simple means assuming that func-
tional perturbations can be hidden in them. Overall, our positive results shed
more light on the different aspects of white-box security and provide concrete
constructions that achieve them in a provable fashion.

2 Preliminaries

Symmetric Encryption. A symmetric encryption scheme is a tuple E =
(K,M,C,K,E,D) where K is the key space, M is the plaintext (or message)
space, C is the ciphertext space, K is a probabilistic algorithm that returns a
key k ∈ K = range (K()), E is a deterministic encryption function mapping
elements of K × M to elements of C, D is a deterministic decryption function
mapping elements of K × C to elements of M.

We require that for any k ∈ K and any m ∈ M, D(k,E(k,m)) = m. Most
typically, E refers to a block-cipher in which case all sets are made of binary
strings of determined length and C = M.

Programs. A program is a word in the language-theoretic sense and is inter-
preted in the explicit context of a programming model and an execution model,
the details of which we want to keep as abstracted away as possible. Programs
differ from remote oracles in the sense that their code can be executed locally,
read, copied and modified at will. Successive executions are inherently stateless
and all the “system calls” that a program makes to external resources such as
a random source or a system clock can be captured and responded arbitrarily.
Execution can be interrupted at any moment and all the internal variables iden-
tified by the program’s instructions can be read and modified arbitrarily by the
party that executes the program.

For some function f mapping some set A to some set B, we denote by prog (f)
the set of all programs implementing f . A program P ∈ prog (f) is said to be

250 C. Delerablée et al.

fully functional with respect to f when for any a ∈ A, P (a) returns f(a) with
probability 1. P is said to be φ-functional (with respect to f) when P is at
distance at most φ ∈ [0, 1] from f , i.e.

ψ(P, f) def= Pr[a $∞ A ; b ∞ P (a) : b √= f(a)] ≤ φ .

The set of φ-functional programs implementing f is noted φ-prog (f). Obviously
0-prog (f) = prog (f).

Other Notations. If A is some set, |A| denotes its cardinality. If A is some
generator i.e. a random source with some prescribed output range A, H(A)
denotes the output entropy of A as a source. Abusing notations, we may also
denote it by H(a) for a ∞ A(· · ·). Finally, when we write O(·) = λ, we mean
that O is the oracle which, on any input, returns the empty string λ.

3 White-Box Compilers

In this paper, we consider that a white-box implementation of the scheme E is
a program produced by a publicly known compiling function CE which takes
as arguments a key k ∈ K and possibly a diversifying nonce r ∈ R drawn from
some randomness space R. We will denote the compiled program by [Er

k] (or [Ek]
when the random nonce r is implicit or does not exist), namely [Er

k] = CE(k, r).
A compiler CE for E is sound when for any (k, r) ∈ K × R, [Er

k] exactly
implements the function E(k, ·) (i.e. it is fully functional). Therefore [Er

k] accepts
as input any m ∈ M and always returns the correct encryption c = E(k,m). At
this stage, we only care about sound compilers.

Remark 1. In the above definition, we consider white-box compilers for the
encryption function. However, since we focus on deterministic encryption –
E(k, ·) and D(k, ·) being inverse of one another, we can swap roles without loss
of generality and get compilers for the decryption procedure. We will precisely
do this in Sect. 7.

Note again that [Ek] differs in nature from E(k, ·). E(k, ·) is a mapping from
M to C, whereas [Ek] is a word in some programming language (the details of
which we want to keep away from) and has to fulfill some semantic consistency
rules. Viewed as a binary string, it has a certain bitsize size ([Ek]) ∈ N. Even
though E(k, ·) is deterministic, nothing forbids [Ek] to collect extra bits from a
random tape and behave probabilistically. For an input m ∈ M and random tape
ρ ∈ {0, 1}∈, [Ek](m, ρ) takes a certain time time ([Ek](m, ρ)) ∈ N to complete
execution.

3.1 Attack Models

The first step in specifying new security notions for white-box cryptography is
to classify the threats. This section introduces four distinct attack models for

White-Box Security Notions for Symmetric Encryption Schemes 251

an adversary A in the white-box model: the chosen plaintext attack (CPA), the
chosen ciphertext attack (CCA), the recompilation attack (RCA) and the chosen
ciphertext and recompilation attack (CCA+RCA). In all of these, we assume that
the compiler CE is public, i.e. at any point in time, the adversary A can select
any key k ∈ K and nonce r ∈ R of her choosing and generate a white-box
implementation [Er

k] = CE(k, r) by herself.
In a chosen plaintext attack (CPA) the adversary can encrypt plaintexts of her

choice under E(k, ·). Indeed, even though the encryption scheme E is a symmetric
primitive, the attacks are defined with respect to the compiler that generates
white-box programs implementing E(k, ·): given any one of these programs, the
adversary can always evaluate it on arbitrary plaintexts at will. So clearly, chosen
plaintexts attacks cannot be avoided, very much like in the public-key encryption
setting.

In a chosen ciphertext attack (CCA), in addition to the challenge white-box
implementation [Er

k], we give A access to a decryption oracle D(k, ·), i.e. she can
send decryption queries c1, . . . , cq ∈ C adaptively to the oracle and be returned
the corresponding plaintexts m1, . . . ,mq ∈ M where mi = D(k, ci). Notice that
this attack includes the CPA attack when q = 0.

In a recompilation attack (RCA), in addition to the challenge white-box imple-
mentation [Er

k], we give A access to a recompiling oracle CE(k,R) that gener-
ates other programs [Er∪

k] with key k for adversarially unknown random nonces
r∗ $∞ R. In other words, we give A the ability to observe other programs compiled
with the same key and different nonces.

In a chosen ciphertext and recompilation attack (CCA+RCA) we give A (the
challenge white-box implementation [Er

k] and) simultaneous access to a decryp-
tion oracle D(k, ·) and a recompiling oracle CE(k,R), both parametrized with
the same key k.

Remark 2. We emphasize that the recompilation attack model is not artifi-
cial when dealing with white-box cryptography. Indeed, it seems reasonable to
assume that user-related values can be embedded in the random nonce r ∈ R
used to compile a (user-specific) white-box implementation. Thus a coalition of
malicious users can be modeled as a single adversary with (possibly limited)
access to a recompiling oracle producing white-box implementations under fresh
random nonces r∗ ∈ R.

3.2 The Prime Goal: Unbreakability

Chow et al. stated in [10,11] that the first security objective of white-box cryp-
tography is, given a program [Ek], to preserve the privacy of the key k embedded
in the program (see also [17, Q1] and [30, Definition 2]). We define the following
game to capture that intuition:

1. randomly generate a key k ∞ K() and a nonce r
$∞ R,

2. the adversary A is run on input [Er
k] = CE(k, r),

3. A returns a guess k̂ ∈ K,
4. A succeeds if k̂ = k.

252 C. Delerablée et al.

Notice that at Step 2, the adversary may have access to the decryption oracle
D(k, ·) or to the recompiling oracle CE(k,R), or both, depending on the attack
model.

Let us define more concisely and precisely the notion of unbreakability with
respect to the attack model ATK (CPA, CCA, RCA or CCA+RCA).

Definition 1 (Unbreakability). Let E be a symmetric encryption scheme as
above, CE a white-box compiler for E and let A be an adversary. For ATK ∈
{CPA,CCA,RCA,CCA + RCA}, we define

SuccUBK−ATK
A,CE

def
= Pr

[
k ∈ K() ; r

$∈ R ; [Er
k] = CE(k, r) ; k̂ ∈ AO([Er

k]) : k̂ = k
]

where
O(·) = λ if ATK = CPA
O(·) = D(k, ·) if ATK = CCA
O(·) = CE(k,R) if ATK = RCA
O(·) = {D(k, ·),CE(k,R)} if ATK = CCA + RCA .

We say that CE is (η, Φ)-secure in the sense of UBK-ATK if for any adversary
A running in time at most η , SuccUBK−ATK

A,CE ≤ Φ.

Note that in our setting, a total break requires the adversary to output the
whole key k embedded into [Er

k]. Basing UBK on the semantic security of k

makes no sense here since it is straightforward to ascertain, for some guess k̂,
that k̂ = k by just checking whether the value returned by [Er

k](m) is equal to
E(k̂,m) for sufficiently many plaintext(s) m ∈ M. In other words, the distri-
butions {k, [Er

k]}k∅K,r∅R and {k∗, [Er
k]}(k,k∪)∅K2,r∅R are computationally distin-

guishable. As a result, one cannot prevent some information leakage about k
from [Er

k], whatever the specification of the compiler CE .

Remark 3. Although not required in the above definition, for a white-box com-
piler to be cryptographically sound, one would require that there exist some
security parameter α such that Φ/η be exponentially small in α and size ([Ek])
and time ([Ek](·)) be polynomial in α. Otherwise said, one aims to get a negligible
Φ/η while keeping fair size ([Ek]) and time ([Ek](·)).

3.3 Security Notions Really Needed in Applications

When satisfied, unbreakability ensures that an adversary cannot extract the
secret key of a randomly generated white-box implementation. Therefore any
party should have to execute the program rather than simulating it with the
secret key. While this property is the very least that can be expected from white-
box cryptography, it is rather useless on its own. Indeed, knowing the white-box
program amounts to knowing the key in some sense since it allows one to process
the encryption without restriction. As discussed in [30, Sect. 3.1.3], an attacker
only needs to isolate the cryptographic code in the implementation. This is a

White-Box Security Notions for Symmetric Encryption Schemes 253

common threat in DRM applications, which is known as code lifting. Although
some countermeasures can make code lifting a tedious task it is reasonable to
assume that sooner or later a motivated attacker would eventually recover the
cryptographic code. That is why, in order to make the white-box compilation
useful, the availability of the white-box program should restrict the adversary
capabilities compared to the availability of the secret key.

One-Wayness. A natural restriction is that although the white-box implemen-
tation allows one to encrypt at will, it should not enable decryption. In other
words, it should be difficult to invert the program computations. In that case,
the program is said to be one-way, to keep consistency with the notion of one-
wayness (for a function or a cryptosystem) traditionally used in cryptography.
As already noted in [17], a white-box compiler achieving one-wayness is of great
interest as it turns a symmetric encryption scheme into a public-key encryption
scheme. This is also one of the many motivations to design methods for general
obfuscation [1,14].

Incompressibility of Programs. Another argument often heard in favor of
white-box cryptography is that a white-box program is less convenient to store
and exchange than a mere secret key due to its bigger size. As formulated in
[30, Sect. 3.1.3], white-box cryptography allows to “hide a key in an even bigger
key”. For instance, Chow et al. implementation of AES [11] makes use of 800
KB of look-up tables, which represents a significant overhead compared to a
128-bit key. Suppose this implementation was unbreakable in the sense of Def-
inition 1 (which we know to be false [3]), the question that would arise would
be: what is the computationally achievable minimum size of a program function-
ally equivalent to this implementation? When a program is hard to compress
beyond a certain prescribed size, we shall say that this program is incompress-
ible. Section 6 shows an example of computationally incompressible programs for
symmetric encryption.

Traceability of Programs. It is often heard that white-box compilation can
provide traceability (see for instance [30, Sect. 5.5.1]). Specifically, white-box
compilation should enable one to derive several functionally equivalent versions
of the same encryption (or decryption) program. A typical use case for such a
system is the distribution of protected digital content where every legitimate
user gets a different version of some decryption software. If a malicious user
shares its own program (e.g. over the Internet), then one can trace the so-called
traitor by identifying its unique copy of the program. However, in a white-box
context, a user can easily transform its version of the program while keeping
the same functionality. Therefore to be effective, the tracing should be robust
to such transformations, even in the case where several malicious users collude
to produce an untraceable software. We show in Sect. 7 how to achieve such a
robust tracing from a compiler that can hide functional perturbations in a white-
box program. Accordingly, we define new security notions for such a white-box

254 C. Delerablée et al.

compiler. Combined with our tracing scheme, a compiler achieving these security
notions is shown to provide traceable white-box programs.

4 One-Wayness

An adversarial goal of interest in white-box cryptography consists, given a white-
box implementation [Er

k], in recovering the plaintext of a given ciphertext with
respect to the embedded key k. This security notion is even essential when
white-box implementations are deployed as an asymmetric primitive [17, Q4].
We define the following security game to capture that intuition:

1. randomly select a key k ∞ K() and a nonce r
$∞ R,

2. generate the white box program [Er
k] = CE(k, r),

3. randomly select a plaintext m
$∞ M

4. compute its encryption c = E(k,m),
5. the adversary A is run on inputs [Er

k] and c,
6. A returns a guess m̂,
7. A succeeds if m̂ = m.

Notice that at Step 5, the adversary may have access to the decryption oracle
D(k, ·) or to the recompiling oracle CE(k,R) (or both) depending on the attack
model. When A is given access to the decryption oracle, the challenge ciphertext
c itself shall be rejected by the oracle.

Let us define more precisely the notion of one-wayness with respect to the
attack model ATK.

Definition 2 (One-Wayness). Let E be a symmetric encryption scheme as
above, CE a white-box compiler for E and A an adversary. For ATK ∈ {CPA,CCA,
RCA,CCA + RCA}, let

SuccOW−ATK
A,CE

def= Pr
[

k ∞ K() ; r
$∞ R ; [Er

k] = CE(k, r) ;
m

$∞ M ; c = E(k,m) ; m̂ ∞ AO([Er
k], c)

: m̂ = m

]

where
O(·) = λ if ATK = CPA
O(·) = D(k, ·) if ATK = CCA
O(·) = CE(k,R) if ATK = RCA
O(·) = {D(k, ·),CE(k,R)} if ATK = CCA + RCA .

We say that CE is (η, Φ)-secure in the sense of OW-ATK if A running in time
at most η implies SuccOW−ATK

A,CE ≤ Φ.

Similarly to the unbreakability notion, it is obvious that any incorrect guess
m̂ on m can be rejected by comparing the value returned by [Er

k](m̂) with c. In
other words, the two distributions

{[Er
k], E(k,m),m}k∅K,r∅R,m∅M and {[Er

k], E(k,m),m∗}k∅K,r∅R,m,m∪∅M

White-Box Security Notions for Symmetric Encryption Schemes 255

are easily distinguishable. Moreover, there is an easy reduction from OW-ATK
to UBK-ATK. Clearly, extracting k from [Ek] enables one to use it and the
challenge as inputs to the (publicly available) decryption function D(·, ·) and
thus to recover m.

5 Incompressibility of White-Box Programs

In this section, we formalize the notion of incompressibility for a white-box com-
piler. What we mean by incompressibility here is the hardness, given a (large)
compiled program [Ek], of coming up with a significantly smaller program func-
tionally close to E(k, ·). A typical example is when a content provider distributes
a large encryption program (e.g. 100 GB or more) and wants to make sure that
no smaller yet equivalent program can be redistributed by subscribers to illegit-
imate third parties. The content provider cannot prevent the original program
from being shared e.g. over the Internet; however, if compiled programs are
provably incompressible then redistribution may be somewhat discouraged by
the size of transmissions.

We define (α, φ)-INC as the adversarial goal that consists, given a compiled
program [Ek] with size ([Ek]) → α, in building a smaller program P that remains
satisfactorily functional, i.e. such that

size (P) < α and P ∈ φ-prog (E(k, ·)) .

This is formalized by the following game:

1. randomly select k ∞ K() and r
$∞ R,

2. compile [Er
k] = CE(k, r),

3. run A on input [Er
k],

4. A returns some program P ,
5. A succeeds if ψ(P,E(k, ·)) ≤ φ and size (P) < α.

Definition 3 ((α, φ)-Incompressibility). Let E be a symmetric encryption
scheme, CE a white-box compiler for E and A an adversary. For ATK ∈ {CPA,
CCA,RCA,CCA + RCA}, let

Adv
(λ,δ)−INC−ATK
A,CE

def
= Pr

⎡

⎣
k ∈ K() ; r

$∈ R ;
[Er

k] = CE(k, r) ;
P ∈ AO([Er

k])

: (Δ(P, E(k, ·) ← δ) ∪ (size (P) < λ)

⎤

⎦

where
O(·) = λ if ATK = CPA
O(·) = D(k, ·) if ATK = CCA
O(·) = CE(k,R) if ATK = RCA
O(·) = {D(k, ·),CE(k,R)} if ATK = CCA + RCA .

We say that CE is (η, Φ)-secure in the sense of (α, φ)-INC-ATK if having A run-
ning in time at most η implies that Adv(λ,δ)−INC−ATK

A,CE ≤ Φ.

256 C. Delerablée et al.

Notice that for some values of α and φ, the (α, φ)-incompressibility may be
trivially broken. For example, the problem is trivial for φ = 1 as the user can
always construct any program smaller than α bits with outputs unrelated to
E(k, ·). Even though the definition allows any φ ∈ [0, 1], the notion makes more
sense (and surely is harder to break) when φ is taken small enough. In that
case, the adversary has to output a program which correctly encrypts nearly all
plaintexts (or at least a significant fraction).

It seems natural to hope that a reduction exists from INC-ATK to UBK-ATK:
intuitively, extracting k from [Ek] enables one to build a small program that
implements E(k, ·). Let α(k) be the size of that program; it is easily seen that
α(k) is lower-bounded by

α0 = H(k) + size (PE)

where H(k) is the average number of bits needed to represent the key k and PE

the smallest known program that implements the generic encryption function
E(·, ·) that takes k,m as inputs and returns E(k,m). When α0 ≤ α, a total
break (i.e. recovering the key k) will allow to break (α, 0)-incompressibility by
outputting a program P composed of PE and a string representing k, which will
be of size at most α0 (≤ α).

On the other hand, denoting

α+ = sup
k∅K,r∅R

size ([Er
k]) and α− = inf

k∅K,r∅R
size ([Er

k]) ,

we also see that when α ≡ α+, the challenge program [Er
k] given to A already

satisfies the conditions of a satisfactorily compressed program and A may then
return P = [Er

k] as a solution. (α, φ)-INC is therefore trivial to break in that case.
However, (α, φ)-incompressibility for α ≤ α− may not be trivial to break. To con-
clude, the (α, φ)-incompressibility notion makes sense in practice for parameters
α ∈ (α0, α

−) and φ close to 0.

6 A Provably One-Way and Incompressible White-Box
Compiler

In this section, we give an example of a symmetric encryption scheme for which
there exists a efficient one-way and incompressible white-box compiler. This
example is a symmetric-key variant of the RSA cryptosystem [27]. The one-
wayness and incompressibility properties of the compiler are provably achieved
based on standard hardness assumptions related to the integer factoring problem.

One-Way Compilers from Public-Key Encryption. It is worthwhile notic-
ing that any one-way public-key encryption scheme straightforwardly gives rise
to a symmetric encryption scheme for which a one-way compiler exists. The sym-
metric key is defined as the secret key of the asymmetric encryption scheme and
encryption is defined as the function deriving the public key from the secret key

White-Box Security Notions for Symmetric Encryption Schemes 257

composed with the encryption procedure. The white-box compiler then simply
produces a program evaluating the encryption algorithm with the public key
embedded in it. The one-wayness of the compiler comes directly from the one-
wayness of the asymmetric scheme. Such an example of a one-way compiler is
given in [29, Theorem 3],[30, Sect. 4.8.2].

We present hereafter another compiler obtained from the RSA cryptosystem
and whose one-wayness straightforwardly holds by construction. The main inter-
est of our example is to further satisfy (α, 0)-incompressibility for any arbitrary
α. We first recall some background on RSA groups.

6.1 RSA Groups

We consider a (multiplicative) group G of unknown order ξ, also called an RSA
group. A typical construction for G is to take the group of invertible integers
modulo a composite number or a carefully chosen elliptic curve over a ring.
Practical RSA groups are known to be efficiently samplable in the sense that
there exists a group generation algorithm G which, given a security parameter
n ∈ N, outputs the public description desc (G) of a random group G together
with its order ξ. Efficient means that the random selection

(desc (G) , ξ) ∞ G(1n)

takes time polynomial in n. The parameter n determine the size of the returned
order (i.e. |ξ| = n) and hence tunes the hardness of breaking the group. For
security reasons, we require the returned order ξ to have a low smoothness.
More specifically, we require that it satisfy τ(ξ) ≡ 1

3ξ, where τ denotes the
Euler’s totient function.2 The group descriptor desc (G) intends to contain all the
necessary parameters for performing group operations. Obviously ξ is excluded
from the group description.

In the following, we shall make the usual hardness assumptions for RSA
group generators. Namely, we assume that the groups sampled by G have the
following properties (formal definitions for these security notions are provided
in the full version of this paper [12]):

Unbreakability – UBK[G]:
It is hard to compute the secret order ξ of G from desc (G).

Hardness of Extracting Orders – ORD[G]:
It is hard to compute the order of a random group element x

$∞ G (or a
multiple thereof) from desc (G).

Hardness of Extracting Roots – RSA[G]:
For a random integer e ∈ [0, ξ) such that gcd(e, ξ) = 1, it is hard to compute
the e-th root of a random group element x ∈ G from e and desc (G).

2 In practice, it is well known how to generate such groups. For instance, the multi-
plicative group Z

∼
pq with p and q being safe primes has order ω = (p− 1)(q − 1) with

ϕ(ω) ⊕ 1
2
ω.

258 C. Delerablée et al.

6.2 The White-Box Compiler

We consider the symmetric encryption scheme E = (K,M,C,K,E,D) where:

1. E makes use of a security parameter n ∈ N,
2. K() randomly selects a group (desc (G) , ξ) ∞ G(1n) and a public exponent

e ∈ [0, ξ) such that gcd(e, ξ) = 1, and returns k = (desc (G) , ξ, e),
3. plaintexts and ciphertexts are group elements i.e. M = C = G,
4. given a key k = (desc (G) , ξ, e) and a plaintext m ∈ G, E(k,m) computes

me mod ω in the group and returns that value,
5. given a key k = (desc (G) , ξ, e) and a ciphertext c ∈ G, D(k, c) computes

c
1
e mod ω in the group and returns that value.

It is clear that D(k,E(k,m)) = m for any k ∈ K and m ∈ M. Our white-box
compiler CE is then defined as follows:

1. CE makes use of an additional security parameter h ∈ N,
2. the randomness space R is the integer set [0, 2h/ξ),
3. we define the blinded exponent f with respect to the public exponent e and a

random nonce r ∈ R as the integer f = e + r · ξ,
4. given a key k = (desc (G) , ξ, e) ∈ K, and a random nonce r ∈ R, our white-

box compiler CE generates a program [Ek] which simply embeds desc (G) and
f and computes mf for any input m ∈ G.

According to the above definition, we clearly have that the white-box program
[Ek] is a functional program with respect to the encryption function E(k, ·).
Moreover, we state (see proof in the full version [12]):

Theorem 1. The white-box compiler CE is UBK-CPA secure under the assump-
tion that UBK[G] is hard, and OW-CPA secure under the assumption that RSA[G]
is hard.

6.3 Proving Incompressibility Under Chosen Plaintext Attacks

We now show that CE is (α, 0)-INC-CPA secure under UBK[G] as long as the secu-
rity parameter h is slightly greater than α. We actually show a slightly weaker
result: our reduction assumes that the program P output by the adversary is
algebraic. An algebraic program P (see [5,26]) with respect to group G has the
property that each and every group element y ∈ G output by P is computed as
a linear combination of all the group elements x1, . . . , xt that were given to P
as input in the same execution. Relying on the definition of [26], P must then
admit an efficient extractor Extract (running in time ηEx) which, given the code
of P as well as all its inputs and random tape for some execution, returns the
coefficients ϕi such that y = xα1

1 · · · xαt
t .

Theorem 2. For every h > α + log2(3), the compiler CE is (ηA, ΦA)-secure in
the sense of (α, 0)-INC-CPA under the assumption that ORD[G] is (η, Φ)-hard,
with

ηA = η − ηEx and ΦA <
3

1 − 3 · 2λ−h
Φ .

White-Box Security Notions for Symmetric Encryption Schemes 259

The proof of Theorem 2 is provided in the full version of the paper [12].

Remark 4. The white-box compiler can also be shown to be (α, 0)-INC-CCA
secure under the (gap) assumption that ORD[G] remains hard when RSA[G]
is easy. The reduction would work similarly but with an oracle solving RSA[G]
that it would use to simulate decryption queries.

7 Traceability of White-Box Programs

One of the main applications of white-box cryptography is the secure distrib-
ution of valuable content through applications enforcing digital rights manage-
ment (DRM). Namely, some digital content is distributed in encrypted form to
legitimate users. A service user may then recover the content in clear using her
own private white-box-secure decryption software.

However, by sharing their decryption software, users may collude and try
to produce a pirate decryption software i.e. a non-registered utility capable of
decrypting premium content. Traitor tracing schemes [4,8,9,25] were specifically
designed to fight copyright infringement, by enabling a designated authority to
recover the identity of at least one of the traitors in the malicious coalition who
constructed the rogue decryption software. In this section, we show how to apply
some of these techniques to ensure the full traceability of programs assuming that
slight perturbations of the programs functionality by the white-box compiler can
remain hidden to an adversary.

As opposed to previous sections, we interchange the roles of encryption and
decryption, considering that for our purpose, user programs would implement
decryption rather than encryption.

7.1 Programs with Hidden Perturbations

A program can be made traceable by unnoticeably modifying its functionality.
The basic idea is to perturbate the program such that it returns an incorrect
output for a small set of unknown inputs (which remains a negligible fraction
of the input domain). The set of so-called tracing inputs varies according to the
identity of end users so that running the decryption program over inputs from
different sets and checking the returned outputs efficiently reveals the identity
of a traitor. We consider tracing schemes that follow this approach to make
programs traceable in the presence of pirate coalitions. Of course, one must
consider collusions of several users aiming to produce an untraceable program
from their own legitimate programs. A tracing scheme that resists such collusions
is said to be collusion-resistant.

In the context of deterministic symmetric encryption schemes, one can gener-
ically describe functional perturbations with the following formalism. Consider
a symmetric encryption scheme E = (K,M,C,K,E,D) under the definition
of Sect. 2. A white-box compiler CE with respect to E that supports pertur-
bation takes as additional input an ordered list of dysfunctional ciphertexts
c = ∼c1, . . . , cu∩ ∈ Cu and returns a program

260 C. Delerablée et al.

[Dr
k,c] = CE(k, r; c)

such that [Dr
k,c](c) = D(k, c) for any c ∈ C\c and for i ∈ [1, u], [Dr

k,c](ci) returns
some incorrect plaintext randomly chosen at compilation. We will say that CE
hides functional perturbations when, given a program instance P = [Dr

k,c], an
adversary cannot extract enough information about the dysfunctional input-
output pairs to be able to correct P back to its original functionality. It is shown
later that perturbated programs can be made traceable assuming that it is hard
to recover the correct output of dysfunctional inputs. This is formalized by the
following game:

1. randomly select k ∞ K(), m
$∞ M and r

$∞ R,
2. compile [Dr

k,⊆c⊥] = CE(k, r; ∼c∩) with c = E(k,m),
3. run A on input (c, [Dr

k,⊆c⊥]),
4. A return some message m̂,
5. A succeeds if m̂ = m.

Definition 4 (Perturbation-Value Hiding). Let E be a symmetric encryp-
tion scheme, CE a white-box compiler for E that supports perturbations, and let
A be an adversary. Let

SuccPVHA,CE
def= Pr

k ∞ K() ; m
$∞ M ; c = E(k,m) ;

r
$∞ R ; [Dr

k,⊆c⊥] = CE(k, r; ∼c∩) ;
m̂ ∞ AO(c, [Dr

k,⊆c⊥])
: m̂ = m

⎧
⎨ .

where O is a recompiling oracle O(·) def= CE(k,R; ∼c, ·∩) that takes as input a list
of dysfunctional inputs containing c and returns a perturbated program accord-
ingly, under adversarially unknown randomness. The white-box compiler CE is
said (η, Φ)-secure in the sense of PVH if A running in time at most η implies
SuccPVHA,CE ≤ Φ.

A second security notion that we will make use of for our tracing construction
relates to the intuition that all perturbations should be equally hidden by the
white-box compiler. Namely, it should not matter in which order the dysfunc-
tional inputs are given to the compiler: they should all appear equally hard to
recover to an adversary. When this property is realized, we say that the compiler
achieves perturbation-index hiding. We formalize this notion with the following
game, where n > 1 and v ∈ [1, n − 1] are fixed parameters:

1. randomly select k ∞ K(),
2. for i ∈ [1, n], randomly select mi

$∞ M and set ci = E(k,mi),
3. for i ∈ [1, n] with i √= v, randomly select ri

$∞ R and generate Pi =
CE(k, ri; ∼c1, . . . , ci∩),

4. randomly pick b
$∞ {0, 1},

5. run A on inputs P1, . . . , Pv−1, Pv+1, . . . , Pn and (mv+b, cv+b),
6. A returns a guess b̂ and succeeds if b̂ = b.

White-Box Security Notions for Symmetric Encryption Schemes 261

Definition 5 (Perturbation-Index Hiding). Let E be a symmetric encryp-
tion scheme, CE a white-box compiler for E that supports perturbations, and let
A be an adversary. Let

AdvPIHA,CE
def=

∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣

k ← K() ; mi
$← M ; ci = E(k,mi) for i ∈ [1, n]

ri
$← R ; Pi = CE (k, ri; 〈c1, . . . , ci〉) for i ∈ [1, n], i �= v

b
$← {0, 1} ; b̂ ← A({Pi}i∈=v ,mv+b, cv+b)

: b̂ = b

⎤

⎥
⎦− 1

2

∣
∣
∣
∣
∣
∣
∣

.

The white-box compiler CE is said to be (η, Φ)-secure in the sense of PIH if A
running in time at most η implies AdvPIHA,CE ≤ Φ.

Note that in a PIH-secure white-box compiler, all entries in the list of its
dysfunctional inputs can be permuted with no (non-negligible) impact on the
security of the compiler.

7.2 A Generic Tracing Scheme

We now give an example of a tracing scheme T for programs generated by a
white-box compiler CE that supports hidden perturbations. We formally prove
that the identification of at least one traitor is computationally enforced assum-
ing that CE is secure in the sense of PVH and PIH, independently of the total
number n of issued programs. Under these assumptions, T therefore resists col-
lusions of up to n users i.e. is maximally secure. As usual in traitor-tracing
schemes, T is composed of a setup algorithm T .setup and a tracing algorithm
T .trace. These algorithms are defined as follows.

Setup Algorithm. A random key k
$∞ K() is generated as well as n random

input-output pairs (mi, ci) where mi
$∞ M and ci = E(k,mi) for i ∈ [1, n].

T keeps perturbations = ((m1, c1), . . . , (mn, cn)) as private information for later
tracing. For i ∈ [1, n], user i is (securely) given the i-perturbated program Pi =
CE(k, ri; ∼c1, . . . , ci∩) where ri

$∞ R. It is easily seen that all Pi’s correctly decrypt
any c √∈ {ci, i ∈ [1, n]}. However when c = ci, user programs Pi, . . . , Pn return
junk while P1, . . . , Pi−1 remain functional. Therefore T implements a private
linear broadcast encryption (PLBE) scheme in the sense of [4].

Tracing Algorithm. Given a rogue decryption program Q constructed from
a set of user programs {Pj | j ∈ T ⊆ [1, n]}, T .trace uses its knowledge of
k and perturbations to identify a traitor j ∈ T in O(log n) evaluations of Q
as follows. Since Q is just a program and is therefore stateless, the general
tracing techniques of [4,25] are applicable. T .trace makes use of two probability
estimators as subroutines:

1. a probability estimator ⎩p0 which intends to measure the actual probability

p0 = Pr
⎤
m

$∞ M ; c = E(k,m) : Q(c) = m
⎥

262 C. Delerablée et al.

1. evaluate p̂0 and p̂n
2. set a = 0 and b = n
3. while a ◦= b − 1

3.1. set v = ⊆(a + b)/2√
3.2. evaluate p̂v
3.3. if |p̂v − p̂a| > |p̂v − p̂b| then set b = v else set a = v

4. return b as the identified traitor.

Fig. 1. Dichotomic search implemented by T .trace

when all calls Q makes to an external random source are fed with a perfect
source. Since the pirate decryption program is assumed to be fully or almost
fully functional, p0 must be significantly close to 1. It is classical to require
from Q that p0 ≡ 1/2.

2. a probability estimator ⎩pv which, given v ∈ [1, n], estimates the actual prob-
ability

pv = Pr [Q(cv) = mv]

where Q is run over a perfect random source again.

To estimate pv for v ∈ [0, n], Q is executed β times (on fresh random tapes),
where β is an accuracy parameter. Then, one counts how many times, say θ, the
returned output is as expected and ⎩pv is set to θ/β. Finally, T .trace implements
a dichotomic search as shown on Fig. 1.

We state (see proof in the full version [12]):

Theorem 3. Assume CE is secure in the sense of both PVH and PIH. Then
for any subset of traitors T ⊆ [1, n], T .trace correctly returns a traitor j ∈ T
with overwhelming probability after O(log n) executions of the pirate decryption
program Q.

This result validates the folklore intuition according to which cryptographic
programs can be made efficiently traceable when properly obfuscated and assum-
ing that slight alterations can be securely inserted in them. It also identifies
clearly which sufficient security properties must be fulfilled by the white-box
compiler to achieve traceability even when all users collude i.e., in the context
of total piracy.

Acknowledgements. This work has been financially supported by the French
national FUI12 project MARSHAL+. The authors would like to thank Jean-Sébastien
Coron and Louis Goubin for interesting discussions and suggestions.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

White-Box Security Notions for Symmetric Encryption Schemes 263

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white Box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2005)

4. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

5. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998)

6. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.org/

7. Chandran, N., Chase, M., Vaikuntanathan, V.: Functional re-encryption and
collusion-resistant obfuscation. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 404–421. Springer, Heidelberg (2012)

8. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

9. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Trans. Inf. Theory
46(3), 893–910 (2000)

10. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A White-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003)

11. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: White-box cryptography and
an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol.
2595, pp. 250–270. Springer, Heidelberg (2003)

12. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. Cryptology ePrint Archive (2013). http://eprint.
iacr.org/

13. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box des imple-
mentations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876,
pp. 278–295. Springer, Berlin Heidelberg (2007)

14. Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes.
J. Cryptol. 23(1), 121–168 (2010)

15. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfus-
cating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–
252. Springer, Heidelberg (2007)

16. Jacob, M., Boneh, D., Felten, E.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003)

17. Joye, M.: On white-box cryptography. In: Preneel, B., Elçi, A., Ors, S.B. (eds.)
Security of Information and Networks, pp. 7–12. Trafford Publishing (2008)

18. Joye, M.: Basics of side-channel analysis. In: Koç, C.K. (ed.) Cryptographic Engi-
neering, pp. 365–380. Springer, New York (2009)

19. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg
(2011)

20. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two Attacks on
a White-Box AES Implementation. In: Lange, T., Lauter, K., Lisonek, P. (eds.)
SAC 2013. LNCS. Springer (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

264 C. Delerablée et al.

21. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box DES. In: ITCC 2005, vol. 1, pp. 679–684 (2005)

22. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009)

23. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the xiao - lai white-box
aes implementation. In: Knudsen, L.R., Huapeng, W. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013)

24. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010)

25. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

26. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

27. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

28. Rohatgi, P.: Improved techniques for side-channel analysis. In: Kçc, C.K. (ed.)
Cryptographic Engineering, pp. 381–406. Springer, New York (2009)

29. Saxena, A., Wyseur, B., Preneel, B.: Towards security notions for white-box cryp-
tography. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC
2009. LNCS, vol. 5735, pp. 49–58. Springer, Heidelberg (2009)

30. Wyseur, B.: White-box cryptography. Ph.D. thesis, Katholieke Universiteit Leuven
(2009)

31. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
des implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4896, pp. 264–277. Springer, Heidelberg
(2007)

32. Wyseur, B., Preneel, B.: Condensed white-box implementations. In: Proceedings
of the 26th Symposium on Information Theory in the Benelux, pp. 296–301 (2005)

33. Yaying, X., Xuejia, X.: A secure implementation of white-box AES. In: CSA 2009,
pp.1–6 (2009)

Two Attacks on a White-Box AES
Implementation

Tancrède Lepoint1,2, Matthieu Rivain1, Yoni De Mulder3(B),
Peter Roelse4, and Bart Preneel3

1 CryptoExperts, Paris, France
{tancrede.lepoint,matthieu.rivain}@cryptoexperts.com

2 École Normale Supérieure, Paris, France
3 KU Leuven and iMinds, Heverlee, Belgium

{yoni.demulder,bart.preneel}@esat.kuleuven.be
4 Irdeto B.V., Hoofddorp, The Netherlands

peter.roelse@irdeto.com

Abstract. White-box cryptography aims to protect the secret key of a
cipher in an environment in which an adversary has full access to the
implementation of the cipher and its execution environment. In 2002,
Chow, Eisen, Johnson and van Oorschot proposed a white-box imple-
mentation of AES. In 2004, Billet, Gilbert and Ech-Chatbi presented an
efficient attack (referred to as the BGE attack) on this implementation,
extracts extracting its embedded AES key with a work factor of 230. In
2012, Tolhuizen presented an improvement of the most time-consuming
phase of the BGE attack. The present paper includes three contribu-
tions. First we describe several improvements of the BGE attack. We
show that the overall work factor of the BGE attack is reduced to 222

when all improvements are implemented. This paper also presents a new
attack on the initial white-box implementation of Chow et al. This attack
exploits collisions occurring on internal variables of the implementation
and it achieves a work factor of 222. Eventually, we address the white-
box AES implementation presented by Karroumi in 2010 which aims to
withstand the BGE attack. We show that the implementations of Kar-
roumi and Chow et al. are the same, making them both vulnerable to
the same attacks.

Keywords: White-box cryptography · AES implementation · Dual
cipher · Cryptanalysis

1 Introduction

In 2002, Chow et al. introduced the concept of white-box cryptography by pre-
senting a white-box implementation of AES [5]. White-box cryptography aims to

The present paper is a merged abstract of two independent but overlapping works: a
paper by De Mulder, Roelse and Preneel [11] and a paper by Lepoint and Rivain [7].

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 265–285, 2014.
DOI: 10.1007/978-3-662-43414-7 14, c∞ Springer-Verlag Berlin Heidelberg 2014

266 T. Lepoint et al.

protect the confidentiality of the secret key of a cipher in a white-box model, i.e.,
where an adversary is assumed to have full access to the implementation of the
cipher and its execution environment. For example, in a white-box context the
adversary can use tools such as decompilers and debuggers to reverse engineer
the implementation of the cipher, and to read and alter values of intermediate
results of the cipher during its execution. A typical example of an application
in which a cipher is implemented in a white-box environment is a content pro-
tection system in which a client is executed on the main processor of a PC, a
tablet, a mobile device, or a set-top box.

In 2004, Billet et al. [3] presented an attack on the white-box AES implemen-
tation of Chow et al.. The BGE attack assumes that the order of the bytes of the
intermediate AES results is randomized in the white-box implementation, and
extracts its embedded AES key with a work factor of 230. In 2012, Tolhuizen [12]
proposed an improvement to the most time-consuming phase of the BGE attack,
reducing the work factor of this phase to 219. If the improvement of Tolhuizen
is implemented, then the work factor of the BGE attack is dominated by the
other phases of the BGE attack, and equals 229. This paper presents several
improvements to the other phases of the BGE attack, and shows that the work
factor of the BGE attack is reduced to 222 when Tolhuizen’s improvement and
the improvements presented in this paper are implemented.

This paper also presents a new attack on the white-box implementation of
Chow et al. The key idea is to exploit collisions in output of the first round in
order to construct sparse linear systems. Solving these systems then reveals the
byte encodings and secret key byte(s) involved in some target look-up tables.
Applied to the original scheme, we get an attack of complexity 222.

The BGE attack triggered the design of new white-box AES implementations,
such as the ones proposed by Xiao and Lai in 2009 [13] and by Karroumi in
2010 [6]. In [10], De Mulder, Roelse and Preneel presented a cryptanalysis of Xiao
and Lai’s white-box AES implementation, showing that this implementation is
insecure.

In [6], Karroumi uses the concept of dual ciphers [1,2,4] and the white-
box techniques of Chow et al. to design a new white-box AES implementation.
In [6], Karroumi argues that the additional secrecy introduced by the dual cipher
increases the work factor of the BGE attack to 293. This paper shows that the
white-box AES implementations of Chow et al. and Karroumi are the same. As a
direct consequence, Karroumi’s white-box AES implementation is vulnerable to
the same attacks, including the original BGE attack and the attacks presented
in this paper.

Paper organization. Section 2 describes aspects of AES, the white-box AES
implementation of Chow et al., and the BGE attack that are relevant to this
paper. The improvements of the BGE attack and their work factor are pre-
sented in Sect. 3. The new attack based on collisions is presented in Sect. 4. The
insecurity of Karroumi’s scheme is shown in Sect. 5. Finally, concluding remarks
are provided in Sect. 6

Two Attacks on a White-Box AES Implementation 267

2 Preliminaries

2.1 AES

AES [8] is a key-iterated block cipher operating on 16-byte blocks. This paper
assumes throughout and without loss of generality that the AES variant in [8]
with a 128-bit key is used. AES consists of 10 rounds and has 11 round keys which
are derived from the secret key using a key scheduling process. Each AES round
and the operations within a round update a 16-byte state; the initial and final
state are the AES plaintext and ciphertext, respectively. AES can be described
elegantly by interpreting the bytes of the state as elements of the finite field
F256, and by defining AES operations as mappings over this field (see also [8]).
As the final round is not relevant for the discussion in this paper, only the first
9 rounds are considered in the following text. Each round r with 1 ∈ r ∈ 9
comprises four operations:

ShiftRows: a permutation on the indices of the 16 bytes of the state;
AddRoundKey: a byte-wise addition of 16 round key bytes k

(r,j)
i (0 ∈ i, j ∈ 3)

and the 16-byte state;
SubBytes: applies the AES S-box, denoted by S, to every byte of the 16-byte

state;
MixColumns: a linear operation on F16

256. The MixColumns operation is repre-
sented by a 4×4 matrix MC over F256; the linear operation applies 4 instances
of this matrix in parallel to the 16-byte state. The 16 coefficients of MC are
denoted by mcij for 0 ∈ i, j ∈ 3.

In literature, the boundaries between rounds are defined in different ways. In
this paper, ShiftRows and MixColumns are the first and final operations within
a round, respectively. That is, the order of the operations within a round is
identical to the order used to describe the operations above. For details about
AES, refer to [8].

AES Subrounds. The mappings in the following definition will be used to
describe the white-box AES implementations and the attacks on the implemen-
tations. In the following text, the finite field representation as defined in [8]
is referred to as the AES polynomial representation, and ∞ and √ denote the
addition and multiplication operations in this representation, respectively.

Definition 1. Let xi, yi ∈ F256 for 0 ∈ i ∈ 3 be represented using the AES
polynomial representation. The mapping AES(r,j) : F4

256 → F4
256 for 1 ∈ r ∈

9 and 0 ∈ j ∈ 3, called an AES subround, is defined by (y0, y1, y2, y3) =
AES(r,j)(x0, x1, x2, x3) with

yi = mci0 √ S
(
x0 ∞ k

(r,j)
0

) ∞ mci1 √ S
(
x1 ∞ k

(r,j)
1

)∞
mci2 √ S

(
x2 ∞ k

(r,j)
2

) ∞ mci3 √ S
(
x3 ∞ k

(r,j)
3

)
,

for 0 ∈ i ∈ 3.

268 T. Lepoint et al.

Observe that an AES subround consists of the key additions, the S-box opera-
tions and the MixColumns operations in an AES round that are associated with
a single MixColumns matrix operation, and that one AES round comprises four
AES subrounds. The subrounds are indexed by j in Definition 1, and this paper
assumes throughout that the four subrounds in a round are numbered left to
right. The bytes k

(r,j)
i for 0 ∈ i, j ∈ 3 are the 16 bytes of the AES round key of

round r.

2.2 Chow et al.’s White-Box AES Implementation and the BGE
Attack

This section describes aspects of Chow et al.’s white-box AES implementation [5]
and the BGE attack [3] that are relevant to this paper. For an in-depth tutorial
on how Chow et al.’s white-box AES implementation is constructed, refer to [9].

Encoded AES Subrounds. In the following text, P
(r,j)
i and Q

(r,j)
i for 0 ∈

i ∈ 3 denote bijective mappings on the vector space F8
2, referred to as encod-

ings in white-box cryptography. The encodings are generated randomly and are
kept secret in a white-box implementation (for details about encodings, refer
to [5,9]). A vector of four mappings, such as

(
P

(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3

)
or

(
Q

(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3

)
, denotes the mapping defined by applying the i-th

element of the vector to its i-th input byte for 0 ∈ i ∈ 3. For a ∈ Fn
2 the mapping

∞a : Fn
2 → Fn

2 denotes the addition with a. With slight abuse of notation, an
input to AES(r,j) is considered to be an element of F4

256 using the AES poly-
nomial representation in the following definition, and an output of AES(r,j) is
considered to be an element of (F8

2)
4.

Definition 2. The mapping AES
(r,j)
enc : (F8

2)
4 → (F8

2)
4 for 1 ∈ r ∈ 9 and 0 ∈

j ∈ 3, called an encoded AES subround, is defined by

AES(r,j)
enc = (Q(r,j)

0 , Q
(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3) ≡
AES(r,j) ≡ (P (r,j)

0 , P
(r,j)
1 , P

(r,j)
2 , P

(r,j)
3) .

In Chow et al.’s white-box AES implementation, the output encodings
Q

(r−1,j)
i and input encodings P

(r,j)
i for 0 ∈ i, j ∈ 3 of successive AES rounds are

pairwise annihilating to maintain the functionality of AES. The data-flow of the
white-box implementation between successive AES rounds r−1 and r determines
the 16 pairs of output/input encodings which are pairwise annihilating.

Remark 1. Although not explicitly mentioned by Chow et al. [5], one can use
a randomization of the order of the subrounds in an AES round and in the
order of the bytes within each subround to add confusion to the implementation.
This can be implemented without increasing the size and without decreasing the
performance of the white-box implementation. We capture such a randomization

Two Attacks on a White-Box AES Implementation 269

in the next definition of encoded subround where permutations φ
(r,j)
i : (F8

2)
4 →

(F8
2)

4 (i = 1, 2) for 1 ∈ r ∈ 9 and 0 ∈ j ∈ 3 are added to randomize the order of
the input bytes and output bytes of an AES subround. Moreover, permutations
ψ(r) : {0, 1, 2, 3} → {0, 1, 2, 3} for 1 ∈ r ∈ 9 randomize the order of the four AES
subrounds within an AES round. These permutations are randomly chosen and
kept secret in a white-box implementation.

Definition 3. The mapping AES
(r,j)

enc : (F8
2)

4 → (F8
2)

4 for 1 ∈ r ∈ 9 and 0 ∈
j ∈ 3, called an encoded AES subround with byte permutations, is defined by

AES
(r,j)

enc = (Q(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3) ≡
AES

(r,j) ≡ (P (r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3) ,

where the mapping AES
(r,j)

is defined by

φ
(r,j)
2 ≡ AES(r,λ(r)(j)) ≡ φ

(r,j)
1 = MC(r,j) ≡ (S, S, S, S) ≡ ∞

[k̄
(r,j)
i]0∪i∪3

,

with [k̄(r,j)
i]0∈i∈3 = (φ(r,j)

1)−1
(
[k(r,λ(r)(j))

i]0∈i∈3

)

and MC(r,j) = φ
(r,j)
2 ≡ MC ≡ φ

(r,j)
1 .

In [3], Billet et al. described a cryptanalysis of Chow et al.’s white-box AES
implementation [5] with byte permutations and subround permutations. The
starting point of their attack is that for rounds 1 ∈ r ∈ 9, it is possible to
compose certain white-box look-up tables in such a way that an adversary has
access to the encoded AES subrounds of each round.

BGE Attack. As indicated above, the adversary has access to the encoded
AES subrounds AES

(r,j)

enc for 1 ∈ r ∈ 9 and 0 ∈ j ∈ 3. Next, the BGE attack [3]
comprises the following three phases: Phases 1 and 2 retrieve the bytes of the
AES round key associated with round r for some r with 2 ∈ r ∈ 9, and Phase 3
determines the correct order of the round key bytes and extracts the AES key.

Phase 1 retrieves the encodings Q
(r,j)
i (0 ∈ i ∈ 3) up to an affine part for each

encoded AES subround j (0 ∈ j ∈ 3). Because of the pairwise annihilating
property of the encodings between successive rounds, the encodings P

(r,j)
i (0 ∈

i, j ∈ 3) can be retrieved up to an affine part by applying the same technique to
the encoded AES subrounds of the previous round.

Phase 2 assumes that all encodings of an encoded AES round are affine mappings
(as the other parts have been retrieved in Phase 1). Phase 2 first retrieves the
affine encodings Q

(r,j)
i (0 ∈ i ∈ 3) for each encoded AES subround j (0 ∈ j ∈ 3).

During this process, the key-dependent affine mappings P̃
(r,j)
i (x) = P

(r,j)
i (x) ∞

k̄
(r,j)
i (0 ∈ i, j ∈ 3) are obtained as well. As in Phase 1, the affine encodings

P
(r,j)
i (0 ∈ i, j ∈ 3) are retrieved by applying the same technique to the encoded

270 T. Lepoint et al.

AES subrounds of the previous round. This enables the adversary to compute
the round key bytes k̄

(r,j)
i = P̃

(r,j)
i (0) ∞ P

(r,j)
i (0) for 0 ∈ i, j ∈ 3.

Phase 3 retrieves the round key bytes of round r+1 as discussed above in Phases
1 and 2, and uses the fact that the round key bytes of rounds r and r + 1 are
related to each other via both the data-flow of the white-box implementation
and the AES key scheduling algorithm to retrieve the AES round key. Finally,
assuming that the AES variant with a 128-bit key is used, the adversary can
use the property of the AES key scheduling algorithm that the AES key can be
computed if one of the round keys is known.

Work factor of the BGE attack. In [3], the authors claim that the work factor
associated with the three phases of the BGE attack is around 230. As a result,
the white-box AES implementation of Chow et al. is insecure. For detailed infor-
mation about the BGE attack, refer to [3].

3 Reducing the Work Factor of the BGE Attack

In this section, an encoded AES subround is defined as in Definition 3. In 2012,
Tolhuizen [12] presented an improvement of the first phase of the BGE attack.
If the improvement of Tolhuizen is implemented, then the work factor of the
BGE attack is dominated by the second phase. In this section we present several
improvements to the other phases of the BGE attack:

1. A method to reduce the expected work factor of Phase 2 of the BGE attack;
2. An efficient method to retrieve the round key bytes of round r + 1 after the

round key bytes of round r are extracted;
3. An efficient method to determine the correct order of the round key bytes,

given the round key bytes of two consecutive rounds.

As the work factors of Phases 1 and 2 of the BGE attack are reduced by Tol-
huizen’s improvement and the first improvement above, respectively, it is now
important to have an efficient method for Phase 3 of the BGE attack as well, as
otherwise the work factor of this phase could dominate the overall work factor.
The second and third improvements above comprise such a method for Phase 3.
It will be shown that Tolhuizen’s improvement to Phase 1 of the BGE attack and
the above improvements to the other phases reduce the work factor of the BGE
attack to 222. The improved BGE attack comprises the following four (instead
of three) phases:

Phases 1 and 2: Retrieve the Round Key Bytes k̄
(r,j)
i (0 ≤ i, j ≤ 3)

Associated with Round r (2 ≤ r ≤ 8)

The first two phases are the ones of the BGE attack [3] using Tolhuizen’s
improvement, and retrieve the round key bytes k̄

(r,j)
i for 0 ∈ i, j ∈ 3 associ-

ated with round r for some r with 2 ∈ r ∈ 8.

Two Attacks on a White-Box AES Implementation 271

Work factor of Phase 1. Tolhuizen’s improvement [12] reduces the work factor
of Phase 1 to around 2 · 4 · 4 · (35 · 28) < 219. The first three factors (i.e., 2 · 4 · 4)
denote the number of encodings involved in Phase 1, i.e., four encodings for each
of the four subrounds for each of the two consecutive rounds. The fourth factor
(i.e., 35 · 28) denotes the work factor required to retrieve one encoding up to an
affine part using Tolhuizen’s method.

Work factor of Phase 2. The expected work factor F of the second phase as
described in [3] equals approximately 2 · 4 · 4 · 215 · 28 = 228, and is measured in
the number of evaluations of mappings on F8

2. The evaluations are required to
determine if a mapping on F8

2 is affine. The mappings f that need to be tested
for being affine are listed in [3, Proposition 3]. Each f is associated with a secret
encoding P

(r,j)
i (0 ∈ i, j ∈ 3) of a round r. As Phase 2 needs to be applied to two

consecutive rounds, this involves a total of 2 · 4 · 4 mappings (which corresponds
to the first three factors in F). The mappings f are permutations on F8

2 and
have the structure

f = S−1 ≡ Q−1
(c,d) ≡ Q ≡ S ≡ ∞k ≡ P , (1)

where S denotes the AES S-box mapping (viewed as a permutation on F8
2), k

denotes a key byte, P and Q denote bijective affine mappings on F8
2, and Q−1

(c,d)

denotes a bijective affine mapping on F8
2 for each pair (c, d) ∈ F2

256. Furthermore,
Q−1

(c,d) = Q−1 for one specific pair (c, d) ∈ F2
256. An affine-test is performed for

each possible pair (c, d) ∈ F2
256 until the corresponding mapping f is affine. The

expected number of pairs for which the test is performed equals approximately
215, which is the fourth factor in F . The fifth factor in F , i.e., 28, is associated
with the test used in [3].

Instead of the test used in [3], which requires 2n evaluations to determine if
f : Fn

2 → Fn
2 is affine, we use the following algorithm to reduce the expected

number of evaluations. If ei (1 ∈ i ∈ n) denotes the i-th unit vector in Fn
2 , then

the algorithm first verifies if the equation

f(e1 ∞ e2) = f(0) ∞ f(e1) ∞ f(e2) (2)

holds true. If this equation does not hold true, then the algorithm terminates
with “f is not affine”. Observe that the algorithm requires 4 evaluations of f in
this case. If Eq. 2 holds true, then the algorithm applies the method used in [3]
to determine if f is affine (with the only difference that f is not re-evaluated for
the four input values 0, e1, e2 and e1 ∞ e2). In this case 2n evaluations of f are
required.

To show the correctness of this algorithm, it is sufficient to show that an
affine mapping always satisfies Eq. 2. If f is affine, then f(x) = A(x) ∞ b for
some A ∈ Fn×n

2 and some b ∈ Fn
2 . It follows that f(0) ∞ f(e1) ∞ f(e2) =

b ∞ A(e1) ∞ b ∞ A(e2) ∞ b = A(e1 ∞ e2) ∞ b = f(e1 ∞ e2).

Lemma 1. If f is a random permutation on Fn
2 and if E(n) denotes the expected

number of evaluations of f required by the algorithm described above, then
E(n) < 5.

272 T. Lepoint et al.

Proof. Let p(n) denote the probability that Eq. 2 holds true for a random per-
mutation. To determine p(n), note that f(0), f(e1), f(e2) and f(e1 ∞ e2) are
four distinct elements of Fn

2 if f is a permutation. From this it follows that
f(0)∞f(e1)∞f(e2) and f(e1∞e2) are both elements of Fn

2 \{f(0), f(e1), f(e2)}.
Further, as f is a random permutation, f(e1 ∞ e2) is a random element of
this set. Hence, p(n) = 1/(2n − 3) and E(n) = 4(1 − p) + 2np = 4 + (2n −
4)/(2n − 3) < 5. ∼∩

Under the assumption that f in Eq. 1 behaves as a random permutation on
F8

2 for every incorrect guess for (c, d), the expected work factor of the affine-test
is reduced from 28 to approximately 5 evaluations if f is not affine and the work
factor is 28 if f is affine. This implies that the fifth factor in F is reduced to
approximately 5. That is, the expected work factor of Phase 2 of the BGE attack
is now approximately 2 · 4 · 4 · 215 · 5 ⊆ 222.

Phase 3: Retrieve the Round Key Bytes k̄
(r+1,j)
i (0 ≤ i, j ≤ 3)

Associated with Round r + 1

As mentioned in the description of the BGE attack in Sect. 2.2, [3] obtains the
round key bytes of round r + 1 by applying Phases 1 and 2 to round r + 1 as
well. Here, we present a more efficient method based on the affine-test described
above. The method comprises the following three steps for each encoded AES
subround j (0 ∈ j ∈ 3) associated with round r + 1 to retrieve the round key
bytes k̄

(r+1,j)
i (0 ∈ i, j ∈ 3):

Step 1 applies Phase 1 (using Tolhuizen’s improvement) to round r + 1 in order

to retrieve the encodings Q
(r+1,j)
i (0 ∈ i ∈ 3) up to an affine part.

Step 2 first removes the non-affine part of the output encodings as recovered
in Step 1 from the encoded AES subround. Next, Step 2 removes the input
encodings P

(r+1,j)
i (0 ∈ i ∈ 3) from the encoded AES subround (observe that

the inverses of these input encodings were obtained in Phases 1 and 2). The
resulting mapping f (r+1,j) : (F8

2)
4 → (F8

2)
4 is given by

f (r+1,j) =
(
Q̂

(r+1,j)
0 , Q̂

(r+1,j)
1 , Q̂

(r+1,j)
2 , Q̂

(r+1,j)
3

) ≡ AES
(r+1,j)

,

where Q̂
(r+1,j)
i (0 ∈ i ∈ 3) are affine output encodings.

Step 3 retrieves the round key bytes k̄
(r+1,j)
i (0 ∈ i ∈ 3). To find a key byte, say

k̄
(r+1,j)
0 , fix the other three input bytes to f (r+1,j) (e.g., to zero), search over all

possible 28 values of the key byte k and verify if

gk(x) = f (r+1,j)
(
k ∞ S−1(x), 0, 0, 0

)

is affine using the test described above. In case gk(x) is affine, then k̄
(r+1,j)
0 = k.

Repeat this for k̄
(r+1,j)
i (i = 1, 2, 3).

Two Attacks on a White-Box AES Implementation 273

The correctness of Step 3 uses the fact that the mapping S
(
c ∞ S−1(x)

)
is

non-affine for all non-zero values of c. This has already been proven in [3, proof
of Proposition 3].

Work factor of Phase 3. The work factor of Step 3 equals 4 ·4 ·27 ·5 ⊆ 213, where
4 · 4 denotes the number of round key bytes, 27 denotes the expected number
of key values for which the affine-test is performed and 5 denotes the expected
number of evaluations of the affine-test if gk is not affine. The work factor of
Step 1 is 4 · 4 · (35 · 28) < 218, where the first two factors denote the number of
output encodings involved in Step 1. As a result, the work factor of Phase 3 is
dominated by Step 1 and is less than 218.

Phase 4: Determine the Correct Order of the Round Key Bytes and
Extract the Secret AES Key

After Phases 1–3, the values of the round key bytes of two consecutive rounds r
and r + 1 are known. However, for each round, the order of the round key bytes
of each subround and the order of the four subrounds are still unknown. Notice
that there are still (4!)5 ⊆ 223 possibilities for the round key if only the bytes
of that round key are considered. In [3], it is indicated how the correct order
can be determined given the “shuffled” round key bytes of rounds r and r + 1.
However, [3] does not contain an explicit description of such a method. As the
work factor of the first three phases equals 222, it is desirable to have a method
to determine the correct order of the round key bytes with a work factor that is
less than 222. Below we present such a method, comprising the following three
steps:

Step 1 retrieves MC(r,j) associated with each subround j (0 ∈ j ∈ 3) of round r.

Recall that the encodings P
(r,j)
i and Q

(r,j)
i (0 ∈ i, j ∈ 3) were obtained in Phases

1 and 2. Together with the knowledge of the round key bytes k̄
(r,j)
i (0 ∈ i, j ∈ 3),

compute

MC(r,j) =
(
Q

(r,j)
0 ,Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3

)−1 ≡ AES
(r,j)

enc ≡
(
P

(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3

)−1 ≡ ∞
[k̄

(r,j)
i]0∪i∪3

≡ (S, S, S, S)−1 ,

for j = 0, 1, 2, 3.

Step 2 computes for each MC(r,j) (0 ∈ j ∈ 3) the permutations φ1,φ2 : (F8
2)

4 →
(F8

2)
4 such that

MC(r,j) = φ2 ≡ MC ≡ φ1 . (3)

Let (φ(1),φ(2)) denote the pairs of permutations for which MC remains invariant,
i.e., MC = φ(2) ≡ MC ≡ φ(1). It is easily verified that there are exactly four such
pairs. The four permutations φ(1) are the four different circular shifts on the
indices of a 4-byte vector, and φ(2) = (φ(1))−1 for each of these pairs. This
implies that there are also exactly four different pairs of permutations satisfying
Eq. 3, given by

274 T. Lepoint et al.

(
φ(1) ≡ φ1 , φ2 ≡ φ(2)

)
. (4)

As a consequence, finding one pair of permutation matrices satisfying Eq. 3 suf-
fices to find the remaining three as well. Notice that exactly one of these four
pairs of permutations equals the pair (φ(r,j)

1 ,φ
(r,j)
2) of the encoded subround

(see also Definition 3); in other words, one of these pairs is the correct pair.
After this, the order of the round key bytes associated with each subround

is known up to an uncertainty of four possibilities (circular shifts). Observe that
the order of the four subrounds is still unknown.

Step 3 determines the correct order of the round key bytes. For each of the
possible orderings of the four AES subrounds of round r and the round key
bytes within these subrounds (as determined in Step 2), obtain a candidate
for the (r + 1)th round key using the following two methods: (i) the AES key
scheduling algorithm and (ii) the data-flow of the white-box AES implementation
between the encoded subrounds of rounds r and r+1. Notice that once an order
of the round key bytes of round r is selected, the order of the round key bytes
of round r + 1 can be determined using the corresponding pair of permutations
of each of the subrounds of round r (see also Eq. 4) and the data-flow of the
white-box implementation. With overwhelming probability, only one ordering of
round key bytes of round r results in the same (r +1)th round key; this ordering
corresponds to the correct round key of round r. Finally, use the property of the
AES key scheduling algorithm that the AES key can be computed if one of the
round keys is known.

Work factor of Phase 4. A naive approach yields an expected work factor of
(4!)2 ⊆ 29 for Step 2 by searching over all possible pairs of permutations. Step 2
reduces the number of possible orderings of the round key bytes from 223 to
44 · 4! < 213 (where the first and second factor denote the possible orderings of
round key bytes within each subround and of the four subrounds, respectively),
which equals the work factor of Step 3. As a result, the overall work factor of
Phase 4 is dominated by the work factor of Step 3 and hence is less than 213.

3.1 Conclusion

The work factor of the improved BGE attack is dominated by the work factor
of the second phase and equals 222.

Note that the uncertainty in the order of the round key bytes results in
the need to retrieve key bytes of two consecutive rounds. This affects the work
factor of the original BGE attack. In the improved BGE attack this is no longer
the case, as the work factors of the phases that determine the correct order
(i.e. Phases 3 and 4) are negligible compared to the work factor of Phase 2. A
consequence of Tolhuizen’s improvement is that the use of non-affine white-box
encodings has a negligible impact on the overall work factor of the improved
BGE attack.

Two Attacks on a White-Box AES Implementation 275

4 A New Attack Exploiting Internal Collisions

In this section we propose a new attack on the initial Chow et al. implementa-
tion exploiting collisions in output of the first AES round. Note that unlike the
BGE attack, the description below only considers the basic implementation, i.e.,
without byte permutations. In this section, an encoded AES subround is defined
as in Definition 2.

According to Sect. 2, applying a set of successive look-up tables, one can
compute the first encoded AES subround AES

(1,0)
enc , which is denoted by f ∗ in

the following for the sake of clarity (and in accordance to notations in [7]):

f ∗ = (Q(1,0)
0 , Q

(1,0)
1 , Q

(1,0)
2 , Q

(1,0)
3)≡AES(1,0) ≡ (P (1,0)

0 , P
(1,0)
1 , P

(1,0)
2 , P

(1,0)
3) . (5)

Let us denote by f ∗
Γ the coordinate functions of f ∗ such that f ∗ = (f ∗

0, f
∗
1, f

∗
2, f

∗
3).

Let us further denote by Si the function defined as

Si(·) = S(k(1,0)
i ∞ (P (1,0)

i)(·)) , (6)

for 0 ∈ i ∈ 3.

4.1 Recovering the Si Functions

Our attack consists in finding collisions in output of the coordinate functions f ∗
Γ

in order to recover functions S0, S1, S2 and S3 and associated key bytes. For
the sake of clarity, we drop all the surperscripts (1, 0) in the following. We start
with the recovery of S0 and S1 by looking for collision of the form

f ∗
0(λ, 0, 0, 0) = f ∗

0(0, ρ, 0, 0) . (7)

By definition of the MixColumns transformation, the above equation can be
rewritten as

Q0

(
02 √ S0(λ) ∞ 03 √ S1(0) ∞ c

)
= Q0

(
02 √ S0(0) ∞ 03 √ S1(ρ) ∞ c

)

where c = S2(0) ∞ S3(0), implying

02 √ S0(λ) ∞ 03 √ S1(0) = 02 √ S0(0) ∞ 03 √ S1(ρ) . (8)

Collecting several such equations, we can construct a linear system to recover
S0 and S1. Let u0, u1, . . . , u255 and v0, v1, . . . , v255 denote the unknowns
associated to the outputs of S0 and S1 (i.e. ui = S0(i) and vi = S1(i)). Then
(8) can be rewritten as

02 √ (u0 ∞ uφ) ∞ 03 √ (v0 ∞ vψ) = 0 . (9)

Then we can easily obtain a system involving all the ui and all the vi. Indeed,
the functions λ ∃→ f ∗

0(λ, 0, 0, 0) and ρ ∃→ f ∗
0(0, ρ, 0, 0) are bijections, so we get

exactly 256 collisions between f ∗
0(λ, 0, 0, 0) and f ∗

0(0, ρ, 0, 0) while λ and ρ vary

276 T. Lepoint et al.

over F256. Discarding the irrelevant collision for (λ, ρ) = (0, 0), we get 255 pairs
(λ, ρ) satisfying f ∗

0(λ, 0, 0, 0) = f ∗
0(0, ρ, 0, 0) and providing an equation of the

form of (9). Moreover, every unknown uφ and vψ appears once for λ, ρ > 0
and the unknowns u0 and v0 appear in each equation. We proceed similarly
for coordinates f ∗

Γ with η ∈ {1, 2, 3}, for which the collisions give rise to similar
equations but with different pairs of coefficients in {01, 02, 03}. For instance a
collision f ∗

1(λ, 0, 0, 0) = f ∗
1(0, 0, ρ, 0) yields an equation

01 √ (u0 ∞ uφ) ∞ 02 √ (v0 ∞ vψ) = 0 .

We hence get 4 × 255 linear equations involving all the 512 unknowns. How-
ever, this system is not of full rank. Consider the 2× 255 unknowns u∗

i = u0 ∞ui

and v∗
i = v0 ∞ vi for i ∈ {1, 2, . . . , 255}. Every equation of the form of (9) can be

rewritten as
02 √ u∗

φ ∞ 03 √ v∗
ψ = 0 .

This shows that the system can be rewritten in terms of 510 unknowns and
is hence of rank at most 510. But the system has still at least one degree of
freedom left, since more than one solution is still possible. For instance, the
system is solved by u∗

i = 0 and v∗
i = 0 for every i, and it is also solved by the

solution we are looking for (i.e. u∗
i = S0(0)∞S0(i) and v∗

i = S1(0)∞S1(i)), which
is such that u∗

i ≈= 0 and v∗
i ≈= 0 by bijectivity of S0 and S1. The obtained system

is hence of rank at most 509.
In all our experiments, the 4 × 255 available linear equations always yielded

a system of rank 509. From such a system, all the unknowns can be expressed in
function of one unknown, say u∗

1. And since all the unknowns are linearly linked,
there exist coefficients ai and bi such that u∗

i = ai √ u∗
1 and v∗

i = bi √ u∗
1. These

coefficients can be easily recovered by solving the system for u∗
1 = 1. We then get

ui = ai √ (u0 ∞ u1) ∞ u0 , (10)

and
vi = bi √ (u0 ∞ u1) ∞ v0 . (11)

From the ai coefficients and from Equation (10), we can recover the overall
function S0 by exhaustive search on the pair (u0, u1). In order to determine the
good solution, we use the particular structure of the function S0. Specifically, we
use the relation

S−1 ≡ S0(·) = P0(·) ∞ k0 .

By definition of P0, the above function has algebraic degree at most 4. We then
use the following lemma.

Lemma 2. Let g be a function from {0, 1}8 to itself with algebraic degree at
most 4. The map

Φ : x ∃→
15⊕

φ=0

g(x ∞ λ) ,

is the null function x ∃→ 0.

Two Attacks on a White-Box AES Implementation 277

Proof. The map Φ is a 4th-order derivative of the function g (specifically Φ =
D1D2D4D8(g)) and since g has algebraic degree at most 4, all its 4th-order
derivatives are null. ∼∩
Remark 2. For a wrong pair (u0, u1), the candidate function Ŝ0 obtained from
(10) is affine equivalent to S0. Namely there exist a and b such that Ŝ0(·) =
a √ S0(·) ∞ b, with a ≈= 0 and (a, b) ≈= (0, 1). The function S−1 ≡ Ŝ0 then satisfies

S−1 ≡ Ŝ0(·) = S−1
(
a √ S(k0 ∞ P0(·)) ∞ b

)
,

and it has an algebraic degree greater than 4 with overwhelming probability.1

According to Lemma 2 and the above remark, we can easily determine the
good pair (u0, u1) by computing the 4th-order derivative Φ̂ of the associated
function ĝ = S−1 ≡ Ŝ0, which satisfies

Φ̂(x) =
15⊕

φ=0

S−1(ax∅φ √ (u0 ∞ u1) ∞ u0) .

For the sake of efficiency, we first compute Φ̂(0) and check whether it equals 0
or not. If we get Φ̂(0) = 0, we step forwards and compute Φ̂(x) for another x.
Note that we only need to compute Φ̂ for 16 inputs at most since for every x
we have Φ̂(x) = Φ̂(x ∞ 01) = · · · = Φ̂(x ∞ 15). Getting Φ̂(x) = 0 for a wrong
pair (u0, u1) should roughly occur with probability 1/256, so wrong guesses are
quickly discarded.

Once S0 has been recovered, we can recover S1 from (11) by exhaustive search
on v0. Here again, the good solution is determined using Lemma 2 and the above
approach. The remaining functions S2 and S3 are recovered similarly by solving
the linear systems arising from collisions of the form f ∗

Γ(λ, 0, 0, 0) = f ∗
Γ(0, 0, ρ, 0)

and f ∗
Γ(λ, 0, 0, 0) = f ∗

Γ(0, 0, 0, ρ). Since S0 is already known, we get the same
situation as for the recovery of S1. Namely, all the elements of S2 (resp. S3)
can be expressed as affine functions of S2(0) (resp. S3(0)), and we can recover
the overall function by exhaustive search on this value and with the selection
criterion of Lemma 2.

4.2 Recovering the Secret Key

Once the Si functions have been recovered, one can easily recover the byte-
encodings Qi in output of the first round. For instance evaluating f ∗

0(λ, 0, 0, 0)
one gets the value Q0

(
α(λ)

)
where

α : λ ∃→ 02 √ S0(λ) ∞ 03 √ S1(0) ∞ S2(0) ∞ S3(0)

is a bijective function. We hence get Q0(·) = f ∗
0(α

−1(·), 0, 0, 0) which enables to
fully retrieve Q0 by looping on the 256 input values. Each byte-encoding Q

(1,j)
i

in output of the first round can be recovered in a similar way.
1 We ran a few million tests and never obtained a function with algebraic degree 4

or less.

278 T. Lepoint et al.

Since the output byte-encodings of the first round are the inverse of the
input byte-decodings of the second round, we now show how to retrieve the
key bytes in the second round from that knowledge. In what follows, we shall
slightly change the definition of f ∗ and the Si’s given in (5) and (6). Namely,
f ∗ shall denote the first encoded subround of the second round (rather that of
the first round), and Si the associated functions, that is f ∗ = AES

(2,0)
enc and

Si(·) = S(k(2,0)
i ∞ (P (2,0)

i)(·)) for 0 ∈ i ∈ 3. As in the previous section, we shall
further drop all the surperscripts (2, 0) for the sake of clarity.

For the recovery of k0, we use the following distinguisher. Consider the func-
tion g associated to k0 and defined as:

g = f ∗
0(P

−1
0 (S−1(·) ∞ k0), 0, 0, 0) .

This function satisfies

g(x) = Q0(02 √ x ∞ c) where c = 03 √ S1(0) ∞ S2(0) ∞ S3(0) ,

and it has algebraic degree at most 4 by definition of Q0 (since multiplying and
adding constant coefficients are linear). Therefore, according to Lemma 2, the
4th-order derivative Φ : x ∃→ ⊕15

φ=0 g(x ∞ λ) equals the null function. On the
other hand, consider the function ĝ associated to a wrong guess k̂0 ≈= k0, that is

ĝ(x) = f ∗
0(P

−1
0 (S−1(x) ∞ k̂0), 0, 0, 0) = Q0(02 √ S(S−1(x) ∞ k̂0 ∞ k0) ∞ c) .

This function has algebraic degree greater than 4 with overwhelming probabil-
ity.2 This way, we can easily recover k0 by exhaustive search while testing for
every candidate whether the function ĝ is of algebraic degree 4 or not. Namely,
for every guess k̂0, we test whether the function

Φ̂(x) =
15⊕

φ=0

f ∗
0(P

−1
0 (S−1(x) ∞ k̂0), 0, 0, 0)

equals the null function x ∃→ 0, or not. As for the previous recovery of the
Si functions, this is done at most for 16 different values of x since we have
Φ̂(x) = Φ̂(x ∞ 01) = · · · = Φ̂(x ∞ 15). Moreover, as for the recovery of the Si,
we only need to compute Φ̂ for 16 inputs at most since for every x we have
Φ̂(x) = Φ̂(x ∞ 01) = · · · = Φ̂(x ∞ 15). Moreover getting Φ̂(x) = 0 for a wrong
guess k̂0 roughly occur with probability 1/256, so wrong guesses are quickly
discarded.

The key bytes k1, k2 and k3 can be retrieved similarly; only the definition
of the function g shall change. For instance, g is defined as f ∗

0(0, P−1
1 (S−1(·) ∞

k1), 0, 0) for k1, and so on for k2 and k3. And the other key bytes k
(2,j)
i for j ≥ 1

can be recovered in the exact same way. Eventually, from the second round key,
one can easily recover the full AES secret key by inverting the key schedule
process.
2 Here again, we ran a few million tests and never obtained a function with algebraic

degree 4 or less.

Two Attacks on a White-Box AES Implementation 279

4.3 Attack Complexity

The bottleneck of our attack is the exhaustive search to recover the functions Si

in the first round. Indeed, the previous system to solve for the recovery of the
ai and bi coefficients is very sparse and it can hence be solved with Gaussian
elimination in linear complexity (i.e. in 512 times a few operations). To recover
S0, one loops on the 216 candidate values for (u0, u1), and for each value test
whether Φ̂(x) = 0 (which is a XOR over 16 elements) for at most 16 values x. We
use laziness, namely we test whether Φ̂(0) = 0 first, if false we stop and if true
we step forwards to the next x, and so on and so forth. Now getting Φ̂(x) = 0
for a wrong pair (u0, u1) roughly occurs with probability 1/256, therefore the
expected number of tests is 1+1/256+ · · · +1/(25615) ∈ 1.004. The complexity
of the recovery of S0 is hence of

216 · 1.004 · 24 ⊆ 220 .

Then the recovery of S1 (resp. S2, S3) from S0 only requires an exhaustive search
on v0, which makes a complexity of 28 ·1.004·24 ⊆ 212. We hence get a complexity
of 220 + 3 · 212 ⊆ 220 for the recovery of S0, S1, S2 and S3. This computation
must be performed for each subround of the first AES round, which makes a
total complexity of 4 × 220 = 222.

The recovery of the key bytes has a negligible complexity compared to the
recovery of the Si functions in the first round. Indeed, according to the above
analysis, the recovery of one key byte is roughly of 28 · 1.004 · 24 ⊆ 212. This
must be done 16 times, yielding a complexity of 16 · 212 ∪ 222.

5 Karroumi’s White-Box AES Implementation

Karroumi’s method to generate a white-box AES implementation [6] can be
divided into two phases; Phase 1 generates a dual AES cipher from a key-
instantiated AES cipher, and Phase 2 applies the white-box techniques presented
by Chow et al. to the dual AES cipher. Below, aspects of these phases that are
relevant to this paper are described.

Phase 1: Dual AES Cipher

In this section we give a description of the set of dual AES ciphers used by
Karroumi in [6]. First, we define a dual AES subround. The following notation
is used: mφ : F256 → F256 with λ ∈ F⊆

256 is defined by mφ(x) = λ √ x, and
ft : F256 → F256 defined by ft(x) = x2t for 0 ∈ t ∈ 7 are the automorphisms of
F256 over F2. Further, Rl : F256 → F256 are the isomorphisms mapping elements
in the AES polynomial representation to field elements in one of the polynomial
representations of F256. There are 30 irreducible polynomials of degree 8 over F2,
each one resulting in a unique polynomial representation of F256 (one of these
representations being the AES polynomial representation), hence in total there
are 30 distinct isomorphisms Rl (1 ∈ l ∈ 30). The addition and multiplication

280 T. Lepoint et al.

operations in the polynomial representation associated with Rl are denoted by
∞l and √l, respectively (∞l and √l being equal to ∞ and √ for exactly one value
of l with 1 ∈ l ∈ 30). Finally, the definition of a dual AES subround uses a set
of mappings, denoted by T , and defined by

T = {Rl ≡ mφ ≡ ft | 1 ∈ l ∈ 30, λ ∈ F⊆
256 and 0 ∈ t ∈ 7} .

Observe that an element of T maps elements in the AES polynomial represen-
tation to elements in one of the 30 polynomial representations of F256.

Definition 4. Let ξr,j ∈ T with ξr,j = Rl ≡ mφ ≡ ft for some triple (l, λ, t)
with 1 ∈ l ∈ 30, λ ∈ F⊆

256 and 0 ∈ t ∈ 7, and let τr,j = Rl ≡ ft. Further, let
vi, wi ∈ F256 for 0 ∈ i ∈ 3 be represented using the polynomial representation
associated with Rl. The mapping AES(r,j,βr,j) : F4

256 → F4
256 for 1 ∈ r ∈ 9

and 0 ∈ j ∈ 3, called a dual AES subround, is defined by (w0, w1, w2, w3) =
AES(r,j,βr,j)(v0, v1, v2, v3) with

wi = τr,j(mci0) √l ξr,j ≡ S ≡ ξ−1
r,j

(
v0 ∞l ξr,j(k

(r,j)
0)

)

∞l τr,j(mci1) √l ξr,j ≡ S ≡ ξ−1
r,j

(
v1 ∞l ξr,j(k

(r,j)
1)

)

∞l τr,j(mci2) √l ξr,j ≡ S ≡ ξ−1
r,j

(
v2 ∞l ξr,j(k

(r,j)
2)

)

∞l τr,j(mci3) √l ξr,j ≡ S ≡ ξ−1
r,j

(
v3 ∞l ξr,j(k

(r,j)
3)

)
,

for 0 ∈ i ∈ 3.

The following lemma presents a property that is required to show that a dual
AES cipher maintains the functionality of AES. As the lemma is also used in
the cryptanalysis in this paper, and as a formal proof of this property is omitted
in [4] and [6], we include a proof as well.

Lemma 3. If ξr,j ∈ T , then

AES(r,j,βr,j) ≡ (ξr,j ,ξr,j ,ξr,j ,ξr,j) = (ξr,j ,ξr,j ,ξr,j ,ξr,j) ≡ AES(r,j) ,

for 1 ∈ r ∈ 9 and 0 ∈ j ∈ 3.

Proof. Let xi for 0 ∈ i ∈ 3 be elements of F256 using the AES polynomial
representation, let wi for 0 ∈ i ∈ 3 be elements of F256 using the polynomial
representation associated with Rl (assuming that ξr,j = Rl ≡ mφ ≡ ft), and let

(w0, w1, w2, w3) = AES(r,j,βr,j) ≡ (ξr,j ,ξr,j ,ξr,j ,ξr,j)(x0, x1, x2, x3) .

Substituting vi = ξr,j(xi) for 0 ∈ i ∈ 3 in the equation in Definition 4 yields

wi =
3⊕

z=0

τr,j(mciz) √l ξr,j ≡ S ≡ ξ−1
r,j

(
ξr,j(xz) ∞l ξr,j(k(r,j)

z)
)

,

for 0 ∈ i ∈ 3. Next, observe that ξr,j(a)∞l ξr,j(b) = Rl ≡mφ ≡ft(a)∞l Rl ≡mφ ≡
ft(b) = Rl(mφ ≡ ft(a) ∞ mφ ≡ ft(b)) = Rl(mφ(ft(a) ∞ ft(b)) = Rl(mφ(ft(a ∞ b)))

Two Attacks on a White-Box AES Implementation 281

= ξr,j(a ∞ b) for all a, b ∈ F256 and all λ ∈ F⊆
256; the second equality holds true

since Rl is an isomorphism, the third equality holds true as λ(a∞b) = λ(a)∞λ(b)
for all a, b ∈ F256 and the fourth equality holds true since ft is an automorphism.
It follows that

wi =
3⊕

z=0

τr,j(mciz) √l ξr,j ≡ S
(
xz ∞ k(r,j)

z

)
,

for 0 ∈ i ∈ 3. Next, note that τr,j(a) √l ξr,j(b) = Rl ≡ ft(a) √l Rl ≡ mφ ≡ ft(b) =
Rl(ft(a) √ mφ ≡ ft(b)) = Rl(mφ(ft(a √ b))) = ξr,j(a √ b) for all a, b ∈ F256;
the second equality holds true since Rl is an isomorphism and the third equality
uses the fact that a2t √ λb2

t

= λ(ab)2
t

for all a, b ∈ F256 and all λ ∈ F⊆
256. It

follows that

wi =
3⊕

z=0

ξr,j

(
mciz √ S

(
xz ∞ k(r,j)

z

))
,

for 0 ∈ i ∈ 3. From this, ξr,j(a) ∞l ξr,j(b) = ξr,j(a ∞ b) for all a, b ∈ F256, and
the definition of yi in Definition 1, it follows that wi = ξr,j(yi) for 0 ∈ i ∈ 3. ∼∩

Now, Karroumi [6] obtains a dual AES cipher as follows:

Step 1 assigns a randomly chosen ξr,j ∈ T to each AES subround AES(r,j)

(1 ∈ r ∈ 9 and 0 ∈ j ∈ 3). Based on ξr,j , the corresponding dual AES subround
AES(r,j,βr,j) is implemented as specified by Definition 4. The mappings ξr,j and
τr,j (and the implementation of the dual cipher) are kept secret.

Step 2 ensures that the functionality of AES is maintained by including an
additional operation (referred to as ChangeDualState) between ShiftRows and
AddRoundKey operations of round r for 1 ∈ r ∈ 9. If the inverse ShiftRows oper-
ation is defined by the mapping sr(i, j) = (j+ i) mod 4 for 0 ∈ i, j ∈ 3, then the
ChangeDualState operation of round r applies the mapping C

(r,j)
i : F256 → F256

to the byte of the state associated with the i-th input byte of AES(r,j,βr,j) for
0 ∈ i, j ∈ 3, defined by C

(1,j)
i = ξ1,j and C

(r,j)
i = ξr,j ≡ξ−1

r−1,sr(i,j) if 2 ∈ r ∈ 9.

Observe that for 2 ∈ r ∈ 9, C
(r,j)
i maps elements from F256 using the poly-

nomial representation associated with ξr−1,sr(i,j) to elements of F256 using the
polynomial representation associated with ξr,j .

Karroumi presents two different but equivalent methods (from a security
point of view) in [6] to perform the ChangeDualState operation, and specifies
the white-box AES implementation using one of these methods. In this paper
we use the specification as in [6]; the cryptanalysis can easily be adapted if the
other method is used.

Phase 2: Apply the Techniques of Chow et al.

The following description of Karroumi’s white-box AES implementation is equiv-
alent to the description in [6]:

282 T. Lepoint et al.

Step 1 applies the techniques of Chow et al. to write the dual AES cipher (with
a fixed key) obtained in Phase 1 as a series of lookup tables. In particular, the
dual AES key addition operations and the dual S-box operations are merged
into key-dependent bijective mappings T

(r,j,βr,j)
i for 0 ∈ i, j ∈ 3 and 1 ∈ r ∈ 9.

These mappings are referred to as dual T-boxes and are defined by

T
(r,j,βr,j)
i = ξr,j ≡ S ≡ ξ−1

r,j ≡ ∞
βr,j(k

(r,j)
i)

≡ C
(r,j)
i ,

where each dual T-box mapping is implemented as a table mapping 8 input bits
to 8 output bits. Recall that the mappings C

(r,j)
i define the ChangeDualState

operation. Next, write the other part of the dual AES cipher as a series of
lookup tables as indicated by Chow et al. in [5]. The number and types of tables
(including the tables representing the dual T-boxes) and the data-flow between
tables are the same as in the lookup table implementation of AES in [5]. The only
difference is that the values of the table entries of the dual AES implementation
are likely to be different from the values of the corresponding entries in the AES
implementation in [5] due to the dual version of the AES operations.

Step 2 applies the white-box encoding techniques of Chow et al. in [5] to this
lookup table implementation of dual AES. As these white-box encoding tech-
niques do not depend on the values of the table entries, the number and types
of white-box tables, and the data-flow of Karroumi’s white-box AES implemen-
tation are the same as in the white-box AES implementation of Chow et al.
in [5].

In [6], Karroumi argues that the secrecy of the mappings ξr,j , randomly
selected from the set T and used to generate the dual cipher, increases the work
factor of the BGE attack to 293.

5.1 Insecurity

This section shows that Karroumi’s white-box AES implementation [6] is inse-
cure. Recall that Karroumi’s white-box AES implementation uses the same num-
ber and types of white-box tables, and that the data-flow of the implementation
is the same as in Chow et al.’s white-box AES implementation in [5]. As a result,
the techniques of Billet et al. can be applied directly to compose lookup tables in
Karroumi’s implementation to obtain access to the encoded dual AES subrounds
(instead of the encoded AES subrounds in case of Chow et al.’s implementation)
for rounds 1 ∈ r ∈ 9. In the following definition, A

(r,j)
i and B

(r,j)
i for 0 ∈ i ∈ 3

denote bijective mappings (or encodings) on the vector space F8
2. Further, with

slight abuse of notation, an output of A
(r,j)
i is considered to be an element of F256

using the polynomial representation associated with the mapping Rl as defined
by ξr−1,sr(i′,j′), and an output of AES(r,j,βr,j) is considered to be an element
of (F8

2)
4. In the following definition, φ

(r,j)
1 ,φ

(r,j)
2 and ψ(r) are the permutations

as used in Definition 3.

Two Attacks on a White-Box AES Implementation 283

Definition 5. The mapping AES
(r,j,βr,j)

enc : (F8
2)

4 → (F8
2)

4 for 1 ∈ r ∈ 9 and
0 ∈ j ∈ 3, called an encoded dual AES subround, is defined by

AES
(r,j,βr,j)

enc = (B(r,j)
0 , B

(r,j)
1 , B

(r,j)
2 , B

(r,j)
3) ≡ AES

(r,j,βr,j) ≡ (12)

(A(r,j)
0 , A

(r,j)
1 , A

(r,j)
2 , A

(r,j)
3) ,

where the mapping AES
(r,j,βr,j) is defined by

φ
(r,j)
2 ≡ AES(r,j′,βr,j′) ≡ (C(r,j′)

0 , C
(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3) ≡ φ

(r,j)
1 , (13)

with j∗ = ψ(r)(j).

The next lemma shows that an encoded dual AES subround can be repre-
sented by an encoded AES subround using the same key bytes:

Lemma 4. An encoded dual AES subround AES
(r,j,βr,j)

enc is an encoded AES
subround AES

(r,j)

enc as in Definition 3 with

P
(1,j)
i = A

(1,j)
i and P

(r,j)
i = ξ−1

r−1,sr(i′,j′) ≡ A
(r,j)
i if 2 ∈ r ∈ 9 ,

and
Q

(r,j)
i = B

(r,j)
i ≡ ξr,j′ ,

for 0 ∈ i, j ∈ 3 and 1 ∈ r ∈ 9, with i∗ = (ψ(r,j)
1)−1(i) and j∗ = ψ(r)(j) where

(ψ(r,j)
1)−1 denotes the permutation on the indices of a 4-byte vector as a result

of the application of
(
φ

(r,j)
1

)−1.

Proof. The proof is given for the case 2 ∈ r ∈ 9; similar reasoning applies to the
case r = 1. From the definition of the ChangeDualState operation (see Step 2
of Phase 1 of Karroumi’s implementation) it follows that

(C(r,j′)
0 ,C

(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3) = (ξr,j′ ,ξr,j′ ,ξr,j′ ,ξr,j′) ≡

(ξ−1
r−1,sr(0,j′),ξ

−1
r−1,sr(1,j′),ξ

−1
r−1,sr(2,j′),ξ

−1
r−1,sr(3,j′)) if 2 ∈ r ∈ 9,

for 0 ∈ j ∈ 3. Substituting the above expression for the ChangeDualState
operation in Eq. 13 and applying Lemma 3 gives

AES
(r,j,βr,j) = φ

(r,j)
2 ≡ (ξr,j′ ,ξr,j′ ,ξr,j′ ,ξr,j′) ≡ AES(r,j′) ≡

(ξ−1
r−1,sr(0,j′),ξ

−1
r−1,sr(1,j′),ξ

−1
r−1,sr(2,j′),ξ

−1
r−1,sr(3,j′)) ≡ φ

(r,j)
1 .

Observe that φ
(r,j)
2 and (ξr,j′ ,ξr,j′ ,ξr,j′ ,ξr,j′) commute and thus can be

swapped. By applying the equation

(ξ−1
r−1,sr(0,j′),ξ

−1
r−1,sr(1,j′),ξ

−1
r−1,sr(2,j′),ξ

−1
r−1,sr(3,j′)) ≡ φ

(r,j)
1 =

φ
(r,j)
1 ≡ (ξ−1

r−1,sr(0′,j′),ξ
−1
r−1,sr(1′,j′),ξ

−1
r−1,sr(2′,j′),ξ

−1
r−1,sr(3′,j′)) ,

284 T. Lepoint et al.

where i∗ = (ψ(r,j)
1)−1(i) for i = 0, 1, 2, 3 where (ψ(r,j)

1)−1 denotes the permutation
on the indices of a 4-byte vector as a result of the application of

(
φ

(r,j)
1

)−1, one
gets the result of Lemma 4. ∼∩
From the discussion above it follows that Karroumi’s white-box AES implemen-
tation and the white-box AES implementation of Chow et al. are the same. As
a consequence, Karroumi’s white-box AES implementation is vulnerable to the
original BGE attack and the attacks presented in this paper.

6 Conclusion

The BGE attack on the white-box AES implementation of Chow et al. extracts
the AES key from such an implementation with a work factor of 230. Taking
Tolhuizen’s improvement to the most time-consuming phase of the BGE attack
as the starting point, Sect. 3 presented several improvements to the other phases
of the BGE attack. It was shown that the overall work factor of the BGE attack
is reduced to 222 when all improvements are implemented. Unlike the original
BGE attack, the use of non-affine white-box encodings and the randomization
in the order of the bytes of the intermediate results in AES have a negligible
contribution to the overall work factor of the improved BGE attack.

Section 4 presented a new attack on the white-box implementation of Chow
et al. based on collisions occurring in the output bytes of an encoded AES round.
It was shown that the new attack also has a work factor of 222.

Karroumi’s white-box AES implementation was designed to withstand the
BGE attack. Section 5 showed that the white-box AES implementations of Chow
et al. and Karroumi are the same. As a result, the original BGE attack and the
attacks presented in this paper can be applied directly to extract the key from
Karroumi’s white-box AES implementation, implying that this implementation
is insecure.

Acknowledgments. This work was supported in part by the Research Council KU
Leuven: GOA TENSE (GOA/11/007). In addition, this work was supported by the
Flemish Government, FWO WET G.0213.11N and IWT GBO SEC SODA. Yoni De
Mulder was supported in part by a research grant of iMinds of the Flemish Government.

References

1. Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

2. Barkan, E., Biham, E.: The book of Rijndaels. IACR Cryptology ePrint Archive,
2002:158. http://eprint.iacr.org/2002/158 (2002)

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004)

http://eprint.iacr.org/2002/158

Two Attacks on a White-Box AES Implementation 285

4. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanaly-
sis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

5. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

6. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg
(2011)

7. Lepoint, T., Rivain, M.: Another nail in the coffin of white-box AES implementa-
tions. Cryptology ePrint Archive, Report 2013/455. http://eprint.iacr.org/2013/
455.pdf (2013)

8. National Institute of Standards and Technology: Advanced encryption standard.
In: Federal Information Processing Standard (FIPS), Publication 197, U.S. Depart-
ment of Commerce, Washington, DC (November 2001). http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

9. Muir, J.A.: A tutorial on white-box AES. In: Kranakis, E. (ed.) Advances in
Network Analysis and its Applications. Mathematics in Industry, pp. 209–229.
Springer, Heidelberg (2013). http://www.ccsl.carleton.ca/ jamuir/papers/wb-aes-
tutorial.pdf

10. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao - Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013)

11. De Mulder, Y., Roelse, P., Preneel, B.: Revisiting the BGE attack on a white-box
AES implementation. Cryptology ePrint Archive, Report 2013/450. http://eprint.
iacr.org/2013/450.pdf (2013)

12. Tolhuizen, L.: Improved cryptanalysis of an AES implementation. In: 33rd WIC
Symposium on Information Theory in the Benelux (2012)

13. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International
Conference on Computer Science and its Applications (CSA 2009), pp. 1–6. IEEE
(2009)

http://eprint.iacr.org/2013/455.pdf
http://eprint.iacr.org/2013/455.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://eprint.iacr.org/2013/450.pdf
http://eprint.iacr.org/2013/450.pdf

Block Ciphers

Extended Generalized Feistel Networks
Using Matrix Representation

Thierry P. Berger1, Marine Minier2, and Gaël Thomas1(B)

1 XLIM (UMR CNRS 7252), Université de Limoges, 123 avenue Albert Thomas,
87060 Limoges Cedex, France

{thierry.berger,gael.thomas}@unilim.fr
2 CITI, INSA-Lyon, INRIA, Université de Lyon, F-69621 Villeurbanne, France

marine.minier@insa-lyon.fr

Abstract. While Generalized Feistel Networks have been widely studied
in the literature as a building block of a block cipher, we propose in this
paper a unified vision to easily represent them through a matrix repre-
sentation. We then propose a new class of such schemes called Extended
Generalized Feistel Networks well suited for cryptographic applications.
We instantiate those proposals into two particular constructions and we
finally analyze their security.

Keywords: Generalized feistel networks · Matrix representation ·
Scheme proposal · Security analysis

Introduction

While a classical Feistel network, such as DES [23] or Camellia [2], divides a
plaintext into 2 n-bit-long halves, a Generalized Feistel Network (GFN) divides
it into k ∈ 2 n-bit-long subblocks. Various GFNs exist in the literature. This
includes Source-Heavy (SH) as in RC2 [25] and SHA-1 [29]; Target-Heavy (TH)
as in MARS [7]; Type-1 as in CAST-256 [1] and Lesamnta [11]; Type-2 as in RC6
[26], HIGHT [13] and CLEFIA [28]; Type-3 and Nyberg’s GFNs [24]. Pseudo-
randomness of these constructions is studied in [12,21,33] for Type-1, Type-2
and Type-3, in [12,22] for SH GFN and [12,21] for TH GFN. Figure 1 gives an
example of Type-3 GFN. Usually GFNs perform a block-wise cyclic shift in their
permutation layer.

In [30], Suzaki and Minematsu proposed to use a non-cyclic permutation
instead and applied it to Type-2 GFNs. More precisely, they studied the max-
imum diffusion round. Roughly speaking, it is the minimum number of rounds
such as every output block depends on every input block. They exhaustively
searched all the optimum permutations for k ∞ 16 and found that the diffu-
sion in Type-2 GFNs can be improved. They also showed a lower bound on the

This work was partially supported by the French National Agency of Research:
ANR-11-INS-011.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 289–305, 2014.
DOI: 10.1007/978-3-662-43414-7 15, c∞ Springer-Verlag Berlin Heidelberg 2014

290 T.P. Berger et al.

maximum diffusion round of Type-2 GFNs and when k is a power of 2, they
gave a generic construction based on de Bruijn graphs whose maximum diffu-
sion round is close to the lower bound they found. Besides, they studied the
pseudorandomness of these GFNs and their resistance against classical attacks
and showed that it is actually improved as well. One of these Type-2 GFNs is
used in TWINE [31].

Following the work of [30], Yanagihara and Iwata [32] studied the case of
Type-1, Type-3, SH and TH GFNs with non-cyclic permutation. For Type-1 and
Type-3 GFNs, they showed that the maximum diffusion round can be improved
by changing the permutation while for SH and TH GFNs it cannot. Besides,
for Type-1 GFNs, they gave an optimum generic construction for any k and
identified a necessary and sufficient condition for improved Type-3 to have a
finite maximum diffusion round. They also evaluated the resistance of all those
GFNs against classical attacks and showed that it can be improved in the Type-1
and Type-3 cases.

In this paper, we first investigate a unified vision of GFNs using a matrix rep-
resentation and use it to further study the diffusion properties of GFNs. We then
extend this matrix representation and propose a broader class of Feistel networks
that we call Extended Generalized Feistel Networks (EGFNs). We finally pro-
pose one particular EGFN with good diffusion properties and study the security
of this proposal.

This paper is organized as follows: Sect. 1 gives the matrix representation
of a GFN, its link with diffusion and shows how each possible GFN could be
represented using a particular matrix. Section 2 extends GFNs into EGFNs and
contains a particular EGFN proposal with good diffusion properties. In Sect. 3
we present a complete security analysis concerning this proposal.

1 Matrix Representation of Feistel Networks

Before defining the matrix representation of a GFN, let us introduce a few
notations.

1.1 Definitions and Notations

A GFN divides its input into k ∈ 2 blocks of n bits each. Let x0, · · · , xk−1

denote the input blocks of a GFN round and y0, · · · , yk−1 the corresponding
output blocks. A GFN can be separated into two successive layers, as done
in [30,32]: a round-function layer and a permutation layer, as on Fig. 1.
The round-function layer is made of key-dependent functions whose inputs are
some of the blocks and whose outputs are added (x-ored) to some other blocks.
The permutation layer is a block-wise permutation of the k blocks. How the
different round-functions are arranged depends on the type of GFN considered,
while the permutation is usually the cyclic shift. We further denote by yr

i the
content of the i-th block after r rounds.

Extended Generalized Feistel Networks Using Matrix Representation 291

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

f f f f f f f
round-function layer

permutation layer

Fig. 1. One round of a Type-3 GFN with k = 8 blocks.

1.2 Diffusion Delay

We say input block xi affects output block yr
j if xi effectively appears in the

expression of yr
j seen as a function of x0, · · · , xk−1. We say xi has diffused at

round r if xi affects every yr
j for 0 ∞ j ∞ k − 1. If every input block xi has

diffused at round r, we say the GFN has reached full diffusion, that is every
output block yr

j depends on every input block xi. We call full diffusion delay the
minimum number of rounds required to reach full diffusion and denote it d+. In
fact, the notion of full diffusion delay is a general notion that can be applied to
any automaton as done in [3]. In the particular case of GFNs, this is exactly the
same notion as the maximum diffusion round introduced in [30].

Another way to see the full diffusion delay is from a graph point of view. For
a k-block GFN, let us define the associated directed graph as the graph with
vertex set {0, · · · , k − 1} and such that (i, j) is an edge if the output yj depends
on the input xi (directly or via a round-function). In other words, this is simply
the usual Feistel schemes with outputs folded onto the input with same index.
Knowing that, it is easy to see that the notion of block xi affecting block yr

j

becomes there exists a path of length exactly r going from i to j. Thus the full
diffusion delay d+ can be alternately defined as the smallest integer r such that
for all ordered pair of vertices (i, j) there exists a path of length exactly r going
from i to j. Two things should now be noticed. First, if a GFN is in a full
diffusion state at round r then it will remain so at round r + 1. Second, the full
diffusion delay of a GFN depends solely on the structure of this graph and not
on the round-functions used in the GFN.

Similarly, we can define full diffusion delay when considering decryption
instead of encryption and denote it d−. Following the work of [30], we consider
the both-way full diffusion delay d = max(d+, d−). The both-way full diffusion
delay d for the different classical GFNs is summed up in Table 1. For security
reasons, it is necessary that d be finite.

1.3 Matrix Representation of Feistel Networks

Recall that a GFN is divided into two distinct transformations: first, the round-
function layer and second, the permutation layer, represented by a permutation
matrix P. We call matrix representation of the round-function layer, the matrix
denoted F with an all-one diagonal and with a parameter we call F at position

292 T.P. Berger et al.

Table 1. Both-way full diffusion delay d for various GFNs with k blocks.

GFN Type SH TH Type-1 Type-2 Type-3 Nyberg [32] Type-1 [30] Type-2

d k k (k − 1)2 + 1 k k k k(k + 2)/2 − 2 2 log2 k

(i, j) if and only if there is a round-function going from xj to xi. The parameter
F is a formal parameter, meaning it merely indicates the presence of a round-
function in the GFN, the same F is used for all the different round-functions
used throughout the cipher. If one follows the matrix representation idea, one
would define the matrix of the whole GFN as M = P × F .

