
Eva Kühn
Rosario Pugliese (Eds.)

 123

LN
CS

 8
45

9

16th IFIP WG 6.1 International Conference, COORDINATION 2014
Held as Part of the 9th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2014
Berlin, Germany, June 3–5, 2014, Proceedings

Coordination Models
and Languages

Lecture Notes in Computer Science 8459
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Eva Kühn Rosario Pugliese (Eds.)

Coordination Models
and Languages
16th IFIP WG 6.1 International Conference,
COORDINATION 2014
Held as Part of the 9th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2014
Berlin, Germany, June 3-5, 2014
Proceedings

13

Volume Editors

Eva Kühn
Vienna University of Technology
Institute of Computer Languages
Argentinierstr. 8, 1040 Vienna, Austria
E-mail: eva.kuehn@tuwien.ac.at

Rosario Pugliese
University of Florence
Dept. of Statistics, Informatics, Applications
Viale G.B. Morgagni, 65, 50134 Florence, Italy
E-mail: rosario.pugliese@unifi.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-662-43375-1 e-ISBN 978-3-662-43376-8
DOI 10.1007/978-3-662-43376-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014938482

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© International Federation for Information Processing 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

In 2014, the 9th International Federated Conference on Distributed Comput-
ing Techniques (DisCoTec) took place in Berlin, Germany, during June 3–5. It
was hosted and organized by the Technische Universität Berlin. The DisCoTec
series, one of the major events sponsored by the International Federation for
Information Processing (IFIP), included three conferences:

– COORDINATION 2014, the 16th IFIP WG 6.1 International Conference on
Coordination Models and Languages

– DAIS 2014, the 14th IFIP WG 6.1 International Conference on
Distributed Applications and Interoperable Systems

– FORTE 2014, the 34th IFIP WG 6.1 International Conference on
Formal Techniques for Distributed Objects, Components and Systems

Together, these conferences cover the complete spectrum of distributed com-
puting subjects ranging from theoretical foundations over formal specification
techniques to systems research issues.

Each day of the federated event began with a plenary speaker nominated by
one of the conferences. The three invited speakers were:

– Frank Leymann (University of Stuttgart, Germany)
– Maarten van Steen (VU University Amsterdam, The Netherlands)
– Joachim Parrow (Uppsala University, Sweden)

There were also three satellite events, taking place during June 6–7:

1. The 5th International Workshop on Interactions Between Computer Science
and Biology (CS2BIO) with keynote lectures by Marco Pettini (Université
de la Mediterranée, France) and Vincent Danos (University of Edinburgh,
UK) and a tutorial by Jeffrey Johnson (Open University, UK)

2. The 7th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Kim Larsen (Aalborg University, Denmark) and Pavol
Cerny (University of Colorado at Boulder, USA)

3. The First International Workshop on Meta Models for Process Languages
(MeMo) with keynote lectures by Joachim Parrow (Uppsala University, Swe-
den) and Marino Miculan (Università degli Studi di Udine, Italy)

This program was an interesting and stimulating event for the participants.
Sincere thanks go the chairs and members of the Program Committees of the in-
volved conferences and workshops for their highly appreciated effort. Moreover,
organizing DisCoTec 2014 was only possible thanks to the dedicated work of the
Organizing Committee from TU Berlin, including Margit Russ, Kirstin Peters

VI Foreword

(also publicity and workshop chair), and ChristophWagner. Finally, many thanks
go to IFIP WG 6.1 for providing the umbrella for this event, to EATCS and TU
Berlin for their support and sponsorship, and to EasyChair for providing the
refereeing infrastructure.

June 2014 Uwe Nestmann

Preface

This volume contains the papers presented at COORDINATION 2014: the 16th
IFIP WG 6.1 International Conference on Coordination Models and Languages
held during June 3–4, 2014, in Berlin. The conference is the premier forum for
publishing