In other words, for a GFN with k blocks, let M be the k×k matrix over Z[F]
defined as follows: for indices 0 ∞ i, j ∞ k − 1, coefficient at row i and column
j of M is either a 1 if output yi directly depends on xj , that is without going
through a round-function, or a formal parameter F , if yi depends on xj via a
round-function, or 0 otherwise. This corresponds to the definition of Encryption
Characteristic Matrix given in [14]. E.g. Fig. 2 gives the matrices M, P and F
of the GFN on Fig. 1.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 1
F 1

F 1
F 1

F 1
F 1

F 1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
F 1

F 1
F 1

F 1
F 1

F 1
F 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. Decomposition of the transition matrix of the Type-2 GFN given on Fig. 1

As round-functions in a GFN are unlikely to be linear, such a matrix is not
an exact representation. However it still retains enough information to evaluate
diffusion; namely which output block yi is influenced by which input block xj

and whether this done directly or via a round-function.
An important feature of GFNs is to transform a set of non-invertible round-

functions into an invertible permutation. Hence the matrix of the GFN in decryp-
tion mode M−1 should not contain inverses of expressions containing a F . This
translates into det(M) is independent of F , or equivalently det(F) = ±1, as
P is a permutation matrix. This is the case for all of the classical GFNs (SH,
TH,. . .) including those of [30,32] because the matrix F is lower triangular with
an all-one diagonal.

An other feature of many GFNs is quasi-involutiveness, that is encryp-
tion/decryption is roughly the same process, up to using the direct/inverse per-
mutation layer P. To ensure that, one asks that the round-function layer be

Extended Generalized Feistel Networks Using Matrix Representation 293

quasi-involutive. Except the Type-3 GFNs where the round-functions must be
evaluated sequentially, all GFNs round-function layers are quasi-involutive. We
choose to focus on GFNs that satisfy this property:

Definition 1. A matrix M with coefficients in {0, 1, F} √ Z[F] is a GFN
matrix if it can be written as M = PF such that P is a permutation matrix
and the matrix F satisfies the following conditions:

1. the main diagonal is filled with 1,
2. the off-diagonal coefficients are either 0 or F ,
3. for each index i, row i and column i cannot both have an F coefficient.

In other words, the blocks of the GFN can be partitioned into three categories:
blocks that emit (through a round-function), blocks that receive and blocks that
do not emit nor receive. This definition encompasses most of the known GFNs,
with the exception of the Type-3. The property of quasi-involutiveness comes
from the following theorem.

Theorem 1. Let M = PF be a GFN according to Definition 1. Then F is
invertible and F−1 = 2I − F , where I stands for the identity matrix.

Proof. To prove F is invertible, we compute det(F). Because of Condition 3
of Definition 1, for each index i either row i or column i is all-zero except for
the diagonal coefficient. Thus by successively expanding the determinant along
either row i or column i, det(F) = 1.

To prove F−1 = 2I − F , we equivalently prove (F − I)2 = 0. Let fi,j (resp.
f ∈

i,j) denote the coefficient of F − I (resp. (F − I)2) at row i and column j.
By definition of the matrix product, for all i and j, we have f ∈

i,j = fi,ifi,j +
fi,jfj,j +

∑
λ ∗=i
λ ∗=j

fi,λfλ,j =
∑

λ ∗=i
λ ∗=j

fi,λfλ,j . In the sum, consider one term fi,λfλ,j . As

φ �= i, fi,λ can either be zero or F . But, if fi,λ is non-zero then the φ-th column
of F contains an F thus, by Condition 3 the φ-th row must not contain any F ,
implying fλ,j = 0 for all j �= φ. Thus, each term fi,λfλ,j is zero, so f ∈

i,j = 0. →≡
Notice that in the case where the outputs of round-functions are xored with
other blocks, then matrix F−1 = 2I − F is simply F itself. Besides, we can
characterize the matrices F for which F−1 = 2I − F holds.

Theorem 2. Let F be a matrix that verifies Conditions 1 and 2 of Definition
1. If (F − I)2 = 0 then F also verifies Condition 3.

Proof. Let fi,j be the coefficient of F − I at row i and column j. For all i and
j, we have 0 =

∑k−1
λ=0 fi,λfλ,j =

∑
λ ∗=i,j fi,λfλ,j . All the coefficients fi,λ and fλ,j

in the previous equation are off-diagonal, thus are either F or 0. Hence the sum
can be zero only if all its terms are zero. For each index φ, we need to prove that
row φ and column φ cannot both have an F coefficient. Suppose column φ has an
F coefficient, say fi,λ with i �= φ. This implies that for all j �= φ, fλ,j = 0. Thus
row φ has no F coefficient. By transposing, the same goes when considering rows
instead of columns. →≡

294 T.P. Berger et al.

In other words, the GFNs round-function layer matrices F which are quasi-
involutive are exactly those where Condition 3 of Definition 1 holds.

Recall that the full diffusion delay can be expressed in term of distance in a
directed graph. In fact, if one evaluates the matrix M of the GFN in F = 1, we
obtain the adjacency matrix of this graph. The full diffusion delay d+ is then
the smallest integer such that Md+

has no zero coefficient. The same goes for
the decryption full diffusion delay d−, using M−d−

.

1.4 Matrix Equivalences

Now that we have matrices representing GFNs, we define an equivalence relations
on them that will help us to find GFNs.

Definition 2. Two GFNs matrices M and M∈ are equivalent if there exists a
permutation (matrix) ψ of the k blocks such that ψMψ−1 = M∈.

In other words, two GFNs are equivalent if they are the same up to block rein-
dexation and thus share the same properties, such as a common full diffusion
delay. We then have the property of “equivalent decompositions”:

Theorem 3. Let M = PF and M∈ = P ∈F ∈ be two GFNs according to Defini-
tion 1 and equivalent under Definition 2. Let also be ψ such that ψMψ−1 = M∈.
Then ψPψ−1 = P ∈ and ψFψ−1 = F ∈.

Proof. By hypothesis, we have ψPFψ−1 = P ∈F ∈. Also by definition, F and F ∈

have an all-one diagonal and either F or zero elsewhere. Hence F and F ∈ both
evaluate to the identity matrix I in F = 0. Thus, specifying the above equation
in zero, we obtain ψPψ−1 = P ∈, which implies ψFψ−1 = F ∈. →≡
In other words, two GFNs are equivalent if and only if both layers are equivalent
with same conjugating element. For example, if one studies a class of GFNs with
a fixed F matrix, as done in [30,32], Theorem 3 allows to define an equivalence
relation on the permutation layer.

1.5 Exhaustive Search of Feistel Networks

We investigated all the GFNs according to Definition 1 with k = 8 blocks up to
equivalence. We consider three parameters:

– the full diffusion delay d,
– the number of round-functions per round s,
– the cost for full diffusion, i.e the total number of round-functions required for

full diffusion, c = d × s.

We found there is no GFN with cost c < 24. However, there are cases where
the number of rounds d is a more important criterion than the total cost c. For
each possible value of d ∞ 12, Table 2 gives the minimum number of round-
functions s required for an 8-block GFN to fully diffuse in d rounds. It also gives

Extended Generalized Feistel Networks Using Matrix Representation 295

Table 2. Minimum number s of functions per round required to have a full diffusion
in d rounds and corresponding total cost c = s × d. For each case, the number of
different F matrices (#F) and the total number of GFNs (#M) are also given up to
equivalence.

d 1,2 3 4 5 6 7 8 9 10 11 12

s ∞ 16 7 6 4 4 4 3 3 3 2
c ∞ 48 28 30 24 28 32 27 30 33 24
#F 0 1 1 8 3 13 13 1 6 6 1
#M 0 5 3 26 9 101 652 18 100 56 5

the number of GFNs that achieve such diffusion, splitted into the number of
different F matrices (row #F) and the total number of GFNs (row #M), up to
equivalence.

Note that among the GFNs that fully diffuse in d = 6, with s = 4 round-
functions, are the Type-2 GFNs with non-cyclic permutation given in [30], which
are then diffusion-optimum among the GFNs of Definition 1.

2 New Feistel Network Proposals

2.1 Extended Generalized Feistel Networks

For a GFN M = PF , to achieve quicker diffusion, one can increase the number
of round-functions in F . However, this also makes costlier GFNs. The other
possibility is to look at the permutation layer P. Definition 1 already allows for
block-wise permutations. A possible generalization is to use a linear mapping
instead, thus looking for GFNs M = GF with G an invertible k×k matrix. This
is however much costlier than a simple block-wise permutation and besides it
loses the quasi-involutive property. What we propose is to have a G which is itself
a GFN but with the identity mapping as round-functions. In other words, we
write G = PL where P is a permutation matrix and L is matrix similar to F but
with I off-diagonal non-zero coefficients instead of F . We call this matrix L the
linear layer. In that case, the whole Feistel network matrix becomes M = PLF ,
e.g. Fig. 3. Because matrices L and F have common structure, we regroup them
into a single matrix N = LF , and write M = PN . The matrix N is the new
round-function part of the Feistel network but now has two formal parameters:
F for non-linear round-functions to provide cryptographic security and I for
identity round-functions to provide quick diffusion. We call these new schemes
Extended Generalized Feistel Networks (EGFNs).

As done in Sect. 1.3 for GFNs, to be considered an EGFN we require that
matrix M = PN is invertible and that det(M) does not depend on F nor I,
which translates into det(N) = ±1. Again, we choose to focus on EGFNs that
are quasi-involutive. Hence the following definition.

Definition 3. A matrix M with coefficients in {0, 1, F, I} √ Z[F, I] is an
Extended Generalized Feistel Network (EGFN) matrix if it can be written as

296 T.P. Berger et al.

x0

y0

x1

y1

x2

y2

x3

y3

round-function layer F

linear layer L

permutation layer P

M =

⎛
⎜⎜⎝

I F 1
F I 1
1

1

⎞
⎟⎟⎠ P =

⎛
⎜⎜⎝

1
1

1
1

⎞
⎟⎟⎠

L =

⎛
⎜⎜⎝

1
1

I 1
I 1

⎞
⎟⎟⎠ F =

⎛
⎜⎜⎝

1
1
F 1

F 1

⎞
⎟⎟⎠

Fig. 3. Overview of an EGFN three layers and corresponding matrices (right).

M = PN such that P is a permutation matrix and the matrix N satisfies the
following conditions:

1. the main diagonal is filled with 1,
2. the off-diagonal coefficients are either 0, F or I,
3. for each index i, row i and column i cannot both contain a non-zero coefficient

other than on the diagonal,
4. for each index i, if row i contains an I then it also contains an F .

As in Sect. 1.3, Condition 3 allows to partition the blocks into emitters and
receivers. Condition 4 ensures that the pseudorandomness evaluation of EGFNs
can be computed (see Sect. 3.1). Because Definition 3 is essentially the same as
Definition 1, the following theorem on quasi-involutiveness is straightforward.

Theorem 4. Let M = PN be an EGFN according to Definition 3. Then
det(N) = 1 and N −1 = 2I − N .

Proof. Same as Theorem 1, since Conditions 1, 2 and 3 of Definition 3 are
essentially the same as in Definition 1. →≡
Besides, define matrices L and F for the EGFNs of Definition 3.

Definition 4. Let M = PN be a EGFN according to Definition 3. Then define
matrix F ∼ Z[F] as the evaluation of N in I = 0 and similarly matrix L ∼ Z[I]
as the evaluation of N in F = 0.

Theorem 5 verifies this definition works as intended, that is M = PLF .

Theorem 5. Let N , F and L be defined as in Definition 4, then N = L+F −I
and N = L × F = F × L.

Proof. The first equation is a straightforward consequence of the definition of
N , L and F . As for the second, let ai,j be the coefficient at row i and column j of
matrix LF and show that ai,i = 1 and ai,j = Li,j +Fi,j otherwise (with obvious
notations). Write ai,i = Li,iFi,i +

∑
λ ∗=i Li,λFλ,i. Then ai,i = Li,iFi,i = 1 because

all terms in the rightmost sum are 0 as a consequence of Condition 3 of Definition
3. For the same reason, if i �= j, ai,j = Li,iFi,j + Li,jFj,j +

∑
λ ∗=i
λ ∗=j

Li,λFλ,j and

then ai,j = Li,j + Fi,j . →≡

Extended Generalized Feistel Networks Using Matrix Representation 297

Finally, the last thing to update to EGFNs is the equivalence relation. The
definition of two equivalent EGFNs M and M∈ is the same as for GFNs, the
only difference being that M and M∈ now also have I coefficients. In other
words, a conjugating element ψ of M and M∈ exchanges the positions of F ’s, as
well as the positions of I’s but it cannot exchange an F and an I. The analogous
of Theorem 3 is straightforward.

Theorem 6. Let M = PLF and M∈ = P ∈L∈F ∈ be two equivalent EGFNs
defined by Definition 3. Let also ψ be such that ψMψ−1 = M∈. Then ψPψ−1 =
P ∈, ψLψ−1 = L∈ and ψFψ−1 = F ∈.

Proof. Same as Theorem 3 by evaluating I, F or both in 0. →≡

2.2 An Efficient Example

We give here a particular case of EGFN with good full diffusion delay and cheap
cost. This EGFN with k blocks is depicted on Figs. 4 and 5. Its diffusion is issued
in Theorem 7. Besides Sect. 3 studies the security of this EGFN.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 1
(0) F I 1

... I
. . .

F (0)
... 1

F I I · · · I 1
1

1

. . . (0)
1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

Fig. 4. EGFN matrix M (left) with s = k
2

round-functions with the corresponding
diagram (right) that reaches full diffusion in d = 4 rounds.

Theorem 7. For an even integer k, let M be the k-block EGFN defined on
Fig. 4 and let d be its full diffusion delay. Then if k = 2 then d = 2 and if k ∈ 4
then d = 4.

Proof. Write M = (A I
I 0) ∼ Z[F, I] where I stands for the k

2 × k
2 identity

matrix and the upper left quarter of M is M is A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

F
(0) F I

... I

F (0)
...

F I I ··· I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. Note

298 T.P. Berger et al.

x0

y0

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

x10

y10

x11

y11

x12

y12

x13

y13

x14

y14

x15

y15

Fig. 5. EGFN with k = 16 blocks and s = 8 round-functions that reaches full diffusion
in d = 4 rounds.

that A2 has no zero coefficient. Then M2 =
(

A2+I A
A I

)
. If k = 2 then M2

has no zero coefficient, hence d+ = 2. But if k > 2, it still has. Comput-
ing M3 =

(
A3+2A A2+I
A2+I A

)
shows it still has zero coefficients, as A does. Com-

pute then M4 =
(

A4+3A2+I A3+2A
A3+2A A2+I

)
. Thus M4 has no zero coefficient, hence if

k ∈ 4, d+ = 4. To conclude, just note that M−1 =
(
0 I
I −A

)
, which implies

d− = d+ = d. →≡
Thanks to Theorem 7, we then have a family of EGFNs with s = k

2 round-
functions and a diffusion delay of d = 4, thus with total cost c = 2k. In com-
parison, [30] gives a family of Type-2 GFNs that diffuse in d = 2 log2 k rounds.
Their total cost is then c = k log2 k. For k > 4, we achieve full diffusion at a
cheaper cost than they do.

3 Security Analysis of Our Proposed Feistel Scheme

As done in [30], we analyze the proposed scheme with essentially k = 8 and
k = 16 as parameters regarding first the pseudorandomness of the scheme and
second its resistance to classical attacks.

Extended Generalized Feistel Networks Using Matrix Representation 299

3.1 Pseudorandomness

As we have defined a new block cipher structure, it is legitimate to introduce the
pseudo-random-permutation advantage (prp-advantage) and the strong-pseudo-
random-permutation advantage (sprp-advantage) of an adversary as done in sev-
eral works such as [10,16,21]. For this purpose, we introduce the two advantage
notations as:

Advprp
C (q) =def max

A:q-CPA
∣
∣Pr[AC = 1] − Pr[APn = 1]

∣
∣ (1)

Advsprp
C (q) =def max

A:q-CCA

∣
∣
∣Pr[AC,C−1

= 1] − Pr[APn,P−1
n = 1]

∣
∣
∣ (2)

where C is the encryption function of an n-bit block cipher composed of uniform
random functions (URFs) as internal modules [16] whereas C−1 is its inverse; Pn

is an n-bit uniform random permutation (URP) uniformly distributed among all
the n-bit permutations; P−1

n is its inverse. The adversary, A, tries to distinguish
C from Pn using q queries in a CPA (Chosen Plaintext Attack) attack and tries
to distinguish, always using q queries, (C,C−1) from (Pn,P−1

n) in a CCA (Chosen
Ciphertext Attack) attack. The notation means that the final guess of the adver-
sary A is either 0 if A thinks that the computations are done using Pn, or 1 if A
thinks that the computations are done using C. The maximums of Eqs. (1,2) are
taken over all possible adversaries A with q queries and an unbounded compu-
tational power. Many results [10,16,21] have appear evaluating the security of
Feistel variants in this model. For example, Luby and Rackoff in their seminal
work [16] proved the security of a 2n-bit classical Feistel cipher with 3 rounds in
the prp model and with 4 rounds in the sprp model considering that the classical
Feistel cipher is composed of n-bit-to-n-bit URFs (the bounds they found are
in O(q2/2n) for both cases). Those initial results have been generalized in many
ways [19,33].

To prove the bounds of our scheme in those models, we follow the method-
ology of [30] based on the results of [20]. To do so, we introduce the following
notations: Let λkn,r denote our k-block scheme acting on n-bit blocks, using r
rounds and with diffusion delay d. We first introduce the following definition
that will be useful for the next lemma:

Definition 5. Let H be a keyed permutation over ({0, 1}n)k and let x = (x0, · · · ,
xk−1) ∼ ({0, 1}n)k with x[i] = xi. H is said to be an ρ-AU (ρ Almost Universal)
function if:

max
x∗=x’

Pr[H(x)[i] = H(x’)[i], for i ∼ {0, · · · , k − 1}] ∞ ρ

Lemma 1. Let H and H ∈ be two keyed permutations over ({0, 1}n)k that are
respectively ρ-AU and ρ∈-AU; Let denote by λkn,r our r-round EGFN with k
branches acting on n-bit blocks with a diffusion delay d where all n-bit round-
functions are independent URFs. Then we have:

300 T.P. Berger et al.

Advprp
Γkn,2∅H(q) ∞

(

ρ +
k

2n

)

·
(

q

2

)

(3)

Advsprp
H∪−1∅Γkn,2∅H(q) ∞

(

ρ + ρ∈ +
k

2n−1

)

·
(

q

2

)

(4)

Proof. Intuitively, for Eq. (3), this lemma uses the fact that after the application
of H the inputs of function λkn,2 are sufficiently distinct and are random strings.
We then have rare collisions at the outputs of λkn,2. For Eq. (4), same arguments
hold in both directions. The proof of this lemma is omitted as it is similar to
those of Theorem 3.1 and Theorem 3.2 of [22] or is a direct extension of Lemma
9 and Theorem 7 of [19]. →≡
Theorem 8. Given the r-round EGFN λkn,r with k branches acting on n-bit
blocks with a diffusion delay d where all n-bit round functions are independent
URFs. Then we have:

Advprp
Γkn,d+2

(q) ∞ kd

2n
q2 (5)

Advsprp
Γkn,2d+2

(q) ∞ kd

2n−1
q2 (6)

Proof. To demonstrate Theorem 8, we have first to show that λkn,d is an ρ-AU
function and second that λkn,d which is λ−1

kn,d without the final shuffle is also an
ρ-AU function.

Let us first demonstrate (as done in [30]) that

Pr[λkn,d(x)[i] = λkn,d(x’)[i]] ∞ d

2n
, for all i ∼ {0, · · · , k − 1}] (7)

We assume that (xk/2−1, xk/2−2, xk/2+1) �= (x∈
k/2−1, x

∈
k/2−2, x

∈
k/2+1), with-

out loss of generality. We then estimate the probability that λkn,d(x)[0] =
λkn,d(x’)[0]. By definition of d, there is an appropriate path of length d on
the graph of λkn,d starting and finishing at vertex 0. For h = 1, · · · , d, we can
define a sequence of internal inputs Yh = λkn,h(x)[s(h)] following the appro-
priate path. It is straightforward to see that Pr[Y1 = Y ∈

1] = Pr[F (xk/2−2) ∩
xk/2−1 ∩ xk/2+1 = F (x∈

k/2−2) ∩ x∈
k/2−1 ∩ xk/2+1] ∞ 1/2n because the round

function F is a URF (using the same reasoning, this result also holds for prob-
abilities of the other branches, even the branch xk−1 due to the presence of an
F function). Then, Pr[Yd = Y ∈

d] is over bounded by
∑d

j=2 Pr[Yj = Y ∈
j |Yj−1 �=

Y ∈
j−1] + Pr[Y1 = Y ∈

1] ∞ d/2n because all round functions are independent, i.e.
Pr[Yj = Y ∈

j |Yj−1 �= Y ∈
j−1] ∞ 1/2n. This proves Eq. (7). Thus, λkn,h is a kd

2n -AU
function. Equation (5) of Theorem 8 is straightforwardly proved using Eq. (3) of
Lemma 1.

To prove the second equation of Theorem 8, we use exactly the same rea-
soning on λkn,d to show that Pr[Yd = Y ∈

d] ∞ d/2n with Yh = λkn,h(x)[s(h)] for
h = 1, · · · , d. We then deduce that λkn,d is a kd

2n -AU function. Combining the
fact that λkn,d is a kd

2n -AU function and that λkn,d is a kd
2n -AU function through

Eq. (4) of Lemma 1, we obtain Eq. (6). →≡

Extended Generalized Feistel Networks Using Matrix Representation 301

3.2 Evaluation of Security Against Classical Attacks

Differential/Linear Cryptanalysis. Differential and linear cryptanalysis are
the most famous attacks on block ciphers. They have been introduced respec-
tively in [5] and in [18]. Since their discovery, many works have been done to
first show the links between both forms of cryptanalysis [8] and to find better
ways to prevent those attacks from happening for a given cipher [9]. The usual
consensus about this last point is to count the minimal number of active S-
boxes crossed all along the cipher by differential and linear characteristics and
thus to estimate the induced maximal differential/linear probability, under the
independence assumption.

If the maximal differential/linear probability of an S-box is denoted by DP/
LP and if the minimal number of active S-boxes is N , then the best differen-
tial/linear attack against the cipher has a complexity of about 1/(DPN) (resp.
1/(LPN)) operations. Thus, a cipher is supposed to be secure against differen-
tial/linear cryptanalysis as soon as 1/(DPN) (resp. 1/(LPN)) is greater than
the entire codebook, equal here to 2kn.

In Table 3, we evaluate the minimal number of active S-boxes up to 20 rounds
for our scheme and compare it the results of [30] for their optimal construction.
We obtain a greater number of active S-boxes in our case.

Table 3. Number of active S-boxes for every round compared with results of [30].

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k = 8 [30] 0 1 2 3 4 6 8 10 12 12 14 16 16 18 20 20 22 24 24 26
k = 8 Ours 0 1 2 6 9 9 12 14 15 19 19 22 24 25 29 29 32 34 35 39
k = 16 [30] 0 1 2 3 4 6 8 11 14 19 21 24 25 27 30 31 33 36 37 39
k = 16 Ours 0 1 2 10 17 17 18 26 33 33 34 42 49 49 50 58 65 65 66 74

Finally, if we want to estimate the number of rounds that could be attacked
using differential/linear cryptanalysis, we could estimate DP and LP for classical
n-bit S-box construction, i.e. we write F the internal n-bit function as F (x) =
S(K ∩ x) where K is a subkey different at each round. We have the following
bounds on DP and LP for such an F function: if we assume n is even, then
DP and LP are over bounded by 2−n+2; if n is odd then DP and LP are over
bounded by 2−n+1. For example, if we assume that F works on 8-bit words with
k = 8, our scheme ciphers 64-bit plaintexts. We have DP = LP = 2−6 and
the maximal number of active S-boxes that could be crossed is equal to 10 to
have 264 > 1/(DPN) = 26·10. From Table 3, we could deduce that, under those
hypotheses, our scheme is resistant to differential/linear cryptanalysis as soon
as 7 rounds have been performed. In the same way, with k = 16 and n = 4,
DP = LP = 2−2, the maximal number of S-boxes that could be crossed is equal
to 31 and at least 9 rounds of our 16 branches scheme must at least be performed.

302 T.P. Berger et al.

The total number of rounds to perform for preventing differential/linear
attacks is smaller than the one required for the schemes proposed in [30] because
the number of S-boxes crossed at each round is more important.

Integral Attack. In [15] L. Knudsen and D. Wagner analyze integral crypt-
analysis as a dual to differential attacks particularly applicable to block ciphers
with bijective components. A first-order integral cryptanalysis considers a par-
ticular collection of m words in the plaintexts and ciphertexts that differ on a
particular component. The aim of this attack is thus to predict the values in
the sums (i.e. the integral) of the chosen words after a certain number of rounds
of encryption. The same authors also generalize this approach to higher-order
integrals: the original set to consider becomes a set of ml vectors which differ in
l components and where the sum of this set is predictable after a certain number
of rounds. The sum of this set is called an lth-order integral. In [27], the authors
improve the already known results in the case of Feistel structure noticing that
computations of the XOR sum of the partial decryptions can be divided into
two independent parts through a meet-in-the-middle approach. We define the
following properties for a set of 2n n-bit words:

– ‘C’ (for Constant) in the ith entry, means that the values of all the ith words
in the collection of texts are equal.

– ‘A’ (for All) means that all words in the collection of texts are different.
– ‘?’ means that the sum of words can not be predicted.
– ‘B’ (for Balanced) means that the sum of all words taken on a particular word

is equal to 0.

Integral characteristics are of the form (η ⊆ Φ) with η ∼ {C,A}k containing
at least one A and Φ ∼ {C,A, ?, B}k containing at least one A or one C or
one B. To find integral characteristics, we apply the method and the properties
described in [6]. We first look at characteristics η containing exactly one A
subblock, the other ones being C. By definition of d, the state after d rounds
does not contain C. If we assume that the state after d rounds contains two As
for the most favorable n-bit blocks, say i and j (for example blocks with indices
k/2 − 1 and k − 1), then by adding one more round, the state at the subblock
s = P(j) becomes a B = (F (A) ∩ A) or a B = (F (A) ∩ A ∩ A) subblock for the
simplest transformations, the other transformations straightforwardly give same
kind of results. After one more round, the state at indice t = P(s) is of the same
form because no F function has been crossed. Adding another round transforms
this state into a state of the form ? = F (B)∩? or ? = F (B) ∩ B∩? or more
complicated expressions for y1. Therefore, an integral characteristic (containing
one A and k − 1 Cs) exists for at most d + 2 rounds. If we try to extend at
the beginning this first order characteristic into an lth-order characteristic, we
could add at most d rounds at the beginning due to the definition of d. Thus,
the maximum number of rounds that could be reach by an lth order integral
characteristic is d + d + 2 = 2d + 2. We confirm this bound by experimental
analysis being able to find a first order integral characteristic for at most d + 2
rounds.

Extended Generalized Feistel Networks Using Matrix Representation 303

Impossible Differential Attack. Impossible differential cryptanalysis [4] is
a form of differential cryptanalysis for block ciphers. While ordinary differen-
tial cryptanalysis tracks differences that propagate through the cipher with a
probability as large as possible, impossible differential cryptanalysis exploits dif-
ferences with 0 probability in intermediate rounds of the cipher to sieve wrong
key candidates.

More formally, impossible differential attacks are represented by a differ-
ential transition η �⊆ Φ with η, Φ ∼ ({0, 1}n)k for a cipher E with k n-bit
blocks with Pr[E(x) + E(x + η) = Φ] = 0 for any x. Intuitively, if we want
to form an impossible differential transition for our EGFN, we need to first
form the first part of the impossible differential on r1 rounds between the input
differential η0 = (η0

0, · · · , η0
k−1) and the output differential after r1 rounds

ηr1 = (ηr1
0 , · · · , ηr1

k−1). Then, we form the second part of the impossible dif-
ferential in the decryption direction on r2 rounds between Φ0 = (Φ0

0 , · · · , Φ0
k−1)

and Φr2 = (Φr2
0 , · · · , Φr2

k−1). Then, the impossible differential on r1 + r2 rounds is
η0 �⊆ Φ0 if the differences ηr1 and Φr2 are not compatible in the middle of the
cipher.

From the U-method of [14] or the UID-method of [17], the differences ηr1

and Φr2 could be of the types: zero difference (denoted 0), nonzero unfixed differ-
ence (denoted α), non zero fixed difference (denoted ξ), exclusive-or of nonzero
fixed and nonzero unfixed difference (denoted by α + ξ), and unfixed difference
(denoted t). As done in [30], we could determine the maximal number of rounds
for an impossible differential attack using the U-method described in [14]. This
number of rounds mainly depends on d as shown below:

– If ηd
i for i in {k/2, · · · , k−1} has type ξ, there exists a data path, P that does

not pass through any F (i.e. the equation corresponding to this path does not
contain η0

i as a part of arguments of F). If ηd
j for j in {0, · · · , k/2 − 1} has

type α then ηd+1
l with l = P(i) has type α + ξ. If Φd

k has type ξ, we are able
to construct an impossible differential attack on 2d + 1 rounds.

– If all the data paths pass through at least one F function, then both ηd and
Φd do not contain differences of type neither ξ nor 0. Thus, we could only
mount differences on d − 1 rounds for the direct sens (i.e. η difference) and
on d rounds for the decryption sens (i.e. Φ difference). The maximal number
of rounds for this type of impossible differential attack is 2d − 1 rounds.

– By definition of d, there exists η0 such that ηd−1
i has type ξ for some i.

Similarly, there exists Φ0 with Φd−1
j has type ξ∈ for some j. If i = j and

ξ �= ξ∈, we can construct an impossible differential attack on 2d − 2 rounds.

Finally, the implementation of the U-method gives us the same results: the
maximal number of rounds for our scheme looking at impossible differential
attack is equal to 2d − 2, 2d − 1 or 2d + 1.

4 Conclusion

In this article, we have introduced a generic matrix representation that captures
most existing Generalized Feistel Networks. We explained diffusion properties

304 T.P. Berger et al.

of those schemes through this representation. We then introduce a new kind
of schemes called Extended Generalized Feistel Networks that adds a diffusion
layer to the classical GFNs. We finally instantiated this class of schemes into two
proposals and proved the security of them under classical security and attack
models.

Our further work will be to propose a complete block cipher using small S-
boxes for round-functions and based on our EGFNs proposals that have proved
security bounds and provide a more efficient diffusion with a reasonable addi-
tional cost, and confront our theoretical study to the ruthless world of crypt-
analysis and of cryptanalysts.

References

1. Adams, C., Gilchrist, J.: The CAST-256 encryption algorithm. Network Working
Group, RFC 2612, June 1999. http://tools.ietf.org/html/rfc2612 (1999)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

3. Arnault, F., Berger, T.P., Minier, M., Pousse, B.: Revisiting LFSRs for crypto-
graphic applications. IEEE Trans. Info. Theory 57(12), 8095–8113 (2011)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

6. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

7. Burwick, C., Coppersmith, D., D’Avignon, E., Gennaro, R., Halevi, S., Jutla, C.,
Matyas Jr, S.M., O’Connor, L., Peyravian, M., Stafford, D., Zunic, N.: MARS - a
candidate cipher for AES. NIST AES Proposal (1999)

8. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

9. FIPS 197. Advanced encryption standard. Federal Information Processing Stan-
dards Publication 197, Department of Commerce/N.I.S.T., U.S. (2001)

10. Gilbert, H., Minier, M.: New results on the pseudorandomness of some blockci-
pher constructions. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 248–266.
Springer, Heidelberg (2002)

11. Hirose, S., Kuwakado, H., Yoshida, H.: SHA-3 Proposal: Lesamnta. http://www.
hitachi.com/rd/yrl/crypto/lesamnta/index.html (2008)

12. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

13. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher
suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

http://tools.ietf.org/html/rfc2612
http://www.hitachi.com/rd/yrl/crypto/lesamnta/index.html
http://www.hitachi.com/rd/yrl/crypto/lesamnta/index.html

Extended Generalized Feistel Networks Using Matrix Representation 305

14. Kim, J., Hong, S., Lim, J.: Impossible differential cryptanalysis using matrix
method. Discrete Math. 310(5), 988–1002 (2010)

15. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

16. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

17. Luo, Y., Wu, Z., Lai, X., Gong, G.: A unified method for finding impossible dif-
ferentials of block cipher structures. IACR Cryptology ePrint Archive 2009:627
(2009)

18. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

19. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

20. Mitsuda, A., Iwata, T.: Tweakable pseudorandom permutation from generalized
feistel structure. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008.
LNCS, vol. 5324, pp. 22–37. Springer, Heidelberg (2008)

21. Moriai, S., Vaudenay, S.: On the pseudorandomness of top-level schemes of block
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000)

22. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

23. National Bureau of Standards: U.S. Department of Commerce. Data Encryption
Standard (1977)

24. Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

25. Rivest, R.L.:. A description of the RC2(r) encryption algorithm. Network Working
Group, RFC 2268, March 1998. http://tools.ietf.org/html/rfc2268 (1998)

26. Rivest, R.L., Robshaw, M.J.B., Sidney, R., Yin, Y.L.: The RC6 block cipher, august
1998. http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf (1998)

27. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013)

28. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

29. SHS. Secure hash standard. In: FIPS PUB 180–4, Federal Information Processing
Standards Publication (2012)

30. Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

31. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

32. Yanagihara, S., Iwata, T.: Improving the permutation layer of Type 1, Type
3, Source-Heavy, and Target-Heavy generalized feistel structures. IEICE Trans.
96–A(1), 2–14 (2013)

33. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

http://tools.ietf.org/html/rfc2268
http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf

Zero-Correlation Linear Cryptanalysis with FFT
and Improved Attacks on ISO Standards

Camellia and CLEFIA

Andrey Bogdanov1(B), Huizheng Geng2(B), Meiqin Wang2(B), Long Wen2(B),
and Baudoin Collard3

1 Technical University of Denmark, Kongens Lyngby, Denmark
anbog@dtu.dk

2 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China
{huizhenggeng,longwen}@mail.sdu.edu.cn, mqwang@sdu.edu.cn
3 Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract. Zero-correlation linear cryptanalysis is based on the linear
approximations with correlation exactly zero, which essentially gener-
alizes the integral property, and has already been applied to several
block ciphers — among others, yielding best known attacks to date on
round-reduced TEA and CAST-256 as published in FSE’12 and ASI-
ACRYPT’12, respectively.

In this paper, we use the FFT (Fast Fourier Transform) technique
to speed up the zero-correlation cryptanalysis. First, this allows us to
improve upon the state-of-the-art cryptanalysis for the ISO/IEC stan-
dard and CRYPTREC-portfolio cipher Camellia. Namely, we present
zero-correlation attacks on 11-round Camellia-128 and 12-round Camellia-
192 with FL/FL−1 and whitening key starting from the first round,
which is an improvement in the number of attacked rounds in both cases.
Moreover, we provide multidimensional zero-correlation cryptanalysis of
14-round CLEFIA-192 and 15-round CLEFIA-256 that are attacks on
the highest numbers of rounds in the classical single-key setting, respec-
tively, with improvements in memory complexity.

Keywords: Block cipher · Zero-correlation cryptanalysis · FFT · Mul-
tidimesional linear cryptanalysis · Camellia · CLEFIA

1 Introduction

Zero-correlation linear cryptanalysis proposed by Bogdanov and Rijmen in [2]
has its theoretical foundation in the availability of numerous key-independent
unbiased linear approximations with correlation zero for many ciphers. (If p is
the probability for a linear approximation to hold, its correlation is defined as
c = 2p−1). Though the initial distinguisher of [2] had some limitations in terms
of data complexity, they were overcome in the FSE’12 paper [3], where the exis-
tence of multiple linear approximations with correlation zero in target ciphers

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 306–323, 2014.
DOI: 10.1007/978-3-662-43414-7 16, c∞ Springer-Verlag Berlin Heidelberg 2014

Zero-Correlation Linear Cryptanalysis with FFT 307

was used to propose a more data-efficient distinguisher. This resulted in improved
attacks on reduced-round TEA and XTEA. The zero-correlation attack on 21
(resp. 23) rounds of TEA remains the attack breaking most rounds of TEA in
the single secret-key setting. In a follow-up work at ASIACRYPT’12 [4], zero-
correlation cryptanalysis was shown to apply to CAST-256 and to break the
highest number of rounds here as well. Moreover, fundamental links of integral
cryptanalysis to zero-correlation cryptanalysis have been revealed. Namely, inte-
grals (similar to saturation or multiset distinguishers) have been demonstrated
to be essentially a special case of the zero-correlation property. On top of that,
a multidimensional distinguisher has been constructed for the zero-correlation
property, which removed the unnecessary independency assumptions on the dis-
tinguishing side.

While the question of coping with the data requirements of zero-correlation
distinguishers has been studied in detail, the key recovery techniques used so far
on top of those statistical distinguishers remain quite rudimentary. To attack
as many rounds as possible, the attackers choose to span the zero-correlation
property over a high number of rounds, which usually yields a decrease in the
number of zero-correlation linear approximations available. Moreover, for the
same reason, the cryptanalysts tend to partially encrypt/decrypt over as many
rounds as possible, which gives a high number of (sub)key bits that need to be
guessed. Now, in a cryptanalytic effort based on correlation zero, one has to
evaluate the sample correlation of all linear approximations (usually, a rather
low number) for all plaintext-ciphertext pairs (usually, a significantly higher
number) and all key guesses (which can be very high). In terms of computational
complexity, this is the bottle neck of zero-correlation attacks so far. And this is
exactly the point where the Discrete Fast Fourier Transform comes in handy.

Contributions. The contributions of this paper are three-fold:
Zero-correlation cryptanalysis with FFT: We use Discrete Fast Fourier Trans-

form — that has been previosly used in linear cryptanalysis in [7] — to improve
the time complexity of zero-correlation attacks. It relies on eliminating the
redundant computations from the partial encryption/decryption in the course
of zero-correlation key recovery. For that, an auxiliary {−1, 1}-matrix with a
level-circulant structure is defined such that the evaluation of the sample corre-
lation can be done by matrix-vector multiplication for different keys. By making
use of this special structure, the matrix-vector multiplication can be computed
efficiently with FFT. This technique is described in Sect. 3.

Improved cryptanalysis of Camellia: We apply this FFT technique to the
block cipher Camellia and obtain an improvement in the number of attacked
rounds for Camellia-128 and Camellia-192.

Camellia is a block cipher jointly proposed by Mitsubishi and NTT in 2000 [1].
It was adopted as international standard by ISO/IEC [8]. Camellia is a
CRYPTREC-recommended cipher for Japanese e-Government applications and
is a part of the NESSIE project portfolio. It has a 128-bit block and supports
a variable key size. The number of rounds depends on the key size: 18 rounds

308 A. Bogdanov et al.

for 128-bit keys, 24 rounds for 192-bit keys, and 24 rounds for 256-bit keys.
The basic Feistel structure is used and a logical keyed transformation layer
FL/FL−1 is applied every six rounds.

Camellia has received a great deal of attention from cryptanalysts with
dozens of attacks on reduced-round variants published alone in the recent years.
However, to be able to claim more attacked rounds, most of the existing attacks
do not consider FL/FL−1 and whitening key. Moreover, some of them only
include FL/FL−1 but no whitening keys. As opposed to that, in this paper,
we only discuss attacks on Camellia with FL/FL−1 and whitening key starting
from the first round. Rather recently, some attacks on reduced-round Camellia
with FL/FL−1 and whitening key have been introduced [6,11,12]. In this set-
ting, the best attack on Camellia-128 is the impossible differential attack on 10
rounds [11]. A similar attack can break 11 rounds of Camellia-192 [11].

Table 1. Summary of attacks on Camellia with FL/FL−1 and whitening key

Key Attack Type Rounds Data Time (Ens.) Memory (Bytes) Source

128 Imp. Diff 10 2113.8CPs 2120.0 284.8 [11]
ZC. FFT 11 2125.3KPs 2125.8 2112.0 Sect. 4.2

192 Imp. Diff 10 2121.0CPs 2175.3 2155.2 [6]
Imp. Diff 10 2118.7CPs 2130.4 2135.0 [9]
Imp. Diff 11 2114.6CPs 2184.0 2141.6 [11]
ZC. FFT 12 2125.7KPs 2188.8 2112.0 Sect. 4.3

CPs: Chosen Plaintexts, KPs: Known Plaintexts

In this paper, with the FFT zero-correlation technique, we propose an attack
on 11 rounds of Camellia-128. Moreover, we propose an FFT zero-correlation
attack on 12-round Camellia-192, while previously only 11 rounds could be
attacked. The attacks are given in Sect. 4. Our improvements upon the state-of-
the-art cryptanalysis for Camellia are summarized in Table 1.

Improved cryptanalysis of CLEFIA: Multidimensional zero-correlation
attacks on 14-round CLEFIA-192 and 15-round CLEFIA-256 with better mem-
ory complexities than the currently best published cryptanalysis are reported,
while the time and data complexities are almost identical, featuring a rather
high data complexity though.

CLEFIA is a block cipher proposed in 2007 by Sony Corporation [15] and has
been adopted as ISO/IEC international standard in lightweight cryptography.
The block size is 128 bits and the key size is 128, 192, or 256 bits. The numbers
of rounds for CLEFIA-128, CLEFIA-192 and CLEFIA-256 are 18, 22 and 26,
respectively. Despite CLEFIA’s relatively recent publication, the cryptanalysts
have been active attacking it [10,17–20] with the best attack to date being the
improbable differential cryptanalysis that can break 14-round CLEFIA-192 and
15-round CLEFIA-256 [16].

With the multidimensional zero-correlation cryptanalysis, we can attack 14-
round CLEFIA-192 and 15-round CLEFIA-256 with significantly reduced

Zero-Correlation Linear Cryptanalysis with FFT 309

Table 2. Summary of attacks on CLEFIA

Key size Attack type Rounds Data Time (Ens.) Memory (Bytes) Source

192 Imp. Diff 13 2111.8CPs 2155 2116 [18]
Imp. Diff 13 2116.6CPs 2171 2101 [18]
Imp. Diff 13 2108.6CPs 2179 2113 [18]
Imp. Diff 13 2108.6CPs 2171 2109 [18]
Integral 13 2113CPs 2180.5 N/A [10]
Imp. Diff 13 2119.8CPs 2146 2120 [17]
Improbable 14 2127.0CPs 2183.2 2127.0 [16]
Multidim. ZC 14 2127.5KPs 2180.2 2115 Sect. 5.3

256 Imp. Diff 14 2112.3CPs 2220 2117 [18]
Imp. Diff 14 2117.0CPs 2236 2121 [18]
Imp. Diff 14 2109.0CPs 2244 2113 [18]
Imp. Diff 14 2109.0CPs 2236 2113 [18]
Integral 14 2113CPs 2244.5 N/A [10]
Imp. Diff 14 2120.3CPs 2212 2121 [17]
Improbable 15 2127.4CPs 2247.5 2127.4 [16]
Multidim. ZC 15 2127.5KPs 2244.2 2115 Sect. 5.4

CPs: Chosen Plaintexts, KPs: Known Plaintexts

memory complexities, while keeping the time and data complexities virtually
unchanged. The results are given in Sect. 5 and are outlined in Table 2.

Organization of the Paper. The remainder of this paper is organized as
follows. Section 2 recalls the techniques of zero-correlation linear cryptanalysis.
Section 3 describes how to use Fast Fourier Transform in zero-correlation lin-
ear cryptanalysis. Section 4 derives the zero-correlation linear cryptanalysis with
FFT of 11-round Camellia-128 and 12-round Camellia-192. Section 5 reports the
multidimensional zero-correlation linear cryptanalysis of 14-round CLEFIA-192
and 15-round CLEFIA-256. We conclude in Section 6.

2 Preliminaries

In this section, we briefly recall what zero-correlation linear approximations
are (Subsect. 2.1) and how they can be used to build distinguishers for block
ciphers with multiple zero-correlation approximations (Subsect. 2.2) and a mul-
tidimensional approach (Subsect. 2.3). This summarizes the state-of-the-art of
zero-correlation cryptanalysis.

2.1 Basics of Zero-Correlation Linear Cryptanalysis

Consider an n-bit block cipher fK with key K. Let P denote a plaintext which is
mapped to a ciphertext C under key K, C = fK(P) [2]. If φP and φC are nonzero
plaintext and ciphertext linear masks of nbits each, we denote by φP ∈ φC the

310 A. Bogdanov et al.

linear approximation φT
P ·P ∞φT

C ·C = 0. Here, φT
A ·A denotes the multiplication

of the transposed bit vector φA by a column bit vector A over F2. The linear
approximation φP ∈ φC has probability

pλP ,λC
= Pr

P∈F
n
2

{φT
P · P ∞ φT

C · C = 0}.

The value cλP ,λC
= 2pλP ,λC

− 1 is called the correlation of linear approximation
φP ∈ φC . Note that pλP ,λC

= 1/2 is equivalent to zero correlation cλP ,λC
= 0.

Given a distinguisher of zero-correlation linear approximation(s) over a part
of the cipher (detailed upon in the next two subsections), the basic key recovery
can be done with a technique similar to that of Matsui’s Algorithm 2 [14], par-
tially encrypting/decrypting from the plantext/ciphertext up to the boundaries
of the property. This is the key recovery approach used in all zero-correlation
attacks so far. In this paper, we aim to improve upon this by using an FFT
technique to reduce the computational complexity of attacks.

2.2 Zero-Correlation Linear Cryptanalysis with Multiple Linear
Approximations

Let the number of available zero-correlation linear approximations for an n-bit
block cipher be denoted by ψ [3]. Let the number of required known plaintexts
be N . For each of the ψ given linear approximations, the adversary computes
the number Ti of times that linear approximation i is fulfilled on N plaintexts
and ciphertexts, i √ {1, . . . , ψ}. Each Ti suggests an empirical correlation value
ĉi = 2Ti

N − 1. Then, the adversary evaluates the statistic:

Γ∑

i=1

ĉ2i =
Γ∑

i=1

(

2
Ti

N
− 1

)2

.

Under a statistical independency assumption, the value
∑Γ

i=1 ĉ2i for the right
key approximately follows a normal distribution with mean μ0 = Γ

N and standard
deviation λ0 =

∗
2Γ

N while for the wrong key the distribution is approximately
a normal distribution with mean μ1 = Γ

N + Γ
2n and standard deviation λ1 =∗

2Γ
N +

∗
2Γ

2n .
If we denote the probability of false positives and the probability of false

negatives to distinguish between a wrong key and a right key as ρ1 and ρ0,
respectively, and we consider the decision threshold η = μ0 + λ0z1−φ0 = μ1 −
λ1z1−φ1 (z1−φ0 and z1−φ1 are the quantiles of the standard normal distribution),
then the number of known plaintexts N should be approximately:

N ≈ 2n(z1−φ0 + z1−φ1)√
ψ/2 − z1−φ1

. (1)

Zero-Correlation Linear Cryptanalysis with FFT 311

2.3 Multidimensional Zero-Correlation Linear Cryptanalysis

Now we treat the zero-correlation linear approximations available as a linear
space spanned by m base zero-correlation linear approximations such that all
ψ = 2m − 1 non-zero linear combinations of them have zero correlation [4]. For
each of the 2m data values z √ F

m
2 , the attacker initializes a counter V [z], z =

0, 1, 2, . . . , 2m − 1, to value zero. Then, for each distinct plaintext, the attacker
computes the corresponding data value in F

m
2 by evaluating the m basis linear

approximations and increments the counter V [z] of this data value by one. Then
the attacker computes the statistic T :

T =
2m−1∑

i=0

(V [z] − N2−m)2

N2−m(1 − 2−m)
.

The statistic T for the right key guess follows a Φ2-distribution with mean μ0 =

(ψ− 1)2
n−N
2n−1 and variance λ2

0 = 2(ψ− 1)
(

2n−N
2n−1

⎧2

, while for the wrong key guess

it follows a Φ2-distribution with mean μ1 = ψ − 1 and variance λ2
1 = 2(ψ − 1).

If we denote the probability of false positives and the probability of false
negatives to distinguish between a wrong key and a right key as ρ1 and ρ0,
respectively, and we consider the decision threshold η = μ0 + λ0z1−φ0 = μ1 −
λ1z1−φ1 , then the number of known plaintexts N should be about

N ≈ (2n − 1)(z1−φ0 + z1−φ1)√
(ψ − 1)/2 + z1−φ0

+ 1. (2)

Note that in both (1) and (2), the number of approximations used is the
same and equals ψ. While in the first case we take those individually, the mul-
tidimensional treatment considers them as a linear space spanned by m base
approximations.

3 Fast Fourier Transform for Zero Correlation

In this section, we describe an FFT-based technique of computational com-
plexity reduction for zero-correlation cryptanalysis. It relies on eliminating the
redundant computations from the partial encryption/decryption in the course of
zero-correlation linear cryptanalysis. Let ΦP ∈ ΦD be the linear approximation
for the first R − 1 rounds of an R-round block cipher fK .

After partial decryption of the last round, the linear approximation to be
evaluated becomes: ΦT

P · P ∞ ΦT
D · S−1(C ∞ K), where S−1(·) represents a partial

decryption of the last round for the k bits of C and K that influence the value
of ΦT

D · D.
We define the 2k × 2k matrix M as follows:

M(C,K) = (−1)ψT
D·S−1(C∅K), for all C,K √ {0, . . . , 2k − 1}.

312 A. Bogdanov et al.

Then, the bias of the linear approximation can be evaluated as the matrix vector
product M ·x. As shown in [7], the matrix M has a level-circulant structure and,
consequently, this matrix-vector product can be computed efficiently using the
Fast Walsh-Hadamard Transform (equivalent to a k-dimensional Fast Fourier
Transform) with O(3k ·2k) time complexity. The level-circulant structure results
from the XOR between the ciphertext and the key guess. Therefore, the matrix
can be expressed as a function of C ∞K. The detail of computing matrix-vector
product with FFT is shown in Appendix A of the full version of this paper [5].

The objective of using FFT is to compute the correlation for different sub-
key guesses with matrix-vector multiplications. The key recovery part in zero-
correlation linear cryptanalysis can be done with the similar method utilized by
Matsui’s Algorithm 2 [14], as shown in [3]. Since the zero correlation attack with
multiple linear approximations computes the statistic which reveals correlation
directly, we can use the FFT speed-up to improve the computational complexity
as described above.

4 Zero-Correlation Cryptanalysis of Camellia with FFT

Camellia is a block cipher jointly proposed by Mitsubishi and NTT in 2000
[1] which has been approved for use by ISO/IEC. It features the basic Feistel
structure. The block size is 128 bits and the key size is variable. The number of
rounds depends on the key size, i.e., 18 rounds for 128-bit key and 24 rounds for
192/256-bit key. Every six rounds, a logical keyed transformation layer FL/FL−1

is applied and the round function uses a SPN structure, including the XOR
operation with the round subkey, the nonlinear transformation consisting of
eight parallel S-boxes (8 × 8) and the linear permutation P . The cipher also
uses input and output key whitening. Encryption process and key schedule are
illustrated in Appendix B of the full version of this paper [5].

4.1 Zero-Correlation Linear Approximations for 7-Round Camellia

In this subsection, some zero-correlation linear approximations for 7-round
Camellia with FL/FL−1 are derived. First, we will introduce some properties
for FL/FL−1 of Camellia.

Property 1. If the input mask of FL is IM = (0|0|0|0|0|0|0|i), then the out-
put mask of FL is OM = (?|0|0|?|?|0|0|?), where ‘?’ is an unknown value, see
Fig. 1(a).

Property 2. For the output mask of FL−1 is OM = (0|0|0|0|0|0|0|i), then the
input mask of FL−1 is IM = (?|0|0|?|?|0|0|?), where ‘?’ is an unknown value,
see Fig. 1(b).

With these properties, we can derive zero-correlation linear approximations
for 7-round Camellia.

Zero-Correlation Linear Cryptanalysis with FFT 313

Fig. 1. Property of FL/FL−1

Fig. 2. 4 + 3 rounds Fig. 3. 3 + 4 rounds

Property 3. For 7-round Camellia consisting of (F |F |F |F |FL/FL−1|F |F |F) as
in Fig. 2 or (F |F |F |FL/FL−1|F |F |F |F) as in Fig. 3, if the input mask of the first
round is (b|0|0|b|0|b|b|b, 0|0|0|0|0|0|0|0) and the output mask of the last round is
(0|0|0|0|0|0|0|0, h|0|0|h|0|h|h|h), then the correlation of the linear approximations
is zero, where b, h √ F

8
2, b →= 0, h →= 0.

The proofs of Property 1, Property 2 and Property 3 are given in Appendix C
of the full version of this paper [5].

4.2 Key Recovery for 11-Round Camellia-128

Using the FFT technique, we can attack 11-round Camellia-128 with FL/FL−1

and whitening key starting from the first round by placing the zero-correlation
linear approximations of 7-round (4 + 3) Camellia in rounds 3–9 as demon-
strated in Fig. 3. This is clarified in Fig. 4(a). Note that in Fig. 4(a), the byte

314 A. Bogdanov et al.

values to be computed are denoted as ‘≡’ while the bytes denoted as ‘0’ do not
require computation.

In the following, we will use some notations. P i1,i2,..., Ci1,i2,... and Ki1,i2,...

denote the concatenation of i1-th, i2-th,. . . bytes of the plaintext word, ciphertext
word or subkey word respectively. Sj denotes the output of the j-th S-box,
Fr denotes the round function for the r-th round and F l

r is a function and it
computes the l-th output byte of the round function for the r-th round. We
denote K0 = kw1 ∞ k1, K1 = kw2 ∞ k2, K2 = kw3 ∞ k10, and K3 = kw4 ∞ k11,
where k1, k2, k10 and k11 are 64-bit subkeys for round 1, 2, 10 and 11, respectively,
and kwi, 1 ∼ i ∼ 4 is the 64-bit whitening subkey.

Fig. 4. Attacks on 11-round Camellia-128 and 12-round Camellia-192

In our attack, we guess the subkey and evaluate the linear approximation
(b|0|0|b|0|b|b|b) · X3

L ∞ (h|0|0|h|0|h|h|h) · X10
R = 0 with

u = bT · P 8
L ∈ hT · C8

R ∈ αT · P 1,4,6,7
L ∈ βT · C1,4,6,7

R

∈bT · S8[P 8
R ∈ K8

1 ∈ F 8
1 (P 1,4,5,6,7

L ∈ K1,4,5,6,7
0)]

∈hT · S8[C8
L ∈ K8

2 ∈ F 8
11(C

1,4,5,6,7
R ∈ K1,4,5,6,7

3)] = 0,

where α = (b,b,b,b), β = (h,h,h,h), b and h are non-zero bytes. In order to take
the full advantage of the FFT technique to reduce the time complexity, we transform
u to v by XORing αT · K1,4,6,7

0 ∈ βT · K1,4,6,7
3 :

v = bT · P 8
L ∈ hT · C8

R ∈ αT · (P 1,4,6,7
L ∈ K1,4,6,7

0) ∈ βT · (C1,4,6,7
R ∈ K1,4,6,7

3

∈bT · S8[P 8
R ∈ K8

1 ∈ F 8
1 (P 1,4,5,6,7

L ∈ K1,4,5,6,7
0)]

∈hT · S8[C8
L ∈ K8

2 ∈ F 8
11(C

1,4,5,6,7
R ∈ K1,4,5,6,7

3)].

(3)

Obviously, the absolute of correlation of the linear approximation u = 0 equals to
that of the linear approximation v = 0, so our attack is equivalent to evaluating the

Zero-Correlation Linear Cryptanalysis with FFT 315

correlation of the linear approximation v = 0. As described in Sect. 3, the correlation
of the linear approximation v = 0 can be evaluated as the matrix vector product where
the matrix is:

M(P 1,4,5,6,7
L |P 8

R|C8
L|C1,4,5,6,7

R , K1,4,5,6,7
0 |K8

1 |K8
2 |K1,4,5,6,7

3) = (−1)v. (4)

To reduce the time complexity, we choose 214 linear approximations where h
takes all possible non-zero values while b only takes all non-zero values for the
six least significant bits and zero value for the two most significant bits. Then
the attack is performed as follows:

1. Allocate the vector of counters Cβ of the experimental correlation for every
subkey candidate α = (K1,4,5,6,7

0 |K8
1 |K8

2 |K1,4,5,6,7
3).

2. For each of the 2110 values of i=(P 1,4,5,6,7
L |P 8

L[1, 2, 3, 4, 5, 6]|P 8
R|C8

L|C1,4,5,6,7,8
R),

define a vector of 2110 counters x, where P 8
L[1, 2, 3, 4, 5, 6] is the six least sig-

nificant bits of P 8
L.

3. For each of N plaintext-ciphertext pairs, extract the 110-bit value

i = (P 1,4,5,6,7
L |P 8

L[1, 2, 3, 4, 5, 6]|P 8
R|C8

L|C1,4,5,6,7,8
R)

and increment the counter xi according to the value of i.
4. For each of the 214 linear approximations

(a) Perform the data counting phase
i. For each of the 296 values of j = (P 1,4,5,6,7

L |P 8
R|C8

L|C1,4,5,6,7
R), define a

vector of 296 counters y.
ii. For each of the 2110 values of i = (P 1,4,5,6,7

L |P 8
L[1, 2, 3, 4, 5, 6]|P 8

R|C8
L|

C1,4,5,6,7,8
R), extract 96-bit value j = (P 1,4,5,6,7

L |P 8
R|C8

L|C1,4,5,6,7
R) and

add xi to or subtract xi from the counter yj according to the parity
of bT · P 8

L ∞ hT · C8
R.

(b) Perform the key counting phase
i. Compute the first column of M using (3) and (4). As M is a 96-level

circulant matrix, this information is sufficient to define M completely
(requires 296 operations).

ii. Evaluate the vector ξ = M · y (requires 3 · 96 · 296 operations).
iii. Let C = C + (ξ/N)2.

5. If Cβ < η , then the corresponding α is a possible subkey candidate and all
master keys are tested exhaustively.

After Step 4, we obtain 296 counters Cβ which are the sum of squares of
correlations for 214 linear approximations under each α. The correct subkey is
then selected from the candidates with Cβ less than the threshold η = λ0 ·z1−φ0 +
μ0 =

∗
2Γ

N · z1−φ0 + Γ
N .

If we set ρ0 = 2−2.7 and ρ1 = 2−96, we get z1−φ0 ≈ 1 and z1−φ1 ≈ 11.3. Since
the block size n = 128 and we have ψ = 214 linear approximations, according
to Eq. (1) the number of known plaintext-ciphertext pairs N should be about
2125.3.

316 A. Bogdanov et al.

In Step 5, only about 296 · 2−96 = 1 guess is expected to survive for the
96-bit target subkey. According to the key schedule of Camellia (e.g. outlined
in Appendix B of the full version of this paper [5]), the recovered 96-bit subkey
K1,4,5,6,7

0 , K8
1 , K8

2 and K1,4,5,6,7
3 can be expressed in kA and kL as follows,

K1,4,5,6,7
0 = [kw1 ∞ k1]1,4,5,6,7 = [(kL)L ∞ (kA)L]1,4,5,6,7,

K8
1 = [kw2 ∞ k2]8 = [(kL)R ∞ (kA)R]8,

K8
2 = [kw3 ∞ k10]8 = [(kA ≪ 111)L ∞ (kL ≪ 60)R]8,

K1,4,5,6,7
3 = [kw4 ∞ k11]1,4,5,6,7 = [(kA ≪ 111)R ∞ (kA ≪ 60)L]1,4,5,6,7.

(5)

One can see that K1,4,5,6,7
3 is only related to 61 bits of kA. So we first guess these

61 bits of kA and compute K1,4,5,6,7
3 . Then only about 261 · 2−40 = 221 values for

61-bit kA will survive. Second, we guess the other 67 bits of kA. Then the master
key kL could be computed with four 1-round Camellia encryptions using (6) as
proposed in [13]:

kR
L = F−1

C2
(kL

A ∞ FC4(k
R
A)) ∞ kR

A ∞ FC3(k
L
A ∞ FC4(k

R
A)),

kL
L = F−1

C1
(kR

A ∞ FC3(k
L
A ∞ FC4(k

R
A))),

(6)

where Ci, 1 ∼ i ∼ 4 is the constant value used in the key schedule. The complex-
ity of this procedure is about 221 ·267 · 4

11 ≈ 286.5 11-round Camellia encryptions.
The complexities for Step 3, Step 4(a), Step 4(b) and Step 5 are 2125.3 memory

accesses, 2124 memory accesses, 214 · 4 · 96 · 296 = 2118.6 11-round encryptions,
286.5 11-round encryptions, respectively. If we assume that one time of memory
access is equivalent to one 11-round Camellia encryption, then the total time
complexity is about 2125.8 encryptions. The memory requirements are about
2112 bytes.

All in all, the data complexity is about 2125.3 known plaintexts, the time com-
plexity is about 2125.8 encryptions and the memory requirements are 2112 bytes.

4.3 Key Recovery for 12-Round Camellia-192

Now we will use the 7-round zero-correlation linear approximations of type (3+4)
as given in Fig. 3 to attack 12-round Camellia-192 starting from the first round.
By placing these 7-round zero-correlation linear approximations in rounds 4 to
10, we can attack Camellia-192 from round 1 to round 12. This is illustrated in
Fig. 4(b).

First, we guess the 64-bit subkey of the first round K0 and then we proceed
with the steps similar as those in the attack on 11-round Camellia-128. Hence,
we have to guess 160-bit subkey:

K1,2,3,4,5,6,7,8
0 = [kw1 ∞ k1]1,2,3,4,5,6,7,8 = [(kL)L ∞ (kB)L]1,2,3,4,5,6,7,8, (7)

K1,4,5,6,7
1 = [kw2 ∞ k2]1,4,5,6,7 = [(kL)R ∞ (kB)R]1,4,5,6,7, (8)

K8
2 = [kw1 ∞ k3]8 = [(kL)L ∞ (kR ≪ 15)L]8, (9)

K8
3 = [kw3 ∞ k11]8 = [(kB ≪ 111)L ∞ (kA ≪ 45)L]8, (10)

K1,4,5,6,7
4 = [kw4 ∞ k12]1,4,5,6,7 = [(kB ≪ 111)R ∞ (kA ≪ 45)R]1,4,5,6,7. (11)

Zero-Correlation Linear Cryptanalysis with FFT 317

Note that in this attack we set ρ0 = 2−2.7 and ρ1 = 2−160, we get z1−φ0 ≈ 1
and z1−φ1 ≈ 14.7. Since the block size n = 128 and we have ψ = 214 linear
approximations, then N should be about ≈ 2125.7 from (1). Similar to the attack
on 11-round Camellia-128, only about 2160 · 2−160 = 1 guess for the 160-bit
target subkey is expected to survive. The complexity of these steps is about
264 · 2124.8 = 2188.8 12-round Camellia encryptions since the attack on 12-round
Camellia-192 is basically the same as the attack on 11-round Camellia-128 except
that we have to guess the extra 64-bit K1,2,3,4,5,6,7,8

0 .
To recover the master key consisting of 128-bit kL and 64-bit (kR)L, we

first guess 128-bit kB , compute k⊆
B according to key schedule. We compute the

value of (kL)L according to (7). Then we get (kR ≪ 15)8L with (9), guess 56-bit
(kR ≪ 15)1,2,3,4,5,6,7

L and compute kA = k⊆
B ∞ kR. Now we get the value of kA

and kB according to the key schedule. Using (10, 11), we filter out 2−48 values of
kA and kB . After this step, there are about 2128 ·256 ·2−48 = 2136 possible values
for kA, kB and kR. kL can be computed with a cost of four 1-round Camellia
encryptions for each of 2136 values of kA, kB and kR. With (8), we filter out
2−40 wrong candidates. Then we have 296 right key candidates at this time. By
verifying with one plaintext-ciphertext pair, only the right key will remain. The
dominant time complexity of the above procedure lies in the computation of
kA after guessing 128-bit kB and 56-bit (kR ≪ 15)1,2,3,4,5,6,7

L , which is about
2184 XORs of two 128-bit values. Compared to 2188.8 12-round Camellia-192
encryptions, this time complexity is negligible.

Thus, the data complexity is 2125.7 known plaintexts, the memory require-
ments are about 2112 bytes, and the time complexity is 2188.8 encryptions.

5 Multidimensional Zero-Correlation Cryptanalysis
of CLEFIA

CLEFIA is a block cipher proposed in 2007 by Sony Corporation [15] and has
been adopted as one of the ISO/IEC international standards in lightweight cryp-
tography. The block size is 128-bit and the key size could be 128, 192 or 256 bits.
Accordingly, they are denoted as CLEFIA-128, CLEFIA-192 and CLEFIA-256
and the number of rounds for them are 18, 22 and 26, respectively. CLEFIA
employs a four-branch generalized Feistel structure with two parallel F func-
tions (F0, F1). The 128-bit ciphertext (C0|C1|C2|C3) is generated from 128-bit
plaintext (P0|P1|P2|P3) along with 2r 32-bit subkey keys (RK0, . . . , RK2r−1) and
four 32-bit whitening keys (WK0,WK1,WK2, WK3), where r is the total round
number. Here we denote a 128-bit value as concatenation of four 32-bit words.
The encryption process and key schedule of CLEFIA are shown in Appendix D
of the full version of this paper [5].

There are two types of round functions consisting of subkey XOR, S-boxes
and the linear transformation, where the linear transformations for them are
defined as M0 and M1, respectively:

318 A. Bogdanov et al.

M0 =

⎨

⎩
⎩
⎤

0x1 0x2 0x4 0x6
0x2 0x1 0x6 0x4
0x4 0x6 0x1 0x2
0x6 0x4 0x2 0x1

⎥

⎦
⎦
⎪ and M1 =

⎨

⎩
⎩
⎤

0x1 0x8 0x2 0xa
0x8 0x1 0xa 0x2
0x2 0xa 0x1 0x8
0xa 0x2 0x8 0x1

⎥

⎦
⎦
⎪ .

5.1 Zero-Correlation Linear Approximations of 9-Round CLEFIA

In [2], zero-correlation linear approximations of 9-round CLEFIA have been
given. If the input mask is (a,0,0,0) and the output mask is (0,0,0,a), then
the correlation of the linear approximations is zero. The details of the zero-
correlation linear approximations of 9-round CLEFIA are shown in Fig. 5.

Fig. 5. Zero-correlation linear approximations of 9-Round CLEFIA

5.2 Multidimensional Zero-Correlation Cryptanalysis of 14-Round
CLEFIA-192 and 15-Round CLEFIA-256

For the zero-correlation linear approximations of 9-round CLEFIA (a,0,0,0)
−∈ 9r(0,0,0,a), if we take all non-zero values for a, then there are so many
guessed subkey bits involved in the key recovery process that the time complexity
will be greater than exhaustive search. Therefore, in order to reduce the number
of guessed subkey bits, we only use the linear approximations where a satisfies
the following condition:

(x, 0, 0, 0), (0, x, 0, 0), (0, 0, x, 0) or (0, 0, 0, x) −← M1a, x ∪ F
8
2, x ⊕= 0,a ∪ F

32
2 ,a ⊕= 0,

(y0, y1, y2, y3) −← M0a, yi ∪ F
8
2, 0 ◦ i ◦ 3, yi ⊕= 0.

We will use the above four groups of a in our attack and there are 255 such
linear approximations for each group discovered in our test. In the following, we
use ag, 0 ∼ g ∼ 3 to denote the four groups where only the g-th byte’s input mask
of M1 is nonzero in ag, e.g. (x, 0, 0, 0) √ a0 and (0, 0, x, 0) √ a2. In this way, if
the output mask of the round function F1 is a, then the input mask of the linear

Zero-Correlation Linear Cryptanalysis with FFT 319

Fig. 6. Attack on 14-round CLEFIA-192 Fig. 7. Attack on 15-round CLEFIA-256

transformation M1 of this round function is (x, 0, 0, 0), (0, x, 0, 0), (0, 0, x, 0) or
(0, 0, 0, x). In this way, there is only one active S-box in F1 round function in
the 1st and 13th rounds, only one subkey byte is required to be guessed instead
of four subkey bytes. Four groups of ag will be used one by one to sieve wrong
subkeys. The right subkey candidates are those survived after the filteration by
four groups of a.

5.3 Key Recovery for 14-Round CLEFIA-192

We put the zero-correlation linear approximations of 9-round CLEFIA in rounds
4–12 and attack 14-round CLEFIA-192 starting from the first round, see Fig. 6.

Assume that N known plaintexts are used, the partial encryption and decryp-
tion using the partial sum technique are proceeded as in Table 3. Note that Xr

j

denotes the j-th branch of the r-th round, the number in square bracket denotes
the byte of a 32-bit word, e.g. P2[g], 0 ∼ g ∼ 3 is the g-th byte of 32-bit P2. Y and
Z are the intermediate states in the third round shown in Fig. 6. In Table 3, the
second column stands for the subkey bytes that have to be guessed in each step,
the third column denotes the time complexity of corresponding step measured in
1/4 round encryption. In each step, we save the values of the intermediate state
xi,g, 1 ∼ i ∼ 7, 0 ∼ g ∼ 3, during the encryption and decryption process and
these are shown in column “Computed States”. For each possible value of xi,g,
the counter (partial sum) Vi,g[xi,g] will record how many plaintext-ciphertext
pairs can produce the corresponding intermediate state xi,g. The counter size
for each xi,g is shown in the last column.

320 A. Bogdanov et al.

Table 3. Partial encryption and decryption on 14-round CLEFIA-192

Step Guess Complexity Computed states Counter-size

I K5 4 · N · 232 x1,g = (P0|P1|P2|(M−1
1 (P3 ∅ C2))[g]|X13

1 [g]) V1,g − 2112

II K0 4 · 2112 · 264 x2,g = (X1
0 |P2|(M−1

1 (P3 ∅ C2))[g]|X13
1 [g]) V2,g − 280

III K2 4 · 280 · 296 x3,g = (X2
0 |P2[g]|(M−1

1 (P3 ∅ C2))[g]|X13
1 [g]) V3,g − 256

IV K3[0] 4 · 256 · 2104 x4,g = (X2
0 [1, 2, 3]|Z[0]|P2[g]|(M−1

1 (P3 ∅ C2))[g]|X13
1 [g]) V4,g − 256

V K3[1] 4 · 256 · 2112 x5,g = (X2
0 [2, 3]|Z[1, 0]|P2[g]|(M−1

1 (P3 ∅ C2))[g]|X13
1 [g]) V5,g − 256

VI K3[2] 4 · 256 · 2120 x6,g = (X2
0 [3]|Z[0, 1, 2]|P2[g]|(M−1

1 (P3 ∅ C2))[g]|X13
1 [g]) V6,g − 256

VII K3[3] 4 · 256 · 2128 x7,g = (P2[g]|(M−1
1 (Y ∅ P3 ∅ C2))[g]|X13

1 [g]) V7,g − 224

Since we are going to use four groups ag, 0 ∼ g ∼ 3, each step in Table 3 has
to be parallelly proceeded for each ag. To be more clear, we explain the first two
steps in Table 3 in detail. In Step I, we allocate four 16-bit counters V1,g[x1,g] and
initialize these counters to zero. We then guess 32-bit K5 and partially decrypt
N ciphertexts to compute x1,g, and increment the corresponding counters. In
Step II, we allocate four 48-bit counters V2,g[x2,g] and initialize them to zero.
We then guess 32-bit K0 and partially encrypt x1,g to compute x2,g and add the
corresponding V1,g to V2,g.

Key Recovery. We set ρ0 = 2−4.6 and ρ1 = 2−48, then z1−φ0 ≈ 1.7, z1−φ1 =
7.8. Since n = 128 and ψ = 255, then according to (2), the data complexity N is
about 2127.5. To recover the master key, we perform the following steps.

(A) Partial encryption and decryption for 2127.5 plaintext-ciphertext pairs as
specified by Step I∩VII in Table 3. After Step VII, we get counters V7,0[x7,0],
V7,1[x7,1], V7,2[x7,2] and V7,3[x7,3].

(B) Wrong subkeys filteration with a0 as specified in Algorithm 1. There are
16 new guessed subkey bits involved in this step, and thus about 2128+16 ·
2−48 = 296 values for guessed 144-bit subkey will survive after this step.

(C) Wrong subkeys filteration with a1 as specified in Algorithm 1. After this
step, 296+16 · 2−48 = 264 values for guessed 160-bit subkey will survive.

(D) Wrong subkeys filteration with a2 as specified in Algorithm 1. 264+16·2−48 =
232 values for guessed 176-bit subkey are expected to survive after this step.

(E) Wrong subkeys filteration with a3 as specified in Algorithm 1. Only 232+16 ·
2−48 = 1 value for guessed 192-bit subkey is supposed to remain.

(F) According to the key schedule of CLEFIA-192, we can recover the master
key from this unique 192-bit subkey.

The dominant time complexity in Step (A) lies in Step VII, which is about
4·256·2128· 14 · 1

14 ≈ 2180.2 14-round CLEFIA-192 encryptions. The time complexity
of Step (B) is about (2128+8 ·224+2128+16 ·216)· 14 · 1

14 ≈ 2155.2 14-round CLEFIA-
192 encryptions. The time complexity of Step (C) is about (296+8 · 224 +296+16 ·
216) · 1

4 · 1
14 ≈ 2123.2 14-round CLEFIA-192 encryptions. The time complexity of

Step (D) and (E) is negligible.
For the time complexity of Step (F), we need to consider the key schedule

of CLEFIA-192. The six subkeys guessed, Ki, 0 ∼ i ∼ 5 are RK0, RK1, RK2 ∞

Zero-Correlation Linear Cryptanalysis with FFT 321

Algorithm 1. Filter out wrong subkeys with ag

1: Allocate 128-bit counter V8,g for 16-bit x8,g = ((M−1
1 (Y ∈ X1

2 ∈ C2))[g]|X13
1 [g])

and initialize to zero
2: Guess 8-bit K1[g], compute x8,g with x7,g, then V8,g[x8,g]+ = V7,g[x7,g]
3: Allocate 128-bit counter V9,g for 8-bit x9,g = ((M−1

1 (Y ∈ X1
2 ∈ X12

3))[g]) and
initialize to zero

4: Guess 8-bit K4[g], compute x9,g with x8,g, then V9,g[x9,g]+ = V8,g[x8,g]
5: Allocate 128-bit counter Vg[z] for 8-bit z and initialize to zero

{z is the concatenation of evaluations of 8 basis zero-correlation masks}
6: Compute z from x9,g with 8 basis zero-correlation masks, then Vg[z]+ = V9,g[x9,g]

7: Compute T = N · 28 ·∑28−1
z=0

(
Vg [z]

N
− 1

28

)2

8: if T < τ then
9: Guessed subkey values are possible right subkey candidates

10: end if

WK0, RK4, RK25∞WK2 and RK26, respectively. According to the key schedule
in Appendix D of the full version of this paper [5], RK0, RK1 and RK26 is only
related with the intermediate key value L. Then after Step (E), we obtained
96-bit L since there is only one value for the 192-bit subkey left. To recover the
192-bit key K from the key schedule, we guess other 160-bit L and compute
K with cost equivalent to 20 one-round CLEFIA encryptions. K could then be
verified with at most two plaintext-ciphertext pairs. The complexity to recover
the master key from the 192-bit subkey we obtained after Step (E) is 2160 · 20

14 +
2160 + 2160−128 ≈ 2161.3 14-round CLEFIA-192 encryptions.

All in all, the time complexity of our attack on 14-round CLEFIA-192 is
about 2180.2 14-round CLEFIA-192 encryptions, the data complexity is 2127.5

known plaintexts and the memory requirements are about 2115 bytes to store
the counters in Step I.

5.4 Key Recovery for 15-Round CLEFIA-256

We also place the zero-correlation linear approximations of 9-round CLEFIA in
rounds 4 to 12 and attack 15-round CLEFIA-256 starting from the first round,
see Fig. 7.

For the attack on 15-round CLEFIA-256, we need to guess 32-bit K6 and 32-
bit K7 and decrypt N pairs of texts to get (X14

0 ,X14
1 ,X14

2 ,X14
3). The remaining

procedure is similar as the attack on 14-round CLEFIA-192, where we still set
ρ0 = 2−4.6 and ρ1 = 2−48.

The time complexity from Step (A) to Step (E) for the attack on 15-round
CLEFIA-256 is about 264 times of the time complexity in the corresponding
step for the attack on 14-round CLEFIA-192. So the total complexity for Step
(A)∩(E) is about 2180.2 · 264 ≈ 2244.2 15-round CLEFIA-256 encryptions.

For the time complexity of Step (F), the key schedule of CLEFIA-256 should
be considered. The guessed eight subkeys, Ki, 0 ∼ i ∼ 7 are RK0, RK1, RK2 ∞
WK0, RK4, RK25, RK26 ∞ WK3, RK28 and RK29, respectively. From the key

322 A. Bogdanov et al.

schedule of Appendix D of the full version of this paper [5], the guessed subkey
RK0, RK1 and RK25 are only related with the intermediate key value L. Then
after Step (E), we obtained 264 values for 96-bit L since there are 264 guesses for
the 256-bit subkey left. To recover the 256-bit key K, we guess other 160-bit L
and compute K with cost equivalent to 20 one-round CLEFIA encryptions. K
could then be verified with at most two plaintext-ciphertext pairs. The complex-
ity to recover the master key from the 256-bit subkey we obtained after Step (E)
is about 264 ·2160 · 2015 +264 ·2160+264 ·2160 ·2−128 ≈ 2185.2 15-round CLEFIA-256
encryptions.

All in all, the time complexity of our attack on 15-round CLEFIA-256 is
about 2244.2 15-round CLEFIA-256 encryptions, the data complexity is 2127.5

known plaintexts and the memory requirements are about 2115 bytes to store
the counters in Step I.

6 Conclusion

In this paper, we use the Discrete Fast Fourier Transform to enhance zero-
correlation linear cryptanalysis by a faster key recovery. We improve upon the
state-of-the-art cryptanalysis for Camellia and CLEFIA by breaking more rounds
for Camellia-128 and Camellia-192 than was possible previously as well as by
reducing time and memory complexities for CLEFIA-192 and CLEFIA-256.

It is our hope that the FFT zero correlation cryptanalysis will lead to a
reevaluation of security level for further ciphers as well.

Acknowledgments. This work has been supported by the National Basic Research
973 Program of China under Grant No. 2013CB834205, the National Natural Science
Foundation of China under Grant Nos. 61133013, 61070244, the Program for New
Century Excellent Talents in University of China under Grant No. NCET-13-0350, as
well as the Interdisciplinary Research Foundation of Shandong University of China
under Grant No. 2012JC018.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

2. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanaly-
sis of block ciphers. Des. Codes Crypt. 70(3), 369–383 (2014)

3. Bogdanov, A., Wang, M.: Zero correlation linear cryptanalysis with reduced data
complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48. Springer,
Heidelberg (2012)

4. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional
linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

Zero-Correlation Linear Cryptanalysis with FFT 323

5. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear
cryptanalysis with FFT and improved attacks on ISO standards Camellia and
CLEFIA. IACR ePrint Archive report (2013)

6. Chen, J., Jia, K., Yu, H., Wang, X.: New impossible differential attacks of reduced-
round Camellia-192 and Camellia-256. In: Parampalli, U., Hawkes, P. (eds.) ACISP
2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)

7. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of
Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS,
vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

8. ISO/IEC 18033–3:2005 Information technology – Security techniques – Encryption
algrithm – Part 3: Block Ciphers (July 2005)

9. Li, L., Chen, J., Jia, K.: New impossible differential cryptanalysis of reduced-round
Camellia. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092,
pp. 26–39. Springer, Heidelberg (2011)

10. Li, Y., Wu, W., Zhang, L.: Improved integral attacks on reduced-round clefia block
cipher. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115, pp. 28–39.
Springer, Heidelberg (2012)

11. Liu, Y., Li, L., Gu, D., Wang, X., Liu, Z., Chen, J., Li, W.: New observations on
impossible differential cryptanalysis of reduced-round Camellia. In: Canteaut, A.
(ed.) FSE 2012. LNCS, vol. 7549, pp. 90–109. Springer, Heidelberg (2012)

12. Liu, Y., Gu, D., Liu, Z., Li, W.: Improved results on impossible differential crypt-
analysis of reduced-round Camellia-192/256. J. Syst. Softw. 85(11), 2451–2458
(2012)

13. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New results on impos-
sible differential cryptanalysis of reduced–round Camellia–128. In: Jacobson Jr,
M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.
Springer, Heidelberg (2009)

14. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

15. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

16. Tezcan, C.: The improbable differential attack: cryptanalysis of reduced round
CLEFIA. In: Gong, G., Gupta, C.K. (eds.) INDOCRYPT 2010. LNCS, vol. 6498,
pp. 197–209. Springer, Heidelberg (2010)

17. Tsunoo, Y., Tsujihara, E., Shigeri, M., Saito, T., Suzaki, T., Kubo, H.: Impossible
differential cryptanalysis of CLEFIA. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol.
5086, pp. 398–411. Springer, Heidelberg (2008)

18. Tsunoo, Y., Tsujihara, E., Shigeri, M., Suzaki, T., Kawabata, T.: Cryptanalysis of
CLEFIA using multiple impossible differentials. ISITA 2008, 1–6 (2008)

19. Wang, W., Wang, X.: Saturation cryptanalysis of CLEFIA. J. Commun. 29(10),
88–92 (2008)

20. Zhang, W., Han, J.: Impossible differential analysis of reduced round CLEFIA. In:
Yung, M., Liu, P., Lin, D. (eds.) INSCRYPT 2008. LNCS, vol. 5487, pp. 181–191.
Springer, Heidelberg (2009)

Implementing Lightweight Block Ciphers
on x86 Architectures

Ryad Benadjila1, Jian Guo2, Victor Lomné1(B), and Thomas Peyrin2

1 ANSSI, Paris, France
{ryad.benadjila,victor.lomne}@ssi.gouv.fr

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{ntu.guo,thomas.peyrin}@gmail.com

Abstract. Lightweight block ciphers are designed so as to fit into very
constrained environments, but usually not really with software perfor-
mance in mind. For classical lightweight applications where many con-
strained devices communicate with a server, it is also crucial that the
cipher has good software performance on the server side. Recent work has
shown that bitslice implementations applied to Piccolo and PRESENT led
to very good software speeds, thus making lightweight ciphers interesting
for cloud applications. However, we remark that bitslice implementations
might not be interesting for some situations, where the amount of data
to be enciphered at a time is usually small, and very little work has been
done on non-bitslice implementations.

In this article, we explore general software implementations of light-
weight ciphers on x86 architectures, with a special focus on LED, Piccolo
and PRESENT. First, we analyze table-based implementations, and we pro-
vide a theoretical model to predict the behavior of various possible trade-
offs depending on the processor cache latency profile. We obtain the fastest
table-based implementations for our lightweight ciphers, which is of inter-
est for legacy processors. Secondly, we apply to our portfolio of primitives
the vperm implementation trick for 4-bit Sboxes, which gives good perfor-
mance, extra side-channels protection, and is quite fit for many lightweight
primitives. Finally, we investigate bitslice implementations, analyzing var-
ious costs which are usually neglected (bitsliced form (un)packing, key
schedule, etc.), but that must be taken in account for many lightweight
applications. We finally discuss which type of implementation seems to
be the best suited depending on the applications profile.

Keywords: Lightweight cryptography · Software · vperm · Bitslice ·
LED · Piccolo · PRESENT

1 Introduction

RFID tags and very constrained computing devices are expected to become
increasingly important for many applications and industries. In parallel to this

J. Guo and T. Peyrin - Supported by the Singapore National Research Foundation
Fellowship 2012 (NRF-NRFF2012-06).

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 324–351, 2014.
DOI: 10.1007/978-3-662-43414-7 17, c∞ Springer-Verlag Berlin Heidelberg 2014

Implementing Lightweight Block Ciphers on x86 Architectures 325

general trend, the growth of ubiquitous computing and communication inter-
connections naturally leads to more entry points and increased potential dam-
age for attackers. Security is crucial for many situations, but often left apart
due to cost and feasibility constraints. In order to fulfill the need in crypto-
graphic primitives that can be implemented and executed in very constrained
environments (area, energy consumption, etc.), aka lightweight cryptography,
the research community has recently made significant advances in particular in
the domain of symmetric-key cryptography.

Current NIST standards for block cipher (AES [10]) or hash function
(SHA-2 [25] or SHA-3 [3]) are not really fit for very constrained environments
and several alternatives have been proposed, such as PRESENT [5], KATAN [7],
LED [13], Piccolo [23], TWINE [24] for block ciphers and QUARK [1], PHOTON [12],
SPONGENT [4] for hash functions. Notably, PRESENT block cipher is now part of an
ISO standard [17]. All these different proposals greatly improved our knowledge
in lightweight designs and many already achieve close to optimal performance
for certain metrics such as area consumption.

In practice, the constrained devices will be either communicating with other
constrained devices or more probably with a server. In the latter case, the server
is likely to have to handle an important number of devices, and while cryptogra-
phy might be used in a protocol to secure the communications, other applications
operations have to be performed by the server. Therefore, it is crucial that the
server does not spend too much time performing cryptographic operations, even
when communicating with many clients, and thus software performance does
matter for lightweight cryptography.

At CHES 2012, Matsuda and Moriai [19] have studied the application of bit-
slice implementations to PRESENT and Piccolo block ciphers, concluding that
current lightweight ciphers can be surprisingly competitive for cloud applica-
tions. Bitslice implementations allow impressive speed results and are also valu-
able for their inherent protection against various side-channel cryptanalysis.
However, we argue that they might not really fit all the lightweight cryptog-
raphy use cases, where a server has to communicate with many devices. Indeed,
constrained devices usually encipher a very small amount of data at a time.
For example, in its smallest form, an Electronic Product Code (EPC), which
is thought to be a replacement for bar codes using low-cost passive RFID-tags,
uses 64, 96 or 125 bits as a unique identifier for any physical item. Small data
enciphering makes the cost of data transformation into bitsliced form and key
schedule process very expensive (these costs are usually omitted by assuming
that a rather large number of blocks will be enciphered).

Therefore, it is interesting to explore the software efficiency profile of light-
weight ciphers not only for cloud applications but also for classical lightweight
applications and, surprisingly, apart from embedded 8-bit architectures, they are
not really meant to perform well in software on mid-range or high-end processors.
For example, the currently best non-bitslice AES implementations reaches about
14 cycles per byte (c/B) on a 32-bit Pentium III CPU [20], while the currently
best non-bitslice PRESENT implementations only runs in 130 c/B on the same

326 R. Benadjila et al.

processor (the implementation in [21] reports a performance of 16.2 cycles per
bit). Therefore, we believe a gap exists in this area, even if very recent proposals
such as TWINE do report good non-bitsliced software performances.

Our Contributions. In this article, we provide three main contributions for
lightweight ciphers software implementations on x86 architectures, with a special
focus on LED, PRESENT and Piccolo. First, in Sect. 2, we argue that table-based
implementations are still valuable in particular situations (some servers with
“legacy” CPUs, pre Core2, might lack the necessary SSE instructions set that
is used in optimized bitslice or vperm implementations) and we propose new
interesting trade-offs, with a theoretical cache modeling to better predict which
trade-off will be suitable depending on the target processor. Our model is backed
up by our experiments and we obtain the best known table-based implementa-
tions for the studied lightweight ciphers.

Then, in Sect. 3, we further push software implementations of lightweight
ciphers by exploring the vperm implementation trick for 4-bit Sboxes that has
already proven to be interesting for AES [14] or TWINE [24], and which pro-
vides cache-timing attack resistance. We propose a strategy for our portfolio of
lightweight ciphers, and we conclude that the linear layer, usually not the part
contributing a lot in the amount of computations, can have a significant impact
on the performances for this type of implementation. We note that these imple-
mentations are interesting because they apply to almost all lightweight ciphers
and they produce very efficient code.

Thirdly, in Sect. 4, we explore bitslice implementations for lightweight ciphers
and we show that for some common use cases they are less interesting than for
cloud applications [19]. In fact, bitslice implementations can be slower than table-
based of vperm in some situations, for example when only a low number of blocks
is enciphered per device. Moreover, previous bitslice analysis usually neglects the
key schedule part, so we provide bitsliced versions of the key schedules. However,
even in a bitsliced version, the key schedule can have a significant impact on the
overall performance. We therefore revisit this type of implementation by taking
into account various factors that are important in practice, such as the amount
of distinct keys, the amount of blocks to be enciphered, etc. We note that we
provide the first bitslice implementation of LED, greatly improving over the best
known software performance of this cipher.

For all three primitives LED, PRESENT and Piccolo, we have coded all three
versions of implementation with various tradeoffs. Then, for various crucial use
cases presented in Sect. 5, we compare the different implementation strategies
and we discuss our results in Sect. 6. For the readers not familiar with them,
we quickly explain in Appendix A the three lightweight ciphers that we take as
example for our implementations and refer to the specification documents [5,13,
23] for a complete description. As many other lightweight ciphers, LED, PRESENT
and Piccolo are 64-bit ciphers based on the repetition of a round function
built upon a 4-bit Sbox and a linear diffusion layer, while the key schedule
is very simple if not inexistent. All these design choices are justified by the

Implementing Lightweight Block Ciphers on x86 Architectures 327

reduction of the area consumption and while smaller Sboxes are possible, 4 bits
is a sensitive choice which can provide very small area in hardware as well as
ease of implementation in software.

The reader will find more details and code illustrations in the extended ver-
sion of this paper [2]. Furthermore, the full source codes of the implementa-
tions presented in this paper are available online at https://github.com/rb-anssi/
lightweight-crypto-lib.

2 Table-Based Implementations

2.1 Core Ideas

State of the Art. Tabulating operations for efficiency purposes is an old
method well known by programmers. When applied to block ciphers, the goal is
to tabulate as much as possible the different operations composing one round,
such that its computation consists in:

• selecting slices of the internal state by shift and mask operations;
• performing several table lookups to achieve the round transformation;
• aggregating lookup table outputs to get the updated internal state;
• performing the key addition layer.

Such an approach has for instance been proposed by Daemen and Rijmen
in [10] to perform efficiently AES operations on 32-bit processors. Thus, an AES
round can be computed with 16 table lookups, using 4 tables of 8-bit inputs and
32-bit outputs (each table having a size of about 1KB).

Table Size Tradeoffs. Many lightweight ciphers have in common 64-bit block
and 4-bit Sbox, which allows a lot of tradeoffs when implemented on 32 or 64-bit
processors with a table-based approach. It can be tedious to implement all these
tradeoffs and check which one provides the best results. Thus, in the following,
we propose a model to directly find the most efficient implementation strategy.
We emphasize that such a modeling method can be applied on all 32 or 64-bit
architectures, but here we focus specifically on Intel x86 ones. If one considers a
generic Substitution and Permutation Network (SPN) based lightweight cipher
(like LED or PRESENT), the round function can be performed, following the table-
based approach, as follows (the internal state being divided into 64/m slices of
m bits each, T0, T1, . . . being tables with m-bit input and 64-bit output, and
MASKm being a mask with m consecutive least significant bits at 1):

// Computation of a generic SPN lightweight cipher round

// Input: 64-bit state --- Output: updated 64-bit state

t0 = T0[state & MASKm];

t1 = T1[(state >> m) & MASKm];

t2 = T2[(state >> 2m) & MASKm];

...

state = t0 ^ t1 ^ t2 ^ ...;

https://github.com/rb-anssi/lightweight-crypto-lib
https://github.com/rb-anssi/lightweight-crypto-lib

328 R. Benadjila et al.

Note that the choice of 64-bit output tables exactly fits with the size of the
cipher internal state, and thus one can directly include the linear layer when
doing the table lookup. One round will then roughly be computed with shift,
mask, table lookup and XOR operations, whose amount will depend on the size
of the tables (each table T will have a size ST = 2m × 8 bytes). The main
issue will be to choose the best tradeoff for m. Indeed, the bigger are the tables,
the smaller is the amount of operations to compute during the round func-
tion, but the bigger are the latencies of the table lookups. Furthermore, depend-
ing on m, the Intel x86 instruction set allows some tricks (like mask-and-move
instructions) reducing the number of operations. We then focus on the assem-
bly pseudo-code corresponding to one line (for m = 4, 12, 16) or two lines (for
m = 8) of the previous generic SPN round functions on m (the assembly is Intel
syntax):

// m=4 or 12 (1 round)

shr state, m

mov tmp, state

and tmp, MASKm

mov/xor accumulator, [T+8*tmp]

...

// m=8 (2 rounds)

shr state, 16

movzbl tmp1, state

movzbh tmp2, state

mov/xor accumulator, [T+8*tmp1]

mov/xor accumulator, [T+8*tmp2]

...

// m=16 (1 round)

// The state is in rax

shr rax, 16

mov tmp, ax

mov/xor accumulator, [T+8*tmp]

...

It is to be noted that these pseudo-codes are for x86 64-bit architectures (on
32-bit ones, more mov and xor are required due to the fact that table lookups
only get 32-bit words – refer to table under section “Results” (footnote a) for
more details about this –).

Cache Latency Model. To perform efficiently memory accesses, modern
processors have different cache memory levels (L1, L2 and sometimes L3).
According to cache policy rules, the most used data will be stored in L1, then
in L2, etc... When considering a table T of size |T |, the probability PL1 that
an element of T is in L1 (cache of size |L1|) is PL1 = |L1|

|T | if |T | > |L1| and
PL1 = 1 otherwise. Furthermore, the probability PL2 that an element of T is in
L2 and not in L1 (considering that the element is either in L1 or in L21, i.e.
|T | ≤ |L1| + |L2|) is PL2 = 1 − PL1. Thus, one can simply deduce the average
latency lT to load an element of T during a random access (which is the case for
block ciphers):

lT = lL1 × PL1 + lL2 × PL2 = lL1 × PL1 + lL2 × (1 − PL1) (1)

with lL1 and lL2 denoting the latencies of L1 and L2 caches respectively.
Since in this work we focus on x86 architectures, and more precisely on Intel
ones, we now have to consider the size and the latency of their different cache
memories. These numbers for several microarchitectures are given in the table
below.
1 For the sake of simplicity, we consider an exclusive cache model. Considering inclusive

or hybrid models would not change the equation much.

Implementing Lightweight Block Ciphers on x86 Architectures 329

Microarchitecture L1 size
(KB)

L1 latency
(cycles)

L2 size
(KB)

L2 latency
(cycles)

Intel P6 16 or 32 3 512 8
Intel Core 32 3 1500 15
Intel Nehalem/Westmerea 32 4 256 10

Intel Sandy/Ivy Bridgea 32 5b 256 12

a Westmere is the 32 nm die shrink of the Nehalem microarchitecture, and Ivy Bridge
is the 22 nm die shrink of Sandy Bridge.
b Sandy and Ivy Bridge data L1 cache latency can drop to 4 cycles when the offset
from the base address is less than 2048 bytes (see [16] for more details). However,
rounding this to a fixed 5 cycles gives a reasonable first-order approximation for our
model.

Results. From the generic SPN round pseudo-code given above (and its assem-
bly decomposition), one can compute the number of instructions required for
such a round according to the value m of a block slice and the microarchitecture
cache memory characteristics. We can weight each instruction by its latency.
We assume that a register to register shift, move and XOR have a latency of
one cycle, whereas a table lookup has an average latency lT defined in Eq. (1).
An average theoretical latency of one round, for different microarchitectures, is
given in the table below (for each architecture, the average latency is obtained
by summing all the operations latencies).

Theoretical number of instructions for one round (for
different table input sizes m)

Instruction type m = 4 bits m = 8 bits m = 12 bits m = 16 bits

Shift 15 3 5 3
Move/xor 15 8 5 3
Mask 16 0 5 0
Table lookupa 16 (32) 8 (16) 6 (12) 4 (8)

Theoretical average round latency (for different table
input sizes m)

Microarchitecture m = 4 bits m = 8 bits m = 12 bits m = 16 bits

Intel P6 142 59 99 93
Intel Core 94 35 91 264
Intel Nehalem/Westmere 110 43 68 186
Intel Sandy/Ivy Bridge 126 51 79 114

a The number in brackets denotes the cost for 32-bit architectures, where two table
lookups need to be performed in order to obtain an entire 64-bit output. This
however holds if we only consider general purpose registers loads: only one table
lookup is needed when using SIMD registers, at the expense of additional loads to save
back the state from SSE to general purpose registers. For the sake of simplicity, we
only focus on general purpose registers code latency in this section.

330 R. Benadjila et al.

Note that for m = 16 bits, we might have to also consider the L3 or RAM
latency depending on the L2 size, and naturally extend the Eq. (1). We verified
experimentally these values by implementing and running such a generic SPN
round for the different m values considered. We could confirm the results on
each of the considered microarchitectures. Note however that the experimental
results do not exactly match the theoretical ones due to the superscalar property
of the Intel architectures2. Nevertheless, we emphasize the fact that this model
is sufficient for our purpose: one can deduce that 8-bit slices seem to be the
best tradeoff from an efficiency point-of-view, whatever the microarchitecture,
and we will apply this tradeoff on each of the three lightweight ciphers from our
portfolio. One can also notice that some theoretical counter-intuitive results are
experimentally verified: for instance, 16-bits input tables outperform 4-bit input
tables on some microarchitectures though a lot of data are outside L1 and L2
(this is due to the reduced number of shift/move/mask operations compensating
the bad average table access latency). Even though this is not the core subject
of our paper, this theoretical model can be used for performance comparisons
of table based implementations on other architectures such as ARM, SPARC or
PowerPC.

Finally, table-based implementations specificities for each cipher are described
in the following sections.

2.2 LED

We build eight tables, each one taking as input two row-wise adjacent 4-bit Sbox
words (thus 8-bit input), and providing 64-bit output words. We give as example
the description of the first table T0, that takes as input the two least significant
4-bit words of the internal state (we denote a0 and a1 these two words, while
SB represents the Sbox and ⊗ the multiplication in GF (24)):

T0(a0, a1) =

⎡

⎢
⎢
⎣

4 ⊗ SB[a0] 4 ⊗ SB[a1] 0 0
8 ⊗ SB[a0] 8 ⊗ SB[a1] 0 0
B ⊗ SB[a0] B ⊗ SB[a1] 0 0
2 ⊗ SB[a0] 2 ⊗ SB[a1] 0 0

⎤

⎥
⎥
⎦

Note that the 4-bit input words row-wise packing and the 64-bit output words
allow to include the ShiftRows operation directly inside the table, by carefully
placing the meaningful output bits at their correct position. Thus, the three
round operations SubCells, ShiftRows and MixColumnsSerial are performed with
7 shifts and 8 masks (to select the eight 8-bit slices of the internal state), 8 table
lookups (to perform the three round operations) and 7 XORs to agglomerate
the eight table outputs.

Furthermore one extra table of 31 or 48 64-bit words (respectively in the case
of LED-64 and LED-128) allows to perform the AddConstants operation with only

2 One should consider the throughput of the instructions instead of their latencies for
accurate performance estimates.

Implementing Lightweight Block Ciphers on x86 Architectures 331

one table lookup and one XOR (again, we manipulate 64-bit words in order to
directly place the 4-bit constants at their correct position).

To summarize, one round of LED with 64-bit keys (resp. 128-bit keys) can
be implemented with 7 shifts, 8 masks, 8 XORs3 and 9 table lookups, and with
memory requirements of 16640 bytes (resp. 16768 bytes). The tables are therefore
small enough to fit mostly or even entirely in the L1 cache of the processor. We
provide the pseudo-code for the ith round computation (T cst being the table
computing the AddConstants operation, and T0, T1, T2, T3, T4, T5, T6 and T7
being the eight tables performing the SubCells, ShiftRows and MixColumnsSerial
operations):

// Computation of the LED round i

// Input: 64-bit state St, round number i --- Output: updated 64-bit state St

St ^= T_cst[i];

t0 = T0[St & 0xff]; t1 = T1[(St >> 8) & 0xff];

t2 = T2[(St >> 16) & 0xff]; t3 = T3[(St >> 24) & 0xff];

t4 = T4[(St >> 32) & 0xff]; t5 = T5[(St >> 40) & 0xff];

t6 = T6[(St >> 48) & 0xff]; t7 = T7[(St >> 56) & 0xff];

St = t0 ^ t1 ^ t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;

2.3 PRESENT

Encryption. Having a very similar structure to LED, we use the same implemen-
tation strategy for PRESENT. Eight tables are built, each one taking as input two
adjacent Sbox 4-bit words (8-bit inputs), and providing 64-bit output words,
such that the tables also take into account the permutation layer. The round
computation pseudo-code is exactly the same as for LED, except that there is no
constant addition in the round function. Therefore, one PRESENT round is per-
formed with 7 shifts, 8 masks, 8 table lookups and 7 XORs3 and requires eight
tables of 2048 bytes each, thus 16384 bytes in total. The tables are therefore
small enough to fit mostly or even entirely in L1 cache. An example of how to
build the tables is provided in Appendix C.1 of [2].

Key Schedule. The PRESENT key schedule is quite costly in software, due to
the 61-bit rotation over the full size of the master key (especially for the 80-
bit key version, which does not fit exactly within a multiple of a x86 general
purpose register size). Using two small tables of 31 and 16 64-bit words, one can
compute the round counter addition and the key schedule Sbox lookup with only
a single table lookup and a XOR (the 128-bit key version performs two adjacent
Sbox calls in the key schedule, thus the second table will contain 256 elements
in the case of PRESENT-128). We provide the pseudo-code of the 80-bit version in
Appendix C.1 of [2].

2.4 Piccolo

Encryption. The table-based implementation of Piccolo is slightly different
from that of LED or PRESENT since Piccolo has a Feistel network structure. In
3 These figures correspond to high level pseudo-code, but are slightly changed in assem-

bly as reflected in the cache model results thanks to mask-and-move instructions.

332 R. Benadjila et al.

order to tabulate as much as possible the internal function F , we divide it in
two parts. The first one packs the first Sbox layer of F and also the subsequent
diffusion layer. It yields two tables of 8-bit input and 32-bit output (two Sbox
inputs are handled at a time), which can be used to perform the first part of
F in both branches of the Feistel. The second part computes the second Sbox
layer only. It is therefore implemented using four tables of 8-bit input and 64-
bit output (two tables per branch), allowing again to place the 16-bit branches
at their correct positions before the byte permutation at the end of the round.
We explain in Appendix C.2 of [2] how to build these tables, and the total
amount of memory required is 10240 bytes, which is small enough to fit entirely
in the L1 cache of the processor. The final byte permutation of a Piccolo round
can then be computed efficiently with two masks, two 16-bit rotations and one
XOR. We provide the pseudo-code for the ith round computation of Piccolo in
Appendix C.2 of [2].

Key Schedule. The 80-bit and 128-bit versions of the Piccolo key schedule are
slightly different, nevertheless they have a similar core which consists in selecting
16-bit slices of the master key and XORing them with constant values. Hence,
we build one extra small table made of 25 64-bit words (or 31 words for Piccolo-
128) corresponding to the constant values. Then, we prepare several 16-bit slices
of the master key in 64-bit words, and one can perform the key schedule with
only a single table lookup and one XOR operation. Note that the permutation
used in the 128-bit version of the key schedule can be efficiently implemented
with two masks, two 16-bit rotations and one XOR.

3 Implementations Using vperm Technique

3.1 Introducing the vperm Technique

Vector Permute, abbreviated vperm, is a technique that uses vector permutation
instructions in order to implement table lookups by taking advantage of the SIMD
engine present inside modern CPUs. The main advantages of the vperm tech-
nique are parallel table lookups and timing attacks side-channel resistance. This
technique, applied to block cipher implementations, comes originally from [14].
It has also proven to be efficient for multivariate cryptography [8].

The main idea behind the vperm technique is to use shuffling instructions
for looking into small size tables. Though this technique can be used in different
architectures where SIMD shuffling instructions are present (for instance AltiVec
on PowerPC, or NEON on ARM), we will exclusively focus on their x86 flavor,
namely the pshufb instruction. This instruction has been introduced with the
SSSE3 extension that came with the Intel Core microarchitecture.

Regarding the lightweight block ciphers, the vperm technique has already
been applied to TWINE [24], yielding in very competitive results on the x86 plat-
form (6.87 c/B for a 2-message encryption). However, there are no results avail-
able for other lightweight block ciphers. In the following subsections, we study

Implementing Lightweight Block Ciphers on x86 Architectures 333

how the vperm technique fits for LED, Piccolo and PRESENT. We will show that,
though the confusion layer is quite straightforward to implement using vperm,
the linear diffusion layer can be challenging.

3.2 Core Ideas for vperm Applied to Lightweight Block Ciphers

In this section, we briefly describe the main implementation ideas that are com-
mon to LED, PRESENT and Piccolo (as well as to many lightweight block ciphers).

The pshufb Instruction. pshufb is a byte shuffling instruction that takes
two 128-bit operands as input, e.g. xmm0 and xmm1 registers (see Fig. 1). The
destination operand xmm0 bytes are shuffled according to the source operand:
xmm1 is used as a permutation mask selecting bytes inside xmm0. Only the low
nibbles of bytes in xmm1 are used, and if the MSB is set the resulting byte is
nullified. The result of the shuffling is stored inside xmm0. The second operand
can be a memory reference. There is an AVX variant vpshufb of pshufb that takes
three operands as input, the first operand being the destination. This saves a
movdqa operation that is normally required to avoid overwriting the destination,
thus saving some CPU cycles.

Fig. 1. Result of “pshufb xmm0, xmm1”: bytes in xmm0 are shuffled according to the
content of xmm1. Only the low nibble of bytes in xmm1 are used as index: index 0x10=16
in the example translates to 0. When the byte index inside xmm1 ≥ 128 (i.e. the high
bit of the byte is set, 255 on the example), the destination byte is zeroed.

Sbox Implementation. Most lightweight block ciphers use Sboxes on GF(24),
meaning that the Sbox is a table of 16 possible output values selected by the
input. It is straightforward to implement such an operation on 16 nibbles, in
parallel, using the pshufb instruction (see Fig. 1). The piece of code in Fig. 2
performs 16 parallel Sbox lookups on the 16 low nibbles of the r register (the
high nibbles of each byte ri are supposed to be zero). The same technique can
be used for any function from GF(24) to itself (including multiplications over
the field), or even any function from GF(24) to GF(28) without any loss of
parallelism since one xmm register is 16-byte long. Hence, the MixColumns-like
multiplications can be stored inside 16-byte tables. More specifically, we can store
the composition of the Sbox and the multiplication inside a single 16-element
table, as explained in Sect. 2.

334 R. Benadjila et al.

Fig. 2. Using pshufb for 16 parallel Sbox lookups (high nibbles of bytes ri are supposed
to be zero).

Extending to Bigger Tables. pshufb can be utilized in order to compute a
4-bit to 8-bit function and it is possible to use the same technique for lookups
inside tables with even bigger output size (but multiple of 8 bits). As presented
on Fig. 8 in Appendix D.1 of [2], if we consider, for instance, a 16-bit output
table, we can pack this table inside two 128-bit xmm registers s0 and s1. Then,
the ith entry of the table (0 ≤ i ≤ 15) is represented by the 16-bit value formed
by s0i and s1i . Therefore, one can perform 16 parallel table lookups (with 16
output bits) by using two pshufb in a row, the first one getting the first half of
the word in t0, and the second one getting the second half in t1.

Message Packing and Unpacking. Lightweight block ciphers states are 64-
bit long, which means that two of them can be stored inside a 128-bit xmm register.
However, the natural packing concatenating the two states side by side inside a
register is not optimal. This is due to the fact that the algorithms we focus on use
nibble-based permutations as part of their linear diffusion layer. Implementing
such permutations by using shift or rotation operations can be costly. However,
if the two states are packed by interleaving their nibbles as presented in Fig. 3,
it is possible to realize any nibble permutation by using pshufb, since they
are now mapped to a byte permutation. The packing and unpacking are easily
implemented using some shift and pshufb operations. Their cost, around ten
cycles, is marginal compared to the encryption process. Using this packing, one
can apply 32 Sbox lookups on the two states by using two pshufb, two pand
masks and one 4-bit left shift psrlw to isolate low and high nibbles, and one
pxor to merge the two results. As we will explain, this packing will be applied
to Piccolo and PRESENT, but not to LED.

Fig. 3. Packing for the 2-parallel vperm implementation of PRESENT and Piccolo. Each
rectangle represents a 4-bit nibble.

Implementing Lightweight Block Ciphers on x86 Architectures 335

Using AVX Extensions. On the two last Intel CPU generations (Sandy and
Ivy Bridge), a new instruction set has been added to extend Westmere’s SSE
4.2. The 128-bit xmm registers have also been extended to 256-bit ymm registers,
most of the instructions do however not operate on the full ymm registers, but
only on their low 128-bit part. The full AVX extensions operating on ymm will be
introduced on the forthcoming Haswell architecture with AVX2. All the presented
encryption algorithms and their key schedules can still benefit from AVX on Sandy
and Ivy Bridge by using the three operands form of the instructions, which
saves registers backup. For instance, table lookups can be performed with one
instruction “vpshufb t, s, r” instead of the two instructions “movdqa t, s;
pshufb t, r”4.

3.3 LED

The LED block cipher does not have a key schedule per se and since the decryp-
tion process is not more complex than the encryption one (the coefficients for
the inverse diffusion matrix are the same as for the original matrix), we will only
focus on the latter case. As explained previously, the 4-bit Sbox layer can be
implemented in a few cycles by using pshufb, masks and shifts. The ShiftRows is
also immediate with a pshufb by using the interleaved nibbles packing described
above. However, the MixColumnsSerial step uses field multiplications with 11
different constants (4, 2, B . . .). Using as many as 11 lookup tables as multiplica-
tive constants would be too costly as they would not leave room for the state
and other operations inside the xmm registers. We could also use the fact that
LED’s MDS matrix is a power of a simpler sparse matrix, using less constants:
the drawback is that raising to the power 4 would mean that the all operations
would have to be applied four times.

We found out that there is a better implementation strategy for LED: we
can use the table-based tricks to store the Sbox and MixColumnsSerial layers
inside xmm register-based tables. Each column can be stored inside a 24 × 2 = 32
bytes table (thus 2 xmm registers). Hence, 4 pairs of xmm registers will store the
4 tables needed to perform a round of LED, and lookups inside each table will
be performed in a vectorized way for each nibble of the state using two pshufb
as described in Sect. 3.2. The drawback is that the output words will be on
different xmm registers, but the repacking of this step can be combined with the
ShiftRows layer that shuffles the columns. We also use por masking to force the
MSB of bytes that are not concerned with a lookup in a specific table. For each
LED round, 8 pshufb instructions are used for the lookups, and 6 pshufb for the
shifting layer (ShiftRows and repacking). This implementation strategy does not
use the specific state packing from Fig. 3 since shuffling for the ShiftRows and
table repacking can be expressed using pshufb. However, one should notice that
there is a small message packing cost for LED due to its row oriented message
4 The expected throughput improvement would however vary across the considered

microarchitectures (mainly depending on the pipeline stage where register-to-register
moves are performed, as well as the front end instruction decoder throughput).

336 R. Benadjila et al.

loading in the state: the input message is packed in a column wise fashion, and
the ciphertext is packed back to row wise.

3.4 PRESENT

PRESENT can benefit from the vperm technique in both encryption and key sched-
ule, since the latter uses Sbox lookups for subkeys computations.

Encryption. As explained in [21] and on Fig. 4, PRESENT’s pLayer permuta-
tion can be seen as the composition of two permutations: one acting on bits
inside groups of 16 bits, and one shuffling the nibbles inside the 64-bit state. As
for the table-based implementations of LED, it would be possible to compute a
PRESENT round by using 4-bit to 16-bit tables that merge the Sbox and the first
permutation of the pLayer acting on 16-bit groups. Nevertheless, we have found
that this permutation can be implemented in a more efficient way by moving
groups of bits (see the code on Fig. 4 for more details). The second permutation,
mapped to a byte permutation thanks to the message packing from Fig. 3, can
be expressed as one pshufb.

Fig. 4. PRESENT’s pLayer representation as two permutations.

Key Schedule. A straightforward method for implementing PRESENT’s keys
schedules for 80-bit and 128-bit keys would be to store the master key inside
one xmm register and compute all the subkeys by using rotations on the register
(80-bit or 128-bit rotations depending on the key size), and extract the high part
to get each subkey. However, the SSE instruction set lacks a rotation instruction.
One could implement the rotation with two shifts and one XOR (and one AND
for the 80-bit key case), but the shift instructions ps(r/l)ldq that operate on

Implementing Lightweight Block Ciphers on x86 Architectures 337

the entire 128-bit xmm register can only handle shift values that are multiples of 8
bits. Since PRESENT’s key schedules use a 61-bit rotation, using such instructions
is therefore too costly. Instead, we split the high and low key parts in two xmm
register halves, which allows us to perform the 61-bit rotation with the quadword
shift instructions ps(r/l)lq. It is possible to vectorize the key schedule on two
keys by using this trick, since the high parts of the two xmm registers can be used

to store high and low keys of the second master key:
keylow2 keylow1

keyhigh2 keyhigh1

xmm0
xmm1

One should notice that since the PRESENT vperm encryption part uses packed
messages, the scheduled keys that will be XORed to the cipher state must be
packed in the same way. However, the 61-bit rotation is not compatible with
the nibble interleaving packing from Fig. 3, which means that the key schedule
cannot be easily performed with this data packing. This implies that all the
subkeys are to be packed after they have been generated and this explains the
high key schedule packing cost reported in Appendix B.

3.5 Piccolo

Encryption. Piccolo’s F function uses a circulant MixColumns matrix over
GF(24), which allows using three 16 bytes tables, namely the Sbox, the Sbox
composed with the multiplication by 2 in the field, and the Sbox composed with
the multiplication by 3. Two states of Piccolo are stored in one xmm register
with the nibbles interleaved as in Fig. 3. It is then possible to implement one
Piccolo round with two F functions in parallel inside the xmm register, by using
three pshufb for the three multiplications lookups (by 1, 2, and 3). Three more
pshufb on the results and three pxor are necessary in order to perform the
columns mixing according to the circulant nature of the MixColumns matrix.
The second layer of Sbox lookups in F can be performed with only one pshufb.
Finally, Piccolo’s Round Permutation is realized with a unique pshufb, since it
is a byte permutation. The piece of code given in Appendix D. 2 of [2] illustrates
these steps (it is suited for the low nibbles of the state, almost the same code is
used for the high nibbles).

Key Schedule. Piccolo’s key schedules for 80 and 128-bit keys do not really
benefit from the vperm technique, since no Sbox lookup nor field multiplica-
tion over GF(24) is performed. The same implementation tricks as presented in
Sect. 2.4 are used in order to minimize the number of operations extracting the
master key subparts. The main difference with the table-based implementations
key schedule is that in the case of vperm, the process is performed inside xmm
registers with SSE instructions: the main benefit being that one can vectorize
the key schedule for two master keys, performing all the operations with the
nibbles interleaved packing format from Fig. 3. This results in an optimized key
schedule for two keys that requires almost the same number of cycles than the
table-based implementation on one key (see results in Appendix B).

338 R. Benadjila et al.

4 Bitslice Implementations

Bitslice implementations often lead to impressive performance results, as shown
for example in [19] for PRESENT and Piccolo. However, we would like to also
take into account the key schedule cost that might not be negligible in several
typical lightweight cryptography use cases, such as short data or independent
keys for different data blocks (see 5.2 for specific examples). As a consequence,
exploring the bitslice possibilities for the various key schedules is of interest. In
particular, many distinct keys might be used for the encryption and non-bitsliced
key schedules might kill the parallelism gain if one does the packing for each
round key (packing/unpacking takes comparable cycles as for encryption in most
of the cases). This bitsliced key scheduling has never been studied for lightweight
block ciphers to our knowledge, and we provide some results for the three ciphers
in this section. One of our conclusions is that some key schedules can significantly
slow down performances depending on the use case, which somehow moderates
the results exposed in [19].

4.1 The Packing/unpacking

The choice of an appropriate packing inside the xmm registers is important for a
bitslice implementation. For the LED bitsliced version with 16 parallel blocks, we
use the packing described in Fig. 9 in Appendix E.4 of [2]. The packing for 32
parallel blocks is identical (see Fig. 11 of [2]). It is to be noted that the packing
used for PRESENT is the same as for LED (such a packing can be obtained with a
little more than one hundred of instructions).

The (un)packing for Piccolo with 16-parallel blocks depicted in Fig. 10 of [2]
is very similar and requires a few more instructions. The reader can refer to [19]
for details and code about this.

4.2 The Encryption

An important part of the encryption cost are the Sboxes, but the bitslice repre-
sentation allows to compute many of them in parallel within a few clock cycles.
We recall the logical instructions sequences proposed by [19] in Appendix E.1
of [2] for the LED and PRESENT Sbox, and in Appendix E.2 of [2] for the Piccolo
Sbox.

The second part of an encryption round is the linear diffusion layer. For LED,
the ShiftRows is simply performed with a few pshufb operations and the Mix-
ColumnsSerial are handled with the same method as in [18] for AES or in [19] for
Piccolo diffusion matrices. In the case of LED, one also has to consider the XOR-
ing of round dependent constants during the AddConstants function, but this
can be done easily by preparing in advance the constants in bitsliced form. For
PRESENT, the bit permutation function pLayer can be performed by just reorga-
nizing the positions of the 16-bit (or 32-bit) words in the xmm registers in bitsliced
form. This can be executed efficiently [19] using a few pshufd, punpck(h/l)dq
and punpck(h/l)qdq instructions (see the pseudo-code in Appendix E.3 of [2]

Implementing Lightweight Block Ciphers on x86 Architectures 339

for 8-parallel data blocks). For Piccolo, the nibble position permutation (per-
formed with a few pshufd instructions) and the matrix multiplication are similar
to the ones in [19].

4.3 The Key Schedule

As previously explained, the key schedule cost can be prohibitive in certain use
cases when it comes to bitslicing. Thus, it seems reasonable to design bitsliced
versions of the key schedule: this would leverage possible parallelism when many
keys are processed, and this will prepare these keys in their packed format so
that XORing them with the bitsliced state is straightforward. As a matter of
consequence, the bitslice format for the key must be the same as for the data,
or at least very similar so that the repacking cost is small. To minimize the key
schedule cost, the packing is only performed once for the original keys, from
which the subkeys are produced by shift and masking operations.

LED. No key schedule is defined for LED. Only the original secret key has to
be packed in the data bitsliced format (one 64-bit key for LED-64 and two 64-
bit keys for LED-128, other sizes use a sliding window requiring some additional
shifts and masks).

Piccolo. The key schedule is very light: it basically consists in selecting 16-
bit chunks from the original secret key and XORing them with round constants.
Similarly to LED, our implementation first prepares the 16-bit chunks in bitsliced
format once and for all. Thanks to the adapted packing, the two 16-bit key words
appear in the same registers. For instance, when parallelism is of 16 blocks, 8
xmm registers are required to store the data and each round key, however, 4
are required only for storing one round-key in our case, because the other 4
contain only 0s, which can be discarded. This saves storage, and also key-addition
operations by half. Another important observation is that even-number indexed
chunks appear only in the left part of the round keys, and odd-number indexed
chunks appear only in their right parts. Hence, we can pre-position these chunks
only once, and the key schedule would involve only XORing the appropriate
two chunks and the constants. To reduce the number of packing operations,
we first pack all the original secret keys without re-positioning, and then do the
pre-positioning for subkeys. These arrangements minimize the overall operations
required by the key schedule.

PRESENT. The key schedule of PRESENT is not well suited for software, and even
less suited when the key data has to be in bitsliced format. We divide the keys in
two chunks (64 and 16 bits for PRESENT-80 and two 64-bit chunks for PRESENT-
128) and prepare them in bitsliced format using the same packing as the data
(each first chunks of the keys are packed together and each second chunks of the
keys are packed together). The subkey to be XORed every round to the cipher

340 R. Benadjila et al.

internal state is located in the first chunk. The constants addition of the key
schedule update function is simply handled by pre-formatting the constants in
the bitsliced format and XORing them to the chunks (in fact only one chunk
will be impacted if one does this step before the rotation). Then, the Sbox layer
is performed by using the same Sbox function as for the internal cipher, just
making sure with a mask that only a single Sbox is applied. Finally, the 61-
bit rotation is separated in two parts, since only rotations of a multiple of 4
bits are easy to handle in bitslice packing. First, a 60-bit rotation is applied
using several pshufb instructions (together with masking and XORs). Then, a
single bit rotation is computed by changing the ordering of the xmm registers (the
xmm registers containing the third Sbox bits will now contain the second Sbox
bits, etc.). An adjustment is eventually required as some bits will go beyond the
register limit and should switch to another one (this can be done with more shifts,
masks and XORs). We provide the pseudo-code for the bitsliced key schedule
implementation of PRESENT-80 in Appendix E.5 of [2].

4.4 Discussions

To have a fair view on the workload of the key schedules, we minimized the num-
ber of packing operations in each implementation. The Table below, deduced
from Table 2, shows the ratio of the key schedule (including the packing of the
keys and subkeys generations) over one data block encryption (including plain-
text packing, encryption, ciphertext unpacking) for 16 blocks parallelism. In
other words, it represents the workload increase when taking key schedule into
account. LED is affected only slightly, Piccolo by a quarter and PRESENT by more
than half.

LED-64 LED-128 Piccolo-80 Piccolo-128 PRESENT-80 PRESENT-128

Key schedule ratio 3.3% 4.1% 20.2% 26.7% 55.2% 59.9%

5 Analyzing the Performance

5.1 Framework for Performance Evaluation

In order to compare various implementation techniques, we will consider that
a server is communicating with D devices, each using a distinct key. For each
device, the server has to encipher/decipher B 64-bit blocks of data. Moreover, we
distinguish between the cases where the enciphered data comes from a parallel
operating mode (like CTR) or a serial one (like CBC).

Now, we would like to take in account the fact that some implementations can
be faster when some parallelism is possible (like bitslice technique). Let tE be the
time required by the implementation to perform the encryption process (without
the key schedule and without the packing/unpacking of the input/output data).
Let PE denote the number of blocks that the implementation enciphers at a

Implementing Lightweight Block Ciphers on x86 Architectures 341

time in an encryption process (i.e. the number of blocks the implementation
was intended to be used with). Similarly, let tKS be the time required by the
implementation to perform the key schedule process (without the packing of the
key data) and we naturally extend the notation to PKS .

We remark that ciphering a lower number of blocks than PE (resp. PKS)
will still require time tE (resp. tKS). However, contrary to the encryption or
key schedule process, the packing/unpacking time of the input/output data will
strongly depend on the number of blocks involved. Therefore, if we denote by
tpack the time required to pack one block of data, we get that packing x blocks
simply requires x ·tpack. Similarly, we denote tunpack the time required to unpack
one block of data and unpacking x blocks simply requires x · tunpack. For the
key schedule, tpackKS denotes the time to pack the key data, and packing x keys
requires x · tpackKS (there is no need to unpack the key).

Finally, depending on D and B, the average time per block required to
encrypt all D · B data blocks with a parallel operating mode is given by:

sparallel(D,B) =
total encryption time

number of data blocks enciphered

=

⌈
D·B
PE

⌉
· tE +

⌈
D

PKS

⌉
· tKS + D · B · (tpack + tunpack) + D · tpackKS

D · B

=

⌈
D·B
PE

⌉
· tE +

⌈
D

PKS

⌉
· tKS

D · B + tpack + tunpack +
tpackKS

B
.

However, when using a serial operating mode, the average time per block required
to encrypt all D · B data blocks is given by:

sserial(D,B) =
total encryption time

number of data blocks enciphered

=

⌈
D
PE

⌉
· B · tE +

⌈
D

PKS

⌉
· tKS + D · B · (tpack + tunpack) + D · tpackKS

D · B

=

⌈
D
PE

⌉
· tE

D
+

⌈
D

PKS

⌉
· tKS

D · B + tpack + tunpack +
tpackKS

B
.

Since table-based implementations are usually not faster when offered the
possibility to encipher several blocks at a time, we have that PE = PKS = 1
and tpack = tunpack = tpackKS = 0. Therefore, we conclude that for table-based
implementations we have s(D,B) = tE + tKS/B. On the opposite, for bitslice
implementations, many data blocks will be enciphered in parallel. Note that
vperm implementations will stand in between table-based and bitsliced versions,
since a slight parallelism might increase the speed.

For previous bitslice implementations, since many blocks are assumed to be
enciphered, the key schedule cost is usually omitted. However, in this article,
we are interested in use cases where for example B can be a small value, like
a single block. When B is small, one can see that the relative cost of the key
schedule has to be taken in account.

342 R. Benadjila et al.

5.2 The Use Cases

In order to have a clearer picture of the various scenarios that might be encoun-
tered in practice, we chose to study six distinct and meaningful use cases, depend-
ing on the value of D, B and the type of encryption operating mode. The six
situations are given in Table 1 together with some examples. One might argue
that the first use case is not really interesting since with only few blocks and few
devices the server would not be overloaded by the encryption/decryption work.
However, latency can be an important criterion for many applications, and thus
this use case checks the ability of the server to perform the cryptographic oper-
ation rapidly in software.

Table 1. Six device/server use cases for lightweight encryption. For the practical mea-
surements given in Table 2 in Appendix B, the notation “big/small” refers to more/less
than 10 on average. For the experimentations in Table 2 we used 1000 and 1

D B Op. mode Example LED PRESENT Piccolo

Small Small - Authentication/access
control/secure traceability
(industrial assembly line)

Table/
vperm

Table/
vperm

Table/
vperm

Small Big Parallel Secure streaming
communication (medical
device sending continuously
sensitive data to a server,
tracking data, etc.)

Bitslice Bitslice Bitslice

Small Big Serial Secure serial communication Table/
vperm

Table/
vperm

Table/
vperm

Big Small - Multi-user
authentication/secure
traceability (parallel
industrial assembly lines)

Bitslice Bitslice Bitslice

Big Big Parallel Multi-user secure streaming
communication/cloud
computing/smart meters
server/sensors
network/internet of things

Bitslice Bitslice Bitslice

Big Big Serial Multi-user secure serial
communication

Bitslice Bitslice Bitslice

6 Results and Discussions

6.1 Implementation Results

We have performed measurements of our three types of implementations for our
three lightweight candidates. For more precision, the encryption times have been

Implementing Lightweight Block Ciphers on x86 Architectures 343

measured with a differential method, checking the consistency by verifying that
the sum of the subparts is indeed equal to the entire encryption. Moreover, the
measurements have been performed with the Turbo-Boost option disabled, in
order to avoid any dynamic upscale of the processor’s clock rate (this technol-
ogy was implemented in certain processor versions since Intel Nehalem CPU
generation). We observe that our bitslice implementations timings for Piccolo
and PRESENT are consistent with the ones provided in [19]. Moreover, we greatly
improve over the previously best known LED software implementations (about 57
c/B on Core i7–720QM [13]), since our bitsliced version can reach speeds up to
12 c/B.

We give in Table 2 in Appendix B all the implementation results on Core
i3–2367M (Sandy Bridge microarchitecture), XEON X5650 (Westmere microar-
chitecture) and Core 2 Duo P8600 (Core microarchitecture) processors. Using
the measurements for tE , tKS , tpack, tunpack, tpackKS in our framework from
Sect. 5, we can infer the performances for the 6 use cases.

6.2 Comparing the implementations types and the ciphers

We can extract general tendencies from our measurements (see Table 1) and one
can remark that bitslice implementations will perform better than table-based or
vperm ones except for use cases and , where only few devices are involved
and data blocks can only be handled one at a time (bitslice implementations are
naturally not fit for low latency and single block). More surprisingly, even for
the use cases and , the gain of bitslice over table-based or vperm imple-
mentations is only clear for more than 10 devices.

For bitslice implementations, the cost of bitsliced form transposition on the
server can be removed if the device also enciphers in bitsliced format. However,
depending on the type of constrained device, the bitsliced algorithm might per-
form very poorly and the communication cost would increase if a serial mode is
used or if a small amount of data is enciphered. Moreover, this solution would
reduce the compatibility if other participants have to decipher in non-bitsliced
form. The same compatibility issue is true for the keys in the server database,
if one directly stores the keys or subkeys in bitsliced form. Finally, it is to be
noted that bitsliced versions of the key schedule are especially interesting when
all the keys are changed at the same time (i.e. fixed message length, messages
synchronized in time).

We can see that from a software implementation perspective, all three ciphers
perform reasonably well and are in the same speed range. Their internal round
function is quite fit for x86 architectures. Table-based implementations are helped
by the small 64-bit internal state size. The vperm implementations are fast thanks
to the use of small 4-bit Sboxes, even though the linear diffusion layer can signif-
icantly impact the performance (which is the reason why TWINE has very good
vperm implementation performances). For PRESENT the bit permutation layer is
not really suited for software, the LED diffusion matrix has complex coefficients
when not in its serial form, and the Piccolo F function with two layers of Sboxes

344 R. Benadjila et al.

reduces the possibilities of improvements. Concerning the key schedule, having
a byte oriented or no key schedule is an advantage and bitwise rotation as in
PRESENT is clearly difficult to handle in software.

Lots of research has been conducted on block cipher constructions and build-
ing a good cryptographic permutation is now well understood by the commu-
nity. However, this is not the case of the key schedule and, usually, block ciphers
designers try to build a key schedule very different from the round function, in
a hope to avoid any unpredicted relation that might arise between the two com-
ponents. However, we remark that this is in contradiction with efficient parallel
implementations (like bitslice), since the packing of the key and the block cipher
internal state must be (almost) the same (otherwise the repacking cost for every
generated subkey would be prohibitive).

It is also to be noted that when analyzing ciphers software performances on
the server side, it is more likely that decryption will have to be performed instead
of encryption. We emphasize that the decryption process would have the same
performances as our encryption implementations in the case of PRESENT. For LED
and Piccolo, the inverse matrix for the diffusion layer will have more complex
coefficients than the encryption one (only the non-serialized matrix for LED), but
this shall not impact table-based implementations. However, we remark that this
might have an impact on our best performing implementations for Piccolo and
their decryption counterpart are likely to be somewhat slower than encryption
mode.

6.3 Future Implementations

The forthcoming Haswell architecture will introduce the new AVX2 instruction
set. As discussed in Sect. 3.2, this extension will permit most of the existing
SSE instructions to operate on the full 256-bit ymm registers. Apart from the
three operands improvement already utilized in our vperm versions (Sect. 3.2),
the three types of implementations studied in this paper will probably gain from
AVX2.

• Table-based implementations: with the new vgatherqq instruction, it is
possible to perform 4 parallel table lookups by using 4 indexes inside the ymm
quadwords. The resulting quadwords, after the lookups, are stored inside the
ymm source register. Such a technique has been applied to the Grøstl hash
function in [15]. When applied to lightweight block ciphers, 4 internal states
can be stored inside a single ymm register. One can isolate the 8-bit indexes (if
we use 8-bit tables) by using the vpshufb instruction, perform the 4 lookups
in parallel, and merge the results by XORing it within an accumulator. As we
can see, this will result in a 4-way vectorized block cipher. According to [16],
vgatherqq will have a latency of 16 cycles and a throughput of 10 cycles when
data is in L1. A very rough estimation of the results on Haswell CPU is thus
a 1.5 to 2 times improvement over the table-based implementations results
provided in Appendix B (since the mov instruction has a latency of 4 cycles
in L1).

Implementing Lightweight Block Ciphers on x86 Architectures 345

• vperm based implementations: extending the vperm technique to 256-bit
ymm registers is straightforward, since one would store 4 states instead of 2 in
one register. As for table-based, vperm implementations will be vectorized on
4 states providing a 2 times performance improvement for at least 4 parallel
message blocks.

• Bitslice implementations: as for the vperm technique, bitslicing can natu-
rally take advantage of the AVX2 extension to 256-bit registers by performing in
the high 128-bit parts of ymm the exact same operations as on the low parts (if
N message blocks are to be packed, N/2 are packed as previously presented
in the low part of ymm, and N/2 are packed in the high part). This would
roughly give a 2 times improvement for the performance (however requiring,
as for vperm, twice more parallel message blocks).

Conclusion and Future Works

In this article, we have studied the software implementation of lightweight block
ciphers on x86 architectures, with special focus on LED, Piccolo and PRESENT.
We provided table-based, vperm and bitslice implementations and compared
these three methods according to different common lightweight block ciphers use
cases. We believe our work helps to get a more complete picture on lightweight
block ciphers and we identified several possible future researches.

First, we remark that our cache latency model for table-based implementa-
tions predicts that new and future processors with an important amount of L2
cache might enable new fast primitives that utilize 16-bit Sboxes (which could
then be implemented using big table lookups). Moreover, this remark might also
improve current ciphers such as LED or PRESENT, by imagining a “Super-Sbox”
type of implementation: two rounds can be seen as only composed of the appli-
cations of four parallel 16-bit Sboxes, and thus can be perfomed with only 4
table lookups.

Secondly, in the future, it would be interesting to use this kind of modeling to
compare different implementation tradeoffs without tedious implementation for
all of them (this would be also true for hardware implementations). Table-based
is a simple case we leave as open problem if more complex implementations can
be studied the same way.

Finally, another future work is to study other recently proposed block cipher
designs such as PRINCE [6] or Zorro [11], and the lightweight SPN-based hash
functions such as PHOTON [12] or SPONGENT [4]. The analysis of hash functions
would be quite different since their internal state sizes (which vary with the
intended output size) is bigger than 64 bits. Therefore, the amount of memory
required to store the tables for table-based implementations is likely to be big-
ger, and vperm or bitslice implementations would be impacted as well since the
packing would be more complex and would use more xmm registers.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments.

346 R. Benadjila et al.

Appendix

A LED, PRESENT and Piccolo

A.1 LED

LED is a 64-bit block cipher that applies 32 rounds for the 64-bit key version and
48 rounds for bigger key sizes (up to 128 bits). The internal state is conceptually
arranged in a (4 × 4) grid where each nibble represents an element from GF(24)
with the underlying polynomial for field multiplication given by X4 + X + 1. A
step is composed of 4 rounds and the key is XORed to the internal state before
each step and also after the last step (there is no key schedule so if the key K
is larger than 64 bits, the subkey material that is XORed every step is selected
from K by a 64-bit sliding window).

Fig. 5. An overview of a single round of LED.

One round is composed of four steps: AddConstants, SubCells, ShiftRows
and MixColumnsSerial as illustrated in Fig. 5. The first function XORs a fixed
constant to the first column and a round-dependent constant to the second
column of the internal state. The SubCells function applies the 4-bit Sbox to
every nibble of the state, the Sbox being the same as in PRESENT and given in
Appendix E.1 of [2]. The ShiftRows function just shifts left by i position all the
nibbles located in row i. Finally, the linear function MixColumnsSerial applies
a MDS diffusion matrix M to every column of the state independently, where

M =

⎡

⎢
⎢
⎣

4 1 2 2
8 6 5 6
B E A 9
2 2 F B

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

⎤

⎥
⎥
⎦

4

A.2 PRESENT

PRESENT is a 64-bit block cipher that applies 31 rounds for both its 80 and 128-bit
key versions. One round is composed of three steps: addRoundKey, sBoxLayer
and pLayer as illustrated in Fig. 6. The first function just XORs the incoming
subkey to the internal state and the sBoxLayer applies the 4-bit Sbox (given in

Implementing Lightweight Block Ciphers on x86 Architectures 347

Fig. 6. An overview of a single round of PRESENT.

Appendix E.1 of [2]) to all nibbles. The pLayer function is a bit permutation
where a bit located at position i is moved to position j = i · 16 mod 63 when
i ∈ {0, . . . , 62} and j = i if i = 63. After the last round, a last addRoundKey
layer is performed.

The key schedule generating the subkeys is composed of four steps. Firstly,
the subkey is obtained from the key state by extracting the 64 leftmost bits.
Then, the key state is rotated to the left by 61 bit positions and the Sbox is
applied to the leftmost nibble (the Sbox is also applied to the second-leftmost
nibble for the 128-bit key version). Finally, a 5-bit round counter is XORed from
bit positions 15 to 19 of the key state (from bit positions 62 to 66 for the 128-bit
key version).

A.3 Piccolo

Piccolo is a 64-bit block cipher that applies respectively 25 and 31 rounds for
the 80 and 128-bit key versions. The round function is a 4-line type-II generalized
Feistel network variant, so one can view the internal state as four 16-bit branches.
The three steps in one round are illustrated in Fig. 7. The first function applies a
transformation F to the first branch (resp. third branch) and XORs the result to
the second branch (resp. fourth branch). Then two incoming 16-bit subkeys are
XORed to the second and fourth branches respectively. Finally, a permutation
on the nibble position is performed, where a nibble at position i is moved to
position T [i] with T = [4, 5, 14, 15, 8, 9, 2, 3, 12, 13, 6, 7, 0, 1, 10, 11]. The 16-bit
function F itself applies a 4-bit Sbox (given in Appendix E.2 of [2]) to every
nibble, then multiplies the current vector by an MDS diffusion matrix M , and
applies again the 4-bit Sbox to every nibble. The matrix M is

M =

⎡

⎢
⎢
⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤

⎥
⎥
⎦

where each nibble represents an element from GF(24) with the underlying poly-
nomial for field multiplication given by X4+X+1. Finally, two 16-bit whitening
keys are incorporated to the first and third branches respectively, at the begin-
ning and at the end of the ciphering process.

348 R. Benadjila et al.

Fig. 7. An overview of a single round of Piccolo.

The key schedule generating the subkeys simply selects two 16-bit chunks
from the original key and XORs them with some round-dependent constants.

B Results Tables

Table 2. Implementation results for LED, PRESENT and Piccolo on various x86

architectures.

Implementation results for LED, PRESENT and Piccolo on Core i3–2367M @ 1.4 GHz

Cipher Implementation tE tKS PE PKS tpack tunpack tpackKS use cases speed (cycles/byte)

type (cycles) (cycles) (cycles) (cycles) (cycles)

LED-64 Table 608 0 1 1 0.0 0.0 0.0 76.0 76.0 76.0 76.0 76.0 76.0
vperm 560 0 2 2 4.0 4.0 4.0 71.5 36.0 71.0 36.5 36.0 36.0
Bitslice 2443 0 16 16 5.1 6.3 5.4 307.5 20.7 306.8 21.3 20.5 20.7
Bitslice 2604 0 32 32 5.7 8.4 5.8 328.0 12.2 327.3 12.9 11.9 12.2

LED-128 Table 906 0 1 1 0.0 0.0 0.0 113.3 113.3 113.3 113.3 113.3 113.3
vperm 858 0 2 2 4.0 4.0 9.0 109.4 54.6 108.3 55.8 54.6 54.6
Bitslice 3671 0 16 16 5.1 6.6 9.9 461.6 30.4 460.3 31.6 30.1 30.4
Bitslice 3967 0 32 32 5.8 8.4 11.9 499.1 17.6 497.7 19.1 17.3 17.6

Piccolo-80 Table 671 38 1 1 0.0 0.0 0.0 88.6 83.9 83.9 88.6 83.9 83.9
vperm 512 55 2 2 6.0 4.5 7.5 73.1 33.3 65.3 37.7 33.3 33.3
Bitslice 977 0 16 16 5.4 6.9 14.8 125.5 9.2 123.7 11.1 9.2 9.2

Piccolo-128 Table 829 57 1 1 0.0 0.0 0.0 110.8 103.6 103.6 110.8 103.6 103.6
vperm 644 55 2 2 9.0 2.0 6.5 89.6 41.6 81.9 45.9 41.6 41.6
Bitslice 1196 0 16 16 5.2 6.7 23.1 153.9 10.9 151.0 13.8 10.8 10.9

PRESENT-80 Table 580 408 1 1 0.0 0.0 0.0 123.5 72.6 72.6 123.5 72.6 72.6
vperm 540 350 2 2 6.5 3.5 87.5 123.4 35.1 68.8 67.8 35.0 35.0
Bitslice 1333 706 8 8 9.0 8.3 15.8 259.0 23.1 168.9 36.0 23.0 23.0
Bitslice 2038 1100 16 16 5.1 5.6 7.4 394.5 17.5 256.2 27.0 17.3 17.4

PRESENT-128 Table 580 334 1 1 0.0 0.0 0.0 114.3 72.5 72.5 114.3 72.5 72.5
vperm 540 296 2 2 6.5 3.5 103.0 118.6 35.0 68.8 66.4 35.0 35.0
Bitslice 1313 738 8 8 9.4 8.5 15.8 260.6 22.8 166.5 36.3 22.8 22.8
Bitslice 2221 1286 16 16 5.3 5.8 9.4 440.9 19.0 279.2 30.2 18.7 18.9

Implementing Lightweight Block Ciphers on x86 Architectures 349

Table 2. (Continued)

Implementation results for LED, PRESENT and Piccolo on XEON X5650 @ 2.67 GHz

Cipher Implementation tE tKS PE PKS tpack tunpack tpackKS use cases speed (cycles/byte)

type (cycles) (cycles) (cycles) (cycles) (cycles)

LED-64 Table 567 0 1 1 0.0 0.0 0.0 70.9 70.9 70.9 70.9 70.9 70.9
vperm 749 0 2 2 5.0 5.0 10.0 96.1 48.1 94.9 49.3 48.1 48.1
Bitslice 2445 0 16 16 5.0 6.3 5.1 307.7 20.7 307.0 21.3 20.5 20.7
Bitslice 2846 0 32 32 5.8 8.2 6.0 358.2 13.1 357.5 13.9 12.9 13.1

LED-128 Table 847 0 1 1 0.0 0.0 0.0 105.9 105.9 105.9 105.9 105.9 105.9
vperm 1058 0 2 2 5.0 5.0 18.5 135.8 67.4 133.5 69.7 67.4 67.4
Bitslice 3674 0 16 16 5.0 6.3 9.7 461.9 30.3 460.7 31.6 30.1 30.3
Bitslice 4306 0 32 32 5.9 8.2 12.2 541.5 19.0 540.0 20.5 18.6 19.0

Piccolo-80 Table 568 39 1 1 0.0 0.0 0.0 75.9 71.0 71.0 75.9 71.0 71.0
vperm 580 47 2 2 2.5 7.0 13.5 81.3 37.4 73.7 42.1 37.4 37.4
Bitslice 1038 0 16 16 5.4 6.7 14.4 133.1 9.7 131.3 11.5 9.6 9.7

Piccolo-128 Table 700 62 1 1 0.0 0.0 0.0 95.3 87.5 87.5 95.3 87.5 87.5
vperm 724 77 2 2 10.5 7.0 8.0 103.3 47.4 92.7 53.3 47.4 47.4
Bitslice 1400 0 16 16 5.3 6.6 22.8 179.3 12.5 176.5 15.4 12.4 12.5

PRESENT-80 Table 525 398 1 1 0.0 0.0 0.0 115.4 65.7 65.7 115.4 65.7 65.7
vperm 650 441 2 2 6.0 5.5 99.5 150.3 42.1 82.8 82.1 42.1 42.1
Bitslice 1360 600 8 8 9.5 9.0 15.9 249.3 23.6 172.4 34.9 23.6 23.6
Bitslice 2453 1437 16 16 5.0 6.0 8.4 488.7 20.9 308.2 33.1 20.6 20.7

PRESENT-128 Table 525 304 1 1 0.0 0.0 0.0 103.6 65.7 65.7 103.6 65.7 65.7
vperm 650 408 2 2 6.0 5.5 152.5 152.8 42.1 82.8 86.6 42.1 42.1
Bitslice 1389 674 8 8 8.8 9.0 16.0 262.1 24.0 175.9 36.5 23.9 23.9
Bitslice 2882 1888 16 16 5.3 5.9 9.6 598.8 24.3 361.9 40.2 23.9 24.1

Implementation results for LED, PRESENT and Piccolo on Core 2 Duo P8600 @ 2.4 GHz

LED-64 Table 502 0 1 1 0.0 0.0 0.0 62.8 62.8 62.8 62.8 62.8 62.8
vperm 751 0 2 2 2.0 2.0 4.0 94.9 47.4 94.4 47.9 47.4 47.4
Bitslice 2880 0 16 16 6.6 9.4 6.6 362.8 24.7 362.0 25.5 24.5 24.7
Bitslice 3029 0 32 32 6.3 10.3 6.7 381.5 14.2 380.7 15.0 13.9 14.2

LED-128 Table 748 0 1 1 0.0 0.0 0.0 93.5 93.5 93.5 93.5 93.5 93.5
vperm 1091 0 2 2 2.0 2.0 25.0 140.0 68.7 136.9 71.8 68.7 68.7
Bitslice 4219 0 16 16 6.5 9.5 12.8 531.0 35.2 529.4 36.8 35.0 35.2
Bitslice 4521 0 32 32 6.5 10.5 13.4 568.9 20.2 567.3 21.9 19.8 20.2

Piccolo-80 Table 537 41 1 1 0.0 0.0 0.0 72.3 67.1 67.1 72.3 67.1 67.1
vperm 594 44 2 2 4.0 5.0 15.0 82.8 38.3 75.4 42.9 38.3 38.3
Bitslice 1100 0 16 16 7.1 9.4 16.9 141.7 10.7 139.6 12.8 10.7 10.7

Piccolo-128 Table 669 65 1 1 0.0 0.0 0.0 91.8 83.6 83.6 91.8 83.6 83.6
vperm 739 73 2 2 4.0 4.0 8.0 103.5 47.2 93.4 52.8 47.2 47.2
Bitslice 1400 0 16 16 6.3 9.4 25.6 180.2 13.0 177.0 16.2 12.9 13.0

PRESENT-80 Table 476 359 1 1 0.0 0.0 0.0 104.4 59.5 59.5 104.4 59.5 59.5
vperm 651 384 2 2 8.5 4.0 105.5 144.1 42.3 83.0 79.4 42.3 42.3
Bitslice 1446 731 8 8 11.0 11.1 17.6 277.1 25.5 183.6 39.0 25.4 25.4
Bitslice 2438 1250 16 16 6.3 8.3 10.0 464.1 21.2 306.7 32.1 20.9 21.0

PRESENT-128 Table 476 285 1 1 0.0 0.0 0.0 95.1 59.5 59.5 95.1 59.5 59.5
vperm 652 386 2 2 7.0 5.5 124.0 146.8 42.4 83.1 81.9 42.4 42.4
Bitslice 1472 812 8 8 10.4 11.5 17.8 290.5 25.8 186.8 40.6 25.7 25.7
Bitslice 2830 1631 16 16 6.0 8.1 11.1 560.8 24.3 355.7 38.3 23.9 24.1

350 R. Benadjila et al.

References

1. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: quark: a lightweight
hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
1–15. Springer, Heidelberg (2010)

2. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. Cryptology ePrint Archive, Report 2013/445, full
version. http://eprint.iacr.org/2013/445.pdf (2013)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-
mission to NIST. http://keccak.noekeon.org/Keccak-specifications.pdf (2008)

4. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) [22],
pp. 312–325

5. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, Ch., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: Present: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

6. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, Ch., Rechberger, Ch., Rombouts, P., Thom-
sen, S.S., Yalçın, T.: prince – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

7. De Cannière, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.)
[9], pp. 272–288

8. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) [9], pp. 33–48

9. Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg
(2009)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

11. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X. : Block ciphers that
are easier to mask: how far can we go? Cryptology ePrint Archive, Report 2013/369.
http://eprint.iacr.org/ (2013)

12. Guo, J., Peyrin, T., Poschmann, A.: The photon family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

13. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
Preneel, B., Takagi,T. [22], pp. 326–341

14. Hamburg, M.: Accelerating AES with vector permute instructions. In: Clavier, C.,
Gaj, K. (eds.) [9], pp. 18–32

15. Holzer-Graf, S., Krinninger, T., Pernull, M., Schläffer, M., Schwabe, P., Seywald,
D., Wieser, W.: Efficient vector implementations of aes-based designs: a case study
and new implemenations for Grøstl. In: Dawson, E. (ed.) CT-RSA 2013. LNCS,
vol. 7779, pp. 145–161. Springer, Heidelberg (2013)

16. Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2013.
17. International Organization for Standardization. ISO/IEC 29192–2:2012, Informa-

tion technology - Security techniques - Lightweight cryptography - Part 2: Block
ciphers, 2012

http://eprint.iacr.org/2013/445.pdf
http://keccak.noekeon.org/Keccak-specifications.pdf
http://eprint.iacr.org/

Implementing Lightweight Block Ciphers on x86 Architectures 351

18. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) [9], pp. 1–17

19. Matsuda, S., Moriai, S.: Lightweight cryptography for the cloud: exploit the power
of bitslice implementation. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 408–425. Springer, Heidelberg (2012)

20. Osvik, D.A.: Fast assembler implementations of the AES (2003)
21. Poschmann, A.: Lightweight cryptography - cryptographic engineering for a per-

vasive world. Cryptology ePrint Archive, Report 2009/516. http://eprint.iacr.org/
(2009)

22. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

23. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

24. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: twine: a lightweight block
cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

25. U.S. Department of Commerce, National Institute of Standards and Technology.
Secure Hash Standard (SHS) (Federal Information Processing Standards Publica-
tion 180–4). http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf (2012)

http://eprint.iacr.org/
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Invited Talk

A New Index Calculus Algorithm
with Complexity L(1/4 + o(1))

in Small Characteristic

Antoine Joux(B)

Laboratoire PRISM, CryptoExperts and Université de Versailles
Saint-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles Cedex, France

antoine.joux@m4x.org

Abstract. In this paper, we describe a new algorithm for discrete
logarithms in small characteristic. This algorithm is based on index cal-
culus and includes two new contributions. The first is a new method for
generating multiplicative relations among elements of a small smooth-
ness basis. The second is a new descent strategy that allows us to express
the logarithm of an arbitrary finite field element in terms of the loga-
rithm of elements from the smoothness basis. For a small characteristic
finite field of size Q = pn, this algorithm achieves heuristic complexity
LQ(1/4 + o(1)). For technical reasons, unless n is already a composite
with factors of the right size, this is done by embedding FQ in a small
extension FQe with e ∈ 2←logp n∪.

1 Introduction

The discrete logarithm problem is one of the major hard problems used in
cryptography. In this paper, we show that for finite fields of small character-
istic, this problem can be solved with heuristic complexity L(1/4 + o(1)). More-
over, the algorithm yields very practical improvements compared to the previous
state-of-the-art.

One of the two main ideas used for our algorithm is a generalization of the
pinpointing technique proposed in [10]. Another independent algorithm for char-
acteristic 2 was proposed in [5], yielding an algorithm with complexity LQ(1/3),
with a better constant than the Function Field Sieve.

2 A Reminder of Discrete Logarithm Algorithms
in Small Characteristic

As usual when studying index calculus algorithms, we write:

LQ(φ, c) = exp((c + o(1))(log Q)λ(log log Q)1−λ),

where Q = pn denotes the size of the finite field.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 355–379, 2014.
DOI: 10.1007/978-3-662-43414-7 18, c∞ Springer-Verlag Berlin Heidelberg 2014

356 A. Joux

When considering the computation of discrete logarithms, in fields of the
form FQ, where p is relatively small compared to Q, the state of the art choice
is to use one of the numerous variation of the function field sieve. For larger
values of p, it becomes preferable to use a variation of the number field sieve.
The choice between the two family of algorithms is made by comparing p and
LQ(13) (see [12]).

All these variants of the function field sieve find multiplicative relations by
factoring various polynomials into polynomials of low degree. A classical useful
result is the logarithm of the probability that a random polynomial of degree
n decomposes into factors of degree m over a finite field is close to:

− n

m
log

(n

m

)
,

for a wide range of parameters [13].
When using function field sieve algorithms, a standard heuristic assumption

is to assume that all polynomials that arise in the algorithm also follow this
smoothness probability. In the new algorithm presented here, this is false by
construction, because we consider polynomials than decompose more frequently
than usual. However, we still use the heuristic assumption on some polynomials:
those for which there is no known reason to expect that they would deviate from
the normal behavior.

Despite the new ingredients we are using, there are deep similarities between
our algorithm and its predecessors. In particular, some features are reminiscent
of Coppersmith’s algorithm [3], while others are inspired from [11]. In the present
section, we recall these two algorithms.

2.1 Coppersmith’s Algorithm

Coppersmith’s Algorithm was published in 1984 in [3]. Historically, it was the
first discrete logarithm algorithm to achieve complexity L(1/3). In its original
presentation, this algorithm is dedicated to characteristic 2, but it can easily be
generalized to any fixed characteristic [14].

Consider as usual a finite field of size Q = pn. Coppersmith assumes that
FQ is constructed using a polynomial P (x) = xn − P0(x), where P0(x) is a
polynomial of low degree. He then chooses k a power of p close to

∈
n and writes

n = hk − n0, with 0 ∞ n0 < k.
Let A and B be two polynomials of low degree. Coppersmith considers the

polynomial C(x) = xhA(x) + B(x), let D = Ck and remarks that since k is a
power of p, the linearity of the Frobenius map implies:

D(x) = C(x)k

= xhkA(x)k + B(x)k (mod P (x))
= xn0P0(x)A(x)k + B(x)k (mod P (x))

As a consequence, both C and D have moderate degrees O(
∈

n). If both factors
into low degree polynomials, we obtain a multiplicative relation between the
factors; in this relation, the factors of C are raised to the power k.

A New Index Calculus Algorithm in Small Characteristic 357

The complexity of Coppersmith’s index calculus algorithm is L(1/3, c) with
a value of c that depends on the extension degree n. This constant is minimized
when n is close to a power of p2.

2.2 Function Field Sieve

The general function field sieve algorithm was proposed in 1999 by Adleman and
Huang in [1]. It improves on Coppermith’s algorithm when the extension degree
n is not close to a power of p2. In its general form, it uses multiplicative relations
between ideals in function fields and technicalities arise due to this. A simplified
version was proposed in [11]. This simplified version only involves polynomial
rings (instead of function fields), which has the merit of removing most of these
technicalities.

The algorithm from [11] is particularly well suited to the computation of
discrete logarithms in fields that contain a medium-sized subfield (not necessarily
prime). To emphasize this, we write the finite field as Fqn , a degree n extension of
the medium-sized field Fq. In the optimal case where q = Lqn(1/3), the constant
in the complexity can even be reduced compared to usual function field sieve.

By convention, in the rest of the section, X and Y are formal variables,
while x and y are elements of Fqn . In order to define the extension field Fqn ,
the algorithm selects g1 and g2 two univariate polynomials of respective degree
d1 and d2 with coefficients in Fq. If the polynomial −g2(g1(Y)) + Y has an
irreducible factor I(Y) of degree n over Fq, then I can be used to define Fqn

and we denote by y a root of I in this field. When this occurs, −g1(g2(X)) + X
also has an irreducible factor I ∈(X) of degree n over Fq. Moreover, x = g1(y) is a
root of I ∈ in Fqn . Abstractly, we consider that the algorithm is, in fact, defining
the finite field Fqn implicitly by the two relations:

x = g1(y), y = g2(x), (1)

As explained in [11], it is easy to find polynomials g1 and g2 that satisfy this
requirement. This definition of the finite field induces the commutative diagram
in Fig. 1. On the right-hand side, we use the I(Y) to define Fqn and on the
left-hand side, we use I ∈(X).

Fq[X,Y]

Fq[X] Fq[Y]

Fqn

Y ∼g2(X)

X∼g1(Y)

X∼x

Y ∼y

Fig. 1. Commutative diagram for the algorithm of [11]

358 A. Joux

The relative degrees of d1 and d2 in the construction are controlled by an
extra parameter D, whose choice is determined by the size of q compared to qn.
More precisely, we have d1 √ ∈

Dn and d2 √ √
n/D. The simplest and most

efficient case occurs when we can choose D = 1, i.e. d1 √ d2 √ ∈
n.

Starting from this definition of the finite field, the medium prime field algo-
rithms consider objects of the form A(Y)X +B(Y), where A and B are univari-
ate polynomials of degree D and A is unitary. Substituting g1(Y) for X on one
side and g2(X) for Y on the other, we obtain two univariate polynomials whose
images in Fqn are equal, i.e. an equation:

A(y) g1(y) + B(y) = A(g2(x))x + B(g2(x)).

This relates the images of a polynomial of degree d1 + D in Y and a polynomial
of degree Dd2 + 1 in X.

Following [11] , we only keep the relations, where A(Y) g1(Y) + B(Y) and
A(g2(X))X + B(g2(X)) both factor into unitary polynomials of degree at most
D in X or Y . This yields multiplicative relations between the images in Fqn of
these low-degree polynomials, which form the smoothness basis. Classically the
good pairs (A,B) are found using a sieving approach1.

Complexity. To express the complexity, [11] let Q = qn and assumes that there
exists a parameter ψ such that:

n =
1
ψ

·
(

log Q

log log Q

)2/3

, q = exp
(

ψ · 3
√

log Q · log2 log Q

)

.

In this setting, the heuristic asymptotic complexity of the sieving phase is
Lqn(13 , c1) and the complexity of the linear algebra is Lqn(13 , c2), with:

c1 =
2

3
∈

ψD
+ ψD and c2 = 2ψD.

Note that the algorithm with parameter D only works under the condition that
we can obtain enough linear equations to build the linear system of equations.
This requires:

(D + 1)ψ ≥ 2
3
∈

ψD
. (2)

For a given finite field Fqn , [11] indicates that the best possible complexity is
obtained by choosing the smallest acceptable value for the parameter D.

Individual Logarithms Phase. Another very important phase that appears
in index calculus algorithms is the individual discrete logarithms phase which
allows to compute the logarithm of an arbitrary finite field element by find-
ing a multiplicative relation which relates this element to the elements of the
smoothness basis whose logarithms have already been computed.
1 Asymptotically, exhaustive search of good pairs is as efficient. However, using sieving

improves things by a large constant factor.

A New Index Calculus Algorithm in Small Characteristic 359

We now detail this phase in the case of [11]. The ultimate goal of expressing a
given element as a product of elements from the smoothness basis is not achieved
in a single pass. Instead, it is done by first expressing the desired element in Fqn

as a product of univariate polynomials in either x or y and with degree smaller
than that of the desired element. These polynomials can in turn be related to
polynomials of a lower degree and so on, until hitting degree ∞ D, i.e. elements
of the smoothness basis. For this reason, the individual logarithm phase is also
called the descent phase.

In order to create relations between a polynomial in either X or Y (i.e.
coming either from the left or right side of a previous equation) and polynomials
of lower degree, [11] proceeds as follows: Let Q(X) (resp. Q(Y)) denote the
polynomial that represent the desired element. One considers a set of monomials
SQ = {XiY j |i → [0 · · · Dx(Q)], j → [0 · · · Dy(Q)]}, where Dx(Q) and Dy(Q) are
parameters that we determine later on. Each monomial in SQ can be expressed
as a univariate polynomial in X (resp. Y), after replacing Y by g2(X) (or X
by g1(Y)). For a monomial m we denote by VQ(m) the value modulo Q of the
univariate polynomial corresponding to m. Clearly, VQ(m) can be represented by
a vector of deg Q finite field elements. We now build a matrix MQ by assembling
all the vectors VQ(m) for m → SQ. Any vector in the kernel of MQ can then be
interpreted as a polynomial whose univariate representation is divisible by Q. If
both the quotient after dividing by Q and the univariate representation in the
other unknown decompose into products of polynomials of low enough degree,
we obtain the desired relation.

Clearly, this approach requires us to take enough monomials to make sure
that the kernel contains sufficiently many polynomials in order to find a satis-
fying relation. This can be achieved by choosing Dx(Q) and Dy(Q) such that
Dx(Q)Dy(Q) ≥ deg Q. Moreover to balance the degrees after replacing X or Y ,
we make sure that Dy(Q)/Dx(Q) √ D. With these choices, the degree on each
side after replacement is close to

∈
ndeg Q. The logarithm of the probability

that each of the two sides decompose into polynomials of degree at most μdeg Q
(after factoring out Q) is estimated by:

− 2
μ

√
n

deg Q log
(

2
μ

√
n

deg Q
)

.

The cost of this descent step increases when the degree of Q decreases. As
a consequence, the total cost of the descent is dominated by the lowest degree
polynomials that still need to be processed. In [11], the descent is used all the
way down to constant degree D. As a consequence, with the relative sizes of n
and q that [11] considers, the asymptotic complexity of the descent is LQ(1/3).

3 New Algorithm: Basic Ideas

The new index calculus algorithms proposed in this paper hinges on a few basic
ideas, which can be arranged into a functional discrete logarithm algorithm.

360 A. Joux

Basic idea 1: Homographies. In [10], it was remarked that a single polynomial f
that nicely factors can be transformed into several such polynomials, simply by
a linear change of variable: f(X) −≡ f(aX), for any non-zero constant a.

Our first idea consists in remarking that this is also true for a larger class of
change of variables. Basically, we consider changes induced by homographies:

X −≡ aX + b

cX + d
.

The reader might object that an homography is not going to transform f into
polynomial. To cover this, we instead perform homogeneous evaluation of f at
(aX + b)/(cX + d).

In other words, we consider the polynomial:

Fabcd(X) = (cX + d)deg ff

(
aX + b

cX + d

)

.

Theorem 1. Let f(Y) be a monic polynomial of degree D over Fq and Fqk be an

extension field of Fq. Let Fabcd(X) = (cX+d)deg ff
(

aX+b
cX+d

)
with (a, b, c, d) → F

4
qk

and ad ∼= bc. Write the factorization of f into monic irreducible polynomials as
f(Y) =

∏k
i=1 Fi(Y)ei . It induces a factorization of Fabcd

Fabcd(X) =
k∏

i=1

(

(cX + d)deg FiFi

(
aX + b

cX + d

))ei

.

Note that the factors in this decomposition are not necessary monic, not neces-
sary irreducible and may have a lower degree than the corresponding factor in
Fi.

Proof. The induced factorization is clear. It suffices to perform the change of
variable on both sides and remark that the grouped terms

(cX + d)deg FiFi

(
aX + b

cX + d

)

are indeed polynomials.
It is also clear that the transformed factors have no reason to be irreducible

in the extension field Fqk .
Remark that when c ∼= 0 the coefficient of Xdeg Fi in the factor coming from

Fi is cdeg FiFi(a/c). Since this is not necessarily 1 and can even be 0, we see that
the transformed polynomials are not necessarily monic and may have degree
strictly smaller than the corresponding Fi. ∩⊆

Thanks to this, it is now possible to amplify a single polynomial to a much
larger extend than previously. More precisely, with a linear change of variables,
the number of amplified copies of a single polynomial is close to the size of
the finite field in which a is picked. With homographies, the number of copies
becomes larger (see Sect. 4.2 for a detailed analysis).

A New Index Calculus Algorithm in Small Characteristic 361

Basic idea 2: Systematic polynomial splitting. The second idea directly stems
from this fact. Since it is possible to make so many copies of one polynomial, it
suffices to start from a single polynomial f . Thus, instead of considering many
polynomials until we find some candidate, we are going to choose a polyno-
mial with factors by design. Over a small finite field Fq, an extremely natural
candidate to consider is:

f(X) = Xq − X.

It is well-known that this polynomial splits into linear factors, since any element
of Fq is a root of f .

Geometrically, using the homogeneous evaluation of f (with multiplication
by (cX + d)q+1) at an homography h is equivalent to considering the image of
the projective line (including its point at infinity) P1(Fq) by h.

Basic idea 3: Field definition The image of Xq − X by an homography is a
polynomial which only contains the monomials Xq+1, Xq, X and 1. To obtain
a multiplicative relation, it is thus desirable to find a finite field representation
that transforms such a polynomial into a low degree polynomial. This can be
achieved by choosing the finite field representation in a way that is reminiscent
both of Coppersmith’s algorithm and of [11].

More precisely, we ask for a relation in Fqn of the form:

xq =
h0(x)
h1(x)

.

This defines the finite field Fqn , if and only if, h1(X)Xq − h0(X) admits an
irreducible factor of degree n.

This construction is similar to Coppersmith’s Algorithm, since we require a
simple expression of the Frobenius map x ≡ xq. It is similar to [11], because we
do not ask for the relation to directly give an irreducible polynomial but only
require a factor of the proper degree.

The rest of the paper gives the details of how to put together these basic ideas
into a working discrete logarithm algorithm. Another application of the same
ideas has been described in [7], where a new deterministic algorithm (based on
similar heuristics to ours) is proposed to find a provable multiplicative generator
of a finite field.

4 Description of the New Algorithm

In this section, we present the new discrete logarithm algorithm for small charac-
teristic fields that arises when putting together the basic ideas from the previous
section. We first describe the general setting of our algorithm, before considering
its relation collection phase. We skip the description of the linear algebra phase
that takes as input the relations and outputs logarithms of the elements of our
factor basis, since it is left unchanged compared to previous algorithms. Finally,
we study the computation of individual discrete logarithms, for arbitrary field

362 A. Joux

elements. This phase relies on a descent method which contains two main strate-
gies. For elements with representations of high degree, one proceeds as in [11],
while for lower degrees we introduce a new strategy based on the resolution of
multivariate systems of bilinear equations.

4.1 Choosing the Parameters

Given a small characteristic finite field Fpn , we start be embedding it into a field
of the form Fq2k , with k ∞ q. This can be achieved by taking a degree e extension
of Fpn , with e ∞ 2∃logp n≈.

After this initial embedding, the finite field Fq2k is constructed has a degree k
extension of Fq2 . This degree k extension is obtained by using a irreducible factor
of a low degree bivariate polynomial, evaluated at (X,Xp). More precisely, we
follow the third idea of Sect. 3 and choose two low degree polynomials h0(X) and
h1(X) with coefficients in Fq2 such that h1(X)Xq −h0(X) has an irreducible fac-
tor I(X) of degree k. This field representation leads to the commutative diagram
in Fig. 2. Heuristically, we expect arbitrary extension degrees to appear with this
form of definition polynomials. Indeed, we expect that a fraction close to 1/k
of random polynomials has a factor of degree k. Thus considering polynomials
h0 and h1 of degree 2, we have a very large number of degrees of freedom and
expect to get a good representation. However, this argument is not a proof. This
is emphasized by the fact that with linear polynomials h0 and h1 we can only
reach a fraction of the possible extension degrees (see the simple cases below).

In order to increase the confidence level in this heuristic hypothesis, we have
performed some experiments in characteristic 2. This yields some numerical evi-
dence supporting the heuristic which is described in Appendix B.

Moreover, since we have also the option of raising the degree of h0 and h1 to
an arbitrary constant, it should be easy to achieve any extension degree k (up to
q + deg(h1).)

Fq[X,X ∈]

Fq[X] Fq[X]

Fq2k

Fpn

X′∼Xq

X′∼h0(X)/h1(X)

X∼x

X∼x

Degree e extension

Fig. 2. Commutative diagram for our new algorithm

A New Index Calculus Algorithm in Small Characteristic 363

Illustration of Some Simple Cases. Some kind of extensions are especially
well-suited to this form of representation. To illustrate our construction, we now
describe these simple cases.

A first example concerns extensions of degree k = q − 1. They can be repre-
sented as Kummer extensions by an irreducible polynomial I(X) = Xq−1 − g,
where g is a generator of the multiplicative group F

∗
q . This can be achieved easily

in our setting by letting h0(X) = gX and h1(X) = 1.
Similarly extensions of degree k = q + 1 can be represented by a Kummer

extension by an irreducible polynomial I(X) = Xq+1 + Gq−1, where G is a
generator of the multiplicative group F

∗
q2 . This can be achieved easily in our

setting by letting h0(X) = −Gq−1 and h1(X) = X.
Alternatively, extensions of degree q + 1 can also be represented using a

“twisted Kummer” form, i.e. using an irreducible polynomial of the form Xq+1−
AX −B, with coefficients A and B in Fq. This twisted Kummer form is used for
the record computation presented in Sect. 8.

Another special case is k = p, which can be represented by an Artin-Schreier
extension with I(X) = Xp − X − 1. This can be achieved by choosing h0(X) =
−(X + 1) and h1(X) = 1. However, since our algorithm is dedicated to small
characteristic, this only leads to low degree extensions.

Action of Frobenius. When using Kummer, twisted Kummer or Artin-Schreier
extensions, the fact that the Frobenius maps X to an homography in X allows
to reduce the size of the factor basis by a factor close to the extension degree.
Indeed, we can remark that:

1. In the Kummer case:

(x + λ)q = xq + λq = g(x + λq/g).

2. In the twisted Kummer case:

(x + λ)q = xq + λq =
1
x

((λ + A)x + B).

3. In the Artin-Schreier case:

(x + λ)p = xp + λp + 1.

These relations yield simple linear relations between the elements of the smooth-
ness basis and allow to reduce its size. It is easy to check that similar relations
also relate polynomials of degree 2 in x.

4.2 Logarithms of Linear Polynomials

The first step in the algorithm is to generate the logarithms of all linear polyno-
mials in the finite field. As usual in index calculus, we construct multiplicative
relations between these elements. These equations can be viewed as linear equa-
tions on the values of their logarithms which are then obtained by linear algebra.

364 A. Joux

In order to generate the relations, we start from the polynomial identity:
∏

Γ∅Fq

(Y − ψ) = Y q − Y, (3)

and perform a change of variable Y = aX+b
cX+d , with (a, b, c, d) → F

4
q2 satisfying

ad − bc ∼= 0.
Evaluating Eq. (3) and multiplying by (cX + d)q+1, we find that:

(cX + d)
∏

Γ∅Fq

((a − ψc)X + (b − ψd)) = (cX + d)(aX + b)q − (aX + b)(cX + d)q.

Moreover the right-hand side can be evaluated to:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq)
≥

(caq−acq)Xh0(X)+(daq − bcq)h0(X)+(cbq−adq)Xh1(X)+(dbq − bdq)h1(X)
h1(X)

(mod I(X)).
(4)

As a consequence, we get an equality in Fq2k between a product of linear
polynomials and a fraction with low-degree numerator and constant denomi-
nator. Considering h1(X) as an extra element of the smoothness basis, we get
a multiplicative relation whenever the right-hand side’s numerator factors into
linear factors.

Counting the Relation Candidates. The above description that generates a
candidate relation from a quadruple (a, b, c, d) disregards some important struc-
ture in the set of candidates. In particular, the reader should be aware that
the same relation may be encountered several times (with different quadruples
(a, b, c, d)). Typically, when (a, b, c, d) → F

4
q, we obtain a trivial equation. Indeed,

in this case, for each v in {a, b, c, d}, we have vq = v. As a consequence, after
evaluation, we obtain the polynomial (ad − bc)(Xq − X). Since this a just a
multiple of the basic polynomial Xq − X, this cannot form a new relation.

This is the reason why we need to take coefficients2 (a, b, c, d) in Fq2 and to
consider a smoothness basis with coefficients in Fq2 .

To understand the way Eq. (3) is transformed, we need to recall a few facts
about the geometric action of homographies on a projective line. Given a non-
singular matrix M with coefficients in a field K and a point P on the projective
line P1(K) with homogeneous coordinates (XP , YP), we define the image of P
by M to be the point MP , whose coordinates are obtained by multiplying the
matrix M and the vector of coordinates of P . In other words, when

M =
(

a b
c d

)

,

2 At this point, there is nothing really special with Fq2 , it is just the smallest superfield
of Fq. A larger superfield would also work.

A New Index Calculus Algorithm in Small Characteristic 365

MP is defined as the point with homogeneous coordinates (aXP + bYP , cXP +
dYP). It is clear that multiplying M by an arbitrary non-zero scalar does not
change the induced geometric action. Since the scalar matrices form a normal
subgroup of the invertible matrices, it is better to consider M as an element
from the corresponding quotient group which is traditionally called PGL2(K). It
is well known that for a finite field K, the cardinality of PGL2(K) is (|K|2−1)·|K|.

Geometrically, the change of variables we considered in the Eq. (3) is equiva-
lent to writing a polynomial equation for the image of the projective line P1(Fq)
by an element of PGL2(Fq2). Since PGL2(Fq) leaves P1(Fq) globally invariant, it
is now clear that the same equation can arise multiple times. More precisely, for
any M in PGL2(Fq2) and any N in PGL2(Fq), M and NM send P1(Fq) to the
same image and induce the same equation. Since PGL2(Fq) is not a distinguished
subgroup of PGL2(Fq2), we cannot form a quotient group. Instead, we need to
regroup the matrices of PGL2(Fq2) into orbits induced by the (left-)action of
PGL2(Fq). One can check that this action is free and thus that the cardinal-
ity of the set of orbits is simply the quotient of the cardinalities of PGL2(Fq2)
and PGL2(Fq). As a consequence, the number of orbits and, thus, of candidate
equations is:

q6 − q2

q3 − q
= q3 + q.

Cost of relation finding. We now would like to estimate the probability of finding
a relation for a random quadruple. Under the usual heuristic that the right-
hand side’s numerator factors into linear with a probability close to a random
polynomial of the same degree, we need to perform D! trials, where D denotes the
degree of the right-hand numerator. We note that D ∞ 1 + max(deg h0,deg h1).

As a consequence, since D can heuristically be chosen as a constant, we expect
to find enough relations by considering O(q2) quadruples. To avoid duplicates,
we can either use the structure of the orbits of PGL2(Fq2) under the action of
PGL2(Fq) or simply keep hash values of the relations to remove collisions. Since
we only need O(q2) distinct elements in a set of size close to q3, the number of
expected collisions between relations for randomly chosen quadruples (a, b, c, d)
is O(q). As a consequence, dealing with these collisions does not induce any
noticeable slow-down.

4.3 Extending the Basis to Degree 2 Polynomials

The above process together with linear algebra can thus give us the logarithms of
linear polynomials. Unfortunately, this is not enough. Indeed, we do not know, in
general, how to compute arbitrary logarithms using a smoothness basis that only
contains linear polynomials. Instead, we extend our basis of known logarithms
to include polynomials of degree 2.

We first describe a natural approach that does not work, before proposing a
successful approach that requires some additional linear algebra steps.

366 A. Joux

A Natural Strategy that Fails. The idea of this strategy is to reconsider the
relations produced for finding the linear polynomials. But, instead of keeping
the relations with a right-hand side that splits into linear factors, it also keeps
relations with a single degree 2 factor and some linear factors. This clearly allows
us to compute the logarithm of the degree 2 polynomial.

A simple counting argument shows that in general, this approach must fail.
Indeed, on the one-hand, the number of quadratic polynomials with coefficients
in Fq2 is O(q4), while on the other hand, the number of relations that can be
obtained from homographies with coefficients in Fq2 is close to q3 when remov-
ing the duplicates arising from homographies with coefficients in Fq. As a con-
sequence, it is not possible to derive the logarithms of all quadratic polynomials
in this way.

It is interesting to note that if we replace the field Fq2 by a larger field for
the coefficients of the homographies, the natural approach becomes workable.
However, we can see that the same counting argument shows that, in general,
using Fq3 is not good enough since a fraction of the equation are lost due to
the right-hand side splitting probability. Thus, to be able to recover the degree 2
polynomials with the simple strategy we need to, at least, use Fq4 as our basefield.
Since the number of linear polynomials in this case is q4, it is clearly preferable
to stay with Fq2 and pay the price of constructing quadratic polynomials with
the strategy below.

A Working Strategy. For this second strategy, we produce some extra equa-
tions, using the same approach as for linear polynomials together with a slightly
more general change of variable. More precisely, we consider changes of the form:

Y =
aX2 + bX + c

dX2 + eX + f
.

With this choice, the left-hand side factors into polynomials of degree at most 2.
If the left-hand side also factors into polynomials of degree at most 2, we obtain
an equation that involves the extended basis. Once we get enough equations, it
suffices to perform a linear algebra step to recover the extra logarithms.

However, this linear algebra step is much bigger than the first one. In fact, it
is almost as expensive as initially building all linear polynomials over the larger
basefield Fq4 . Thankfully, it is often possible to improve this, by separating the
degree 2 polynomials into several subsets which can be addressed independently.

Basically, the idea is to choose

Y =
a(X2 + ψX) + b

c(X2 + ψX) + d
.

With this choice, thanks to the repetition of X2 + ψX in the numerator and
denominator, all the degree 2 factors on the left are of the form X2 + ψX + K.
If we only keep relations with a right-hand side that factors into linear poly-
nomials, a set of relations that all share the same value for ψ then produce

A New Index Calculus Algorithm in Small Characteristic 367

a much smaller linear system. Indeed, the unknowns are the logarithms of
irreducible polynomials of degree 2 from the subset X2 + ψX + K, with a
fixed ψ. As a consequence, instead of solving a large system of size O(q4), we
need to solve q2 smaller system (on for each ψ), of size O(q2). This system is
obtained by selecting equations with a smooth left-hand side in a set of O(q3)
candidates.

Depending on the exact parameters of the finite field and the number of
logarithms that need to be computed, it might also be useful to further extend
the smoothness basis and include polynomials of higher degree (3 or more).

5 New Algorithm: Descent Phase

Once the logarithms of smoothness basis elements are known, we want to be able
to compute the logarithm of an arbitrary element of the finite field. We wish to
proceed using a descent approach similar to [11]. The basic idea is to first obtain
a good representation of the desired element into a product of polynomials whose
degrees are not too high. Then, proceeding recursively, we express the logarithms
of those polynomials as sums of logarithms of polynomials of decreasing degree.
Once we reach the polynomials of the smoothness basis, we are done.

In our context, we cannot, in general, use the preexisting method for this
descent step. Yet, we first recall this method, discuss when it can be used and
explain why we cannot use it generally. Then, we propose an alternative method
that is more suited to the field representations we are using. This new method
involves the resolution of bilinear multivariate systems of equations over Fq2 .
The resolution of such systems has been analyzed carefully in Spaenlehauer’s
PhD thesis [15] and in [4].

5.1 Practical Preliminary Step

Before going into the descent itself, it is useful to start by finding a good repre-
sentation of the element Z whose logarithm is desired. Initially, Z is expressed
as a polynomial of degree up to k − 1 over Fq2 . Assuming that g denotes a gen-
erator of Fq2k , we consider the decomposition of the polynomials that represent
giZ, until we find one which decomposes into elements of reasonably low degree.
These lower degree elements are then processed by the descent step.

A classical improvement on this is to use a continued fraction algorithm to
first express giZ as a quotient of two polynomials of degree at most k/2.

This preliminary step gives no improvement on the asymptotic complexity
of the descent phase.

5.2 Classical Descent Method

The classical descent technique as described in [11] and recalled in Sect. 2.2
is based on Special-Q sieving. More precisely, it creates relations in a linear

368 A. Joux

subspace where by construction one side of the equation is divisible by the desired
polynomial.

In the description of this method, we have two related variables X and Y . The
relations are constructed by considering bivariate polynomials h(X,Y), which
can lead to relations of the form h(X, f1(X)) = h(f2(Y), Y). To create a rela-
tion that involves a fixed polynomial Q(X), we want to enforce the condition
h(X, f1(X)) ≥ 0 (mod Q(X)). This condition is equivalent to deg(Q) linear
equations on the coefficients of h. When the basefield is not too small, to get
enough equations, it suffices to build the polynomials h as linear combination of
deg(Q) + 2 monomials.

In general characteristic, we cannot use this method in our context, because
we do not known how to create two related variables X and Y to use in this
descent step. However, with small characteristic fields, this become possible. Let
p denote the characteristic of the finite field. We can then write q = pφ and let
Y = Xpr

, where r = ∪ρ/2�. Then following our construction, we see that:

Y q·p−r

= Xq =
h0(X)
h1(X)

.

For the Kummer (or Artin-Schreier) case, where h0 and h1 have degree at most
one, this directly gives X as a polynomial g in Y and the usual descent can be
applied without modification. When h0 or h1 have higher degree, the method
still works, but we need to use a slight variation. Instead of considering the
relation h(X,Xpr

) = h(g(Y), Y), we consider a relation (h(X,Xpr

))q·p−r

=
h∈(Xq·p−r

, h0(X)/h1(X)), where h∈ is obtained from h by raising the coefficient
to the power q ·p−r. This has the additional advantage of completely eliminating
the auxiliary variable Y .

As seen in Sect. 2.2, this becomes less and less efficient as the degree of Q
decreases and the complexity is dominated by the lowest degree of Q that we
consider.

However, by itself, this method cannot descend to very low degrees which is
a problem when we want to keep a small smoothness basis. As a consequence,
we combine it with a newer method described below, which works better on low
degree polynomials.

5.3 Bilinear System Based Descent

The basic idea of the new descent method we propose to complement the clas-
sical descent works as follows: given a polynomial Q, we search for a pair of
polynomials of lower degree, k1 and k2 such that Q(X) divides (k1(X)qk2(X) −
k1(X)k2(X)q) mod I(X). As a consequence, the relation:

(k1(X)qk2(X) − k1(X)k2(X)q) ≥ (k1(X)qk2(X) − k1(X)k2(X)q) mod I(x),

has a factor equal to Q on the right-hand side and factors of degree at most
Dm = max(deg k1,deg k2) on the left-hand side. Since the total degree of the

A New Index Calculus Algorithm in Small Characteristic 369

right-hand side is bounded by a small multiple of Dm (related to the degrees of h0

and h1 the polynomials which defined out extension field), with good probability,
we obtain a relation between Q and polynomials of degree at most Dm.

The question is thus to construct such polynomials k1 and k2. We remark that
the condition that (k1(X)qk2(X) − k1(X)k2(X)q) mod I(X) vanishes modulo
Q can be rewritten as a quadratic system of multivariate equations over Fq. In
fact, this system is even bilinear, since each monomial that appear in it contains
at most one unknown for each of k1 and k2. As a consequence, this system
can be quite efficiently solved using a Gröbner basis algorithm. More precisely,
consider each coefficient of k1 and k2 as a formal unknown belonging to the
field of coefficients Fq2 . If x is one of these unknowns, we express x as x0 + zx1,
where (1, z) is a polynomial basis for Fq2 over Fq, x0 and x1 are unknowns
belonging to Fq. With this convention, we have xq = x0 +zqx1 and we can check
that our polynomial system of equations is indeed bilinear over Fq. This system
contains deg Q equations over Fq2 which are rewritten as 2 deg Q equations over
Fq. Assuming k1 to be unitary, the maximal number of unknowns that can fit in
k1 and k2 is 2(deg k1+deg k2+1). However, due to the action of PGL2(Fq), several
distinct pairs k1, k2 yield the same polynomial for (k1(X)qk2(X)−k1(X)k2(X)q).
To avoid this issue, we need to fix at least one of the unknowns over Fq2 to an
element of Fq2 − Fq. After this, the number of remaining unknowns over Fq is
2(deg k1 + deg k2).

At this point, we need a new heuristic argument concerning the result-
ing system of equations. Namely, we require two important properties of the
system that arise after fixing any additional unknowns to values. The result-
ing system is bilinear and its number of unknowns N is equal to its number
of equations. We ask that with good probability this system should be zero-
dimensional with at least one solution with values in the finite field Fq. In
order to apply this heuristic, we need at least one extra unknown over Fq2 that
can be set to a random value. As a consequence, we require deg k1 + deg k2 ≥
deg Q + 1.

Under this heuristic, we can analyze the cost of the bilinear descent by study-
ing the complexity of solving one such system. The main result from [4,15]
is that this complexity is exponential in min(deg k1,deg k2). For this reason,
we do not use our descent strategy with balanced degrees deg k1 √ deg k2),
instead we let d = deg k2 parametrize the smallest of the two degrees and fix
deg k1 = deg Q + 1 − d.

We recall the complexity analysis given in [4,15]:

Theorem 2 [Corollary 3 from [4]].
The arithmetic complexity of computing a Gröbner basis of a generic bilinear
system f1, · · · , fnx+ny

→ K[x0, · · · , xnx−1, y0, · · · , yny−1] with the F5 algorithm
is upper bounded by:

O

((
nx + ny + min(nx + 1, ny + 1)

min(nx + 1, ny + 1)

)ψ)

,

where 2 ∞ η ∞ 3 is the linear algebra constant.

370 A. Joux

In our application, we have nx = 2(deg Q+1−d), ny = 2d and min(nx, ny) =
2d. Thus, the cost of one descent step becomes:

(
2 deg Q + 3

2d + 1

)ψ

.

An asymptotic choice for d is given in Sect. 6. It is obtained by making d
large enough to make sure that the top level nodes of the descent tree dominate
the total cost. Note that, in practical computations, the best choice is usually
to make d as large as feasible. Indeed, the feasibility of the Gröbner step mostly
depends on the available amount of memory and it is important to descent as
steeply as possible to minimize the total cost.

6 Complexity Analysis

According to the heuristic argument of Sect. 4.1, the creation of the finite field
representation runs in randomized polynomial time, just by trying random poly-
nomials h0 and h1 of degree 2 (or higher constant degree). Similarly, the creation
of the logarithms of linear and quadratic elements can be done in polynomial
time. The dominating part of this initial creation of logarithms is dominated
by the linear algebra required for the quadratic elements. Since we are solving
q2 linear systems of dimension O(q2) with O(q) entries per line, the total cost
of this polynomial part is O(q7) arithmetic operations. Note that for Kummer
extensions, the number of linear systems is reduced to O(q), which lowers the
cost to O(q6).

A similar polynomial time behavior for computing the logarithms of the
smoothness basis is also given in [5].

The rest of this section analyzes the descent phases which dominates the
asymptotic cost of our algorithm.

6.1 Individual Logarithms

To analyze this phase it is convenient to write k = ψq, for some constant ψ ∞
1 + deg h1

q . Under this hypothesis, remark that:

Lq2k(φ, c) = exp((c + o(1))(2k log q)λ(log(2k log q))1−λ)

√ exp((c∈ + o(1))qλ log(q)), where c∈ = (2ψ)λ · c

We now give the analysis of the complexity, which shows that we can reach
complexity L(1/4 + o(1)) when the characteristic is small enough. Namely, we
require q = pφ for some ρ ≥ 2.

We start with the classical descent approach, which it is compatible with
our algorithm when ρ ≥ 2. The analysis of this method is recalled in Sect. 2.2.
Since the cost increases when deg Q decreases, it suffices to write the cost for

A New Index Calculus Algorithm in Small Characteristic 371

the lowest degree we wish to attain, namely cc

√
q/ log q for some constant cc.

The total cost in this case becomes:

exp
(

1
2μ

√
ψ

cc
q1/4 log q5/4

)

,

where μ < 1.
Of course stopping at polynomials of degree O(q1/2) is not enough to fin-

ish the computation. To continue the descent, we use the newer approach,
starting from polynomials of degree deg Q = cc

√
q/ log q. We need to deter-

mine the value of the parameter d = deg k2 introduced in Sect. 5.3. The left-
hand side in the bilinear descent contains q + 1 polynomials of degree at most
deg k1 = deg Q + 1 − d. The degree of the right-hand side is bounded by
deg k1(max(deg h0,deg h1) + 1), i.e., by a small multiple of deg Q, a solution
of the system yields with heuristic constant probability a new equation relating
the desired polynomial to polynomials of degree at most deg k1. The total num-
ber of polynomials of degree between deg k1 − d and deg k1 after decomposing
each side into irreducible polynomial is at most q + O(1). Note that the con-
tribution of lower degree polynomials to the complexity is negligible, since the
computation of their logarithms is deferred to a lower level of the computation
tree, where they represent a tiny fraction of the polynomials to be addressed.

Thus, the running time to compute the logarithm of a degree DQ = deg Q
polynomial is T (DQ, d) √ T0(DQ, d) + qT (DQ − d, d). In Sect. 5.3, we find that:

T0(DQ, d) =
(

2DQ + 3
2d + 1

)ψ

.

We now choose d to ensure that T0(DQ, d) dominates the computation. This
requires d to be large enough to be able to neglect the powers of q in the
sum (when the expression of T (DQ, d) is unrolled). To simplify the analysis,
we replace T0 by T1(DQ, d) = D

6(d+1)
Q , which is asymptotically larger. We find

that we need to choose d such that:

q (Dq − d)6(d+1) ∞ DQ
6(d+1).

Taking the logarithm, and using − log(1 − Φ) √ Φ, it asymptotically suffices to
have

d2 ≥ DQ log q

6
.

With DQ = cc

√
q/ log q, we can choose d =

⌈(
cc
6

∈
q log q

)1/2
⌉
.

This yields:

T1(DQ, d) = exp
((∈

6cc

4
+ o(1)

)

q1/4 log5/4 q

)

.

Of course, this cost should be multiplied by the number of polynomials after
the classical descent. When μ < 1, the number of levels in the classical descent

372 A. Joux

tree is logarithmic in q and each level multiplies the number of polynomials by a
constant. As a consequence, the total number of polynomials after the classical
descent is polynomial in q and vanishes into the o(1) in the exponent of the
complexity. In order the balance the two phases of the descent, we can take:

cc =
1
μ

√
2ψ

3
,

which achieves complexity:

exp

((
1

2
∈

μ
·
(

3ψ

2

)1/4

+ o(1)

)

q1/4 log5/4 q

)

.

The constant in the above complexity could be improved by taking into
account a value of the linear algebra constant η < 3 and letting μ tend toward 1.
Note that due to the presence of an extra log1/2(q) term, this is strictly bigger
than L(1/4). However, it can be rewritten as L(1/4 + o(1)).

Impact of more efficient algorithms to solve the bilinear systems. It is important
to remark that given an oracle (or efficient algorithm) to solve the bilinear sys-
tems, we could use a much faster descent from degree deg Q to ∃(deg Q + 1)/2≈
at each step. In this case, the complexity would be dominated by the number of
nodes in the descent tree, i.e. qlog D. Starting directly from deg Q = k − 1 would
then give a quasi-polynomial complexity exp(O(log2 q)).

Moreover, this would get rid of the use of classical descent, together with the
constraint of having q = pφ, with ρ ≥ 2.

7 Remarks on the Special Case of Fpk , p and k Prime

As already mentioned, in order to use our algorithm, we need to embed Fpk with
p and k prime into a small extension Fq2k , with q = pe and e = 2∃log k≈. From
an asymptotic point of view, this is of little impact, indeed the complexity would
become:

exp
(
Ck1/4 log5/4 k

)
,

for some constant C. Since log pk = k log p ≥ k/2, expressed as a function of pk,
it becomes:

exp
(
C ∈ log1/4 pk log log5/4 pk

)
= Lpk(1/4 + o(1)).

In practice, it is also interesting to consider computations in F2p with 1024 <
p < 2048 prime. We know from Appendix B that this can be done by taking
q = 211 and having polynomials h0 and h1 of degree 2. In this case, we expect
the complexity to be dominated by the computation of logarithms of quadratic
polynomials. This would require approximately 277 arithmetic operations on
numbers of p bits, since we only need the value of logarithms modulo 2p − 1.
Comparing with the most recent data of the function field sieve [2], this L(1/3)
algorithm remains more efficient in this range.

A New Index Calculus Algorithm in Small Characteristic 373

8 A Couple of Experiments on Kummer Extensions in
Characteristic 2

For practical experiments, it is very convenient to use finite fields containing
a subfield of adequate size and to chose an extension that can be represented
with polynomials h0 and h1 of degree 1. In practice, this means choosing a
Kummer or twisted Kummer extension, which also a reduction of the size of
the smoothness basis by a nice factor. We recently announce two computation
records that illustrate the algorithm described here in this context. For numerical
details about these records, we refer the reader to [8,9].

8.1 A Kummer Extension F2562·255

Our first example is representative of our algorithm in the special case of Kum-
mer extension. More precisely, we let q = 256 and consider the finite field Fq2k ,
with k = q − 1.

In this computation, the most costly part is the linear algebra step for com-
puting the discrete logarithms of approximately 222 quadratic polynomials. This
is decomposed into 129 independent linear systems, one containing 214 elements
and 128 with 215 elements. On average, these system contain 128 non-zero coef-
ficients per line.

An initial phase of continued fractions reduced the problem to computed
logarithms of polynomials of degree at most 29. The classical descent step was
used to reduce this down to degree 12. The bilinear system approach permitted
to conclude the computation.

The total cost of the individual logarithm was approximately one half of the
cost of linear algebra. However, by using improved parameter choices (as in the
next computation), it would be possible to reduce this by a large factor.

8.2 A Twisted Kummer Extension F2563·257

This second example is interesting because it shows that pairing-based cryptog-
raphy over F2257 cannot be secure. However, it is too specific to be representative,
indeed, it crucially relies on the fact that F2563 = F644 .

The main specificity of this computation is a descent strategy, similar to
the one presented in [6], that allows a descent from polynomials of degree 2 to
polynomials of degree 1. This requires 3 conditions, the use of a Kummer or
twisted Kummer extension, the replacement of the field of coefficients Fq2 by
Fq3 and the use of two different polynomials to generate the systematic side of
relations. Namely, we used both X256 + X and (X64 + X)4.

As a direct consequence, the costly phase of generating quadratic polynomi-
als as a whole is removed. Thus, the computation becomes dominated by the
descent phase. Compared to the previous computation, this was largely opti-
mized. Indeed, the cost of the descent in this computation is about 1/10 of the
descent in the previous example.

374 A. Joux

Acknowledgements. We acknowledge that the results in this paper have been
achieved using the PRACE Research Infrastructure resource Curie based in France
at TGCC, Bruyères-le-Chatel (project number 2011050868) and the PRACE Research
Infrastructure resource Jugene/Juqueen based in Germany at the Jülich Supercomput-
ing Centre (project number 2011050868).

Appendix

A Alternative Polynomials

Throughout the paper, we used the polynomial Xq − X as our starting point.
However, it is also possible to use other polynomials for this purpose. In order to
be usable in our algorithm, a polynomial needs to satisfy two basic properties.
First, it should factor into linear factors over a small degree extension of Fq.
Second, it should be possible to write it as a low degree polynomial in X and
Xq.

Two possible alternative polynomials are Xq+1 − 1 and Xq+1 + 1 which
factor into linear terms over Fq2 . Another possibility is to use Xq+1 − X + 1 or
Xq+1 + X + 1 which factor into linear terms over Fq3 . For example, let us this
factorization in the case of Xq+1 −X +1. Let x denote a root of this polynomial
in Fq. It is clear that x satisfies:

xq =
x − 1

x
.

As a consequence:

xq2
=

xq − 1
xq

=
−1

x − 1
,

and
xq3

=
−1

xq − 1
= x.

Thus x belongs to Fq3 . The polynomials Xq+1 ± X + 1 are very closely related
to the discrete logarithm approach proposed in [5].

A.1 Equivalence of Using the Alternative Polynomials

Assume that we are working with a subfield Fq of characteristic q. Define v to be
a root of Xq+1 −1 in Fq2 . Consider now the homography given by the quadruple
(a, b, c, d) = (v, 1, 1, v). It is easy to check that the image of Xq − X by this
homography is:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≥
(vq − v)Xq+1 + (vq+1 − 1)Xq + (1 − vq+1)X + (v − vq) ≥

(vq − v)(Xq+1 − 1).

Up to a multiplicative constant, this yields the polynomial Xq+1 − 1.

A New Index Calculus Algorithm in Small Characteristic 375

Similarly, if v denotes a root of Xq+1 + 1 in Fq2 , consider the homography
induced by the quadruple (a, b, c, d) = (v,−1, 1, v). The image of Xq − X is:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≥
(vq − v)Xq+1 + (vq+1 + 1)Xq + (−1 − vq+1)X + (−v + vq) ≥

(vq − v)(Xq+1 + 1).

As a consequence, the polynomials Xq+1 ± 1 can be obtained by applying
a well-chosen homography to Xq − X. Thus, they do not generate any extra
multiplicative relations in the finite field.

Similarly, the use of Xq+1 ± X + 1 is equivalent to the use of Xq − X when
taking coefficients in Fq3 . To see that, define v to be a root of Xq+1 − X + 1 in
Fq3 . Consider the homography given by (a, b, c, d) = (v, v − 1, 1, v). We see that
after applying the homography, Xq − X becomes:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≥
(vq−v)Xq+1 + (vq+1 − v + 1)Xq + (vq − 1 − vq+1)X + (vq+1 − v − vq+1 + vq) ≥

(vq − v)(Xq+1 + X + 1).

Finally, with v a root of Xq+1 + X + 1 in Fq3 and the homography given by
(a, b, c, d) = (v,−v − 1, 1, v), we find after applying the homography:

(caq − acq)Xq+1 + (daq − bcq)Xq + (cbq − adq)X + (dbq − bdq) ≥
(vq − v)Xq+1 + (vq+1 + v + 1)Xq + (−vq − 1 − vq+1)X + (−vq+1 − v+vq+1+vq)

≥
(vq − v)(Xq+1 − X + 1).

As a consequence, we see that the four natural alternative polynomials that
can be used with coefficients in Fq2 or Fq3 turn out to be equivalent to the use
of Xq − X.

B Evidence for the Existence of the h0 and h1

Polynomials

Since our algorithm replies on the existence of low degree polynomials h0 and h1

such that h1(X) · Xq − h0(X) has a factor of degree k, it is important to study
this heuristic hypothesis in more details.

In this appendix, we give some practical evidence for the existence of such
polynomials in some practically interesting case. Assume that we wish to com-
pute discrete logarithm in F2p for a prime p in the interval [210, 211]. We expect
this to be achievable by embedding the finite field in F211p , i.e. by taking q = 211.
We define the finite field Fq as F2[a], with a11 + a2 + 1 = 0, and search for good
polynomials h0 and h1 with coefficient in Fq.

The result of this search is given in Table 1. It shows that all of the desired
extension fields can be represented with polynomials h0 and h1 of degree 2.

376 A. Joux

T
a
b
le

1
.
R

ep
re

se
n
ta

ti
o
n

o
f
F
q
p

b
y
X

q
=

h
0
(X

)/
h
1
(X

)
fo

r
q

=
2
1
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

1
0
3
1

X
2

+
a
1
5
5
5
X

+
a
1
4
8

X
2

+
a
1
9
6
2
X

+
a
1
4
6
5

1
0
3
3

X
2

+
a
2
7
7
X

+
a
7
0
2

X
2

+
a
1
3
1
X

+
a
1
6
1
9

1
0
3
9

X
2

+
a
1
1
6
1
X

+
a
4
9
8

X
2

+
a
1
5
1
9
X

+
a
1
4
8
2

1
0
4
9

X
2

+
a
1
7
6
8
X

+
a
7
0
9

X
2

+
a
1
3
1
X

+
a
2
8
3

1
0
5
1

X
2

+
a
1
9
6
7
X

+
a
1
9
1
9
X

2
+

a
3
0
4
X

+
a
2
7
2

1
0
6
1

X
2

+
a
6
3
8
X

+
a
1
9
0
5

X
2

+
a
3
4
7
X

+
a
6
5
1

1
0
6
3

X
2

+
a
1
0
7
9
X

+
a
5
2
5

X
2

+
a
9
0
4
X

+
a
2
0
2
9

1
0
6
9

X
2

+
a
1
0
5
0
X

+
a
1
7
2
5
X

2
+

a
1
8
4
2
X

+
a
1
5
5
1

1
0
8
7

X
2

+
a
4
2
1
X

+
a
1
4
0
5

X
2

+
a
1
4
0
4
X

+
a
9
0
1

1
0
9
1

X
2

+
a
6
0
9
X

+
a
1
7
4
4

X
2

+
a
1
9
4
5
X

+
a
7
8
1

1
0
9
3

X
2

+
a
6
0
8
X

+
a
4
6
8

X
2

+
a
3
4
2
X

+
a
1
2
0
0

1
0
9
7

X
2

+
a
1
6
0
3
X

+
a
4
5
2

X
2

+
a
1
9
1
0
X

+
a
1
8
9
2

1
1
0
3

X
2

+
a
1
5
5
X

+
a
1
6
9
4

X
2

+
a
7
3
2
X

+
a
7
7
9

1
1
0
9

X
2

+
a
4
1
4
X

+
a
6
1
2

X
2

+
a
6
5
6
X

+
a
1
0
2
9

1
1
1
7

X
2

+
a
4
0
9
X

+
a
1
3
0
3

X
2

+
a
1
5
9
1
X

+
a
1
1
5
9

1
1
2
3

X
2

+
a
4
6
X

+
a
1
1
3
1

X
2

+
a
1
6
1
5
X

+
a
1
3
7
9

1
1
2
9

X
2

+
a
1
9
4
X

+
a
3
1
5

X
2

+
a
1
3
7
9
X

+
a
1
1
8
4

1
1
5
1

X
2

+
a
3
9
4
X

+
a
3
9
1

X
2

+
a
1
3
0
5
X

+
a
1
2
5

1
1
5
3

X
2

+
a
1
6
7
3
X

+
a
1
7
1

X
2

+
a
8
7
0
X

+
a
3
0
2

1
1
6
3

X
2

+
a
6
9
4
X

+
a
1
3
6
8

X
2

+
a
2
2
0
X

+
a
2
4

1
1
7
1

X
2

+
a
7
7
1
X

+
a
1
9
9
6

X
2

+
a
3
0
6
X

+
a
8
0
5

1
1
8
1

X
2

+
a
5
0
6
X

+
a
2
0
1
8

X
2

+
a
3
2
6
X

+
a
1
6
9
8

1
1
8
7

X
2

+
a
1
3
5
1
X

+
a
1
7
0
9
X

2
+

a
1
8
1
0
X

+
a
1
5
1
8

1
1
9
3

X
2

+
a
8
4
5
X

+
a
4
2

X
2

+
a
5
7
2
X

+
a
9
0
0

1
2
0
1

X
2

+
a
1
0
5
3
X

+
a
1
7
5

X
2

+
a
7
3
4
X

+
a
1
4
0
2

1
2
1
3

X
2

+
a
1
5
6
2
X

+
a
1
5
4
1
X

2
+

a
5
9
7
X

+
a
7
0
4

1
2
1
7

X
2

+
a
7
1
5
X

+
a
1
2
5
1

X
2

+
a
1
0
8
5
X

+
a
1
4
7

1
2
2
3

X
2

+
a
8
0
7
X

+
a
1
8
1
8

X
2

+
a
5
9
9
X

+
a
1
6
2

1
2
2
9

X
2

+
a
3
9
7
X

+
a
1
8
3
7

X
2

+
a
8
2
3
X

+
a
2
4
5

1
2
3
1

X
2

+
a
1
7
5
0
X

+
a
3
5
6

X
2

+
a
5
9
X

+
a
7
2
4

1
2
3
7

X
2

+
a
5
7
2
X

+
a
9
2
2

X
2

+
a
1
7
8
4

⊕X
+

a
2
0
3
7

1
2
4
9

X
2

+
a
6
7
3
X

+
a
9
0
2

X
2

+
a
4
3
X

+
a
8
7
7

1
2
5
9

X
2

+
a
1
7
0
0
X

+
a
1
4
8
0
X

2
+

a
1
7
8
0
X

+
a
1
7
5
0

1
2
7
7

X
2

+
a
1
3
8
0
X

+
a
1
4
8
4
X

2
+

a
1
8
6
1
X

+
a
5
3
8

1
2
7
9

X
2

+
a
4
3
1
X

+
a
1
4
3
3

X
2

+
a
1
6
9
5
X

+
a
4
3
8

1
2
8
3

X
2

+
a
4
9
3
X

+
a
2
0
8

X
2

+
a
8
5
X

+
a
1
6
7
2

1
2
8
9

X
2

+
a
1
9
3
4
X

+
a
1
8
6
3
X

2
+

a
1
2
7
3
X

+
a
1
8
2
9

1
2
9
1

X
2

+
a
3
7
5
X

+
a
5
2
4

X
2

+
a
1
2
3
6
X

+
a
1
9
4
5

1
2
9
7

X
2

+
a
1
9
2
1
X

+
a
1
7
3
6
X

2
+

a
5
9
8
X

+
a
1
5
3
0

1
3
0
1

X
2

+
a
1
0
2
9
X

+
a
4
7
8

X
2

+
a
1
4
3
4
X

+
a
1
4
1
8

1
3
0
3

X
2

+
a
1
1
9
4
X

+
a
1
8
0
1
X

2
+

a
2
0
8
X

+
a
1
5
9
2

1
3
0
7

X
2

+
a
1
7
5
4
X

+
a
6
2
6

X
2

+
a
2
3
5
X

+
a
9
7
9

1
3
1
9

X
2

+
a
1
4
3
7
X

+
a
2
8
2

X
2

+
a
1
4
8
X

+
a
7
4
4

1
3
2
1

X
2

+
a
9
8
2
X

+
a
1
0
8
9

X
2

+
a
1
6
3
2
X

+
a
1
5
9
8

A New Index Calculus Algorithm in Small Characteristic 377

T
a
b
le

1
.
(C

o
n
ti
n
u
ed

)

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

1
3
2
7

X
2

+
a
1
4
5
5
X

+
a
1
8
1

X
2

+
a
5
0
8
X

+
a
3
7
3

1
3
6
1

X
2

+
a
1
4
5
1
X

+
a
8
8
2

X
2

+
a
1
0
3
5
X

+
a
6
3
4

1
3
6
7

X
2

+
a
3
3
1
X

+
a
1
9
8

X
2

+
a
1
1
6
7
X

+
a
1
8
1
8

1
3
7
3

X
2

+
a
4
5
9
X

+
a
1
4
6
1

X
2

+
a
9
4
6
X

+
a
9
5
7

1
3
8
1

X
2

+
a
4
5
X

+
a
1
5
2
4

X
2

+
a
1
8
1
6
X

+
a
7
6
6

1
3
9
9

X
2

+
a
6
8
4
X

+
a
1
5
7
4

X
2

+
a
5
8
0
X

+
a
1
6
1
1

1
4
0
9

X
2

+
a
1
4
3
9
X

+
a
4
5
4

X
2

+
a
1
5
9
9
X

+
a
1
0
3
9

1
4
2
3

X
2

+
a
7
9
2
X

+
a
1
0
2
8

X
2

+
a
9
4
0
X

+
a
1
6
6
2

1
4
2
7

X
2

+
a
3
4
5
X

+
a
9
0
8

X
2

+
a
1
3
9
2
X

+
a
8
6
4

1
4
2
9

X
2

+
a
6
6
7
X

+
a
1
6
5
6

X
2

+
a
1
8
6
7
X

+
a
8
3
0

1
4
3
3

X
2

+
a
2
1
9
X

+
a
3
6
2

X
2

+
a
1
4
1
X

+
a
1
8
8
1

1
4
3
9

X
2

+
a
1
4
1
7
X

+
a
1
7
6
1
X

2
+

a
1
2
2
4
X

+
a
7
6
6

1
4
4
7

X
2

+
a
9
9
4
X

+
a
1
2
1
6

X
2

+
a
1
5
X

+
a
7
5
6

1
4
5
1

X
2

+
a
7
1
8
X

+
a
7
6
6

X
2

+
a
5
0
9
X

+
a
7
0
2

1
4
5
3

X
2

+
a
1
1
8
0
X

+
a
1
2
9

X
2

+
a
1
3
0
X

+
a
1
6
5
9

1
4
5
9

X
2

+
a
6
1
9
X

+
a
7
8
2

X
2

+
a
1
4
2
3
X

+
a
7
9
3

1
4
7
1

X
2

+
a
7
5
7
X

+
a
2
1
0

X
2

+
a
1
1
9
2
X

+
a
1
9
7
6

1
4
8
1

X
2

+
a
1
8
8
0
X

+
a
8
8
2

X
2

+
a
7
7
3
X

+
a
3
3
9

1
4
8
3

X
2

+
a
6
7
0
X

+
a
2
0

X
2

+
a
2
4
X

+
a
1
5
1
4

1
4
8
7

X
2

+
a
1
9
7
2
X

+
a
1
9
6
4
X

2
+

a
1
3
7
0
X

+
a
5
2
8

1
4
8
9

X
2

+
a
1
5
0
1
X

+
a
1
1
6

X
2

+
a
8
6
6
X

+
a
6
9
4

1
4
9
3

X
2

+
a
1
9
5
7
X

+
a
9
8
7

X
2

+
a
9
7
9
X

+
a
7
8
1

1
4
9
9

X
2

+
a
1
4
5
6
X

+
a
1
6
4
4
X

2
+

a
1
4
7
9
X

+
a
6
0
0

1
5
1
1

X
2

+
a
2
7
9
X

+
a
1
3
6
0

X
2

+
a
5
9
1
X

+
a
1
9
4
4

1
5
2
3

X
2

+
a
8
1
0
X

+
a
2
5

X
2

+
a
1
9
2
4
X

+
a
9
2
7

1
5
3
1

X
2

+
a
1
4
1
5
X

+
a
6
3
2

X
2

+
a
1
5
7
5
X

+
a
9
1
1

1
5
4
3

X
2

+
a
1
9
5
7
X

+
a
1
1
0
6
X

2
+

a
1
0
9
8
X

+
a
1
1
1
1

1
5
4
9

X
2

+
a
1
4
0
X

+
a
4
9
8

X
2

+
a
5
1
3
X

+
a
1
8
7
6

1
5
5
3

X
2

+
a
1
1
0
9
X

+
a
8
8
3

X
2

+
a
1
2
5
6
X

+
a
5
2
4

1
5
5
9

X
2

+
a
4
8
5
X

+
a
1
3
1
2

X
2

+
a
1
1
0
2
X

+
a
8
4
7

1
5
6
7

X
2

+
a
9
0
8
X

+
a
1
2
8

X
2

+
a
1
8
8
X

+
a
1
9
4

1
5
7
1

X
2

+
a
2
9
X

+
a
1
9
1
6

X
2

+
a
1
8
2
5
X

+
a
1
2
6
6

1
5
7
9

X
2

+
a
9
5
3
X

+
a
1
1
9
2

X
2

+
a
1
1
1
3
X

+
a
1
3
3
4

1
5
8
3

X
2

+
a
7
9
2
X

+
a
1
4
5
9

X
2

+
a
1
1
1
5
X

+
a
6
4
5

1
5
9
7

X
2

+
a
8
7
4
X

+
a
1
6
9
7

X
2

+
a
3
8
7
X

+
a
7
6
3

1
6
0
1

X
2

+
a
1
3
8
X

+
a
1
7
2
8

X
2

+
a
1
6
2
3
X

+
a
9
6
1

1
6
0
7

X
2

+
a
7
3
7
X

+
a
1
1
9

X
2

+
a
1
8
5
8
X

+
a
1
7
8
8

1
6
0
9

X
2

+
a
1
6
4
1
X

+
a
3
5
5

X
2

+
a
1
8
2
3
X

+
a
9
6
3

1
6
1
3

X
2

+
a
8
0
1
X

+
a
7
3
0

X
2

+
a
1
9
3
X

+
a
2
9
2

1
6
1
9

X
2

+
a
1
7
1
5
X

+
a
1
6
7

X
2

+
a
5
1
0
X

+
a
1
1
6
6

1
6
2
1

X
2

+
a
1
3
5
9
X

+
a
7
4
5

X
2

+
a
1
1
5
7
X

+
a
1
4
5

1
6
2
7

X
2

+
a
1
5
6
0
X

+
a
1
0
7
4
X

2
+

a
1
6
3
1
X

+
a
1
6
2
4

1
6
3
7

X
2

+
a
5
7
5
X

+
a
1
7
4
1

X
2

+
a
1
6
2
0
X

+
a
1
1
0

1
6
5
7

X
2

+
a
1
7
2
7
X

+
a
1
0
6
4
X

2
+

a
1
9
6
8
X

+
a
1
7
1
4

1
6
6
3

X
2

+
a
9
6
0
X

+
a
2
7
0

X
2

+
a
7
4
4
X

+
a
1
5
7

1
6
6
7

X
2

+
a
1
7
6
X

+
a
5
3
6

X
2

+
a
1
2
0
8
X

+
a
1
9
1
9

1
6
6
9

X
2

+
a
2
2
9
X

+
a
4
0
7

X
2

+
a
1
7
2
3
X

+
a
1
9
9
9

1
6
9
3

X
2

+
a
7
3
X

+
a
6
4
2

X
2

+
a
8
8
9
X

+
a
4
8
9

378 A. Joux

T
a
b
le

1
.
(C

o
n
ti
n
u
ed

)

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

E
x
te

n
si

o
n

d
eg

re
e
h
0

h
1

1
6
9
7

X
2

+
a
4
4
1
X

+
a
7
2
2

X
2

+
a
1
4
5
4
X

+
a
1
5
6
6

1
6
9
9

X
2

+
a
3
8
7
X

+
a
1
3
0
0

X
2

+
a
4
4
X

+
a
6
8
4

1
7
0
9

X
2

+
a
1
4
7
5
X

+
a
1
5
8
2
X

2
+

a
6
3
X

+
a
1
7
7
9

1
7
2
1

X
2

+
a
1
0
5
1
X

+
a
8
4
6

X
2

+
a
1
5
3
6
X

+
a
1
5
0
6

1
7
2
3

X
2

+
a
1
4
9
3
X

+
a
1
5
5
1
X

2
+

a
1
2
9
3
X

+
a
1
7
8
1

1
7
3
3

X
2

+
a
1
5
3
6
X

+
a
7
0
8

X
2

+
a
8
3
6
X

+
a
1
5
1
8

1
7
4
1

X
2

+
a
1
2
1
5
X

+
a
4
5
5

X
2

+
a
2
0
1
3
X

+
a
1
4
0
0

1
7
4
7

X
2

+
a
9
7
8
X

+
a
1
6
7
6

X
2

+
a
1
4
4
4
X

+
a
1
1
0
2

1
7
5
3

X
2

+
a
4
5
0
X

+
a
1
6
8
5

X
2

+
a
3
9
2
X

+
a
1
3
6

1
7
5
9

X
2

+
a
1
0
1
0
X

+
a
1
4
3
8
X

2
+

a
1
2
1
5
X

+
a
6
3

1
7
7
7

X
2

+
a
1
2
9
3
X

+
a
2
4
9

X
2

+
a
5
6
9
X

+
a
5
5
4

1
7
8
3

X
2

+
a
1
5
0
X

+
a
1
6
0
8

X
2

+
a
1
1
8
5
X

+
a
1
0
6
1

1
7
8
7

X
2

+
a
1
5
6
3
X

+
1

X
2

+
a
1
7
6
6
X

+
a
1
7
9
0

1
7
8
9

X
2

+
a
1
4
3
5
X

+
a
1
0
8
4
X

2
+

a
2
6
4
X

+
a
7
7
0

1
8
0
1

X
2

+
a
1
7
1
3
X

+
a
6
7
8

X
2

+
a
1
6
5
6
X

+
a
1
6
2
6

1
8
1
1

X
2

+
a
1
8
0
9
X

+
a
2
0
3
6
X

2
+

a
1
8
5
9
X

+
a
5
2
5

1
8
2
3

X
2

+
a
6
5
9
X

+
a
5
6
7

X
2

+
a
1
4
7
X

+
a
9
6
2

1
8
3
1

X
2

+
a
1
3
8
4
X

+
a
1
7
0

X
2

+
a
5
5
0
X

+
a
2
0
3
5

1
8
4
7

X
2

+
a
8
8
5
X

+
a
9
6
4

X
2

+
a
7
0
1
X

+
a
1
2
2
1

1
8
6
1

X
2

+
a
1
9
3
2
X

+
a
1
7
0
1
X

2
+

a
1
5
8
X

+
a
1
2
5
0

1
8
6
7

X
2

+
a
1
3
6
3
X

+
a
1
8
3
6
X

2
+

a
3
0
7
X

+
a
7
3
5

1
8
7
1

X
2

+
a
7
4
9
X

+
a
1
9
5
5

X
2

+
a
4
9
9
X

+
a
1
6
6

1
8
7
3

X
2

+
a
7
5
7
X

+
a
2
0
0

X
2

+
a
9
7
1
X

+
a
6
0
1

1
8
7
7

X
2

+
a
7
5
8
X

+
a
5
0
0

X
2

+
a
9
4
3
X

+
a
1
8
3
2

1
8
7
9

X
2

+
a
2
8
9
X

+
a
1
3
5
9

X
2

+
a
9
1
3
X

+
a
8
4
0

1
8
8
9

X
2

+
a
1
0
7
6
X

+
a
1
0
0
2
X

2
+

a
1
4
3
1
X

+
a
4
7
6

1
9
0
1

X
2

+
a
7
5
2
X

+
a
1
0
6
0

X
2

+
a
2
6
9
X

+
a
1
7
9
3

1
9
0
7

X
2

+
a
1
9
5
4
X

+
a
1
8
5
6
X

2
+

a
2
5
5
X

+
a
3
1
6

1
9
1
3

X
2

+
a
1
1
4
2
X

+
a
5
7
8

X
2

+
a
1
1
1
8
X

+
a
1
0
5
2

1
9
3
1

X
2

+
a
1
5
2
9
X

+
a
7
7
7

X
2

+
a
1
6
3
1
X

+
a
2
8
5

1
9
3
3

X
2

+
a
6
0
0
X

+
a
5
0
9

X
2

+
a
1
4
7
7
X

+
a
5
9
8

1
9
4
9

X
2

+
a
8
3
9
X

+
a
1
7
6
6

X
2

+
a
1
2
3
2
X

+
a
2
2
6

1
9
5
1

X
2

+
a
1
0
1
6
X

+
a
1
1
4
3
X

2
+

a
1
6
2
4
X

+
a
1
8
7
1

1
9
7
3

X
2

+
a
7
2
2
X

+
a
7
6
9

X
2

+
a
8
3
4
X

+
a
1
2
7
7

1
9
7
9

X
2

+
a
1
0
0
7
X

+
a
1
4
6
4
X

2
+

a
9
6
6
X

+
a
9
1
2

1
9
8
7

X
2

+
a
1
0
0
2
X

+
a
6
8
2

X
2

+
a
1
2
5
5
X

+
a
1
0
0
6

1
9
9
3

X
2

+
a
7
0
9
X

+
a
1
6
7
6

X
2

+
a
6
3
8
X

+
a
9
5
7

1
9
9
7

X
2

+
a
1
6
5
3
X

+
a
1
8
9
9
X

2
+

a
2
9
X

+
a
8
6
7

1
9
9
9

X
2

+
a
1
0
4
X

+
a
1
4
8
2

X
2

+
a
1
0
1
9
X

+
a
6
4
9

2
0
0
3

X
2

+
a
3
2
8
X

+
a
7
0
1

X
2

+
a
5
5
4
X

+
a
1
7
6

2
0
1
1

X
2

+
a
1
5
1
0
X

+
a
1
2
4
1
X

2
+

a
1
5
2
4
X

+
a
7
4
1

2
0
1
7

X
2

+
a
1
5
7
2
X

+
a
1
6
4
5
X

2
+

a
8
1
4
X

+
a
2
9
8

2
0
2
7

X
2

+
a
1
8
7
8
X

+
a
1
2
4
3
X

2
+

a
1
4
7
4
X

+
a
1
1
2
4

2
0
2
9

X
2

+
a
1
5
0
2
X

+
a
1
9
9
8
X

2
+

a
9
8
2
X

+
a
7
2
1

2
0
3
9

X
2

+
a
1
8
7
1
X

+
a
1
8
4
8
X

2
+

a
1
3
4
6
X

+
a
1
2
7
2

A New Index Calculus Algorithm in Small Characteristic 379

References

1. Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete loga-
rithms over finite fields. Inf. Comput. 151, 5–16 (1999). (Academic Press)

2. Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau,
M., Zimmermann, P.: Discrete logarithm in GF(2809) with FFS. IACR Cryptol.
ePrint Arch. 2013, 197 (2013)

3. Coppersmith, D.: Fast evaluation of logarithms in fields of characteristic two. IEEE
Trans. Inf. Theor. IT-30(4), 587–594 (1984)

4. Faugère, J.-C., Din, M.S.E., Spaenlehauer, P.-J.: Gröbner bases of bihomogeneous
ideals generated by polynomials of bidegree (1,1): algorithms and complexity. J.
Symbolic Comput. 46(4), 406–437 (2011)

5. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve
and the impact of higher splitting probabilities: application to discrete logarithms
in 21971. IACR Cryptol. ePrint Arch. 2013, 74 (2013)

6. Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: Solving a 6120-bit DLP on
a desktop computer. IACR Cryptol. ePrint Arch. 2013, 306 (2013)

7. Huang, M.-D., Narayanan, A.K.: Finding primitive elements in finite fields of small
characteristic. CoRR abs/1304.1206 (2013)

8. Joux, A.: Discrete logarithms in GF(24080). NMBRTHRY list, March 2013
9. Joux, A.: Discrete logarithms in GF(26168) = GF((2257)24). NMBRTHRY list, May

2013
10. Joux, A.: Faster index calculus for the medium prime case application to 1175-bit

and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)

11. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Hei-
delberg (2006)

12. Joux, A., Lercier, R., Smart, N.P., Vercauteren, F.: The number field sieve in the
medium prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
326–344. Springer, Heidelberg (2006)

13. Panario, D., Gourdon, X., Flajolet, P.: An analytic approach to smooth polyno-
mials over finite fields. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp.
226–236. Springer, Heidelberg (1998)

14. Semaev, I.: An algorithm for evaluation of discrete logarithms in some nonprime
finite fields. Math. Comput. 67, 1679–1689 (1998)

15. Spaenlehauer, P.-J.: Solving multi-homogeneous and determinantal systems Algo-
rithms - Complexity - Applications. Ph.D. thesis, Université Pierre et Marie Curie
(UPMC) (2012)

Lattices Part II

High Precision Discrete Gaussian Sampling
on FPGAs

Sujoy Sinha Roy(B), Frederik Vercauteren, and Ingrid Verbauwhede

ESAT/COSIC and iMinds, KU Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{sujoy.sinharoy,frederik.vercauteren,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Lattice-based public key cryptography often requires
sampling from discrete Gaussian distributions. In this paper we present
an efficient hardware implementation of a discrete Gaussian sampler with
high precision and large tail-bound based on the Knuth-Yao algorithm.
The Knuth-Yao algorithm is chosen since it requires a minimal number of
random bits and is well suited for high precision sampling. We propose
a novel implementation of this algorithm based on an efficient traver-
sal of the discrete distribution generating (DDG) tree. Furthermore, we
propose optimization techniques to store the probabilities of the sample
points in near-optimal space. Our implementation targets the Gaussian
distribution parameters typically used in LWE encryption schemes and
has maximum statistical distance of 2−90 to a true discrete Gaussian
distribution. For these parameters, our implementation on the Xilinx
Virtex V platform results in a sampler architecture that only consumes
47 slices and has a delay of 3 ns.

Keywords: Lattice-based cryptography · Discrete gaussian sampler ·
Hardware implementation · Knuth-Yao algorithm · Discrete distribution
generating (DDG) tree

1 Introduction

Lattice-based cryptography has become one of the main research tracks in cryp-
tography due to its wide applicability (see [19] for some applications) and the fact
that its security is based on worst-case computational assumptions that remain
hard even for quantum computers. The significant advancements in theoretical
lattice-based cryptography [14,15,17] have more recently been complemented
with practical implementations [5,9,16] both in software and hardware.

Lattice-based cryptosystems often require sampling from discrete Gaussian
distributions. The implementation of such a discrete Gaussian sampler for cryp-
tographic applications faces several challenges [7]. Firstly, most existing sam-
pling algorithms require a large number of random bits, which could become a
limitation for lattice-based cryptosystems on a computationally weak platform.
Secondly, the sampling should be of high precision, i.e. the statistical distance
to the true distribution should be negligible for the provable security results

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 383–401, 2014.
DOI: 10.1007/978-3-662-43414-7 19, c∞ Springer-Verlag Berlin Heidelberg 2014

384 S. Sinha Roy et al.

to hold [4]. Sampling with negligible statistical distance however either requires
high precision floating arithmetic or large precomputed tables.

There are various methods for sampling from a non-uniform distribution [1].
Rejection sampling and inversion sampling are the best known algorithms. In
practice, rejection sampling for a discrete Gaussian distribution is slow due to
the high rejection rate for the sampled values which are far from the center of the
distribution [9]. Moreover, for each trial, many random bits are required which
is very time consuming on a constrained platform.

The inversion method first generates a random probability and then selects a
sample value such that the cumulative distribution up to that sample point is just
larger than the randomly generated probability. Since the random probability
should be of high precision, this method also requires a large number of random
bits. Additionally, the size of the comparator circuit increases with the precision
of the probabilities used. A recent work [3] shows that the number of random
bits can be reduced by performing table lookup in a lazy fashion.

In [11], Knuth and Yao proposed a random walk model for sampling from
any non-uniform distribution. They showed that the number of random bits
required by the sampling algorithm is close to the entropy of the distribution
and thus near-optimal. However the method requires the probabilities of the
sample points to be stored in a table. In case of a discrete Gaussian distribution,
the binary representations of the probabilities are infinitely long. For security
reasons, the probability expansions should be stored with high precision to keep
the statistical distance between the true Gaussian distribution and its approx-
imation small [4]. Hence the storage required for the probabilities becomes an
issue on constrained platforms. In [7], Galbraith and Dwarkanath observed that
the probability expansions for a discrete Gaussian distribution contain a large
number of leading zeros which can be compressed to save space. The authors
proposed a block variant of the Knuth-Yao algorithm which partitions the proba-
bilities in different blocks having roughly the same number of leading zero digits.
The paper however does not report on an actual implementation.

Although there are several hardware implementations of continuous Gaussian
samplers [6,10], these implementations have low precisions and are not suitable
for sampling from discrete Gaussian distributions. To the best of our knowledge,
the only reported hardware implementation of a discrete Gaussian sampler can
be found in [9]. The hardware architecture uses a Gaussian distributed array
and an LFSR as a pseudo-random bit generator to generate a random index of
the array. However the sampler has rather low precision and samples up to a tail
bound which is small (2s). This results in a large statistical distance to the true
discrete Gaussian distribution which invalidates worst case security proofs [4].

Our contributions. In this paper we propose a hardware implementation of
a discrete Gaussian sampler based on the Knuth-Yao algorithm [11]. To the
best of our knowledge, this is the first hardware implementation of Knuth-Yao
sampling. The implementation targets sampling from discrete Gaussian distrib-
utions with small standard deviations that are typically used in LWE encryption

High Precision Discrete Gaussian Sampling on FPGAs 385

systems [12,18]. The proposed hardware architecture for the sampler has high
precision and large tail-bound to keep the statistical distance below 2−90 to the
true Gaussian distribution for the LWE cryptosystem parameter set [9]. Fur-
thermore, this paper proposes the following optimizations which are novel:

1. An implementation of the discrete distribution generating (DDG) tree [11]
data structure at run time in hardware is challenging and costly. We use spe-
cific properties of the DDG tree to devise a simpler approach to traverse the
DDG tree at run time using only the relative distance between the interme-
diate nodes.

2. The Knuth-Yao sampling algorithm assembles the binary expansions of the
probabilities of the sample points in a bit matrix. How this bit matrix is
stored in ROM greatly influences the performance of the sampling operation.
Unlike the conventional row-wise approach, we propose a column-wise method
resulting in much faster sampling.

3. Unlike the block variant of the Knuth-Yao method in [7], we perform column-
wise compression of the zeros present in the probability matrix due to the
ROM specific storage style. A one-step compression method is proposed which
results in a near-optimal space requirement for the probabilities.

The remainder of the paper is organized as follows: Sect. 2 has a brief mathe-
matical background. Implementation strategies for the Knuth-Yao sampler archi-
tecture are described in Sect. 3. The hardware architecture for the discrete
Gaussian sampler is presented in Sect. 4 and experimental results are given in
Sect. 5. Finally, Sect. 6 has the conclusion.

2 Background

Here we recall the mathematical background required to understand the paper.

2.1 Discrete Gaussian Distribution

The continuous Gaussian distribution with standard deviation φ > 0 and mean
c ∈ R is defined as follows: let E be a random variable on R, then for x ∈ R

we have Pr(E = x) = 1
σ

∈
2π

e−(x−c)2/2σ2
. The discrete version of the Gaussian

distribution over Z with mean 0 and standard deviation φ > 0 is denoted by
DZ,σ and is defined as follows: let E be a random variable on Z, then

Pr(E = z) =
1
S

e−z2/2σ2
where S = 1 + 2

∗∑

z=1

e−z2/2σ2

Here S is a normalization factor and is approximately φ
√

2ψ. Some authors use a
slightly different normalization and define Pr(E = z) proportional to e−πz2/s2

.
Here s > 0 is called the parameter of the distribution and is related to the
standard deviation φ by s = φ

√
2ψ.

386 S. Sinha Roy et al.

The discrete Gaussian distribution DL,σ over a lattice L with standard devi-
ation φ > 0 assigns a probability proportional to e−|x|2/2σ2

to each element
x ∈ L. Specifically when L = Z

m, the discrete Gaussian distribution is the
product distribution of m independent copies of DZ,σ.

2.2 Tail Bound of the Discrete Gaussian Distribution

The tail of the Gaussian distribution is infinitely long and cannot be covered
by any sampling algorithm. Indeed we need to sample up to a bound known
as the tail bound. A finite tail-bound introduces a statistical difference with the
true Gaussian distribution. The tail-bound depends on the maximum statistical
distance allowed by the security parameters. As per Lemma 4.4 in [13], for any
c > 1 the probability of sampling v from DZm,σ satisfies the following inequality.

Pr(|v| > cφ
√

m) < cme
m
2 (1−c2) (1)

2.3 Precision Bound of the Discrete Gaussian Distribution

The probabilities in a discrete Gaussian distribution have infinitely long binary
representations and hence no algorithm can sample according to a true dis-
crete Gaussian distribution. Secure applications require sampling with high pre-
cision to maintain negligible statistical distance from actual distribution. Let λz

denote the true probability of sampling z ∈ Z according to the distribution DZ,σ.
Assume that the sampler selects z with probability pz where |pz − λz| < ρ for
some error-constant ρ > 0. Let D̃Z,σ denote the approximate discrete Gaussian
distribution corresponding to the finite-precision probabilities pz. The approx-
imate distribution D̃Zm,σ corresponding to m independent samples from D̃Z,σ

has the following statistical distance η to the true distribution DZm,σ [7]:

η(D̃Zm,σ,DZm,σ) < 2−k + 2mztρ . (2)

Here Pr(|v| > zt : v ← DZm,σ) < 2−k represents the tail bound.

2.4 Sampling Methods and the Knuth-Yao Algorithm

Rejection and inversion sampling are the best known techniques to sample from
a discrete Gaussian distribution [1]. However both sampling methods require
a large number of random bits. On the other hand, the Knuth-Yao algorithm
performs sampling from non-uniform distributions using a near-optimal number
of random bits. A detailed comparative analysis of different sampling methods
can be found in [7]. Since our proposed hardware architecture uses the Knuth-
Yao algorithm, we mainly focus on the Knuth-Yao method.

The Knuth-Yao algorithm uses a random walk model to perform sampling
using the probabilities of the sample space elements. The method is applicable
for any non-uniform distribution. Let the sample space for a random variable X

High Precision Discrete Gaussian Sampling on FPGAs 387

0 1 1 1 0

0 0 1 0 1
0 1 1 0 1Pmat =

I I

I I

I

10

2 1

0I

2 1

level 1

level 0

row 0

co
lu

m
n

0

Fig. 1. Probability matrix and corresponding DDG-tree

consist of n elements 0 ≤ r ≤ n−1 with probabilities pr. The binary expansions
of the probabilities are written as a matrix which we call the probability matrix
Pmat. The rth row of the probability matrix corresponds to the binary expansion
of pr. An example of the probability matrix for a sample space containing three
sample points {0, 1, 2} with probabilities p0 = 0.01110, p1 = 0.01101 and p2 =
0.00101 is shown in Fig. 1.

A rooted binary tree known as a discrete distribution generating (DDG) tree
is constructed from the probability matrix. Each level of the DDG tree can have
two types of nodes: intermediate nodes (I) and terminal nodes. The number of
terminal nodes in the ith level of the DDG tree is equal to the Hamming weight
of ith column in the probability matrix. Here we provide an example of the DDG
tree construction for the given probability distribution in Fig. 1. The root of the
DDG tree has two children which form the 0th level. Both the nodes in this level
are marked with I since the 0th column in Pmat does not contain any non-zero.
These two intermediate nodes have four children in the 1st level. To determine
the type of the nodes, the 1st column of Pmat is scanned from the bottom. In
this column only the row numbers ‘1’ and ‘0’ are non-zero; hence the right-most
two nodes in the 1st level of the tree are marked with ‘1’ and ‘0’ respectively.
The remaining two nodes in this level are thus marked as intermediate nodes.
Similarly the next levels are also constructed. The DDG tree corresponding to
Pmat is given in Fig. 1. In any level of the DDG tree, the terminal nodes (if
present) are always on the right hand side.

The sampling operation is a random walk which starts from the root; visits
a left-child or a right-child of an intermediate node depending on the random
input bit. The sampling process completes when the random walk hits a terminal
node and the output of the sampling operation is the value of the terminal
node. By construction, the Knuth-Yao random walk samples accurately from
the distribution defined by the probability matrix.

The DDG tree requires O(nk) space where k is the number of columns in the
probability matrix [7]. This can be reduced by constructing the DDG tree at run
time during the sampling process. As shown in Fig. 1, the ith level of the DDG
tree is completely determined by the (i − 1)th level and the ith column of the
probability matrix. Hence it is sufficient to store only one level of the DDG tree
during the sampling operation and construct the next level (if required) using

388 S. Sinha Roy et al.

the probability matrix [11]. In fact, in the next section we introduce a novel
method to traverse the DDG tree that only requires the current node and the
ith column of the probability matrix to derive the next node in the tree traversal.

3 Efficient Implementation of the Knuth-Yao Algorithm

In this section we propose an efficient hardware-implementation of the Knuth-
Yao based discrete Gaussian sampler which samples with high precision and
large tail-bound. We describe how the DDG tree can be traversed efficiently in
hardware and then propose an efficient way to store the probability matrix such
that it can be scanned efficiently and also requires near-optimal space. Before
we describe the implementation of the sampler, we first recall the parameter set
for the discrete Gaussian sampler from the LWE implementation in [9].

3.1 Parameter Sets for the Discrete Gaussian Sampler

Table 1 shows the tail bound |zt| and precision ρ required to obtain a statistical
distance of less than 2−90 for the Gaussian distribution parameters in Table 1
of [9]. The standard deviation φ in Table 1 is derived from the parameter s using
the equation s = φ

√
2ψ. The tail bound |zt| is calculated from Eq. 1 for the

right-hand upper bound 2−100. For a maximum statistical distance of 2−90 and
a tail bound |zt|, the required precision ρ is calculated using Eq. 2.

Table 1. Parameter sets and precisions to achieve statistical distance less than 2−90

m s γ |zt| φ

256 8.35 3.33 84 106
320 8.00 3.192 86 106
512 8.01 3.195 101 107

However in practice the tail bounds are quite loose for the precision values
in Table 1. The probabilities are zero (upto the mentioned precision) for the
sample points greater than 39 for all three distributions. Given a probability
distribution, the Knuth-Yao random walk always hits a sample point when the
sum of the probabilities is one [11]. However if the sum is less than one, then
the random walk may not hit a terminal node in the corresponding DDG tree.
Due to finite range and precision in Table 1, the sum of the discrete Gaussian
probability expansions (say Psum) is less than one. We take an difference (1 −
Psum) as another sample point which indicates out of range event. If the Knuth-
Yao random walk hits this sample point, the sample value is discarded. This out
of range event has probability less than 2−100 for all three distribution sets.

High Precision Discrete Gaussian Sampling on FPGAs 389

TI TI I I

1 2 k
d

n

Discover Terminal Nodes

2d

1 0

Fig. 2. DDG tree construction

3.2 Construction of the DDG Tree During Sampling

During the Knuth-Yao random walk, the DDG tree is constructed at run time.
The implementation of DDG tree as a binary tree data structure is an easy
problem [21] in software, but challenging on hardware platforms. As described
in Sect. 2.4, the implementation of the DDG tree requires only one level of the
DDG tree to be stored. However the ith level of a DDG tree may contain as many
as 2i nodes (where 2i < nk). On software platforms, dynamic memory allocation
can be used at run time to allocate sufficient memory required to store a level
of the DDG tree. But in hardware, we need to design the sampler architecture
for the worst case storage requirement which makes the implementation costly.

We propose a hardware implementation friendly traversal based on specific
properties of the DDG tree. We observe that in a DDG tree, all the intermediate
nodes are on the left hand side; while all the terminal nodes are on the right hand
side. This observation is used to derive a simple algorithm which identifies the
nodes in the DDG tree traversal path instead of constructing each level during
the random walk. Figure 2 describes the (i − 1)th level of the DDG tree. The
intermediate nodes are I, while the terminal nodes are T . The node visited at
this level during the sampling process is highlighted by the double circle in the
figure. Assume that the visited node is not a terminal node. This assumption is
obvious because if the visited node is a terminal node, then we do not need to
construct the ith level of the DDG tree. At this level, let there be n intermediate
nodes and the visited node is the kth node from the left. Let d = n − k denote
the distance of the right most intermediate node from the visited node.

In the next step, the sampling algorithm reads a random bit and visits a
child node on the ith level of the DDG tree. If the visited node is a left child,
then it has 2d + 1 nodes to its right side. Otherwise, it will have 2d nodes to its
right side (as shown in the figure). To determine whether the visited node is a
terminal node or an intermediate node, the ith column of the probability matrix
is scanned. The scanning process detects the terminal nodes from the right side
of the ith level and the number of terminal nodes is equal to the Hamming weight
h of the ith column of the probability matrix. The left child is a terminal node if
h > (2d + 1) and the right child is a terminal node if h > 2d. If the visited node
is a terminal node, we output the corresponding row number in the probability
matrix as the result of sampling process. When the visited node in the ith level
is internal, its visited-child in the (i+1)th level is checked in a similar way. From
the analysis of DDG tree construction, we see the following points :

390 S. Sinha Roy et al.

Algorithm 1. Knuth-Yao Sampling
Input: Probability matrix P
Output: Sample value S
begin1

d ∅ 0; /* Distance between the visited and the rightmost internal node */2
Hit ∅ 0; /* This is 1 when the sampling process hits a terminal node */3
col ∅ 0; /* Column number of the probability matrix */4
while Hit = 0 do5

r ∅ RandomBit() ;6
d ∅ 2d + r̄ ;7
for row = MAXROW down to 0 do8

d ∅ d − P [row][col] ;9
if d = −1 then10

S ∅ row ;11
Hit ∅ 1 ;12
ExitForLoop() ;13

end14

end15
col ∅ col + 1 ;16

end17

end18

1. The sampling process is independent of the internal nodes that are to the left
of the visited node.

2. The terminal nodes on the (i−1)th level have no influence on the construction
of the ith level of the DDG tree.

3. The distance d between the right most internal node and the visited node
on the (i − 1)th level of the DDG tree is sufficient (along with the Hamming
weight of the ith column of the probability matrix) to determine whether the
visited node on the ith level is an internal node or a terminal node.

During the Knuth-Yao sampling we do not store an entire level of the DDG
tree. Instead, the difference d between the visited node and the right-most inter-
mediate node is used to construct the visited node on the next level. The steps
of the Knuth-Yao sampling operation are described in Algorithm 1. In Line 6,
a random bit r is used to jump to the next level of the DDG tree. On this new
level, the distance between the visited node and the rightmost node is initialized
to either 2d or 2d + 1 depending on the random bit r. In Line 8, the for-loop
scans a column of the probability matrix to detect the terminal nodes. Whenever
the algorithm finds a 1 in the column, it detects a terminal node. Hence, the
relative distance between the visited node and the right most internal node is
decreased by one (Line 9). When d is reduced to −1, the sampling algorithm hits
a terminal node. Hence, in this case the sampling algorithm stops and returns
the corresponding row number as the output. In the other case, when d is posi-
tive after completing the scanning of an entire column of the probability matrix,
the sampling algorithm jumps to the next level of the DDG tree.

3.3 Storing the Probability Matrix Efficiently

The Knuth-Yao algorithm reads the probability matrix of the discrete Gaussian
distribution during formation of the DDG tree. A probability matrix having r

High Precision Discrete Gaussian Sampling on FPGAs 391

001101001000110011101100011010
001010010010001110000011001110
000111010011001101100110100000
000100101100101100100011010010
000010101111011110010010001110

000000010011011000000110100010
000000000111101001000111111011
000000000010101110111011001001
000000000000111000101110001100

000000000000000001000100110001
000000000000000000001111000100
000000000000000000000010111111

000001011100110110001001011000
000000101100100010110010101101

000000000000010000101011010101
000000000000000100011100100010

001111001101110110011011001101

#0

#2
#1

001110_1110111_110
11011_110010111_11

000111111111010111000101110101

Part of Probability Matrix First two ROM words

Fig. 3. Storing probability matrix

rows and c columns requires rc bits of storage. This storage could be significant
when both r (depends on the tail-bound) and c (depends on the precision) are
large. Figure 3 shows a portion of the probability matrix for the probabilities of
0 ≤ |z| ≤ 17 with 30-bits precision according to the discrete Gaussian distri-
bution with parameter s = 8.01. In [7] the authors observed that the leading
zeros in the probability matrix can be compressed. The authors partitioned the
probability matrix in different blocks having equal (or near-equal) number of
leading zeros. Now for any row of the probability matrix, the conditional proba-
bility with respect to the block it belongs to is calculated and stored. In this case
the conditional probability expansions do not contain a long sequence of leading
zeros. The precision of the conditional probabilities is less than the precision of
the absolute probabilities by roughly the number of leading zeros present in the
absolute probability expansions. The sampling of [7] then applies two rounds
of the Knuth-Yao algorithm: first to select a block and then to select a sample
value according to the conditional probability expansions within the block.

However the authors of [7] do not give any actual implementation details. In
hardware, ROM is ideal for storing a large amount of fixed data. To minimize
computation time, data fetching from ROM should be minimized as much as
possible. The pattern in which the probability expansions are stored in ROM
determines the number of ROM accesses (thus performance) during the sampling
process. During the sampling process the probability matrix is scanned column
by column. Hence to ease the scanning operation, the probability expansions
should be stored in a column-wise manner in ROM.

In Fig. 3, the probability matrix for a discrete Gaussian distribution contains
large chunks of zeros near the bottom of the columns. Since we store the prob-
ability matrix in a column-wise manner in ROM, we perform compression of
zeros present in the columns. The column length is the length of the top portion
after which the chunk of bottom zeros start. We target to optimize the storage
requirement by storing only the upper portions of the columns in ROM. Since
the columns have different lengths, we also store the lengths of the columns.
The number of bits required to represent the length of a column can be reduced

392 S. Sinha Roy et al.

by storing only the difference in column length with respect to the previous
column. In this case, the number of bits required to represent the differential
column length is the number of bits in the maximum deviation and a sign bit.
For the discrete Gaussian distribution matrix shown in Fig. 3, the maximum
deviation is three and hence three bits are required to represent the differential
column lengths. Hence the total number of bits required to store the differential
column lengths of the matrix (Fig. 3) is 86 (ignoring the first two columns).

For the discrete Gaussian distribution matrix, we observe that the difference
between two consecutive column lengths is one for most of the columns. This
observation is used to store the distribution matrix more efficiently in ROM. We
consider only non-negative differences between consecutive column lengths; the
length of a column either increases or remains the same with respect to its left
column. When there is a decrement in the column length, the extra zeros are also
considered to be part of the column to keep the column length the same as its left
neighbor. In Fig. 3 the dotted line is used to indicate the lengths of the columns.
It can be seen that the maximum increment in the column length happens to be
one between any two consecutive columns (except the initial few columns). In
this representation only one bit per column is needed to indicate the difference
with respect to the left neighboring column: 0 for no-increment and 1 for an
increment by one. With such a representation, 28 bits are required to represent
the increment of the column lengths for the matrix in Fig. 3. Additionally, 8
redundant zeros are stored at the bottom of the columns due to the decrease in

Algorithm 2. Knuth-Yao Sampling in Hardware Platform
Input: Probability matrix P
Output: Sample value S
begin1

d ∅ 0; /* Distance between the visited and the rightmost internal node */2
Hit ∅ 0; /* This is 1 when the sampling process hits a terminal node */3
ColLen ∅ INITIAL; /* Column length is set to the length of first column */4
address ∅ 0; /* This variable is the address of a ROM word */5
i ∅ 0; /* This variable points the bits in a ROM word */6
while Hit = 0 do7

r ∅ RandomBit() ;8
d ∅ 2d + r̄ ;9
ColLen ∅ ColLen + ROM [address][i] ;10
for row = ColLen − 1 down to 0 do11

i ∅ i + 1 ;12
if i = w then13

address ∅ address + 1 ;14
i ∅ 0 ;15

end16
d ∅ d − ROM [row][i] ;17
if d = −1 then18

S ∅ row ;19
Hit ∅ 1 ;20
ExitForLoop() ;21

end22

end23

end24
return (S)25

end26

High Precision Discrete Gaussian Sampling on FPGAs 393

column length in a few columns. Thus, a total of 36 bits are stored in addition
to the pruned probability matrix. There is one more advantage of storing the
probability matrix in this way in that we can use a simple binary counter to
represent the length of the columns. The binary counter increments by one or
remains the same depending on the column-length increment bit.

In ROM, we only store the portion of a column above the partition-line in
Fig. 3 along with the column length difference bit. The column-length difference
bit is kept at the beginning and then the column is kept in reverse order (bottom-
to-top). As the Knuth-Yao algorithm scans a column from bottom to top, the
column is stored in reverse order. Figure 3 shows how the columns are stored
in the first two ROM words (word size 16 bits). During the sampling process, a
variable is used to keep track of the column-lengths. This variable is initialized
to the length of the first non-zero column. For the probability matrix in Fig. 3,
the initialization value is 5 instead of 4 as the length of the next column is 6.
Whilst scanning a new column, this variable is either incremented (starting bit
1) or kept the same (starting bit 0). Algorithm 2 summarizes the steps when a
ROM of word size w is used as a storage for the probability matrix.

4 Hardware Architecture

Figure 4 shows the different components of the hardware architecture for the
Knuth-Yao sampling. The ROM block has word size 32 bits and is used to store
the probability matrix as described in Sect. 3.3. Addressing of the ROM words
is done using a ROM-Address counter. Initially the counter is cleared and later
incremented by one to fetch data from higher ROM locations.

The scanning operation is performed using the 32-bit register present in the
Scan ROM Word block. First a word is fetched from the ROM and then stored
in the scan register. The scan register is a left-shift register and the MSB of the
register is used by the Control Unit. A 5-bit counter (Word-Bit) is used to count
the number of bits scanned from a ROM word. When all 32 bits are read from a
ROM word, the counter reaches the value 31. This event triggers data reloading
from next ROM word into the scan register.

Random (or pseudo random) bits are required during the traversal of the
DDG tree. We have used a true random bit generator based on the approach by
Golic [8]. The quality of the random bit generator is not the main focus of this
paper; the random bit generator can be replaced by any other true random bit
generator [2,20] or pseudo-random bit generators based on LFSRs. The random
bit generator can be slow since only five random bits are required on average
during sampling from the distributions in Table 1.

An up-counter Column Length is used to store the lengths of the different
columns of the probability matrix. This counter is first initialized to the length
of the first non-zero column of the probability matrix. During the random walk,
the counter increments or remains the same depending on the column-length
bit. To count the number of rows during a column scanning operation, one down
counter Row Number is used. At the start of the column-scanning, this counter is

394 S. Sinha Roy et al.

sel

sel

2d + r−

sel i

wei

we

we

done

clk

#0

#2
#1

dout

carry

random bit r

d

clk

ren
ren

clk

clk

done

Row Number

clk

rst

scanned bit

load

clk

ce

load

ce

clk

column−scan
completion

word−scan

ce

completion

ce

clk
clear

clk
clear

clear ce loadi i

1

Fig. 4. Hardware architecture for Knuth-Yao sampler

initialized to the length of that column; later the counter decrements. A column
scanning is completed when the Row Number counter reaches zero.

During construction of any level of the DDG tree, the relative position d of
the right most intermediate node with respect to the visited node is kept in the
register Distance. During the Knuth-Yao random walk, the Distance register is
first updated to 2d or 2d + 1 according to the input random bit. Later each
detection of a terminal node by the scanning operation decrements the register
by one. A subtracter is used for this purpose. The carry from the subtracter is
an input to the control FSM. When the carry flag is set (d < 0), the control FSM
stops the random walk and indicates completion of the sampling operation. After
completion, the value present in Row Number is the magnitude of the sample
output. One random bit is used as a sign of the value of the sample output.

The hardware architecture is driven by the control FSM. The FSM generates
the selection signals for the multiplexers, the write enable signals for the registers
and the enable/clear/load signals for the counters present in the architecture.

Speeding up the Sampling Operation. The sampling operation spends most
time in scanning columns for which we propose two possible improvements.

1. Skipping Unnecessary Column Scanning. The sampling operation hits
a terminal node when the initial value of the distance d in that level is smaller
than the Hamming weight of the respective column in the probability matrix
(Algorithm 1). The initial columns which have smaller Hamming weight than d

High Precision Discrete Gaussian Sampling on FPGAs 395

can thus be skipped; scanning is performed only for the first column that has
larger Hamming weight than d. As such, unnecessary column scanning can be
avoided by storing the Hamming weights of the columns.

There are two issues that make this strategy costly in terms of area. Firstly,
extra memory is required to store the Hamming weights of the columns. Secondly,
the shifting mechanism (to skip a column) for the Scan Reg (Fig. 4) becomes
complicated due to the varying lengths of the columns. This also increases the
size of the multiplexer for the Scan Reg. Since the scan register is 32 bits wide,
the area overhead is significant with respect to the overall area.

2. Window-based Scanning of Columns. In hardware we can scan and
process several bits of a column in a single clock cycle. Using a window-based
scanning block, we can therefore reduce the computation time nearly by a factor
equal to the size of the window. We can implement the window-based scanning
operation by performing a minor modification in the sampler architecture shown
in Fig. 4. The modifications required for window size four are shown in Fig. 5.
The first four bits (bit[3] to bit[0]) near the MSB of the Scan Reg are scanned
simultaneously and shift operations are always performed by four bits. During a
column scanning operation, the register Distance is decremented by the sum of
the bits. The register Row Number is decremented by four. However fast-scanning
is affected when the following events occur: 1) carry#d is set, 2) carry#row is
set, and 3) the wire rowin is zero. When only event 1 occurs, the sampling
algorithm hits a terminal node and generates a sample value. Event 2 occurs
when the four bits are from two columns: the end bits of the present column
and the starting bits of the next column. For such events (1 or 2 or both), the
control FSM suspends any register write operation and jumps to a slow-scan
state. Now the FSM scans the bits b[i] sequentially (similar to the architecture
in Fig. 4) using the selection signal sel4. Operations in this phase are similar
to the basic bit-by-bit scanning method described previously. Event 3 indicates
that the scanned four bits are actually the last four bits of the column. In this
case, the FSM updates the registers and then performs slow-scanning for the
next four bits (the first bit is the column length change bit for the new column).

The window-based scanning requires a few extra multiplexers as shown in
Fig. 5 compared to the bit-by-bit method in Fig. 4. However the Word-Bit counter
size reduces to three as one scanning operation for 32 bits requires eight shift-
ing operations. The respective comparator circuit size also reduces. Since the
multiplexers are small in size (1 and 3 bits wide), the strategy has very small
area overhead and is thus more cost effective compared to the Skip-Column
method.

5 Experimental Results

We have evaluated the proposed discrete Gaussian sampler architectures on Xil-
inx Virtex V FPGAs for the distribution parameter sets given in Table 1. The
results are obtained from the ISEv11.1 tool after place and route analysis. Since

396 S. Sinha Roy et al.

Column
Length

Data Scanning Distance Computation Row Number Computation

Row Number

−

1

0

<<4

Scan Reg

33

dout

we1
clk

carry#d

sel

bit[3]
bit[2]
bit[1]
bit[0]

sel

we
carry#row

4

1

sel

sel

we

clk

2

2
sel

2d + r

sel

4

Distance d

bit[3]+bit[2]+bit[1]+bit[0]

5

3
rowin

clk

63

Fig. 5. Modifications required to perform 4-window scanning operation

Table 2. Width of the components in Fig. 4 for the distributions in Table 1

ROM address Word-Bit Scan-Reg Column length Row number Distance

7 5 or 3 32 6 6 6

Table 3. Performance of the discrete Gaussian sampler on xc5vlx30

Architecture FFs Slices LUTs Delay (ns) Clock
Core ROM Core ROM Cycles

Figure 4 66 30 17 76 64 3 17
Figure 5 69 36 17 85 64 3.3 16

the parameter sets in Table 1 have similar standard deviations, the same architec-
ture is used to implement all the samplers; only the ROM contents are different.
In case of a given Gaussian distribution parameter, the width of the counters,
registers and arithmetic circuits can be pre-determined. Table 2 shows the width
of the registers present in the proposed sampler architectures.

The area, delay and average case clock cycle requirements for the two sam-
pler architectures (Sect. 4) are shown in Table 3. The results do not include the
random bit generator. The core of the bit-by-bit scanning sampler (excluding
the ROM and the random bit generator in Fig. 4) consumes only 30 slices; while
the core of the 4-window based fast architecture requires 6 extra slices.

On Xilinx FPGAs, ROM can be generated using LUTs or block-RAM slices.
For the parameter set in Table 1, a block ROM requires only one RAMB slice.
If LUT-based ROM is used, then a 32-by-96 ROM is sufficient for the distri-
bution in Table 1. On Virtex V FPGAs, the distributed ROM consumes 17
slices.

Time spent in a sampling operation is mainly the time involved in scanning
the column bits of the probability matrix. The number of bits scanned during
a sampling operation depends on the number of levels jumped (equal to the
number of random bits consumed) by the Knuth-Yao random walk along the
DDG tree. Hence the number of bits scanned in a sampling operation increases

High Precision Discrete Gaussian Sampling on FPGAs 397

with the number of levels jumped by random walk. However the probability of
a jump from a level to its next level reduces exponentially with increase in the
number of levels. Knuth and Yao showed that the expected number of random
bits required (i.e the number of levels jumped) is at most two more than the
entropy of the given distribution [11]. For the LWE parameter sets in Table 1,
the entropy of the distributions is less than three (for φ = 3.33 the entropy
is 2.9) and thus the average number of random bits required per sampling is
at most five. When the Knuth-Yao random walk hits a terminal node during
scanning of the fifth column of the probability matrix (Appendix A), then total
number of bits scanned (column bits + column length bits) is in the range of
14 to 21.

In Appendix B, we performed a software simulation to know the average
number of bits scanned. As per experimental results, on average 4.3 random bits
are required and 13.5 memory-bits are scanned to generate a sample point. This
experimental values support the Knuth-Yao upper bound for the average case.
To scan the first 14 memory-bits, the bit-by-bit scanning architecture (Fig. 4)
consumes 17 clock cycles, while the 4-window based fast scanning architecture
(Fig. 5) spends 16 clock cycles. These average case clock cycle requirements for
the two samplers are shown in Table 3.

The number of clock cycles saved by the fast architecture compared to the
basic architecture is only 6 % in average case. This is due to frequent slow-
scanning operations for the initial columns which have small lengths. The sav-
ings of the fast architecture increases with the number of levels jumped by the
Knuth-Yao random walk increases. For example, when sample point is found
during scanning of the 7th column of the probability matrix, the fast architec-
ture takes only 24 cycles compared to 43 cycles (44 % saving) required by the
basic architecture. Thus the fast architecture provides drastic speedup when the
Knuth-Yao random walk goes beyond the average case.

Performance of the Sampler in Ring-LWE. Here we present an estimated
performance analysis for the proposed sampling architectures in a ring-LWE
encryption system [12]. In ring-LWE encryption, the major computations are:
(1) two polynomial multiplications and (2) construction of three error polyno-
mials using discrete Gaussian sampling. A feasible solution to implement a high-
performance ring-LWE cryptosystem is to keep the multiplier and the sampler
in a pipeline; the sampler stores sampled values in a buffer and the multiplier
reads the buffer. Due to small delay, the sampler architecture can be integrated
easily with a high-frequency polynomial multiplier.

The proposed 4-window based sampling architecture requires around 12,300
and 24,600 clock cycles on average to compute the three error polynomials [12]
for the LWE parameters m = 256 and m = 512 (Table 1) respectively. The two
polynomial multiplications using the NTT-based multipliers [16] require 4,800
and 10,000 clock cycles for m = 256 and m = 512 respectively. Thus the sampler
architecture is slower compared to the polynomial multipliers in [16]. However,

398 S. Sinha Roy et al.

we note that our implementation is optimized for area and not speed. Since
the the sampler has a very small area (compared to the multiplier) and requires
random bits only occasionally, we can simply parallelize the sampling operations.
In such a parallel implementation, the ROM and the random bit generator will
be shared by the parallel sampling cores.

6 Conclusion

In this paper we showed that for small standard deviation, high precision discrete
Gaussian samplers can be implemented in hardware using an adaptation of the
Knuth-Yao algorithm. We introduced a hardware implementation friendly strat-
egy to traverse the DDG tree in the Knuth-Yao sampling operation and proposed
an optimization technique to reduce the space required to store the probabilities
of the sample points in the discrete Gaussian distribution. Finally, we presented
efficient hardware architectures for the discrete Gaussian distribution samplers
used in LWE encryption systems. The proposed sampler architectures are small,
fast and have very high precision to obtain a negligible statistical distance to a
true discrete Gaussian distributions.

Acknowledgment. This work was supported in part by the Research Council KU
Leuven: TENSE (GOA/11/007), by iMinds, by the Flemish Government, FWO
G.0550.12N and by the Hercules Foundation AKUL/11/19. Sujoy Sinha Roy is funded
by an Erasmus Mundus fellowship. We are thankful to Thomas Pöppelmann and Tim
Güneysu for their suggestions to improve the quality of our paper.

Appendix A

Probability matrix for the discrete Gaussian distribution with parameter s =
8.01 used in the LWE crypto system of dimension n = 512 is shown in Fig. 6.
The portion above the partition line is stored in ROM.

Appendix B

To know the average number of random bits required per sampling operation, we
have performed a C-program simulation of the Knuth-Yao random walk for the
distribution parameter s = 8.01. Column 1 and 2 in Table 4 shows the number
of random bits required per sampling operation and the corresponding number
of events in total 106 runs of the random walk. As per the experimental data
in Table 4, on average 4.3 random bits are consumed and 13.5 bits are scanned
from memory to sample a value from the discrete Gaussian distribution.

High Precision Discrete Gaussian Sampling on FPGAs 399

Fig. 6. Probability matrix for the discrete Gaussian distribution with s = 8.01

Table 4. Number of random bits required per sampling operation in 106 runs

Number of random bits Occurrences

3 375097
4 312928
5 156405
6 77969
7 31093
8 19367
9 13510

10 6827
11 3380
12 1445
13 990
14 495
15 242
16 149
17 59
18 21
19 12
20 5
21 3
22 2
23 1

400 S. Sinha Roy et al.

References

1. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)
2. Dichtl, M., Golić, J.D.: High-speed true random number generation with logic

gates only. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 45–62. Springer, Heidelberg (2007)

3. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. Cryptology ePrint Archive, Report 2013/383 (2013). http://
eprint.iacr.org/

4. Ducas, L., Nguyen, P.Q.: Faster gaussian lattice sampling using lazy floating-point
arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
415–432. Springer, Heidelberg (2012)

5. Frederiksen, T.: A practical implementation of Regev’s LWE-based cryptosystem.
In: http://daimi.au.dk/∼jot2re/lwe/resources/ (2010)

6. Zhang, G., Leong, P., et al.: Ziggurat-based hardware Gaussian random number
generator. In: Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL 2005), pp. 275–280 (2005)

7. Galbraith, S.D., Dwarakanath, N.C.: Efficient sampling from discrete Gaussians
for lattice-based cryptography on a constrained device. Preprint

8. Golic, J.D.: New methods for digital generation and postprocessing of random
data. IEEE Trans. Comput. 55(10), 1217–1229 (2006)

9. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012)

10. Edrees, H.M., Cheung, B., Sandora, M., et al.: Hardware-optimized Ziggurat algo-
rithm for high-speed Gaussian random number generators. In: Proceedings of the
International Conference on Engineering of Reconfigurable Systems and Algo-
rithms, pp. 254–260 (2009)

11. Knuth, D.E., Yao, A.C.: The complexity of non-uniform random number genera-
tion. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent
Results, pp. 357–428. Academic Press, New York (1976)

12. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

13. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

14. Micciancio, D.: Lattices in Cryptography and Cryptanalysis (2002)
15. Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.

(ed.) CaLC 2001. LNCS, vol. 2146, p. 146. Springer, Heidelberg (2001)
16. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryp-

tography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATIN-
CRYPT 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012)

17. Regev, O.: Quantum computation and lattice problems. SIAM J. Comput. 33(3),
738–760 (2004)

18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC ’05, pp. 84–93. ACM, New York (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://daimi.au.dk/~jot2re/lwe/resources/

High Precision Discrete Gaussian Sampling on FPGAs 401

19. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 131–141. Springer, Heidelberg (2006)

20. Schellekens, D., Preneel, B., Verbauwhede, I.: FPGA vendor agnostic true random
number generator. In: International Conference on Field Programmable Logic and
Applications, FPL ’06, pp. 1–6 (2006)

21. Rivest, R.L., Cormen, T.H., Leiserson, C.E., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

Discrete Ziggurat: A Time-Memory
Trade-Off for Sampling from a Gaussian

Distribution over the Integers

Johannes Buchmann, Daniel Cabarcas,
Florian Göpfert(B), Andreas Hülsing, and Patrick Weiden

Technische Universität Darmstadt, Darmstadt, Germany
{buchmann,fgoepfert,pweiden}@cdc.informatik.tu-darmstadt.de,

dcabarc@unal.edu.co, a.t.huelsing@tue.nl

Abstract. Several lattice-based cryptosystems require to sample from
a discrete Gaussian distribution over the integers. Existing methods to
sample from such a distribution either need large amounts of memory
or they are very slow. In this paper we explore a different method that
allows for a flexible time-memory trade-off, offering developers freedom
in choosing how much space they can spare to store precomputed values.
We prove that the generated distribution is close enough to a discrete
Gaussian to be used in lattice-based cryptography. Moreover, we report
on an implementation of the method and compare its performance to
existing methods from the literature. We show that for large standard
deviations, the Ziggurat algorithm outperforms all existing methods.

Keywords: Lattice-based cryptography · Gaussian sampling ·
Practicality · Implementation

1 Introduction

The object of study of this paper is the discrete Gaussian probability distribution
over the integers. Sampling elements from such a distribution is widely used in
lattice-based cryptography [GPV08,LP11,BGV12,GGH12]. It is a critical tech-
nical challenge to sample from a discrete Gaussian over the integers accurately
and efficiently. Weiden et al. [WHCB13] report that sampling from it takes more
than 50 % of the running time of the signing algorithm in their implementation
of Lyubashevsky’s signature scheme [Lyu12].

All existing methods to sample from a Gaussian distribution over the integers
either need large amounts of memory or they are very slow. For example, Gal-
braith and Dwarakanath estimate that Peikert’s sampler [Pei10] requires around
12 MB of storage [GD12] for some parameters. Such a large memory requirement
might be acceptable on a PC but not on the diversity of devices that demand
cryptographic solutions today.

In this paper we explore a different alternative for sampling from a Gaussian
distribution over the integers that offers a flexible trade-off between speed and

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 402–417, 2014.
DOI: 10.1007/978-3-662-43414-7 20, c∞ Springer-Verlag Berlin Heidelberg 2014

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 403

memory. Moreover, for big standard deviations, this method beats commonly
used methods. We call the method discrete Ziggurat because it adapts the
Ziggurat algorithm [MT00] for the discrete case.

The discrete Ziggurat is specially appealing for cryptographic applications
because of its flexibility. The method uses precomputed rectangles of equal
‘size’ to cover the area under the probability density function (PDF). Increasing
the number of rectangles increases speed but also increases the memory used.
Therefore, it offers an easy-to-tune trade-off between speed and memory. This
is a desirable property because developers of cryptographic primitives can easily
adjust it to fit the particular characteristics of different devices. On memory con-
straint devices like smartcards or microcontrollers they could use a low-memory
low-speed setting, while on a high performing server they could use a high-
memory high-speed configuration.

Originally, the Ziggurat sampler was developed for a continuous distribution.
In order to adapt it to the discrete case some care must be taken. In particular
the notion of ‘size’ of a rectangle must be redefined from the narrow concept of
‘area’ to the more general “probability to sample points inside the rectangle”.
We discuss the implications of this generalization.

It is also challenging to analyze the quality of the discrete Ziggurat because
of the subtleties of an actual implementation. In this paper we provide a care-
ful analysis that takes into consideration the loss of precision due to the tail-
cut, the precision in sampling from the y-axis and the precision in calculating
the PDF. The techniques used and the way they are combined in this analy-
sis might show valuable for the analysis of other samplers. For developers we
explain how to achieve a desired accuracy by setting the precision for represent-
ing numbers.

We implemented the discrete Ziggurat in C++ using the Number Theory
Library (NTL) [Sho]. The implementation can be downloaded at the authors’
homepage1. We compare the efficiency of the discrete Ziggurat with existing
methods and analyze the speed-memory trade-off. For example, we used the
parameters proposed by Galbraith and Dwarakanath [GD12] for the normal
distribution in Lyubashevsky’s signature scheme [Lyu12]. For this illustrative
setting, the discrete Ziggurat produces about 1.13 million samples per second,
using only 524 KB of memory. In comparison, Peikert’s sampler outputs 281,000
samples per second for a memory usage of 33.55 MB. The Knuth-Yao algorithm
is only slightly faster (it produces about 4 % more samples), but increases the
memory-consumption by a factor of more than 400.

Related Work. We briefly survey existing alternatives to sample from a discrete
Gaussian probability distribution over the integers, denoted Dσ. For parameter
σ > 0, Dσ assigns x ∈ Z a probability proportional to ρσ(x) = exp(− 1

2x2/σ2).
It is important to note that sampling from Dσ is different to sampling from
1 In particular at https://www.cdc.informatik.tu-darmstadt.de/∼pschmidt/

implementations/ziggurat/ziggurat-src.zip.

https://www.cdc.informatik.tu-darmstadt.de/~pschmidt/implementations/ziggurat/ziggurat-src.zip
https://www.cdc.informatik.tu-darmstadt.de/~pschmidt/implementations/ziggurat/ziggurat-src.zip

404 J. Buchmann et al.

a (continuous) normal distribution [TLLV07]. Another related problem is that
of sampling from a Gaussian distribution over a generic lattice, a more
complex problem, whose solutions often require sampling from Dσ as a sub-
routine [GPV08,Pei10,DN12,AGHS12].

For cryptographic applications it is sufficient to sample from the bounded
subset B := Z ∞ [−tσ, tσ], where the tailcut t > 0 is chosen large enough to
guarantee a desired precision [GPV08]. One alternative to sample from Dσ is to
do rejection sampling on B. Another alternative is to precompute the cumulative
distribution function (CDF) for x ∈ B, sample a uniform element y ∈ [0, 1)
and perform a binary search on the CDF table to output the “inverse CDF”
of y [Pei10]. To the best of our knowledge, no work analyzes the accuracy or
efficiency of any of these methods in detail.

Yet another alternative, explored by Galbraith and Dwarakanath
[GD12], is the Knuth-Yao algorithm. The algorithm first precomputes a binary
tree with leaves labeled by the elements of B. For x ∈ B, if the probability of
sampling x has a one in the i-th place of its binary representation, there is a
leaf labeled x at height i of the tree. Then it samples by walking down the tree
using one uniform bit at each step to decide which of the two children to move
to. Galbraith and Dwarakanath present a very detailed analysis of the accuracy
of the sampler and of the number of random bits it uses. They also propose ways
to reduce the memory requirements. However, they do not assess the speed of
the sampler.

Ducas and Nguyen propose an enhancement for rejection sampling. They
observe that the sampler can compute at a low precision by default and only
use high precision computation when a certain threshold is reached [DN12]. To
the best of our knowledge, no work evaluates the effect of this enhancement in
detail.

Organization. In Sect. 2 we explain the Ziggurat algorithm and we describe in
detail its discrete variant. In Sect. 3 we analyze the quality of the distribution.
Finally, in Sect. 4 we report on experimental results.

2 The Discrete Ziggurat Algorithm

The Ziggurat algorithm belongs to the class of rejection sampling algorithms and
was introduced by Marsaglia and Tsang for sampling from a continuous Gaussian
distribution [MT00]. Here we adapt it for the discrete case. After explaining the
setting, we give a short overview over Ziggurat in the continuous case and shortly
explain how to control the trade-off. Afterwards, we show how we adapted it
to the discrete case and explain how to perform the necessary precomputing.
Subsequently, we discuss the implementation-details and finish the section with
further improvements.

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 405

2.1 Setting

We are concerned with sampling from a discrete Gaussian distribution centered
at zero with bounded support B := [−tσ, tσ] ∞ Z for some parameter t > 0.
This bounded support is sufficient for the application in lattice-based cryptog-
raphy as long as t is chosen large enough. Moreover, we show in Sect. 3.2 how to
select parameters such that the sampled distribution is within a certain statis-
tical distance to a (truly) discrete Gaussian distribution. The assumption that
the distribution is centered at zero is also fine, as we can add a constant offset
to transform samples into a distribution centered around any other integer.

2.2 Intuition

We briefly review the continuous Ziggurat for the above setting to give some
intuition. As the target distribution is symmetric, we can proceed as follows. We
use the method to sample a value x √ tσ within R

+
0 . Afterwards, if x = 0 we

accept with probability 1/2. Otherwise, we sample a sign s ∈ {−1, 1} and return
the signed value sx.

Now, how do we sample x within R
+
0 ? During set-up, we enclose the area of

the probability density function (PDF) in an area A consisting of m horizontal
rectangles with equal area as shown in Fig. 1. How the rectangles are computed is
described below. Next, we store the coordinates (xi, yi) of the lower right corner
of each rectangle Ri, 1 < i < m − 1. Please note that each rectangle Ri can be
split into a left rectangle Rl

i that lies completely within the area of the PDF and
a right rectangle Rr

i that is only partially covered by the PDF. For an example,
see R3 in Fig. 1.

Fig. 1. Ziggurat for m = 7 with covering area A and the partition into rectangles.

406 J. Buchmann et al.

Now, to actually sample a value x √ tσ within R
+
0 we first sample an integer

1 √ i √ m uniformly at random, to select a random rectangle. Next, we sample
an x-coordinate inside Ri, by sampling a uniformly random x∈ within [0, xi]. If
x∈ √ xi−1, i.e. if x∈ is inside Rl

i, we directly accept and return x∈. Otherwise, x∈

lies within Rr
i . In this case, we do rejection sampling. Namely, we sample a value

γ within [yi+1, yi] uniformly at random. Then, if γ + yi+1 √ ρσ(x∈), i.e. we hit a
point in the area below the PDF, we accept and return x∈. Otherwise, we reject
and restart the whole process by sampling a new i.

In order to understand why this sampling-algorithm works, think of it as
an efficient implementation of rejection-sampling in the area A. More precisely,
the implementation of the first step (sampling a point in the enclosing area) is
improved. Since all the rectangles have equal size, the probabilities of sampling
a point in a given rectangle are equal. Therefore, one can sample the rectangle
first and a point in the rectangle afterwards.

The expensive part of the algorithm is computing ρσ(x∈) if x∈ does not lie
within Rl

i. It becomes even more expensive whenever a value is rejected. For
this reason Ziggurat provides a time-memory trade-off, which is controlled by
the number of rectangles used, as follows. If we use more rectangles, the ratio
between the left and the right rectangle within one rectangle is changed in such
a way that the left rectangle becomes comparatively bigger. Hence, we accept
an x∈ without computing ρσ(x∈) with higher probability. Moreover, using more
rectangles, the area A tighter encloses the area C below the PDF. Thereby, the
area A \ C that leads to a rejection shrinks and with it the overall probability
of a rejection. However, for each additional rectangle the coordinates of one
additional point have to be stored, increasing the memory requirements.

2.3 Adaption to the Discrete Case

In the discrete case, the algorithm works quite similar. The whole pseudocode
can be found in Appendix A.1. As before, a sign s, a rectangle with index i and
a potential sample x∈ are sampled. If x∈ lies in a left rectangle and is non-zero,
sx∈ is returned immediately. If x∈ equals zero, it is returned with probability 1/2,
like in the continuous case. If not, exactly the same rejection sampling procedure
as in the continuous case is used to decide whether sx∈ is returned or the whole
process is restarted.

In contrast to the continuous case, the notion of ‘size’ defined using the area
of a rectangle can not be used in the discrete case. We have seen in the last section
that the size of a rectangle has to be proportional to the probability to sample a
point in it. In the discrete case, we therefore define the size of a rectangle as the
number of integer x-coordinates in the rectangle times its height. For instance,
the rectangle R3 has size (1 + �x3→) · (y2 − y3).

The second difference between the continuous and the discrete case is the
way the rectangles are computed. While we did not explain how this is done in
the continuous case, as it would go beyond the scope of this work, we give a

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 407

description for the discrete case. We explain how to obtain a partition for the
Ziggurat algorithm for a given number of m rectangles where each rectangle has
exactly the same ‘size’ S. Therefore, we set

ym := 0, x0 := 0 and xm := tσ,

and we iteratively compute a possible partition “from right to left” via

ym−1 =
S

1 + �xm→ , xm−1 = ρ−1
σ (ym−1),

for i = m − 2, . . . , 1 : yi =
S

1 + �xi+1→ + yi+1, xi = ρ−1
σ (yi),

y0 =
S

1 + �x1→ + y1.

Recall that ρσ is a scaled density function with ρσ(0) = 1. Therefore, a valid
partition for Ziggurat requires y0 ≡ 1, since only then the partition completely
covers the area under the curve ρσ on the support B+

0 := [0, tσ] ∞ Z
+
0 . Since

the value y0 depends on the ‘size’ S of the rectangles, any value of S for which
y0 ≡ 1 leads to a valid partition. We heuristically determine S as follows. We
set S = σ/(m · √

π/2) · c with initial value c = 1, compute the corresponding
partition, and increase c stepwise as long as y0 < 1. (To improve the quality
of the input partition, i.e. minimizing y0 − 1, one can perform a binary search
for S in [σ/(m · √

π/2), tσ + 1].) In the case that no valid partition is found,
we increase xm by one and restart the whole process. Reaching xm = (t +
1)σ, we abort. We note that this method ended with no partition being output
in only about 1.3 % of our computations. In these cases, i.e. when no valid
partition is found, one can re-run the procedure with one or more of the following
changed: number of rectangles m, Gaussian parameter σ (if possible), or upper
bound on xm.

2.4 Implementation

For an implementation, we have to analyze the effect of computing with limited
precision. We use a dash over numbers or functions to indicate the use of their
corresponding n-bit fixed-point approximation, e.g. y and ρσ denote the n-bit
approximation of y ∈ R and the function ρσ, respectively. Since we can exactly
calculate ρσ, we can find a partition such that the rectangles have exactly the
same ‘size’ and represent it with the vertical bounds yi (which we store with
n bits fixed point precision) and the rounded horizontal borders �xi→. The last
problem is to sample uniformly at random in the infinite sets [yi, yi−1]. Our
solution is to discretize the set: We define hi := yi−1 − yi to be the height of

the i-th rectangle, sample y∈ $∼ {0, 1, . . . , 2ω − 1} for a parameter ω ∈ Z
+
0 and

transform the samples to y = hiy
∈ ∈ [0, 2ωhi]. Instead of transforming y into

408 J. Buchmann et al.

R̂r
i

0
xi−1

�xi−1→
xi

�xi→

2ωhi

s

ρσ

(a) The concave-down case

R̂r
i

0
xi−1
�xi−1→ + 1

xi
�xi→ + 1

2ωhi

s

ρσ

(b) The concave-up case

Fig. 2. Optimization to discrete Ziggurat (R̂r
i is Rr

i vertically shifted and stretched)

the interval [yi, yi−1] we replace the condition y √ ρσ(x) for y ∈ [yi, yi−1] with
y √ 2ω(ρσ(x) − yi) for y ∈ [0, 2ωhi]. We show in Sect. 3 how to choose the
parameters t, ω and n in order to bound the statistical distance between the
distribution defined by our algorithm and Dσ by a given value.

2.5 Further Improvement

Since the most time-consuming part of the discrete Ziggurat is the computation
of ρσ, we want to avoid it as often as possible. As mentioned above, it is only
necessary if (x, y) is contained in a right rectangle Rr

i . But even in this case,
depending on the shape of ρσ inside of Rr

i , we can avoid the evaluation of ρσ in
nearly half of the cases and more easily reject or accept x as follows.

We divide Rr
i by connecting its upper left and lower right corner by a straight

line s. Since ρσ has inflection point σ, it is concave-down for x √ σ, and concave-
up otherwise. In the concave-down case (xi √ σ) all points (x, y) in Rr

i below
s implicitly fulfill the acceptance condition, thus x is instantly output. In the
concave-up case (σ √ xi−1) all points above s lead to immediate rejection. In all
other cases we have to evaluate ρσ(x) and check the acceptance condition. For
the discrete Ziggurat we have to adjust this approach to our way of sampling yi

and our use of the values �xi→ instead of xi (for an idea how to accomplish this
see Fig. 2).

3 Quality of Our Sampler

In this section, we show how to choose parameters for the algorithm such that
it achieves a given quality in the sense of statistical distance to a discrete nor-
mal distribution. We begin with a theorem that bounds the statistical distance
between the distribution produced by the sampler and a discrete normal distri-
bution. Afterwards, we show as an example how to select parameters such that
the statistical distance is smaller than 2−100. The methodology can be used to
select parameters for any given statistical distance.

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 409

3.1 Statistical Distance Between Sampled and Gaussian
Distribution

No practical algorithm outputs samples exactly distributed according to a
Gaussian distribution. Therefore, it is important to understand how much the
produced output distribution differs from the normal distribution. This differ-
ence is measured by the statistical distance. Recall that t determines the tailcut
and ω the precision of the sampled y-values. As explained before, we use num-
bers with n-bit fixed-point precision. Similar to the definition of the support
B+

0 = [0, tσ] ∞Z
+
0 , we define B+ := [0, tσ] ∞Z

+. The next theorem gives a lower
bound on the quality of our sampler depending on the used parameters.

Theorem 1. The statistical distance between the discrete Gaussian distribution
Dσ and the distribution Dσ output by our algorithm is bounded by

Δ(Dσ,Dσ) < te(1−t2)/2 +

∣
∣B+

0

∣
∣

ρσ(B+) + 1
2

(2−ω+1 + 2−n). (1)

Because of the restricted space, we omit the proof of the result here. It can
be found in the full version of this paper2. The main idea of the proof is to
introduce intermediary distributions. The first intermediary distribution differs
from a Gaussian distribution by the tailcut. The second intermediary distribution
takes the limited precision of the stored numbers and the sampled y-values into
consideration. After bounding the statistical distances between the consecutive
distributions, we apply the triangle inequality to show the main result.

3.2 Parameter Selection

We now show how to choose t, n and ω such that the statistical distance of our
distribution and the discrete Gaussian distribution is below 2−100 for σ = 10. We
choose t to be the smallest positive integer such that t exp((1 − t2)/2) < 2−101,
which is t = 13. Furthermore, we choose ω = n + 1 and obtain 2−ω+1 + 2−n =
2−n+1. We can now find an n such that the second addend of inequality (1) is
bounded by 2−101. Since this calculation is a little bit complex, we try to get a
feeling for the expected result first. Since t was chosen such that the probability
of sampling an element in the tail is extremely small, we obtain

ρσ(B+) +
1
2

∩ ρσ(B+) +
1
2

∩ ρσ(Z+
0) ∩

∫ ∗

0

ρσ(x)dx = σ

√
π

2

and expect

2−n+1

∣
∣B+

0

∣
∣

ρσ(B+)
∩ 2−n+1 tσ

σ
√

π/2
∩ 2−n+1t ∩ 2−n+5.

The smallest n satisfying 5 − n √ −101 is n = 106. An exact calculation shows
indeed that n = 106 suffices.
2 The full version is available at http://eprint.iacr.org/2013/510.pdf.

http://eprint.iacr.org/2013/510.pdf

410 J. Buchmann et al.

4 Experiments and Results

In this section we discuss the performance of our implementation of the discrete
Ziggurat algorithm. We first describe the experiments we performed to test the
efficiency, then present their results and analyze the gathered data. Furthermore,
we compare our sampler to implementations of existing samplers for discrete
Gaussians.

4.1 Environment and Setup

The experiments were carried out on a Sun XFire 4400 server with 16 Quad-Core
AMD Opteron 8356 CPUs running at 2.3 GHz (we only used one CPU), having
in total 64GB of RAM and running a 64 bit Debian 7.1. All implementations
use the Number Theory Library (NTL, cf. [Sho]) with precision n = 106 bits in
consistency to our choice of parameters in Sect. 3.2 to assure a statistical distance
for Ziggurat of at most 2−100. Furthermore, we used the tailcut t = 13 and the
discrete Gaussian parameters σ ∈ {10, 32, 1000, 1.6 · 105}. The value σ = 32
maintains the worst-to-average-case reduction [Reg05] in several schemes for a
certain parameter set, and the rather large value σ = 1.6·105 is chosen according
to Galbraith and Dwarakanath [GD12]. The other two values σ = 10, 1000 were
chosen arbitrarily inbetween and at the lower end to allow a better comparison.

We queried each algorithm iteratively 1 million times to output a single sam-
ple per call. These experiments were applied to the discrete Ziggurat with the

Fig. 3. Results for inverse CDF, rejection sampling, Knuth-Yao, and discrete Ziggurat
with and without optimization for parameters σ = 10, 32, 1000, 1.6 · 105, respectively.

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 411

optimization using the straight line s (ZigguratO), discrete Ziggurat without
optimization (Ziggurat), inverse CDF (invCDF), rejection sampling with pre-
computed lookup-table (rejSam), and Knuth-Yao (KY). Furthermore we tested
both Ziggurat algorithms with a precomputed lookup-table for the support B+

0

(ZigguratOP and ZigguratP, respectively).
For each algorithm we measured the running time using the (Linux-internal)

function clock gettime with clock CLOCK PROCESS CPUTIME ID. In order to have
non-distorted results we excluded all pre- and post-computations (e.g. setting
up lookup-tables) from the measurements. Regarding the memory, we did not
perform per-runtime analyses, but computed the amount of memory by adding
up the number of fixed variables in regard to their types in NTL. For our choice
of parameters, in Ziggurat(O) the values on the x-axis need 8 bytes and on the
y-axis 24 bytes of memory. With m rectangles the total amount of memory is
thus 32(m+2) bytes (including σ, t, ω,m). For both invCDF and rejSam we need
to store a lookup-table of tσ values à 16 bytes, resulting in 2080 bytes for σ = 10.
The same amount of memory is used by Ziggurat(O) with m = 63 rectangles.
The size of Knuth-Yao is approximated by (#intermediates + #leaves)/2 bits,
where #intermediates = n · 2∅log log(n·tσ)⊆ and #leaves = n · 2∅log log(tσ)⊆ for
precision n = 106 bits as above.

4.2 Results

Figure 3 shows results for inverse CDF, rejection sampling, Knuth-Yao, and
discrete Ziggurat with and without optimizations for different numbers of
rectangles. It shows four different graphs for different values of σ. For small
values of σ, the inverse CDF method outperforms both discrete Ziggurat and
rejection sampling for the same fixed amount of memory. For example, our imple-
mentation invCDF samples about 1.37 million samples per second for σ = 32.
On the other hand, rejection sampling is quite slow due to a large rejection area.
Even with a precomputed lookup-table, rejSam only achieves about 327,000 sam-
ples per second, which is a factor 4.2 slower than invCDF. The näıve approach
without lookup-table solely achieves 2,500 samples per second, being a factor
558 slower than invCDF. For the same amount of memory, ZigguratO achieves
an overall number of about 753,000 samples per second, while Ziggurat outputs
718,000 samples per second. Compared to the other two methods, Ziggurat is
1.91 times slower than invCDF and a factor 2.19 faster than rejSam. Our imple-
mentation of Knuth-Yao outperforms all the other methods by at least a factor
of 3.53, outputting 4.85 million samples per second. This comes at the cost of
nearly doubled memory usage.

In the extreme case σ = 1.6 ·105, the fastest instantiation of Ziggurat outputs
1.13 million samples per second with a memory usage of 524 KB. Inverse CDF
creates 281,000 samples per second while using 33.55 MB, thus being about a
factor 4 slower than Ziggurat. For rejSam the situation is even worse: Using the
same amount of memory as invCDF, it only outputs 185,000 samples per second
– a factor 6.1 slower than Ziggurat. The Knuth-Yao algorithm still performs

412 J. Buchmann et al.

better than Ziggurat, but only by 4.26 %. On the other hand, KY needs more
than 424 times the memory storage of Ziggurat. Concluding we state that for
larger values of σ the Ziggurat algorithm beats both inverse CDF and rejection
sampling. Compared to Knuth-Yao, Ziggurat achieves almost the same speed
but reduces the memory consumption by a factor of more than 400.

Figure 3 shows that we can beat invCDF in terms of speed and compete
with Knuth-Yao. The reason for this is the simplicity of the algorithm. If many
rectangles are stored, the rejection-probability gets very small. Likewise, the
probability to sample an x in a right rectangle Rr

i gets very small. Therefore,
the algorithm only samples a rectangle and afterwards samples a value within
this rectangle, which can be done very fast.

As one can furthermore see in Fig. 3, the discrete Ziggurat algorithm shows
a large flexibility in regard to the speed-memory trade-off. For a small amount
of memory (i.e. number of rectangles) it is quite slow, e.g. for σ = 32 and 8
rectangles it obtains about 57,000 samples per second. For increasing memory
allocation the speed of Ziggurat(O) increases. This statement holds for all values
of σ we tested. As can be seen by the graphs, the speed of Ziggurat decreases for
increasing number of rectangles. This was first surprising to us. Further analysis
showed that this is due to the fact that with increasing number of rectangles
(i.e. amount of allocated memory) the processor cannot keep the partition table
in the fast caches, but has to obtain requested memory addresses from slower
caches on demand. In addition, the large number of rectangles requires more bits
to be sampled in a single step of the algorithm.

The trade-off provided by the Ziggurat-algorithms is indeed a property the
other approaches do not share. InvCDF assigns every possible value to an inter-
val on the y-axis. Consequently, one has to store at least the borders if the
intervals. Decreasing the precision of the borders will decrease the memory con-
sumption, but as well decrease the quality of the sampler. Increasing the precision

600000

800000

1000000

1200000

1400000

ee
d

[s
am

pl
es

/s
]

Z10 Z32 Z1000 Z160000

0

200000

400000

64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216

Sp
e

Memory [B]

Fig. 4. Discrete Ziggurat for different parameters σ (ZX denotes Ziggurat for σ = X).

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 413

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory [B]

exp-fct. obt. Bits sLine other fcts.

(a) ZigguratO

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Memory [B]

exp-fct. obt. Bits other fcts.

(b) Ziggurat

Fig. 5. Time-split of discrete Ziggurat with and without optimization

or storing intermediate values, on the other hand, will not decrease the running
time. The same happens to rejection sampling if the precision of the precom-
puted values is changed. Knuth-Yao stores for every element in the support
the probability to sample this element. Decreasing the precision of the stored
probabilities would (like for invCDF) decrease the quality of the sampler. While
there might be efficient ways to store those values, there is a minimal amount of
space required to store this information. Knuth-Yao as well as invCDF and
rejection sampling therefore only provide a trade-off between quality and speed/
memory consumption.

In Fig. 4 we draw the time-memory trade-off for the Ziggurat algorithm for
different values of σ. One can see that the performance of the Ziggurat algorithm
decreases for larger σ. What is interesting in the graph is that the Ziggurat
algorithm for σ = 10 is slower for a large amount of rectangles than for σ = 32.
This is puzzling as we cannot directly explain the described behaviour. We want
to state that during our experiments we saw quite large fluctuations for several
runs of the algorithm. Maybe this could explain the better performance for
σ = 32 in comparison to σ = 10.

We also compared ZigguratO and Ziggurat in regard to speed.3 The improve-
ment rate increases up to 30 % for a total memory of 320 bytes, then decreases to
around 6 % for 2080 bytes, until finally for 130KB and bigger there is no improve-
ment. Overall, the described behaviour is not surprising since for increased mem-
ory the number of rectangles gets larger, so that the rejection area is very small.
This leads to nearly no evaluations in the right sub-rectangles Rr

i and therefore
to no computation of the straight line s (or even ρσ).

Additionally, we compared ZigguratO to ZigguratOP, which operates with at
least 2176 bytes of memory. ZigguratOP is slower until about 2.5 KB of memory,
but then it beats ZigguratO with a speedup of up to 40 %, until for memory larger
than 262 KB there seems to be no speedup at all. This behaviour is reasonable
since the lookup-table requires more storage, but simultaneously affects the speed
due to replacing ρσ by table-lookups.

At last, we give insights on the time-split for our implementations Ziggu-
rat and ZigguratO. We used the tool suite Valgrind with the tool Callgrind
3 For additional Figures see Appendix A.2.

414 J. Buchmann et al.

to obtain the measurements and analyzed them using the Callee Graph in the
Callgrind-GUI KCachegrind. Figure 5 shows the percentages for both algo-
rithms. We chose the most interesting sub-routines, i.e. the exponential function
(called inside ρ̄σ in Rr

i), the generation of random bits, the computation of the
straight line s (in ZigguratO), and ‘other’ sub-routines. One can see that for a
small amount of memory the computation of the exponential function takes most
part of the running time, e.g. for 104 bytes (two rectangles) its computation con-
sumes 80–90 % of the total running time. As the memory increases, the rejection
area gets smaller, i.e. the percentage of the right sub-rectangles Rr

i compared
to their super-rectangles Ri. Thus, the number of integers sampled inside the
Rr

i ’s decreases. Additionally, the exponential function has to be called less often.
Nevertheless, the graphs show that the use of the straight line s decreases the
use of the exponential function (or call to ρ̄σ) in ZigguratO in comparison to
Ziggurat considerably, while at the same time the computational complexity of
s is not high (at most 6.77 %).

A Appendix

In this Appendix we present the pseudocode for the discrete Ziggurat algorithm
and give additional Figures in regard to our experimental results.

A.1 Pseudocode for Discrete Ziggurat

In Fig. 6 we present the pseudocode for our implementation of the discrete Zig-
gurat algorithm of Sect. 2. In particular, we give the pseudocode for ZigguratO.
From this, one obtains pseudocode for Ziggurat by removing lines 11–17, 19
and 20.

A.2 Additional Figures Regarding Results

In Fig. 7 we present the rate of improvement of Ziggurat with optimization (Zig-
guratO) over Ziggurat without the straight line approach. For a small amount of
memory, the improvement using the straight line approach is quite good (around
20–30 % for memory usage between 128 and 576 bytes), while for larger mem-
ory, i.e. higher number of rectangles, the improvement vanishes due to nearly no
rejection area.

Figure 8 shows the speed of ZigguratO and its corresponding variant Zig-
guratOP with precomputed lookup-table. ZigguratOP can perform only with
memory larger or equal to 2176 bytes due to the size of the lookup-table. Thus,
given a small amount of memory, it is not possible to apply ZigguratOP. But
for available memory larger than 2.5 KB ZigguratOP outperforms ZigguratO
up to 40 %.

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 415

Algorithm 1: ZigguratO
Input: m, σ, ∈x1← , . . . , ∈xm←, y0, y1, . . . , ym, ω
Output: number distributed according to a discrete Gaussian distribution

1 while true do

2 i
$∪ {1, . . . , m}, s

$∪ {−1, 1}, x
$∪ {0, . . . , ∈xi←};

// choose rectangle, sign and value

3 if 0 < x ⊕ ∈xi−1← then return sx;
4 else
5 if x = 0 then

6 b
$∪ {0, 1};

7 if b = 0 then return sx;
8 else continue;

9 else
// in rejection area Rr

i now

10 y∈ $∪ {0, . . . , 2ω − 1}, y = y∈ · (yi−1 − yi);
11 if ∈xi← + 1 ⊕ σ then

// in concave-down case

12 if
y ⊕ 2ω · sLine(∈xi−1← , ∈xi← , yi−1, yi; x) ◦ y ⊕ 2ω · (ρσ(x) − yi)
then return sx;

13 else continue;

14 else if σ ⊕ ∈xi−1← then
// in concave-up case

15 if
y ⊆ 2ω ·sLine(∈xi−1← , ∈xi← , yi−1, yi; x−1)◦y > 2ω ·(ρσ(x)−yi)
then continue;

16 else return sx;

17 else
18 if y ⊕ 2ω · (ρσ(x) − yi) then return sx;
19 else continue;

20 end

21 end

22 end

23 end

Algorithm 2: sLine(�xi−1→ , �xi→ , yi−1, yi;x)
1 if ∈xi← = ∈xi−1← then return −1;

2 Set ŷi = yi and ŷi−1 =

{
yi−1 i > 1

1 i = 1

3 return
ŷi − ŷi−1

∈xi← − ∈xi−1← · (x − ∈xi←)

Fig. 6. The discrete Ziggurat algorithm with optimization (ZigguratO)

416 J. Buchmann et al.

-5

0

5

10

15

20

25

30

35

64 256 1024 4096 16384 65536 262144

Im
pr

ov
em

en
t [

%
]

Memory [B]

Fig. 7. Improvement rate of ZigguratO over Ziggurat

0

200000

400000

600000

800000

1000000

1200000

1400000

64 256 1024 4096 16384 65536 262144

Sp
ee

d
[n

o/
s]

Memory [B]

ZigguratO ZigguratOP

Fig. 8. Comparison of ZigguratO and ZigguratOP

References

[AGHS12] Agrawal, S., Gentry, C., Halevi, S., Sahai, A:. Discrete Gaussian left-
over hash lemma over infinite domains. Cryptology ePrint Archive, Report
2012/714 (2012). http://eprint.iacr.org/

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference, ITCS ’12, pp. 309–325.
ACM, New York (2012)

http://eprint.iacr.org/

Discrete Ziggurat: A Time-Memory Trade-Off for Sampling 417

[DN12] Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy
floating-point arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 415–432. Springer, Heidelberg (2012)

[GD12] Galbraith, S.D., Dwarakanath, N.C.: Efficient sampling from discrete
Gaussians for lattice-based cryptography on a constrained device. Preprint
(2012)

[GGH12] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. Cryptology ePrint Archive, Report 2012/610 (2012). http://eprint.
iacr.org/

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, C.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (ed.)
40th ACM STOC Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, 17–20 May 2008, pp. 197–206. ACM
Press (2008)

[LP11] Lindner, R., Peikert, Ch.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–
339. Springer, Heidelberg (2011)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–
755. Springer, Heidelberg (2012)

[MT00] Marsaglia, G., Tsang, W.W.: The Ziggurat method for generating random
variables. J. Stat. Softw. 5(8), 1–7, 10 (2000)

[Pei10] Peikert, Ch.: An efficient and parallel Gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium
on Theory of Computing, STOC ’05, pp. 84–93. ACM, New York (2005)

[Sho] Shoup, V.: Number Theory Library (NTL) for C++. http://www.shoup.
net/ntl/

[TLLV07] Thomas, D.B., Luk, W., Leong, P.H.W.: Gaussian random number gener-
ators. ACM Comput. Surv. 39(4), 11:1–11:38 (2007)

[WHCB13] Weiden, P., Hülsing, A., Cabarcas, D., Buchmann, J.: Instantiating treeless
signature schemes. Cryptology ePrint Archive, Report 2013/065 (2013).
http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
http://eprint.iacr.org/

Elliptic Curves, Pairings and RSA

A High-Speed Elliptic Curve Cryptographic
Processor for Generic Curves over GF(p)

Yuan Ma1,2(B), Zongbin Liu1, Wuqiong Pan1,2, and Jiwu Jing1

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
{yma,zbliu,wqpan,jing}@lois.cn

Abstract. Elliptic curve cryptography (ECC) is preferred for high-
speed applications due to the lower computational complexity compared
with other public-key cryptographic schemes. As the basic arithmetic, the
modular multiplication is the most time-consuming operation in public-
key cryptosystems. The existing high-radix Montgomery multipliers per-
formed a single Montgomery multiplication either in approximately 2n
clock cycles, or approximately n cycles but with a very low frequency,
where n is the number of words. In this paper, we first design a novel
Montgomery multiplier by combining a quotient pipelining Montgomery
multiplication algorithm with a parallel array design. The parallel design
with one-way carry propagation can determine the quotients in one clock
cycle, thus one Montgomery multiplication can be completed in approx-
imately n clock cycles. Meanwhile, by the quotient pipelining technique
applied in digital signal processing (DSP) blocks, our multiplier works
in a high frequency. We also implement an ECC processor for generic
curves over GF(p) using the novel multiplier on FPGAs. To the best
of our knowledge, our processor is the fastest among the existing ECC
implementations over GF(p).

Keywords: FPGA · Montgomery multiplier · DSP · High-speed · ECC

1 Introduction

Elliptic curve cryptography has captured more and more attention since the
introduction by Koblitz [8] and Miller [12] in 1985. Compared with RSA or dis-
crete logarithm schemes over finite fields, ECC uses a much shorter key to achieve
an equivalent level of security. Therefore, ECC processors are preferred for high-
speed applications owing to the lower computational complexity and other nice
properties such as less storage and power consumption. Hardware accelerators

This work is supported by National Natural Science Foundation of China grant
70890084/G021102 and 61003274, Strategy Pilot Project of Chinese Academy of Sci-
ences sub-project XDA06010702, and National High Technology Research and Devel-
opment Program of China (863 Program, No. 2013AA01A214 and 2012AA013104).

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 421–437, 2014.
DOI: 10.1007/978-3-662-43414-7 21, c∞ Springer-Verlag Berlin Heidelberg 2014

422 Y. Ma et al.

are the most appropriate solution for the high-performance implementations with
acceptable resource and power consumption. Among them, field-programmable
gate arrays (FPGAs) are well-suited for this application due to their reconfig-
urability and versatility.

Point multiplication dominates the overall performance of the elliptic curve
cryptographic processors. Efficient implementations of point multiplication can
be separated into three distinct layers [6]: the finite field arithmetic, the elliptic
curve point addition and doubling and the scalar multiplication. The fundamen-
tal finite field arithmetic is the basis of all the others. Finite field arithmetic over
GF(p) consists of modular multiplications, modular additions/subtractions and
modular inversions. By choosing an alternative representation, called the projec-
tive representation, for the coordinates of the points, the time-consuming finite
field inversions can be eliminated almost completely. This leaves the modular
multiplication to be the most critical operation in ECC implementations over
GF(p). One of the widely used algorithms for efficient modular multiplications
is the Montgomery algorithm which was proposed by Peter L. Montgomery [16]
in 1985.

Hardware implementations of the Montgomery algorithm have been studied
for several decades. From the perspective of the radix, the Montgomery multipli-
cation implementations can be divided into two categories: radix-2 based [7,21]
and high-radix based [1,2,9,11,17,19,20,22,23]. Compared with the former one,
the latter, which can significantly reduce the required clock cycles, are preferred
for high-speed applications.

For high-radix Montgomery multiplication, the determination of quotients is
critical for speeding up the modular multiplication. For simplifying the quotient
calculation, Walter et al. [3,23] presented a method that shifted up of modulus
and multiplicand, and proposed a systolic array architecture. Following the sim-
ilar ideas, Orup presented an alternative to systolic architecture [18], to perform
high-radix modular multiplication. He introduced a rewritten high-radix Mont-
gomery algorithm with quotient pipelining and gave an example of a non-systolic
(or parallel) architecture, but the design is characterized by low frequency due to
global broadcast signals. In order to improve the frequency, DSP blocks widely
dedicated in modern FPGAs have been employed for high-speed modular mul-
tiplications since Suzuki’s work [19] was presented. However, as a summary, the
existing high-radix Montgomery multipliers perform a single Montgomery mul-
tiplication for n-word multiplicand either in approximately 2n clock cycles, or
approximately n cycles but with a low frequency.

To design a high-speed ECC processor, our primary goal is to propose a new
Montgomery multiplication architecture which is able to simultaneously process
one Montgomery multiplication within approximately n clock cycles and improve
the working frequency to a high level.

Key Insights and Techniques. One key insight is that the parallel array archi-
tecture with one-way carry propagation can efficiently weaken the data depen-
dency for calculating quotients, yielding that the quotients can be determined

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 423

in a single clock cycle. Another key insight is that a high working frequency can
be achieved by employing quotient pipelining inside DSP blocks. Based on these
insights, our Montgomery multiplication design is centered on the novel tech-
niques: combining the parallel array design and the quotient pipelining inside
DSP blocks.

We also implement an ECC processor for generic curves over GF(p) using
the novel multiplier on FPGAs. Due to the pipeline characteristic of the mul-
tiplier, we reschedule the operations in elliptic curve arithmetic by overlapping
successive Montgomery multiplications to further reduce the number of opera-
tion cycles. Additionally, side-channel analysis (SCA) resistance is considered in
our design. Experimental results indicate that our ECC processor can perform
a 256-bit point multiplication in 0.38 ms at 291 MHz on Xilinx Virtex-5 FPGA.

Our Contributions. In summary, the main contributions of this work are as
follows.

– We develop a novel architecture for Montgomery multiplication. As far as we
know, it is the first Montgomery multiplier that combining the parallel array
design and the quotient pipelining using DSP blocks.

– We design and implement our ECC processor on modern FPGAs using the
novel Montgomery multiplier. To the best of our knowledge, our ECC proces-
sor is the fastest among the existing hardware implementations over GF(p).

Structure. The rest of this paper is organized as follows. Section 2 presents the
related work for high-speed ECC implementations and high-radix Montgomery
multiplications. Section 3 describes a processing method for pipelined imple-
mentation, and a high-speed architecture is proposed in Sect. 4. Section 5 gives
implementation results and detailed comparisons with other designs. Section 6
concludes the paper.

2 Related Work

2.1 High-Speed ECC Implementations over GF(p)

Among the high-speed ECC hardware implementations over GF(p), the archi-
tectures in [5] and [4] are the fastest two. For a 256-bit point multiplication they
reached latency of 0.49 ms and 0.68 ms in modern FPGAs Virtex-4 and Stratix
II, respectively. The architectures in [5] are designed for NIST primes using fast
reduction. By forcing the DSP blocks to run at their maximum frequency (487
MHz), the architectures reach a very low latency for one point multiplication.
Nevertheless, due to the characteristics of dual clock and the complex control
inside DSP blocks, the architecture can be only implemented in FPGA plat-
forms. Furthermore, due to the restriction on primes, the application scenario of
[5] is limited in NIST prime fields. For generic curves over GF(p), [4] combines
residue number systems (RNS) and Montgomery reduction for ECC implemen-
tation. The design achieves 6-stage parallelism and high frequency with a large

424 Y. Ma et al.

number of DSP blocks, resulting in the fastest ECC implementation for generic
curves. In addition, the design in [4] is resistant to SCA.

As far as we know, the fastest ECC implementation based on Montgomery
multiplication was presented in [11], which was much slower than the above two
designs. The main reason is that the frequency is driven down to a low level
although the number of cycles for a single multiplication is approximately n.
In an earlier FPGA device Virtex-2 Pro, the latency for a 256-bit point mul-
tiplication is 2.27 ms without the SCA resistance, and degrades to 2.35 ms to
resist SCA.

2.2 High-Radix Montgomery Multiplication

Up to now, for speeding up high-radix Montgomery multiplications, a wealth of
methods have been proposed either to reduce the number of processing cycles
or to shorten the critical path in the implementations.

The systolic array architecture seems to be the best solution for modular mul-
tiplications with very long integers. Eldridge and Walter performed a shift up of
the multiplicand to speed up modular multiplication [3], and Walter designed a
systolic array architecture with a throughput of one modular multiplication every
clock cycle and a latency of 2n + 2 cycles for n-word multiplicands [23]. Suzuki
introduced a Montgomery multiplication architecture based on DSP48, which
is a dedicated DSP unit in modern FPGAs [19]. In order to achieve scalability
and high performance, complex control signals and dual clocks were involved
in the design. However, the average number of processing cycles per multipli-
cation are approximately 2n at least. In fact, this is a common barrier in the
high-radix Montgomery algorithm implementations: the quotient is hard to gen-
erate in a single clock cycle. This barrier also exists in other systolic high-radix
designs [9,22].

On the contrary, some non-systolic array architectures were proposed for
speeding up the process of quotient determination, but the clock frequency is a
concern. Orup introduced a rewritten high-radix Montgomery algorithm with
quotient pipelining and gave an example of a non-systolic architecture [18].
Another high-speed parallel design was proposed by Mentens [11], where the
multiplication result was written in a special carry-save form to shorten the long
computational path. The approach was able to process a single n-word Mont-
gomery multiplication in approximately n clock cycles. But the maximum fre-
quency was reduced to a very low level, because too many arithmetic operations
have to be completed within one clock cycle. Similar drawbacks in frequency can
also be found in [2,17].

3 Processing Method

In this section, we propose a processing method for pipelined implementation
by employing DSP blocks.

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 425

3.1 Pipelined Montgomery Algorithm

Montgomery multiplication [16] is a method for performing modular multiplica-
tion without the need to perform division by the modulus. A high-radix version
of Montgomery’s algorithm with quotient pipelining [18] is given as Algorithm 1.
The algorithm provides a way to apply pipelining techniques in Montgomery
modular multiplication to shorten the critical path.

Algorithm 1. Modular Multiplication with Quotient Pipelining [18]
Input:

A modulus M > 2 with gcd(M, 2) = 1 and positive integers k,n such that
4M̃ < 2kn = R, where M̃ is given by M̃ = (M̄ mod 2k(d+1))M and integer d ∈ 0
is a delay parameter.
Integer R−1, where 2knR−1 mod M = 1
Integer M̄, M ∼, where (−MM̄) mod 2k(d+1) = 1, M ∼ = (M̃ + 1) div 2k(d+1)

Integer multiplicand A, where 0 ← A ← 2M̃
Integer multiplier B =

∑n+d
i=0 (2k)ibi, where digit bi ∪ {0, 1, . . . , 2k − 1} for 0 ← i <

n, bi = 0 for i ∈ n and 0 ← B ← 2M̃ .
Output:

Integer Sn+d+2 where Sn+d+2 ⊕ ABR−1 (mod M) and 0 ← Sn+d+2 < 2M̃
1: S0 = 0; q−d = 0; q−d+1 = 0; . . . ; q−1 = 0;
2: for i = 0 to n + d − 1 do
3: qi = Si mod 2k;
4: Si+1 = Si div 2k + qi−dM

∼ + biA;
5: end for
6: Sn+d+2 = 2kdSn+d+1 +

∑d+1
j=0 qn+j+12

kj

The calculation of the right qi is crucial for Montgomery multiplication, and
it is the most time-consuming operation for hardware implementations. In order
to improve the maximum frequency, a straightforward method is to divide the
computational path into α stages for pipelining. The processing clock cycles,
however, increase by a factor of α, since qi is generated every α clock cycles. That
is to say, the pipeline does not work due to data dependency. The main idea of
Algorithm 1 is using the preset values q−d = 0, q−d+1 = 0, . . . , q−1 = 0 to replace
q1 to start the pipeline in the first d clock cycles. Then, in the (d + 1)th cycle,
the right value q1 is generated and fed into the calculation of the next round.
After that, one qi is generated per clock cycle in pipelining mode. Compared to
the traditional Montgomery algorithm, the cost of Algorithm 1 is a few extra
iteration cycles, additional pre-processing and a wider range of the final result.

3.2 DSP Blocks in FPGAs

Dedicated multiplier units in older FPGAs have been adopted in the high-radix
Montgomery multiplication implementations for years. In modern FPGAs, such
as Xilinx Virtex-4 and later FPGAs, instead of traditional multiplier units, arith-
metic hardcore accelerators - DSP blocks have been embedded. DSP blocks can

426 Y. Ma et al.

A

B

C

PCIN

P

Fig. 1. Generic structure of DSP blocks in modern FPGAs

be programmed to perform multiplication, addition, and subtraction of integers
in a more flexible and advanced fashion.

Figure 1 shows the generic DSP block structure in modern FPGAs. By using
different data paths, DSP blocks can operate on external inputs A,B,C as well
as on feedback values from P or results PCIN from a neighboring DSP block.
Notice that all the registers, labeled in gray in Figure 1, can be added or bypassed
to control the pipeline stages, which is helpful to implement the pipelined Mont-
gomery algorithm. Here, for the sake of the brevity and portability of the design,
we do not engage dual clock and complex control signals like [5,19] which force
DSP blocks to work in the maximum frequency.

3.3 Processing Method for Pipelined Implementation

According to the features of DSP resources, the processing method for pipelined
implementation is presented in Algorithm 2. From Algorithm 1, we observe that
M ∈ is a pre-calculated integer, and the bit length m of M ∈ =

∑m−1
i=0 (2k)im∈

i

equals that of modulus M , and the last statement in Algorithm 1 is just a
left shift of Sn+d+1 where the d last quotient digits are shifted in from the
right. Here, the radix is set to 216 and the delay parameter d = 3, yielding
that n ∈ m + d + 2 = m + 5. The remaining inputs appearing in Algorithm 1
are omitted.

Now we explain the consistency between Algorithms 1 and 2. There are three
phases in Algorithm 2: Phase 0 for initialization, Phase 1 for iteration and
Phase 2 for the final addition. The initialization should be executed before each
multiplication begins. In Phase 1, a four-stage pipeline is introduced in order to
utilize the DSP blocks, so the total of the surrounding loops becomes n+6 from
n + 3. The inner loop from 0 to n − 1 represents the operations of n Processing
Elements (PEs). In the pipeline, referring to Algorithm 1, we can see that Stage
1 to Stage 3 are used to calculate wi = qidM

∈ + biA, and Stage 4 is used to
calculate (Si mod 2k + wi). Here, (Si mod 2k) is divided into two parts: c(i+3,j)

inside the PE itself and s(i+3,j+1) from the neighboring higher PE. The delay

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 427

Algorithm 2. Processing Method for Pipelined Implementation
Input:

radix 2k = 216, delay parameter d = 3
M ∼ =

∑m−1
i=0 (2k)im∼

i , A =
∑n−1

i=0 (2k)iai, B =
∑n+d

i=0 (2k)ibi
Output:

Integer Sn+5 where Sn+5 ⊕ ABR−1 (mod M) and 0 ← Sn+5 < 2M̃
/* Phase 0 : Initialization */

1: for j = 0 to n − 1 do
2: u(0,j) = 32∼b0, v(0,j) = 32∼b0;
3: w(0,j) = 33∼b0;
4: s(0,j) = 16∼b0, c(0,j) = 17∼b0;
5: end for

/* Phase 1 */
6: for i = 0 to n + 6 do
7: qi−3 = s(i,0);
8: for j = 0 to n − 1 do
9: Stage 1: u(i+1,j) = qi−3m

∼
j ;

10: Stage 2: v(i+1,j) = ajbi;
11: Stage 3: w(i+1,j) = u(i,j) + v(i,j);
12: Stage 4: {c(i+1,j), s(i+1,j)} = w(i,j) + c(i,j) + s(i,j+1) ;
13: end for
14: end for

/* Phase 2 */
15: Sn+4 =

∑n−4
j=0 (216)j{c(n+7,j), s(n+7,j)};

16: Sn+5 = {Sn+4, qn+3, qn+2, qn+1};

is caused by the pipeline. In Stage 4, Si is represented by s(i+3,j) and c(i+3,j)

in a redundant form, where s(i+3,j) represents the lower k bits and c(i+3,j) the
k + 1 carry bits. Note that the carry bits from lower PEs are not transferred to
higher PEs, because this interconnection would increase the data dependency for
calculating qi implying that qi cannot be generated per clock cycle. Therefore,
except for qi−3, the transfer of s(i,j+1) in Stage 4 is the only interconnection
among the PEs, ensuring that qi−3 can be generated per cycle. The carry bits
from lower PEs to higher PEs which are saved in c(i,j) are processed in Phase
2. In brief, the goal of Phase 1 is to generate the right quotient per clock cycle
for running the iteration regardless of the representation of Si, while by simple
additions Phase 2 transforms the redundant representation to non-redundant
representation of the final value Sn+4. The detailed hardware architecture is
presented in the next section.

4 Proposed Architecture

4.1 Montgomery Multiplier

Processing Element. The Processing Elements, each of which processes k-bit
block data, form the modular multiplication array. As the input A ∈ 2M̃ , n PEs
are needed to compose the array. Figure 2 provides the structure of the jth PE.

428 Y. Ma et al.

aj

bi

qi-d

m j

C
S
A

s(i,j+1)

2k

2k

2k+1 k+1

k

k+1

k

k

k

k

k

u(i,j)

v(i,j) w(i,j)

s(i,j)
c(i,j)

Fig. 2. The structure of the jth PE

In the first three pipeline stages, the arithmetic operations qi−dM
∈ + biA,

are located in the two DSP blocks named DSP1 and DSP2. In order to achieve
high frequency, two stage registers are inserted in DSP2 which calculates the
multiplication of qi−d and m∈

j . Accordingly, another stage of registers are added
in DSP1 in order to wait for the multiplication result u(i,j) from DSP2. The
addition of u(i,j) and v(i,j) is performed by DSP1 as shown in Fig. 2. In the
fourth stage, the three-number addition w(i,j) + c(i,j) + s(i,j+1) is performed by
using the carry-save adder (CSA). In FPGAs, CSA can be implemented by one-
stage look-up tables (LUTs) and one carry propagate adder (CPA). Because
the computational path between the DSP registers is shorter than the CSA, the
critical path only includes three-number addition, i.e. CSA. Therefore, in this
way, the PE can work in a high frequency due to the very short critical path.

Parallel PE Array. n PEs named PE0 to PEn−1 have been connected to form
a parallel array which performs Phase 1 in Algorithm 2, as shown in Fig. 3.
The quotient is generated from PE0 and fed to the following PEs. Especially, in
PEm to PEn−1, DSP2 and qi−d are no more required since m∈

j equals to zero for
these PEs. The PE outputs c(i,j) are omitted in Fig. 3, as they only need to be
outputted when the iteration in Phase 1 finishes. Unlike the high-radix systolic
array [9] and the design in [19], the PE array works in parallel for the iteration,
resulting in the consumed clock cycles for transferring the values from lower PEs
to higer PEs are saved.

Now we analyze the performance of the PE array. According to Algorithm 2,
the number of iteration rounds of Phase 1 is n + 7. Together with the one clock
cycle for initialization, the processing cycles of the PE array are n+8. Regarding
the consumed hardware resources, n + m DSP blocks are required for forming
the PE array.

Although the frequency may decrease due to the global signals and large bus
width, fortunately we find that these factors do not have a serious impact on
the hardware performance, owing to the small bit size (256 or smaller) of the
operands of ECC. The impact has been verified in our experiment as shown
in Sect. 5.1.

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 429

Fig. 3. The structure of the parallel PE array

The outputs of PEs are the redundant representation of the final result Sn+4.
So some addition operations (cf. Phase 2) have to be performed to get the non-
redundant representation before it can be used as input for a new multiplication.
Here we use another circuit module - redundant number adder (RNA) to imple-
ment the operation of Phase 2. Actually, the PE array and RNA that work in
an alternative form can be pipelined for processing independent multiplications
which are inherent in the elliptic curve point calculation algorithms. Therefore,
the average number of processing clock cycles for one multiplication are only
(n + 8) in our ECC processor.

Redundant Number Adder. The outputs of PEs should be added in an
interleaved form to obtain the final result Sn+4 by the RNA. The redundant
number addition process is shown in Algorithm 3. For simplicity we rename
sn+7,j and cn+7,j as sj and cj , respectively. Notice that there is a 1-bit overlap
between cj and cj+1 due to the propagation of the carry bit. Obviously, s0 can be
directly outputted. We rewrite the sj and cj to form three long integers SS,CL
and CH in Algorithm 3, where cj [k−1 : 0] and cj [k] are the lowest k bits and the
highest bit of cj , respectively. Before being stored into the registers for addition,
the three integers are converted to two integers by using CSA within one clock
cycle. Then the addition of the two integers can be performed by a l-bit CPA in
∞ (n−3)k

l √ clock cycles. For balancing the processing cycles and working frequency,
the path delay of l-bit CPA is configured close to the addition of three numbers
in PE. In our design, the width l is set to a value between 3k and 4k.

4.2 ECC Processor Architecture

The architecture of the ECC processor based on our Montgomery modular mul-
tiplier is described in Fig. 4, where the Dual Port RAM is used to store arith-
metic data. By reading a pre-configured program ROM, the Finite State Machine
(FSM) controls the modular multiplier and the modular adder/subtracter
(ModAdd/Sub), as well as the RAM state. Note that the widths of the data
interfaces among the Dual Port RAM and the arithmetic units are all kn bits
due to the parallelism of the multiplier.

430 Y. Ma et al.

Algorithm 3. Redundant number addition
Input:

sj = s(n+7,j), cj = c(n+7,j), j ∪ [0, n − 4]
Output:

S =
∑n−4

j=0 (2k)j{cj , sj}
/*Forming three integers*/

1: SS =
∑n−4

j=1 (2k)jsj

2: CL =
∑n−4

j=0 (2k)jcj [k − 1 : 0]

3: CH =
∑n−4

j=0 (2k)j+1cj [k]
/*CSA*/

4: X = SS ◦ CL ◦ CH
5: C = (SS&CL)|(SS&CH)|(CL&CH)

/*l-bit CPA*/
6: carry = 1∼b0
7: for i = 0 to ⊆ (n−3)k

l
√ − 1 do

8: {carry, Si} = Xi + Ci + carry,
where Si, Xi, Ci represent the ith l-bit block of S, X, C, respectively.

9: end for

Modular Adder/Subtracter. In elliptic curve arithmetic, modular additions
and subtractions are interspersed among the modular multiplication arithmetic.
According to Algorithm 1, for the inputs in the range of [0, 2M̃] the final result
Sn+d+2 will be reduced to the range of [0, 2M̃].

In our design, ModAdd/Sub performs actually straightforward integer addi-
tion/subtraction without modular reduction. As an alternative, the modular
reduction is performed by the Montgomery multiplication with an expanded
R. After a careful observation and scheduling, the results of ModAdd/Sub are
restricted to the range of (0, 8M̃), as shown in Appendix A, where the squaring
is treated as the generic multiplication with two identical multiplicands. The
range of (0, 8M) is determined by the rescheduling of elliptic curve arithmetic.
For example, for calculating 8(x×y) where x, y < 2M̃ , the process is rescheduled
as (4x)×(2y) to narrow the range of the result. In this case, parameter R should
be expanded to R > 64M̃ to guarantee that for inputs in the range of (0, 8M̃)
the result of Montgomery multiplication S still satisfies: S < 2M̃ . The proof is
omitted here.

For A + B mod M̃ , the range of the addition result is (0, 8M̃) due to the
calculation of 4x where x ∈ (0, 2M̃) is an output of the multiplier. Therefore,
the modular addition is simplified to the integer addition A + B, as shown in
Eq. (1). For A−B mod M̃ , the range of the subtrahend B is (0, 4M̃) after specific
scheduling, so 4M̃ should be added to ensure that the result is positive, as shown
in Eq. (2). Especially, for calculating x − (y − z) where x, y, z < 2M̃ , the process
is rescheduled as (x − y) + z → (x − y + 4M̃) + z ∈ (0, 8M̃).

A + B mod M → A + B ∈ (0, 8M̃) (1)
A − B mod M → A − B + 4M̃ ∈ (0, 8M̃) (2)

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 431

Dual
Port

RAM

Modular
Multiplier

Modular
Adder/

Subtracter

IN

Program
ROM

knM
U
X

Recoderkn

kn

kn

Ctrl_RAM

Ctrl_MACtrl_MM

Addr_ROM

FSM

Fig. 4. The architecture of the ECC processor

Point Doubling and Addition. The point doubling and addition are imple-
mented in Jacobian projective coordinates, under which the successive multi-
plications can be performed independently. The process of point doubling and
addition with specific scheduling is presented in Appendix A. In the process, the
dependencies of adjacent multiplications are avoided to fully exploit the mul-
tiplier, and the range of the modular addition/subtraction output satisfies the
required conditions. After the above optimizations, completing one point dou-
bling operation needs the processing cycles of 8 multiplications, and completing
one point addition operation needs the processing cycles of 16 multiplications
and 2 subtractions/additions.

SCA Resistance. Considering the SCA resistance and the efficiency, we com-
bine randomized Jacobian coordinates method and a window method [13] against
differential power analysis (DPA) and simple power analysis (SPA), respectively.
The randomization technique transforms the base point (x, y, 1) of projective
coordinates to (r2x, r3y, r) with a random number r ≡= 0. The window method
in [13] based on a special recoding algorithm makes minimum information leak
in the computation time, and it is efficient under Jacobian coordinates with
a pre-computed table. A more efficient method was presented in [14], and a
security enhanced method, which avoided a fixed table and achieved compar-
ative efficiency, was proposed in [15]. For computing point multiplication, the
window-based method [13] requires 2w−1 + tw point doublings and 2w−1 − 1 + t
point additions, where w is the window size and t is the number of words after
recoding. The pre-computing time has been taken into account, and the base
point is not assumed to be fixed. The pre-computed table with 2w −1 points can
be easily implemented by block RAMs which are abundant in modern FPGAs,
and the cost is acceptable for our design. Note that the randomization technique

432 Y. Ma et al.

causes no impact on the area and little decrease in the speed, as the randomiza-
tion is executed only twice or once [13].

5 Implementation and Comparison

5.1 Hardware Implementation

Our ECC processor for 256-bit curves named ECC-256p is implemented on
Xilinx Virtex-4 (XC4VLX100-12FF1148) and Virtex-5 (XC5LX110T-3FF1136)
FPGA devices. In order to keep the length of the critical path as expected and
simultaneously achieve a high efficiency, the addition width is set to 54 for RNA
and ModAdd/Sub, the path delay of which is shorter than that of three number
addition. Therefore, as expected, the critical path of ECC-256p is the addition
of three 32-bit number in the PE. The Montgomery modular multiplier can com-
plete one operation in n + 14 clock cycles that consists of n + 8 cycles for the
PE array and 6 cycles for the RNA, and the former is the average number of
clock cycles for ECC point calculation. For the window-based algorithm of point
multiplications, the window size w is set to 4, and the maximum t after recoding
is 64 for 256-bit prime fields. In this case, one point multiplication requires 264
doublings and 71 additions at the cost of a pre-computed table with 15 points.

Table 1. Clock cycles for ECC-256p under Jacobian projective coordinates

Operation ECC-256p

MUL 35 (average 29)
ADD/SUB 7

Point Doubling (Jacobian) 232
Point Addition (Jacobian) 484
Inversion (Fermat) 13685

Point Multiplication (Window) 109297

The number of clock cycles for the operations are shown in Table 1, and Post
and Route (PAR) results on Virtex-4 and Virtex-5 are given in Table 2. In our
results, the final inversion at the end of the scalar multiplication is taken into
account. We use Fermats little theorem to compute the inversion. According to
Table 2, ECC-256p can process one point multiplication in 109297 cycles under
250 MHz and 291 MHz frequency, meaning that the operation can be completed
within 0.44 ms and 0.38 ms on Virtex-4 and Virtex-5, respectively. Note that
the amounts of consumed hardware resource are different in the two devices,
since the Virtex-5 resource units, such as slice, LUT and BRAM, have larger
capacity. In particular, each slice in Virtex-5 contains four LUTs and flip-flops,
while the number is two in Virtex-4 slice. Therefore, the total occupied slices are
significantly reduced when the design is implemented on Virtex-5.

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 433

Table 2. PAR results of ECC-256p on Virtex-4 and Virtex-5

Virtex-4 Virtex-5

Slices 4655 1725
LUTs 5740 (4-input) 4177 (6-input)
Flip-flops 4876 4792
DSP blocks 37 37
BRAMs 11 (18 Kb) 10 (36 Kb)

Frequency (Delay) 250 MHz (0.44 ms) 291 MHz (0.38 ms)

5.2 Performance Comparison and Discussion

The comparison results are shown in Table 3, where the first three works support
generic elliptic curves, while the last two only support NIST curves. In addition,
our work and [4,11] are SCA resistant, while the others are not. We have labeled
these differences in Table 3.

As far as we know, the fastest ECC processor for generic curves is [4], which
uses RNS representations to speed up the computation. Substantial hardware
resources (96 DSP blocks and 9177 ALM) in Stratix II FPGA are used for the
implementation. In fact, Stratix II and Virtex-4 are at the same level, since the
process nodes of the two devices are both 90 nm. Assuming that a Stratix II
ALM and a Virtex-4 Slice are equivalent, our processor saves more than half
resources compared with [4]. In the aspect of speed, our design is faster than
[4] by more than 40 % from the perspective of implementation results. However,
note that employing different SCA protections makes the performance quite dif-
ferent. In [4], Montgomery ladder which is a time-hungry technique against SPA
and error-injection attacks was engaged. As the speed is the main concern, in our
design it is not optimal (or even a waste) to adopt those countermeasures such as
indistinguishable point addition formulae and Montgomery ladder, because the
point doubling operation is nearly twice faster than the addition under Jacobian
coordinates. In addition, our design has great advantages in area over [4]. There-
fore, we use the window-based method which is a type of resource-consuming but
efficient countermeasure against SPA. In brief, for generic curves over GF(p), our
work provides an efficient alternative to achieve a higher speed and competitive
security with a much more concise design.

The designs in [10,11] are both based on the classic Montgomery algorithm,
and implemented in earlier FPGAs Virtex-2 Pro, which did not supported DSP
blocks yet. To our best knowledge, the architecture [11] is the fastest among the
implementations based on the Montgomery multiplication for generic curves. In
[11], the multiplication result was written in a special carry-save form to shorten
the long computational path. But the maximum frequency was reduced to a very
low level. As the targeted platform of our design is more advanced than that of
[11], it is necessary to explain that our frequency is higher than [11] by a large
margin from the aspect of the critical path. The critical path of [11] is composed
of one adder, two 16-bit multipliers and some stage LUTs for 6-2 CSA, whereas

434 Y. Ma et al.

Table 3. Hardware performance comparison of this work and other ECC cores

Curve Device Size Frequency Delay SCA res.
(DSP) (MHz) (ms)

Our 256 any Virtex-5 1725 Slices (37 DSPs) 291 0.38 Yes
work 256 any Virtex-4 4655 Slices (37 DSPs) 250 0.44 Yes

[4] 256 any Stratix II 9177 ALM (96 DSPs) 157 0.68 Yes
[11] 256 any Virtex-2 Pro 3529 Slices (36 MULTs) 67 2.35 Yes
[10] 256 any Virtex-2 Pro 15755 Slices (256 MULTs) 39.5 3.84 No
[5] 256 NIST Virtex-4 1715 Slices (32 DSPs) 487 0.49 No
[17] 192 NIST Virtex-E 5708 Slices 40 3 No

the critical path in our design is only one stage LUTs for 3-2 CSA and one 32-bit
adder. As a result, owing to the quotient pipelining technique applied in DSP
blocks, the critical path is shortened significantly in our design.

The architecture described in [5] is the fastest FPGA implementation of
elliptic curve point multiplication over GF(p), but with restrictions on primes.
It computes point multiplication over NIST curves which are widely used and
standardized in practice. It is a dual clock design, and shifts all the field arith-
metic operations into DSP blocks, thus the design occupies a small area and
runs at a high speed (487 MHz) on Virtex-4. Our design extends the applica-
tion to support generic curves at a higher speed, and our architecture is not
limited in FPGA platforms. In fact, our architecture can be easily transferred
to application specific integrated circuits (ASICs) by replacing the multiplier
cores, i.e. DSP blocks with excellent pipelined multiplier IP cores. It will be
more flexible on ASICs to configure the delay parameter and the radix to max-
imize the hardware performance. Furthermore, notice that the drawbacks of
the pipelined Montgomery algorithm, i.e. the wider range and additional itera-
tion cycles mentioned in Sect. 2.1, can be eliminated for commonly used pseudo
Mersenne primes. Taking NIST prime P-256 = 2256 − 2224 + 2192 + 296 − 1 as an
example, the least 96 significant bits are all ‘1’, so the parameter M̄ equals 1 in
Algorithm 1 for k, d satisfying 2k(d+1) ∈ 296 and then M̃ is reduced to M̃ = M .
In this case, the range of pre-computed parameters are corresponding to the
width in the traditional Montgomery algorithm. Therefore, if our architecture is
designed for P-256, the performance will be further improved.

6 Conclusion and Future Work

This paper presents a high-speed elliptic curve cryptographic processor for generic
curves over GF(p) based on our novel Montgomery multiplier. We combine the
quotient pipelining Montgomery multiplication algorithm with our new parallel
array design, resulting in our multiplier completes one single Montgomery multi-
plication in approximately n clock cycles and also works in a high frequency. Also,
employing the multiplier, we implement the ECC processor for scalar multiplica-
tions on modern FPGAs. Experimental results indicate that the design is faster
than other existing ECC implementations over GF(p) on FPGAs. From the com-
parison results, we can see that pipelined Montgomery based scheme is a better

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 435

choice than the classic Montgomery based and RNS based ones in terms of speed
or consumed resources for ECC implementations. In future work, we will imple-
ment the architecture in more advanced FPGAs such as Virtex-6 and Virtex-7,
and transfer it to ASIC platforms.

Acknowledgements. The authors would like to acknowledge the contributions of
Doctor Zhan Wang, Jingqiang Lin, and Chenyang Tu for useful discussions. The authors
also would like to thank Professor Tanja Lange from Technische Universiteit Eindhoven
in the Netherlands for helpful proofreading and comments. Finally, we are grateful to
the anonymous reviewers for their invaluable suggestions and comments to improve the
quality and fairness of this paper.

A Rescheduling of Point Addition and Doubling
in Jacobian Projective Coordinates

Given the Weierstrass equation of an elliptic curve E : y2 = x3 + ax + b defined
over GF(p), the projective point (X : Y : Z), Z ≡= 0 corresponds to the affine

Table 4. Scheduling process of point addition and doubling

Point Addition Point Doubling
Step MUL ADD/SUB MUL ADD/SUB

1 L1 = Z2 × Z2 L1 = Z1 × Z1 L2 = Y1 + Y1

2 L2 = Z1 × Z1 L3 = L2 × L2 L4 = X1 + L1

L5 = X1 − L1

3 λ1 = X1 × L1 L13 = L4 × L5 L6 = X1 + X1

4 λ2 = X2 × L2 λ2 = L3 × L6 λ1 = 3L13

5 L3 = Y1 × Z2 λ3 = λ1 − λ2 L9 = λ1 × λ1 L7 = λ2/2
λ7 = λ1 + λ2 L8 = λ2 + L7

6 L4 = Z1 × Y2 L10 = L3 × L3 L11 = L8 − L9

7 λ4 = L1 × L3 L12 = L11 × λ1 λ3 = L10/2
X3 = L9 − λ2

8 λ5 = L2 × L4 Z3 = L2 × Z1 Y3 = L12 − λ3

9 L5 = Z1 × Z2 λ6 = λ4 − λ5

λ8 = λ4 + λ5

10 L6 = λ3 × λ3

11 L7 = λ6 × λ6 L8 = λ7 + λ7

12 L9 = L6 × L8

13 L10 = λ3 × L6 L11 = L9/2
L12 = L11 + L9

L13 = L7 + L7

14 Z3 = λ3 × L5 X3 = L7 − L11

L15 = L12 − L13

15 L14 = λ8 × L10

16 L16 = L15 × λ6

17 Y3 = L16 − L14

18 Y3 = Y3/2

436 Y. Ma et al.

point (X/Z2, Y/Z3) in Jacobian projective coordinates. Here we assume that
the elliptic curve y2 = x3 + ax + b has a = −3 without much loss of generality.
Given two points P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) in Jacobian coordinates,
sum P3 = P1 +P2. The point addition calculation process for P1 ≡= P2 and point
doubling calculation process for P1 = P2 are scheduled as given in Table 4.

References

1. Blum, T., Paar, C.: High-radix montgomery modular exponentiation on reconfig-
urable hardware. IEEE Trans. Comput. 50(7), 759–764 (2001)

2. Daly, A., Marnane, W.P., Kerins, T., Popovici, E.M.: An FPGA implementation of
a GF(p) ALU for encryption processors. Microprocess. Microsyst. 28(5–6), 253–260
(2004)

3. Eldridge, S.E., Walter, C.D.: Hardware implementation of montgomery’s modular
multiplication algorithm. IEEE Trans. Comput. 42(6), 693–699 (1993)

4. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications
over Fp. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
48–64. Springer, Heidelberg (2010)

5. Güneysu, T., Paar, Ch.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

6. Hankerson, D., Vanstone, S., Menezes, A.J.: Guide to elliptic curve cryptography.
Springer, New York (2004)

7. Huang, M., Gaj, K., Kwon, S., El-Ghazawi, T.: An optimized hardware architecture
for the montgomery multiplication algorithm. In: Cramer, R. (ed.) PKC 2008.
LNCS, vol. 4939, pp. 214–228. Springer, Heidelberg (2008)

8. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
9. McIvor, C., McLoone, M., McCanny, J.V.: High-radix systolic modular multiplica-

tion on reconfigurable hardware. In: Brebner, G.J., Chakraborty, S., Wong, W.F.
(eds) FPT 2005, pp. 13–18. IEEE (2005)

10. McIvor, C.J., McLoone, M., McCanny, J.V.: Hardware elliptic curve cryptographic
processor over GF(p). IEEE Trans. Circ. Syst. I: Regul. Pap. 53(9), 1946–1957
(2006)

11. Mentens, N.: Secure and efficient coprocessor design for cryptographic applications
on FPGAs. Ph.D. thesis, Katholieke Universiteit Leuven (2007)

12. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

13. Möller, B.: Securing elliptic curve point multiplication against side-channel attacks.
In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 324–334.
Springer, Heidelberg (2001)

14. Möller, B.: Securing elliptic curve point multiplication against side-channel attacks,
addendum: Efficiency improvement. http://pdf.aminer.org/000/452/864/securing
elliptic curve point multiplication against side channel attacks.pdf (2001)

15. Möller, B.: Parallelizable elliptic curve point multiplication method with resistance
against side-channel attacks. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS,
vol. 2433, pp. 402–413. Springer, Heidelberg (2002)

16. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

http://pdf.aminer.org/000/452/864/securing_elliptic_curve_point_multiplication_against_side_channel_attacks.pdf
http://pdf.aminer.org/000/452/864/securing_elliptic_curve_point_multiplication_against_side_channel_attacks.pdf

A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves 437

17. Orlando, G., Paar, C.: A scalable GF(p) elliptic curve processor architecture for
programmable hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 348–363. Springer, Heidelberg (2001)

18. Orup, H.: Simplifying quotient determination in high-radix modular multiplication.
In: IEEE Symposium on Computer Arithmetic, pp. 193–199 (1995)

19. Suzuki, D.: How to maximize the potential of FPGA resources for modular expo-
nentiation. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 272–288. Springer, Heidelberg (2007)

20. Tang, S.H., Tsui, K.S., Leong, P.H.W.: Modular exponentiation using parallel mul-
tipliers. In: FPT 2003, pp. 52–59. IEEE (2003)

21. Tenca, A.F., Koç, Ç.K.: A scalable architecture for montgomery multiplication. In:
Koç, Ç.K., Paar, Ch. (eds.) CHES 1999. LNCS, vol. 1717, pp. 94–108. Springer,
Heidelberg (1999)

22. Tenca, A.F., Todorov, G., Koç, Ç.K.: High-radix design of a scalable modular
multiplier. In: Koç, Ç.K., Naccache, D., Paar, Ch. (eds.) CHES 2001. LNCS, vol.
2162, pp. 185–201. Springer, Heidelberg (2001)

23. Walter, C.D.: Systolic modular multiplication. IEEE Trans. Comput. 42(3), 376–
378 (1993)

Exponentiating in Pairing Groups

Joppe W. Bos, Craig Costello(B), and Michael Naehrig

Microsoft Research, Redmond, USA
{jbos,craigco,mnaehrig}@microsoft.com

Abstract. We study exponentiations in pairing groups for the most
common security levels and show that, although the Weierstrass model
is preferable for pairing computation, it can be worthwhile to map to
alternative curve representations for the non-pairing group operations in
protocols.

1 Introduction

At the turn of the century it was shown that elliptic curves can be used to
build powerful cryptographic primitives: bilinear pairings [14,36,49]. Pairings
are used in a large variety of protocols, and even when considering the recent
breakthrough paper which shows how to instantiate multilinear maps using ideal
lattices [26], pairings remain the preferred choice for a bilinear map due to their
superior performance. Algorithms to compute cryptographic pairings involve
computations on elements in all three pairing groups, G1, G2 and GT , but proto-
cols usually require many additional standalone exponentiations in any of these
three groups. In fact, protocols often compute only a single pairing but require
many operations in any or all of G1, G2 and GT [13,28,47]. In this work, we use
such scenarios as a motivation to enhance the performance of group operations
that are not the pairing computation.

Using non-Weierstrass models for elliptic curve group operations can give
rise to significant speedups (cf. [9,10,31,43]). Such alternative models have not
found the same success within pairing computations, since Miller’s algorithm [42]
not only requires group operations, but also relies on the computation of func-
tions with divisors corresponding to these group operations. These functions are
somewhat inherent in the Weierstrass group law, which is why Weierstrass curves
remain faster for the pairings themselves [17]. Nevertheless, this does not mean
that alternative curve models cannot be used to give speedups in the stand-
alone group operations in pairing-based protocols. The purpose of this paper
is to determine which curve models are applicable in the most popular pairing
scenarios, and to report the speedups achieved when employing them. In order
to obtain meaningful results, we have implemented curve arithmetic in different
models that target the 128-, 192- and 256-bit security levels. Specifically, we
have implemented group exponentiations and pairings on BN curves [4] (embed-
ding degree k = 12), KSS curves [38] (k = 18) and BLS curves [3] (k = 12 and
k = 24). We use GLV [25] and GLS [23] decompositions of dimensions 2, 4, 6
and 8 to speed up the scalar multiplication.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 438–455, 2014.
DOI: 10.1007/978-3-662-43414-7 22, c∞ Springer-Verlag Berlin Heidelberg 2014

Exponentiating in Pairing Groups 439

The goal of this work is not to set new software speed records, but to illustrate
the improved performance that is possible from employing different curve models
in the pairing groups G1 and G2. In order to provide meaningful benchmark
results, we have designed our library using recoding techniques [21,29] such that
all code runs in constant-time, i.e. the run-time of the code is independent of
any secret input material. Our implementations use state-of-the-art algorithms
for computations in the various groups [24] and for evaluating the pairing [2].
For any particular curve or security level, we assume that the ratios between
our various benchmark results remain (roughly) invariant when implemented for
different platforms or when the bottleneck arithmetic functions are converted to
assembly. We therefore believe that our table of timings provides implementers
and protocol designers with good insight as to the relative computational expense
of operating in pairing groups versus computing the pairing(s).

2 Preliminaries

A cryptographic pairing e : G1 × G2 ∈ GT is a bilinear map that relates the
three groups G1, G2 and GT , each of prime order r. These groups are defined
as follows. For distinct primes p and r, let k be the smallest positive integer
such that r | pk − 1. Assume that k > 1. For an elliptic curve E/Fp such that
r | #E(Fp), we can choose G1 = E(Fp)[r] to be the order-r subgroup of E(Fp).
We have E[r] ∞ E(Fpk), and G2 can be taken as the (order-r) subgroup of E(Fpk)
of p-eigenvectors of the p-power Frobenius endomorphism on E. Let GT be the
group of r-th roots of unity in F

∈
pk . The embedding degree k is very large (i.e.

k √ r) for general curves, but must be kept small (i.e. k < 50) if computations
in Fpk are to be feasible in practice – this means that so-called pairing-friendly
curves must be constructed in a special way. In Sect. 2.1 we recall the best known
techniques for constructing such curves with embedding degrees that target the
128-, 192- and 256-bit security levels – k is varied to optimally balance the size
of r and the size of Fpk , which respectively determine the complexity of the best
known elliptic curve and finite field discrete logarithm attacks.

2.1 Parameterized Families of Pairing-Friendly Curves with Sextic
Twists

The most suitable pairing-friendly curves for our purposes come from parameter-
ized families, such that the parameters to find a suitable curve E(Fp) can be writ-
ten as univariate polynomials. For the four families we consider, we give below
the polynomials p(x), r(x) and t(x), where t(x) is such that n(x) = p(x)+1−t(x)
is the cardinality of the desired curve, which has r(x) as a factor. All of the curves
found from these constructions have j-invariant zero, which means they can be
written in Weierstrass form as y2 = x3 + b. Instances of these pairing-friendly
families can be found by searching through integer values x of an appropriate
size until we find x = x0 such that p = p(x0) and r = r(x0) are simultaneously

440 J.W. Bos et al.

prime, at which point we can simply test different values for b until the curve
E : y2 = x3 + b has an n-torsion point.

To target the 128-bit security level, we use the BN family [4] (k = 12), for
which

p(x) = 36x4 + 36x3 + 24x2 + 6x + 1, t(x) = 6x2 + 1, r(x) = p(x) + 1 − t(x). (1)

At the 192-bit security level, we consider BLS curves [3] with k = 12, for which

p(x) = (x − 1)2(x4 − x2 + 1)/3 + x, t(x) = x + 1, r(x) = x4 − x2 + 1, (2)

where x ≡ 1 mod 3, and KSS curves [38] with k = 18, which are given by

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21,

t(x) = (x4 + 16x + 7)/7, r(x) = (x6 + 37x3 + 343)/73, (3)

with x ≡ 14 mod 42. At the 256-bit security level, we use curves from the BLS
family [3] with embedding degree k = 24, which have the parametrization

p(x) = (x − 1)2(x8 − x4 + 1)/3 + x, t(x) = x + 1, r(x) = x8 − x4 + 1, (4)

with x ≡ 1 mod 3.
For the above families, which all have k = 2i3j , the best practice to construct

the full extension field Fpk is to use a tower of (intermediate) quadratic and
cubic extensions [5,40]. Since 6 | k, we can always use a sextic twist E∗(Fpk/6)
to represent elements of G2 ∞ E(Fpk)[r] as elements of an isomorphic group
G

∗
2 = E∗(Fpk/6)[r]. This shows that group operations in G2 can be performed

on points with coordinates in an extension field with degree one sixth the size,
which is the best we can do for elliptic curves [50, Proposition X.5.4].

In all cases considered in this work, the most preferable sextic extension from
Fpk/6 = Fp(ξ) to Fpk = Fpk/6(z) is constructed by taking z → Fpk as a root of the
polynomial z6 − ξ, which is irreducible in Fpk/6 [z]. We describe the individual
towers in the four cases as follows: the BN and BLS cases with k = 12 preferably
take p ≡ 3 mod 4, so that Fp2 can be constructed as Fp2 = Fp[u]/(u2 + 1),
and take ξ = u + 1 for the sextic extension to Fp12 . For k = 18 KSS curves,
we prefer that 2 is not a cube in Fp, so that Fp3 can be constructed as Fp2 =
Fp[u]/(u3 +2), before taking ξ = u to extend to Fp18 . For k = 24 BLS curves, we
again prefer to construct Fp2 as Fp2 = Fp[u]/(u2 + 1), on top of which we take
Fp4 = Fp2 [v]/(v2−(u+1)) (it is easily shown that v2−u cannot be irreducible [18,
Proposition 1]), and use ξ = v for the sextic extension. All of these constructions
agree with the towers used in the “speed-record” literature [1,2,18,48].

2.2 The GLV and GLS Algorithms

The GLV [25] and GLS [23] methods both use an efficient endomorphism to
speed up elliptic curve scalar multiplications. The GLV method relies on endo-
morphisms specific to the shape of the curve E that are unrelated to the Frobe-
nius endomorphism. On the other hand, the GLS method works over extension

Exponentiating in Pairing Groups 441

fields where Frobenius becomes non-trivial, so it does not rely on E having a
special shape. However, if E is both defined over an extension field and has a spe-
cial shape, then the two can be combined [23, Sect. 3] to give higher-dimensional
decompositions, which can further enhance performance.

Since in this paper we have E/Fp : y2 = x3 + b and p ≡ 1 mod 3, we can use
the GLV endomorphism φ : (x, y) ≡∈ (ζx, y) in G1 where ζ3 = 1 and ζ → Fp \{1}.
In this case φ satisfies φ2 + φ + 1 in the endomorphism ring End(E) of E, so on
G1 it corresponds to scalar multiplication by λφ, where λ2

φ + λφ + 1 ≡ 0 mod r,
meaning we get a 2-dimensional decomposition in G1. Since G

∗
2 is always defined

over an extension field herein, we can combine the GLV endomorphism above
with the Frobenius map to get higher-dimensional GLS decompositions. The
standard way to do this in the pairing context [24] is to use the untwisting
isomorphism Ψ to move points from G

∗
2 to G2, where the p-power Frobenius

πp can be applied (since E is defined over Fp, while E∗ is not), before using
the twisting isomorphism Ψ−1 to move this result back to G

∗
2. We define ψ as

ψ = Ψ−1 ∼ πp ∼ Ψ , which (even though Ψ and Ψ−1 are defined over Fpk) can be
explicitly described over Fpk/6 . The GLS endomorphism ψ satisfies Φk(ψ) = 0
in End(E∗) [24, Lemma 1], where Φk(·) is the k-th cyclotomic polynomial, so it
corresponds to scalar multiplication by λψ, where Φk(λψ) ≡ 0 mod r, i.e. λψ is
a primitve k-th root of unity modulo r. For the curves with k = 12, we thus
obtain a 4-dimensional decomposition in G

∗
2 ∞ E∗(Fp2); for k = 18 curves, we

get a 6-dimensional decomposition in G
∗
2 ∞ E∗(Fp3); and for k = 24 curves, we

get an 8-dimensional decomposition in G
∗
2 ∞ E∗(Fp4).

To compute the scalar multiple [s]P0, a d = 2 dimensional GLV or d =
ϕ(k) dimensional GLS decomposition starts by computing the d − 1 additional
points Pi = ψi(P0) = ψ(Pi−1) = [λi

ψ]P0, 1 ∩ i ∩ d − 1. One then seeks a
vector (ŝ0, ŝ1) → Z

2 in the “GLV lattice” Lφ that is close to (s, 0) → Z
2, or

(ŝ0, . . . , ŝϕ(k)−1) → Z
ϕ(k) in the “GLS lattice” Lψ that is close to (s, 0, . . . , 0) →

Z
ϕ(k). The bases Bφ and Bψ (for Lφ and Lψ) are given as (see [22, p. 229–230])

Bφ =
(

r 0
−λφ 1

)

; Bψ =

r 0 . . . 0
−λψ 1 . . . 0

...
...

. . .
...

−λd−1
ψ 0 . . . 1

⎧
⎧
⎧
⎨

. (5)

Finding close vectors in these lattices is particularly easy in the case of BLS
k = 12 and k = 24 curves [24, Example 3,4]. For BN curves, we can use the
special routine described by Galbraith and Scott [24, Example 5], which bears
resemblance to the algorithm proposed in [46], which is what we use for the GLS
decomposition on KSS curves.

To obtain the d mini-scalars s0, . . . , sd−1 from the scalar s and the close vec-
tor (ŝ0, . . . , ŝd−1), we compute (s0, . . . sd−1) = (s, 0, . . . , 0)−(ŝ0, . . . , ŝd−1) in Z

d.
We can then compute [s]P0 via the multi-exponentiation

⎩d−1
i=0 [si]Pi. The typi-

cal way to do this is to start by making all of the si positive: we simultaneously

442 J.W. Bos et al.

negate any (si, Pi) pair for which si < 0 (this can be done in a side-channel
resistant way using bitmasks). We then precompute all possible sums

⎩d−1
i=0 [bi]Pi,

for the 2d combinations of bi → {0, 1}, and store them in a lookup table. When
simultaneously processing the j-th bits of the d mini-scalars, this allows us to
update the running value with only one point addition, before performing a single
point doubling. In each case however, this standard approach requires individual
attention for further optimization – this is what we describe in Sect. 3.

We aim to create constant-time programs: implementations which have an
execution time independent of any secret material (e.g. the scalar). This means
that we always execute exactly the same amount of point additions and dupli-
cations independent of the input. In order to achieve this in the setting of scalar
multiplication using the GLV/GLS method, we use the recoding techniques
from [21,29]. This recoding technique not only guarantees that the program
performs a constant number of point operations, but that the recoding itself is
done in constant time as well. Furthermore, an advantage of this method is that
the lookup table size is reduced by a factor of two, since we only store lookup
elements for which the multiple of the first point P0 is odd. Besides reducing the
memory, this reduces the time to create the lookup table.

3 Strategies for GLV in G1 and GLS in G2

This section presents our high-level strategy for 2-GLV on G1, 4-GLS in G2 in the
two k = 12 families, 6-GLS in G2 for the KSS curves with k = 18, and 8-GLS in
G2 for the BLS curves with k = 24. We use the following abbreviations for elliptic
curve operations that we require: DBL – for the doubling of a projective point, ADD
– for the addition between two projective points, MIX – for the addition between
a projective point and an affine point, and AFF – for the addition between two
affine points to give a projective point.

3.1 2-GLV on G1

For the 2-GLV routines we compute the multi-exponentiation [s0]P0 + [s1]P1.
Recoding our mini-scalars and proceeding in the naive way would give a lookup
table consisting of two elements: P0 and P0 + P1. However, the number of point
additions can be further reduced by using a large window size [16] (see [23,24]
for a description in the context of GLV/GLS). Specifically, we can reduce the
number of point additions in the scalar processing phase by a factor of w if
we generate a lookup table of size 22w−1. Since computing an element in the
lookup table costs roughly one addition, one can compute the optimal window
size given the maximum size of the mini-scalars (see Table 3). For 2-GLV in
G1, we found a fixed window size of w = 3 to be optimal in all cases except
BN curves (where we use w = 2 due to the smaller maximum size of the mini-
scalars). In Algorithms 1 and 2 we give the algorithms for computing the 2-GLV

Exponentiating in Pairing Groups 443

Algorithm 1. Generating the lookup table for 2-GLV with window size w = 2
(cost: 6 MIX + 1 AFF + 1 DBL).
Input: P0, P1 ∈ G1.
Output: The 2-GLV lookup table, T , for window size w = 2.

t0 ← DBL(P0), T [0] ← P0, T [1] ← MIX(t0, P0),
T [2] ← AFF(P0, P1), T [3] ← MIX(T [1], P1), T [4] ← MIX(T [2], P1),
T [5] ← MIX(T [3], P1), T [6] ← MIX(T [4], P1), T [7] ← MIX(T [5], P1).

lookup tables using w = 2 and w = 3, respectively. Algorithm 1 outlines how to
compute T [⊆a

2 ∃ + 2 · b] = [a]P0 + [b]P1 for a → {1, 3} and b → {0, 1, 2, 3}, where T
consists of eight elements. Algorithm 2 computes T [⊆a

2 ∃ + 4 · b] = [a]P0 + [b]P1

for a → {1, 3, 5, 7} and b → {0, 1, 2, 3, 4, 5, 6, 7}, where T consists of 32 elements.
For both BLS families and the KSS family, we get a simple GLV scalar

decomposition and obtain the mini-scalars by writing s as a linear function in
λφ. This has the additional advantage that both s0 and s1 are positive. For BN
curves, we use the algorithm from [46] for the decomposition. In this setting, the
mini-scalars can be negative, so we must ensure that they become positive (see
Sect. 2.2) before using Algorithm 1 to generate the lookup table.

3.2 4-GLS on G2 for BN and BLS Curves with k = 12

In the BLS case, we have λψ(x) = x, which means |λψ| √ r1/4, so we get a
4-dimensional decomposition in G2 by writing the scalar 0 ∩ s < r in base |λψ|
as s =

⎩3
i=0 si|λψ|i, with 0 ∩ si < |λψ| [24, Example 3]. On the other hand, the

mini-scalars resulting from the decomposition on BN curves in [24, Example 5]
can be negative.

Deciding on the best window size for 4-GLS is trivial since a window size
of w = 2 requires a lookup table of 128 entries, where generating each entry
costs an addition. This is far more than the number of additions saved from
using this larger window. In Algorithm 3, we state how to generate the lookup
table for w = 1 of size eight, which consists of the elements T [

⎩3
i=1 bi2i−1] =

P0 +
⎩3

i=1[bi]Pi, for all combinations of bi → {0, 1}.

Algorithm 2. Generating the lookup table for 2-GLV with window size w = 3
(cost: 29 MIX + 2 ADD + 1 DBL).
Input: P0, P1 ∈ G1.
Output: The 2-GLV lookup table, T , for window size w = 3.

t0 ← DBL(P0), T [0] ← P0, T [1] ← MIX(t0, P0),
T [2] ← ADD(t0, T [1]), T [3] ← ADD(t0, T [2]),

for i = 1 to 7 do
for j = 0 to 3 do

T [4i + j] ← MIX(T [4(i − 1) + j], P1)

444 J.W. Bos et al.

Algorithm 3. Generating the lookup table for 4-GLS with window size w = 1
(cost: 4 MIX + 3 AFF).
Input: P0, P1, P2, P3 ∈ G2.
Output: The 4-GLS lookup table T .

T [0] ← P0, T [1] ← AFF(T [0], P1), T [2] ← AFF(T [0], P2),
T [3] ← MIX(T [1], P2), T [4] ← AFF(T [0], P3), T [5] ← MIX(T [1], P3),
T [6] ← MIX(T [2], P3), T [7] ← MIX(T [3], P3).

3.3 6-GLS on G2 for KSS Curves with k = 18

To decompose the scalar for 6-GLS on G2 for KSS curves, we use the technique1

from [46], after which we must ensure all the si are non-negative according to
Sect. 2.2. In this case, the decision of the window size (being w = 1) is again
trivial, since a window of size w = 2 requires a lookup table of size 211. On input
of Pi corresponding to si > 0, for 0 ∩ i ∩ 5, we generate the 32 elements of
the lookup table as follows. We use Algorithm 3 to produce T [0], . . . , T [7] (using
P0, . . . , P3). We compute T [8] ≈ AFF(T [0], P4) and T [i] ≈ MIX(T [i − 8], P4) for
9 ∩ i ∩ 15. Next, we compute T [16] ≈ AFF(T [0], P5) and T [i] ≈ MIX(T [i −
16], P5) for 17 ∩ i ∩ 31.

3.4 8-GLS on G2 for BLS Curves k = 24

BLS curves with k = 24 have λψ(x) = x, which means |λψ| √ r1/8, so one can
compute an 8-dimensional decomposition in G2 by writing the scalar 0 ∩ s < r
in base |λψ| as s =

⎩7
i=0 si|λψ|i, with 0 ∩ si < |λψ| [24, Example 4]. We use

the 8-dimensional decomposition strategy studied in [15]: the idea is to split the
lookup table (a single large lookup table would consist of 128 entries) into two
lookup tables consisting of eight elements each. In this case, we need to compute
twice the amount of point additions when simultaneously processing the mini-
scalars (see Table 3), but we save around 120 point additions in generating the
lookup table(s). Let T1 be the table consisting of the 8 entries P0 +

⎩3
i=1[bi]Pi,

for bi → {0, 1}, which is generated using Algorithm 3 on P0, . . . , P3. The second
table, T2, consists of the 8 entries P4 +

⎩7
i=5[bi]Pi for bi → {0, 1}, and can be

pre-computed as T2[j] ≈ ψ4(T1[j]), for j = 0, . . . , 7. With the specific tower
construction for k = 24 BLS curves (see Sect. 2.1), the map ψ4 : G2 ∈ G2

significantly simplifies to ψ4 : (x, y) ≡∈ (cxx, cyy), where the constants cx and cy

are in Fp.

1 We note that for particular KSS k = 18 curves, large savings may arise in this
algorithm due to the fact that the α =

∑5
i=0 aiψ

i (from Sect. 5.2 of [46]) have
some of the ai being zero. In the case of the KSS curve we use, around 2/3 of the
computations vanish due to a2 = a4 = a5 = 0 and a1 = 1.

Exponentiating in Pairing Groups 445

4 Alternate Curve Models for Exponentiations in Groups
G1 and G2

An active research area in ECC involves optimizing elliptic curve arithmetic
through the use of various curve models and coordinate systems (see [9,31] for
an overview). For example, in ECC applications the fastest arithmetic to realize
a group operation on Weierstrass curves of the form y2 = x3 + b requires 16 field
multiplications [9], while a group addition on an Edwards curve can incur as few
as 8 field multiplications [33]. While alternative curve models are not favorable
over Weierstrass curves in the pairing computation itself [17], they can still be
used to speed up the elliptic curve operations in G1 and G2.

4.1 Three Non-Weierstrass Models

Unlike the general Weierstrass model which covers all isomorphism classes of
elliptic curves over a particular field, the non-Weierstrass elliptic curves usually
only cover a subset of all such classes. Whether or not an elliptic curve E falls
into the classes covered by a particular model is commonly determined by the
existence of a Weierstrass point with a certain order on E. In the most popular
scenarios for ECC, these orders are either 2, 3 or 4. In this section we consider
the fastest model that is applicable in the pairing context in each of these cases.

• W - Weierstrass: all curves in this paper have j-invariant zero and Weier-
strass form y2 = x3 + b. The fastest formulas on such curves use Jacobian
coordinates [8].

• J - Extended Jacobi quartic: if an elliptic curve has a point of order 2,
then it can be written in (extended) Jacobi quartic form as J : y2 = dx4 +
ax2+1 [11, Sect. 3] – these curves were first considered for cryptographic use in
[11, Sect. 3]. The fastest formulas work on the corresponding projective curve
given by J : Y 2Z2 = dX4 + aX2Z2 + Z4 and use the 4 extended coordinates
(X : Y : Z : T) to represent a point, where x = X/Z, y = Y/Z and T =
X2/Z [34].

• H - Generalized Hessian: if an elliptic curve (over a finite field) has a point
of order 3, then it can be written in generalized Hessian form as H : x3+y3+c =
dxy [20, Theorem 2]. The authors of [37,51] studied Hessian curves of the form
x3 + y3 + 1 = dxy for use in cryptography, and this was later generalized to
include the parameter c [20]. The fastest formulas for ADD/MIX/AFF are from [7]
while the fastest DBL formulas are from [32] – they work on the homogeneous
projective curve given by H : X3 + Y 3 + cZ3 = dXY Z, where x = X/Z,
y = Y/Z. We note that the j-invariant zero version of H has d = 0 (see
Sect. 4.3), so in Table 1 we give updated costs that include this speedup.

• E - Twisted Edwards: if an elliptic curve has a point of order 4, then it
can be written in twisted Edwards form as E : ax2 + y2 = 1 + dx2y2 [6,
Theorem 3.3]. However, if the field of definition, K, has #K ≡ 1 mod 4, then
4 | E is enough to write E in twisted Edwards form [6, Sect. 3] (i.e. we do
not necessarily need a point of order 4). Twisted Edwards curves [19] were
introduced to cryptography in [6,10] and the best formulas are from [33].

446 J.W. Bos et al.

Table 1. The costs of necessary operations for computing group exponentiations on
four models of elliptic curves. Costs are reported as TM,S,d,a , where M is the cost of a
field multiplication, S is the cost of a field squaring, d is the cost of multiplication by a
curve constant, a is the cost of a field addition (we have counted multiplications by 2 as
additions), and T is the total number of multiplications, squarings, and multiplications
by curve constants.

Model/ Requires DBL ADD MIX AFF

coords cost cost cost cost

W/Jac. - 72,5,0,14 1611,5,0,13 117,4,0,14 64,2,0,12

J /ext. pt. of order 2 91,7,1,12 137,3,3,19 126,3,3,18 115,3,3,18

H/proj. pt. of order 3 76,1,0,11 1212,0,0,3 1010,0,0,3 88,0,0,3

E/ext. pt. of order 4, or 94,4,1,7 109,0,1,7 98,1,0,7 87,0,1,7

4 | E and #K ≡ 1 mod 4

For each model, we summarize the cost of the required group operations in
Table 1. The total number of field multiplications are reported in bold for each
group operation – this includes multiplications, squarings and multiplications
by constants. We note that in the context of plain ECC these models have been
studied with small curve constants; in pairing-based cryptography, however, we
must put up with whatever constants we get under the transformation to the
non-Weierstrass model. The only exception we found in this work is for the
k = 12 BLS curves, where G1 can be transformed to a Jacobi quartic curve with
a = −1/2, which gives a worthwhile speedup [34].

4.2 Applicability of Alternative Curve Models for k ∈ {12, 18, 24}
In this section we prove the existence or non-existence of points of orders 2, 3 and
4 in the groups E(Fp) and E∗(Fpk/6) for the pairing-friendly families considered in
this work. These proofs culminate in Table 2, which summarizes the alternative
curve models that are available for G1 and G2 in the scenarios we consider. We
can study #E(Fp) directly from the polynomial parameterizations in Sect. 2.1,
while for #E∗(Fpe) (where e = k/6) we do the following. With the explicit
recursion in [12, Corollary VI.2] we determine the parameters te and fe which
are related by the CM equation 4pe = t2e + 3f2

e (since all our curves have CM
discriminant D = −3). This allows us to compute the order of the correct sextic
twist, which by [30, Proposition 2] is one of n∗

e,1 = pe + 1 − (3fe + te)/2 or
n∗

e,2 = pe +1−(−3fe +te)/2. For k = 12 and k = 24 BLS curves, we assume that
p ≡ 3 mod 4 so that Fp2 can be constructed (optimally) as Fp2 = Fp[u]/(u2 +1).
Finally, since p ≡ 3 mod 4, E(Fp) must contain a point of order 4 if we are to
write E in twisted Edwards form; however, since E∗ is defined over Fpe , if e is
even then 4 | E∗ is enough to write E∗ in twisted Edwards form (see Sect. 4.1).

Proposition 1. Let E/Fp be a BN curve with sextic twist E∗/Fp2 . The groups
E(Fp) and E∗(Fp2) do not contain points of order 2, 3 or 4.

Exponentiating in Pairing Groups 447

Proof. From (1) we always have #E(Fp) ≡ 1 mod 6. Remark 2.13 of [44] shows
that we have #E∗(Fp2) = (p + 1 − t)(p − 1 + t), which from (1) gives that
#E∗(Fp2) ≡ 1 mod 6. ≥∪
Proposition 2. For p ≡ 3 mod 4, let E/Fp be a k = 12 BLS curve with sextic
twist E∗/Fp2 . The group E(Fp) contains a point of order 3 and can contain a
point of order 2, but not 4, while the group E∗(Fp2) does not contain a point of
order 2, 3 or 4.

Proof. From [12, Corollary VI.2] we have t2(x) = t(x)2 − 2p(x), which with
(2) and 4p(x)2 = t2(x)2 + 3f2(x)2 allows us to deduce that the correct twist
order is n∗

2,2, which gives n∗
2,2(x) ≡ 1 mod 12 for x ≡ 1 mod 3, i.e. E∗ does not

have points of order 2, 3 or 4. For E, (2) reveals that 3 | #E, and furthermore
that x ≡ 4 mod 6 implies #E is odd, while for x ≡ 1 mod 6 we have 4 | #E.
The assumption p ≡ 3 mod 4 holds if and only if x ≡ 7 mod 12, which actually
implies p ≡ 7 mod 12. Now, to have a point of order 4 on E/Fp : y2 = x3+b, the
fourth division polynomial ψ4(x) = 2x6+40bx3−−8b2 must have a root α → Fp,
which happens if and only if α3 = −10b ± 6b

√
3. However, [35, Sect. 5, Theorem

2-(b)] says that 3 is a quadratic residue in Fp if and only if p ≡ ±b2 mod 12,
where b is co-prime to 3, which cannot happen for p ≡ 7 mod 12, so E does not
have a point of order 4. ≥∪
Proposition 3. Let E/Fp be a k = 18 KSS curve with sextic twist E∗/Fp3 . The
group E(Fp) does not contain a point of order 2, 3 or 4, while the group E∗(Fp3)
contains a point of order 3 but does not contain a point of order 2 or 4.

Proof. From [12, Corollary VI.2] we have t3(x) = t(x)3 − 3p(x)t(x). With (3)
and 4p(x)3 = t3(x)2 + 3f3(x)2) it follows that n∗

3,1(x) is the correct twist order.
We have n∗

3,1(x) ≡ 3 mod 12 for x ≡ 14 mod 42, i.e. E∗ has a point of order 3
but no points of order 2 or 4. For E we have #E ≡ 1 mod 6 from (3), which
means there are no points of order 2, 3, or 4. ≥∪
Proposition 4. For p ≡ 3 mod 4, let E/Fp be a BLS curve with k = 24 and
sextic twist E∗/Fp4 . The group E(Fp) can contain points of order 2 or 3 (although
not simultaneously), but not 4, while the group E∗(Fp4) can contain a point of
order 2, but does not contain a point of order 3 or 4.

Proof. Again, [12, Corollary VI.2] gives t4(x) = t(x)4 −4p(x)t(x)2 +2p(x)2, and
from (4) and 4p(x)4 = t4(x)2 +3f4(x)2 we get n∗

4,1(x) as the correct twist order.
For x ≡ 1 mod 6 we have n∗

4,1(x) ≡ 1 mod 12 (so no points of order 2, 3, or 4),
while for x ≡ 4 mod 6 we have n∗

4,1(x) ≡ 4 mod 12. Recall from the proof of
Proposition 2 that (α, β) → E∗(Fp4) is a point of order 4 if we have α → Fp4 such
that α3 = (−10 ± 6

√
3)b∗. The curve equation gives β2 = (−9 ± 6

√
3)b∗, i.e. b∗

must be a square in Fp4 , which implies that (0,±√
b∗) are points of order 3 on

E∗(Fp4), which contradicts n∗
4,1(x) ≡ 1 mod 3. Thus, E∗(Fp4) cannot have points

of order 3 or 4. For E, from (4) we have #E(Fp) ≡ 3 mod 12 if x ≡ 4 mod 6,
but #E ≡ 0 mod 12 if x ≡ 1 mod 6. Thus, there is a point of order 3 on E,

448 J.W. Bos et al.

Table 2. Optional curve models for G1 and G2 in popular pairing implementations.

G1 G2

Family-k Algorithm Models avail. Algorithm Models avail. Follows from

BN-12 2-GLV W 4-GLS W Proposition 1
BLS-12 2-GLV H, J , W 4-GLS W Proposition 2
KSS-18 2-GLV W 6-GLS H, W Proposition 3
BLS-24 2-GLV H, J , W 8-GLS E , J , W Proposition 4

as well as a point of order 2 if x ≡ 1 mod 6. So it remains to check whether
there is a point of order 4 when x ≡ 1 mod 6. Taking x ≡ 1 mod 12 gives rise
to p ≡ 1 mod 4, so take x ≡ 7 mod 12. This implies that p ≡ 7 mod 12, and the
same argument as in the proof of Proposition 2 shows that there is no point of
order 4. ≥∪

In Table 2 we use the above propositions to summarize which (if any) of the
non-Weierstrass models from Sect. 4.1 can be applied to our pairing scenarios.

4.3 Translating Endomorphisms to the Non-Weierstrass Models

In this section we investigate whether the GLV and GLS endomorphisms from
Sect. 2.2 translate to the Jacobi quartic and Hessian models. Whether the endo-
morphisms translate desirably depends on how efficiently they can be computed
on the non-Weierstrass model. It is not imperative that the endomorphisms do
translate desirably, but it can aid efficiency: if the endomorphisms are not effi-
cient on the alternative model, then our exponentiation routine also incurs the
cost of passing points back and forth between the two models – this cost is small
but could be non-negligible for high-dimensional decompositions. On the other
hand, if the endomorphisms are efficient on the non-Weierstrass model, then
the groups G1 and/or G2 can be defined so that all exponentiations take place
directly on this model, and the computation of the pairing can be modified to
include an initial conversion back to Weierstrass form.

We essentially show that the only scenario in which the endomorphisms are
efficiently computable on the alternative model is the case of the GLV endomor-
phism φ on Hessian curves.

Endomorphisms on the Hessian Model. We modify the maps given in [20,
Sect. 2.2] to the special case of j-invariant zero curves, where we have d = 0 on
the Hessian model. Assume that (0 : ±α : 1) are points of order 3 on W : Y 2Z =
X3 + α2Z3, which is birationally equivalent to H : U3 + V 3 + 2αZ3 = 0. We
define the constants h0 = ζ − 1, h1 = ζ + 2, h2 = −2(2ζ + 1)α, where ζ3 = 1
and ζ �= 1. The map τ : W ∈ H, (X : Y : Z) ≡∈ (U : V : W) is given as

U ≈ h0 · (Y + αZ) + h2 · Z, V ≈ −U − 3(Y + αZ), W ≈ 3X, (6)

Exponentiating in Pairing Groups 449

where τ(0 : ± α : 1) = O → H. The inverse map τ−1 : H ∈ W, (U : V : W) ≡∈
(X : Y : Z) is

X ≈ h2 · W, Z ≈ h0 · V + h1 · U, Y ≈ −h2 · (U + V) − α · Z. (7)

It follows that the GLV endomorphism φW → End(W) translates into φH →
End(H), where φW : (X : Y : Z) ≡∈ (ζX : Y : Z) becomes φH : (U : V : W) ≡∈
(U : V : ζW). However, we note that when computing φH on an affine point, it
can be advantageous to compute φH as φH : (u : v : 1) ≡∈ (ζ2u : ζ2v : 1), where ζ2

is the (precomputed) other cube root of unity, which produces an affine result.
For GLS on Hessian curves, there is no obvious or simple way to perform

the analogous untwisting or twisting isomorphisms directly between H∗(Fpk/6)
and H(Fpk), which suggests that we must pass back and forth to the Weierstrass
curve/s to determine the explicit formulas for the GLS endomorphism on H∗.
The composition of these maps ψH′ = τ ∼ Ψ−1

W ∼ πp ∼ ΨW ∼ τ−1 does not appear
to simplify to be anywhere near as efficient as the GLS endomorphism is on the
Weierstrass curve. Consequently, our GLS routine will start with a Weierstrass
point in W ∗(Fpk/6), where we compute d − 1 applications of ψ → End(W ∗),
before using (6) to convert the d points to H∗(Fpk/6), where the remainder of
the routine takes place (save the final conversion back to W ∗). Note that since
we are converting affine Weierstrass points to H∗ via (6), this only incurs two
multiplications each time. However, the results are now projective points on H∗

meaning that the more expensive full addition formulas must be used to generate
the remainder of the lookup table.

Endomorphisms on the Jacobi Quartic Model. Unlike the Hessian model
where the GLV endomorphism was efficient, for the Jacobi quartic model it
appears that neither the GLV nor GLS endomorphisms translate to be of a
similar efficiency as they are on the Weierstrass model. Thus, in all cases where
Jacobi quartic curves are a possibility, we start and finish on W, and only map to
J after computing all applications of φ or ψ on the Weierstrass model. We adapt
the maps given in [31, p. 17] to our special case as follows. Let (−θ : 0 : 1) be a
point of order 2 on W : Y 2Z = X3 + θ3Z3 and let a = 3θ/4 and d = −3θ2/16.
The curve W is birationally equivalent to the (extended) Jacobi quartic curve
J : V 2W 2 = dU4 + 2aU2W 2 + W 4, with the map τ : W ∈ J , τ : (X : Y : Z) ≡∈
(U : V : W) given as

U ≈ 2Y Z, W ≈ X2 − XθZ + θ2Z2, V ≈ 6XZθ + W − 4aZ(θZ + X), (8)

where τ((−θ : 0 : 1)) = (0: − 1: 1) → J . The inverse map τ−1 : J ∈ W,
τ−1 : (U : V : W) ≡∈ (X : Y : Z), is given by

X ≈ (2V + 2)U + 2aU3 − θU3, Y ≈ (4V + 4) + 4aU2, Z ≈ U3, (9)

where τ−1((0 : − 1: 1)) = (−θ : 0 : 1) → W and the neutral point on J is OJ =
(0: 1 : 1).

450 J.W. Bos et al.

Endomorphisms on the Twisted Edwards Model. Similarly to the Jacobi-
quartic model, endomorphisms on E are not nearly as efficiently computable as
they are on W, so we only pass across to E after the endomorphisms are applied
on W. Here we give the back-and-forth maps that are specific to our case(s)
of interest. Namely, since we are unable to use twisted Edwards curves over
the ground field (see Table 2), let W/Fpe : Y 2Z = X3 + b∗Z3 for p ≡ 3 mod 4
and e being even. Since we have a point of order 2 on W, i.e. (α : 0 : 1) with
α = 3

√−b∗ → Fpe , then take s = 1/(α
√

3) → Fpe . The twisted Edwards curve
E : aU2W 2 +V 2W 2 = W 4 +dU2V 2 with a = (3αs+2)/s and d = (3αs−2)/s is
isomorphic to W, with the map τ : W ∈ E , (X : Y : Z) ≡∈ (U : V : W) given as

U ≈ s(X−αZ)(sX−sαZ+Z), V ≈ sY (sX−sαZ−Z), W ≈ sY (sX−sαZ+Z),

with inverse map τ : E ∈ W, (U : V : W) ≡∈ (X : Y : Z), given as

X ≈ −U(−W − V − αs(W − V)), Y ≈ (W + V)W, Z ≈ sU(W − V).

4.4 Curve Choices for Pairings at the 128-, 192- and 256-bit
Security Levels

The specific curves we choose in this section can use any of the alternative models
that are available in the specific cases as shown in Table 2. The only exception
occurs for k = 24, for which we are forced to choose between having a point of
order 2 or 3 (see Proposition 4) in G1 – we opt for the point of order 3 and the
Hessian model, as this gives enhanced performance. Note that these curves do
not sacrifice any efficiency in the pairing computation compared to previously
chosen curves in the literature (in terms of the field sizes, hamming-weights and
towering options).

The k = 12 BN Curve. Since no alternative models are available for the
BN family, we use the curve that was first seen in [45] and subsequently used
to achieve speed records at the 128-bit security level [2], which results from
substituting x = −(262 + 255 + 1) into (1), and taking E/Fp : y2 = x3 + 2 and
E∗/Fp2 : y2 = x3 + (1 − u), where Fp2 = Fp[u]/(u2 + 1).

The k = 12 BLS Curve. Setting x = 2106 −272 +269 −1 in (2) gives a 635-bit
prime p and a 424-bit prime r. Let Fp2 = Fp[u]/(u2 + 1) and let ξ = u + 1.
The Weierstrass forms corresponding to G1 and G2 are W/Fp : y2 = x3 + 1
and W ∗/Fp2 : y2 = x3 + ξ. Only G1 has options for alternative models (see
Table 2): the Hessian curve H/Fp : x3 + y3 + 2 = 0 and the Jacobi quartic curve
J /Fp : y2 = −3

16 x4 + 3
4x2 + 1 are both isomorphic to W over Fp.

The k = 18 KSS Curve. Setting x = 264−251+247+228 in (3) gives a 508-bit
prime p and a 376-bit prime r. Let Fp3 = Fp[u]/(u3 + 2). The Weierstrass forms
for G1 and G2 are W/Fp : y2 = x3 + 2 and W ∗/Fp3 : y2 = x3 − u2. Only G2

allows for an alternative model (see Table 2): the Hessian curve H∗/Fp3 : x3 +
y3 + 2u

√−1 = 0 is isomorphic to W ∗ over Fp3 .

Exponentiating in Pairing Groups 451

The k = 24 BLS Curve. Setting x = 263−247+238 in (3) gives a 629-bit prime
p and a 504-bit prime r. Let Fp2 = Fp[u]/(u2+1) and Fp4 = Fp2 [v]/(v2−(u+1)).
The Weierstrass forms corresponding to G1 and G2 are W/Fp : y2 = x3 + 4 and
W ∗/Fp4 : y2 = x3 + 4v. This gives us the option of a Hessian model in G1: the
curve H/Fp : x3 + y3 + 4 = 0 is isomorphic to W over Fp. In G2 we have both
the Jacobi quartic and twisted Edwards models as options. Let θ = (u+1)v and
set a = −3θ/4 and d = (4A2 − 3θ2)/4. The curve J /Fp4 : y2 = dx4 + ax2 + 1
is isomorphic to W ∗ over Fp4 . For the twisted Edwards model, we take α = θ =
(u + 1)v, s = 1/(α

√
3) → Fp4 , a∗ = (3αs + 2)/s and d∗ = (3αs − 2)/s; the curve

E/Fp4 : a∗x2 + y2 = 1 + d∗x2y2 is then isomorphic to W ∗.

5 Exponentiations in GT

For the scenarios in this paper, Galbraith and Scott [24] remark that the best
known method for exponentiations in GT ∞ Fpk is to use the same ϕ(k)-
dimensional decomposition that is used for GLS in G2. This means the same tech-
niques for multi-exponentiation can be applied directly. The recoding technique
(see Sect. 2.2) also carries across analogously, since inversions of GT -elements
(which are conjugations over Fpk/2) are almost for free [24, Sect. 7], just as in the
elliptic curve groups. For example, while the GLS map ψ on curves with k = 12
gives ψ4(Q∗) − ψ2(Q∗) + Q∗ = O for all Q∗ → G

∗
2, in GT we use the p-power

Frobenius map πp, which gives f · π4
p(f)/π2

p(f) = 1 for all f → GT . Finally,
GT is contained in the cyclotomic subgroup of F∈

pk , in which much faster squar-
ings are available [27,39]. The optimal choices of window sizes for the multi-
exponentiation in GT remain equal to those in G2 (see Sect. 3).

6 Results

In Table 3 we summarize the optimal curve choices in each scenario. We first note
that Jacobi quartic curves were unable to outperform the Weierstrass, Hessian
or twisted Edwards curves in any of the scenarios. This is because the small
number of operations saved in a Jacobi quartic group addition were not enough
to outweigh the slower Jacobi quartic doublings (see Table 1), and because of

Table 3. Optimal scenarios for group exponentiations. For both GLV on G1 and GLS
on G2 in all four families, we give the decomposition dimension d, the maximum sizes
of the mini-scalars ||si||∞, the optimal window size w, and the optimal curve model.

Sec. level Family-k Exp. in G1 Exp. in G2

d ||si||∞ w Curve d ||si||∞ w Curve

128-bit BN-12 2 128 2 Weierstrass 4 64 1 Weierstrass
192-bit BLS-12 2 212 3 Hessian 4 106 1 Weierstrass

KSS-18 2 192 3 Weierstrass 6 63 1 Hessian
256-bit BLS-24 2 252 3 Hessian 8 63 1 twisted Edwards

452 J.W. Bos et al.

Table 4. Benchmark results for an optimal ate pairing and group exponentiations in
G1, G2 and GT in millions (M) of clock cycles for the best curve models. These results
have been obtained on an Intel Core i7-3520M CPU averaged over thousands of random
instances.

Sec. level Family-k Pairing e Exp. in G1 Exp. in G2 Exp. in GT

128-bit BN-12 7.0 0.9 (W) 1.8 (W) 3.1
192-bit BLS-12 47.2 4.4 (H) 10.9 (W) 17.5

KSS-18 63.3 3.5 (W) 9.8 (H) 15.7
256-bit BLS-24 115.0 5.2 (H) 27.6 (E) 47.1

the extra computation incurred by the need to pass back and forth between J
and W to compute the endomorphisms (see Sect. 4.3). On the other hand, while
employing the Hessian and twisted Edwards forms also requires us to pass back
and forth to compute the endomorphisms, the group law operations on these
models are significantly faster than Weierstrass operations across the board, so
Hessian and twisted Edwards curves reigned supreme whenever they were able to
be employed – we give the concrete comparisons below. In Table 3 we also present
the bounds we used on the maximum sizes of the mini-scalars resulting from a
d-dimensional decomposition. In some cases, like those where decomposing s
involves writing s in base λφ or λψ, these bounds are trivially tight. However,
in both the GLV and GLS on BN curves, and in the GLS on KSS curves, the
bounds presented are those we obtained experimentally from hundreds of millions
of scalar decompositions, meaning that the theoretical bounds could be a few
bits larger – determining such bounds could be done using similar techniques to
those in [41].

In Table 4 we present our timings for pairing computations and exponen-
tiations in the three groups G1, G2 and GT , for the four families considered.
We note that for 2-GLV on k = 12 BLS curves, Hessian curves gave a factor
1.23 speedup over Weierstrass curves (4.4M versus 5.4M cycles); for 6-GLS on
k = 18 KSS curves, using Hessian curves gave a factor 1.11 speedup (9.8M
versus 10.9M cycles); for 2-GLV on k = 24 BLS curves, Hessian curves gave a
factor 1.19 speedup (5.2M versus 6.2M cycles); lastly, for 8-GLS on k = 24 BLS
curves, twisted Edwards curves gave a factor 1.16 speedup (27.6M versus 31.9M
cycles). The Hessian and twisted Edwards timings include the conversion from
the Weierstrass model after the endomorphisms have been computed, and to the
Weierstrass model at the end of the scalar multiplication routine.

In [1] it was first proposed to use k = 12 BLS curves for the 192-bit security
level, by showing that pairings on these curves are significantly faster than pair-
ings on k = 18 KSS curves. Our pairing timings add further weight to their claim.
However, our timings also show that KSS curves are slightly faster for exponen-
tiations in all three groups. There are many circumstances where Table 4 could
guide implementers to make more efficient decisions when deploying a proto-
col. As one example, we refer to Boneh and Franklin’s original identity-based
encryption scheme [14, Sect. 4.1], where the sender computes a pairing between
a public element Ppub and an identities’ public key QID, i.e. the sender computes

Exponentiating in Pairing Groups 453

gID = e(Ppub, QID). The sender then chooses a random exponent s and computes
gs
ID (which is hashed to become part of a ciphertext). In this case Table 4 shows

that the sender would be much better off computing the scalar multiplication
[s]Ppub (assuming Ppub → G1, or else we could compute [s]QID) before computing
the pairing e([s]Ppub, QID) = gs

ID.

Acknowledgment. We thank the reviewer who pointed out that having 4 | #E(K)
and #K ≡ 1 mod 4 is sufficient to write E/K in twisted Edwards form.

References

1. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodŕıguez-
Henŕıquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla,
M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidel-
berg (2013)

2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

3. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006)

5. Benger, N., Scott, M.: Constructing tower extensions of finite fields for implemen-
tation of pairing-based cryptography. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI
2010. LNCS, vol. 6087, pp. 180–195. Springer, Heidelberg (2010)

6. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

7. Bernstein, D.J., Kohel, D., Lange, T.: Twisted Hessian curves. http://www.
hyperelliptic.org/EFD/g1p/auto-hessian-standard.html#addition-add-2001-jq

8. Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar
multiplication. In: Mullen, G., Panario, D., Shparlinski, I. (eds.) Finite Fields and
Applications. Contemporary Mathematics Series, vol. 461, pp. 1–20. AMS, Provi-
dence (2007)

9. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.
org/EFD (2007)

10. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

11. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643,
pp. 34–42. Springer, Heidelberg (2003)

12. Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography, vol. 265. Cam-
bridge University Press, New York (1999)

13. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

http://www.hyperelliptic.org/EFD/g1p/auto-hessian-standard.html#addition-add-2001-jq
http://www.hyperelliptic.org/EFD/g1p/auto-hessian-standard.html#addition-add-2001-jq
http://www.hyperelliptic.org/EFD
http://www.hyperelliptic.org/EFD

454 J.W. Bos et al.

14. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

15. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: High-performance scalar multiplica-
tion using 8-dimensional GLV/GLS decomposition. In: Bertoni, G., Coron, J.-S.
(eds.) CHES 2013. LNCS, vol. 8086, pp. 331–348. Springer, Heidelberg (2013)

16. Brauer, A.: On addition chains. Bull. Am. Math. Soc. 45, 736–739 (1939)
17. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with

high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 224–242. Springer, Heidelberg (2010)

18. Costello, C., Lauter, K., Naehrig, M.: Attractive subfamilies of BLS curves for
implementing high-security pairings. In: Bernstein, D.J., Chatterjee, S. (eds.)
INDOCRYPT 2011. LNCS, vol. 7107, pp. 320–342. Springer, Heidelberg (2011)

19. Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44(3),
393–422 (2007)

20. Farashahi, R.R., Joye, M.: Efficient arithmetic on Hessian curves. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 243–260. Springer,
Heidelberg (2010)

21. Faz-Hernandez, A., Longa, P., Sanchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves.
Cryptology ePrint Archive, Report 2013/158. http://eprint.iacr.org/ (2013). CT-
RSA 2014, DOI:10.1007/978-3-319-04852-9 1

22. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

23. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptol. 24(3), 446–469 (2011)

24. Galbraith, S.D., Scott, M.: Exponentiation in pairing-friendly groups using homo-
morphisms. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol.
5209, pp. 211–224. Springer, Heidelberg (2008)

25. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

26. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

27. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 209–223. Springer, Heidelberg (2010)

28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(2010)

29. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309. http://eprint.iacr.org/ (2012)

30. Hess, F., Smart, N.P., Vercauteren, F.: The Eta pairing revisited. IEEE Trans. Inf.
Theor. 52(10), 4595–4602 (2006)

31. Hisil, H.: Elliptic curves, group law, and efficient computation. Ph.D. thesis,
Queensland University of Technology (2010)

32. Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve arith-
metic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 138–151. Springer, Heidelberg (2007)

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-04852-9_1
http://eprint.iacr.org/

Exponentiating in Pairing Groups 455

33. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

34. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Jacobi quartic curves revisited.
In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 452–468.
Springer, Heidelberg (2009)

35. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Grad-
uate Texts in Mathematics, vol. 84. Springer, New York (1990)

36. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol. 17(4),
263–276 (2004)

37. Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks. In:
Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–
410. Springer, Heidelberg (2001)

38. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Hei-
delberg (2008)

39. Karabina, K.: Squaring in cyclotomic subgroups. Math. Comput. 82(281), 555–579
(2013)

40. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

41. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
718–739. Springer, Heidelberg (2012)

42. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004)

43. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

44. Naehrig, M.: Constructive and computational aspects of cryptographic pairings.
Ph.D. thesis, Eindhoven University of Technology (2009)

45. Nogami, Y., Akane, M., Sakemi, Y., Kato, H., Morikawa, Y.: Integer variable χ–
based Ate pairing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 178–191. Springer, Heidelberg (2008)

46. Park, Y.-H., Jeong, S., Lim, J.-I.: Speeding up point multiplication on hyperel-
liptic curves with efficiently-computable endomorphisms. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 197–208. Springer, Heidelberg (2002)

47. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy. IEEE (2013)

48. Pereira, G.C.C.F., Simpĺıcio Jr, M.A., Naehrig, M., Barreto, P.S.L.M.: A family
of implementation-friendly BN elliptic curves. J. Syst. Softw. 84(8), 1319–1326
(2011)

49. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Okinawa, Japan, pp.
135–148 (2000)

50. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, vol. 106, 2nd edn. Springer, New York (2009)

51. Smart, N.P.: The Hessian form of an elliptic curve. In: Koç, Ç.K., Naccache, D.,
Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 118–125. Springer, Heidelberg
(2001)

Faster Repeated Doublings on Binary
Elliptic Curves

Christophe Doche(B) and Daniel Sutantyo

Department of Computing, Macquarie University, Sydney, Australia
{christophe.doche,daniel.sutantyo}@mq.edu.au

Abstract. The use of precomputed data to speed up a cryptographic
protocol is commonplace. For instance, the owner of a public point P
on an elliptic curve can precompute various points of the form [2k]P
and transmit them together with P . One inconvenience of this approach
though may be the amount of information that needs to be exchanged.
In the situation where the bandwidth of the transmissions is limited, this
idea can become impractical. Instead, we introduce a new scheme that
needs only one extra bit of information in order to efficiently and fully
determine a point of the form [2k]P on a binary elliptic curve. It relies
on the x-doubling operation, which allows to compute the point [2k]P
at a lower cost than with k regular doublings. As we trade off regular
doublings for x-doublings, we use multi-scalar multiplication techniques,
such as the Joint Sparse Form or interleaving with NAFs. This idea gives
rise to several methods, which are faster than Montgomery’s method
in characteristic 2. A software implementation shows that our method
called x-JSF2 induces a speed-up between 4 and 18 % for finite fields
F2d with d between 233 and 571. We also generalize to characteristic 2
the scheme of Dahmen et al. in order to precompute all odd points [3]P ,
[5]P, . . . , [2t−1]P in affine coordinates at the cost of a single inversion and
some extra field multiplications. We use this scheme with x-doublings as
well as with the window NAF method in López–Dahab coordinates.

Keywords: Public key cryptography · Elliptic curves · Scalar
multiplication.

1 Introduction

We refer readers to [28] for Sutantyo, Daniel a general introduction to elliptic
curves. An ordinary elliptic curve E defined over the finite field F2d can always
be written with an equation of the form

E : y2 + xy = x3 + a2x
2 + a6, with a2 ∈ {0, 1}, a6 ∈ F

∞
2d . (1)

This work was partially supported by ARC Discovery grant DP110100628.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 456–470, 2014.
DOI: 10.1007/978-3-662-43414-7 23, c∈ Springer-Verlag Berlin Heidelberg 2014

Faster Repeated Doublings on Binary Elliptic Curves 457

This is an example of a curve in Weierstraß form. A point P = (x1, y1) satisfying
(1) is an affine point and the set of rational points of E, denoted by E(F2d),
corresponds to

E(F2d) = {(x1, y1) ∈ F2d × F2d | y2
1 + x1y1 = x3

1 + a2x
2
1 + a6} ∞ P∗,

where P∗ is a special point called the point at infinity . The set E(F2d) can
be endowed with an abelian group structure under a point addition operation,
denoted by +, with P∗ as the identity element. Naturally, this addition leads
to the scalar multiplication

[n]P = P + P + · · · + P
︸ ︷︷ ︸

n times

,

for an integer n � 1 and a point P ∈ E(F2d). Given n and P , there are very
efficient techniques to compute [n]P , see Sect. 2.3. But the converse problem,
known as the Elliptic Curve Discrete Logarithm Problem (ECDLP), appears to
be intractable for a well chosen elliptic curve defined over F2d with d prime.
Therefore the security of many protocols in elliptic curve cryptography relies on
the hardness of the ECDLP. This makes scalar multiplication the most ubiqui-
tous operation in any elliptic curve based protocols. See [3,5,6,14] for further
discussions specific to the use of elliptic curves in cryptography.

2 State of the Art

2.1 Affine and López–Dahab Coordinates

Consider the elliptic curve E as in (1) and the point P = (x1, y1) ∈ E(F2d). The
double P2 = [2]P with coordinates (x2, y2) can be obtained with one inversion,
two multiplications and one squaring. We abbreviate this as I+2M+S. There are
similar formulas to compute the addition of two points at the cost of I+ 2M+ S
as well. In F2d , represented by a polynomial basis, a squaring involves only a
reduction. Thus it costs much less than a generic multiplication. Computing the
inverse of an element φ ∈ F2d is more complex. We rely usually on the Extended
Euclidean gcd algorithm or on the relation φ−1 = φ2d−2. In software, an inver-
sion can be cheaper than 10M, whereas the same operation can be extremely
time consuming on platforms such as embedded devices. This explains why an
alternate representation of E in projective coordinates is often considered. The
equation

Y 2 + XY Z = X3Z + a2X
2Z2 + a6Z

4 (2)

is an homogenized version of the equation E where the point P is represented in
projective-like López–Dahab (LD) coordinates [17] by the triple (X1 : Y1 : Z1).
When Z1 = 0, the point P is the point at infinity whereas for Z1 √= 0, P
corresponds to the affine point (X1/Z1, Y1/Z

2
1). The complexity of a doubling in

LD coordinates is 3M + 1 × a6 + 5S, including one multiplication by the fixed
element a6.

458 C. Doche and D. Sutantyo

The addition of two points requires 13M + 4S in general, but only 8M + 5S
in case at least one of the points is in affine coordinates, or in other words its
Z-coordinate is equal to 1. This operation, that is very useful in practice, is
referred to as a mixed addition [8]. See [4] for all the corresponding formulas.

2.2 Decompression Techniques in LD Coordinates

In the following, we show how the x-coordinate of a point together with one
extra bit is enough to fully recover the point in affine coordinates. Indeed, let
us consider a point P that is not the point at infinity nor a point of order 2
and which is represented by (X1 : Y1 : Z1) in LD coordinates. Assuming that
we ignore Y1 but know X1 and Z1 as well as the last bit of Y1/(X1Z1), let us
see how to determine the affine coordinates x1 and y1 of P . Before we start,
note that Y1/(X1Z1) is equal to y1/x1, so it is independent of the choice of the
Z-coordinate of P in LD format.

Since P is on (2), it follows that Y1 is a root of the quadratic equation

T 2 + TX1Z1 = X3
1Z1 + a2X

2
1Z2

1 + a6Z
4
1 .

The other root is Y1 + X1Z1. The two solutions correspond to the points P
and −P . Because of the assumption on P , we have X1Z1 √= 0 so the change of
variable U = Tφ where φ = 1/(X1Z1) is valid and leads to the new equation

U2 + U = ψ (3)

with ψ = φX2
1+a2+φ2a6Z

4
1 . To solve this equation let us introduce the half-trace

function H defined by

H(λ) =
(d−1)/2∑

i=1

λ22i .

When d is odd, it is well known that the solutions of Eq. (3) are H(ψ) and
H(ψ) + 1.

Clearly, we have x1 = φX2
1 . Now, let us explain how to find the correct

value of y1. It is easy to see that the solutions of (3) correspond to y1/x1 and
y1/x1 +1. So we can use the least significant bit of a root to identify the correct
y1. Let b be the last bit of y1/x1, then if the last bit of H(ψ) is equal to b, set
y1 = H(ψ)x1, otherwise y1 = (H(ψ)+1)x1. The public point P can therefore be
represented as (x1, b) and we can fully determine P in affine coordinates with
I+H+ 4M+ 1 × √

a6 + 2S, where H is the complexity to evaluate the half-trace
function.

As the half-trace function is linear, its computation can be sped up signifi-
cantly provided that there is enough memory to store some precomputed values.
With those enhancements, we have in general H → M. See [2,14,15] for details.

Next, we review how to compute [n]P . Note that throughout the paper the
coordinates of [n]P are denoted by (xn, yn) or (Xn : Yn : Zn).

Faster Repeated Doublings on Binary Elliptic Curves 459

2.3 Classical Scalar Multiplication Techniques

The simplest, yet efficient, way to perform a scalar multiplication [n]P is the
double and add method, which is a straightforward adaptation of the square
and multiply algorithm used to compute an exponentiation. Given the binary
representation of n, denoted by (nλ−1 . . . n0)2, a doubling is performed at each
step followed by an addition if ni = 1. The double and add method is therefore
intrinsically linked to the binary representation of n. This is no surprise as the
method used to perform the scalar multiplication [n]P is often related to the
representation of the integer n. Other choices are available to represent n, for
instance in base 2k for a fixed parameter k, or signed digits. A signed-digit
expansion for an integer n is of the form

n =
λ−1∑

i=0

ci2i, with ci ∈ S,

where S is a finite set of acceptable coefficients. This is particularly interesting
as a negative coefficient −c in the representation of n induces the use of the
point −[c]P in the computation of [n]P . Note that −[c]P can be obtained virtu-
ally for free from the point [c]P in affine coordinates. The Non-Adjacent Form
(NAF) [20,21] is especially relevant as the density of the expansion, i.e. the num-
ber of nonzero terms divided by the total length is equal to 1

3 on average. Also
for a given n, the NAF has the lowest density among all signed-digit expansions
of n with coefficients in {−1, 0, 1}. A generalization of the NAF, called window
NAF of size w [18,23,27] and denoted by NAFw achieves an average density
equal to 1

w+1 for the set S of digits containing 0 and all the odd integers strictly
less than 2w−1 in absolute value. For maximal efficiency, the points [c]P are
precomputed in affine coordinates for all the positive c in S. See [11] or [14] for
more details on NAF and window NAF expansions.

It is often required, for instance during the verification phase of the ECDSA
signature protocol, to perform a double-scalar multiplication of the form [n1]Q1+
[n0]Q0. Instead of computing each scalar multiplication separately, it is more
efficient to combine the binary expansions of n1 and n0 in

(
n1

n0

⎧

=
(

uk−1 . . . u0

vk−1 . . . v0

⎧

.

Mimicking the double and add method, we process a sequence of joint-bits,
instead of a sequence of bits. At each step, a doubling is then followed by an
addition of Q1, Q0, or Q1 + Q0 depending on the value of the joint-bit that
is considered, i.e.

⎨
1
0

⎩
,
⎨
0
1

⎩
, or

⎨
1
1

⎩
. This idea, often attributed to Shamir is in

fact a special case of an idea of Straus [26]. Mixing this idea with signed-digit
representations gives birth to the Joint Sparse Form (JSF) [24] that can be
seen as a generalization of the NAF for double-scalar multiplication. Indeed, the
joint-density of the JSF is equal to 1

2 on average and is optimal across all the
joint signed-digit representations of n1 and n0. Note that the points Q1, Q0,
Q1 + Q0, and Q1 − Q0 must be precomputed in affine coordinates for maximal

460 C. Doche and D. Sutantyo

efficiency. The JSF method is the standard way for computing a double-scalar
multiplication when both points are not known in advance or when the amount
of memory available on the device performing the computation is limited and
does not allow the use of more precomputed values. Otherwise, interleaving with
NAFs [14, Algorithm 3.51] gives excellent results. The principle of this approach
is simply to form

(
n1

n0

⎧

=
(

vk−1 . . . v0
uk−1 . . . u0

⎧

where (vk−1 . . . v0) and (uk−1 . . . u0) are the window NAF expansions of n1 and
n0, possibly padded with a few zeroes at the beginning. Note that we precompute
only the points [3]Qi, [5]Qi, . . . , [2w − 1]Qi for i = 0 and 1 and not all the
combinations [2s+1]Q1±[2t+1]Q0 as this option is too costly in most situations.
It remains to compute all the doublings together and then perform at most
two mixed additions at each step. Obviously, it is easy to generalize this idea
to efficiently compute the k + 1 scalar multiplications [nk]Qk + · · · + [n0]Q0

simultaneously provided that the points [3]Qi, [5]Qi, . . . , [2w − 1]Qi, for i =
0, . . . , k are all precomputed.

2.4 Fixed Point Scalar Multiplication Using Precomputations

There are faster scalar multiplications techniques when the point P is known in
advance and when some precomputations are available. For instance, we could
considerably reduce the number of doublings, if not totally avoid them, by con-
sidering precomputed points of the form [2ki]P for a fixed k. Three methods,
namely the Euclidean, Yao, and fixed-base comb, make use of this space-time
trade-off to greatly reduce the complexity of a scalar multiplication. See [11,
Sect. 9.3] for a presentation of those different methods.

If we consider a specific protocol such as ECDSA, Antipa et al. [1] show how
to speed up the signature verification process by introducing the precomputed
multiple [2k]P of the public point P , with k = ≡ρ/2∼. Tests show that the
speed-up is significant, more than 35 % of the time saved, but this approach
shares a drawback with the techniques discussed so far: it requires to transmit
an important amount of additional data on top of the public point P .

When exchanging large volume of data is not practical, for instance because
the bandwidth of the network is limited, the methods described in this part
do not apply, even if the point P is known in advance. Instead, Montgomery’s
method is perfectly suited, as it allows to perform arithmetic on an elliptic curve
using only the x-coordinate of P .

2.5 Montgomery’s Method

Montgomery developed an efficient arithmetic for special elliptic curves defined
over a prime field [19]. Ultimately, it relies on the possibility to derive the x-
coordinate of P + Q from the x-coordinates of P , Q, and P − Q. This approach

Faster Repeated Doublings on Binary Elliptic Curves 461

has been generalized to binary curves by López and Dahab [16]. Indeed, starting
from P in LD coordinates and assuming that we know at each step the X
and Z coordinates of [u]P and of [u + 1]P , we can determine the X and Z
coordinates of [2u]P and [2u + 1]P . See [16,25] for the actual formulas. The
full scalar multiplication [n]P can then be computed with Montgomery’s ladder,
which requires an addition and a doubling at each step. If the square root of a6

is precomputed, the complexity of the scheme is (5M+ 1 × √
a6 + 4S) per bit of

the scalar.

3 Applications of x-doublings to Scalar Multiplication

We have just seen that the x-coordinate of [2]P only depends on the x-coordinate
of the point P itself. Namely, if P = (X1 : Y1 : Z1), we have [2]P given by
X2 = X4

1 + a6Z
4
1 = (X2

1 +
√

a6Z
2
1)2 and Z2 = X2

1Z2
1 . In the following, we

refer to this operation as an x-doubling . We can compute an x-doubling with
M + 1 × √

a6 + 3S. This means that an x-doubling saves 2M + 2S compared
to a regular doubling in LD coordinates. A doubling in LD coordinates costs
3M + 1 × a6 + 5S in the same conditions. From now on, we assume that

√
a6 is

precomputed and does not enjoy any special property so that 1 × √
a6 = 1M.

We propose to speed up the scalar multiplication [n]P by replacing some
regular LD doublings with x-doublings. To take full advantage of this operation,
our idea is to determine the x-coordinate of [2k]P using k successive x-doublings
and then recover the y-coordinate using decompression techniques and one extra
known bit of information.

3.1 Double Scalar Multiplication and x-Doublings

Let ρ be the bit size of the order of a point P and k = ∩ρ/2⊆. Let (x1, b) be the
public information corresponding to the point P , as explained in Sect. 2.2. We
assume that the owner of the point P has also precomputed bk, i.e. the last bit
of y2k/x2k , and made it public.

Let n be an integer of size ρ bits. It is clear that [n]P = [n1]Q1+[n0]Q0 where
n = 2kn1 +n0, Q1 = [2k]P , and Q0 = P . The X and Z coordinates of Q1 can be
obtained with k straight x-doublings at a cost of (2M+3S)k. Then we can recover
the y-coordinates of Q0 and Q1 using b and bk with decompression techniques.
For that, we compute ψ = φx2

1 + a2 + a6φ
2 and ψk = φkX2

2k + a2 + a6φ
2
kZ4

k

where φ = 1/x1 and φk = 1/(X2kZ2k). Montgomery’s trick [19] allows to obtain
φ and φk with only one inversion and three extra multiplications. Then we
compute the half-trace of ψ and ψk and identify the correct root with the bits
b and bk. Assuming that a6 is a random element of F2d and that

√
a6 has been

precomputed, the complexity to determine Q0 and Q1 in affine coordinates is
I+2H+12M+4S. This approach can easily be generalized to retrieve an arbitrary
number of points. It then takes I + tH + (7t − 2)M + 2tS to fully determine Q0,
Q1, . . . , Qt−1 in affine coordinates once the X and Z coordinates of those points
have been obtained using x-doublings.

462 C. Doche and D. Sutantyo

Now that we have Q0 and Q1 in affine coordinates, we can compute [n]P =
[n1]Q1 + [n0]Q0 with any standard double scalar multiplication technique, for
instance the JSF, see Sect. 2.3. In this case, the complexity is approximately
ρ/2 x-doublings, ρ/2 regular doublings, and ρ/4 mixed additions using the four
points Q0, Q1, Q0 + Q1, and Q0 − Q1. Note that Q0 + Q1 and Q0 − Q1 should
be computed simultaneously with I + 4M + 2S.

This new approach, called x-JSF, compares favorably against the window
NAFw method in LD coordinates and Montgomery’s approach. Both are very
popular methods in practice for a wide range of extension degrees when only
the x-coordinate of the point P is transmitted. The x-JSF requires essentially
5M+5.25S per bit compared to 6M+4S for Montgomery’s method. Adding the
complexities of all the steps involved, including the cost of precomputations, and
assuming that H = M, we obtain the following result.

Proposition 1. Let n be an integer of binary length ρ. The average complexity
of the x-JSF method to compute the scalar multiplication [n]P is

⎨
5M + 21

4 S
⎩
ρ + 3I + 20M + 7S.

Proof. Starting from the x-coordinate of P , we do λ
2 consecutive x-doublings

with
⎨
M + 3

2S
⎩
ρ. We need I + 12M + 4S to form the two quadratic equations

and 2M to solve them in order to obtain P and [2∅λ/2⊆]P in affine coordinates.
We then need I + 4M + 2S to compute the sum and difference of those two
points in affine coordinates again. Then, we perform λ

2 regular doublings, with
⎨
2M + 5

2S
⎩
ρ, and λ

4 mixed additions on average, with
⎨
2M + 5

4S
⎩
ρ. Finally, we

express the point in affine coordinates with I + 2M + S.

3.2 Trading Off More Doublings for x-Doublings

Previously, we explained how to replace approximately 50% of normal doublings
by x-doublings. Since an x-doubling is significantly cheaper than a doubling, it is
natural to try to increase this ratio, i.e. replace more doublings with x-doublings.
A simple idea is for instance to work with three shares instead of two, i.e. fix
k = ∩ρ/3⊆ and write n = 22kn2 + 2kn1 + n0. If we fix Q0 = P , Q1 = [2k]P and
Q2 = [22k]P , we see that [n]P = [n2]Q2 + [n1]Q1 + [n0]Q0. We denote by w-w-
w the generalization of the interleaving with NAFs method, where the NAFw

expansions of n2, n1, and n0 are stacked together as follows
⎤

⎥
n2

n1

n0

⎦

⎪ =

⎤

⎥
wk . . . w0

vk . . . v0
uk . . . u0

⎦

⎪ .

and processed from left to right using Straus’ idea, see Sect. 2.3. The only points
that we precompute are [3]Qi, [5]Qi,. . . , [2w−1 − 1]Qi, for i ∈ [0, 2].

Proposition 2. Let n be an integer of binary length ρ. The average complexity
of the w-w-w interleaving with NAFs method to compute the scalar multiplication

Faster Repeated Doublings on Binary Elliptic Curves 463

[n]P with w > 3 is

⎨
(8w + 32)M + (11w + 26)S

⎩ ρ

3(w + 1)
+ 3 × 2w−2(I+ 2M+ S) + 2I+ 24M+ 7S.

For w = 3, the complexity is simply
⎨
14
3 M + 59

12S
⎩
ρ + 5I + 42M + 19S.

Proof. The proof is similar to Proposition 1. It is clear that we need 2 λ
3 succes-

sive x-doublings and λ
3 normal doublings, plus a certain number of additions,

which depends on the size of the window w. The exact number can be derived via
some probabilistic analysis. Given that the density of the NAFw is 1

w+1 , we may
assume that the probability for a coefficient in a long expansion to be nonzero
is 1

w+1 . It follows that the w-w-w interleaving method requires λ
w+1 mixed addi-

tions on average. To determine the precomputations, we could compute [2]Q0,
[2]Q1, and [2]Q2 in LD coordinates, make those three points affine simultane-
ously, before performing 3(2w−2 −1) LD mixed additions, and converting all the
resulting points to affine simultaneously again. This approach only needs two
inversions. Instead, in our implementation as well as in this analysis, we perform
all the computations directly in affine coordinates for simplicity. The formula
follows by adding all the different contributions.

The complexity is very low, but in practice the main drawback of this approach
is the number of precomputations, which grows as 3 × 2w−2. Another method
along those lines, called x−JSF2, requires less storage and involves splitting n in
four shares as 23kn3+22kn2+2kn1+n0 with k = ∩ρ/4⊆. The points Q3 = [23k]P ,
Q2 = [22k]P , Q1 = [2k]P , Q0 = P are determined after 3 λ

4 straight x-doublings.
Four extra bits of information are necessary to fully recover the points. Then we
compute the JSF expansions of n3 and n2 and of n1 and n0, together with the
precomputed affine points Q3 ± Q2, and Q1 ± Q0. We then need λ

4 regular LD
doublings as well as λ

4 mixed additions. The following result follows immediately.

Proposition 3. Let n be an integer of binary length ρ. The average complexity
of the x-JSF2 method to compute the scalar multiplication [n]P is

⎨
9
2M + 19

4 S
⎩
ρ + 4I + 40M + 13S.

Proof. We perform 3 λ
4 x-doublings, then need I + 30M + 8S to recover the four

points Q0, Q1, Q2, and Q3 in affine coordinates. We need 2(I + 4M + 2S) to
compute Q3 ± Q2 and Q1 ± Q0. Then, we perform λ

4 regular doublings and λ
4

mixed additions on average. Finally, we express the point in affine coordinates
with I + 2M + S.

Tests show that the x-JSF2 achieves a speed-up close to 18 % over the fastest
known method in F2571 , i.e. Montgomery’s method. See Sect. 5 for details.

464 C. Doche and D. Sutantyo

3.3 Trading Off Even More Doublings for x-Doublings

In some sense, the x-JSF2 relies on interleaving with JSFs. Generalizing this idea,
the x-JSFt uses 2t shares, each of size ρ/2t bits, and needs 2t−1

2t x-doublings and
1
2t regular doublings. Arranging the scalars two by two, and computing their cor-
responding JSF expansions, we see that λ

4 mixed additions are necessary on aver-
age, provided that we precompute 2t−1 pairs of points of the form Q2i+1±Q2i.

To further reduce the number of regular doublings without using precom-
putations, we turn our attention to a method first described by de Rooij, but
credited to Bos and Coster [10]. As previously, write n in base 2k, for a well
chosen k. It follows that [n]P = [nt−1]Qt−1 + · · · + [n0]Q0, where Qi = [2ki]P .

The main idea of the Bos–Coster method is to sort the shares in decreasing
order according to their coefficients and to recursively apply the relation

[n1]Q1 + [n2]Q2 = [n1](Q1 + [q]Q2) + [n2 − qn1]Q2

where n2 > n1 and q = ∩n2/n1⊆. The process stops when there is only one
nonzero scalar remaining. Because the coefficients are roughly of the same size
throughout the process, we have q = 1 at each step almost all the time. This
implies that [n]P can be computed almost exclusively with additions once the
shares Qi’s are obtained via x-doublings.

Clearly, this approach requires k(t − 1) successive x-doublings and t point
reconstructions. The precise number of additions involved is much harder to ana-
lyze but can be approximated by λ

log k for reasonable values of k. So, with the
Bos–Coster method, we have replaced almost all the doublings by x-doublings,
but one detail plays against us. Most of the additions that we need are full
additions and not mixed additions as it was the case for the x-JSF and inter-
leaving with NAFs. Indeed, even if the different points Q0, . . . , Qt−1 are initially
expressed in affine coordinates, then after a few steps of the algorithm, it is no
longer the case and subsequent additions need to be performed in full. Those full
additions are too expensive to make this scheme competitive with Montgomery’s
method.

Next, we investigate Yao’s method [29]. As for the previous approach, we
express n in base 2k as (nt−1 . . . n0)2k and we consider the points Qi = [2ki]P ,
for i = 0, . . . , t − 1, obtained with x-doublings only. Note that we can rewrite
the sum [n]P = [nt−1]Qt−1 + · · · + [n0]Q0 as

[n]P =
2k−1∑

j=1

[j]
(∑

ni=j

Qi

)
.

We deduce the following algorithm. Starting from T = P∗, R = P∗, and j =
2k −1, we repeat R = R+Qi for each i such that ni = j, followed by T = T +R
and j = j − 1 until j = 0.

To update R, we use mixed additions, but the statement T = T +R requires a
full LD addition. Therefore, the complexity of this approach is essentially k(t−1)
successive x-doublings, t point reconstructions,

⎨
1 − 1

2k

⎩
t mixed additions on

Faster Repeated Doublings on Binary Elliptic Curves 465

average, and 2k full additions. In order to minimize the number of full additions,
we need to keep k low, which means increasing t. This increases the number of
mixed additions. Also it is quite expensive to retrieve a point in affine coordinates
from its X, Z-coordinates and the last bit of y/x. As explained in Sect. 3.1, we
need H+7M+2S per additional point Qi to fully recover it in affine coordinates.
This proves to be too much and all the parameters k that we tried failed to
introduce any improvement over Montgomery’s method.

3.4 Generic Protocol Setup Compatible with x-doublings

The purpose of this article is to evaluate the relevance of x-doublings to perform
a scalar multiplication, not to precisely describe how to use this operation in
a specific protocol. However, it seems that the most realistic setup to use one
of the schemes presented in Sects. 3.1 and 3.2 is for the owner of a point P to
precompute and store the last bit bk of y2k/x2k , for all k ∈ [0, d + 1]. This of
course is done only once at the very beginning and does not affect the security
of the scheme. Since P is public, anybody can perform the computations and
retrieve those bits. The other party can then access x1, the x-coordinate of P ,
as well as a few bits bk. At most four bits are sufficient to deliver a significant
speed-up with the x-JSF2 approach, see Sect. 5. The choice of those bits does
not reveal anything on the scalar n except maybe its size, which we do not see
as a problem.

4 Affine Precomputations with Sole Inversion in Char 2

The other contribution of this paper is a generalization of the work of Dahmen
et al. [9] to precompute all the affine points required by the NAFw method
with just one inversion. Indeed, starting from the affine point P , Dahmen et
al. show how to obtain [3]P , [5]P ,. . . , [2t − 1]P also in affine coordinates with
I + (10t − 11)M + 4tS. But their work only addresses the case of large odd
characteristic.

With a generalized scheme, we can precompute all the points necessary for
the w-w-w interleaving with NAFs method with just three inversions instead of
3×2w−2, using affine arithmetic. We mimic their approach and follow three easy
steps. First, we compute all the denominators involved. Then we apply Mont-
gomery’s inversion trick [19] that combines j inversions in F2d at the expense
of one inversion and 3j − 3 field multiplications. Finally, we reconstruct all the
points. The total complexity to compute [2]P , [3]P , [5]P , . . . , [2t−1]P for t > 2
is I + (11t − 13)M + 2tS. See the Appendix for the actual algorithm. When we
only need [3]P , for instance for the NAF3, we compute [3]P directly following
the approach explained in [7]. Note however that I + 6M + 4S are enough to
determine [3]P , saving one multiplication.

466 C. Doche and D. Sutantyo

5 Tests and Results

To validate the use of the x-doubling operation and the methods described in
Sect. 3, we have implemented all of them in C++ using NTL 6.0.0 [22] built on
top of GMP 5.1.2 [13]. The program is compiled and executed on a quad core
i7-2620 at 2.70Ghz.

In the following, we test some of the techniques described in Sects. 2 and 3 to
perform a scalar multiplication on a random curve defined over F2d for d = 233,
409, and 571. Namely, we compare the following methods: Montgomery (Mont.),
window NAF in LD coordinates with w ∈ [2, 6] (NAFw), x-JSF, x-JSF2, and
interleaving with NAFs (w-w-w). Note that NAFw and w − w − w are slightly
different variants where the precomputations are obtained with the sole inversion
technique, explained in Sect. 4. We generate a total of 100 curves of the form

E : y2 + xy = x3 + x2 + a6,

where a6 is a random element of F
∞
2d . For each curve, a random point P is

created as well as 100 random scalars selected in the interval [0, 2d + 2d/2 − 1].
We assume that the point P needs to be decompressed for all the methods. The
different methods are then tested against the same curves, points, and scalars.
The computations are timed over 10 repetitions.

Together with the average timings of the best methods in each category,
we present the average number of basic operations required to compute [n]P .
Those basic operations, i.e. inversion, half-trace computation, multiplication,
and squaring in F2d are respectively represented by Id, Hd, Md, and Sd. In any
case we have, Id/Md between 8 and 10, and Sd/Md between 0.14 and 0.23.

See Table 1 for the actual figures, which features timings and operation counts
of the x-JSF, the x-JSF2, as well as the fastest interleaving with NAFs methods
among w-w-w, for w ∈ [2, 5] and among w − w − w again for w ∈ [2, 5]. Table 1
also includes the number of stored points required by each method (#P), and
the improvement, if any, over Montgomery’s method and the fastest window
NAF method.

With our implementation, the x-JSF2 breaks even with Montgomery’s
method around d = 233 and enjoys a much bigger speed-up for larger degrees,
reflecting Proposition 3. The interleaving with NAFs method 5-5-5 is the fastest
of all for d = 571, with a speed-up that is close to 20%.

Remark 1. A careful reader would have noticed that for d = 233, 3-3-3 is faster
than 4-4-4. This is surprising for two reasons. First, 4-4-4 is faster than 3-3-3
Second, it is more efficient, given the value of the ratio I233/M233, to deter-
mine the precomputations using the single inversion approach. So 4-4-4 should
be faster. This is confirmed by an analysis of the average numbers of multiplica-
tions and squarings required. Indeed, we need 1112M + 1120S for 4-4-4, against
1143M+1165S for 3-3-3. We observe the same phenomenon for degrees d = 163
and d = 283, but not for d = 409 or d = 571. We explain this by the large num-
ber of variables needed to determine the precomputations when w > 3. See the
Appendix for details. For w = 3, the formulas are simpler, requiring much less

Faster Repeated Doublings on Binary Elliptic Curves 467

Table 1. Comparison of different methods for degrees 233, 409, and 571

Degree 233: I233/M233 = 8.651 and S233/M233 = 0.226
#P I233 H233 M233 S233 Time (ms) Speed-up (%)

Mont. 1 2 0 1402 928 1.102 0
NAF5 8 10 0 1253 1360 1.221 -10.81
NAF5 8 3 0 1312 1368 1.241 -12.66
x-JSF 4 3 2 1181 1229 1.118 -1.51
x-JSF2 8 4 4 1094 1126 1.053 4.43
4-4-4 12 14 3 1043 1108 1.079 2.05
3-3-3 6 5 3 1143 1165 1.083 1.70

Degree 409: I409/M409 = 9.289 and S409/M409 = 0.140
#P I409 H409 M409 S409 Time (ms) Speed-up (%)

Mont. 1 2 0 2457 1631 4.289 -0.68
NAF5 8 10 0 2192 2386 4.267 -0.16
NAF5 8 3 0 2251 2394 4.260 0
x-JSF 4 3 2 2061 2153 3.928 7.79
x-JSF2 8 4 4 1885 1962 3.650 14.33
4-4-4 12 14 3 1793 1929 3.667 13.94
4-4-4 12 5 3 1862 1941 3.752 11.94

Degree 571: I571/M571 = 9.212 and S571/M571 = 0.153
#P I571 H571 M571 S571 Time (ms) Speed-up (%)

Mont. 1 2 0 3430 2280 10.986 0
NAF6 16 18 0 2961 3269 12.154 -10.64
NAF6 16 3 0 3092 3285 12.464 -13.46
x-JSF 4 3 2 2871 3004 10.153 7.58
x-JSF2 8 4 4 2618 2735 9.014 17.94
5-5-5 24 26 3 2355 2601 8.843 19.51
5-5-5 24 5 3 2532 2625 8.810 19.81

intermediate storage. This overhead of declaring and manipulating extra vari-
ables tends to have less impact for larger degrees because multiplications and
squarings take relatively longer.

6 Conclusion and Future Work

We have shown how to make use of x-doublings to compute a scalar multi-
plication on a binary elliptic curve. Our main approach is to trade off regu-
lar doublings for cheaper x-doublings using classical multi-scalar multiplication
techniques.

Unfortunately, it seems impossible to generalize the use of x-doublings in
large characteristic, since solving quadratic equations is much slower than in
characteristic 2.

A possible generalization of this work would be to investigate which endo-
morphisms different from doublings enjoy similar properties, i.e. have an x-
coordinate that can be computed efficiently and independently from the
y-coordinate. Certain endomorphisms [k]P that can be split as the product of

468 C. Doche and D. Sutantyo

two isogenies on special families of curves are known to have this property [12].
It would be interesting to see what kind of improvements those endomorphisms
could bring when it comes to computing a scalar multiplication.

Acknowledgments. We would like to thank Tanja Lange and Daniel J. Bernstein
as well as the reviewers of this article for their numerous comments and suggestions,
which greatly contributed to improve its contents.

Appendix: Affine Precomputations with Sole Inversion in
Characteristic 2

Let P = (x1, y1) be a point on the curve y2 + xy = x3 + a2x
2 + a6. For t > 2,

the following procedure computes the points [2]P , [3]P , [5]P, . . . , [2t − 1]P with
I + (11t − 13)M + 2tS.

Step 1. Computing all the denominators di’s to be inverted

d1 ← x1, s1 ← d2
1, c1 ← s1 · d1, n1 ← s1 + y1

A ← n1(n1 + d1), d2 ← A + (d1 + a2)s1
B ← d1 · d2, C ← B + s21, n2 ← n1 · d2 + C
s2 ← d2

2, A ← A · s2, c2 ← s2 · d2, d3 ← A + n2(n2 + B) + c2
for i = 3 to t − 1 do

B ← B · di, C ← C · ci−1, ni ← ni−1 · di + B + C
si ← d2

i , A ← A · si, ci ← si · di, di+1 ← A + ni(ni + B) + ci
end for

Step 2. Montgomery’s inversion trick

B ← B · dt, INV ← B−1, e1 ← c1
for i = 2 to t − 1 do

ei ← ei−1 · ci
end for

Step 3. Reconstructing the points

for i = t down to 2 do
ji ← INV · ei−1, INV ← INV · di

end for
j1 ← INV
λ2 ← j1 · n1

x2 ← λ2
2 + λ2 + a2

y2 ← λ2(x2 + x1) + x2 + y1

λ3 ← j2(y2 + y1)
x3 ← λ2

3 + λ3 + x2 + x1 + a2,
y3 ← λ3(x2 + x3) + x3 + y2

for i = 4 to t + 1 do
λ2i−3 ← ji−1(y2 + y2i−5)
x2i−3 ← λ2

2i−3 + λ2i−3 + x2 + x2i−5 + a2

y2i−3 ← λ2i−3(x2 + x2i−3) + x2i−3 + y2

end for

Faster Repeated Doublings on Binary Elliptic Curves 469

References

1. Antipa, A., Brown, D., Gallant, R.P., Lambert, R., Struik, R., Vanstone, S.A.:
Accelerated verification of ECDSA signatures. In: Preneel, B., Tavares, S. (eds.)
SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

2. Avanzi, R.M.: Another look at square roots (and other less common operations) in
fields of even characteristic. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007.
LNCS, vol. 4876, pp. 138–154. Springer, Heidelberg (2007)

3. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren,
F.: Handbook of elliptic and hyperelliptic curve cryptography. In: Avanzi, R.M.,
Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F. (eds.)
Discrete Mathematics and its Applications. Chapman & Hall, Boca Raton (2005)

4. Bernstein, D.J., Lange, T.: Explicit-formulas database. http://www.hyperelliptic.
org/EFD/

5. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. London
Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press,
Cambridge (1999)

6. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
London Mathematical Society Lecture Note Series, vol. 317. Cambridge University
Press, Cambridge (2005)

7. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multipli-
cations in elliptic curve cryptography. Des. Codes Crypt. 39(2), 189–206 (2006)

8. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

9. Dahmen, E., Okeya, K., Schepers, D.: Affine precomputation with sole inversion
in elliptic curve cryptography. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.)
ACISP 2007. LNCS, vol. 4586, pp. 245–258. Springer, Heidelberg (2007)

10. de Rooij, P.: Efficient exponentiation using precomputation and vector addition
chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399.
Springer, Heidelberg (1995)

11. Doche, C.: Exponentiation. In: [3], pp. 145–168 (2005)
12. Doche, Ch., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decom-

positions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 191–206. Springer, Heidelberg (2006)

13. Free Software Foundation. GNU Multiple Precision Library. http://gmplib.org/
14. Hankerson, D., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-

raphy. Springer, Heidelberg (2003)
15. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y.,

Okamoto, E., Xing, Ch. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

16. López, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF (2m) without
Precomputation. In: Koç, C., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

17. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212. Springer,
Heidelberg (1999)

18. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
http://gmplib.org/

470 C. Doche and D. Sutantyo

19. Montgomery, P.L.: Speeding the Pollard and elliptic curves methods of factorisa-
tion. Math. Comp. 48, 243–264 (1987)

20. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using
addition-subtraction chains. Inf. Theor. Appl. 24, 531–543 (1990)

21. Reitwiesner, G.: Binary arithmetic. Adv. Comput. 1, 231–308 (1962)
22. Shoup, V.: NTL: A Library for doing Number Theory. http://www.shoup.net/ntl
23. Solinas, J.A.: Improved algorithms for arithmetic on anomalous binary curves.

Technical Report CORR 99–46, CACR. http://cacr.uwaterloo.ca/techreports/
1999/corr99-46.pdf (1999)

24. Solinas, J.A.: Low-weight binary representations for pairs of integers. Combina-
torics and Optimization Research Report CORR 2001–41, University of Waterloo
(2001)

25. Stam, M.: On montgomery-like representations for elliptic curves over GF(2k). In:
Desmedt, Y.G. (ed.) Public Key Cryptography — PKC 2003. LNCS, vol. 2567.
Springer, Heidelberg (2003)

26. Straus, E.G.: Addition chains of vectors (problem 5125). Amer. Math. Mon. 70,
806–808 (1964)

27. Takagi, T., Yen, S.-M., Wu, B.-C.: Radix-r non-adjacent form. In: Zhang, K.,
Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 99–110. Springer, Heidelberg
(2004)

28. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography. Discrete
Mathematics and its Applications. Chapman & Hall, Boca Raton (2003)

29. Yao, A.C.C.: On the evaluation of powers. SIAM J. Comput. 5(1), 100–103 (1976)

http://www.shoup.net/ntl
http://cacr.uwaterloo.ca/techreports/1999/corr99-46.pdf
http://cacr.uwaterloo.ca/techreports/1999/corr99-46.pdf

Montgomery Multiplication
Using Vector Instructions

Joppe W. Bos, Peter L. Montgomery, Daniel Shumow,
and Gregory M. Zaverucha(B)

Microsoft Research, Redmond, USA
{jbos,peter.montgomery,danshu,gregz}@microsoft.com

Abstract. In this paper we present a parallel approach to compute
interleaved Montgomery multiplication. This approach is particularly
suitable to be computed on 2-way single instruction, multiple data plat-
forms as can be found on most modern computer architectures in the
form of vector instruction set extensions. We have implemented this
approach for tablet devices which run the x86 architecture (Intel Atom
Z2760) using SSE2 instructions as well as devices which run on the ARM
platform (Qualcomm MSM8960, NVIDIA Tegra 3 and 4) using NEON
instructions. When instantiating modular exponentiation with this par-
allel version of Montgomery multiplication we observed a performance
increase of more than a factor of 1.5 compared to the sequential imple-
mentation in OpenSSL for the classical arithmetic logic unit on the Atom
platform for 2048-bit moduli.

1 Introduction

Modular multiplication of large integers is a computational building block used
to implement public-key cryptography. For schemes like RSA [34], ElGamal [11]
or DSA [36], the most common size of the modulus for parameters in use is large;
1024 bits long [20,28]. The typical modulus size will increase to 2048 and 3072
bits over the coming years, in order to comply with the current 112- and 128-
bit security standard (cf. [31]). When computing multiple modular multiplica-
tions, Montgomery multiplication [30] provides a speed up to this core arithmetic
operation. As RSA-based schemes are arguably the most frequently computed
asymmetric primitives today, improvements to Montgomery multiplication are
of immediate practical importance.

Many modern computer architectures provide vector instruction set exten-
sions in order to perform single instruction, multiple data (SIMD) operations.
Example platforms include the popular x86 architecture as well as the ARM
platform that can be found in almost all modern smartphones and tablets. The
research community has studied ways to reduce the latency of Montgomery mul-
tiplication by parallelizing this computation. These approaches vary from using
the SIMD paradigm [8,10,18,23] to the single instruction, multiple threads par-
adigm using a residue number system [14,29] as described in [4,19] (see Sect. 2.3
for a more detailed overview).

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 471–489, 2014.
DOI: 10.1007/978-3-662-43414-7 24, c∞ Springer-Verlag Berlin Heidelberg 2014

472 J. W. Bos et al.

In this paper we present an approach to split the Montgomery multiplica-
tion into two parts which can be computed in parallel. We flip the sign of the
precomputed Montgomery constant and accumulate the result in two separate
intermediate values that are computed concurrently. This avoids using a redun-
dant representation, for example suggested in the recent SIMD approach for
Intel architectures [18], since the intermediate values do not overflow to an addi-
tional word. Moreover, our approach is suitable for implementation using vector
instruction set extensions which support 2-way SIMD operations, i.e., a single
instruction that is applied to two data segments simultaneously. We implemented
the sequential Montgomery multiplication algorithm using schoolbook multipli-
cation on the classical arithmetic logic unit (ALU) and the parallel approach on
the 2-way SIMD vector instruction set of both the x86 (SSE2) and the ARM
(NEON) processors. Our experimental results show that on both 32-bit x86 and
ARM platforms, widely available in a broad range of mobile devices, this parallel
approach manages to outperform our classical sequential implementation.

Note, that the approach and implementation used in the GNU multiple pre-
cision arithmetic library (GMP) [13], is faster than the one presented in this
paper and the one used in OpenSSL [32] on some Intel platforms we tested. This
approach does not use the interleaved Montgomery multiplication but first com-
putes the multiplication, using asymptotically fast method like Karatsuba [25],
followed by the Montgomery reduction. GMP uses dedicated squaring code which
is not used in our implementation. Note, however, that GMP is not a crypto-
graphic library and does not strive to provide constant-time implementations.
See Sect. 3.1 for a more detailed discussion of the different approaches.

2 Preliminaries

In this section we recall some of the facts related to SIMD instructions and
Montgomery multiplication. In Sect. 2.3 we summarize related work of parallel
software implementations of Montgomery multiplication.

2.1 SIMD Instruction Set Extensions

Many processors include instruction set extensions. In this work we mainly focus
on extensions which support vector instructions following the single instruction,
multiple data (SIMD) paradigm. The two platforms we consider are the x86 and
the ARM, and the instruction set extensions for these platforms are outlined
below. The main vector instructions used in this work (on both processor types)
are integer multiply, shift, bitwise AND, addition, and subtraction.

The x86 SIMD Instruction Set Extensions. SIMD operations on x86 and
x64 processors have been supported in a number of instruction set extensions,
beginning with MMX in 1997. This work uses the streaming SIMD extensions 2
(SSE2) instructions, introduced in 2001. SSE2 has been included on most Intel
and AMD processors manufactured since then. We use “SSE” to refer to SSE2.

Montgomery Multiplication Using Vector Instructions 473

Algorithm 1. The radix-r interleaved Montgomery multiplication [30] method.

Input:

{
A,B,M, µ such that A =

∑n−1
i=0 air

i, 0 ∈ ai < r, 0 ∈ A,B < M, 2 � M,
rn−1 ∈ M < rn, gcd(r,M) = 1, µ = −M−1 mod r.

Output: C ← A · B · r−n mod M such that 0 ∈ C < M .
1: C ∪ 0
2: for i = 0 to n − 1 do
3: C ∪ C + ai · B
4: q ∪ µ · C mod r
5: C ∪ (C + q · M)/r
6: if C ⊕ M then
7: C ∪ C − M
8: return C

SSE provides 128-bit SIMD registers (eight registers on x86 and sixteen registers
on x64) which may be viewed as vectors of 1-, 8-, 16-, 32-, or 64-bit integer
elements operating using 128-, 16-, 8-, 4-, or 2-way SIMD respectively. Vector
operations allow multiple arithmetic operations to be performed simultaneously,
for example PMULLUDQ multiplies the low 32-bits of a pair of 64-bit integers and
outputs a pair of 64-bit integers. For a description of SSE instructions, see [22].

The ARM NEON SIMD Engine. Some ARM processors provide a set of
additional SIMD operations, called NEON. The NEON register file can be viewed
as either sixteen 128-bit registers or 32 64-bit registers. The NEON registers can
contain integer vectors, as in SSE. The operations provided by NEON are com-
parable to those provided by SSE. For example, the vector multiply instruction
vmul takes two pairs of 32-bit integers as input and produces a pair of 64-bit
outputs. This is equivalent to the SSE2 instruction PMULUDQ, except the inputs
are provided in 64-bit registers, rather than 128-bit registers. Another example,
but without an SSE equivalent is the vmlal instruction which performs a vmull
and adds the results to a 128-bit register (treated as two 64-bit integers). For a
complete description of the NEON instructions, see [3].

2.2 Montgomery Arithmetic

Montgomery arithmetic [30] consists of transforming operands into a Mont-
gomery representation, performing the desired computations on these trans-
formed numbers, then converting the result (also in Montgomery representation)
back to the regular representation. Due to the overhead of changing representa-
tions, Montgomery arithmetic is best when used to replace a sequence of modular
multiplications, since the overhead is amortized.

The idea behind Montgomery multiplication is to replace the expensive divi-
sion operations required when computing the modular reduction by cheap shift
operations (division by powers of two). Let w denote the word size in bits. We
write integers in a radix r system, for r = 2w where typical values of w are
w = 32 or w = 64. Let M be an n-word odd modulus such that rn−1 ≤ M < rn.

474 J. W. Bos et al.

The Montgomery radix rn is a constant such that gcd(rn,M) = 1. The Mont-
gomery residue of an integer A ∈ Z/MZ is defined as Ã = A · rn mod M . The
Montgomery product of two residues is defined as M(Ã, B̃) = Ã·B̃ ·r−n mod M .
Algorithm 1 outlines interleaved Montgomery multiplication, denoted as coarsely
integrated operand scanning in [26], where the multiplication and reduction are
interleaved. Note that residues may be added and subtracted using regular mod-
ular algorithms since Ã ± B̃ ≡ (A · rn) ± (B · rn) ≡ (A ± B) · rn (mod M).

2.3 Related Work

There has been a considerable amount of work related to SIMD implementations
of cryptography. The authors of [6,12,35] propose ways to speed up cryptography
using the NEON vector instructions. Intel’s SSE2 vector instruction set extension
is used to compute pairings in [15] and multiply big numbers in [21]. Simultane-
ously, people have studied techniques to create hardware and software implemen-
tations of Montgomery multiplication. We now summarize some of the techniques
to implement Montgomery multiplication concurrently in a software implemen-
tation. A parallel software approach describing systolic (a specific arrangement
of processing units used in parallel computations) Montgomery multiplication is
described in [10,23]. An approach using the vector instructions on the Cell micro-
processor is considered in [8]. Exploiting much larger parallelism using the single
instruction multiple threads paradigm, is realized by using a residue number sys-
tem [14,29] as described in [4]. This approach is implemented for the massively
parallel graphics processing units in [19]. An approach based on Montgomery
multiplication which allows one to split the operand into two parts, which can
be processed in parallel, is called bipartite modular multiplication and is intro-
duced in [24]. More recently, the authors of [18] describe an approach using the
soon to be released AVX2 SIMD instructions, for Intel’s Haswell architecture,
which uses 256-bit wide vector instructions. The main difference between the
method proposed in this work and most of the SIMD approaches referred to
here is that we do not follow the approach described in [21]. We do not use a
redundant representation to accumulate multiple multiplications. We use a dif-
ferent approach to make sure no extra words are required for the intermediate
values (see Sect. 3).

Another approach is to use the SIMD vector instructions to compute multiple
Montgomery multiplications in parallel. This can be useful in applications where
many computations need to be processed in parallel such as batch-RSA. This
approach is studied in [33] using the SSE2 vector instructions on an Pentium 4
and in [7] on the Cell processor.

3 Montgomery Multiplication Using SIMD Extensions

Montgomery multiplication, as outlined in Algorithm 1, does not lend itself to
parallelization directly. In this section we describe an algorithm capable of com-
puting the Montgomery multiplication using two threads running in parallel

Montgomery Multiplication Using Vector Instructions 475

Algorithm 2. A parallel radix-232 interleaved Montgomery multiplication algo-
rithm. Except for the computation of q, the arithmetic steps in the outer for-loop
performed by both Computation 1 and Computation 2 are identical. This app-
roach is suitable for 32-bit 2-way SIMD vector instruction units. Note that the
value of the precomputed Montgomery inverse µ is different (µ = M−1 mod 232)
than the one used in Algorithm 1 (µ = −M−1 mod 232).

Input:

⎡
⎣

⎤

A,B,M, µ such that A =
∑n−1

i=0 ai2
32i, B =

∑n−1
i=0 bi2

32i,

M =
∑n−1

i=0 mi2
32i, 0 ∈ ai, bi < 232, 0 ∈ A,B < M,

232(n−1) ∈ M < 232n, 2 � M, µ = M−1 mod 232.

Output: C ← A · B · 2−32n mod M such that 0 ∈ C < M.

Computation 1 Computation 2

di = 0 for 0 ∈ i < n ei = 0 for 0 ∈ i < n
for j = 0 to n − 1 do for j = 0 to n − 1 do

q ∪ ((µ · b0) · aj + µ · (d0 − e0)) mod 232

t0 ∪ aj · b0 + d0 t1 ∪ q · m0 + e0 // Note that t0 ← t1 (mod 232)

t0 ∪
⎦

t0
232

⌋

t1 ∪
⎦

t1
232

⌋

for i = 1 to n − 1 do for i = 1 to n − 1 do
p0 ∪ aj · bi + t0 + di p1 ∪ q · mi + t1 + ei

t0 ∪
⌊ p0
232

⌋
t1 ∪

⌊ p1
232

⌋

di−1 ∪ p0 mod 232 ei−1 ∪ p1 mod 232

dn−1 ∪ t0 en−1 ∪ t1
◦ ⊆
C ∪ D − E // where D =

n−1∑

i=0

di2
32i, E =

n−1∑

i=0

ei2
32i

if C < 0 do C ∪ C + M

which perform identical arithmetic steps. Hence, this algorithm can be imple-
mented efficiently using common 2-way SIMD vector instructions. For illustrative
purposes we assume a radix-232 system, but this can be adjusted accordingly to
other choices of radix.

As can be seen from Algorithm 1 there are two 1×n → (n+1) limb (aiB and
qM) and a single 1×1 → 1 limb (µC mod r) multiplications per iteration. These
three multiplications depend on each other, preventing concurrent computation.
In order to remove this dependence, note that for the computation of q only
the first limb c0 of C =

∑n−1
i=0 ci232i is required. Hence, if one is willing to

compute the updated value of c0 twice then the two larger 1 × n → (n + 1)
limb multiplications become independent of each other and can be computed in
parallel. More precisely, lines 3, 4, and 5 of Algorithm 1 can be replaced with

q ← ((c0 + ai · b0)µ) mod r

C ← (C + ai · B + q · M)/r

ensuring that the two larger multiplications do not depend on each other.

476 J. W. Bos et al.

The second idea is to flip the sign of the Montgomery constant µ: i.e. instead
of using −M−1 mod 232 (as in Algorithm 1) we use µ = M−1 mod 232 (the
reason for this choice is outlined below). When computing the Montgomery
product C = A ·B · 2−32n mod M , for an odd modulus M such that 232(n−1) ≤
M < 232n, one can compute D, which contains the sum of the products aiB, and
E, which contains the sum of the products qM , separately. Due to our choice
of the Montgomery constant µ we have C = D − E ≡ A · B · 2−32n (mod M),
where 0 ≤ D,E < M : the maximum values of both D and E fit in an n-limb
integer, avoiding a carry that might result in an (n + 1) limb long integer as in
Algorithm 1. This approach is outlined in Algorithm 2.

At the start of every iteration of j the two separate computations need some
communication in order to compute the new value of q. In practice, this com-
munication requires extracting the values d0 and e0, the first limb of D and
E respectively, from the SIMD vector. No such extracting is required in the
inner-most loop over the i values in Algorithm 2. The value of q is computed as

q = ((µ · b0) · aj + µ · (d0 − e0)) mod 232 = µ(aj · b0 + c0) mod 232

since c0 = d0 − e0. Note that one can compute (µ · b0) mod 232 at the beginning
of the algorithm once and reuse it for every iteration of the for-loop.

Except for the computation of q, all arithmetic computations performed by
Computation 1 and Computation 2 are identical but work on different data.
This makes Algorithm 2 suitable for implementation using 2-way 32-bit SIMD
vector instructions. This approach benefits from 2-way SIMD 32 × 32 → 64-
bit multiplication and matches exactly the 128-bit wide vector instructions as
present in SSE and NEON. Changing the radix used in Algorithm 2 allows
implementation with larger or smaller vector instructions. For example, if a
64 × 64 → 128-bit vector multiply instruction is provided in a future version of
AVX, implementing Algorithm 2 in a 264-radix system with 256-bit wide vector
instructions could potentially speed-up modular multiplication by a factor of up
to two on 64-bit systems (see Sect. 3.1).

At the end of Algorithm 2, there is a conditional addition, as opposed to a
conditional subtraction in Algorithm 1, due to our choice of µ. The condition
is whether D − E is negative (produces a borrow), in this case the modulus
must be added to make the result positive. This conditional addition can be
converted into straight-line code by creating a mask depending on the borrow
and selecting either D − E (if there is no borrow) or D − E + M (if there is a
borrow) so that the code runs in constant-time (an important characteristic for
side-channel resistance [27]).

3.1 Expected Performance

The question remains if Algorithm 2, implemented for a 2-way SIMD unit, out-
performs Algorithm 1, implemented for the classical ALU. This mainly depends
on the size of the inputs and outputs of the integer instructions, how many

Montgomery Multiplication Using Vector Instructions 477

Table 1. A simplified comparison, only stating the number of arithmetic operations
required, of the expected performance of Montgomery multiplication when using a 32n-
bit modulus for a positive even integer n. The left side of the table shows arithmetic
instruction counts for the sequential algorithm using the classical ALU (Algorithm 1)
and when using 2-way SIMD instructions with the parallel algorithm (Algorithm 2).
The right side of the table shows arithmetic instruction counts when using one level of
Karatuba’s method [25] for the multiplication as analyzed in [17]

Instruction Classical 2-way SIMD Karatsuba Instruction
32-bit 64-bit 32-bit 32-bit

add - - n 13
4
n2 + 8n + 2 add

sub - - n 7
4
n2 + n mul

shortmul n n
2

2n
muladd 2n n -
muladdadd 2n(n − 1) n(n

2
− 1) -

SIMD muladd - - n
SIMD muladdadd - - n(n − 1)

instructions can be dispatched per cycle, and the number of cycles an instruc-
tion needs to complete. In order to give a (simplified) prediction of the perfor-
mance we compute the expected performance of a Montgomery multiplication
using a 32n-bit modulus for a positive even integer n. Let muladdw(e, a, b, c)
and muladdaddw(e, a, b, c, d) denote the computation of e = a × b + c and
e = a × b + c + d, respectively, for 0 ≤ a, b, c, d < 2w and 0 ≤ e < 22w as a
basic operation on a compute architecture which works on w-bit words. Some
platforms have these operations as a single instruction (e.g., on some ARM
architectures) or they must be implemented using a multiplication and addi-
tion(s) (as on the x86 platform). Furthermore, let shortmulw(e, a, b) denote
e = a × b mod 2w: this only computes the lower word of the result and can be
done faster (compared to a full product) on most platforms.

Table 1 summarizes the expected performance of Algorithm 1 and 2 in terms
of arithmetic operations only (e.g., the data movement, shifting and masking
operations are omitted). Also the operations required to compute the final con-
ditional subtraction or addition have been omitted. When solely considering
the muladd and muladdadd instructions it becomes clear from Table 1 that the
SIMD approach uses exactly half of the number of operations compared to the
32-bit classical implementation and almost twice as many operations compared
to the classical 64-bit implementations. However, the SIMD approach requires
more operations to compute the value of q every iteration and has various other
overhead (e.g., inserting and extracting values from the vector). Hence, when
assuming that all the characteristics of the SIMD and classical (non-SIMD)
instructions are identical, which will not be the case on all platforms, then we
expect Algorithm 2 running on a 2-way 32-bit SIMD unit to outperform a clas-
sical 32-bit implementation using Algorithm 1 by at most a factor of two while
being roughly twice as slow when compared to a classical 64-bit implementation.

478 J. W. Bos et al.

Inherently, the interleaved Montgomery multiplication algorithm (as used
in this work) is not compatible with asymptotically faster integer multiplica-
tion algorithms like Karatsuba multiplication [25]. We have not implemented
the Montgomery multiplication by first computing the multiplication using such
faster methods, and then computing the modular reduction, using SIMD vector
instructions in one or both steps. In [17], instruction counts are presented when
using the interleaved Montgomery multiplication, as used in our baseline imple-
mentation, as well as for an approach where the multiplication and reduction are
computed separately. Separating these two steps makes it easier to use a squar-
ing algorithm. In [17] a single level of Karatsuba on top of Comba’s method [9]
is considered: the arithmetic instruction counts are stated in Table 1. For 1024-
bit modular multiplication (used for 2048-bit RSA decryption using the CRT),
the Karatsuba approach can reduce the number of multiplication and addition
instructions by a factor 1.14 and 1.18 respectively on 32-bit platforms compared
to the sequential interleaved approach. When comparing the arithmetic instruc-
tions only, the SIMD approach for interleaved Montgomery multiplication is 1.70
and 1.67 times faster than the sequential Karatsuba approach for 1024-bit mod-
ular multiplication on 32-bit platforms. Obviously, the Karatsuba approach can
be sped up using SIMD instructions as well.

The results in Table 1 are for Montgomery multiplication only. It is known
how to optimize (sequential) Montgomery squaring [16], but as far as we are
aware, not how to optimize squaring using SIMD instructions. Following the
analysis from [17], the cost of a Montgomery squaring is 11n+14

14n+8 and 3n+5
4n+2 the

cost of a Montgomery multiplication when using the Karatsuba or interleaved
Montgomery approach on n-limb integers. For 1024-bit modular arithmetic (as
used in RSA-2048 with n = 32) this results in 0.80 (for Karatsuba) and 0.78 (for
interleaved). For RSA-2048, approximately 5/6 of all operations are squarings:
this highlights the potential of an efficient squaring implementation.

4 Implementation Results

We have implemented interleaved Montgomery modular multiplication (Algo-
rithm 1) as a baseline for comparison with the SIMD version (Algorithm 2).
In both implementations, the final addition/subtraction was implemented using
masking such that it runs in constant time, to resist certain types of side-channel
attacks using timing and branch prediction. Since the cost of this operation was
observed to be a small fraction of the overall cost, we chose not to write a sepa-
rate optimized implementation for operations using only public values (such as
signature verification).

Benchmark Hardware. Our implementations were benchmarked on recent
Intel x86-32, x64 and ARM platforms. On the Intel systems, Windows 7 and Win-
dows 8 were used, and on ARM systems Windows RT was used. The Microsoft

Montgomery Multiplication Using Vector Instructions 479

C/C++ Optimizing Compiler Version 16.10 was used for x86 and x64, and ver-
sion 17.00 was used for ARM.1 Our benchmark systems are the following:

Intel Xeon E31230. A quad core 3.2 GHz CPU on an HP Z210 workstation.
We used SSE2 for Algorithm 2 and also benchmark x86-32 and x86-64 imple-
mentations of Algorithm 1 for comparison.

Intel Atom Z2760. A dual core 1.8 GHz system-on-a-chip (SoC), on an Asus
Vivo Tab Smart Windows 8 tablet.

NVIDIA Tegra T30. A quad core 1.4 GHz ARM Cortex-A9 SoC, on an
NVIDIA developer tablet.

Qualcomm MSM8960. A quad core 1.8 GHz Snapdragon S4 SoC, on a Dell
XPS 10 tablet.

NVIDIA Tegra 4. A quad core 1.91 GHz ARM Cortex-A15 SoC, on an
NVIDIA developer tablet.

We chose to include the Xeon processor to confirm the analysis of Sect. 3.1, that
the x64 implementation should give the best performance, and to compare it
with the SIMD implementation. The other processors are common in tablets
and smartphones, and on these platforms, the SIMD implementation should be
the best available. The performance of 32-bit code is also of interest on 64-bit
systems, since 32-bit crypto libraries are included on 64-bit systems (e.g., on
64-bit Windows), to allow existing x86 applications to run on the 64-bit system
without being ported and recompiled.

On the Xeon system, Intel’s Turbo Boost feature will dynamically increase
the frequency of the processor under high computational load. We found Turbo
Boost had a modest impact on our timings. Since it is a potential source of
variability, all times reported here were measured with Turbo Boost disabled.

Benchmarks. We chose to benchmark the cost of modular multiplication for
512-bit, 1024-bit and 2048-bit moduli, since these are currently used in deployed
cryptography. The 512-bit modular multiplication results may also be interesting
for usage in elliptic curve and pairing based cryptosystems. We created imple-
mentations optimized for these “special” bitlengths as well as generic imple-
mentations, i.e., implementations that operate with arbitrary length inputs.
For comparison, we include the time for modular multiplication with 1024-
and 2048-bit generic implementations. Our x64 baseline implementation has no
length-specific code (we did not observe performance improvements).

We also benchmark the cost of RSA encryption and decryption using the
different modular multiplication routines. We do not describe our RSA imple-
mentation in detail, because it is the same for all benchmarks, but note that: (i)
decryption with an n-bit modulus is done with n/2-bit arithmetic using the Chi-
nese remainder theorem approach, (ii) this is a “raw” RSA operation, taking an
integer as plaintext input, no padding is performed, (iii) no specialized squaring
routine is used, and (iv) the public exponent in our benchmarks is always 216+1.

1 These were the newest versions available for each architecture at the time of writing.

480 J. W. Bos et al.

We compute the modular exponentiation using a windowing based approach. As
mentioned in (iii), we have not considered a specialized Montgomery squaring
algorithm for the sequential or the SIMD algorithms. Using squaring routines
can significantly enhance the performance of our code as discussed in Sect. 3.1.

All of our benchmarks are average times, computed over 105 runs for modular
multiplication, and 100 runs for RSA operations, with random inputs for each
run. With these choices the standard deviation is three percent or less. Note that
the performance results for RSA-1024 are stated for comparison’s sake only, this
80-bit secure scheme should not be used anymore (see NIST SP 800-57 [31]).

x86/x64 Results. In the first 32-bit benchmark (Xeon x86), our implemen-
tation using SIMD instructions is 1.6 to 2.5 times faster than the serial version
(see Table 2). The speed-up of the length-specific SIMD implementation over the
generic implementation is on average a factor 1.4, noticeably more than the factor
1.2 for the baseline. Algorithm 2 results in faster RSA operations as well, which
are roughly sped-up by a factor of two. Our second 32-bit benchmark (Atom
x86) was on average 1.69 times faster than our baseline. This makes our SIMD
algorithm the better option on this platform. However, the speed-up observed
was not as large as our Xeon x86 benchmark. This may be because the Atom has
an in-order instruction scheduler. The 64-bit implementation of Algorithm 1 is
roughly four times as fast as the 32-bit implementation and the SIMD algorithm
(also 32-bit) is right in the middle, roughly twice as slow as the 64-bit algorithm.
This agrees with our analysis from Sect. 3.1. On all platforms the performance
ratio between baseline and SIMD is slightly worse for 512-bit moduli due to the
overhead of using SIMD instructions. Algorithm 2 is still faster than the baseline
for 512-bit moduli on the Xeon x86, Atom and the Snapdragon S4.

ARM Results. On ARM our results are more mixed (see Table 3). First we
note that on the Tegra 3 SoC, our NEON implementation of Algorithm 2 is
consistently worse than the baseline, almost twice as slow. Going back to our
analysis in Sect. 3.1, this would occur if the cost of a vector multiply instruction
(performing two 32-bit multiplies) was about the cost of two non-vector multiply
instructions. This is (almost) the case according to the Cortex-A9 instruction
latencies published by ARM.2 Our efforts to pipeline multiple vector multiply
instructions did not sufficiently pay off – the length-specific implementations
give a 1.27 factor speed-up over the generic implementations, roughly the same
speed-up obtained when we optimize the baseline for a given bitlength (by fully
unrolling the inner loop).

On the newer ARM SoCs in our experiments, the S4 and Tegra 4, the results
are better. On the Snapdragon S4 the SIMD implementation is consistently bet-
ter than the baseline. The NEON length-specific implementations were especially
2 Results of the NEON vmull/vmlal instructions are available after 7 cycles, while

the two 32-bit outputs of the ARM umaal instruction become ready after 4 and 5
cycles [1,2].

Montgomery Multiplication Using Vector Instructions 481

T
a
b
le

2
.
Im

p
le

m
en

ta
ti

o
n

ti
m

in
g
s

in
m

ic
ro

se
co

n
d
s

a
n
d

cy
cl

es
fo

r
x
8
6
/
x
6
4

b
a
se

d
p
ro

ce
ss

o
rs

.
T

h
e

“
ra

ti
o
”

co
lu

m
n

is
b
a
se

li
n
e/

S
IM

D
.
T

h
e

5
1
2

g
,
1
0
2
4

g
a
n
d

2
0
4
8

g
ro

w
s

a
re

g
en

er
ic

im
p
le

m
en

ta
ti

o
n
s

th
a
t

d
o

n
o
t

o
p
ti

m
iz

e
fo

r
a

sp
ec

ifi
c

b
it

le
n
g
th

.

B
en

ch
m

a
rk

X
eo

n
x
8
6

X
eo

n
x
6
4

A
to

m
(x

8
6
)

B
a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o

m
o
d
m

u
l
5
1
2

1
.2

2
9

0
.8

0
5

1
.5

3
0
.4

9
8

0
.8

0
5

0
.6

2
5
.9

4
8

4
.3

1
7

1
.3

8
(c

y
cl

es
)

3
9
3
3

2
5
7
7

1
.5

3
1
5
9
8

2
5
7
7

0
.6

2
1
0
7
0
6

7
7
7
5

1
.3

8

m
o
d
m

u
l
1
0
2
4

3
.5

2
3

1
.8

4
2

1
.9

1
1
.0

3
0

1
.8

4
2

0
.5

6
2
1
.3

9
0

1
2
.3

8
8

1
.7

3
(c

y
cl

es
)

1
1
2
5
5

5
8
8
7

1
.9

1
3
2
9
5

5
8
8
7

0
.5

6
3
8
4
7
9

2
2
2
8
8

1
.7

3
R

S
A

en
c

1
0
2
4

7
5
.4

5
9

3
6
.7

4
5

2
.0

5
1
6
.4

1
1

3
6
.7

4
5

0
.4

5
4
0
7
.8

3
5

2
5
0
.2

8
5

1
.6

3
(c

y
cl

es
)

2
4
1
0
1
4

1
1
7
4
1
9

2
.0

5
5
2
4
5
7

1
1
7
4
1
9

0
.4

5
7
3
3
2
2
4

4
5
0
0
9
2

1
.6

3
R

S
A

d
ec

1
0
2
4

1
2
7
5
.0

3
0

6
5
6
.8

3
1

1
.9

4
2
7
8
.4

4
4

6
5
6
.8

3
1

0
.4

2
6
7
7
0
.6

4
6

4
2
5
7
.8

3
8

1
.5

9
(c

y
cl

es
)

4
0
7
0
9
6
2

2
0
9
7
2
5
8

1
.9

4
8
8
9
1
0
3

2
0
9
7
2
5
8

0
.4

2
1
2
1
6
7
9
3
3

7
6
5
2
1
7
8

1
.5

9

m
o
d
m

u
l
2
0
4
8

1
3
.8

7
3

5
.4

8
8

2
.5

3
3
.0

1
2

5
.4

8
8

0
.5

5
7
2
.8

7
0

4
1
.4

0
2

1
.7

6
(c

y
cl

es
)

4
4
3
0
2

1
7
5
2
9

2
.5

3
9
6
2
1

1
7
5
2
9

0
.5

5
1
3
0
9
7
5

7
4
4
2
5

1
.7

6
R

S
A

en
c

2
0
4
8

2
7
7
.7

1
9

1
2
9
.8

7
6

2
.1

4
5
6
.8

1
3

1
2
9
.8

7
6

0
.4

4
1
4
3
7
.4

5
9

8
9
1
.1

8
5

1
.6

1
(c

y
cl

es
)

8
8
6
8
2
8

4
1
4
7
8
7

2
.1

4
1
8
1
4
1
2

4
1
4
7
8
7

0
.4

4
2
5
8
3
6
4
3

1
6
0
1
8
7
8

1
.6

1
R

S
A

d
ec

2
0
4
8

8
2
3
1
.2

3
3

3
8
2
4
.6

9
0

2
.1

5
1
5
4
3
.6

6
6

3
8
2
4
.6

9
0

0
.4

0
4
4
6
2
9
.1

4
0

2
8
9
3
5
.0

8
8

1
.5

4
(c

y
cl

es
)

2
6
2
8
0
7
2
5

1
2
2
1
1
7
0
0

2
.1

5
4
9
2
8
6
3
3

1
2
2
1
1
7
0
0

0
.4

0
8
0
2
0
4
3
1
7

5
2
0
0
0
3
6
7

1
.5

4

m
o
d
m

u
l
5
1
2
g

1
.3

5
6

0
.9

8
6

1
.3

8
0
.4

9
8

0
.9

8
6

0
.5

1
6
.3

8
7

5
.1

1
6

1
.2

5
(c

y
cl

es
)

4
3
3
6

3
1
5
5

1
.3

7
1
5
9
8

3
1
5
5

0
.5

1
1
1
4
9
6

9
2
1
3

1
.2

5
m

o
d
m

u
l
1
0
2
4
g

4
.1

1
1

2
.5

3
4

1
.6

2
1
.0

3
0

2
.5

3
4

0
.4

1
2
5
.3

6
2

1
3
.5

6
0

1
.8

7
(c

y
cl

es
)

1
3
1
3
2

8
0
9
8

1
.6

2
3
2
9
5

8
0
9
8

0
.4

1
4
5
6
3
1

2
4
3
9
3

1
.8

7
m

o
d
m

u
l
2
0
4
8
g

1
5
.6

0
7

9
.3

0
4

1
.6

8
3
.0

1
2

9
.3

0
4

0
.3

2
7
4
.2

1
2

4
4
.8

0
6

1
.6

6
(c

y
cl

es
)

4
9
8
3
8

2
9
7
1
4

1
.6

8
9
6
2
1

2
9
7
1
4

0
.3

2
1
3
3
3
8
7

8
0
5
4
3

1
.6

6

482 J. W. Bos et al.

T
a
b
le

3
.

Im
p
le

m
en

ta
ti

o
n

ti
m

in
g
s

in
m

ic
ro

se
co

n
d
s

fo
r

A
R

M
-b

a
se

d
p
ro

ce
ss

o
rs

.
T

h
e

“
ra

ti
o
”

co
lu

m
n

is
b
a
se

li
n
e/

S
IM

D
.
T

h
e

5
1
2

g
,
1
0
2
4

g
a
n
d

2
0
4
8

g
ro

w
s

a
re

g
en

er
ic

im
p
le

m
en

ta
ti

o
n
s

th
a
t

d
o

n
o
t

o
p
ti

m
iz

e
fo

r
a

sp
ec

ifi
c

b
it

le
n
g
th

.

B
en

ch
m

a
rk

S
n
a
p
d
ra

g
o
n

S
4

T
eg

ra
4

T
eg

ra
3

B
a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o
B

a
se

li
n
e

S
IM

D
R

a
ti

o

m
o
d
m

u
l
5
1
2

4
.0

9
7

3
.3

8
4

1
.2

1
1
.9

7
6

2
.2

1
2

0
.8

9
3
.5

5
3

5
.2

6
5

0
.6

7
(c

y
cl

es
)

6
4
4
3

5
3
7
2

1
.2

0
3
6
5
8

4
0
2
0

0
.9

1
4
6
7
8

6
8
6
1

0
.6

8

m
o
d
m

u
l
1
0
2
4

1
0
.6

7
6

7
.2

8
1

1
.4

7
8
.4

5
4

8
.6

2
2

0
.9

8
9
.5

1
2

1
5
.8

9
1

0
.6

0
(c

y
cl

es
)

1
6
3
8
2

1
1
2
4
3

1
.4

6
1
0
3
5
1

1
0
5
6
0

0
.9

8
1
2
3
1
4

2
0
4
9
0

0
.6

0
R

S
A

en
c

1
0
2
4

1
9
8
.1

8
7

1
4
2
.9

5
6

1
.3

8
1
6
8
.6

1
7

1
7
9
.2

2
7

0
.9

4
1
8
9
.4

2
0

2
9
5
.1

1
0

0
.6

4
(c

y
cl

es
)

3
0
2
8
9
8

2
1
9
2
4
4

1
.3

8
1
9
5
2
1
2

2
0
7
6
4
7

0
.9

4
2
4
5
1
6
7

3
7
9
7
3
6

0
.6

5
R

S
A

d
ec

1
0
2
4

3
4
2
4
.4

1
3

2
4
7
5
.7

1
6

1
.3

8
1
9
9
9
.2

1
1

2
3
0
3
.5

8
8

0
.8

7
3
3
0
6
.2

3
0

5
5
9
7
.2

8
0

0
.5

9
(c

y
cl

es
)

5
1
7
9
3
6
5

3
7
4
6
3
7
1

1
.3

8
3
2
8
8
1
7
7

3
3
3
2
2
6
2

0
.9

9
4
2
3
3
8
6
2

7
1
6
6
8
9
7

0
.5

9

m
o
d
m

u
l
2
0
4
8

3
6
.2

6
0

2
1
.5

3
1

1
.6

8
3
0
.4

6
5

3
2
.0

6
4

0
.9

5
3
1
.9

1
2

5
5
.0

7
0

0
.5

8
(c

y
cl

es
)

5
5
2
6
0

3
2
9
7
8

1
.6

8
3
7
1
8
5

3
6
9
8
4

1
.0

1
4
1
0
0
4

7
0
6
5
5

0
.5

8
R

S
A

en
c

2
0
4
8

7
1
6
.1

6
0

4
6
7
.7

1
3

1
.5

3
5
9
3
.3

2
6

6
1
7
.7

5
8

0
.9

6
6
7
9
.9

2
0

1
0
6
0
.0

5
0

0
.6

4
(c

y
cl

es
)

1
0
8
7
3
1
8

7
1
0
9
1
0

1
.5

3
7
2
5
3
3
6

7
1
2
5
4
2

1
.0

2
8
7
2
4
6
8

1
3
5
8
9
5
5

0
.6

4
R

S
A

d
ec

2
0
4
8

2
2
9
9
2
.5

7
6

1
4
2
0
2
.8

8
6

1
.6

2
1
9
0
2
4
.4

0
5

1
9
7
9
7
.9

8
8

0
.9

6
2
1
5
1
9
.8

8
0

3
6
8
7
1
.5

5
0

0
.5

8
(c

y
cl

es
)

3
4
7
6
9
1
4
7

2
1
4
7
8
0
4
7

1
.6

2
2
3
1
7
7
6
1
7

2
2
8
1
2
0
4
0

1
.0

2
2
7
5
4
7
4
3
4

4
7
2
0
5
9
1
9

0
.5

8

m
o
d
m

u
l
5
1
2

g
4
.5

8
6

4
.1

4
9

1
.1

1
2
.1

8
7

2
.7

9
8

0
.7

8
4
.1

0
8

6
.1

7
7

0
.6

7
(c

y
cl

es
)

7
1
7
9

6
6
2
7

1
.0

8
4
0
4
5

5
1
6
6

0
.7

8
5
3
8
3

8
0
2
9

0
.6

7
m

o
d
m

u
l
1
0
2
4

g
1
2
.2

7
4

9
.6

9
7

1
.2

7
8
.9

7
3

1
2
.1

5
1

0
.7

4
1
2
.1

1
2

1
9
.4

2
1

0
.6

2
(c

y
cl

es
)

1
8
7
9
5

1
4
8
9
4

1
.2

6
1
0
9
8
4

1
4
8
7
0

0
.7

4
1
5
6
5
2

2
5
0
0
4

0
.6

3
m

o
d
m

u
l
2
0
4
8

g
4
0
.5

5
4

3
0
.7

4
3

1
.3

2
3
1
.9

5
9

4
4
.8

4
1

0
.7

1
4
0
.4

9
4

6
9
.0

0
9

0
.5

9
(c

y
cl

es
)

6
1
6
2
1

4
6
9
4
5

1
.3

1
3
7
7
8
6

5
1
6
9
3

0
.7

3
5
1
9
9
3

8
8
5
0
0

0
.5

9

Montgomery Multiplication Using Vector Instructions 483

Table 4. Performance results expressed in cycles of RSA 1024-bit and 2048-bit encryp-
tion (enc) and decryption (dec). The first four performance numbers have been obtained
from eBACS: ECRYPT Benchmarking of Cryptographic Systems [5] while the fifth row
corresponds to running the performance benchmark suite of OpenSSL [32] on the same
Atom device used to obtain the performance results in Table 2. The last two rows
correspond to running GMP on our Atom and Xeon (in 32-bit mode)

Platform RSA 1024 RSA 2048
Enc Dec Enc Dec

ARM – Tegra 250 (1000 MHz) 261677 11684675 665195 65650103
ARM – Snapdragon S3 (1782 MHz) 276836 7373869 609593 39746105
x86 – Atom N280 (1667 MHz) 315620 13116020 871810 81628170
x64 – Xeon E3-1225 (3100 MHz) 49652 1403884 103744 6158336
x86 – Atom Z2760 (1800 MHz) 610200 10929600 2323800 75871800
x86 – Atom Z2760 (1800 MHz) 305545 5775125 2184436 37070875
x86 – Xeon E3-1230 (3200 MHz) 106035 1946434 695861 11929868

important and resulted in a speed-up by a factor of 1.30 to 1.40 over generic
implementations, while optimizing the baseline implementation for a specific
length was only faster by a factor slightly above 1.10. This is likely due to the
inability of the processor to effectively re-order NEON instructions to minimize
pipeline stalls – the main difference in our length-specific implementation was
to partially unroll the inner loop and re-order instructions to use more registers
and pipeline four multiply operations.

Performance of the SIMD algorithm on the Tegra 4 was essentially the same
as the baseline performance. This is a solid improvement in NEON performance
compared to our benchmarks on the Tegra 3, however the Tegra 4’s NEON per-
formance still lags behind the S4 (for the instructions used in our benchmarks).
We suspect (based on informal experiments) that an implementation of Algo-
rithm 2 specifically optimized for the Tegra 4 could significantly outperform the
baseline, but still would not be comparable to the S4.

There is a slight difference between the cycle count measurement and the
microsecond measurement for the 2048-bit ARM benchmarks on the Tegra 4.
To measure cycles on ARM we read the cycle count register (PMCCNTR), and time
is measured with the Windows QueryPerformanceCounter function. Since these
are different time sources, a small difference is not surprising.

4.1 Comparison to Previous Work

Comparison to eBACS and OpenSSL. We have compared our SIMD imple-
mentation of the interleaved Montgomery multiplication algorithm to our base-
line implementation of this method. To show that our baseline is competi-
tive and put our results in a wider context, we compare to benchmark results
from eBACS: ECRYPT Benchmarking of Cryptographic Systems [5] and to
OpenSSL [32]. Table 4 summarizes the cycle counts from eBACS on platforms
which are close to the ones we consider in this work, and also includes the

484 J. W. Bos et al.

results of running the performance benchmark of OpenSSL 1.0.1e [32] on our
Atom device. As can be seen from Table 4, our baseline implementation results
from Table 2 and 3 are similar (except for 1024-bit RSA decryption, which our
implementation does not optimize, as mentioned above).

Comparison to GMP. The implementation in the GNU multiple precision
arithmetic library (GMP) [13] is based on the non-interleaved Montgomery mul-
tiplication. This means the multiplication is computed first, possibly using a
asymptotically faster algorithm than schoolbook, followed by the Montgomery
reduction (see Sect. 3.1). The last two rows in Table 4 summarize performance
numbers for our Atom and Xeon (in 32-bit mode) platforms. The GMP perfor-
mance numbers for RSA-2048 decryption on the Atom (37.1 million) are signifi-
cantly faster compared to OpenSSL (75.9 million), our baseline (80.2 million) and
our SIMD (52.0 million) implementations. On the 32-bit Xeon the performance of
the GMP implementation, which uses SIMD instructions for the multiplication
and has support for asymptotically faster multiplication algorithms, is almost
identical to our SIMD implementation which uses interleaved Montgomery mul-
tiplication. Note that both OpenSSL and our implementations are designed to
resist side-channel attacks, and run in constant time, while both the GMP mod-
ular exponentiation and multiplication are not, making GMP unsuitable for use
in many cryptographic applications. The multiplication and reduction routines
in GMP can be adapted for cryptographic purposes but it is unclear at what
performance price. From Table 2, it is clear that our SIMD implementation per-
forms better on the 32-bit Xeon than on the Atom. The major difference between
these two processors is the instruction scheduler (in-order on the Atom and out-
of-order on the Xeon).

4.2 Engineering Challenges

In this section we discuss some engineering challenges we had to overcome in
order to use SIMD in practice. Our goal is an implementation that is efficient
and supports multiple processors, but is also maintainable. The discussion here
may not be applicable in other circumstances.

ASM or Intrinsics? There are essentially two ways to access the SIMD instruc-
tions directly from a C program. One either writes assembly language (ASM), or
uses compiler intrinsics. Intrinsics are macros that the compiler
translates to specific instructions, e.g., on ARM, the Windows RT header file
arm neon.h defines the intrinsic vmull u32, which the compiler implements with
the vmull instruction. In addition to instructions, the header also exposes spe-
cial data types corresponding to the 64 and 128-bit SIMD registers. We chose to
use intrinsics for our implementation, for the following reasons. C with intrinsics
is easier to debug, e.g., it is easier to detect mistakes using assertions. Further-
more, while there is a performance advantage for ASM implementations, these
gains are limited in comparison to a careful C implementation with intrinsics (in

Montgomery Multiplication Using Vector Instructions 485

our experience). In addition ASM is difficult to maintain. For example, in ASM
the programmer must handle all argument passing and set up the stack frame,
and this depends on the calling conventions. If calling conventions are changed,
the ASM will need to be rewritten, rather than simply recompiled. Also, when
writing for the Microsoft Visual Studio Compiler, the compiler automatically
generates the code to perform structured exception handling (SEH), which is an
exception handling mechanism at the system level for Windows and a require-
ment for all code running on this operating system. Incorrect implementation
of SEH code may result in security bugs that are often difficult to detect until
they are used in an exploit. Also, compiler features such as Whole Program
Optimization and Link Time Code generation, that optimize code layout and
time-memory usage tradeoffs, will not work correctly on ASM.

Despite the fact that one gets more control of the code (e.g. register usage)
when writing in ASM, using instrinsics and C can still be efficient. Specifically,
we reviewed the assembly code generated by the compiler to ensure that the run-
time of this code remains in constant time and register usage is as we expected. In
short, we have found that ASM implementations require increased engineering
time and effort, both in initial development and maintenance, for a relatively
small gain in performance. We have judged that this trade off is not worthwhile
for our implementation.

simd.h Abstraction Layer. Both SSE2 and NEON vector instructions are
accessible as intrinsics, however, the types and instructions available for each
differ. To allow a single SIMD implementation to run on both architectures, we
abstracted a useful subset of SSE2 and NEON in header named simd.h. Based
on the architecture, this header defines inline functions wrapping a processor-
specific intrinsic. simd.h also refines the vector data types, e.g., the type
simd32x2p t stores two 32-bit unsigned integers in a 64-bit register on ARM,
but on x86 stores them in a 128-bit integer (in bits 0–31 and 64–95), so that
they are in the correct format for the vector multiply instruction (which returns
a value of type simd64x2 t on both architectures). The compiler will check that
the arguments to the simd.h functions match the prototype, something that is
not possible with intrinsics (which are preprocessor macros). While abstraction
layers are almost always technically possible, we find it noteworthy that in this
case it can be done without adding significant overhead, and code using the
abstraction performs well on multiple processors. With simd.h containing all
of architecture-specific code, the SIMD timings in the tables above were gen-
erated with two implementations: a generic one, and a length-specific one that
requires the number of limbs in the modulus be divisible by four, to allow partial
unrolling of the inner loop of Algorithm 2.

Length-Specific Routines. Given the results from Tables 2 and 3, it is clear
that having specialized routines for certain bitlengths is worthwhile. In a math
library used to implement multiple crypto primitives, each supporting a range
of allowed keysizes, routines for arbitrary length moduli are required as well.

486 J. W. Bos et al.

This raises the question of how to automatically select one of multiple imple-
mentations. We experimented with two different designs. The first design stores
a function pointer to the modular multiplication routine along with the modulus.
The second uses a function pointer to a length-specific exponentiation routine.
On the x86 and x64 platforms, with 1024-bit (and larger) operands, the perfor-
mance difference between the two approaches is small (the latter was faster by a
factor around 1.10), however on ARM, using function pointers to multiplication
routines is slower by a factor of up to 1.30 than when using pointers to exponen-
tiation routines. The drawback of this latter approach is the need to maintain
multiple exponentiation routines.

SoC-Specific Routines. Our experiments with multiple ARM SoCs also show
that performance can vary by SoC. This is expected, however we were surprised
by the range observed, compared to x86/x64 processors which are more homo-
geneous. We also observed that small code changes can result in simultaneous
speed improvements on one SoC, and regression on another. Our current imple-
mentation performs a run-time check to identify the SoC, to decide whether to
use Algorithm 1 or 2. Our results highlight that there is a great deal of variabil-
ity between different implementations of the ARM architecture and that, for the
time being, it is difficult to write code that performs well on multiple ARM SoCs
simultaneously. This also implies that published implementation results for one
ARM microprocessor core give little to no information on how it would perform
on another. For more information, see the ARM technical reference manuals [3].

5 Conclusions and Future Work

In this paper we present a parallel version of the interleaved Montgomery mul-
tiplication algorithm that is amenable to implementation using widely available
SIMD vector extension instructions (SSE2 and NEON). The practical impli-
cations of this approach are highlighted by our performance results on com-
mon tablet devices. When using 2048-bit moduli we are able to outperform our
sequential implementation using the schoolbook multiplication method by a fac-
tor of 1.68 to 1.76 on both 32-bit x86 and ARM processors.

The performance numbers agree with our analysis that a 2-way SIMD imple-
mentation using 32-bit multipliers is not able to outperform a classical inter-
leaved Montgomery multiplication implementation using 64-bit multiplication
instructions. Hence, we also conclude that it would be beneficial for new 256-
bit SIMD instruction sets to include 2-way integer multipliers. For example, our
results suggest that modular multiplication could be sped-up by up to a factor of
two on x64 systems if a future set of AVX instructions included a 64×64 → 128-
bit 2-way SIMD multiplier.

It remains of independent interest to study ways to use both asymptotically
faster integer multiplication methods (like Karatsuba) and Montgomery reduc-
tion using SIMD instructions to reduce latency, including side-channel protec-
tions. This is left as future work. Furthermore, as pointed out by an anonymous

Montgomery Multiplication Using Vector Instructions 487

reviewer, another possibility might be to compute the proposed parallel Mont-
gomery multiplication routine using both the integer and floating point unit
instead of using vector instructions.

Acknowledgements. The authors would like to thank: Adam Glass for discussions on
ARM SoCs; Patrick Longa for comments on baseline implementations and general help;
Jason Mackay for catching mistakes in early drafts; Paul Schofield for help timing on
the Tegra 4; and Niels Ferguson for discussions of SIMD. Also, we thank the anonymous
reviewers of SAC for their helpful feedback and thank Daniel J. Bernstein and Tanja
Lange for the additional suggestions, both of which improved the quality of this paper.

References

1. ARM. Cortex-A9. Technical Reference Manual (2010). Version r2p2
2. ARM. Cortex-A9 NEON Media Processing Engine. Technical Reference Manual

(2012). Version r4p1
3. ARM Limited. ARM Architechture Reference Manual ARMv7-A and ARMv7-R

edition (2010)
4. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery modular multi-

plication algorithm. IEEE Trans. Comput. 47(7), 766–776 (1998)
5. Bernstein, D.J., Lange, T. (eds).: eBACS: ECRYPT Benchmarking of Crypto-

graphic Systems. http://bench.cr.yp.to. Accessed 2 July 2013
6. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)

CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012)
7. Bos, J.W.: High-performance modular multiplication on the cell processor. In:

Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 7–24. Springer,
Heidelberg (2010)

8. Bos, J.W., Kaihara, M.E.: Montgomery multiplication on the cell. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009,
Part I. LNCS, vol. 6067, pp. 477–485. Springer, Heidelberg (2010)

9. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29(4),
526–538 (1990)

10. Dixon, B., Lenstra, A.K.: Massively parallel elliptic curve factoring. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 183–193. Springer, Heidelberg
(1993)

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (1985)

12. Faz-Hernandez, A., Longa, P., Sanchez, A.H.: Efficient and secure algorithms
for GLV-based scalar multiplication and their implementation on GLV-GLS
curves. Cryptology ePrint Archive, Report 2013/158 (2013). http://eprint.iacr.
org/. CT RSA. doi:10.1007/978-3-319-04852-9 1

13. Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arithmetic
Library (2013). http://www.gmplib.org/

14. Garner, H.L.: The residue number system. IRE Trans. Electron. Comput. 8, 140–
147 (1959)

15. Grabher, P., Großschädl, J., Page, D.: On software parallel implementation of
cryptographic pairings. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008.
LNCS, vol. 5381, pp. 35–50. Springer, Heidelberg (2009)

http://bench.cr.yp.to
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-04852-9_1
http://www.gmplib.org/

488 J. W. Bos et al.

16. Großschädl, J.: Architectural support for long integer modulo arithmetic on RISC-
based smart cards. Int. J. High Perform. Comput. Appl. - IJHPCA 17(2), 135–146
(2003)

17. Großschädl, J., Avanzi, R.M., Savaş, E., Tillich, S.: Energy-efficient software imple-
mentation of long integer modular arithmetic. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 75–90. Springer, Heidelberg (2005)

18. Gueron, S., Krasnov, V.: Software implementation of modular exponentiation,
using advanced vector instructions architectures. In: Özbudak, F., Rodŕıguez-
Henŕıquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 119–135. Springer, Hei-
delberg (2012)

19. Harrison, O., Waldron, J.: Efficient acceleration of asymmetric cryptography on
graphics hardware. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580,
pp. 350–367. Springer, Heidelberg (2009)

20. Holz, R., Braun, L., Kammenhuber, N., Carle, G.: The SSL landscape: a thorough
analysis of the x.509 PKI using active and passive measurements. In: Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference,
IMC ’11, pp. 427–444. ACM (2011)

21. Intel Corporation. Using streaming SIMD extensions (SSE2) to perform big mul-
tiplications. Whitepaper AP-941 (2000). http://software.intel.com/file/24960

22. Intel Corporation. Intel 64 and IA-32 Architectures Software Developers Manual
(Combined Volumes 1, 2A, 2B, 2C, 3A, 3B and 3C) (2013). http://download.intel.
com/products/processor/manual/325462.pdf

23. Iwamura, K., Matsumoto, T., Imai, H.: Systolic-arrays for modular exponentiation
using montgomery method. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS,
vol. 658, pp. 477–481. Springer, Heidelberg (1993)

24. Kaihara, M.E., Takagi, N.: Bipartite modular multiplication method. IEEE Trans.
Comput. 57(2), 157–164 (2008)

25. Karatsuba, A.A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Proc. USSR Acad. Sci. 145, 293–294 (1962)

26. Koc, K., Acar, T., Kaliski Jr, B.S.: Analyzing and comparing montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

28. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

29. Merrill, R.D.: Improving digital computer performance using residue number the-
ory. IEEE Trans. Electron. Comput. EC–13(2), 93–101 (1964)

30. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

31. National Institute of Standards and Technology. Special publication 800–57: Rec-
ommendation for key management part 1: General (revision 3). http://csrc.nist.
gov/publications/nistpubs/800-57/sp800-57 part1 rev3 general.pdf

32. OpenSSL. The open source toolkit for SSL/TLS (2013)
33. Page, D., Smart, N.P.: Parallel cryptographic arithmetic using a redundant Mont-

gomery representation. IEEE Trans. Comput. 53(11), 1474–1482 (2004)
34. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

http://software.intel.com/file/24960
http://download.intel.com/products/processor/manual/325462.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Montgomery Multiplication Using Vector Instructions 489

35. Sánchez, A.H., Rodŕıguez-Henŕıquez, F.: NEON implementation of an attribute-
based encryption scheme. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 322–338. Springer, Heidelberg
(2013)

36. U.S. Department of Commerce/National Institute of Standards and Technol-
ogy. Digital Signature Standard (DSS). FIPS-186-3 (2009). http://csrc.nist.gov/
publications/fips/fips186-3/fips 186-3.pdf

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

Hash Functions and MACs

Improved Single-Key Distinguisher
on HMAC-MD5 and Key Recovery Attacks

on Sandwich-MAC-MD5

Yu Sasaki1(B) and Lei Wang2

1 NTT Secure Platform Laboratories, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

2 Nanyang Technological University, Singapore, Singapore
Wang.Lei@ntu.edu.sg

Abstract. This paper presents key recovery attacks on Sandwich-MAC
instantiating MD5, where Sandwich-MAC is an improved variant of
HMAC and achieves the same provable security level and better perfor-
mance especially for short messages. The increased interest in lightweight
cryptography motivates us to analyze such a MAC scheme. We first
improve a distinguishing-H attack on HMAC-MD5 proposed by Wang
et al. We then propose key recovery attacks on Sandwich-MAC-MD5 by
combining various techniques such as distinguishing-H for HMAC-MD5,
IV Bridge for APOP, dBB-near-collisions for related-key NMAC-MD5,
meet-in-the-middle attack etc. In particular, we generalize a
previous key-recovery technique as a new tool exploiting a conditional
key-dependent distribution. Our attack also improves the partial-key
(K1) recovery on MD5-MAC, and extends it to recover both K1 and K2.

Keywords: HMAC · Sandwich-MAC · MD5-MAC · MD5 · Key
recovery

1 Introduction

A Message Authentication Code (MAC) is a cryptographic primitive which pro-
duces authenticity and data integrity. It takes a message M and a secret key K
as input and computes a tag φ . A secure MAC must resist forgery attacks.

A MAC is often constructed from a hash function such as MD5 [1] and SHA-
2 [2] for its performance and availability in software libraries. There are three
hash-based MAC constructions [3]. Let H be a hash function. A secret-prefix
method computes a tag of a message M by H(K∈M). A secret-suffix method
computes a tag by H(M∈K). A hybrid method computes a tag by H(K∈M∈K).

When H processes M by iteratively applying a compression function h, a
generic existential forgery attack with a complexity of 2n/2 exists for any of those
three methods, where n is the size of the tag, φ , and the internal chaining variable
[4]. Besides, each of the three types has its own features. The secret-prefix method

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 493–512, 2014.
DOI: 10.1007/978-3-662-43414-7 25, c∞ Springer-Verlag Berlin Heidelberg 2014

494 Y. Sasaki and L. Wang

Fig. 1. Description of HMAC Fig. 2. Description of Sandwich-MAC

is vulnerable when a finalization process is not performed. This is called length-
extension attack [5,6]. The secret-suffix method suffers from the collision attack on
h. Two distinct messages (M,M ∈) such that h(M) = h(M ∈) cause forgery attacks.
The hybrid method seems to hide the weakness of two methods at a short glance.
Strictly speaking, the hybrid method in [3] computes a tag by H(K∈pad∈M∈K ∈)
where K and K ∈ are two independent keys and pad denotes the padding string
making the length of K∈pad equal to the block length. The security of this con-
struction can be proven by [7] up to O(2n/2) queries. The single-key version, where
K = K ∈, is well-known as envelope MAC, and was standardized for IPsec version 1
[8,9]. However, Preneel and van Oorschot showed that collisions of h can reveal the
second key K or K ∈ of the hybrid method [10] when the padding is not performed
between M and the second key.

Currently, the most widely used hash-based MAC is HMAC [7,11] whose
structure is a hybrid method with an appropriate padding before the second
key. It computes a tag by H((K ∞ opad)∈H((K ∞ ipad)∈M)) as shown in Fig. 1.
HMAC was proven to be a secure PRF up to O(2n/2) queries [12]. Several
researchers proposed improvement of HMAC from various viewpoints, e.g., secu-
rity bound [13], performance [14–16], and side-channel resistance [17].

Comparison of HMAC and Sandwich-MAC. Sandwich-MAC [15] is
another hybrid-type MAC with an appropriate padding before the second key. It
computes a tag by H(K∈pad1∈M∈pad2∈K) as shown in Fig. 2. As with HMAC,
it can call current hash functions without modifying the Merkle-Damg̊ard (MD)
implementations. It was proven to have the same security as HMAC, i.e., it
is a PRF up to O(2n/2) queries as long as the underlying compression func-
tion h is a PRF. Then, Sandwich-MAC has several advantages compared to
HMAC.

Sandwich-MAC can be computed only with a single key K, while HMAC
creates an inner-key h(IV,K ∞ ipad) and an outer-key h(IV,K ∞ opad). This
reduces the number of additional blocks, where the “additional” is defined to
be the number of h invocations in the scheme minus that in the usual Merkle-
Damg̊ard. HMAC requires 3 additional blocks, while Sandwich-MAC requires 1
or 2. It also avoids a related-key attack on HMAC [18] which exploits two keys
with difference ipad∞ opad. Another advantage is the number of hash function
calls. HMAC requires 2 invocations of H, while Sandwich-MAC requires only 1.

Improved Single-Key Distinguisher on HMAC-MD5 495

Table 1. Summary and comparison of results. ISR stands for internal state recovery.

Target Model Attack goal Data Time Memory Ref. Remarks

HMAC-MD5 Adaptive Dist-H/ISR 297 297 289 [32]
Adaptive Dist-H/ISR 289.09 289 289 Ours
Non-adaptive Dist-H/ISR 2113 2113 266 [32]
Non-adaptive Dist-H/ISR 2113−x 2113−x 266+x Ours 0 ≤ x ≤ 6

MD5-MAC K1-recovery 297 297 289 [32]
K1-recovery 289.09 289 289 Ours
(K1, K2)-recovery 289.04 289 289 Ours

Sandwich- Basic Key recovery 289.04 289 289 Ours
MAC-MD5 Variant B Key recovery 289.04 289 289 Ours

Extended B Key recovery 289.04 289 289 Ours

As shown in [19], these drawbacks of HMAC are critical especially for short
messages. Taking these features into account, though it is not widely used at
present, Sandwich-MAC is potentially a good candidate for a future MAC use.

Cryptanalysis Against Hybrid MAC. If the padding is not applied before
the second key, the key is recovered with O(2n/2) [10]. The attack was opti-
mized when the underlying hash function is MD5 [20–23] through attacks against
APOP protocol [24]. In this paper, the IV Bridge technique [21] will be exploited.
However, these analyses basically cannot be used if an appropriate padding is
applied before the second key as HMAC and Sandwich-MAC.

For HMAC/NMAC, most of attacks have been proposed with specific under-
lying hash functions. Kim et al. [25] proposed the notion of distinguishing-H
attack. Contini and Yin presented how to exploit a differential characteristic of
an underlying compression function to recover an inner-key of HMAC/NMAC
[26]. Since then, many attacks have developed for HMAC/NMAC instantiat-
ing the MD4-family [27–31]. Regarding MD5, inner-key and outer-key recovery
attacks were proposed only for NMAC only in the related-key model. Wang et
al. presented a distinguishing-H attack on full HMAC-MD5 in the single-key
model [32]. This is the only known result in the single-key model against hybrid
MAC constructions with an appropriate padding instantiating full MD5.

Our Contributions. In this paper, we present key-recovery attacks against
several hybrid MAC schemes with an appropriate padding when MD5 is instan-
tiated as an underlying hash function. The summary of results is given in Table 1.
The main contribution is an original-key recovery attack against Sandwich-MAC-
MD5. This is the first result that recovers the original-key in the hybrid method.
Even if the key-length is longer than the tag size n, the key is recovered faster
than 2n computations. Moreover, an attacker does not need to know the key
length in advance. Given the specification of MD5, up to a 447-bit key is recov-
ered with 289.04 queries, 289 table look-ups, and 289 memory.

496 Y. Sasaki and L. Wang

For the first step, we improve the distinguishing-H attack against HMAC-
MD5 in the single-key model presented by Wang et al. [32], which can be utilized
to reveal an internal state value. This reduces the number of queries from 298 to
289.09. This can be achieved by combining the attack in [32] with the message
modification technique presented by Contini and Yin [26].

We then explain our original-key recovery attack against Sandwich-MAC-
MD5 and its variant with combining various techniques on MD5. Specifically,
we generalize the idea in [31] as a tool exploiting conditional key-dependent
distributions. Note that a similar idea can be seen in [33] against Phelix. In this
paper our goal is generalizing and simplifying the technique so that it can be
applied to other cases. In the below, let ψ, λ and ρ be x-bit variables, and ψi, λi

and ρi be the i-th bit of ψ, λ and ρ, respectively, where 0 √ i √ x − 1.

Let us consider a modular addition ψ + λ = ρ; ψ is a partially known
variable where 1 bit (MSB) of ψx−1 is known but ψi is unknown for
the other i. λ is an unknown constant. ρ is a public variable computed
by ψ + λ, and its value is known. Intuitively, ψ, λ, and ρ correspond to
the internal state, the key, and the tag, respectively. Then, the attacker
can recover all bits of λ by iteratively collecting many pairs (ρ, ψx−1).

Experimental verification of this observation is shown in Appendix A.
Our attack on Sandwich-MAC-MD5 recovers the key with a complexity below

2n, hence it also leads to a universal forgery attack on Sandwich-MAC-MD5.
MD5-MAC [4] generates three keys K0,K1, and K2. The previous attack

[32] only recovers K1 with a cost of 297. Our improvement of HMAC-MD5
also reduces this complexity to 289.09. Moreover, by applying our techniques on
Sandwich-MAC-MD5, we achieve the first attack that recovers both K1 and K2.

2 Preliminaries

2.1 HMAC

HMAC is a hash-based MAC proposed by Bellare et al. [7]. Denote a hash
function by H. On an input message M , HMAC based on H is computed using
a single secret key K as HMAC-HK(M) = H(K ∞ opad∈H(K ∞ ipad∈M)),
where K is K padded to a full block by adding ‘0’s, opad and ipad are two
public constants, and ‘∈’ denotes the concatenation.

2.2 Sandwich-MAC

Sandwich-MAC [15] is another hash-based MAC proposed by Yasuda. Besides
the main scheme called Basic, there exist three variants called variant A, B, and
C. Inside variant B, one extension is proposed, which we call extended B. In this
paper, we analyze Basic, variant B, and extended B. We assume that the length
of the key after the padding, |K∈pad|, is shorter than the block length, b.

Improved Single-Key Distinguisher on HMAC-MD5 497

Sandwich-MAC Basic. Sandwich-MAC Basic computes tag values as follows.

Sandwich-MAC-HK(M) = H(K∈pad1∈M∈pad2∈K), (1)

where, pad1 appends b − |K| bits of ‘0’s so that |K∈pad1| becomes equal to b
and pad2 appends a single bit ‘1’ and b − ((|M | + 1) mod b) bits of ‘0’s so that
|M∈pad2| becomes a multiple of b. Note that the input message for the last block
always becomes K∈pad3, where pad3 is the padding scheme defined in a hash
function H. As long as MD5 is analyzed, pad3 is MD-strengthening.

Variant B and Extended B. Variant B is an optimized version when |M | is
already a multiple of the block length. The computation is described in Eq. (2).

Extended B is another optimization when the input message M ends in the
middle of the block. Intuitively, the meaningless bits of ‘0’ in pad3 in the last
message block can be replaced with the message to be processed. For example,
MD5 uses the MD-strengthening as pad3 and 65 bits are enough for it. Therefore,
up to b − |K| − 66 bits in the last message block can be used to process the
message. Let M consist of η blocks (M0∈ · · · ∈Mλ−1), and |Mλ−1| < b − |K| − 66.
The computation of extended B is described in Eq. (3).

Sandwich-MACB-HK(M) = H(K∈pad1∈M∈K∈1). (2)
Sandwich-MACExtB-HK(M) = H(K∈pad1∈M0∈ · · · ∈Mλ−2∈K∈1∈Mλ−1). (3)

2.3 MD5 Specification and Free-Start Collision Attack on MD5

MD5 [1] is a Merkle-Damg̊ard based hash function. Its block length is 512 bits
and the output size is 128 bits. At first, an input message M is padded by
the MD strengthening. The padded message is divided into 512-bit blocks, Mi

(i = 0, 1, . . . , N − 1). First H0 is set to IV, which is the initial value defined in
the specification. Then, Hi+1 ← h(Hi,Mi) is computed for i = 0, 1, . . . , N − 1,
where h is a compression function and HN is the hash value of M .

h takes a 128-bit value Hi and a 512-bit value Mi as input. Mi is divided
into sixteen 32-bit values m0∈m1∈ · · · ∈m15, and Hi is divided into four 32-bit
values Q−3∈Q0∈Q−1∈Q−2. Then, Qj+1 ← Rj(Qj−3∈Qj∈Qj−1∈Qj−2,mΓ(j)) is
computed for j = 0, . . . , 63 and (Q61+Q−3)∈(Q64+Q0)∈(Q63+Q−1)∈(Q62+Q−2)
is the output of h. Rj is the step function which computes Qj+1 as below.

Qj+1 ← Qj + (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mΓ(j) + cj) ≪ sj ,

where Φj , cj , and ≪ sj denote Boolean function, constant, and left rotation by
sj-bits, respectively. α(j) denotes a message expansion. Refer to [1] for details.
Hereafter, we denote the B-th bit of variable X and Qj by XB and Qj,B .

den Boer and Bosselaers [34] generated paired values (Hi,Mi) and (H ∈
i,Mi)

such that h(Hi,Mi) = h(H ∈
i,Mi), where Hi and H ∈

i have the difference: Hi∞H ∈
i =

(80000000, 80000000, 80000000, 80000000). Moreover, the MSB of the second,
third, and fourth variables of Hi must be equal. Hereafter, we denote this differ-
ence (including two conditions of Hi) by ξMSB. To satisfy the characteristic, 46

498 Y. Sasaki and L. Wang

conditions shown below must be satisfied: Qj−1,31 = Qj−2,31 (2 √ j √ 15), Qj,31

= Qj−1,31 (16 √ j √ 31), Qj,31 = Qj−2,31 (48 √ j √ 63).

3 Improved Single-Key Attacks on HMAC-MD5

3.1 Previous Distinguishing-H Attack on HMAC-MD5

Wang et al. presented the distinguishing-H attack on HMAC-MD5 [32], which
can also recover the internal-state value. The attack aims to detect a 2-block
message where ξMSB is generated by the birthday paradox in the first block
and the second block forms the dBB-collision [34]. The procedure is as follows.

1. Prepare 289 distinct M0 and a single message block M1. Then, make queries
of 289 two-block messages M0∈M1, and collect collisions of tags.

2. For each collision (M0∈M1,M
∈
0∈M1), replace M1 with different M ∈

1, and query
(M0∈M ∈

1,M
∈
0∈M ∈

1). If a collision of the tag is obtained, the pair is not a dBB-
collision and is erased.

3. For the remaining collisions, choose up to 247 distinct values of M ∈
1, and query

(M0∈M ∈
1,M

∈
0∈M ∈

1). If a collision is obtained, the pair is a dBB-collision.

22∗89−1 = 2177 pairs are generated at step 1. We expect a pair (M0∈M1,M
∈
0∈M1)

such that the internal state after the first block denoted by H1 and H ∈
1 satisfy

ξMSB (with probability 2−130; 2−128 for the difference and 2−2 for the MSB
values) and the second block follows the dBB-differential characteristic (with
probability 2−46). The other collisions are either collisions after the first block,
i.e., H1 = H ∈

1 (249 pairs), or random collisions after the second block, i.e., ξH1 /→
{0,ξMSB} (250 pairs). At step 2, collisions of H1 = H ∈

1 are erased and at step
3, a dBB-collision can be identified. Step 1 requires 289 queries, table lookups,
and memory. Step 2 requires (1 + 249 + 250) · 2 ≡ 251.58 queries. Step 3 requires
(1 + 250) · 247 ≡ 297 queries. Thus, step 3 dominates the entire cost.

Wang et al. also tweaked their attack to a chosen message attack. Firstly
choose 266 distinct M0. Secondly build a structure of 266 two-block messages
M0∈M1 by choosing a random message M1. Then build 247 such structures
by choosing 247 distinct M1. Thirdly, query each structure and collect colli-
sions of the tag. Finally, for each collision (M0∈M1,M

∈
0∈M1), check the sit-

uation for the other 247 − 1 M1. If there exists at least one M ∈
1 such that

(M0∈M ∈
1,M

∈
0∈M ∈

1) do not collide, which implies H1 ∼= H ∈
1, and exists another M ∈∈

1

such that (M0∈M ∈∈
1 ,M ∈

0∈M ∈∈
1) collides, then (M0∈M1,M

∈
0∈M1) is a dBB-collision.

The attack requires 266+47 = 2113 queries, while the memory is reduced to 266.

Distinguishing-H Attack. Let MD5r be a hash function where the compres-
sion function of MD5 is replaced with a random function with the same domain
and range. This implies that the domain extension and the padding algorithm
for MD5r are the same as the ones of MD5. The distinguishing-H attack aims
to decide whether a given oracle is HMAC-MD5 or HMAC-MD5r. Wang et al.
applied their attack to the given oracle. If a dBB-collision is found, they decide
that the given oracle is HMAC-MD5. Otherwise, the oracle is HMAC-MD5r.

Improved Single-Key Distinguisher on HMAC-MD5 499

Internal-State Recovery Attack. After a dBB-collision (M0∈M1,M
∈
0∈M1)

is obtained, Wang et al. apply the technique proposed by Contini and Yin [26]
to recover the chaining variables Q7∈Q8∈Q9∈Q10 of h(H1,M1). Then H1 will be
recovered by an inverse computation. For a completed description we refer to [26].
The complexity of recovering H1 is only 244 queries and 260 computations. The
procedure of recovering H1 is an adaptive chosen message attack. Thus the whole
attack is an adaptive chosen message attack with a complexity of 297 queries.

3.2 Improved Attacks on HMAC-MD5

We observe that the complexity of the core part i.e., finding a dBB-collision
can be improved by applying the technique in [26]. In order to verify whether a
collision (M0∈M1,M

∈
0∈M1) is a dBB-collision at step 3, Wang et al. chooses 247

completely different values as M ∈
1 to generate a second pair following the dBB-

characteristic. Our idea is generating many M ∈
1 by modifying M1 only partially

so that the differential characteristic for the first several steps remains satisfied.
We focus on the computations of h(H1,M1) and h(H ∈

1,M1). Recall the MD5
specification. M1 is divided into m0∈m1∈ · · · ∈m15 and mi is used at step i in the
first 16 steps. Our strategy is only modifying message words that appear later.
Note that one bit of m13 and the entire bits of m14 and m15 are fixed to the
padding string and thus cannot be modified. So we modify m12 and 31 bits of m13

to generate distinct m∈
12∈m∈

13. Therefore, if (M0∈M1,M
∈
0∈M1) is a dBB-collision,

the modified pair can always satisfy the conditions for the first 12 steps. Thus
we only need to generate 235(=47−12) pairs at step 3. The complexity of step 3
is now reduced to (1 + 250) · 235 ≡ 285 queries. Finally, the query complexity is
improved from the previous 297 to the sum of 289 for step 1 and 285 for step
3, which is 289.09. Time and memory complexities remain unchanged (289). The
success probability is around 0.87, following the similar evaluation in [32].

Our idea can also improve the previous non-adaptive chosen message attack.
We prepare 266+x (0 √ x √ 6) distinct values for M0. We can make 2131+2x pairs
of M0∈M1 for a fixed M1. ξH1 satisfies ξMSB with probability 2−130, and we
need 2131 pairs to observe this event with a good probability. Therefore, with
2131+2x pairs, one pair should satisfy ξMSB at H1 and conditions for the first
2x steps in the second block. Then, M1 is partially modified. We choose 247−2x

distinct M1 differing in the words m2x and m2x+1, and build 247−2x structures.
Then, the above conditions are satisfied in any structure. Finally we find about
two collisions (M0∈M1,M

∈
0∈M1) and (M0∈M ∈

1,M
∈
0∈M ∈

1), where H1 ∼= H ∈
1 holds,

i.e., there exists at least one M ∈∈
1 such that (M0∈M ∈∈

1 ,M ∈
0∈M ∈∈

1) do not collide.
The complexity is 2113−x queries and the memory is 266+x, where 0 √ x √ 6.

4 Key Recovery Attacks on Sandwich-MAC-MD5

4.1 Attacks on Sandwich-MAC-MD5 Basic

We show the attack for a key K with |K| < 447, which indicates that K∈pad3
fits in one block. The attack can recover all bits of K∈pad3 and the value of pad3

500 Y. Sasaki and L. Wang

Fig. 3. Attack structure for Sandwich-
MAC-MD5

Fig. 4. dBB-near-collisions

depends on |K|. Hence the attacker does not have to know |K| in advance. Also
note that the value of pad3 is determined as the MD-strengthening defined in
MD5, whereas the Sandwich-MAC can principally accept any padding scheme
but the same padding as pad1. Our attack can be extended for any padding
scheme as long as K∈pad3 fits in one block. Hereafter, we denote a 512-bit value
K∈pad3 by sixteen 32-bit values k0∈k1∈ · · · ∈k15, and aim to recover these values.

Overview. The attack is divided into 5 phases. The structure is shown in Fig. 3

1. Apply the internal state recovery attack in Sect. 3.2 to Sandwich-MAC to
obtain the first message block M0 and the corresponding internal state H1.

2. For the second message block, search for 277 message pairs (M1,M
∈
1) such that

ξH2 = h(H1,M1∈pad2) ∞ h(H1,M
∈
1∈pad2) = ξMSB. Because H1 is already

recovered, the computation can be done offline.
3. Query 277 2-block message pairs (M0∈M1,M0∈M ∈

1), and pick the ones which
produce dBB-near-collisions at the tag φ . A pair forms a dBB-near-collision
with a probability 2−45. Hence, we will obtain 277−45 = 232 pairs.

4. From 232 pairs, recover the 32-bit subkey for the last step by exploiting a
conditional key-dependent distribution.

5. As with phase 4, recover 512-bit key during the last 16 steps.

Phase 1: Internal State Recovery. The same procedure as the internal state
recovery for HMAC-MD5 can be applied. Strictly speaking, the procedure can
be optimized for Sandwich-MAC. Recall that our method in Sect. 3.2 could not
modify m14 and m15 because they are fixed for the padding. In Sandwich-MAC,
pad2 forces only 1 bit to be fixed, and thus we can modify m14 and 31 bits of
m15. This reduces the number of queries from 289 + 285 to 289 + 284 ≡ 289.04.

Improved Single-Key Distinguisher on HMAC-MD5 501

Phase 2: Generating (M1, M ′
1) Producing ΔMSB. This phase is offline

without queries. For any underlying hash function, 277 message pairs (M1,M
∈
1)

can be found by the birthday attack with 2104 computations and memory. For
MD5, the attack can be optimized. With the help of the collision attack tech-
niques [35,36], Sasaki et al. proposed a tool called IV Bridge [21], which is a
message difference producing the output difference ξHi+1 = ξMSB from the
input difference ξHi = 0 with a complexity of 242. The complexity was later
improved by Xie and Feng to 210 [37]. With the IV Bridge, message pairs can
be found much faster than the birthday attack. Note that both characteristics
in [21,37] assume that Hi is MD5’s IV. Therefore, if IV is replaced with another
H1, the differential characteristic search must be performed again. Because the
known automated differential characteristic search [37–39] can deal with any IV,
a new characteristic will be found in the same manner. Also note that if the
padding string pad2 forces many bits to be fixed, the IV Bridge search becomes
harder or impossible due to the hardness of applying the message modification
[36]. Because pad2 forces only 1 bit to be fixed, this is not a problem. The com-
plexity for this phase is one execution of the differential characteristic search
and 210 · 277 = 287 computations. The memory can be saved by running phase 3
as soon as we obtain each pair.

Phase 3: Detecting dBB-Near-Collisions. For the last message block, the
probability that a pair produces the dBB-collision is 2−46. We observe that
producing collisions is not necessary because the attacker can observe the output
values as a tag φ . Hence, the dBB-collision can be relaxed to the dBB-near-
collision, and this increases the probability of the differential characteristic.

Considering the details for phase 4, the pair must follow the dBB-collision
characteristic up to step 62. The differential propagation for the last 2 steps is
depicted in Fig. 4. One condition in step 63 is erased, and the probability of the
characteristic becomes 2−45. After examining 277 pairs, we obtain 277−45 = 232

pairs. This phase requires 277 queries, and the memory to store 232 pairs.
Note that false positives are unlikely. Our dBB-near-collisions do not produce

any difference in the left most and right most words. Besides, the difference for
the second right most word is limited to 2 patterns. The probability for randomly
satisfying the dBB-near-collision is 2−95, which is unlikely with 277 trials.

Phase 4: Recovering the Last Subkey. Because both tags and H2 are
known, the attacker can compute Q61∈Q64∈Q63∈Q62 for each dBB-near-collision.
We then analyze the last step. The equation to compute Q64 is Q64 = Q63 +
(Q60 + Φ63(Q63, Q62, Q61) + k9 + c63) ≪ 21. The value of (Q64 ≫ 21) − Q63 −
Φ63(Q63, Q62, Q61) − c63 can be computed with known values of Q61∈Q64∈Q63∈
Q62. We denote this value by Z63. Then, the equation becomes Z63 = Q60 + k9.

We then observe that the attacker can know the MSB of Q60 from the dif-
ference of Q63. The difference ξQ63 = ±231 indicates that ξΦ62 = ±231. This
only occurs when Q62,31 = Q60,31. The difference ξQ63 = ±231 ± 214 indicates
that ξΦ62 = 0. This only occurs when Q62,31 ∼= Q60,31. Because the value of

502 Y. Sasaki and L. Wang

Fig. 5. Recovering κ31 and κ30. Known
bits are in bold squares.

Fig. 6. Recovering κ29 to κ0. Known
bits are in bold squares.

Q62 is known, the value of Q60,31 can be computed. In the following, we show
how to recover k9 with exploiting a conditional key-dependent distribution.

Conditional Key-dependent Distribution Technique: Let us con-
sider a modular addition ψ + λ = ρ; ψ is a variable where 1 bit (MSB)
is known but the other bits are unknown. λ is an unknown constant. ρ is
a public variable computed by ψ + λ, and its value is known. Then, the
attacker can recover all bits of λ by collecting many pairs (ρ, ψx−1).1

The attacker separates the collected data into two groups depending on
a condition on several bits of ρ. For each separated group, behavior of
the other unconditioned bits is analyzed, i.e., conditional distribution is
analyzed. If the conditional distribution differs depending on some bits
of λ, those bits can be recovered by observing the conditional distribution.

The details of the modular addition computation is shown in Fig. 5. We denote
the carry value from bit position B to B + 1 by c+B+1, e.g. the carry value to
the MSB is c+31. Because ψ31 and ρ31 are known, the 1-bit relation of c+31 ∞ λ31

denoted by R can be computed by R = ψ31 ∞ ρ31.
At first, we recover λ31 and λ30. We separate the data into two groups by

the condition ρ30 = 0 or 1, i.e., a group satisfying ρ30 = 0 and a group satisfying
ρ30 = 1. For the group with ρ30 = 0, the distribution of other bits differs
depending on the value of λ30.

- If λ30 = 0, c+31 is 0 with probability 1/2 and is 1 with probability 1/2. This
is because ρ30 = λ30 = 0 occurs only if ψ30 = c+30 = 0 (with c+31 = 0) or
ψ30 = c+30 = 1 (with c+31 = 1).

- If λ30 = 1, c+31 is 1 with probability 1.

To utilize this difference, for each data in the group with ρ30 = 0, we simulate
the value of λ31 by assuming that c+31 is 1. If λ30 = 0, the simulation returns the
right value and wrong value of λ31 with a probability of 1/2. Therefore, we will
obtain 2 possibilities of λ31. If λ30 = 1, the simulation always returns the right
1 As a tool, the technique can be generalized more. If the B-th bit of α is known

instead of the MSB, from the LSB to the B-th bit of κ can be recovered.

Improved Single-Key Distinguisher on HMAC-MD5 503

value of λ31. Therefore, we can obtain the unique (right) value of λ31. Due to
the difference, we can recover λ30, and at the same time, recover λ31.

We can do the same for the group with ρ30 = 1.

- If λ30 = 0, c+31 is 0 with probability 1.
- If λ30 = 1, c+31 is 0 with probability 1/2 and is 1 with probability 1/2.

For each data in the group with ρ30 = 1, we simulate the value of λ31 by assuming
that c+31 is 0, and check the number of returned values of the simulation.

We then recover λ29 to λ0 in this order. In this time, we filter the data rather
than separate it. In order to recover λB , where 29 ∩ B ∩ 0, we set (31 − B)-bit
conditions, and only pick the data satisfying all conditions. The conditions are
(λ30 = ρ30), . . . , (λB+1 = ρB+1), and (c+31 = ρB). Note that λ31,30,...,B+1 are
already recovered and c+31 can be easily computed by ψ31 ∞ λ31 ∞ ρ31. Let x be
the value of c+31, where x → {0, 1}. Then, we can deduce that the value of λB is
x. The proof is shown below, and is described in Fig. 6.

Proof. The value of ρB is x by the condition c+31 = ρB . From the condition
λ30 = ρ30, the values of ψ30 and c+30 are also known to be x. By iterating the
same analysis from bit position 30 to B + 1, the values of ψB+1 and c+B+1 are
known to be x. The event c+B+1 = ρB = 0 only occurs when λB = 0. Similarly,
the event c+B+1 = ρB = 1 only occurs when λB = 1. ⊆∃

The number of necessary pairs to recover all bits of λ is dominated by the
recovery for λ0, which is 231 pairs. To increase the success probability, we gen-
erate 232 pairs. Note that these pairs can also be used to analyze the other
bits.

By replacing (ψ, λ, ρ) with (Q60, k9, Z63), k9 is recovered with 232 dBB-near-
collisions. If a high success probability is required, more pairs than 232 should
be collected. See Appendix A for more discussion.

Note that recovering λ with exhaustive search instead of the conditional
key-dependent distribution is possible but inefficient. The attempt is as follows.
Guess λ, and then compute ψ by ρ − λ. The known 1-bit ψ31 takes a role of the
filtering function. During the computation of ρ −λ, the probability that flipping
λ0 changes the value of ψ31 (through the carry effect) is 2−31. If we collect 232

pairs of (ρ, ψx−1) and guess 32 bits of λ, all wrong guesses can be filtered out.
However, this requires 264 additions, which is worse than our attack.

Phase 5: Recovering 512-Bit Key in the Last 16 Steps. This phase is
basically the iteration of phase 4. After k9 is recovered, the tag value can be
computed until step 63 in backward, and the same analysis as k9 can be applied
to the second last step to recover k2. By iterating this for the last 16 steps, the
original key K and the padding string pad3 are recovered. The number of dBB-
near-collisions that we can use will increase as we recover more subkeys. This is
because the probabilistic part of the differential characteristic will be shorter.

504 Y. Sasaki and L. Wang

Attack Evaluation. Phase 1 requires 289.04 queries, 289 table look-ups, and
a memory for 289 states. Phase 2 requires 210 · 277 = 287 compression function
computations. Phase 3 queries 277 2-block paired messages. It also requires to
store 232 pairs of H2 and H ∈

2, which requires a memory for 233 states. Phase 4
requires 232·1/64 = 226 computations. Phase 5 requires 15·232·16/64 which is less
than 234 computations. Hence, the dominant part is the internal state recovery
attack for Phase 1. Our experiment in Appendix A suggests that generating
more pairs at Phase 2 is better to obtain a high success probability. Then, the
complexity for Phase 2 becomes 288 or 289 compression functions. The attack
works without knowing |K| as long as |K| < 447. The length of the queried
message can always be a multiple of the block size. Hence, the attack can be
extended to Sandwich-MAC variant B.

4.2 Attacks on Sandwich-MAC-MD5 Extended B

For this variant, the last message block can contain several bits chosen by the
attacker. This reduces the complexity of the key recovery phase. Although the
bottleneck of the attack is the internal state recovery phase, we show the attacks
from two viewpoints. (1) We show the security gap between extended B and
Basic. Although they have the the same provable security, the attack is easier
in extended B. (2) In practice, K may be stored in a tamper-resistant device to
prevent the side-channel analysis. However, the internal state value may not be
protected, and the bottleneck of the attack may become the key-recovery part.

The range of |K| in extended B is |K| < 446 because pad3 for MD5 is 65 bits
minimum and one extra bit ‘1’ is appended right after K. Although the attack
strategy and the complexity depend on |K|, the initial part of the attack is the
same. Due to the message block structure K∈1∈M1∈pad3 and the MD5 message
expansion α(·), the first steps of the compression function are updated by K. We
call these steps keyed steps. The following steps are updated by the controlled
message or the padding string until step 16. For example, if |K| is 128, the first
4 steps are the keyed steps. The initial part of the attack is as follows.

1. Recover the internal state value H1 by applying the internal state recovery
attack in Sect. 3.2 or some side-channel analysis.

2. Searching for #X ·245 message pairs (M1,M
∈
1) such that ξH2 = ξMSB, where

#X depends on |K|. Query them to obtain #X dBB-near-collisions.
3. Recover the internal state value right after the keyed steps by using the free-

dom degrees of M2 with the approach by Contini and Yin [26].

Phase 2 requires about #X ·245 ·210 computations and #X ·245 queries. Phase 3
requires about #X · 247 queries. We then recover K with the recovered internal
state value right after the keyed steps. The attack strategy depends on |K|.

Case Study for |K| = 128. Because the tag size is 128 bits, |K| = 128 is a
natural choice. We choose #X = 1 for this case. In the last block, the value of
H2 = Q−3∈Q0∈Q−1∈Q−2 is known. After phase 3, the value of Q1∈Q4∈Q3∈Q2

Improved Single-Key Distinguisher on HMAC-MD5 505

Fig. 7. MitM procedure for |K| = 224. Fig. 8. MitM procedure for |K| = 352.

becomes known. Then, all of k0, k1, k2, and k3 are easily recovered by solving the
equation of the step function, e.g. k0 is recovered by k0 =

(
(Q1 − Q0) ≫ 7

) −
Q−3−Φ0(Q0, Q−1, Q−2)−c0. Other keys are also recovered with 1 computation.

Case Study for |K| = 224. K is divided into 7 words k0, . . . , k6. In the last
block, the values for Q−3∈Q0∈Q−1∈Q−2 and Q4∈Q7∈Q6∈Q5 are known after
phase 3. To recover k0, . . . , k6, we use the meet-in-the-middle (MitM) attack
[40,41]. Particularly, all subkey recovery attacks [42] can be applied directly.
The attack structure is depicted in Fig. 7. For each of the forward and backward
chunks, the attacker guesses 64 key bits. The results from two chunks can match
without computing 3 middle steps with the partial-matching [43]. To reduce
the key space into a sufficiently small size, 4 pairs of Q−3∈Q0∈Q−1∈Q−2 and
Q4∈Q7∈Q6∈Q5 are required. Hence, we set #X = 4. The attack complexity is
about 4 · 264 = 266.

Case Study for |K| = 352. K is divided into 11 words k0, . . . , k10. The
attack structure is depicted in Fig. 8. For each chunk, 16 key bits are additionally
guessed (all bits of k0, k1, k9, k10 and 16 bits of k2, k8). This increases the number
of skipped steps from 3 to 7 with the partial-fixing [44] or the indirect partial-
matching [45]. To reduce the key space, we use 10 pairs of Q−3∈Q0∈Q−1∈Q−2 and
Q8∈Q11∈Q10∈Q9, thus #X = 10. The complexity for the attack is about 10·280 <
284. After k0, k1, k9, k10 and 16 bits of k2, k8 are recovered, the remaining 192
bits can be recovered by iterating the MitM attack. Note that if |K| > 352, the
attack becomes worse than the one in Sect 4.1.

506 Y. Sasaki and L. Wang

5 Discussion About HMAC and Sandwich-MAC

The compression function takes two information as input; previous chaining
variable and message. For block-cipher based compression functions including
the MD4-family, these correspond to the key input and plaintext input. Matyas-
Meyer-Oseas (MMO) mode [46, Algorithm 9.41] takes the previous chaining vari-
able as the key input and Davies-Meyer (DM) mode [46, Algorithm 9.42] takes it
as the message input. The main difference between HMAC and Sandwich-MAC
is the structure of the finalization (computation after M is processed by the MD
structure). HMAC adopts the MMO mode while Sandwich-MAC adopts the
Davies-Meyer DM mode. Our attack shows that the (outer-)key can be recov-
ered if both modes in the MD structure and the finalization are the DM-mode
and a differential characteristic (ξHi ∼= 0,ξM = 0,ξHi+1 = 0) exists in h. The
attack can also work if both modes are the MMO-mode. In summary, to mini-
mize the risk, using different modes for the MD structure and the finalization is
preferable. On the other hand, Okeya showed that, among 12 secure PGV modes
[47], using the MMO-mode in the finalization is the only choice to protect the
outer-key from the side-channel analysis [48,49]. Taking into account our results,
Okeya’s results, and the fact that most of hash functions in practice adopt the
DM-mode, we can learn that the HMAC construction is best.

The padding rule can impact the attack complexity. If the MD-strengthening
is adopted as pad2 of Sandwich-MAC, the number of attacker’s controlling bits
decreases. This prevents the IV Bridge and makes the attack less efficient.

There are some gaps between the hardness of the attack and the provable
security. From the provable security viewpoint, the choice of the padding scheme
and the choice of HMAC, Sandwich-MAC Basic, variant B, and extended B are
not very different. However, once the assumption for the proof (PRF of h) is
broken, these choices make a significant difference. Hence, this is a trade-off
between security and performance depending on how the assumption is trusted.
These differences should be taken into account when a system is designed. We
never conclude that Sandwich-MAC extended B is a bad idea. Reducing the
amount of meaningless padding bits is very nice especially for tree hashing,
where the hash value is computed with several hash function calls and thus the
amount of the padding bits is bigger than the sequential hashing. Our point is
that the damage of the scheme when the assumption is broken is usually not
discussed, but it deserves the careful attention because industry continues using
broken hash functions such as MD5 for long time.

In general, the impact of a differential attack on h for applications is unclear.
Wang et al. showed the characteristic with Pr[h(Hi,M) = h(H ∈

i,M)] > 2n/2

can mount the distinguishing-H attack against HMAC [32]. We extend it to the
key-recovery on Sandwich-MAC. Finding such a conversion is an open problem.

6 Applications to MD5-MAC

MD5-MAC is an instantiation of the message authentication code MDx-MAC
proposed by Preneel and van Oorschot [4] based on the hash function MD5.

Improved Single-Key Distinguisher on HMAC-MD5 507

MD5-MAC takes a single 128-bit key K as input, which is expanded to three
128-bit subkeys K0, K1 and K2 as Ki = MD5(K∈Ui∈K), 0 √ i √ 2; where
MD5 is the MD5 algorithm without the padding, and Ui with 0 √ i √ 2 is
a public constant. K0 is used to replace the public initial value (IV) of MD5,
and transforms the public function MD5(IV,M) into a keyed hash function
MD5(K0,M). K1 is used inside the MD5 compression function. More precisely,
K1 is split into four 32-bit substrings K1[i] (0 √ i √ 3), and K1[i] is added
to the constants used in round i of the MD5 compression function in modulo
232. We denote MD5 with K1 inside the compression function and without the
padding by MD5K1 . Then K2 is expanded to a full block K2, namely 512-bit
long, as K2 = K2∈(K2 ∞ T0)∈(K2 ∞ T1)∈(K2 ∞ T2) where Ti with 0 √ i √ 2 is a
public constant. Let M be an input message and pad be the padding algorithm
of MD5. Then, MD5-MAC is computed as below:

MD5-MACK(M) = MD5K1(K0, pad(M)∈K2).

Previous Attacks. Wang et al. proposed a partial key-recovery attack on MD5-
MAC [32], which recovers a 128-bit key K1 with about 297 MAC queries and
261.58 offline computations. Their attack [32] is divided into three phases.

1. Generate 3 dBB-collisions of the form (M0∈M1) and (M ∈
0∈M1).

2. Recover 95 bits of Q1, Q2, Q3, Q4, Q5 and 90 bits of Q6, Q7, Q8, Q9, Q10 with
the method proposed by Contini and Yin [26].

3. Recover K1[0]. Then recover K1[1],K1[2], and K1[3].

The first phase requires 297 queries. The second phase requires (95 + 90) · 247 ≡
254.53 queries. To recover K1[0] in the third phase, the step function equation
is solved by guessing unknown 65 bits of (Q1, Q2, Q3, Q4, Q5). For each guess,
the following 5 steps are computed and check the match with already recovered
90 bits of (Q6, Q7, Q8, Q9, Q10). Hence, this requires 265 · 6/64 ≡ 261.58 MD5
computations. K1[1],K1[2], and K1[3] are recovered with the divide-and-conquer
approach. Hence the cost to recover each key is several iterations of 232 guesses.
Overall, the dominant part of the attack is finding dBB-collisions. Note that the
attack cannot recover any information about K0 and K2.

Improved Key Recovery for K1. Because the dominant part of the attack is
finding 3 dBB-collisions, the attack can be improved with our improved proce-
dure on HMAC-MD5 in Sect. 3. The application is straight-forward and thus we
omit the details. The attack cost becomes 289.09 queries and 289 table lookups.

Extended Key Recovery for K2. Once K1 is recovered, the MAC compu-
tation structure becomes essentially the same as the one for Sandwich-MAC
Basic with MD5. Because our attack on Sandwich-MAC-MD5 can recover 512-
bit secret information of the last message block faster than 2128 queries and
computations, a 512-bit key K2 can be recovered with exactly the same proce-
dure as the one for Sandwich-MAC-MD5. The bottleneck of the attack is still

508 Y. Sasaki and L. Wang

finding dBB-collisions, which requires 289.04 queries and 289 table lookups. We
emphasize that this is the first result which can recover K2 of MD5-MAC.

7 Concluding Remarks

In this paper, we first improved the distinguishing-H attacks on HMAC-MD5.
We then proposed the key-recovery attack on Sandwich-MAC-MD5 by combin-
ing various techniques. In particular, we generalized the key-recovery technique
exploiting the conditional key-dependent distributions. As a result, we achieved
the first results that can recover the original-key against a hybrid MAC with
an appropriate padding. Our results also improved the previous key-recovery
attack on MD5-MAC, and extended the recovered key to both of K1 and K2.
We believe our results lead to a better understanding of the MAC construction.

A Testing Conditional Key-Dependent Distributions

We implemented the key recovery procedure with the conditional key-dependent
distributions. The first experiment verifies the key recovery procedure for λ31 and
λ30. The second experiment verifies the key recovery procedure for λ29 to λ0.

To recover λ31 and λ30, we first observe whether the simulated value of λ31

is always the same or not for the group with ρ30 = 0. We then observe the
same thing for the group with ρ30 = 1. If λ30 = 0 (resp. λ30 = 1), two values
are returned from the group with ρ30 = 0 (resp. ρ30 = 1) and only one value
is returned from the group with ρ30 = 1 (ρ30 = 0). λ30 is recovered after two
values are returned from one of two groups. If the number of data is small, the
simulation may return only one value. This occurs probabilistically.

Let D be the number of available data. In our experiment, we first fix the
value of λ. We then choose ψ D times from a uniformly distributed space, and
compute ρ = λ + ψ for each ψ. Then, we run the key recovery algorithm and
check λ30 is recovered or not i.e., one group returns two values. Finally, we iterate
this procedure 100,000 times and count how many times λ30 is recovered. The
results are shown in Table 2. From Table 2, collecting 210 data seems enough to
recover λ31 and λ30 with a high probability. Because our attack generates 232

dBB-near-collisions, recovering λ30 and λ31 succeeds with probability almost 1.
To recover λ29 to λ0, we search for a data satisfying all conditions. Because

the recovery procedure is almost the same for different bit positions, we do the
experiment only for recovering the 8 bits, λ29 to λ22. The experiment success-
fully recovers the key as long as sufficient data is available. We performed the
key recovery procedure 1,000 times by changing the number of data D. The
number of successes is listed in Table 3. Underlined values show the data for
the theoretical evaluation. We can see that the theoretical evaluation has a low
success probability. In our attack, we generate 232 data for recovering λ0, which
is a double of the theoretical evaluation. From Table 3, the probability that λ0

is successfully recovered is expected to be about 55 %. Moreover, the success
probability of recovering λ1 is about 75 %, λ2 is about 87 %, λ3 is about 94 %,

Improved Single-Key Distinguisher on HMAC-MD5 509

Table 2. Experiment for the recovery procedure of κ31 and κ30.

D #Success Success prob. (%)

2 8368 8.4
4 28673 28.7
8 56067 56.1
16 76510 76.5
32 87970 88.0
64 93743 93.7
128 96955 97.0
256 98465 98.5
512 99216 99.2

Table 3. Experiment for the recovery procedure of κ29 to κ22.

Target D
bit 2 4 8 16 32 64 128 256 512 1024

κ29 238 378 598 768 891 928 975 978 989 995
κ28 116 202 374 559 751 886 953 973 989 987
κ27 58 122 214 360 539 721 878 935 969 980
κ26 15 58 101 195 361 587 731 871 952 969
κ25 10 28 50 118 212 381 557 774 862 944
κ24 4 20 36 70 122 208 370 566 760 875
κ23 2 7 10 28 64 119 199 380 552 752
κ22 4 2 8 12 31 60 104 211 373 573

and so on. If the expected value is calculated, 2.25 candidates, which is about
21.18, candidates of λ will remain after the analysis of 232 pairs. We can use
the exhaustive search to reduce these space. At phase 5 of the procedure, the
analysis with 232 data is iterated 16 times, and thus the remaining space will be
21.18∗16 = 218.88. Of course, by generating more pairs than 232 at phases 2 and
3, the success probability of recovering λ can be close to 1.

References

1. Rivest, R.L.: Request for Comments 1321: The MD5 Message Digest Algorithm.
The Internet Engineering Task Force (1992). http://www.ietf.org/rfc/rfc1321.txt

2. U.S. Department of Commerce, National Institute of Standards and Technology:
Secure Hash Standard (SHS) (Federal Information Processing Standards Pub-
lication 180–3) (2008). http://csrc.nist.gov/publications/fips/fips180-3/fips180-3
final.pdf

3. Tsudik, G.: Message authentication with one-way hash functions. ACM SIGCOMM
Comput. Commun. Rev. 22(5), 29–38 (1992)

4. Preneel, B., van Oorschot, P.C.: MDx-MAC and building fast MACs from hash
functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14.
Springer, Heidelberg (1995)

http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

510 Y. Sasaki and L. Wang

5. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

6. U.S. Department of Commerce, National Institute of Standards and Technology:
Federal Register, vol. 72, no. 212, November 2, 2007/Notices (2007). http://csrc.
nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

8. Kaliski Jr., B.S., Robshaw, M.J.B.: Message authentication with MD5. Technical
report, CryptoBytes (1995)

9. Metzger, P., Simpson, W.A.: Request for Comments 1852: IP Authentication using
Keyed SHA. The Internet Engineering Task Force (1995). http://www.ietf.org/rfc/
rfc1852.txt

10. Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 19–32. Springer, Heidel-
berg (1996)

11. U.S. Department of Commerce, National Institute of Standards and Technol-
ogy: The Keyed-Hash Message Authentication Code (HMAC) (Federal Infor-
mation Processing Standards Publication 198), July 2008. http://csrc.nist.gov/
publications/fips/fips198-1/FIPS-198-1 final.pdf

12. Bellare, M.: New proofs for NMAC and HMAC: security without collision-
resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619.
Springer, Heidelberg (2006)

13. Yasuda, K.: Multilane HMAC— security beyond the birthday limit. In: Srinathan,
K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 18–32.
Springer, Heidelberg (2007)

14. Yasuda, K.: Boosting Merkle-Damg̊ard hashing for message authentication. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 216–231. Springer,
Heidelberg (2007)

15. Yasuda, K.: “Sandwich” is indeed secure: how to authenticate a message with just
one hashing. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 355–369. Springer, Heidelberg (2007)

16. Yasuda, K.: HMAC without the “second” key. In: Samarati, P., Yung, M., Mar-
tinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 443–458. Springer,
Heidelberg (2009)

17. Gauravaram, P., Okeya, K.: An update on the side channel cryptanalysis of MACs
based on cryptographic hash functions. In: Srinathan, K., Rangan, C.P., Yung,
M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer, Heidelberg
(2007)

18. Peyrin, T., Sasaki, Y., Wang, L.: Generic related-key attacks for HMAC. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer,
Heidelberg (2012)

19. Patel, S.: An efficient MAC for short messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 353–368. Springer, Heidelberg (2003)

20. Leurent, G.: Message freedom in MD4 and MD5 collisions: application to APOP.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309–328. Springer, Heidel-
berg (2007)

21. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: Security of MD5 challenge and
response: extension of APOP password recovery attack. In: Malkin, T. (ed.) CT-
RSA 2008. LNCS, vol. 4964, pp. 1–18. Springer, Heidelberg (2008)

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://www.ietf.org/rfc/rfc1852.txt
http://www.ietf.org/rfc/rfc1852.txt
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

Improved Single-Key Distinguisher on HMAC-MD5 511

22. Sasaki, Y., Yamamoto, G., Aoki, K.: Practical password recovery on an MD5 chal-
lenge and response. Cryptology ePrint Archive, Report 2007/101 (2007). http://
eprint.iacr.org/2007/101

23. Wang, L., Sasaki, Y., Sakiyama, K., Ohta, K.: Bit-free collision: application to
APOP attack. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824,
pp. 3–21. Springer, Heidelberg (2009)

24. Myers, J., Rose, M.: Post office protocol - version 3. RFC 1939 (Standard), May
1996. Updated by RFCs 1957, 2449. http://www.ietf.org/rfc/rfc1939.txt

25. Kim, J.-S., Biryukov, A., Preneel, B., Hong, S.H.: On the security of HMAC and
NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (extended abstract). In:
De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer,
Heidelberg (2006)

26. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

27. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

28. Lee, E., Chang, D., Kim, J.-S., Sung, J., Hong, S.H.: Second preimage attack on
3-Pass HAVAL and partial key-recovery attacks on HMAC/NMAC-3-pass HAVAL.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 189–206. Springer, Heidelberg
(2008)

29. Rechberger, C., Rijmen, V.: On authentication with HMAC and Non-random prop-
erties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol.
4886, pp. 119–133. Springer, Heidelberg (2007)

30. Rechberger, C., Rijmen, V.: New results on NMAC/HMAC when instantiated with
popular hash functions. J. Univ. Comput. Sci. 14(3), 347–376 (2008)

31. Wang, L., Ohta, K., Kunihiro, N.: New key-recovery attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 237–253. Springer, Heidelberg (2008)

32. Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 121–133. Springer, Heidelberg (2009)

33. Wu, H., Preneel, B.: Differential-linear attacks against the stream cipher phelix. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 87–100. Springer, Heidelberg
(2007)

34. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD-5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

35. Klima, V.: Tunnels in hash functions: MD5 collisions within a minute. IACR Cryp-
tology ePrint Archive: Report 2006/105 (2006). http://eprint.iacr.org/2006/105.
pdf

36. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

37. Xie, T., Feng, D.: How to find weak input differences for MD5 collision attacks.
Cryptology ePrint Archive, Report 2009/223 (2009) Version 20090530:102049.
http://eprint.iacr.org/2009/223

38. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

http://eprint.iacr.org/2007/101
http://eprint.iacr.org/2007/101
http://www.ietf.org/rfc/rfc1939.txt
http://eprint.iacr.org/2006/105.pdf
http://eprint.iacr.org/2006/105.pdf
http://eprint.iacr.org/2009/223

512 Y. Sasaki and L. Wang

39. Mendel, F., Rechberger, C., Schläffer, M.: MD5 Is weaker than weak: attacks on
concatenated combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 144–161. Springer, Heidelberg (2009)

40. Diffie, W., Hellman, M.E.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1977)

41. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

42. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending
meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

43. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009)

44. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009)

45. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for step-
reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

46. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1997)

47. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

48. Okeya, K.: Side channel attacks against HMACs based on block-cipher based hash
functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 432–443. Springer, Heidelberg (2006)

49. Okeya, K.: Side channel attacks against hash-based MACs with PGV compression
functions. IEICE Transactions 91–A(1), 168–175 (2008)

Provable Second Preimage Resistance Revisited

Charles Bouillaguet1(B) and Bastien Vayssière2

1 LIFL, Université Lille-1, Lille, France
charles.bouillaguet@lifl.Fr

2 PRISM Lab, Université de Versailles/Saint-Quentin-en-Yvelines,
Versailles, France

Bastien.Vayssiere@prism.uvsq.fr

Abstract. Most cryptographic hash functions are iterated construc-
tions, in which a mode of operation specifies how a compression function
or a fixed permutation is applied. The Merkle-Damg̊ard mode of opera-
tion is the simplest and more widely deployed mode of operation, yet it
suffers from generic second preimage attacks, even when the compression
function is ideal.

In this paper we focus on provable security against second preimage
attacks. Based on the study of several existing constructions, we describe
simple properties of modes of operation and show that they are sufficient
to allow some form of provable security, first in the random oracle model
and then in the standard model. Our security proofs are extremely sim-
ple. We show for instance that the claims of the designers of Haifa
regarding second preimage resistance are valid.

Lastly, we give arguments that proofs of second preimage resistance
by a black-box reduction incur an unavoidable security loss.

Keywords: Hash function · Second preimage resistance · Security proof ·
Unavoidable security loss · Black-box reductions

1 Introduction

Of all major cryptographic primitives, hash functions have been continuously
avoiding the theoretical nirvana other cryptographic primitives enjoy. While
ciphers, encryption schemes, message authentication codes and signature schemes
have well understood theoretical foundations, acknowledged security definitions,
and some can be idealized using primitives which are considered natural and
fair, hash functions have remained as elusive as they were. There is however a
consensus to consider that a cryptographic hash function H : {0, 1}∞ ∈ {0, 1}n

cannot be “good” if it does not simultaneously resist:

1. Collision adversaries up to about 2n/2 queries
2. Preimage adversaries up to about 2n queries
3. Second-Preimage adversaries up to about 2n queries

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 513–532, 2014.
DOI: 10.1007/978-3-662-43414-7 26, c∈ Springer-Verlag Berlin Heidelberg 2014

514 C. Bouillaguet and B. Vayssière

Many modern hash functions are usually built by combining a compression
function, hashing a small number of bits (typically 512) into a smaller num-
ber (typically 256), and of a mode of operation, describing how the compression
function should be used to process arbitrarily big messages. The most popular
and well-known mode of operation is the Merkle-Damg̊ard construction, intro-
duced in 1989 and named after its two independent inventors [6,14]. Besides its
simplicity and elegance, the most distinctive feature of this mode of operation is
that it promotes the collision-resistance of the compression function to that of
the full hash function. Indeed, its inventors proved that there exist an efficient
algorithm which, given two messages M ∞= M ∗ such that Hf (M) = Hf (M ∗),
extracts two compression-function inputs x ∞= x∗ such that f(x) = f(x∗), where
Hf denotes the Merkle-Damg̊ard iteration of the compression function f .

The Merkle-Damg̊ard mode of operation therefore enjoys a form of provable
security, since the whole hash function is not less secure than the compression
function with respect to collision adversaries. This allows hash function designers
to focus on designing collision-resistant compression functions, arguably an easier
task than designing a full-blown hash function. A comparable result holds for
preimage resistance, since a preimage on the full hash function would lead to a
pseudo-preimage on the compression function.

The situation is however not as good for the remaining classical security
notion, namely second preimage resistance. In fact, it turned out that the Merkle-
Damg̊ard iteration of a secure compression function is not as secure as the com-
pression function itself: in 2005, Kelsey and Schneier described an attack [12]
that finds a second preimage of an φ-block message with 2n/φ evaluations of the
compression function, even if it is ideal (i.e., a public random function).

The existence of several generic attacks [10–12] demonstrated that there was
definitely a problem with the Merkle-Damg̊ard construction, and motivated fur-
ther research, and new modes of operations have emerged. It also motivated hash
function designers to provide proofs that their mode of operation is sounds, and
that it does not suffer from generic attacks.

An elegant solution, both theoretically and practically appealing, is the wide-
pipe hash proposed by Lucks in 2005 [13]. The underlying idea is simple: make the
internal state twice as big as the output. This makes the construction provably
resistant to second preimage attacks in the standard model, because a second
preimage on the iteration yields either an n-bit second preimage or a 2n-bit
collision on the compression function. This construction is also very practical,
and it is implemented by 4 out of the 5 SHA-3 finalists. However, the memory
footprint of a wide-pipe construction is as least twice as big compared to Merkle-
Damg̊ard, so in some cases where memory is restricted, it would be beneficial to
have a “narrow-pipe” mode of operation.

In this paper, we focus on narrow-pipe1 modes of operation, where several
questions remain unanswered. For instance, the exact resistance to generic sec-
ond preimage attack of the Merkle-Damg̊ard construction is in fact unknown.
1 We call “narrow-pipe” a construction where the internal state has the same length

as the digest.

Provable Second Preimage Resistance Revisited 515

Existing attacks give an upper-bound above the birthday paradox, and the fact
that a second preimage is also a collision give a birthday lower-bound. The
generic second preimage security of Merkle-Damg̊ard is thus known to lie some-
where between 2n/2 and 2n/φ queries, for messages of size φ.

Our Goal and Our Results. The objective of this paper is to describe very
simple conditions that, when satisfied by a narrow-pipe mode of operations, are
sufficient to provide some form of provable resistance against second preimage
attacks beyond the birthday bound.

Provable security against second preimage attack comes in several flavors.
One possible setting to discuss the security of a mode of operation is the ran-
dom oracle model, i.e., assuming that the compression function is a public ran-
dom function. Proofs that there cannot exist second preimage attacks under
the assumption that the compression function is a random oracle show that
the mode of operation is immune to generic attacks, i.e., attacks that target the
mode of operation itself and thus work for any compression function. The second
preimage attacks of Kelsey-Schneier and that of Andreeva et al. [2] are generic
attacks.

We show that a simple tweak to the Merkle-Damg̊ard mode is sufficient
to prevent all generic second preimage attacks. This modification, namely the
inclusion of a round counter, is one of the distinctive features of Haifa. Biham
and Dunkelman proposed Haifa in 2006 [8], as a collection of tweaks to the
original Merkle-Damg̊ard mode of operation; they claimed a security level of 2n

against second preimage adversaries, without providing proofs. We thus show
that their claim is valid.

The assumption that hash functions, or just components thereof, are random,
is strong and unrealistic enough to make some uncomfortable, so that we would
like to get rid of it. Constructions of keyed hash functions provably achieving
a form of second preimage resistance without relying on the existence of public
random functions, but instead based on the hardness of a general assumption
have been known for quite a while [9,15], under the name of Universal One-Way
Hash Functions (UOWHFs). Later on, modes of operation of keyed hash func-
tions that promote a form of second preimage resistance from the compression
function to the whole construction have been designed [4,17].

The security of the latter modes of operation is established by a black-box
reduction, namely an algorithm that turns a successful attacker against the hash
function into a (somewhat less) successful attacker against the compression func-
tion. Thus, the iteration remains secure, up to some level, as long as the com-
pression functions are themselves secure.

Inspired by these constructions we again isolate a specific property of modes
of operation which is sufficient to provide this kind of “reductionist” security,
without heavy assumptions on the compression function. This feature is, again,
simple: given a bit string x, it must be possible to forge a message M such
that f(x) is evaluated while computing Hf (M). We then describe a “generic”
reduction that solely requires this specific property to show that a mode of

516 C. Bouillaguet and B. Vayssière

operation promotes the second preimage resistance of the compression function.
This proof is, to some extent, an abstraction of the security proofs of several
existing schemes.

Lastly, we observe that in all these proofs of second preimage security by
reduction there is always a security loss proportional to the size of hashed mes-
sages (i.e., security is guaranteed up to a level of 2n/φ where φ denotes the
size of hashed messages). We give arguments hinting that this security loss is
unavoidable, and is caused by the proof technique itself.

Organisation of the Paper. In Sect. 2 we recall the security notions we are
concerned with. Then in Sect. 3 we introduce a generic narrow-pipe mode of
operation, and we show that all the particular constructions that we consider
are instances of this generic framework. In Sect. 4 we discuss the generic attacks
that apply to the known provably second-preimage resistant constructions we
consider, and we show how to make them immune to these attacks. Lastly, in
Sect. 5 we show our main result, namely that the security loss in the security
proofs is unavoidable.

2 Definitions

We recall the definition of the usual second preimage notions. The Spr notion
is folklore and applies to unkeyed hash functions, while Sec and eSec security
notions have been defined in [16] and applies to families of hash functions indexed
by a key.

Spr The adversary receives a (random) challenge M and has to find a second
message M ∗ such that H(M) = H(M ∗) with M ∞= M ∗. The advantage of
the adversary is its success probability (taken over the random coins used
by the adversary and the random choice of the challenge).

Sec The adversary receives a random challenge message and a random key, and
she has to produce a colliding message for the given key. The advantage
is the success probability of the adversary (over the random coins used by
the adversary and the random choice of the challenge).

eSec The adversary chooses the challenge message. Then, she receives a random
key and has to find a colliding message under this key. The advantage is
the maximum taken over the choice of M by the adversary of her success
probability (taken over the random coins used and the random choice of
the key).

Historically, eSec-secure hash function families have been called Universal
One-Way Hash Functions (UOWHFs). It must be noted that a Sec-adversary
can be used to win the eSec security game (just generate the challenge message
randomly-first). Therefore, if H(·) is eSec-secure, then it is also Sec-secure.

Note that the size of the challenges plays an important role in the discussion
of second preimage resistance. The known generic attacks are faster when the

Provable Second Preimage Resistance Revisited 517

challenges become longer. For this reason, the second preimage security notions
are often parametrized by the size of the challenges. When the challenge consists
of an φ-block long message, the notions are denoted by Spr[φ],Sec[φ] and eSec[φ].

We say that an adversary against a security notion (t, ψ)-breaks the security
notion if it terminates in time t and wins the game with probability ψ. Let us
note a fact that will have some importance later on. In all these notions, the
success probability is taken over the random coins of the adversary and over the
choice of the challenge. This means that an adversary implementing an attack
against “weak messages” or “weak keys” may succeed on a small fraction of the
challenge space and fail systematically on non-weak messages, while still having
a non-zero advantage. A consequence is that it is not possible to increase the
success probability of adversaries against a single challenge by repeating them
until they succeed.

How to compare the efficiency of adversaries that have different running time
and success probability? If an adversary (t, ψ)-breaks a security notion, then the
expected number of repetitions of the experiment defining the notion before
the adversary wins is 1/ψ. This represents a total of t/ψ time units, and this
is a meaningful scale. Intuitively, it represents “how much time do we have to
wait before the adversary shows me what she is capable of”. We call the global
complexity of an adversary the ratio between its time complexity and its suc-
cess probability. As an example, notice that the global complexity of exhaustive
search is 2n (for all second preimage notions).

Following the notations in use in the existing literature, we will denote by
AH an adversary against an iterated hash function, and by Af the adversary
against the corresponding compression function. Hopefully, things will be clear
by the context.

3 Abstract Narrow-Pipe Modes of Operations

Because we would like to state results that are as generic as possible, we introduce
a framework of abstract modes of operation, which encompasses all the narrow-
pipe modes of operation known to the authors. This framework will enable us
to show that our results hold for any mode of operation satisfying a minimum
set of conditions.

We will consider that a narrow-pipe mode of operation H(·) is a circuit that
takes as its input M (the full message), K (the key, if present), hi (the current
chaining value) and i (the block counter). This circuit is responsible for preparing
the input to the compression function. The next chaining value hi+1 is the output
of the compression function on the input prepared by the circuit. The output
of the whole hash function is the output of the compression function on its last
invocation. The circuit activate a special wire “last call” to indicate that the
hash process is terminated. We denote by e : N ∈ N the function that returns
the number of calls to the compression function given the size of M . We thus
implicitly assume that the number of calls to the compression function does not
depend on the input of the hash function (i.e., on M and K), but only on the
size of M . We are inclined to believe that this restriction is natural.

518 C. Bouillaguet and B. Vayssière

The incoming chaining value is set to a predefined value (say, zero) on the first
invocation. This particular class of modes of operation imposes that the output
of the full hash function comes out of the compression function without post-
treatment, in particular without truncation. This, coupled with the fact that
the circuit has no internal memory makes it a narrow-pipe mode of operation.
Apart from that, H(·) may include a “final transformation”, or process each
message block multiple times. Formally, the hash process works according to the
pseudo-code shown in Algorithm 1.

Algorithm 1. Formal definition of the hash process with an abstract mode of
operation

function Abstract-Mode-Of-Operation(M, K)
h−1 ← 0
i ← 0
while not finished do

xi ← H(·) (M, K, i, hi−1)
hi ← f (xi)
i ← i + 1

end while
return hi−1

end function

There are constructions that are apparently not narrow-pipe, but that still
fit in this framework, such as the GOST hash function (the checksum can be
computed in the last invocation, and does not need to be transmitted between
each invocation of the compression function). Note that this requires the full
message M to be given to the mode of operation at each invocation.

Note that by choosing H(·) to be a circuit, we implicitly admit the exis-
tence of an upper-bound on the size of the messages (if only because the block
counter comes on a finite number of wires). In the sequel, by “mode of opera-
tion”, we implicitly mean “a narrow-pipe mode of operation that fits the above
framework”. This does not seem to be a restriction, as we are not aware of any
narrow-pipe construction using a single compression function that does not fit
the above definition.

3.1 Collision-Resistance Preserving Modes of Operation

While we tried to make the definition of a mode of operation as generic as it gets,
we are not interested in really bad modes of operation. We are not interested in
non-collision resistant constructions, for instance. In this section, we characterize
a few properties modes of operation should have not to be totally worthless.

We say that a mode of operation is strengthened if the binary encoding
of the size of the processed message is contained in the input to the last invo-
cation of the compression function. It is well-known that the Merkle-Damg̊ard

Provable Second Preimage Resistance Revisited 519

mode of operation is strengthened, which is the key in establishing its impor-
tant collision-resistance preservation. However, in general, being strengthened
is not completely sufficient to be collision-resistance preserving. Some further
technicalities are required.

We say that a mode of operation is message-injective if for all functions
f and all keys K, the function that maps the message M to the sequence of
compression-function inputs (xi) is injective. This implies that hashing two dif-
ferent messages M and M ∗ cannot generate the same sequence of inputs (xi).
This property is necessary for collision-resistance preservation: if H(·) is not
message-injective, there exists a function f and a key K such that there exist
two colliding messages M and M ∗ generating the same hash, without causing a
collision in the compression function.

We also say that a mode of operation is chaining-value-injective if for all
f and all K, there exists a (deterministic) function that maps xi to hi−1. The
combination of these three properties is sufficient to ensure collision-resistance
preservation.

Lemma 1. A mode of operation H(·) simultaneously message-injective, chaining-
value-injective and strengthened is collision-resistance preserving.

This lemma is just a restatement of the well-known result of Merkle and
Damg̊ard, but we include its proof, because it is a good warm-up, and because
it will be useful later on.

Proof. Suppose we have two messages M ∞=M ∗ such that Hf (K,M)=Hf (K,M ∗),
for some compression function f . Then:

– Either
∣
∣M

∣
∣ ∞= ∣

∣M ∗∣∣. In this case, because H(·) is strengthened, the inputs of
the last invocation of the compression are not the same when hashing M and
M ∗, and because M and M ∗ collide, we have found a collision on f (on its
last invocation).

– Or
∣
∣M

∣
∣ =

∣
∣M ∗∣∣. Suppose that the compression function is invoked r = e(|M |)

times in both cases. In this case, there are again two possibilities. Either
xr ∞= x∗

r, and we have a collision since hr = h∗
r, or xr = x∗

r. By chaining-
value-injectivity, we have hr−1 = h∗

r−1. The argument repeats. Either we find
a collision along the way, or we reach the conclusion that xi = x∗

i, for all i,
which is impossible by message-injectivity. √�
Because of this lemma, we call a mode H(·) “collision-resistance preserving”

if it satisfies these three conditions.

3.2 Some Particular Modes of Operations

We briefly describe the Merkle-Damg̊ard mode of operation and Haifa, as well as
the three provably second-preimage resistant modes of operations mentioned in
the introduction. Figure 1 shows a possible implementation of the corresponding
modes of operation in our generic framework.

520 C. Bouillaguet and B. Vayssière

1: function MD(M, K, i, hi−1)
2: let (m0, . . . , mω) ← Pad(M)
3: return (hi−1, mi)
4: end function

1: function Haifa(M, K, i, hi−1)
2: let (m0, . . . , mω) ← Pad(M)
3: return (hi−1, mi, i)
4: end function

1: function Shoup(M, K, i, hi−1)
2: let (k, μ0, . . . , μσ) ← K
3: let (m0, . . . , mω) ← Pad(M)
4: return k, hi−1 ⊕ μν2(i), mi

)
5: end function

1: function Split-padding(M, K, i, hi−1)
2: let (m0, . . . , mω) ← Special-Pad(M)
3: return (hi−1, mi)
4: end function

1: function BCM(M, K, i, hi−1)
2: let (K1, K2) ← K
3: let (m0, . . . , mω) ← Pad(M)
4: if i = 0 then return (K0 ⊕ m1, m0)
5: if 0 < i < α − 1 then return (hi−1 ⊕ mi+1, mi)
6: if i = α − 1 then return (hω−2 ⊕ mω ⊕ K2, mω ⊕ K1)
7: if i = α then return (hω−1 ⊕ K1, mω ⊕ K2)
8: end function

Fig. 1. Pseudo-code of possible implementations of the modes of operations considered
in Sect. 3.2 in the generic framework for narrow-pipe constructions.

Merkle-Damg̊ard. The Merkle-Damg̊ard mode of iteration was independently
suggested in 1989 by Merkle [14] and Damg̊ard [6]. It is an unkeyed mode of
operation, so the circuit H(·) just ignores the key input. In this mode, the input
to the compression function is usually considered to be formed of two parts
playing different roles: the chaining value input, on n bits, and the message
block input, on m bit, the output of the function being n-bit wide.

The padding is done usually by appending a single ‘1’ bit followed by as
many ‘0’ bits as needed to complete an m-bit block including the length of M
in bits (the well-known Merkle-Damg̊ard strengthening). However, for the sake
of simplicity, we will consider in the sequel a simplified padding scheme: the last
block is padded with zeroes, and the message length in bits is included in an
extra block.

HAIFA. The HAsh Iterative FrAmework (Haifa), introduced in 2006 by Biham
and Dunkelman [8], is a Merkle-Damg̊ard-like construction where a counter and
salt are added to the input of the compression function. In this paper, we consider
a simplified version of Haifa (amongst other things, we disregard the salt).
For our purposes, the definition we use is of course equivalent. In Haifa, the
compression function f : {0, 1}n×{0, 1}m×{0, 1}64 ∈ {0, 1}n takes three inputs:
the chaining value, the message block, and the round counter (we arbitrarily limit
the number of rounds to 264). The designers of Haifa claimed that the round
counter was sufficient to prevent all generic second preimage attacks.

Provable Second Preimage Resistance Revisited 521

Shoup’s UOWHF. Shoup’s Universal One-Way Hash Function works just like
Merkle-Damg̊ard by iterating an eSec-secure compression function family f :
{0, 1}k×{0, 1}n×{0, 1}m ∈ {0, 1}n to obtain a (keyed) eSec-secure hash function
(i.e., a UOWHF).

The scheme uses a set of masks μ0, . . . , μλ−1 (where 2λ−1 is the length of the
longest possible message), each one of which is a random n-bit string. The key of
the whole iterated function consists of the key k of the compression function and
of these masks. The size of the key is therefore logarithmic in the maximal size
of the messages that can be hashed. The order in which the masks are applied
is defined by a specified sequence: in the i-th invocation of the compression
function, the λ2(i)-th mask is used, where λ2(i) denotes the largest integer λ
such that 2Γ divides i. As advertised before, this construction enjoys a form of
provable second-preimage security in the standard model: it promotes the eSec
security of the compression function to that of the whole hash function.

Theorem 1 [17]. Let H(·) denote Shoup’s mode of operation. If an adversary
is able to break the eSec[φ] notion of Hf with probability ψ in time T , then one
can construct an adversary that breaks the eSec notion of f in time T + O (φ),
with probability ψ/φ.

The Backwards Chaining Mode. Andreeva and Preneel described in [3] the
Backwards Chaining Mode (BCM) which promotes the second-preimage resis-
tance of an unkeyed compression function to the Sec notion of the (keyed) full
hash function. We will assume for the sake of simplicity that the message block
and the chaining values have the same size. The iteration is keyed, and the key
is formed by a triplet (K0,K1,K2) of n-bit strings (note that the size of the key
is independent of the size of the messages).

This construction also enjoys a form of provable second-preimage security in
the standard model. It promotes the Spr security of the compression function to
the Sec-security of the whole hash function.

Theorem 2 [3]. Let H(·) denote the BCM mode of operation. If an adversary
is able to break the Sec[φ] notion of Hf with probability ψ in time T , then one
can construct an adversary that breaks the Spr notion of f in time T + O (φ),
with probability ψ/φ.

The Split Padding. Yasuda introduced the Split Padding in 2008 [18], as
a minor but clever tweak to the Merkle-Damg̊ard strengthening. For the sake
of simplicity, we will assume that the message block is twice bigger than the
chaining values (i.e., it is 2n-bit wide). The tweak ensures that any message
block going into the compression function contains at least n bits from the
original message (this is not necessarily the case in the last block of the usual
Merkle-Damg̊ard padding scheme).

It promotes a kind of eSec-security of the compression function to the Spr-
security of the (unkeyed) iteration. More precisely, the security notion required of

522 C. Bouillaguet and B. Vayssière

the compression function is the following: the adversary chooses a chaining value
h and the first n bits of the message block m1, and is then challenged with the last
n bits of the message block m2. She has to find a new pair (h∗,m∗) ∞= (h,m1 ||m2)
such that f(h,m1 ||m2) = f(h∗,m∗). To some extent, this is the eSec security
notion, but here the “key” of the compression function is the last n bits of the
message block.

Theorem 3 [18]. Let H(·) denote the Split Padding mode of operation. If an
adversary is able to break the Spr[φ] notion of Hf with probability ψ in time T ,
then one can construct an adversary that breaks the eSec-like notion of f in
time T + O (ρ), with probability ψ/φ.

4 How to Make Your Mode of Operation Resistant
Against Second Preimage Attacks?

In this section, we describe two simple properties of modes of operation, and we
show that these properties allows some kind of security results against second
preimage adversaries.

4.1 Resistance Against Generic Attacks

Generic attacks are attacks against the modes of operation, i.e., attacks that
do not exploit any property of the compression function, and that could there-
fore work regardless of its choice. Generic attacks can therefore break the hash
function even if the compression function does not have any weakness, and they
could work even if the compression function were a random oracle (a public,
perfectly random function).

Symmetrically, an attack against a hash function where the compression is
perfectly random is necessarily an attack against the mode of operation (since
it is impossible to break a perfectly random function).

We will therefore follow the existing literature [1,2,7,10–12] by assuming that
the compression function is random. In the random oracle model, the relevant
measure of efficiency of an adversary is the number of query sent to the ran-
dom oracle, rather than time. Indeed, the adversaries cannot obtain any kind
of advantage by computation alone without querying the random function. In
this particular setting, we say that an adversary (q, ψ)-breaks a security notion
if she sends at most q queries to the random oracle and wins with probability at
least ψ.

We now show that a very simple criterion, directly inspired from Haifa,
is sufficient to obtain an optimal level of provable resistance to generic second
preimage attacks.

Definition 1. A mode of operation H(·) has domain separation if there exist a
deterministic algorithm idxEx which, given an input to the compression function
xi produced when evaluating Hf (K,M), recovers i, regardless of the choice of
M , K and f .

Provable Second Preimage Resistance Revisited 523

Amongst all the modes of operation considered above, only Haifa has domain
separation: the round counter is part of the input to the compression function.
The following theorem show that Haifa is optimally resistant to generic second
preimage attacks, as was claimed by its designers.

Theorem 4. Let H(·) be a mode of operation satisfying the conditions of
Lemma 1 and also having domain separation, and let f be a public random func-
tion. Let A be a second-preimage adversary that (q, ψ)-break the Spr[φ] notion for
Hf . Then:

ψ → q/2n−1.

Proof. Suppose that the adversary, challenged with an φ-block message M , suc-
ceeds and finds M ∗ ∞= M such that Hf (M) = Hf (M ∗). Then:

1. Either
∣
∣M

∣
∣ ∞= ∣

∣M
∣
∣, and because H(·) is strengthened, then the adversary has

found a (second) preimage of Hf (M) for the compression function f . Since
f is a random oracle, each query has a probability 2−n to give this preimage.

2. Or M and M ∗ have the same size. Because H(·) is strengthened, injective and
extractable, we know (by looking at the proof of Lemma 1) that there exists
a collision on f of the form:

f(xi) = f(x∗
i) = hi

It is important to notice that the same value of i occurs in the three mem-
bers of this equation. The “index extractor” idxEx of the domain separation
mechanism can be used to partition the possible inputs to f into disjoint
classes (corresponding to the preimages of integers). In the collision above,
xi and x∗

i belong to the same, “i-th” class. When submitting a query x to f ,
the adversary implicitly chooses the index i = idxEx(x) of the class to which
x belong. The collision above can only be found if f(x) = hidxEx(x), mean-
ing that for each query, there is only one target value that ensures victory.
Therefore, because f is a random oracle, each query hits the single target
with probability 2−n.

Now, each query sent by the adversary has probability 2−n + 2−n of fulfilling a
sufficient success condition, which proves the result. √�

4.2 Resistance Against All Attacks

The assumption that the compression function is random is the crux of the proof
of the previous result. While it is completely unrealistic, results proved under
this assumption still say something meaningful: they show that the mode of
operation itself does not exhibit obvious weaknesses, and that the adversaries
have to look into the compression function to break the iteration.

Nevertheless, it would be more satisfying to drop this requirement. In that
case, the adversary “knows” the source code of the compression function, so
that she does not need an external oracle interface to evaluate it. The relevant

524 C. Bouillaguet and B. Vayssière

measure of her complexity is thus her running time. We say that an adversary
(t, ψ)-break a hash function (or a compression function) if she runs in time at
most t and succeeds with probability at least ψ.

For this, we show that another simple criterion is enough to offer a non-trivial
level of security. This criterion is directly inspired by the three constructions with
provable security in the standard model discussed above.

Definition 2. Given a mode of operation H(·) and a compression function f ,
let P (i, y) denote the set of pairs (M,K) such that when evaluating Hf (M,K),
then the i-th input to f is y (i.e., xi = y in Algorithm 2).

We say that a mode of operation H(·) allows for embedding if P (i, y) ∞= ≡ for
any y and if it is computationally easy to sample random elements in P (i, y).

Shoup’s UOWHF allows for embedding, yet proving it is not so easy. We refer
the reader to [17] for the full details, but here is an intuitive version. Controlling
the message block in the i-th iteration is easy, but controlling the chaining value
is not so obvious. Clearly, the mask used in the i-th iteration must be chosen
carefully, but the problem is that choosing it will also randomize the output
of the previous iterations. The key idea is that between two arbitrary points
of the iteration, there is always a mask that is used only once (the one with
the greatest index). By choosing this particular mask after all the others, it
is possible to control the chaining value at this particular point, regardless of
the other masks. This yields a recursive procedure to control the chaining value
between the first and the i-th iterations: observe that the chaining value can be
set to (say) zero in the iteration where the mask with the greatest index occur
before the i-th iteration, independently of what happens afterward. Suppose
that this mask happens in iteration j. Then, we are left with the problem of
controlling the chaining value between the j-th and the i-th iteration, a strictly
smaller problem, to which the same technique can be applied recursively.

The backwards chaining mode easily allows for embedding. To embed in the
first block, just set K0 appropriately. To embed at any other index smaller than
φ − 1, just choose mi and mi+1 with care. Finally, to embed at index φ − 1 or
φ, pick the message at random and choose K1 and K2 accordingly (the keys
are necessary to embed in the last blocks because of the padding scheme). The
split-padding does not allows for this definition of embedding, but it allows to
embed n bits of message block into any compression function input.

Theorem 5. Let H(·) be a mode of operation satisfying the hypotheses of
Lemma 1 and that additionally allows for embedding.

If an adversary is able to break the Sec[φ] notion of Hf with probability ψ in
time T , then one can construct an adversary that breaks the Spr notion of f in
time T + O (e(φ)), with probability ψ/e(φ).

Proof. The proof works by exhibiting a reduction R that turns an adversary
AH against the iteration into an adversary against the compression function.
The reduction R is described by the pseudo-code of Algorithm 2.

Provable Second Preimage Resistance Revisited 525

The reduction starts by forging a random message M that “embeds” the
challenge x at a random position i, and then it sends this to the adversary AH .
If the adversary succeeds in producing a second preimage M ∗, then M and M ∗

collide. If the collision happen just at position i, then a second preimage of the
challenge x is readily found.

The sequence of compression function inputs (the xi in Algorithm 2) gener-
ated during the iteration of Hf (M,K) is denoted by blocks(f,M,K).

Algorithm 2. Formal definition of the generic reduction.
1: function Reduction[γ](x)

2: i
$←− {0, 1, . . . , e(γ)}

3: (M, K)
$←− P (i, x)

4: M ∼ ← AH(f, M, K)
5: if M ∼ = ⊥ then return ⊥
6: x0, . . . , xe(λ)−1 ← blocks(f, M, K)
7: x∼

0, . . . , x
∼
e(λ′)−1 ← blocks(f, M ∼, K)

8: j ← 1
9: while xe(λ)−j = x∼

e(λ′)−j do
10: j ← j + 1
11: if e(γ) − j = i then return x∼

e(λ′)−j else ⊥
12: end function

The running time of the reduction is clearly that of AH plus the time needed
to hash both M and M ∗. Clearly, M ∗ cannot be larger that the running time of
AH , so that the running time of R is essentially that of the adversary.

It remains to determine the success probability of the reduction. First of all,
the adversary succeeds with probability ψ on line 3. Note that the challenge fed
to AH is uniformly random: the challenge x given to R is supposed to be chosen
uniformly at random, and (M,K) is uniformly random amongst the possibilities
that place the random block x at a random position i.

Next, we show that when the adversary AH succeeds, the reduction itself
succeeds with probability 1/e(φ). First, we claim that at the beginning of line 11,
we have xe(φ)−j ∞= x∗

e(φ′)−j and f
(
xe(φ)−j

)
= f

(
x∗
e(φ′)−j

)
. The reasoning behind

this is exactly the same as that in the proof of Lemma 1. This establishes the
correctness of the reduction in passing.

Finally, we see that the reduction succeeds if and only if e(φ)−j = i. Because
i has been chosen uniformly at random, this happens with probability 1/e(φ),
regardless of the value of j (which is under the control of the adversary). √�

Discussion. All the proof of resistance considered above (Theorems 1, 2, 3
and 5) only provide a security level of 2n/φ. In some cases, this makes perfect
sense, because a generic attack of this complexity is applicable. However, such
generic attacks could be made impossible by including a counter in the mode of

526 C. Bouillaguet and B. Vayssière

operation, and yet it seems impossible to provide better security proofs in the
standard model.

It is then natural to ask whether these security proofs could be improved to
reflect the effect of the patch on the security of the schemes. In other terms, we
ask whether it is it possible to prove the patched schemes resistant to second
preimage attacks in the standard model up to a level of roughly 2n?

The last contribution of this paper is to show that this is in fact impossible
with the “usual” proof technique.

5 Unavoidable Security Loss in Black-Box Reduction

Resistance against second preimage attacks in the standard model of a mode of
operation H(·) is often announced by theorem formulated similar to the following
“typical” result.

Theorem 6 (informal and typical). There is a black-box reduction R(·, ·)
such that R(f,AH) is a second-preimage adversary against the compression func-
tion f that (t + t∗, η · ψ + Φ)-breaks f , for all compression functions f and all
second preimage adversaries AH that (t, ψ)-break Hf .

The reduction is given black-box access to both the adversary and the com-
pression function f , and this is a way of formalizing that the reduction must
work for any adversary and any compression function. For the sake of simplicity,
in this paper we allow the reduction to issue only one query to the adversary. To
some extent, this narrows our study a little, but all the reductions we are aware
of (in [3,17,18]) fit into this category. Note also that the adversary AH may fail
deterministically on a given challenge, so that it is pointless to re-run it again
and again to increase its success probability.

In setting of our security theorem above, there are three parties: the chal-
lenger, the reduction and the adversary. To make the discussion simpler we will
focus on the Sec security notion, but our reasoning extends to other notions. In
the Sec game, the challenger sends the reduction a challenge made of an input
x to f , and a “key” k for f . The reduction has to find a distinct input x∗ such
that fk(x) = fk(x∗). For this purpose, the reduction may use the AH adversary:
the reduction sends the adversary a challenge made of a message M of at most
φ message blocks, and a key K. The adversary may either returns a message M ∗

such that Hf (K,M) = Hf (K,M ∗) or fail. The precise sequence of interactions
is the following:

Challenger
x,k−−∈ Reduction

Reduction
M,K−−−∈ Adversary

Reduction M ′
∼−− Adversary M ∞= M ∗ HK(M) = HK(M ∗)

Challenger x′
∼− Reduction x ∞= x∗ fk(x) = fk(x∗)

If the compression function f is secure, then the “time/success probability”
ratio of any adversary against f is greater than 2n. The interest of the reductions

Provable Second Preimage Resistance Revisited 527

function f-Simulator(x, k)

if Log[x, k] = ⊥ then Log[x, k]
$←− {0, 1}n

return Log[x, k]
end function

Fig. 2. A dummy random function simulator

is that given an adversary AH against Hf , one must have: (t+t∗)/(η·ψ+Φ) ∩ 2n,
and therefore the “time/advantage” ratio of AH is lower-bounded by:

t

ψ
∩ 2nη +

2nΦ − t∗

ψ
. (1)

The right-hand side of Eq. (1) is the provable security level that the reduction
offers. Note that it bizarrely depends on the success probability of the adversary,
but this seems unavoidable.

Reductions are generally assumed to have to simulate the legitimate input
challenge distribution the adversary is normally expecting. In our case, this
means that the distribution of the challenges M,K must be indistinguishable
from random. Note that if M,K were biased, then the adversary could detect
that it is “being used”, and fail deterministically. In any case, when we men-
tion the success probability ψ of the adversary AH , we assume that its input
distribution is uniformly random.

When considering a single run of the reduction, its success probability should
depend very much on whether the adversary succeeds or not. Therefore, it makes
sense to write:

P [R succeeds] =ψ·P[R succeeds
∣
∣ AH succeeds

]
+(1−ψ)·P[R succeeds

∣
∣ AH fails

]

This justifies why we assumed the success probability of the reduction to be of
the form η · ψ + Φ, and in fact we have:

η = P
[R succeeds

∣
∣ AH succeeds

] − P
[R succeeds

∣
∣ AH fails

]

Φ = P
[R succeeds

∣
∣ AH fails

]

Now, while our objective is to understand what happens when AH succeeds,
it is easier to get a glimpse of what happens when AH fails. In this setting,
the reduction is just a randomized Turing machine trying to break the sec-
ond preimage resistance of an arbitrary black-box function, which cannot be
done faster than exhaustive search. For instance, f could be a Pseudo-Random
Function with a randomly-chosen secret key. We could even use the algorithm
shown in Fig. 2 to simulate a “truly” random function. In any case, it follows
that Φ → t∗/2n. The provable security level offered by a reduction is thus upper-
bounded by η · 2n. We will thus say that a reduction is useable if η > t∗/2n, as
this implies that the reduction offers a provable security level better than that
of exhaustive search (or equivalently, that the reduction actually makes use of
the adversary).

528 C. Bouillaguet and B. Vayssière

5.1 How Do Reductions Use the Adversary?

In the sequel, we will make the natural assumption that the AH adversary the
reduction has access to has a non-zero success probability. We will also restrict
our attention to useable reductions. By doing so we rule out modes of operation
for which no useable reduction is known (such as the Merkle-Damg̊ard construc-
tion), but at the same time we rule out bogus modes that would have been a
problem.

Let us consider a provably secure mode of operation H also satisfying the
hypotheses of Lemma 1. (i.e., injective, extractable and strengthened). We need
to define yet another property to make our argument work. We say that a mode
of operation is suffix-clonable if given an φ-block message M , a key K and an
integer 0 < i → φ, and the sequence h0, . . . , hφ+1 of compression function outputs
generated during the evaluation of Hf (M,K), it is always possible to find a
different φ-block message M ∗ such that:

(i) H(·)(K,M, i − 1, hi−2) ∞= H(·)(K,M ∗, i − 1, hi−2)
(ii) For all j such that i → j → φ, H(·)(K,M, j, hj−1) = H(·)(K,M ∗, j, hj−1)

This is a bit technical, but is required by a part of the proof. Intuitively, it means
that it is possible to find a message that would generate the same compression
function inputs after the i-th iteration if a collision occurred, while generating a
different input for the i-th iteration.

The Merkle-Damg̊ard construction (and therefore Haifa) and the split-
padding are easily seen to be suffix clonable: it is sufficient to change the i-
th message block while leaving all the subsequent messages blocks untouched.
Shoup’s construction is also easily seen to be suffix-clonable: it suffices to leave
K untouched and to modify the beginning of M . Lastly, the BCM mode of
operation is also suffix-clonable (and it again suffices to keep the right suffix
of M).

We will thus assume that our mode of operation H(·) is suffix-clonable. Since
it is provably secure, there exists a reduction R with a reasonably high success
probability. Our objective, and the main technical contribution of this section,
is to show the following theorem:

Theorem 7. We always have η → 1/φ+ t∗/2n. It follows that the provable secu-
rity level offered by R cannot be higher than 2n/φ + t∗.

The remaining of this section is devoted to the proof of this result. The
general idea of the proof is to build an environment around the reduction R that
simulates a legitimate “world” for R, but in which it is easy to see that R has a
low success probability. Then because the security level offered by R has to hold
in all legitimates environment, it follows that in general R cannot offer more in
general than in the simulated world.

Connection Point. Before going any further, let us observe what happens
when the adversary finds a second preimage. Let us denote by xi and hi (resp.

Provable Second Preimage Resistance Revisited 529

x∗
i and h∗

i) the sequence of inputs and outputs of f while evaluating Hf (M) (resp.
Hf (M ∗)). Since M and M ∗ collide, and because H satisfies the hypotheses of
Lemma 1, then a second preimage of one of the xi input values can be readily
obtained from M ∗. If we look closely at the proof of Lemma 1, we will see that
if

∣
∣M

∣
∣ ∞= ∣

∣M ∗∣∣, then we obtain a second preimage of f on the last invocation.
Otherwise, there exists an index i such that f(xi) = f(x∗

i) and xi ∞= x∗
i. In the

sequel, we call this particular index i the “connection point”, and we note that
at this particular index a second preimage of xi for f is revealed, which we call
“the second preimage at connection point”.

Embedding. The strategy used by all the reductions we are aware of is to embed
the small challenge (x, k) into the big challenge (M,K). Following our definition,
we say that (x, k) is embedded into (M,K) at location i if and only if fk(x) is
evaluated during the i-th iteration of the main loop of Algorithm 2 during the
evaluation of Hk(K,M). We will show that the second preimage returned by the
adversary can only be used by the reduction if the second preimage at connection
points directly gives a solution to the small challenge. Let us denote by ⊆ the
condition “the second preimage at connection point is a second preimage of the
small challenge sent by the Challenger to R”. Formally, this means that:

P [⊆] = P

[
(∃i. xi = (x, k) in Algorithm 2

) ≈ (xi ∞= x∗
i) ≈ (hi = h∗

i)
]

We can then write:

P
[R succeeds

∣
∣ A succeeds

]
= P

[R succeeds
∣
∣ A succeeds ∧ ♣] · P [♣]

+ P
[R succeeds

∣
∣ A succeeds ∧ ¬ ♣] · P [¬ ♣] (2)

We first argue that the challenge cannot be embedded more than once. If the
challenge were embedded twice or more, the input distribution of the adversary
would not be random, because we would have xi = xj for i ∞= j in Algorithm 2,
something that is highly unlikely when M and K are drawn at random. This is
not allowed in the first place, and the adversaries could straightforwardly detect
it and abort.

Next, we claim that in order to be usable, a reduction must embed the chal-
lenge (x, k) into (M,K). This justifies a posteriori our observation that the three
schemes of interest all allow some form of embedding. To establish this result, we
first show that a legitimate world with various interesting properties can be built
around the reduction. When we argued that Φ was small, we used the (some-
what informal) argument that f could be implemented by a Random Function
simulator, and that inverting such a function faster than exhaustive search is
impossible. We now make this argument more formal, with the additional fea-
ture that we will be able to choose whether the adversary succeeds or fails, and
where it connects.

530 C. Bouillaguet and B. Vayssière

Simulation. The easy case is when we want AH to fail, as it is sufficient to let
f simulate an arbitrary random function, and let AH return a random string, or
fail explicitly. The more interesting case is when we want AH to succeed. The
difficulty comes from the fact that the view of the reduction must be consistent:
after having received M ∗ from the AH , the reduction must be able to check
that Hf

K(M) = Hf
K(M ∗) by querying f . This is in fact quite easy to achieve, by

programming the function f . We thus simulate a complete environment around
the execution with the following procedure:

1. Before R sends its query (M,K) to AH , we simulate f by generating ran-
dom answers and storing them (for consistency), “implementing” f with the
random function simulator of Fig. 2.

2. When R sends its query (M,K) to AH , we choose an integer i ≥ {0, . . . , φ}
(this will be the connection point), and we use the suffix-clonability property
of the mode of operation to generate a different message M ∗ ∞= M satisfying
the conditions of the definition of suffix-clonability.

3. We evaluate Hf (M ∗) in a special way. On the first i− 1 iterations we use the
random function simulator in place of f . On the i-th iteration we program f
so that f(x∗

i) = hi, thus “connecting” M ∗ to M in iteration i.
4. We return M ∗ as the answer of AH to the reduction, and keep simulating f .

The reduction will be able to check that Hf
K(M) = Hf

K(M ∗) by sending the
appropriate queries to f .

When running inside this environment, the view of the reduction is consistent
and legitimate. In this environment, we are able to choose the connection point
at will. For instance, we can make sure that the ⊆ event never happens. In
this case, the reduction, even though it knows a collision on f , cannot find a
second preimage on f faster than exhaustive search (because each new query to
f returns an independent random answer, and thus each query yields a second
preimage with probability 2−n).

It follows if a reduction does not embed its challenge, then it cannot be
usable. We conclude that a usable reduction must embed its challenge exactly
once with non-zero probability. As a matter of fact, the reductions of the three
schemes considered in the introduction published in the literature embed their
challenge with probability one. Equation (2) then gives:

P
[R succeeds

∣
∣ A succeeds

] → P
[R succeeds

∣
∣ A succeeds≈⊆] ·P [⊆] +

t∗

2n
(3)

Now, to prove Theorem 7, we upper-bound the probability that the ⊆ condi-
tion occurs. The reduction cannot control “where” the adversary will “connect”
to the big challenge M . Conversely, if the adversary could guess where the chal-
lenge is embedded, then she could systematically refuse to connect precisely
there. In fact, we need not even worry about this complication, since the adver-
sary can foil all the reduction’s plan by connecting randomly. In our simulation
procedure, if we choose the connection point uniformly at random between 0
and φ, then the ⊆ event only happens with probability 1/φ. Combining this with

Provable Second Preimage Resistance Revisited 531

Eq. (3) yields:

P
[R succeeds

∣
∣ AH succeeds

] → 1
φ

+
t∗

2n

And this is exactly what we needed to complete the proof of Theorem 7. We con-
clude by pondering on this intriguing situation, where some narrow-pipe modes
of operations are provably resistant to generic second preimage attacks, yet this
cannot be shown in the standard model.

References

1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, second preim-
age and trojan message attacks beyond Merkle-Damg̊ard. In: Jacobson Jr, M.J.,
Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 393–414.
Springer, Heidelberg (2009)

2. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second preimage attacks on dithered hash functions. In: Smart, N.P.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008)

3. Andreeva, E., Preneel, B.: A three-property-secure hash function. In: Avanzi, R.M.,
Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 228–244. Springer,
Heidelberg (2009)

4. Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs
practical. In: Kaliski Jr, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484.
Springer, Heidelberg (1997)

5. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
6. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard [5], pp. 416–427
7. Dean, R.D.: Formal aspects of mobile code security. Ph.D. thesis, Princeton Uni-

versity, Jan 1999
8. Eli Biham, O.D.: A framework for iterative hash functions – HAIFA. Presented at

the second NIST hash workshop, 24–25 Aug 2006
9. Impagliazzo, Russell, Naor, Moni: Efficient cryptographic schemes provably as

secure as subset sum. J. Cryptol. 9(4), 199–216 (1996)
10. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-

structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

11. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

12. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

13. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

14. Merkle, R.C.: One way hash functions and DES. In: Brassard [5], pp. 428–446
15. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic

applications. In: STOC, pp. 33–43. ACM (1989)
16. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-

cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004)

532 C. Bouillaguet and B. Vayssière

17. Shoup, V.: A composition theorem for universal one-way hash functions. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Hei-
delberg (2000)

18. Yasuda, K.: How to fill up Merkle-Damg̊ard hash functions. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 272–289. Springer, Heidelberg (2008)

Multiple Limited-Birthday Distinguishers
and Applications

Jérémy Jean1, Maŕıa Naya-Plasencia2, and Thomas Peyrin3(B)

1 École Normale Supérieure, Paris, France
Jeremy.Jean@ens.fr

2 SECRET Project-Team - INRIA Paris-Rocquencourt, Paris, France
3 Nanyang Technological University, Singapore, Singapore

thomas.peyrin@gmail.com

Abstract. In this article, we propose a new improvement of the rebound
techniques, used for cryptanalyzing AES-like permutations during the
past years. Our improvement, that allows to reduce the complexity of
the attacks, increases the probability of the outbound part by consider-
ing a new type of differential paths. Moreover, we propose a new type
of distinguisher, the multiple limited-birthday problem, based on the
limited-birthday one, but where differences on the input and on the out-
put might have randomized positions. We also discuss the generic com-
plexity for solving this problem and provide a lower bound of it as well as
we propose an efficient and generic algorithm for solving it. Our advances
lead to improved distinguishing or collision results for many AES-based
functions such as AES, ECHO, Grøstl, LED, PHOTON and Whirlpool.

Keywords: AES-like permutation · Distinguishers · Limited-birthday ·
Rebound attack

1 Introduction

On October the 2nd of 2012, the NIST chose Keccak [4] as the winner of the
SHA-3 hash function competition. This competition started on 2008, and received
64 submissions. Amongst them, 56 passed to the first round, 14 to the second
and 5 to the final on December 2010. Through all these years, a large amount of
cryptanalysis has been published on the different candidates and new techniques
have been proposed. One of the new techniques that can be fairly considered
as among the most largely applied to the different candidates is the rebound

Jérémy Jean is supported by the French Agence Nationale de la Recherche through
the SAPHIR2 project under Contract ANR-08-VERS-014 and by the French
Délégation Générale pour l’Armement (DGA).

Maŕıa Naya-Plasencia is partially supported by the French Agence Nationale de
la Recherche through the BLOC project under Contract ANR-11-INSE-0011.

Thomas Peyrin is supported by the Singapore National Research Foundation Fel-
lowship 2012 (NRF-NRFF2012-06).

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 533–550, 2014.
DOI: 10.1007/978-3-662-43414-7 27, c∞ Springer-Verlag Berlin Heidelberg 2014

534 J. Jean et al.

attack. Presented in [23], at first for analyzing AES-like compression functions,
it has found many more applications afterwards.

Rebound attacks is a freedom degrees utilization method, and, as such, it
aims at finding solutions for a differential characteristic faster than the proba-
bilistic approach. The characteristic is divided in two parts: a middle one, called
inbound, and both remaining sides, called outbound. In the inbound phase, the
expensive part of the characteristic, like one fully active AES state around the
non-linear transformation, is considered. The rebound technique allows to find
many solutions for this part with an average cost of one. These solutions are
then exhausted probabilistically forwards and backwards through the outbound
part to find one out of them that conforms to the whole characteristic.

Several improvements have appeared through the new analyses, like start-
from-the-middle attack [22] or Super-SBoxes [13,19], which allow to control three
rounds in the middle, multinbounds [21] which extend the number of rounds
analyzed by a better use of the freedom degrees (better ways of merging the
inbounds were proposed in [24]), or non-fully-active states [27] that permits to
reduce the complexity of the outbound part. In [17], a method for controlling
four rounds in the middle with high complexity was proposed, and it allows to
reach a total of 9 rounds with regards to distinguishers in the case of a large
permutation size.

This class of attacks is interesting mostly for hash functions, because they
require the attacker to be able to know and to control the internal state of the
primitive, which is not possible if a secret is involved, for example in a block
cipher. Yet, another application is the study of block ciphers in the so-called
known-key or chosen-key models, where the attacker knows or even has full con-
trol of the secret key. These models were recently made popular because many
SHA-3 or new hash functions are based on block ciphers or fixed-key permuta-
tions, and also one may want to be sure that a cipher has no flaw whatsoever,
even in weaker security models.

Various types of attacks are possible for hash functions, such as collision and
(second) preimage search, or even distinguishers. Indeed, hash functions being
often utilized to mimic the behavior of random oracles [7] in security protocols,
e.g. RSA-OAEP [2], it is important to ensure that no special property can be
observed that allows an attacker to distinguish the primitive from a random ora-
cle. Distinguishers on hash functions, compression functions or permutations can
be very diverse, from classical differential distinguishers (limited-birthday [13] or
subspace [20]) to rotational [18] or zero-sum distinguishers [6]. In any case, for
the distinguisher to be valid, the cryptanalyst has to compare the cost of find-
ing the specific property for the function analyzed and for an ideal primitive.
The bounds compared in this article refer to the computational bounds, and not
information-theoretic bounds.

Rebound-like techniques are well adapted for various types of distinguishers
and it remains an open problem to know how far (and with what complexity)
they can be pushed further to attack AES-like permutations and hash/compression
functions. So far, the best results could reach 8 or 9 rounds, depending on the
size of the permutation attacked.

Multiple Limited-Birthday Distinguishers and Applications 535

Our Contributions. In this paper, we propose a new improvement of the
previous rebound techniques, reducing the complexity of known differential dis-
tinguishers and by a lower extend, reducing some collision attack complexities.
We observed that the gap between the distinguisher complexity and the generic
case is often big and some conditions might be relaxed in order to minimize as
much as possible the overall complexity. The main idea is to generalize the vari-
ous rebound techniques and to relax some of the input and output conditions of
the differential distinguishers. That is, instead of considering pre-specified active
cells in the input and output (generally full columns or diagonals), we consider
several possible position combinations of these cells. In some way, this idea is
related to the outbound difference randomization that was proposed in [11] for
a rebound attack on Keccak, a non-AES-like function. Yet, in [11], the random-
ization was not used to reduce the attack complexity, but to provide enough
freedom degrees to perform the attack.

As this improvement affects directly the properties of the inputs and outputs,
we now have to deal with a new differential property observed and we named
this new problem the multiple limited-birthday problem (LBP), which is more
general than the limited-birthday one. A very important question arising next
is: what is the complexity of the best generic algorithm for obtaining such set of
inputs/outputs? For previous distinguishers, where the active input and output
columns were fixed, the limited-birthday algorithm [13] is yet the best one for
solving the problem in the generic case. Now, the multiple limited-birthday is
more complex, and in Sect. 3.3 we discuss how to bound the complexity of the
best generic distinguisher. Moreover, we also propose an efficient, generic and
non-trivial algorithm in order to solve the multiple limited-birthday problem,
providing the best known complexity for solving this problem.

Finally, we generalize the various rebound-like techniques in Sect. 4 and we
apply our findings on various AES-like primitives. Due to space constraints, Sect. 5
presents our main results, while the full results are detailed in the extended
version of our paper. Our main results dealing with AES [9] and Whirlpool [1]
are summarized and compared to previous works in Table 1. In the full version,
we also derive results on ECHO [3], Grøstl [12], LED [15], PHOTON [14], that are
reported in AppendixA.

2 AES-like Permutations

We define an AES-like permutation as a permutation that applies Nr rounds of
a round function to update an internal state viewed as a square matrix of t rows
and t columns, where each of the t2 cells has a size of c bits. We denote S the set
of all theses states: |S| = 2ct

2
. This generic view captures various permutations in

cryptographic primitives such as AES, ECHO, Grøstl, LED, PHOTON and Whirlpool.
The round function (Fig. 1) starts by xoring a round-dependent constant

to the state in the AddRoundConstant operation (AC). Then, it applies a
substitution layer SubBytes (SB) which relies on a c × c non-linear bijective
S-box S. Finally, the round function performs a linear layer, composed of the

536 J. Jean et al.

Table 1. Known and improved results for three rebound-based attacks on AES-based
primitives.

Target Subtarget Rounds Type Time Memory Ideal Reference

AES-128 Cipher 8 KK dist. 248 232 265 [13]
8 KK dist. 244 232 261 Sect. 5.1
8 CK dist. 224 216 265 [10]
8 CK dist. 213.4 216 231.7 Sect. 5.1

AES-128 DM-mode 5 CF collision 256 232 265 [22]
6 CF collision 232 216 265 Sect. 5.1

Whirlpool CF 10 dist. 2176 28 2384 [20]
10 dist. 2115.7 28 2125 Sect. 5.2

Whirlpool Permutation 7.5 collision 2184 28 2256 [20]
7.5 collision 2176 28 2256 Sect. 5.2

Whirlpool Hash func. 5.5 collision 2184 28 2256 [20]
5.5 collision 2176 28 2256 Sect. 5.2

ShiftRows transformation (SR), that moves each cell belonging to the x-th row
by x positions to the left in its own row, and the MixCells operation (MC), that
linearly mixes all the columns of the matrix separately by multiplying each one
with a matrix M implementing a Maximum Distance Separable (MDS) code,
which provides diffusion.

Fig. 1. One round of the AES-like permutation instantiated with t = 4.

Note that this description encompasses permutations that really follow the
AES design strategy, but very similar designs (for example with a slightly modified
ShiftRows function or with a MixCells layer not implemented with an MDS
matrix) are likely to be attacked by our techniques as well. In the case of AES-like
block ciphers analyzed in the known/chosen-key model, the subkeys generated
by the key schedule are incorporated into the known constant addition layer
AddRoundConstant.

3 Multiple Limited-Birthday Distinguisher

In this section, we present a new type of distinguisher: the multiple limited-
birthday (Sect. 3.3). It is inspired from the limited-birthday one that we recall
in Sect. 3.2, where some of the input and output conditions are relaxed. We
discuss how to bound the complexity of the best generic algorithm for solving this

Multiple Limited-Birthday Distinguishers and Applications 537

problem, as well as we provide an efficient algorithm solving the problem with
the best known complexity. Due to the keyless particularity of the primitives,
we precise the relevance of distinguishers in that context.

3.1 Structural Distinguishers

We precise here what we consider to be a distinguishing algorithm for a keyless
primitives. Let F be a primitive analyzed in the open-key model (either known-
or chosen-key). In that context, there is no secret: F could be for instance a hash
function or a block cipher where the key is placed into the public domain.

To formalize the problem, we say that the goal of the adversary is to validate
a certain property P on the primitive F . For example, if F is a hash function,
P could be “find two different inputs x, x∈ such that F (x) = F (x∈)” to capture
the collision property. One other example, more related to our approach, would
be P = LPB, the limited-birthday problem. In that sense, limited-birthday,
collision and other similar problems are all particular kinds of distinguishers.

It is easy to see that when no random challenge is input to the adversary (like
for collision definition for example) there always exists (at least) one algorithm
that outputs a solution to P in constant time and without any query to F . We do
not know this algorithm, but its existence can be proven. The main consequence
about this argument is the lower bound on the number of queries Q of the
distinguishing algorithm. Indeed, because of that algorithm, we have 0 ≤ Q.
Therefore, we cannot reach any security notion in that context.

Now, we can circumvent this problem by introducing a challenge C to the
problem P , that is, we force the distinguishing algorithm to use some value it
does not know beforehand. To ease the formal description, one can think of an
adversarial model where the memory is restricted to a fixed and constant amount
M . That way, we get rid of the trivial (but unknown) algorithms that return a
solution to P in constant time, since they do not know the parameter/challenge
C. More precisely, if it does return a solution in constant time, then it is a wrong
one with overwhelming probability, such that its winning advantage is nearly
zero. Consequently, reasonable winning advantages are reached by getting rid
of all those trivial algorithms. Then, the lower bound increases and becomes
dependent of the size of C.

As an example, a challenge C could be an particular instantiation of the S-
Box used in the primitive F . One could say that C selects a particular primitive
F in a space of structurally-equivalent primitives, and asks the adversary to
solve P on that particular instance F .

In all the published literature, the distinguishers in the open-key model do not
consider any particular challenges, and they also ignore the trivial algorithms.
From a structural point of view, there is no problem in doing so since we know
that those distinguishers would also work if we were to introduce a challenge.
But formally, these are not proper distinguishers because of the constant time
algorithms that make the lower bound 0 ≤ Q. In this article, we do not claim
to have strong distinguishers in the theoretical sense, but we provide structural

538 J. Jean et al.

distinguishing algorithms in the same vein as all the previously published results
(q-multicollision, k-sum, limited-birthday, etc.).

3.2 Limited-Birthday

In this section, we briefly recall the limited-birthday problem and the best known
algorithm for solving it. As described in Sect. 3.1, to obtain a fair comparison
of algorithms solving this structural problem, we ignore the trivial algorithms
mentioned. That way, we can stick to structural distinguishers and compare their
time complexities to measure efficiency.

Following the notations of the previous section, the limited-birthday problem
consists in obtaining a pair of inputs (x, x∈) (each of size n) to a permutation F
with a truncated difference x⊕x∈ on log2(IN) predetermined bits, that generates
a pair of outputs with a truncated difference F (x) ⊕ F (x∈) on log2(OUT) pre-
determined bits (therefore IN and OUT represent the set size of the admissible
differences on the input and on the output respectively).

The best known cost for obtaining such a pair for an ideal permutation is
denoted by C(IN,OUT) and, as described in [13], can be computed the following
way:

C(IN,OUT) = max
{

min
{√

2n/IN,
√

2n/OUT
}

,
2n+1

IN · OUT

}
. (1)

The main differences with the subspace distinguisher [20] is that in the
limited-birthday distinguisher both input and output are constrained (thus lim-
iting the ability of the attacker to perform a birthday strategy), and only a single
pair is to be exhibited.

3.3 Multiple Limited-Birthday and Generic Complexity

We now consider the distinguisher represented in Fig. 2, where the conditions
regarding previous distinguishers have been relaxed: the number of active diago-
nals (resp. anti-diagonals) in the input (resp. output) is fixed, but their positions
are not. Therefore, we have

(
t

nB

)
possible different configurations in the input

and
(

t
nF

)
in the output. We state the following problem.

Problem 1 (Multiple limited-birthday). Let nF , nB ∈ {1, . . . , t}, F a per-
mutation from the symmetric group SS of all permutations on S, and ΔIN be
the set of truncated patterns containing all the

(
t

nB

)
possible ways to choose

nB active diagonals among the t ones. Let ΔOUT defined similarly with nF

active anti-diagonals. Given F , ΔIN and ΔOUT , the problem asks to find a pair
(m,m∈) ∈ S2 of inputs to F such that m⊕m∈ ∈ ΔIN and F (m)⊕F (m∈) ∈ ΔOUT .

As for the limited-birthday distinguisher, we do not consider this problem
in the theoretical sense, as there would be a trivial algorithm solving it (see
Sect. 3.1). Therefore, and rather than introducing a challenge that would confuse

Multiple Limited-Birthday Distinguishers and Applications 539

Fig. 2. Possible inputs and outputs of the relaxed generic distinguisher. The blackbox
P implements a random permutation uniformly drawn from SS . The figure shows the
case t = 4, nB = 1 and nF = 2.

the description of our algorithm, we are interested in structural distinguishing
algorithms, that ignore the constant-time trivial algorithms. Following notations
of the previous section, the permutation defined in Problem 1 refer to the general
primitive F of Sect. 3.1 and the particular property P the adversary is required
to fulfill on P has been detailed in the problem definition.

We conjecture that the best generic algorithm for finding one solution to
Problem 1 has a time complexity that is lower bounded by the limited-birthday
algorithm when considering IN =

(
t

nB

)
2t·c·nB and OUT =

(
t

nF

)
2t·c·nF . This can

be reasonably argued as we can transform the multiple limited-birthday algo-
rithm into a similar (but not equivalent) limited-birthday one, with a size of
all the possible truncated input and output differences of IN and OUT respec-
tively. Solving the similar limited-birthday problem requires a complexity of
C(IN,OUT), but solving the original multiple limited-birthday problem would
require an equal or higher complexity, as though having the same possible input
and output difference sizes, for the same number of inputs (or outputs), the num-
ber of valid input pairs that can be built might be lower. This is directly reflected
on the complexity of solving the problem, as in the limited-birthday algorithm,
it is considered that for 2n inputs queried, we can build 22n−1 valid input pairs.
The optimal algorithm solving Problem1 would have a time complexity T such
that: C(IN,OUT) ≤ T .

We have just provided a lower bound for the complexity of solving Prob-
lem 1 in the ideal case, but an efficient generic algorithm was not known.
For finding a solution, we could repeat the algorithm for solving the limited-
birthday while considering sets of input or output differences that do not over-
lap, with a complexity of min{C(IN,OUT), C(IN,OUT)}, where IN = 2t·c·nB ,
OUT = 2t·c·nF , IN =

(
t

nB

)
2t·c·nB and OUT =

(
t

nF

)
2t·c·nF .

We propose in the sequel a new generic algorithm to solve Problem 1 whose
time complexity verifies the claimed bound and improves the complexity of the

540 J. Jean et al.

algorithm previously sketched. It allows then to find solutions faster than pre-
vious algorithms, as detailed in Table 2. Without loss of generality, because the
problem is completely symmetrical, we explain the procedure in the forward
direction. The same reasoning applies for the backward direction, when chang-
ing the roles between input and output of the permutation, and the complexity
would then be the lowest one.

From Problem 1, we see that a random pair of inputs have a probability
Pout =

(
t

nF

)
2−t(t−nF)c to verify the output condition. We therefore need at

least P−1
out input pairs so that one verifying the input and output conditions can

be found. The first goal of the procedure consists in constructing a structure
containing enough input pairs.

Structures of Input Data. We want to generate the amount of valid input
pairs previously determined, and we want do this while minimizing the numbers
of queries performed to the encryption oracle, as the complexity directly depends
on them. A natural way to obtain pairs of inputs consists in packing the data
into structured sets. These structures contain all 2ct possible values on n∈

B dif-
ferent diagonals at the input, and make the data complexity equivalent to 2n

′
Bct

encryptions. If there exists n∈
B ≤ nB such that the number N of possible pairs

(
2n

′
Bct

2

)
we can construct within the structure verifies N ≥ P−1

out, then Problem 1
can be solved easily by using the birthday algorithm. If this does not hold, we
need to consider a structure with n∈

B > nB . In this case, we can construct as
many as

(
n′
B

nB

)
2(n

′
B−nB)tc

(
2nBtc

2

)
pairs (m,m∈) of inputs such that m⊕m∈ already

belongs to ΔIN . We now propose an algorithm that handles this case.
We show how to build a fixed number of pairs with the smallest structure that

we could find, and we conjecture that the construction is optimal in the sense
this structure is the smallest possible. The structure of input data considers n∈

B

Fig. 3. Structure of input data: example with nB = 2 and n∼
B = 4. We construct a

pair with nB active diagonals like (b) from the structure depitected on (a). Hatched

cells are active, so that the structure allows to select
(
n′
b

nB

)
different patterns to form

the pairs (one is represented by the bullets •).

Multiple Limited-Birthday Distinguishers and Applications 541

diagonals D1, . . . , Dn′
B

assuming all the 2ct possible values, and an extra diagonal
D0 assuming 2y < 2ct values (see Fig. 3). In total, the number of queries equals
2y+n′

Btc. Within this structure, we can get1 a number of pairs parameterized by
n∈
B and y:

Npairs(n∈
B , y) :=

(
n∈
B

nB

)(
2nBct

2

)

2y 2(n
′
B−nB)tc

+
(

n∈
B

nB − 1

)(
2y+(nB−1)ct

2

)

2(n
′
B−(nB−1))ct. (2)

The first term of the sum considers the pairs generated from nB diagonals among
the D1, . . . , Dn′

B
diagonals, while the second term considers D0 and nB − 1 of

the other diagonals. The problem of finding an algorithm with the smallest time
complexity is therefore reduced to finding the smallest n∈

B and the associated
y so that Npairs(n∈

B , y) = P−1
out. Depending on the considered scenarios, P−1

out

would have different values, but finding (n∈
B , y) such that Npairs(n∈

B , y) = P−1
out

can easily be done by an intelligent search in log(t) + log(ct) simple operations
by trying different parameters until the ones that generate the wanted amount
of pairs P−1

out are found.

Generic Algorithm. Once we have found the good parameters n∈
B and y,

we generate the 2y+n′
Bct inputs as previously described, and query their corre-

sponding outputs to the permutation F . We store the input/output pairs in a
table ordered by the output values. Assuming they are uniformly distributed,
there exists a pair in this table satisfying the input and output properties from
Problem 1 with probability close to 1.

To find it, we first check for each output if a matching output exists in the
list. When this is the case, we next check if the found pair also verifies the
input conditions. The time complexity of this algorithms therefore costs about
2y+n′

Bct+22y+2n′
BtcPout operations. The first term in the sum is the number of

outputs in the table: we check for each one of them if a match exists at cost
about one. The second term is the number of output matches that we expect to
find, for which we also test if the input patterns conform to the wanted ones.

Finally, from the expression of Pout, we approximate the time complexity
2y+n′

Bct + 22y+2n′
BtcPout to 2y+n′

Bct operations, as the second term is always
smaller than the first one. The memory complexity if we store the table would
be 2y+n′

Bct as well, but we can actually perform this research without memory,
as in practice what we are doing is a collision search. In Table 2, we show some
examples of different complexities achieved by the bounds proposed and by our
algorithm.
1 When y = 0, we compute the number of terms as Npairs(n

∼
B , 0) :=

(
n′
B

nB

)(
2nBct

2

)
2(n′

B−nB)tc.

542 J. Jean et al.

Table 2. Examples of time complexities for several algorithms solving the multiple
limited-birthday problem.

Parameters (t, c, nB , nF) Bound: C(IN,OUT) Our algorithm C(IN,OUT)

(8,8,1,1) 2379 2379.7 2382

(8,8,1,2) 2313.2 2314.2 2316.2

(8,8,2,2) 2248.4 2250.6 2253.2

(8,8,1,3) 2248.19 2249.65 2251.19

(4,8,1,1) 261 262.6 263

(4,4,1,1) 229 230.6 231

4 Truncated Characteristic with Relaxed Conditions

In this section, we present a representative 9-round example of our new
distinguisher.

4.1 Relaxed 9-round Distinguisher for AES-like Permutation

We show how to build a 9-round distinguisher when including the idea of relaxing
the input and output conditions. In fact, this new improvement allows to reduce
the complexity of the distinguisher, as the probability of verifying the outbound
is higher. We point out here that we have chosen to provide an example for
9 rounds as it is the distinguisher that reaches the highest number of rounds,
solving three fully-active states in the middle. We also recall that for a smaller
number of rounds, the only difference with the presented distinguisher is the
complexity Cinbound for the inbound part, that can be solved using already well-
known methods such as rebound attacks, Super-SBoxes or start-from-the-middle,
depending on the particular situation that we have. For the sake of simplicity, in
the end of this section, we provide the complexity of the distinguisher depending
on the inbound complexity Cinbound.

In the end of the section, we compare our distinguisher with the previously
explained best known generic algorithm to find pairs conforming to those cases.
We show how the complexities of our distinguisher are still lower than the lowest
bound for such a generic case.

Following the notations from [17], we parameterize the truncated differential
characteristic by four variables (see Fig. 4) such that trade-offs are possible by
finding the right values for each one of them. Namely, we denote c the size of
the cells, t × t the size of the state matrix, nB the number of active diagonals in
the input (alternatively, the number of active cells in the second round), nF the
number of active independent diagonals in the output (alternatively, the number
of active cells in the eighth round), mB the number of active cells in the third
round and mF the number of active cells in the seventh round.

Hence, the sequence of active cells in the truncated differential characteristic
becomes:

t nB
R1−→ nB

R2−→ mB
R3−→ tmB

R4−→ t2
R5−→ tmF

R6−→ mF
R7−→ nF

R8−→ t nF
R9−→ t2, (3)

Multiple Limited-Birthday Distinguishers and Applications 543

with the constraints nF + mF ≥ t + 1 and nB + mB ≥ t + 1 that come from
the MDS property, and relaxation conditions on the input and output, meaning
that the positions of the nB input active diagonals, and of the nF active anti-
diagonals generating the output can take any possible configuration, and not
a fixed one. This allows to increase the probability of the outbound part and
the number of solutions conforming to the characteristic. This is reflected in a
reduction of the complexity of the distinguisher. The amount of solutions that
we can now generate for the differential path equals to (log2):

log2

((
t

nB

)(
t

nF

))

+ ct2 + ctnB

− c(t − 1)nB − c(t − mB) − ct(t − mF) − c(t − 1)mF − c(t − nF) (4)

= c(nB + nF + mB + mF − 2t) + log2

((
t

nB

)(
t

nF

))

.

If follows from the MDS constraints that there are always at least
(

t
nB

)(
t

nF

)
22c

freedom degrees, independently of t.

Fig. 4. The 9-round truncated differential characteristic used to distinguish an AES-
like permutation from an ideal permutation. The figure shows some particular values:
t = 8, nB = 5, mB = 4, mF = 4 and nF = 5.

To find a conforming pair we use the algorithm proposed in [17] for solving
the inbound part and finding a solution for the middle rounds. The cost of those
uncontrolled rounds is given by:

Coutbound :=
2c(t−nB)

(
t

nB

) · 2c(t−nF)

(
t

nF

) =
2c(2t−nB−nF)

(
t

nB

)(
t

nF

) , (5)

since we need to pass one nB ← mB transition in the backward direction with(
t

nB

)
possibilities and one mF → nF transition in the forward direction with

(
t

nF

)
possibilities.

544 J. Jean et al.

4.2 Comparison with Ideal Case

As we discussed in Sect. 3.3, in the ideal case, the generic complexity T is
bounded by C(IN,OUT) ≤ T ≤ min

{
C(IN,OUT), C(IN,OUT)

}
, where we

have IN =
(

t
nB

)
2t·c·nB , OUT =

(
t

nF

)
2t·c·nF , IN = 2t·c·nB and OUT = 2t·c·nF .

We proposed the algorithm with the best known complexity for solving the
problem in the ideal case in Sect. 3.3, for being sure that our distinguishers have
smaller complexity than the best generic algorithm, we compare our complex-
ities with the inferior bound given: C(IN,OUT), so that we are sure that our
distinguisher is a valid one. We note that the algorithm we propose gives a dis-
tinguisher for 9 rounds of an AES-like permutation as soon as the state verifies
t ≥ 8.

We recall here that the complexity of the distinguishers that we build varies
depending on the number of rounds solved in the middle, or the parameters
chosen, and we provide some examples of improvements of previous distinguish-
ers and their comparisons with the general bounds and algorithms in the next
section.

5 Applications

In this section, we apply our new techniques to improve the best known results
on various primitives using AES-like permutations. Due to a lack of space, we do
not describe the algorithms in details, and refer to their respective specification
documents for a complete description. When we randomize the input/output
differences positions, the generic complexities that we compare with are the
ones coming from the classical limited-birthday problem C(IN,OUT) (updated
with the right amount of differences), since they lower bound the corresponding
multiple limited-birthday problem.

5.1 AES

AES-128 [9] is an obvious target for our techniques, and it is composed of 10
rounds and has parameters t = 4 and c = 8.

Distinguisher. The current best distinguishers (except the biclique technique
[5] which allows to do a speed-up search of the key by a factor of 0.27 for the
full AES) can reach 8 rounds with 248 computations in the known-key model
(see [13]) and with 224 computations in the chosen-key model (see [10]). By relax-
ing some input/output conditions, we are able to obtain a 8-round distinguisher
with 244 computations in the known-key model and with 213.4 computations in
the chosen-key model.

In the case of the known-key distinguisher, we start with the 8-round differen-
tial characteristic depicted in Fig. 5. One can see that it is possible to randomize
the position of the unique active byte in both states S1 and S6, resulting in
4 possibles positions for both the input and output differences. We reuse the

Multiple Limited-Birthday Distinguishers and Applications 545

Super-SBox technique that can find solutions from state S2 to state S5 with a
single operation on average. Then, one has to pay 224/4 = 222 for both transi-
tions from state S2 to S1 backward and from state S5 to S6 forward, for a total
complexity of 244 computations. In the ideal case, our multiple limited-birthday
problem gives us a generic complexity bounded by 27.

Fig. 5. Differential characteristic for the 8-round known-key distinguisher for AES-128

Concerning the chosen-key distinguisher, we start with the 8-round differ-
ential characteristic depicted in Fig. 6. Here, we use the technique introduced
in [10] that can find solutions from state S2 to state S6 with a single operation
on average. It is therefore not possible to randomize the position of the unique
active byte in state S6 since it is already specified. However, for the transition
from state S2 to S1, we let two active bytes to be present in S2, with random
positions (6 possible choices). This happens with a probability 6 · 2−16 and the
total complexity to find a solution for the entire characteristic is 213.4 computa-
tions. In the ideal case, our multiple limited-birthday problem gives us a generic
complexity bounded by 231.7.

Fig. 6. Differential characteristic for the 8-round chosen-key distinguisher for AES-128

546 J. Jean et al.

Collision. It is also interesting to check what happens if the AES cipher is
plugged into a classical Davies-Meyer mode in order to get a compression func-
tion. A collision attack for this scenario was proposed in [22] for 6 rounds of AES
with 256 computations. By considering the characteristic from state S1 to state
S7 state in Fig. 5 (the MixCells in the last round is omitted for AES, thus S7

contains only a single active byte), and by using the technique introduced in [10]
(only for chosen-key model, but in the Davies-Meyer mode the key input of the
cipher is fully controlled by the attacker since it represents the message block
input), we can find solutions from state S2 to state S6 with a single operation on
average. Then, one has to pay a probability 2−24 for the differential transition
from state S2 to state S1 when computing backward. One can not randomize
the single active cells positions here because the collision forces us to place them
at the very same position. Getting the single input and output active bytes to
collide requires 28 tries and the total complexity of the 6-round collision search
is therefore 232 computations.

5.2 Whirlpool

Whirlpool [1] is a 512-bit hash function whose compression function is built upon
a block cipher E in a Miyaguchi-Preneel mode: h(H,M) = EH(M)⊕M⊕H. This
block cipher E uses two 10-round AES-like permutations with parameters t = 8
and c = 8, one for the internal state transformation and one for the key schedule.
The first permutation is fixed and takes as input the 512-bit incoming chaining
variable, while the second permutation takes as input the 512-bit message block,
and whose round keys are the successive internal states of the first permutation.
The current best distinguishing attack can reach the full 10 rounds of the internal
permutation and compression function (with 2176 computations), while the best
collision attack can reach 5.5 rounds of the hash function and 7.5 rounds of the
compression function [20] (with 2184 computations). We show how to improve
the complexities of all these attacks.

Distinguisher. We reuse the same differential characteristic from [20] for the
distinguishing attack on the full 10-round Whirlpool compression function
(which contains no difference on the key schedule of E), but we let three more
active bytes in both states S1 and S8 of the outbound part and this is depicted
in Fig. 7. The effect is that the outbound cost of the differential characteristic is
reduced to 264 computations: 232 for differential transition from state S2 to S1

and 232 from state S7 to S8. Moreover, we can leverage the difference position
randomization in states S1 and S8, which both provide an improvement factor of(
8
4

)
= 70. The inbound part in [20] (from states S2 to S7) requires 264 computa-

tions to generate a single solution on average, and we obtain a final complexity
of 264 · 264 · (70)−2 = 2115.7 Whirlpool evaluations, while the multiple limited-
birthday problem has a generic complexity bounded by 2125 computations.

Multiple Limited-Birthday Distinguishers and Applications 547

Fig. 7. 10-round truncated differential characteristic for the full Whirlpool compression
function distinguisher.

Collision. We reuse the same differential characteristic from [20] for the 7.5-
round collision attack on the Whirlpool compression function (which contains
no difference on the key schedule of E), but we let one more active byte in
both states S0 and S7 of the outbound part (see Fig. 8). From this, we gain
an improvement factor of 28 in both forward and backward directions of the
outbound (from state S1 to S0 and from state S6 to S7), but we have two byte
positions to collide on with the feed-forward instead of one. After incorporating
this 28 extra cost, we obtain a final improvement factor of 28 over the original
attack (it is to be noted that this improvement will not work for 7-round reduced
Whirlpool since the active byte position randomization would not be possible
anymore). The very same method applies to the 5.5-round collision attack on
the Whirlpool hash function.

Fig. 8. 7.5-round truncated differential characteristic for the Whirlpool compression
function collision.

6 Conclusion

In this article, we propose a new type of distinguisher for AES-like permutations
that we call the multiple limited-birthday distinguisher. It generalizes the simple
limited-birthday one in the sense that it allows more than just one pattern
of fixed difference at both the input and the output of the permutation. We
provide an algorithm to efficiently solve the problem for the ideal case, while it
remains an open problem to prove its optimality, which can probably be reduced
to proving the optimality of the simple limited-birthday algorithm in terms of
number of queries. As applications of this work, we show how to improve almost
all previously known rebound distinguishers for AES-based primitives.

548 J. Jean et al.

Acknowledgments. We would like to thank Dmitry Khovratovich and the anony-
mous referees for their valuable comments on our paper.

Appendix

A Other Results

Table 3. Other improvements for various rebound-based attacks on AES-based primi-
tives. Our results marked as New are detailed in the extended version of this article

Target Subtarget Rounds Type Time Memory Ideal Reference

ECHO Permutation 7 dist. 2118 238 21025 [27]
7 dist. 2102 238 2256 New
8 dist. 2151 267 2257 [24]
8 dist. 2147 267 2256 New

Grøstl-256 Permutation 8 dist. 216 28 233 [27]
8 dist. 210 28 231.5 New
9 dist. 2368 264 2385 [17]
9 dist. 2362 264 2379 New

Grøstl-256 Comp. func. 6 collision 2120 264 2257 [28]
6 collision 2119 264 2257 New

Grøstl-256 Hash func. 3 collision 264 264 2129 [28]
3 collision 263 264 2129 New

LED-64 Cipher 15 CK dist. 216 216 233 [15]
16 CK dist. 233.5 232 241.4 [25]
20 CK dist. 260.2 261.5 266.1 [25]
19 CK dist. 218 216 233 New

PHOTON-80/20/16 Permutation 8 dist. 28 24 211 [14]
8 dist. 23.4 24 29.8 New

PHOTON-128/16/16 Permutation 8 dist. 28 24 213 [14]
8 dist. 22.8 24 211.7 New

PHOTON-160/36/36 Permutation 8 dist. 28 24 215 [14]
8 dist. 22.4 24 213.6 New

PHOTON-224/32/32 Permutation 8 dist. 28 24 217 [14]
8 dist. 22 24 215.5 New
9 dist. 2184 232 2193 [17]
9 dist. 2178 232 2187 New

PHOTON-256/32/32 Permutation 8 dist. 216 28 225 [14]
8 dist. 210.8 28 223.7 New

References

1. Barreto, P.S.L.M., Rijmen, V.: Whirlpool. In: van Tilborg, H.C.A., Jajodia,
S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn, pp. 1384–1385.
Springer, New York (2011)

Multiple Limited-Birthday Distinguishers and Applications 549

2. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

3. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M.,
Seurin, Y.: SHA-3 proposal: ECHO. Submission to NIST (2008)

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak reference. Sub-
mission to NIST (Round 3) (2011)

5. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

6. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology. Revisited
J. ACM 51(4), 557–594 (2004)

8. Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)
9. Daemen, J., Rijmen, V.: Rijndael for AES. In: AES Candidate Conference, pp.

343–348 (2000)
10. Derbez, P., Fouque, P.-A., Jean, J.: Faster chosen-key distinguishers on reduced-

round AES. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol.
7668, pp. 225–243. Springer, Heidelberg (2012)

11. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack: application to
Keccak. In: [8] pp. 402–421

12. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. Submitted to the com-
petition, NIST (2008)

13. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: [26] pp. 365–383

14. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash func-
tions. In: [26] pp. 222–239

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

16. Hong, S., Iwata, T. (eds.): FSE 2010. LNCS, vol. 6147. Springer, Berlin (2010)
17. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist

Grøstl. In: [8] pp. 110–126
18. Khovratovich, D., Nikolic, I.: Rotational cryptanalysis of ARX. In: [16] pp. 333–346
19. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound

distinguishers: results on the full Whirlpool compression function. In: Matsui,
M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg
(2009)

20. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: The rebound
attack and subspace distinguishers: application to whirlpool. Cryptology ePrint
Archive, Report 2010/198 (2010)

21. Matusiewicz, K., Naya-Plasencia, M., Nikolić, I., Sasaki, Y., Schläffer, M.: Rebound
attack on the full Lane compression function. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 106–125. Springer, Heidelberg (2009)

22. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of
the reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 16–35. Springer, Heidelberg (2009)

550 J. Jean et al.

23. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

24. Naya-Plasencia, M.: How to improve rebound attacks. In: [26] pp. 188–205
25. Nikolic, I., Wang, L., Wu, S.: Cryptanalysis of Round-Reduced LED. In: FSE.

Lecture Notes in Computer Science (2013) (To appear)
26. Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)
27. Sasaki, Y., Li, Y., Wang, L., Sakiyama, K., Ohta, K.: Non-full-active Super-Sbox

analysis: applications to ECHO and Grøstl. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 38–55. Springer, Heidelberg (2010)

28. Schläffer, M.: Updated differential analysis of Grøstl. Grøstl website (2011)

Side-Channel Attacks

Horizontal Collision Correlation Attack
on Elliptic Curves

Aurélie Bauer(B), Eliane Jaulmes, Emmanuel Prouff, and Justine Wild

ANSSI, 51, Bd de la Tour-Maubourg, SP 07, 75700 Paris, France
{aurelie.bauer,eliane.jaulmes,emmanuel.prouff,justine.wild}@ssi.gouv.fr

Abstract. Elliptic curves based algorithms are nowadays widely spread
among embedded systems. They indeed have the double advantage of
providing efficient implementations with short certificates and of being
relatively easy to secure against side-channel attacks. As a matter of fact,
when an algorithm with constant execution flow is implemented together
with randomization techniques, the obtained design usually thwarts clas-
sical side-channel attacks while keeping good performances. Recently, a
new technique that makes some randomizations ineffective, has been suc-
cessfully applied in the context of RSA implementations. This method,
related to a so-called horizontal modus operandi, introduced by Walter
in 2001, turns out to be very powerful since it only requires leakages
on a single algorithm execution. In this paper, we combine such kind of
techniques together with the collision correlation analysis, introduced at
CHES 2010 by Moradi et al., to propose a new attack on elliptic curves
atomic implementations (or unified formulas) with input randomization.
We show how it may be applied against several state-of-the art imple-
mentations, including those of Chevallier-Mames et al., of Longa and
of Giraud-Verneuil and also Bernstein and Lange for unified Edward’s
formulas. Finally, we provide simulation results for several sizes of ellip-
tic curves on different hardware architectures. These results, which turn
out to be the very first horizontal attacks on elliptic curves, open new
perspectives in securing such implementations. Indeed, this paper shows
that two of the main existing countermeasures for elliptic curve imple-
mentations become irrelevant when going from vertical to horizontal
analysis.

1 Introduction

Elliptic Curves Cryptosystems (ECC) that have been introduced by N. Koblitz
[21] and V. Miller [29], are based on the notable discrete logarithm problem,
which has been thoroughly studied in the literature and is supposed to be a hard
mathematical problem. The main benefit in elliptic curves based algorithms is
the size of the keys. Indeed, for the same level of security, the schemes require keys
that are far smaller than those involved in classical public-key cryptosystems.
The success of ECC led to a wide variety of applications in our daily life and they
are now implemented on lots of embedded devices: smart-cards, micro-controller,

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 553–570, 2014.
DOI: 10.1007/978-3-662-43414-7 28, c∞ Springer-Verlag Berlin Heidelberg 2014

554 A. Bauer et al.

and so on. Such devices are small, widespread and in the hands of end-users.
Thus the range of threats they are confronted to is considerably wider than
in the classical situation. In particular, physical attacks are taken into account
when assessing the security of the application implementation (e.g. the PACE
protocol in e-passports [20]) and countermeasures are implemented alongside
the algorithms.

A physical attack may belong to one of the two following families: pertur-
bation analysis or observation analysis. The first one tends to modify the cryp-
tosystem processing with laser beams, clock jitter or voltage perturbation. Such
attacks can be thwarted by monitoring the device environment with captors and
by verifying the computations before returning the output. The second kind of
attacks consists in measuring a physical information, such as the power consump-
tion or the electro-magnetic emanation, during sensitive computations. Inside
this latter area we can distinguish, what we call simple attacks, that directly
deduces the value of the secret from one or a small number of observation(s)
(e.g. Simple Power Analysis [23]) and advanced attacks involving a large number
of observations and exploiting them through statistics (e.g. Differential Power
Analysis [24] or Correlation Power Analysis [9]). Such attacks require the use
of a statistical tool, also known as a distinguisher, together with a leakage model
to compare hypotheses with real traces (each one related to known or chosen
inputs). The latter constraint may however be relaxed thanks to the so-called
collision attacks [32] which aim at detecting the occurrences of colliding values
during a computation, that can be linked to the secret [8,14,30,31]. In order
to counteract all those attacks, randomization techniques can be implemented
(e.g. scalar/message blinding for ECC [16]). The recent introduction of the so-
called horizontal side-channel technique by Clavier et al. in [13] seems to have
set up a new deal. This method, which is inspired by Walter’s work [33], takes
its advantage in requiring a unique power trace, thus making classical random-
ization techniques ineffective. Up to now, it has been applied successfully on RSA
implementations and we show in this paper that it can be combined with colli-
sion correlation analysis to provide efficient attack on elliptic curves protected
implementations.

Core idea. In the context of embedded security, most ECC protocols (e.g. ECDSA
[1] or ECDH [2]) use a short term secret that changes at each protocol iteration. In
this particular setting, advanced side-channel attacks, which require several exe-
cutions of the algorithm with the same secret, are ineffective. As a consequence,
only protection against SPA is usually needed, that can be done thanks to the
popular atomicity principle [11,18,26]. Up to now, this technique is considered
as achieving the best security/efficiency trade-off to protect against side-channel
analysis. In this paper, we provide a new side-channel attack, called horizontal
collision correlation analysis that defeats such protected ECC implementations.
In particular, implementations using point/scalar randomization combined with
atomicity are not secure, contrary to what was thought up to now. Moreover in

Horizontal Collision Correlation Attack on Elliptic Curves 555

order to complete our study, we also investigate the case of unified formulas1.
Indeed, we show that our horizontal collision correlation attack allows to distin-
guish, with a single leakage trace, a doubling operation from an addition one.
This technique, which allows to eventually recover the secret scalar, is applied
to three different atomic formulae on elliptic curves, namely those proposed by
Chevallier-Mames et al. in [11], by Longa in [26], by Giraud and Verneuil in [18].

The paper is organized as follows. First, Sect. 2 recalls some basics about
ECC in a side-channel attacks context. Then, under the assumption that one
can distinguish common operands in modular multiplications, the outlines of
our new horizontal collision correlation attack are presented in Sect. 3. After a
theoretical analysis explaining how to practically deal with the distinguishability
assumption, we provide in Sect. 4 experimental results for 160, 256 and 384-bit-
size curves working with 8, 16 or 32-bit registers. These results show that the
attack success rate stays high even when significant noise is added to the leakage.

2 Preliminaries

2.1 Notations and Basics on Side-Channel Attacks

Notations. A realization of a random variable X is referred to as the corre-
sponding lower-case letter x. A sample of n observations of X is denoted by (x)
or by (xi)1∈i∈n when a reference to the indexation is needed. In this case, the
global event is summed up as (x) ∈φ X. The jthcoordinate of a variable X (resp.
a realization x), viewed as a vector, is denoted by X[j] (resp. x[j]). As usual, the
notation E[X] refers to the mean of X. For clarity reasons we sometimes use the
notation EX [Y] when Y depends on X and other variables, to enlighten the fact
that the mean is computed over X. Attacks presented in this paper involve the
linear correlation coefficient which measures the linear interdependence between
two variables X and Y . It is defined as ψ(X,Y) = cov(X,Y)

σXσY
, where cov(X,Y),

called covariance between X and Y , equals E[XY] − E[X]E[Y] and where λX

and λY respectively denotes the standard deviation of X and Y . The linear
correlation coefficient can be approximated from realizations samples (xi)1∈i∈n

and (yi)1∈i∈n of X and Y respectively. For this approximation, the following
so-called Pearson’s coefficient is usually involved:

ψ̂(X,Y) =
n
∑

i xiyi − ∑
i xi

∑
j yj

√

n
∑

i x2
i − (∑

i xi

)2
√

n
∑

j y2
j − (∑

j yj

)2
. (1)

General Attack Context. In the subsequent descriptions of side-channel
analyses, an algorithm A is modelled by a sequence of elementary calcula-
tions (Ci)i that are Turing machines augmented with a common random access

1 Among the unified formulas, we especially focus on the Edward’s ones in [5] intro-
duced by Bernstein and Lange since they lead to efficient doubling and addition
computations compared to the Weierstrass case [10].

556 A. Bauer et al.

memory (see [28] for more details about this model). Each elementary calcu-
lation Ci reads its input Xi in this memory and updates it with its output
Oi = Ci(Xi). During the processing of A, each calculation Ci may be associated
with an information leakage random variable Li (a.k.a. noisy observation). A pre-
requisite for the side-channel analyses described in this paper to be applicable
is that the mutual information between Oi and Li is non-zero. The alternative
notation Li(Oi) will sometimes be used to stress the relationship between the
two variables.

A side-channel analysis aims at describing a strategy to deduce information
on the algorithm secret parameter from the leakages Li. Let us denote by s
this secret parameter. In this paper, we pay particular attention to two attacks
sub-classes. The first ones are called simple and try to exploit a dependency
between the sequence of operations Ci and s (independently of the Ci inputs
and outputs). A well-known example of such an attack is the simple power
analysis (SPA) [16]. In this attack, the algorithm input is kept constant and
the unprotected sequence of Ci is usually composed of two distinct operations
(for instance a doubling and an addition in the case of ECC). It can easily be
checked that the order of those operations in the sequence is a one-to-one function
of the secret scalar s. Hence, if the leakages Li enable to clearly differentiate
the operations, then the adversary may recover the order of the latters, and thus
the secret.

Following the framework presented in [4], we call advanced the attacks belong-
ing to the second class of side-channel analyses. Among them, we find the well-
known differential power analysis (DPA) [24] or the correlation power analysis
(CPA) [9]. Contrary to simple attacks, the advanced ones do not only focus on
the operations but also on the operands. They usually focus on a small subset
I of the calculations Ci and try to exploit a statistical dependency between the
results Oi of those calculations and the secret s. For such a purpose, the adver-
sary must get a sufficiently large number N of observations (ρi

j)j ∈φ Li(Oi),
where i ∞ I and 1 √ j √ N .

In the literature, two strategies have been specified to get the observations
samples (ρi

j)j for a given elementary computation Oi = Ci(Xi). The first method,
called vertical, simply consists in executing the implementation several times
and in defining ρi

j as the observation related to the result Oi at the jthalgorithm
execution. Most attacks [3,9,24] enter into this category and the number of
different indices i may for instance correspond to the attack order [27]. The
second method, called horizontal [13,33], applies on a single algorithm execu-
tion. It starts by finding the sequence of elementary calculations (Cij

)j that
processes the same mathematical operation than Ci (e.g. a field multiplication)
and depends on the same secret sub-part. By construction, all the outputs Oij

of
the Cij

can be viewed as a realization of Oi = Ci(Xi) and the ρi
j are here defined

as the observations of the Oij
. We can eventually notice that the vertical and

horizontal strategies are perfectly analogous to each other and that they can be
applied to both simple and advanced attacks.

Horizontal Collision Correlation Attack on Elliptic Curves 557

2.2 Background on Elliptic Curves

As this paper focuses on side-channel attacks on ECC, let us recall now some basics
on elliptic curves and especially on the various ways of representing points on
such objects (the reader could refer to [15,19] for more details).

Throughout this paper, we are interested in elliptic curve implementations
running on platforms (ASIC, FPGA, micro-controller) embedding a hardware
modular multiplier (e.g. a 16-bit, 32-bit or 64-bit multiplier). On such imple-
mentations, the considered elliptic curves are usually defined over a prime finite
field Fp. In the rest of this paper, we will assume that all curves are defined over
Fp with p �= {2, 3}. The algorithm used for the hardware modular multiplica-
tion is assumed to be known to the attacker. Moreover, to simplify the attack
descriptions, we assume hereafter that the latter multiplication is performed in
a very simple way: a schoolbook long integer multiplication followed by a reduc-
tion. Most of current devices do not implement the modular multiplications that
way, but the attacks described hereafter can always be adapted by changing the
definition of the elementary operations of Sect. 3.3 (see the full version of the
paper for a complete discussion on that point).

Definition. An elliptic curve E over a prime finite field Fp with p �= {2, 3} can
be defined as an algebraic curve of affine reduced Weierstrass equation:

(E) : y2 = x3 + ax + b , (2)

with (a, b) ∞ (Fp)2 and 4a3 + 27b2 �= 0. Let P = (x1, y1) and Q = (x2, y2) be
two points on (E), the sum R = (x3, y3) of P and Q belongs to the curve under
a well-known addition rule [21]. The set of pairs (x, y) ∞ (Fp)2 belonging to
(E), taken with an extra point O, called point at infinity, form an abelian group
named E(Fp).

In the rest of the paper, the points will be represented using their projective
coordinates. Namely, a point P = (x, y) is expressed as a triplet (X : Y : Z)
such that X = xZ and Y = yZ.

2.3 Points Operations in Presence of SCA

This paper focusses on elliptic curves cryptosystems which involve the scalar
multiplication [s]P , implemented with the well-known double and add algorithm.

In a non-protected implementation, the sequence of point doublings and point
additions can reveal the value of s with a single leakage trace. Thus to protect
the scheme against SPA, the sequence of point operations must be independent
from the secret value. This can be achieved in several ways. The double and add
always algorithm [16] is the simplest solution. It consists in inserting dummy
point additions each time the considered bit value of s is equal to 0. In average,
this solution adds an overhead of log2(s)

2 point additions. Another technique con-
sists in using unified formulae for both addition and doubling [6,7,25]. Finally,
the scheme that is usually adopted in constrained devices such as smart cards,
since it achieves the best time/memory trade-off, remains atomicity [11,18,26].

558 A. Bauer et al.

This principle is a refinement of the double and add always technique. It consists
in writing addition and doubling operations as a sequence of a unique pattern.
This pattern is itself a sequence of operations over Fp. Since the pattern is unique,
the same sequence of field operations is repeated for the addition and the dou-
bling, the only difference being the number of times the pattern is applied for
each operation. It thus becomes impossible to distinguish one operation from
the other or even to identify the starting and ending of these operations.

To defeat an atomic implementation, the adversary needs to use advanced
side-channel attacks (see Sect. 2.1), such as DPA, CPA and so on. These attacks
focus on the operations operands instead of only focusing on the kind of oper-
ations. They usually require more observations than for SPA since they rely on
statistical analyses. In the ECC literature, such attacks have only been investi-
gated in the vertical setting, where they can be efficiently prevented by input
randomization.

3 Horizontal Collision Correlation Attack on ECC

We show hereafter that implementations combining atomicity and randomization
techniques are in fact vulnerable to collision attacks in the horizontal setting.
This raises the need for new dedicated countermeasures.

This section starts by recalling some basics on collision attacks. Then, assum-
ing that the adversary is able to distinguish when two field multiplications have
a common (possibly unknown) operand, we show how to exhibit flaws in the
atomic algorithms proposed in [11,18,26]) and also in implementations using
the unified formulas for Edward’s curves [5]. Eventually, we apply the collision
attack presented in the first subsection to show how to efficiently deal with the
previous assumption.

3.1 Collision Power Analysis in the Horizontal Setting

To recover information on a subpart s of the secret s, collision side-channel analy-
ses are usually performed on a sample of observations related to the processing,
by the device, of two variables O1 and O2 that jointly depend on s. The advan-
tage of those attacks, compared to the classical ones, is that the algorithm inputs
can be unknown since the adversary does not need to compute predictions on the
manipulated data. When performed in the horizontal setting, the observations on
O1 and O2 are extracted from the same algorithm execution (see Sect. 2.1). Then,
the correlation between the two samples of observations is estimated thanks to
the Pearson’s coefficient (see Eq. (1)) in order to recover information on s. We
sum up hereafter the outlines of this attack, that will be applied in the following.

Remark 1. In Table 1, we use Pearson’s coefficient to compare the two samples
of observations but other choices are possible (e.g. mutual information).

Remark 2. In order to deduce information on s from the knowledge of ψ̂, one
may use for instance a Maximum Likelihood distinguisher (see a discussion on
that point in Sect. 4).

Horizontal Collision Correlation Attack on Elliptic Curves 559

Table 1. Collision power analysis

1. Identify two elementary calculations C1(·) and C2(·) which are processed several
times, say N , with input(s) drawn from the same distribution(s). The correlation
between the random variables O1 and O2 corresponding to the outputs of C1 and
C2 must depend on the same secret sub-part s.

2. For each of the N processings of C1 (resp. C2) get an observation γ1j (resp. γ2j)
with j ∈ [1; N].

3. Compute the quantity: φ̂ = φ̂
(
(γ1j)j , (γ

2
j)j
)

4. Deduce information on s from φ̂.

In the next section, the attack in Table 1 is invoked as an Oracle enabling to
detect whether two field multiplications share a common operand.

Assumption 1. The adversary can detect when two field multiplications have
at least one operand in common.

In Sect. 3.3, we will come back to the latter hypothesis and will detail how it
can indeed be satisfied in the particular context of ECC implementations on
constrained systems.

3.2 Attacks on ECC Implementations: Core Idea

We start by presenting the principle of the attack on atomic implementations,
and then on an implementation based on unified (addition and doubling) formu-
las over Edward’s curves.

Attack on Chevallier-Mames et al.’s Scheme. In Chevallier-Mames
et al.’s atomic scheme, historically the first one, the authors propose the three
first patterns2 given in Fig. 1 for the doubling of a point Q = (X1 : Y1 : Z1) and
the addition of Q with a second point P = (X2 : Y2 : Z2).

As expected, and as a straightforward implication of the atomicity principle,
the doubling and addition schemes perform exactly the same sequence of field
operations if the star (dummy) operations are well chosen3. This implies that
it is impossible to distinguish a doubling from an addition by just looking at
the sequence of calculations (i.e. by SPA). Let us now focus on the operations’
operands. In the addition scheme, the field multiplications in Patterns 1 and 3
both involve the coordinate Z2. On the contrary, the corresponding multiplica-
tions in the doubling scheme have a priori independent operands (indeed the
first one corresponds to the multiplication X1 · X1, whereas the other one corre-
sponds to Z2

1 ·Z2
1). If an adversary has a mean to detect this difference (which is

actually the case under Assumption 1), then he is able to distinguish a doubling
from an addition and thus to fully recover the secret scalar s. Indeed, let us
2 For readability reasons we do not recall the full patterns but the interested reader

can find them in [11].
3 Guidelines are given in [11] to define the dummy operations in a pertinent way.

560 A. Bauer et al.

Doubling

R0 ← a, R1 ← X1, R2 ← Y1, R3 ← Z1

1.

⎡
⎢⎢⎣

R4 ← R1 · R1 (= X1 · X1)
R5 ← R4 + R4

α
R4 ← R4 + R5

2.

⎡
⎢⎢⎣

R5 ← R3 · R3

R1 ← R1 + R1

α
α

3.

⎡
⎢⎢⎣

R5 ← R5 · R5 (= Z2
1 · Z2

1)
α
α
α

Addition

R1 ← X1, R2 ← Y1, R3 ← Z1,
R7 ← X2, R8 ← Y2, R9 ← Z2

1.

⎡
⎢⎢⎣

R4 ← R9 · R9 (= Z2 · Z2)
α
α
α

2.

⎡
⎢⎢⎣

R1 ← R1 · R4

α
α
α

3.

⎡
⎢⎢⎣

R4 ← R4 · R9 (= Z2
2 · Z2)

α
α
α

Fig. 1. Three first atomic patterns of point doubling and addition.

focus on the processing of the second step of the double and add left-to-right
algorithm, and let us denote by s the most significant bit of s. Depending on s,
this sequence either corresponds to the processing of the doubling of Q = [2]P
(case s = 0) or to the addition of Q = [2]P with P (case s = 1). Eventually,
the results T1 and T2 of the field multiplications in respectively Patterns 1 and
3 satisfy: {

T1 =
(
X1 · X1

)1−s · (Z2 · Z2

)s

T2 =
(
Z2
1 · Z2

1

)1−s · (Z2
2 · Z2

)s , (3)

where we recall that we have P = (X2 : Y2 : Z2) and Q = (X1 : Y1 : Z1).
Equation (3) and Assumption 1 enables to deduce whether s equals 0 or 1.
Applying this attack log2(s) times, all the bits of s can be recovered one after
the other.

We now show that the same idea can successfully be applied to attack the
other atomic implementations proposed in the literature, namely those of Longa
[26] and Giraud and Verneuil [18].

Attack on Longa’s Scheme. The atomic pattern introduced by Longa in [26]
is more efficient than that of Chevallier-Mames et al.’s scheme. This improvement
is got by combining affine and Jacobian coordinates in the points addition, see
Fig. 2.

It can be seen that the first and third patterns of Longa’s scheme contain
two field multiplications that either have no operand in common (doubling case)
or share the operand Z1 (addition case). Similarly to Chevallier-Mames et al.’s
scheme, we can hence define the two following random variables:

{
T1 =

(
Z1 · Z1

)1−s · (Z1 · Z1

)s

T2 =
(
X1 · 4Y 2

1

)1−s · (Z2
1 · Z1

)s , (4)

Horizontal Collision Correlation Attack on Elliptic Curves 561

Fig. 2. The first and third patterns used in atomicity of Longa

Under Assumption 1, it leads to the recovery of s.

Attack on Giraud and Verneuil’s Scheme. Giraud and Verneuil introduced
in [18] a new atomic pattern which reduces the number of field additions, nega-
tions and dummy operations (η) compared to the above proposals. The patterns
are recalled in Fig. 3.

Once again, depending on the secret s, we observe a repetition of two mul-
tiplications with a common operand in the first pattern of the addition scheme
(ADD 1.), leading to the following equations:

{
T1 =

(
X1 · X1

)1−s · (Z2 · Z2

)s

T2 =
(
2Y1 · Y1

)1−s · (Z2
2 · Z2

)s , (5)

which, under Assumption 1, leads to the recovery of s.

Remark 3. A second version of the patterns in Fig. 3 has been proposed in [18]
which allows to save more field additions and negations without addition of
dummy operations. This proposal share the same weakness as the previous ones
and our attack still applies.

562 A. Bauer et al.

GNILBUODNOITIDDA

ADD 1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1 ∗ Z2 · Z2

�
�
�
R2 ∗ X1 · R1
�
�
�
R1 ∗ R1 · Z2 (= Z2

2 · Z2)
�
�
�

.

.

.

ADD 2.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R6 ∗ R2
4

�
�
�
R5 ∗ Z1 · Z2
�
�
�
Z3 ∗ R5 · R4
�
�
�

.

.

.

DOUB

R1 ∗ X1 · X1

R2 ∗ Y1 + Y1
�
�
Z2 ∗ R2 · Z1
R4 ∗ R1 + R1
�
�
R3 ∗ R2 · Y1 (= 2Y1 · Y1)
R6 ∗ R3 + R3
�
�

.

.

.

Fig. 3. The beginning of Giraud and Verneuil’s patterns

Attack on Edward’s Curves. Edward’s representation of elliptic curves has
been introduced in [17]. In a subsequent paper [6], Bernstein and Lange homog-
enized the curve equation in order to avoid field inversions in Edward’s addition
and doubling formulas. For this homogenized representation, points addition and
doubling are both computed thanks to the same formula. Let P = (X1 : Y1 : Z1)
and Q = (X2 : Y2 : Z2) be two points on the curve, the sum R = (X3 : Y3 : Z3)
of P and Q is given by the following system:

⎧

⎨

X3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2
2 + Z2

1X2Y2)
Y3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z

2
2 − Z2

1X2Y2)
Z3 = dZ2

1Z2
2 (X1X2 + Y1Y2)(X1Y2 − Y1X2)

,

where d is some constant related to the Edward curve equation. These formulae
correspond to the sequence of operations given by Fig. 4.

This sequence also works when P = Q, meaning that it applies similarly
for addition and doubling. This is one of the main advantage of Edward’s rep-
resentation compared to the other ones (e.g. Projectives) where such a unified
formula does not exist. However it is significantly more costly than the separate
addition and doubling formulas.4

Here, we can exploit the fact that the multiplication X1Z1 is performed twice
if P = Q (i.e. when the formula processed a doubling), which is not the case
otherwise (see Fig. 4). We can hence define the two following random variables:

{
T1 =

(
X1 · Z1

)1−s · (X1 · Z2

)s

T2 =
(
X1 · Z1

)1−s · (X2 · Z1

)s , (6)

4 Indeed, let us denote by M the cost of a field multiplication and by S the cost of
a squaring. We assume S = 0.8M , which is usually satisfied in current implemen-
tations. For points in projective coordinates, the unified formulas for Weierstrass
curves [10] require around 15.8M which represents a similar cost than for addition
points (around 16M) but is significantly higher than that of the doubling (around
9M). The unified formula for Edward curves costs around 11M which is less than
in the Weierstrass case but still higher than the classical formulas.

Horizontal Collision Correlation Attack on Elliptic Curves 563

Fig. 4. First steps of algorithm for addition.

which, under Assumption 1, leads to the recovery of s.

Remark 4. This technique still applies in the case of other unified formulas
(e.g. those introduced in [10]). Indeed, the sequence of operations in [10] present
the same weaknesses as Edward’s case. The multiplication X1Z1 is performed
twice if the current operation is a doubling (see the first and third multiplications
in [10, Sect. 3, Fig. 1]).

3.3 Distinguishing Common Operands in Multiplications

In this section we apply the collision attack principle presented in Sect. 3.1 to
show how an adversary may deal with Assumption 1. This will conclude our
attack description. As mentioned before, we assume that the field multiplications
are implemented in an arithmetic co-processor with a Long Integer Multiplication
(LIM) followed by a reduction. Many other multiplication methods exist but our
attack can always be slightly adapted to also efficiently apply to those methods
(see the full version of the paper).

Let Φ denote an architecture size (e.g. Φ equals 8, 16 or 32) and let us
denote by (X[t], · · · ,X[1])2ω the base-2ω representation of an integer. We recall
hereafter the main steps of the LIM when applied between two integers X and Y .

Let W , X, Y and Z be four independent values of size tΦ bits. We show hereafter
how to distinguish by side-channel analysis the two following cases:

– Case (1) where the device processes LIM(X,W) and LIM(Y, Z) (all the operands
are independent),

– Case (2) where LIM(X, Z) and LIM(Y, Z) are processed (the two LIM process-
ings share an operand).

For such a purpose, and by analogy with our side-channel model in Sect. 2.1
and Table 1, we denote by C1 (resp. C2) the multiplication in the loop during
the first LIM processing (resp. the second LIM processing) and by O1 (resp. O2)
its result. The output of each multiplication during the loop may be viewed as
a realization of the random variable O1 (resp. O2). To each of those realizations
we associate a leakage ρ1a,b (resp. ρ2a,b). To distinguish between cases (1) and (2),
we directly apply the attack described in Table 1 and we compute the Pearson’s
correlation coefficient:

ψ̂
⎩
(ρ1a,b)a,b, (ρ2a,b)a,b

⎤
. (7)

564 A. Bauer et al.

Algorithm 1. Long Integer Multiplication (LIM)
Input: X = (X[t], X[t − 1], . . . , X[1])2ω , Y = (Y [t], Y [t − 1], . . . , Y [1])2ω .
Output: LIM(X, Y).
for a from 1 to 2t do

R[a] ← 0

for a from 1 to t do
C ← 0
for b from 1 to t do

(U, V)2ω ← X[a] · Y [b] // Operation C1 (resp. C2)
(U, V)2ω ← (U, V)2ω + C
(U, V)2ω ← (U, V)2ω + R[a + b − 1]
R[a + b − 1] ← V
C ← U

R[a + t] ← C

return R

In place of (7), the following correlation coefficient can be used in the attack:

ψ̂

⎥
⎩1

t

⎦

a

ρ1a,b

⎤

b
,
⎩1

t

⎦

a

ρ2a,b

⎤

b

⎪

. (8)

In the following section we actually argue that this second correlation coefficient
gives better results, which is confirmed by our attacks simulations reported in
Sect. 4.

3.4 Study of the Attack Soundness

This section aims at arguing on the soundness of the approach described pre-
viously to distinguish common operands in multiplications. For such a purpose,
we explicit formulae for the correlation coefficients given in (7) and (8). For
simplicity, the development is made under the assumption that the device leaks
the Hamming weight of the processed data but similar developments could be
done for other models and would lead to other expressions. Under the Hamming
weight assumption, we have ρ1a,b ∈φ HW(O1) + B1 and ρ2a,b ∈φ HW(O2) + B2

where B1 and B2 are two independent Gaussian random variables with zero
mean and standard deviation λ.

– If O1 and O2 correspond to the internal multiplications during the processings
of LIM(X , W) and LIM(Y , Z) respectively, then, for every (a, b) ∞ [1; t]2, we
have:

ρ1a,b = HW(x[a] · w[b]) + b1,a,b (9)

ρ2a,b = HW(y[a] · z[b]) + b2,a,b . (10)

Since W , X, Y and Z are independent, the correlation coefficients in (7) and
(8) tend towards 0 when t tends towards infinity.

Horizontal Collision Correlation Attack on Elliptic Curves 565

– If O1 and O2 correspond to the internal multiplications during the processings
of LIM(X , Z) and LIM(Y , Z) respectively, then we have:

ρ1a,b = HW(x[a] · z[b]) + b1,a,b (11)

ρ2a,b = HW(y[a] · z[b]) + b2,a,b . (12)

Since the two multiplications share an operand, their results are dependent.
In this case indeed, it can be proved that the correlation coefficients (7) and
(8) satisfy:

ψ̂
⎩
(ρ1a,b)a,b, (ρ2a,b)a,b

⎤
→ 1

1 + 22ω+2σ2+(ω−1)22ω+2ω

2.22ω−(2ω+1)2ω−1

and

ψ̂

⎥
⎩1

t

⎦

a

ρ1a,b

⎤

b
,
⎩1

t

⎦

a

ρ2a,b

⎤

b

⎪

→ 1

1 + 1
t
22ω+2σ2+(ω−1)22ω+2ω

2.22ω−(2ω+1)2ω−1

.

When t tends towards infinity, it may be noticed that the second correlation
coefficient tends towards 1 (which is optimal).

4 Experiments

In order to validate the approach presented in Sect. 3.3 and thus to illustrate the
practical feasibility of our attack, we performed several simulation campaigns for
various sizes of elliptic curves, namely ≡log2(p)∼ ∞ {160, 256, 384}, implemented
on different kinds of architectures, namely Φ ∞ {8, 32} using the Chevallier-
Mames et al.’s scheme. Each experiment has been performed in the same way. For
each (p, Φ), we computed Pearson’s correlation coefficients (7) and (8) between
the sample of observations coming from the leakages on operations C1 and C2 in
the two following cases:

– when the secret bit s is equal to 1, that is when an addition is performed
(which implies correlated random variables, see (3)),

– when the secret bit s is equal to 0, that is when a doubling operation is
performed (which implies independent random variables, see (3)).

From the configuration (p, Φ), the size t of the observations’ samples used in the
attack can be directly deduced: it equals ≡ log2(p)

ω ∼. The quality of the estima-
tions of the correlation coefficient by Pearson’s coefficient depends on both the
observations signal to noise ratio (SNR) and t. When the SNR tends towards 0,
the sample size t must tend towards infinity to deal with the noise. Since, in our
attack the samples size cannot be increased (it indeed only depends on the imple-
mentation parameters p and Φ), our correlation estimations tend towards zero
when the SNR decreases. As a consequence, distinguishing the two Pearson coef-
ficients coming from s = 0 and s = 1 becomes harder when the SNR decreases.

566 A. Bauer et al.

This observation raises the need for a powerful (and robust to noise) test to
distinguish the two coefficients. To take this into account for each setting (p, Φ)
and several SNR, we computed the mean and the variance of Pearson’s coefficient
defined in (7) and (8) over 1000 different samples of size t. To build those kinds
of templates, leakages have been generated in the Hamming weight model with
additive Gaussian noise of mean 0 and standard deviation λ (i.e. according to
(9)-(10) for s = 0 and to (11)-(12) for s = 1)5. When there is no noise at all,
namely when λ = 0 (i.e. SNR = +∩), one can observe that the mean of Pearson’s
coefficient is coherent with the predictions evaluated in Sect. 3.4.

Figures (5, 6, 7, 8) illustrate the spreading of the obtained Pearson’s coef-
ficient around the mean value. This variance gives us information about the
amount of trust we can put into the mean values. It also shows whether a distinc-
tion between the right hypothesis and the wrong one can easily be highlighted.
For each SNR value (denoted by α) and each sample size t, let us denote by
ψ̂0,t(α) (resp. ψ̂1,t(α)) the random variable associated to the processing of (7) for
s = 0 (resp. for s = 1). In Figs. (5, 6, 7, 8), we plot estimations of the mean and
variance of ψ̂0,t(α) and ψ̂1,t(α) for several pairs (α, t). Clearly, the efficiency of the
attack described in Sect. 3 depends on the ability of the adversary to distinguish,
for a fixed pair (t, α), the distribution of ψ̂0,t(α) from that of ψ̂1,t(α). In other
terms, once the adversary has computed a Pearson coefficient ψ̂ he must decide
between the two following hypotheses; H0 : ψ̂ ∈φ ψ̂0,t(α) or H1 : ψ̂ ∈φ ψ̂1,t(α). For
such a purpose, we propose here to apply a maximum likelihood strategy and
to choose the hypothesis having the highest probability to occur. This led us to
approximate the distribution of the coefficients ψ̂0,t(α) and ψ̂1,t(α) by a Gaussian
distribution with mean and variance estimated in the Hamming weight model
(as given in Figs. 5, 6, 7, 8). Attacks reported in Figs. 9 and 10 are done with
this strategy.

Remark 5. Since the adversary is not assumed to know the exact leakage SNR,
the maximum likelihood can be computed for several SNR values α starting from
∩ to some pre-defined threshold. This problematic occurs each time that the
principle of collision attacks is applied.

Remark 6. For a curve of size n = ≡log2(p)∼ and a Φ-bit architecture, the adver-
sary can have a sample of t = ≡n

ω ∼ observations if he averages over the columns
and t = ≡(n

ω)2∼ without averaging. All experiments provided in this section have
been performed using the “average” strategy.

This attack works for any kind of architecture, even for a 32-bit one (see
Fig. 10), which is the most common case in nowadays implementations. In the
presence of noise, the attack success decreases highly but stays quite success-
ful for curves of size 160, 256 and 384 bits. In all experiments (Figs. 9, 10), we
also observe that the success rate of our attack increases when the size of the
curve becomes larger. This behaviour can be explained by the increasing num-
ber of observations available in this case. Paradoxically, it means that when the
5 In this context, the SNR simply equals β/4ξ2.

Horizontal Collision Correlation Attack on Elliptic Curves 567

Correlation for 160-bit curves Correlation for 256-bit curves

Fig. 5. Pre-computations on w = 8-bit registers

Correlation for 384-bit curves

Fig. 6. Pre-computations on w = 8-bit registers

Correlation for 160-bit curves Correlation for 256-bit curves

Fig. 7. Pre-computations on w = 32-bit registers

Correlation for 384-bit curves

Fig. 8. Pre-computations on w = 32-bit registers

568 A. Bauer et al.

ω = 8

Fig. 9. Success rate of the attack on 8-bit registers

ω = 32

Fig. 10. Success rate of the attack on 32-bit registers

theoretical level of security becomes stronger (i.e. p is large), resistance against
side-channel attacks becomes weaker. This fact stands in general for horizon-
tal attacks and has already been noticed in [12,33].

References

1. ANSI X9.62: Public Key Cryptography for The Financial Service Industry : The
Elliptic Curve Digital Signature Algorithm (ECDSA). American National Stan-
dards Institute (1998)

2. ANSI X9.63: Public Key Cryptography for The Financial Service Industry : Key
Agreement and Key Transport Using Elliptic Curve Cryptography. American
National Standards Institute (1998)

3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol.
24(2), 269–291 (2011). (to appear)

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

5. Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar
multiplication. Cryptology ePrint Archive, Report 2007/455 http://eprint.iacr.
org/ (2007)

6. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/

Horizontal Collision Correlation Attack on Elliptic Curves 569

7. Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel analysis.
Cryptology ePrint Archive, Report 2002/125 (2002)

8. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel col-
lision attacks and practical collision detection. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer,
Heidelberg (2008)

9. Brier, E., Clavier, Ch., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

10. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

11. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

12. Clavier, Ch., Feix, B., Gagnerot, G., Giraud, Ch., Roussellet, M., Verneuil,
V.: ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012)

13. Clavier, Ch., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

14. Clavier, Ch., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved
collision-correlation power analysis on first order protected AES. In: Preneel, B.,
Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg
(2011)

15. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. CRC Press, Baco Raton (2005)

16. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

17. Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–
422 (2007)

18. Giraud, Ch., Verneuil, V.: Atomicity improvement for elliptic curve scalar multi-
plication. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 80–101. Springer, Heidelberg (2010)

19. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer Professional Computing Series. Springer, New York (2003)

20. ISO/IEC JTC1 SC17 WG3/TF5 for the International Civil Aviation Organization.
Supplemental Access Control for Machine Readable Travel Documents. Technical
Report (2010)

21. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
22. Koç, Ç.K., Naccache, D., Paar, C. (eds.): CHES 2001. LNCS, vol. 2162. Springer,

Heidelberg (2001)
23. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

24. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

25. Liardet, P.-Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi
form. In: Koç, Ç.K., et al. (eds.) [22], pp. 401–411

570 A. Bauer et al.

26. Longa, P.: Accelerating the scalar multiplication on elliptic curve cryptosystems
over prime fields. Master’s thesis, School of Information Technology and Engineer-
ing, University of Ottawa, Canada (2007)

27. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, Ch., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

28. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

30. Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445.
Springer, Heidelberg (2012)

31. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

32. Schramm, K., Wollinger, T., Paar, Ch.: A new class of collision attacks and its
application to des. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003)

33. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K., et al.
(eds.) [22], pp. 286–299

When Reverse-Engineering Meets Side-Channel
Analysis – Digital Lockpicking in Practice

David Oswald(B), Daehyun Strobel, Falk Schellenberg, Timo Kasper,
and Christof Paar

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Bochum, Germany
{david.oswald,daehyun.strobel,falk.schellenberg,timo.Kasper,

christof.paar}@rub.de

Abstract. In the past years, various electronic access control systems
have been found to be insecure. In consequence, attacks have emerged
that permit unauthorized access to secured objects. One of the few
remaining, allegedly secure digital locking systems—the system 3060
manufactured and marketed by SimonsVoss—is employed in numerous
objects worldwide. Following the trend to analyze the susceptibility of
real-world products towards implementation attacks, we illustrate our
approach to understand the unknown embedded system and its compo-
nents. Detailed investigations are performed in a step-by-step process,
including the analysis of the communication between transponder and
lock, reverse-engineering of the hardware, bypassing the read-out protec-
tion of a microcontroller, and reverse-engineering the extracted program
code. Piecing all parts together, the security mechanisms of the system
can be completely circumvented by means of implementation attacks.
We present an EM side-channel attack for extracting the secret system
key from a door lock. This ultimately gives access to all doors of an entire
installation. Our technique targets a proprietary function (used in combi-
nation with a DES for key derivation), probably originally implemented
as an obscurity-based countermeasure to prevent attacks.

Keywords: Access control · Symmetric key cryptosystem · Digital lock
· Wireless door openers · EM side-channel attack · Obscurity

1 Introduction

Electronic access control systems are becoming increasingly popular and are
on the way to replace conventional mechanical locks and keys in many applica-
tions. Often, the security of these systems is based on keeping the proprietary
protocols and cryptographic algorithms secret. Admittedly, although violating
Kerckhoffs’s principle, this approach often prevents both mathematical analysis
and implementation attacks, as long as the details remain undisclosed. In this
paper, we focus on the latest generation “G2” of the widespread digital locking
and access control system 3060 manufactured by SimonsVoss Technologies AG.

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 571–588, 2014.
DOI: 10.1007/978-3-662-43414-7 29, c© Springer-Verlag Berlin Heidelberg 2014

572 D. Oswald et al.

A transponder, the digital equivalent of a mechanical key, wirelessly commu-
nicates with an electronically enhanced locking cylinder that—after successful
authentication—mechanically connects the otherwise freewheeling knob to the
bolt so that the door can be opened. By the example of this system, we illustrate
which major problems have to be overcome in the real-world before successful
(mathematical and) side-channel attacks can be mounted.

SimonsVoss is the European leader in digital locking and access control sys-
tems [18] and has sold over three million transponders for more than one million
electronic locks. Despite the high price of the digital locks—compared to their
mechanical counterparts—the purchase can pay out due to the flexible admin-
istration of access permissions via a wireless link, especially in buildings with a
lot of doors and users.

1.1 Related Work

In the context of conventional mechanical locks exist well-known techniques to
duplicate individual keys, if physical access is given. Likewise, the security of
mechanical pin tumbler locks can be bypassed, e.g., by means of lockpicking
with special tools. The practical threat of these attacks is usually negligible, as
long as each key and each lock has to be treated individually. When it comes
to the security of large installations and the corresponding master keys, even
in the mechanical world the impact becomes more severe: In [3], a procedure
is described that allows the creation of a master key to open all doors in an
installation, if access to a single master-keyed lock and an associated key is
given.

For wireless, electronic access control systems, obtaining the ingredients
required for copying a transponder can be even more straightforward. They
could be, e.g., eavesdropped from the Radio Frequency (RF) interface. To coun-
teract attacks, numerous manufacturers developed and offer (often proprietary)
cryptographic solutions. Most of these have in common that they turn out to
be insecure from a cryptanalytical perspective once the secret protocols and
algorithms have been reverse-engineered. Today most security products used
for access control, such as Texas Instrument’s Digital Signature Transponder
(DST) [5], NXP’s Mifare Classic cards [7,10], Hitag 2 transponders [21], and
Legic Prime [17], have something in common: Mathematical attacks emerging
from cryptographic weaknesses enable to break their protection in minutes.

For systems with a higher level of mathematical security, several examples of
real-world side-channel attacks have demonstrated a huge attack potential: The
112-bit secret key of the Mifare DESfire MF3ICD40 smartcard (based on the
3DES cipher) can be extracted with Electro-Magnetic (EM)-based Side Channel
Analysis (SCA) [16]. Likewise, the mathematical weaknesses found in the pro-
prietary remote keyless entry system KeeLoq [1,4] are insufficient for a practical
attack. However, a side-channel attack yielding the master key of the system
allows to duplicate remote controls by one-time eavesdropping from several hun-
dred meters [8].

When Reverse-Engineering Meets Side-Channel Analysis 573

The mathematical properties of the SimonsVoss digital lock and access con-
trol system 3060 “G2” are investigated in [20]. Sophisticated mathematical
attacks, exploiting weaknesses of the proprietary obfuscation function (see Sect. 3)
and a security vulnerability of the authentication protocol, are presented. As a
consequence of the traditional cryptanalysis, transponders with a known iden-
tifier can be duplicated in seconds. The attack exploits that an internal proto-
col value is re-used as a “random number” in the next protocol run and thus
can be obtained by an adversary. However, this flaw can be easily fixed, e. g.,
by a firmware update of the door lock, rendering the most severe mathemati-
cal attacks not applicable. The manufacturer SimonsVoss is currently preparing
an according patch to protect existing installations against the cryptanalytical
attacks.

1.2 Contribution

In contrast to the existing mathematical analyses, we illustrate how to circum-
vent the security mechanisms of SimonsVoss’s system 3060 “G2” solely by means
of physical attacks. In Sect. 2 we describe our varyingly successful attempts to
bring the internals of the access control system to light and demonstrate from the
perspective of an adversary how—despite the admittedly very time-consuming
and demanding black-box analysis—a skilled engineer can finally succeed in
extracting SimonsVoss’s undisclosed secrets, detailed in Sect. 3. As the main
part of our contribution in Sect. 4 we present a side-channel attack targeting the
key derivation function running on a lock. Our non-invasive attack is able to
extract the system key with approximately 150 EM measurements and enables
access to all doors of an entire SimonsVoss installation. We finally discuss the
learned lessons for SCA in the context of obscurity.

2 Reverse-Engineering: An Obstacle Course

Using the information SimonsVoss provides publicly, it is impossible to reason
about the claimed level of security for the system 3060. Thus, in the following
section, we present the process of reverse-engineering the inner workings of the
digital locking cylinder and the corresponding transponder.

2.1 Radio Protocol

The documentation available on the Internet [19] yields only little information on
the RF interface used to open a door: The transponder communicates with the
counterpart in the door at 25 kHz at a specified maximum range of approx. 0.5 m.
To capture the messages exchanged during an authentication, we used a simple
coil made from copper wire and connected it to a USRP2 Software-Defined Radio
(SDR) [9], as shown in Fig. 1b. We eavesdropped several (successful) protocol
runs between a door and a transponder. An example of a monitored RF signal is
depicted in Fig. 1a: The parts with the lower amplitude (marked 1, 3, 5, 7, and

574 D. Oswald et al.

Fig. 1. A successful run of the 11-step authentication protocol between transponder
and door, recorded with the USRP and a connected antenna coil.

10) are sent by the transponder, while the other parts originate from the door
(marked as 2, 4, 6, 8, 9, and 11).

From studying and comparing various recorded messages, some conclusions
can be drawn: The used modulation scheme is On-Off Keying (OOK), i.e., the
carrier at 25 kHz is switched on and off according to the sequence of data bits.
The protocol starts with the transponder transmitting a synchronization pream-
ble consisting of approximately 110 one-zero cycles. The raw bits of each message
are encoded using a differential Manchester code [23], i.e., a transition during
the bit period corresponds to a logical zero and no transition to a logical one.
On the packet level, the messages follow a simple format: Data bytes following
an 8-bit header (0x7F) have no further format requirements. In contrast, the
16-bit header (0xFF, 0x7F) indicates that an integrity check value, computed
over the data bytes, has to be appended. This check value is computed by taking
the complement of the bit-wise XOR of all data bytes.

We conducted several experiments that involved replaying previously record-
ed signals using the USRP2. However, the module in the door did not accept
replayed messages and the door could not be unlocked. During further analyses
of the interchanged messages, we found that some appear to be (pseudo-)random
in each protocol run and thus that a cryptographic authentication scheme might
be implemented. However, after several weeks of analyzing the RF interface we
were convinced that some quite sophisticated scheme had been implemented by
SimonsVoss. Unfortunately, the significance of the messages remained unclear.
Thus, we decided to continue with the reverse-engineering on the hardware level.

2.2 Hardware and Circuit Boards

In order to understand the interaction between the mechanical and the electrical
parts, we disassembled a door lock in a destructive manner, cf. Fig. 2a. We
identified a magnetic pin that mechanically interlocks the bolt when voltage

When Reverse-Engineering Meets Side-Channel Analysis 575

Fig. 2. “Exploded view” of the mechanical parts of a door lock 3061 and the PCBs
contained in the door knob and a transponder 3064.

is applied to its contacts. The circuitry in the door thus controls whether the
otherwise free-wheeling door knob is mechanically connected to the door latch
and the deadbolt in order to grant access. No additional electronic circuits were
found inside the lock, thus all security functionality must be implemented on the
door’s Printed Circuit Board (PCB). We observed several installations in which
this circuitry is installed in the publicly accessible outer knob of the door. This
holds especially for “panic”-locks which can be unlocked from the inside.

The PCB depicted in Fig. 2b is located inside one of the door knobs of the
lock, that can be easily opened with a commercially available tool. The IC in the
bottom-left corner is a proprietary SimonsVoss ASIC. On the right, a Microchip
PIC16F886 microcontroller (μC) [15] is located. One connection between the
MCLR pin of the PIC and the ASIC enables the former to wake up the μC from
the power save mode. The ASIC is also connected to the μC’s OSC1/CLKIN,
hence the μC can be clocked from the ASIC. Moreover, an external EEPROM
in an SOT-8 package is connected to the μC. The plastic case of the transponder
contains the PCB depicted in Fig. 2c. A comparison with the lock shows many
identical parts, e.g., a PIC16F886 connected to an external EEPROM and the
ASIC. A push-button triggering an authentication to the door is connected to
the PIC.

The ASIC is a 16-pin IC with a custom label (“MA124D”) for which we could
find no information on the Internet. The pinout and the activity on the data lines
did not point to any distinct manufacturer, thus, we decapsulated the silicon die
of several ICs, cf. [2, p.10]. Figure 8 in Appendix B depicts a high resolution image
of the silicon die. After analyzing microscopic pictures of the chip, it turned out
that it contains a mask-configurable gate array IC with a rather limited amount
of implementable logic. Besides, the ASIC does not feature internal memories. We
figured out that the majority of the available logic cells is used (i) for a counter
that periodically wakes up the μC and (ii) for functions of the RF interface. It
became clear that the ASIC does not contain security-related functions and thus
can be ruled out as a target for further analyses: All relevant algorithms must
thus be contained in the PIC μC.

As an (almost) last resort in order to understand the “randomly” looking
protocol and find a security vulnerability in the system, we proceeded with

576 D. Oswald et al.

hypothesizing that a standard cipher (e.g., AES or DES) might be implemented
on the PIC. Assuming that some of the varying bytes in the protocol could be
input or output of a one of these ciphers, we tapped the power line of the μC
and spent some more weeks trying to recover cryptographic keys, by acquiring
power traces and performing a Correlation Power Analysis (CPA) for the guessed
ciphers, one after another. However, none of our numerous attempts turned
out to be successful. After analyzing the radio protocol, the circuit boards, the
proprietary ASIC, and trying “shot-in-the-dark” power-analysis attacks, we still
had no clue about the security features of the SimonsVoss system 3060 and were
close to giving up with the conclusion that it was “secure enough”. However, as
a last attempt, we decided to try to obtain the machine code of the PIC.

2.3 The Breakthrough: Extracting and Reverse-Engineering
the Firmware of the PIC

After connecting a PIC programmer to the μC and trying to read out its con-
tent it turned out that the read-out protection was enabled. Thus, following
the methods proposed in [24] and [13], we tried to erase the code and data
read-out protection bits: The PIC was decapsulated, and the memory cells con-
taining the protection bits were exposed to Ultraviolet-C (UV-C) light. Even
though Microchip covers the top of the respective cells of the PIC16F886 with
small metal plates as a countermeasure, applying the UV-C light at an angle (so
that it bounces off multiple structures around the floating gate) deactivated the
read-out protection. The whole process required less than 30 min. After that,
the complete content of the PIC’s program memory and its internal EEPROM
could be extracted. We performed the read-out process for the PICs of several
transponders and door locks and started to analyze their program code.

In order to disassemble and understand the extracted program code, we uti-
lized the reverse-engineering tool IDA Pro [12]. Analyzing the program code,
we were able to recover most previously unknown details of the SimonsVoss sys-
tem 3060, including the authentication protocol and the employed cryptographic
primitives, cf. Sect. 3. In addition to performing a static analysis of the program
code, we also inserted a debug routine debug dump into the assembly code and
re-programmed the PICs with our modified firmware. Given that the correct
(matching) combination of program code and internal and external EEPROM
content is written, the modified transponder or door lock operates correctly. The
inserted routine allows to dump the registers and the SRAM during the execu-
tion of the original program. To this end, we utilized an unused pin of the μC
to transfer the memory dump in a straightforward serial manner.

The debug routine cannot be directly inserted into the program code, as this
would lead to a shift of all (absolute) jump addresses and thus render the pro-
gram inoperable. To solve this problem, we had to overwrite code that was found
to be not linked to the authentication protocol with the code of debug dump.
Since the PIC16F886 uses a segmented program memory (consisting of four
banks with 2 K instruction words each), we furthermore had to place a small
piece of wrapper code at the end of each segment (thereby overwriting a few

When Reverse-Engineering Meets Side-Channel Analysis 577

unused instructions). Then, the call to debug dump was inserted as follows: A
target instruction (e.g., a movwf) is replaced by a call to the wrapper function.
The wrapper function then selects the segment in which debug dump resides
and subsequently invokes debug dump. Before outputting the dump, the value
of the STATUS register is saved in an unused memory location to preserve the
state of the actual program. Before returning, this value is restored, and the
subsequent instructions (of the wrapper) do not modify the STATUS register.
After debug dump has returned to the wrapper, the segment is reset to the origi-
nally selected value. Then, the wrapper executes the replaced instruction before
returning to the normal program flow.

With the capability to dump the memory contents, e.g., during the execution
of a successful authentication protocol run, we are able to verify the results of the
static analysis and to understand also those parts of the code that heavily depend
on external input (e.g., from received data or data stored in the external mem-
ory). Obtaining and analyzing the program code was the essential step to enable
a detailed scrutiny, including mathematical and side-channel analyses. Being
now able to understand the exchanged messages and the used cryptographic
functions, the authentication mechanism described in Sect. 3 can be attacked
in several ways, including the SCA presented in Sect. 4. Without the complete
reverse-engineering, the SCA of the—in this regard extremely vulnerable—PIC
μC would have been impossible.

3 SimonsVoss’s Proprietary Cryptography

In this section, as a mandatory prerequisite for an SCA, we summarize the rele-
vant results of reverse-engineering the code running on the PIC of the transpon-
der and the lock. To this end, we describe the key derivation mechanism, the
cryptographic primitives, and the protocol used for mutual authentication.

The authentication protocol consists of in total eleven steps that are given
in Fig. 7 in Appendix A. In the symmetric-key scheme, the transponder and the
lock prove that they know a shared long-term secret KT . On each transponder,
this individual 128-bit key KT is computed as the XOR of a 128-bit value KT,int

stored in the internal EEPROM of the μC (not accessible from the outside)
and a 128-bit value KT,ext stored in the (unprotected) external EEPROM, i.e.,
KT = KT,ext⊕KT,int. Each door within an entire SimonsVoss installation has an
identical set of four 128-bit keys KL,1, KL,2, KL,3, KL,4, here called system key.
Again, these keys are computed as the XOR of values contained in the internal
and in the external EEPROM. However, the internally stored value is identical
for all four keys, i.e., KL,j = KL,j,ext ⊕ KL,int. Note that when one of the four
KL,j has been recovered, the remaining three can be determined after reading
the respective values from the external EEPROM.

The system key is used to derive the key KT of a transponder to be authen-
ticated. After receiving the identifier IT of a transponder, the lock computes
KT on-the-fly using a key derivation function K involving the system key, pre-
viously exchanged “authentication data” D, and IT . The authentication data D

578 D. Oswald et al.

Fig. 3. One round r of the obscurity function O: The key bytes yi are constant, while
the xi

(r) and the chaining values ci
(r) are updated in each round. The first chaining

value is c0
(1) = RC(0). The two 8-byte halves x0 . . . x7 and x8 . . . x15 are processed in

an identical manner.

is a value sent by the transponder and controls certain protocol functions. D is,
however, transmitted in plain and unrelated to the cryptographic security of the
protocol. All valid transponder identifiers that can authenticate to a particular
door lock are stored unencrypted in its external EEPROM. Note that the key
derivation is always executed by the door lock, even if it does not know the
received IT .

The key derivation K consists of two building blocks: a modified DES denoted
as D and a SimonsVoss-proprietary function O which we refer to as “obscurity
function”. D (K; M) is a slightly modified DES encrypting a 64-bit plaintext M
under a 64-bit key K.

O (Y ; X) consists of eight rounds r, with 1 ≤ r ≤ 8. It takes a 16-byte
plaintext X = (x0

(1) . . . x15
(1)) and a 16-byte key Y = (y0 . . . y15) to compute

a 16-byte ciphertext x0
(9) . . . x15

(9). Figure 3 depicts the structure of one round
of O. The internal “chaining values” c1

(r) . . . c15
(r) are processed horizontally in

each round r and the last chaining value is used as the input c0
(r+1) for the

subsequent round r + 1. The round constants RC(r) are fixed byte values, i.e.,
they are identical for every execution of O, that are added in each round after
the first eight bytes have been processed. The first chaining value is initialized
with c0

(1) = RC(0). All additions and shifts are performed modulo 256.
K takes the system key and a 128-bit parameter P0 as inputs, where P0 is

derived from the first three bytes of IT and the first three bytes of the authenti-
cation data D as P0 = (IT,0, IT,1, IT,2 & 0xC7,D0,D1,D2 & 0x3F, 0, . . . , 0). The
transponder key KT is then computed by a series connection of O, D, and O as

K(KL,j ; P0) = O (
P0;D

(O (KL,j ;P0)64..127 ;O (KL,j ;P0)0..63
) ||0 . . . 0

)
.

Depending on the two Most Significant Bits (MSBs) of IT,2, one of the four
KL,j is selected as the key for the first (innermost) instance of O in K to encrypt
P0. The result is split into two 64-bit halves, the lower 64 bit being the plaintext

When Reverse-Engineering Meets Side-Channel Analysis 579

and the upper 64 bit being the key of D. The 64-bit result of D is then padded
with 64 zero bits and encrypted with O, this time using P0 as the key. The
resulting ciphertext is the transponder key KT used in the subsequent steps of
the challenge-response protocol. A lock is opened, if KT on the transponder and
KT derived by the door match. To this end, both transponder and door compute
a 64-bit response involving the challenge C and several protocol values as

R (KT ;P1, P2) = D (O (O(KT ;P1);P2)64..127 ; O (O (KT ;P1) ;P2)0..63) ,

with

P1 = (C0, . . . , C10, D6, . . . , D9, 0)
P2 = (IL,2, IT,2, IT,3,D3,D4,D5, 0, . . .)

The transponder sends the first 32-bit half R0 of the output of R, to which
the door responds with the second half R1, if R0 was correct. Obviously, the
key derivation function K is the main target for an SCA, because recovering the
system key allows to derive the key of any transponder in an installation given
its IT .

4 Extraction of the System Key with SCA

In this section, we describe the steps to perform a side-channel attack on the
Device-Under-Test (DUT), the SimonsVoss door lock 3061. As the main result,
we show that the system key can be extracted from the employed PIC μC with
a non-invasive, CPA-based attack using approximately 150 traces. Possessing
the system key, an adversary is able to create functionally identical clones of
all transponders in an entire SimonsVoss installation. Note that the SCA can in
general also be applied to a transponder, e.g., in order to duplicate it, but in a
practical setting it is highly unlikely that an adversary will take the efforts for
the attack just for cloning a single transponder.

4.1 Side-Channel Attacks

A side-channel attack is usually performed in two steps. First, the adversary has
physical access to the target device and acquires a side-channel signal (e.g., the
power consumption or the EM emanation) during the cryptographic computa-
tion. This is repeated N times with different input data Mn, yielding N time-
discrete waveforms wn (t) or traces. To recover the cryptographic key, the traces
are then statistically processed in the evaluation phase, e.g., using the Pearson
correlation coefficient when performing a CPA [6]. The adversary fixes a (small)
subset Kcand ⊆ K (e.g., the 256 possible 8-bit subkeys entering one S-box of
the AES) and considers all key candidates k ∈ Kcand. Then, for each k ∈ Kcand

and for each n ∈ {0, . . . , N − 1}, a hypothesis Vk, n on the value of some inter-
mediate (e.g., the output of one 8-bit AES S-box) is computed. Using a power
model f , this value is then mapped to hk, n = f (Vk, n) to describe the process
that causes the side-channel leakage. In practice, a Hamming weight (HW) or

580 D. Oswald et al.

Hamming distance (HD) power model is often suitable for CMOS devices like
μCs [14]. In order to detect the dependency between hk, n and wn (t), the correla-
tion coefficient ρk (t) (for each point in time t and each key candidate k ∈ Kcand)
is given as

ρk (t) =
cov (w (t) , hk)√

var (w (t)) var (hk)

with var (·) indicating the sample variance and cov (·, ·) the sample covariance
according to the standard definitions [22]. The key candidate k̂ with the max-
imum correlation k̂ = arg maxk, tρk (t) is assumed to be the correct secret key.
When for instance attacking an implementation of the AES, this process is per-
formed for each S-box separately, yielding the full 128-bit key with a much lower
complexity of 16 · 28 compared to 2128 steps for an exhaustive search. However,
for the obscurity function O used in the key derivation step (cf. Sect. 3), per-
forming a side-channel attack is more complex. Hence, in the following Sect. 4.2,
the process for extracting the system key by means of SCA is described in detail.

4.2 Theoretical Attack: Predicting Intermediate Values in O
The most promising target for an SCA to recover the system key is the first
instance of O in the key derivation. In the following, we (theoretically) derive
an attack to obtain the full 16-byte key y0 . . . y15.

Note that only the first six bytes of the input to O can be chosen by the
adversary, since the remaining bytes of P0 are set to zero. Due to the carry
propagation properties of O (which are described in detail in [20]), these input
bytes do not lead to a “full” randomization of all intermediates in the first round
of the obscurity function. A straightforward CPA of the first round targeting the
addition operation xi

(r+1) = xi
(r) + ci

(r) + yi hence only allows to recover the
first seven key bytes y0 . . . y6.

For the remaining key bytes, at least a part of the addition in the first round
is carried out with completely constant data, ruling out a CPA: For revealing
y7, one obtains already two candidates, because the Least Significant Bit (LSB)
of c7

(1) does not depend on the varying part of the input and hence remains
constant. For c8

(1), two bits are not randomized, leading to four candidates for
y8 (if c7 was known). Thus, to obtain these two bytes, two CPAs each with
four additional candidates would be necessary. To recover all key bytes using
this approach, an overall number of 21+2+3+4+5+4+5+6+7 = 237 key candidates
would have to be tested, leading to an impractical attack. Hence, we utilize
further properties of O to reduce the computational cost by extending the attack
to initially non-recoverable key bytes in subsequent rounds of O.

First, note that all bits in the (initially not fully randomized) update involv-
ing the key bytes y7 . . . y15 are fully dependent on x0

(1) . . . x5
(1) after two,

three, four, five, six, six, six, seven, and seven rounds, respectively. Thus, these
key bytes can be recovered by means of a CPA in the respective round, if all
other values preceding the update operation for a targeted key byte yi can be
simulated. Assuming that all key bytes up to yi and all c0

(r) up to the respective

When Reverse-Engineering Meets Side-Channel Analysis 581

round are known, the only unknown constant in the i-th update operation is yi.
The correct value can be determined using a CPA with 256 candidates for yi.

The remaining problem with this attack is how to determine c0
(r). For this,

note that in the second round, c0
(2) is independent of x0

(1) . . . x5
(1), i.e., a con-

stant only depending on the (constant) key bytes yi. Hence, c0
(2) can be found

using a CPA, because y0 was already determined in the first round, so x0
(2) can

be computed. The CPA for obtaining c0
(2) is performed with 256 candidates.

Having found c0
(2), all values up to the update of x7

(2) can be computed. This
update, in turn, only depends on known values (x7

(1), c7
(1), and c7

(2)) and the
unknown key byte y7. Hence, with 256 candidates, y7 can be determined with
a CPA.

In the third, fourth, and fifth round, only the MSBs of c0
(3,4,5) vary. The

remaining bits are constant and can be recovered. In addition, due to the multi-
plication by two (i.e., a binary left-shift) in the propagation of ci, the unknown
MSB only affects (the MSB of) x0

(4), x0
(5), x1

(5), x0
(6), x1

(6), and x2
(6). Sub-

sequent bytes do not depend on the unknown MSB and can be fully predicted.
Hence, it is possible to recover y8, y9, and y10 in rounds three to five. Finally, in
the sixth, seventh, and eighth round, the three MSBs of c0

(6) and the five MSBs
of c0

(7) and c0
(8) vary. Again, the constant part of c0

(6,7,8) can still be recovered.
For the varying three MSBs, only x0

(7) . . . x2
(7) are affected. This recoverable

part is sufficient to fully predict the state update for the targeted key bytes y11,
y12, and y13. Finally, for round seven, the change in the five MSBs of c0

(7) only
affects x0

(8) . . . x6
(8), posing no problem to the recovery of the remaining bytes

y14 and y15.
In short, the attack can be summarized as follows: First, one recovers the first

seven key bytes in round one. Then, the constant part of c0 at the beginning of
each round has to be found. Finally, all key bytes for which the update operation
is fully randomized in the respective round can be obtained.

4.3 Practical Results

In the following, we first describe the measurement setup used to acquire side-
channel traces for the SimonsVoss door part 3061. Using techniques and results
of the reverse-engineering described in Sect. 2, we profile the DUT and determine
the point in time where the leakage occurs in the power trace. Finally, applying
the attack described in Sect. 4.2 to real-world power traces, we recover the system
key using a limited number of power traces in a non-invasive manner.

To trigger the key derivation on the DUT, we directly connect to the data
lines between the ASIC and the PIC. The respective pins (marked with a red
rectangle in Fig. 4a) are accessible without removing the PCB from the door.
Equivalently, the communication with the DUT could also be performed sending
data over the RF interface, e.g., using the USRP2 as described in Sect. 2.1.
We primarily decided not to use the RF interface to increase the (mechanical)
stability of the measurement setup.

We non-invasively measured the power consumption during the execution of
the key derivation function for randomly chosen ID IT and authentication data

582 D. Oswald et al.

Fig. 4. Setup and EM trace for SCA of the door part

D (apart from a few bits that are required to be set by the protocol). To this
end, we placed an EM probe on the package close to the power supply pins of
the PIC, cf. Fig. 4b. Initial experiments to measure the power consumption by
inserting a shunt resistor into the battery connection yielded heavily smoothed
power traces, presumably due to several bypass/voltage stabilization capacitors
on the PCB. Moreover, the ASIC is also connected to the main battery supply,
resulting in wide-band, high-amplitude noise that could not be filtered out.

In contrast, the EM probe at the given position mainly picked up the power
consumption of the PIC. Using the described setup, we recorded 1, 000 power
traces using a Digital Storage Oscilloscope (DSO) at a sample rate of 500 MHz.
With the current measurement setup, due to delays caused by the protocol, about
10 traces can be acquired per minute. Note that the PIC runs on the internal
RC oscillator at a frequency of approximately 8 MHz. Hence, we further (dig-
itally) bandpass-filtered the recorded traces. Experimentally varying the lower
and upper frequency of the passband, we found that a passband from 6 MHz to
9 MHz yields the best result.

To determine the relevant part of the power trace belonging to the key deriva-
tion, we initially inserted a small function into the (otherwise unmodified) code
of the PIC using the method described in Sect. 2.3. This function generates a
rising edge on an unused pin of the PIC, serving as a trigger signal for profiling
purposes. Figure 5 exemplarily depicts the part of a trace belonging to the initial
execution of O in the key derivation. The eight rounds of the function can be
recognized as eight distinct “humps”. Furthermore, a unique pattern occurs at
the beginning of the relevant part (and each round). This pattern can serve for
alignment purposes: Having profiled the DUT, we removed the artificial trigger
signal and recorded traces for the original, unmodified code. We then used the
pattern to align the traces for the actual CPA attack.

Having determined the relevant part of the trace and the appropriate pre-
processing steps, we practically performed the (theoretical) attack described in
Sect. 4.2. We use the HD between a byte xi

(r) and its updated value xi
(r+1) as the

power model, i.e., h = HD
(
xi

(r), xi
(r+1)

)
(dropping the indices n for the trace

and k for the key candidate for better readability). This model was derived based
on the analysis of the assembly code implementing O and the leakage model

When Reverse-Engineering Meets Side-Channel Analysis 583

Fig. 5. Filtered EM trace during the execution of the first obscurity function in the
key derivation

Fig. 6. Correlation for key byte y7 after 100 traces and c0
(2) after 150 traces. Correct

candidate: red, dashed

for the PIC series described in [11]. Using this model, we obtained correlation
values of approximately 0.75 for the correct candidate, while all other (wrong)
candidates exhibit a lower value. This allows to unambiguously determine the
key with approximately 100 traces, as exemplarily depicted in Fig. 6a.

The CPA for c0
(r) exhibit a similar behavior, cf. for instance Fig. 6b for

c0
(2). However, for determining the partial c0

(r) in later rounds, a (slightly)
higher number of traces is needed (especially for round six and seven), since
only the LSBs of the respective intermediate values are predicted correctly. Still,
approximately 150 traces are sufficient to obtain the maximum correlation at
the correct point in time for the correct candidate.

Note that—at a higher computational cost—the CPA on c0
(6) and c0

(7) could
be left out altogether: The attack on the actual key bytes in round six and seven
could be carried out for all 25 or 23 candidates for c0

(6) or c0
(7), respectively.

This would increase the number of candidates to 25 · 28 = 213 and 23 · 28 = 211.
For this amount of candidates, a CPA can still be executed efficiently.

584 D. Oswald et al.

5 Conclusion

In this paper, we presented a practical, non-invasive side-channel attack on the
SimonsVoss 3060 system, allowing to extract the system key from a door lock
in an installation. The attack requires approximately 150 EM traces which can
be recorded in approximately 15 min using our current measurement setup. An
adversary possessing the system key ultimately gains access to all doors of the
entire installation.

Reverse-engineering the embedded code of the PIC μC enabled the profiling
and the development of a suitable prediction function for the CPA. Surpris-
ingly, the cryptanalytical weakness of the employed obscurity function (highly
linear structure, slow avalanche effect) together with its specific usage in the key
derivation (input largely constant) require a more complicated SCA compared
to attacking a standard cipher, e.g., DES or AES.

Note that the mathematical attacks of [20] can be fixed with a firmware
update that is currently being prepared by SimonsVoss. In contrast, preventing
the SCA without replacing all hardware components (locks and transponders)
is very difficult in our opinion. The program memory and the RAM of the PIC
of the lock are almost fully utilized. This rules out the implementation of coun-
termeasures, e.g., masking, requiring an (even slightly) increased program size
or RAM usage. Randomizing the timing of the algorithms appears likely to
be ineffective, because (i) clear patterns in the EM trace can be detected and
(ii) no suitable entropy source is available. Furthermore, software countermea-
sures could again be reverse-engineered and closely inspected on a program-code
level.

The most important lesson to be learned from the demonstrated attack is that
the overall security of a system depends on the weakest link in the chain: The
cryptographic algorithm used by SimonsVoss, i.e., a DES core combined with
an obscurity function that obfuscates the input and output bytes of the DES
and enlarges the key length to 128 bit, provided a reasonable level of security: As
long as the proprietary scheme remained undisclosed, neither a brute-force attack
nor mathematical cryptanalysis of the unknown cipher were a practical option.
Likewise, an analysis of the protocol and SCA attacks targeting a hypothesized
cipher were fruitless.

One single factor, however, overthrew the security of the SimonsVoss system:
a vulnerability of the PIC microcontroller that enables to bypass the code read-
out protection. Without this weakest link of the chain and the respective central
step of the analysis—reverse-engineering the program code—probably no feasible
(mathematical and implementation) attacks would have been found.

When Reverse-Engineering Meets Side-Channel Analysis 585

A SimonsVoss Authentication Protocol

Fig. 7. Protocol for the mutual authentication between a transponder and a lock

586 D. Oswald et al.

B SimonsVoss Proprietary ASIC

Fig. 8. Microscope photograph of the SimonsVoss ASIC

References

1. Aerts, W., Biham, E., De Moitié, D., De Mulder, E., Dunkelman, O., Indesteege,
S., Keller, N., Preneel, B., Vandenbosch, G., Verbauwhede, I.: A Practical Attack
on KeeLoq, pp. 1–22. Springer, New York (2010)

2. Beck, F.: Präparationstechniken Für Die Fehleranalyse an Integrierten Halbleiter-
schaltungen. VCH Verlagsgesellschaft, Weinheim (1988)

When Reverse-Engineering Meets Side-Channel Analysis 587

3. Blaze, M.: Rights amplification in master-keyed mechanical locks. IEEE Secur.
Priv. 1(2), 24–32 (2003). http://www.crypto.com/papers/mk.pdf

4. Bogdanov, A.: Attacks on the keeloq block cipher and authentication systems. In
Workshop on RFID Security (RFIDSec’08) (2007). http://rfidsec07.etsit.uma.es/
slides/papers/paper-22.pdf

5. Bono, S.C., Green, M., Stubblefield, A., Juels, A., Rubin, A.D., Szydlo, M.: Security
analysis of a cryptographically-enabled RFID device. In: Proceedings of the 14th
Conference on USENIX Security Symposium, vol. 14. USENIX Association (2005)
http://www.usenix.org/events/sec05/tech/bono/bono.pdf

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. Courtois, N.: The dark side of security by obscurity - and cloning mifare classic
rail and building passes, anywhere, anytime. In SECRYPT, pp. 331–338. INSTICC
(2009)

8. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: a complete break of the
KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 203–220. Springer, Heidelberg (2008)

9. Ettus Research. USRP N200/210 Networked Series (2012). https://www.ettus.
com/content/files/07495 Ettus N200-210 DS Flyer HR 1.pdf

10. Garcia, F.D., van Rossum, P., Verdult, R., Schreur, R.W.: Wirelessly pickpocketing
a mifare classic card. In: IEEE Symposium on Security and Privacy, pp. 3–15. IEEE
(2009)

11. Goldack, M.: Side-Channel Based Reverse Engineering for Microcontrollers.
Diploma thesis, Ruhr-University Bochum (2008). https://www.emsec.rub.de/
media/attachments/files/2012/10/da goldack.pdf

12. Hex-Rays. IDA Starter Edition. http://www.hex-rays.com/products/ida/
processors.shtml as of 24 July 2013

13. Huang, A.: Hacking the PIC 18F1320 (2005). http://www.bunniestudios.com/
blog/?page id=40 as of 24 July 2013

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007). http://www.dpabook.org

15. Microchip Technology Inc. PIC16F882/883/884/886/887 Data Sheet (2009).
http://ww1.microchip.com/downloads/en/devicedoc/41291f.pdf

16. Oswald, D., Paar, C.: Breaking mifare DESfire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

17. Plötz, H., Nohl, K.: Legic Prime: Obscurity in Depth (2009). http://events.ccc.de/
congress/2009/Fahrplan/attachments/1506 legic-slides.pdf

18. SimonsVoss Technologies AG. SimonsVoss posts record sales yet again in (2011).
http://www.simons-voss.us/Record-sales-in-2011.1112.0.html?&L=6 as of 24 July
2013

19. SimonsVoss Technologies AG. Infocenter - Downloads (2006). http://www.
simons-voss.com/Downloads.45.0.html?&L=1 as of 24 July 2013

20. Strobel, D., Driessen, B., Kasper, T., Leander, G., Oswald, D., Schellenberg, F.,
Paar, Ch.: Fuming acid and cryptanalysis: handy tools for overcoming a digital
locking and access control system. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part I. LNCS, vol. 8042, pp. 147–164. Springer, Heidelberg (2013)

http://www.crypto.com/papers/mk.pdf
http://rfidsec07.etsit.uma.es/slides/papers/paper-22.pdf
http://rfidsec07.etsit.uma.es/slides/papers/paper-22.pdf
http://www.usenix.org/events/sec05/tech/bono/bono.pdf
https://www.ettus.com/content/files/07495_Ettus_N200-210_DS_Flyer_HR_1. pdf
https://www.ettus.com/content/files/07495_Ettus_N200-210_DS_Flyer_HR_1. pdf
https://www.emsec.rub.de/media/attachments/files/2012/10/da_goldack.pdf
https://www.emsec.rub.de/media/attachments/files/2012/10/da_goldack.pdf
http://www.hex-rays.com/products/ida/processors.shtml
http://www.hex-rays.com/products/ida/processors.shtml
http://www.bunniestudios.com/blog/?page_id=40
http://www.bunniestudios.com/blog/?page_id=40
http://www.dpabook.org
http://ww1.microchip.com/downloads/en/devicedoc/41291f.pdf
http://events.ccc.de/congress/2009/Fahrplan/attachments/1506_legic-slides.pdf
http://events.ccc.de/congress/2009/Fahrplan/attachments/1506_legic-slides.pdf
http://www.simons-voss.us/Record-sales-in-2011.1112.0.html?&L=6
http://www.simons-voss.com/Downloads.45.0.html?&L=1
http://www.simons-voss.com/Downloads.45.0.html?&L=1

588 D. Oswald et al.

21. Verdult, R., Garcia, F.D., Balasch, J.: Gone in 360 seconds: Hijacking with
Hitag2. In USENIX Security Symposium, pp. 237–252. USENIX Association,
August 2012. https://www.usenix.org/system/files/conference/usenixsecurity12/
sec12-final95.pdf

22. Eric W. Weisstein. Variance. Mathworld - A Wolfram Web Resource, December
2010. http://mathworld.wolfram.com/Variance.html

23. Wikipedia. Differential Manchester Encoding – Wikipedia, The Free Encyclopedia
(2012). Accessed 12 November 2012

24. Zonenberg, A.: Microchip PIC12F683 teardown (2011). http://siliconexposed.
blogspot.de/2011/03/microchip-pic12f683-teardown.html

https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final95.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final95.pdf
http://mathworld.wolfram.com/Variance.html
http://siliconexposed.blogspot.de/2011/03/microchip-pic12f683-teardown.html
http://siliconexposed.blogspot.de/2011/03/microchip-pic12f683-teardown.html

Author Index

Aranha, Diego F. 3

Barreto, Paulo S.L.M. 3
Bauer, Aurélie 553
Benadjila, Ryad 324
Berger, Thierry P. 289
Bogdanov, Andrey 306
Bos, Joppe W. 438, 471
Bouillaguet, Charles 205, 513
Buchmann, Johannes 48, 402

Cabarcas, Daniel 402
Cheng, Chen-Mou 205
Cheon, Jung Hee 121
Chou, Tung 205
Collard, Baudoin 306
Costello, Craig 438

De Mulder, Yoni 265
Delerablée, Cécile 247
Doche, Christophe 456

Eisenbarth, Thomas 223
El Bansarkhani, Rachid 48

Geng, Huizheng 306
Göloğlu, Faruk 136
Göptert, Flurian 402
Granger, Robert 136
Güneysu, Tim 68
Guo, Jian 324

Henry, Kevin 89
Hu, Gengran 29
Hülsing, Andreas 402

Isobe, Takanori 155

Jaulmes, Eliane 553
Jean, Jérémy 533
Jing, Jiwu 421
Joux, Antoine 355

Kasper, Timo 571
Khovratovich, Dmitry 174
Kim, Taechan 121

Lepoint, Tancrède 247, 265
Liu, Zongbin 421
Lomné, Victor 324
Longa, Patrick 3

Ma, Yuan 421
McGuire, Gary 136
Minier, Marine 289
Montgomery, Peter L. 471
Morii, Masakatu 155

Naehrig, Michael 438
Naya-Plasencia, María 533
Niederhagen, Ruben 205

Ohigashi, Toshihiro 155
Oswald, David 571

Paar, Christof 571
Paillier, Pascal 247
Pan, Wuqiong 421
Pan, Yanbin 29
Paterson, Maura B. 89
Peyrin, Thomas 324, 533
Pöppelmann, Thomas 68
Preneel, Bart 185, 265
Prouff, Emmanuel 553

Rechberger, Christian 174
Ricardini, Jefferson E. 3
Rivain, Matthieu 247, 265
Roelse, Peter 265

Sasaki, Yu 493
Schellenberg, Falk 571
Shumow, Daniel 471
Sinha Roy, Sujoy 383
Song, Yong Soo 121
Stinson, Douglas R. 89
Strobel, Daehyun 571
Sutantyo, Daniel 456

Thomas, Gaël 289

Vayssière, Bastien 513
Verbauwhede, Ingrid 383

Vercauteren, Frederik 383
von Maurich, Ingo 223

Wang, Lei 493
Wang, Meiqin 306
Watanabe, Yuhei 155
Weiden, Patrick 402
Wen, Long 306

Wild, Justine 553
Wu, Hongjun 185

Yang, Bo-Yin 205
Ye, Xin 223

Zaverucha, Gregory M. 471
Zhang, Feng 29
Zumbrägel, Jens 136

590 Author Index

	Preface
	SAC 2013Conference on Selected Areas in Cryptography
	Abstract of Invited Talk
	Contents
	Invited Talk
	The Realm of the Pairings
	1 Introduction
	2 Preliminary Concepts
	2.1 Protocols and Assumptions

	3 Curves and Algorithms
	3.1 Supersingular Curves
	3.2 Generic Constructions
	3.3 Sparse Families of Curves
	3.4 Complete Families of Curves
	3.5 Holistic Families
	3.6 Efficient Algorithms

	4 Implementation Aspects
	4.1 Pairing Algorithm
	4.2 Field Arithmetic
	4.3 Curve Arithmetic
	4.4 Operation Count
	4.5 Results and Discussion

	5 Conclusion
	References

	Lattices Part I
	A Three-Level Sieve Algorithm for the Shortest Vector Problem
	1 Introduction
	2 Notations and Preliminaries
	2.1 Lattices
	2.2 The Basic Framework of Some Heuristic Sieve Algorithms

	3 A Three-Level Sieve Algorithm
	3.1 Description of the Three-Level Sieve Algorithm
	3.2 Complexity of the Algorithm

	4 Experimental Results
	4.1 Comparison with the Other Heuristic Sieve Algorithms
	4.2 On Heuristic Assumption 1

	5 Conclusion
	References

	Improvement and Efficient Implementation of a Lattice-Based Signature Scheme
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Notation

	3 Trapdoor Signatures
	3.1 Description of the Matrix Version
	3.2 The Ring Setting

	4 Improvements and Implementation Details
	4.1 Computation of the Covariance matrix
	4.2 Estimating the Parameter s
	4.3 Generation of Perturbation Vectors
	4.4 Square Root Computation
	4.5 Sampling
	4.6 Random Oracle Instantiation

	5 Experimental Results
	A Appendix
	A.1 Parameter Choices for the Matrix and Ring Variant
	A.2 Cholesky Decomposition
	A.3 Proof of Lemma 2
	A.4 Sizes

	References

	Towards Practical Lattice-Based Public-Key Encryption on Reconfigurable Hardware
	1 Introduction and Motivation
	2 The Ring-LWEEncryptCryptosystem
	2.1 Background on LWE
	2.2 Ring-LWEEncrypt
	2.3 Improving Efficiency

	3 Implementation of Ring-LWEEncrypt
	3.1 Gaussian Sampling
	3.2 Ring-LWE Processor Architecture

	4 Results and Performance
	4.1 Gaussian Sampling
	4.2 Performance of Ring-LWEEncrypt
	4.3 Constant Time Operation

	5 Conclusions and Future Work
	References

	Invited Talk
	Practical Approaches to Varying Network Size in Combinatorial Key Predistribution Schemes
	1 Introduction
	1.1 Overview of the Construction and Analysis of Combinatorial Key Predistribution Schemes
	1.2 Outline of the Paper

	2 Two Approaches to Varying the Network Size in KPSs based on Transversal Designs
	2.1 Resolvable Transversal Designs of Strength 2
	2.2 Transversal Designs of Higher Strength
	2.3 Finer Control Over the Number of Blocks

	3 Analysis and Comparisons of the New Constructions with Previous Schemes
	3.1 Asymptotic Comparisons
	3.2 Comparisons for Explicit Parameter Choices

	4 An Efficient New Approach to Calculating Connectivity and Resilience for Arbitrary Set Systems
	4.1 Formulas for Connectivity
	4.2 Formulas for Resilience
	4.3 Computing Connectivity and Resilience
	4.4 Examples

	5 Conclusion
	References

	Discrete Logarithms
	A Group Action on Zp and the Generalized DLP with Auxiliary Inputs
	1 Introduction
	2 Multiplicative Subgroups of Zn
	2.1 Representation of a Multiplicative Subgroup of Zn

	3 A Group Action on Zp
	4 Polynomial Construction
	5 Main Theorem
	6 Conclusion
	References

	Solving a 6120-bit DLP on a Desktop Computer
	1 Introduction
	2 The Algorithm
	2.1 Setup
	2.2 Factor Base and Automorphisms
	2.3 Relation Generation
	2.4 Individual Logarithms

	3 Other Essentials
	3.1 Factorisation of the Group Order
	3.2 Pohlig-Hellman and Pollard's Rho Method
	3.3 Linear Algebra
	3.4 Target Element

	4 Discrete Logarithms in F26120
	4.1 Setup
	4.2 Relation Generation
	4.3 Linear Algebra
	4.4 Individual Logarithm
	4.5 Total Running Time

	5 Complexity Considerations
	References

	Stream Ciphersand Authenticated Encryption
	How to Recover Any Byte of Plaintext on RC4
	1 Introduction
	2 Preliminary
	2.1 Long-term Bias
	2.2 Previous Works

	3 Plaintext Recovery Attack Using Known Partial Plaintext Bytes
	3.1 Attack Functions
	3.2 Attack Procedure
	3.3 Experimental Results

	4 Guess-and-Determine Plaintext Recovery Attack (GD Attack)
	4.1 FM00 Bias for GD Attack
	4.2 Plaintext Recovery Method for Recovering Any Plaintext Byte
	4.3 Experimental Results

	5 Conclusion
	References

	The LOCAL Attack: Cryptanalysis of the Authenticated Encryption Scheme ALE
	1 Introduction
	2 Authenticated Encryption Schemes and ALE
	3 Forgery Attack
	4 Turning the Forgery into a State Recovery Attack
	5 Strengthening ALE
	6 Conclusion
	References

	AEGIS: A Fast Authenticated Encryption Algorithm
	1 Introduction
	2 Operations, Variables and Functions
	2.1 Operations
	2.2 Variables and Constants
	2.3 Functions

	3 AEGIS-128
	3.1 The State Update Function of AEGIS-128
	3.2 The Initialization of AEGIS-128
	3.3 Processing the Authenticated Data
	3.4 The Encryption of AEGIS-128
	3.5 The Finalization of AEGIS-128
	3.6 The Decryption and Verification of AEGIS-128

	4 AEGIS-256
	4.1 The State Update Function of AEGIS-256
	4.2 The Initialization of AEGIS-256
	4.3 Processing the Authenticated Data
	4.4 The Encryption of AEGIS-256
	4.5 The Finalization of AEGIS-256

	5 The Security of AEGIS
	5.1 The Security of the Initialization
	5.2 The Security of the Encryption Process
	5.3 The Security of Message Authentication
	5.4 Other Attacks

	6 The Performance of AEGIS
	7 Design Rationale
	8 Conclusion
	A Test Vectors
	A.1 Test Vectors of AEGIS-128
	A.2 Test Vectors of AEGIS-256

	References

	Post–quantum (Hash-Basedand System Solving)
	Fast Exhaustive Search for Quadratic Systems in F2 on FPGAs
	1 Introduction
	2 Implementation
	2.1 Parallelization Using Accelerators
	2.2 Full Evaluation or Gray Code?
	2.3 Implementation of the Gray-Code Approach

	3 Collisions, or Overabundance of Solution Candidates
	3.1 Expected Collisions
	3.2 Choosing Parameters
	3.3 Handling of Collisions

	4 Performance Results and Concluding Remarks
	References

	Faster Hash-Based Signatures with Bounded Leakage
	1 Motivation
	2 Hash-Based Signatures
	2.1 The Merkle Signature Scheme
	2.2 Winternitz One-Time Signatures
	2.3 Private Key Generation
	2.4 Authentication Path Computation
	2.5 Security of MSS
	2.6 Bounded Leakage for MSS

	3 Optimized Authentication Path Computation
	3.1 Authentication Path Computation
	3.2 Balanced Authentication Path Computation

	4 Implementation and Results
	4.1 A Bounded Leakage Merkle Signature Engine
	4.2 Implementation Platforms
	4.3 Performance Results
	4.4 Leakage Results

	5 Conclusion
	A Appendix
	References

	White Box Crypto
	White-Box Security Notions for Symmetric Encryption Schemes
	1 Introduction
	2 Preliminaries
	3 White-Box Compilers
	3.1 Attack Models
	3.2 The Prime Goal: Unbreakability
	3.3 Security Notions Really Needed in Applications

	4 One-Wayness
	5 Incompressibility of White-Box Programs
	6 A Provably One-Way and Incompressible White-Box Compiler
	6.1 RSA Groups
	6.2 The White-Box Compiler
	6.3 Proving Incompressibility Under Chosen Plaintext Attacks

	7 Traceability of White-Box Programs
	7.1 Programs with Hidden Perturbations
	7.2 A Generic Tracing Scheme

	References

	Two Attacks on a White-Box AES Implementation
	1 Introduction
	2 Preliminaries
	2.1 AES
	2.2 Chow et al.'s White-Box AES Implementation and the BGE Attack

	3 Reducing the Work Factor of the BGE Attack
	3.1 Conclusion

	4 A New Attack Exploiting Internal Collisions
	4.1 Recovering the Si Functions
	4.2 Recovering the Secret Key
	4.3 Attack Complexity

	5 Karroumi's White-Box AES Implementation
	5.1 Insecurity

	6 Conclusion
	References

	Block Ciphers
	Extended Generalized Feistel Networks Using Matrix Representation
	1 Matrix Representation of Feistel Networks
	1.1 Definitions and Notations
	1.2 Diffusion Delay
	1.3 Matrix Representation of Feistel Networks
	1.4 Matrix Equivalences
	1.5 Exhaustive Search of Feistel Networks

	2 New Feistel Network Proposals
	2.1 Extended Generalized Feistel Networks
	2.2 An Efficient Example

	3 Security Analysis of Our Proposed Feistel Scheme
	3.1 Pseudorandomness
	3.2 Evaluation of Security Against Classical Attacks

	4 Conclusion
	References

	Zero-Correlation Linear Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and CLEFIA
	1 Introduction
	2 Preliminaries
	2.1 Basics of Zero-Correlation Linear Cryptanalysis
	2.2 Zero-Correlation Linear Cryptanalysis with Multiple Linear Approximations
	2.3 Multidimensional Zero-Correlation Linear Cryptanalysis

	3 Fast Fourier Transform for Zero Correlation
	4 Zero-Correlation Cryptanalysis of Camellia with FFT
	4.1 Zero-Correlation Linear Approximations for 7-Round Camellia
	4.2 Key Recovery for 11-Round Camellia-128
	4.3 Key Recovery for 12-Round Camellia-192

	5 Multidimensional Zero-Correlation Cryptanalysis of CLEFIA
	5.1 Zero-Correlation Linear Approximations of 9-Round CLEFIA
	5.2 Multidimensional Zero-Correlation Cryptanalysis of 14-Round CLEFIA-192 and 15-Round CLEFIA-256
	5.3 Key Recovery for 14-Round CLEFIA-192
	5.4 Key Recovery for 15-Round CLEFIA-256

	6 Conclusion
	References

	Implementing Lightweight Block Ciphers on x86 Architectures
	1 Introduction
	2 Table-Based Implementations
	2.1 Core Ideas
	2.2 LED
	2.3 PRESENT
	2.4 Piccolo

	3 Implementations Using vperm Technique
	3.1 Introducing the vperm Technique
	3.2 Core Ideas for vperm Applied to Lightweight Block Ciphers
	3.3 LED
	3.4 PRESENT
	3.5 Piccolo

	4 Bitslice Implementations
	4.1 The Packing/unpacking
	4.2 The Encryption
	4.3 The Key Schedule
	4.4 Discussions

	5 Analyzing the Performance
	5.1 Framework for Performance Evaluation
	5.2 The Use Cases

	6 Results and Discussions
	6.1 Implementation Results
	6.2 Comparing the implementations types and the ciphers
	6.3 Future Implementations

	A LED, PRESENT and Piccolo
	A.1 LED
	A.2 PRESENT
	A.3 Piccolo

	B Results Tables
	References

	Invited Talk
	A New Index Calculus Algorithm with Complexity L(1/4+o(1)) in Small Characteristic
	1 Introduction
	2 A Reminder of Discrete Logarithm Algorithms in Small Characteristic
	2.1 Coppersmith's Algorithm
	2.2 Function Field Sieve

	3 New Algorithm: Basic Ideas
	4 Description of the New Algorithm
	4.1 Choosing the Parameters
	4.2 Logarithms of Linear Polynomials
	4.3 Extending the Basis to Degree 2 Polynomials

	5 New Algorithm: Descent Phase
	5.1 Practical Preliminary Step
	5.2 Classical Descent Method
	5.3 Bilinear System Based Descent

	6 Complexity Analysis
	6.1 Individual Logarithms

	7 Remarks on the Special Case of Fpk, p and k Prime
	8 A Couple of Experiments on Kummer Extensions in Characteristic 2
	8.1 A Kummer Extension F2562255
	8.2 A Twisted Kummer Extension F2563257

	A Alternative Polynomials
	A.1 Equivalence of Using the Alternative Polynomials

	B Evidence for the Existence of the h0 and h1 Polynomials
	References

	Lattices Part II
	High Precision Discrete Gaussian Sampling on FPGAs
	1 Introduction
	2 Background
	2.1 Discrete Gaussian Distribution
	2.2 Tail Bound of the Discrete Gaussian Distribution
	2.3 Precision Bound of the Discrete Gaussian Distribution
	2.4 Sampling Methods and the Knuth-Yao Algorithm

	3 Efficient Implementation of the Knuth-Yao Algorithm
	3.1 Parameter Sets for the Discrete Gaussian Sampler
	3.2 Construction of the DDG Tree During Sampling
	3.3 Storing the Probability Matrix Efficiently

	4 Hardware Architecture
	5 Experimental Results
	6 Conclusion
	References

	Discrete Ziggurat: A Time-Memory Trade-Off for Sampling from a Gaussian Distribution over the Integers
	1 Introduction
	2 The Discrete Ziggurat Algorithm
	2.1 Setting
	2.2 Intuition
	2.3 Adaption to the Discrete Case
	2.4 Implementation
	2.5 Further Improvement

	3 Quality of Our Sampler
	3.1 Statistical Distance Between Sampled and Gaussian Distribution
	3.2 Parameter Selection

	4 Experiments and Results
	4.1 Environment and Setup
	4.2 Results

	A Appendix
	A.1 Pseudocode for Discrete Ziggurat
	A.2 Additional Figures Regarding Results

	References

	Elliptic Curves, Pairings and RSA
	A High-Speed Elliptic Curve Cryptographic Processor for Generic Curves over GF(p)
	1 Introduction
	2 Related Work
	2.1 High-Speed ECC Implementations over GF(p)
	2.2 High-Radix Montgomery Multiplication

	3 Processing Method
	3.1 Pipelined Montgomery Algorithm
	3.2 DSP Blocks in FPGAs
	3.3 Processing Method for Pipelined Implementation

	4 Proposed Architecture
	4.1 Montgomery Multiplier
	4.2 ECC Processor Architecture

	5 Implementation and Comparison
	5.1 Hardware Implementation
	5.2 Performance Comparison and Discussion

	6 Conclusion and Future Work
	A Rescheduling of Point Addition and Doubling in Jacobian Projective Coordinates
	References

	Exponentiating in Pairing Groups
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Families of Pairing-Friendly Curves with Sextic Twists
	2.2 The GLV and GLS Algorithms

	3 Strategies for GLV in G1 and GLS in G2
	3.1 2-GLV on G1
	3.2 4-GLS on G2 for BN and BLS Curves with k=12
	3.3 6-GLS on G2 for KSS Curves with k=18
	3.4 8-GLS on G2 for BLS Curves k=24

	4 Alternate Curve Models for Exponentiations in Groups G1 and G2
	4.1 Three Non-Weierstrass Models
	4.2 Applicability of Alternative Curve Models for k{12,18,24}
	4.3 Translating Endomorphisms to the Non-Weierstrass Models
	4.4 Curve Choices for Pairings at the 128-, 192- and 256-bit Security Levels

	5 Exponentiations in GT
	6 Results
	References

	Faster Repeated Doublings on Binary Elliptic Curves
	1 Introduction
	2 State of the Art
	2.1 Affine and López--Dahab Coordinates
	2.2 Decompression Techniques in LD Coordinates
	2.3 Classical Scalar Multiplication Techniques
	2.4 Fixed Point Scalar Multiplication Using Precomputations
	2.5 Montgomery's Method

	3 Applications of x-doublings to Scalar Multiplication
	3.1 Double Scalar Multiplication and x-Doublings
	3.2 Trading Off More Doublings for x-Doublings
	3.3 Trading Off Even More Doublings for x-Doublings
	3.4 Generic Protocol Setup Compatible with x-doublings

	4 Affine Precomputations with Sole Inversion in Char 2
	5 Tests and Results
	6 Conclusion and Future Work
	References

	Montgomery Multiplication Using Vector Instructions
	1 Introduction
	2 Preliminaries
	2.1 SIMD Instruction Set Extensions
	2.2 Montgomery Arithmetic
	2.3 Related Work

	3 Montgomery Multiplication Using SIMD Extensions
	3.1 Expected Performance

	4 Implementation Results
	4.1 Comparison to Previous Work
	4.2 Engineering Challenges

	5 Conclusions and Future Work
	References

	Hash Functions and MACs
	Improved Single-Key Distinguisher on HMAC-MD5 and Key Recovery Attacks on Sandwich-MAC-MD5
	1 Introduction
	2 Preliminaries
	2.1 HMAC
	2.2 Sandwich-MAC
	2.3 MD5 Specification and Free-Start Collision Attack on MD5

	3 Improved Single-Key Attacks on HMAC-MD5
	3.1 Previous Distinguishing-H Attack on HMAC-MD5
	3.2 Improved Attacks on HMAC-MD5

	4 Key Recovery Attacks on Sandwich-MAC-MD5
	4.1 Attacks on Sandwich-MAC-MD5 Basic
	4.2 Attacks on Sandwich-MAC-MD5 Extended B

	5 Discussion About HMAC and Sandwich-MAC
	6 Applications to MD5-MAC
	7 Concluding Remarks
	A Testing Conditional Key-Dependent Distributions
	References

	Provable Second Preimage Resistance Revisited
	1 Introduction
	2 Definitions
	3 Abstract Narrow-Pipe Modes of Operations
	3.1 Collision-Resistance Preserving Modes of Operation
	3.2 Some Particular Modes of Operations

	4 How to Make Your Mode of Operation Resistant Against Second Preimage Attacks?
	4.1 Resistance Against Generic Attacks
	4.2 Resistance Against All Attacks

	5 Unavoidable Security Loss in Black-Box Reduction
	5.1 How Do Reductions Use the Adversary?

	References

	Multiple Limited-Birthday Distinguishers and Applications
	1 Introduction
	2 AES-like Permutations
	3 Multiple Limited-Birthday Distinguisher
	3.1 Structural Distinguishers
	3.2 Limited-Birthday
	3.3 Multiple Limited-Birthday and Generic Complexity

	4 Truncated Characteristic with Relaxed Conditions
	4.1 Relaxed 9-round Distinguisher for AES-like Permutation
	4.2 Comparison with Ideal Case

	5 Applications
	5.1 AES
	5.2 Whirlpool

	6 Conclusion
	A Other Results
	References

	Side-Channel Attacks
	Horizontal Collision Correlation Attack on Elliptic Curves
	1 Introduction
	2 Preliminaries
	2.1 Notations and Basics on Side-Channel Attacks
	2.2 Background on Elliptic Curves
	2.3 Points Operations in Presence of SCA

	3 Horizontal Collision Correlation Attack on ECC
	3.1 Collision Power Analysis in the Horizontal Setting
	3.2 Attacks on ECC Implementations: Core Idea
	3.3 Distinguishing Common Operands in Multiplications
	3.4 Study of the Attack Soundness

	4 Experiments
	References

	When Reverse-Engineering Meets Side-Channel Analysis -- Digital Lockpicking in Practice
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Reverse-Engineering: An Obstacle Course
	2.1 Radio Protocol
	2.2 Hardware and Circuit Boards
	2.3 The Breakthrough: Extracting and Reverse-Engineering the Firmware of the PIC

	3 SimonsVoss's Proprietary Cryptography
	4 Extraction of the System Key with SCA
	4.1 Side-Channel Attacks
	4.2 Theoretical Attack: Predicting Intermediate Values in O
	4.3 Practical Results

	5 Conclusion
	A SimonsVoss Authentication Protocol
	B SimonsVoss Proprietary ASIC
	References

	Author Index

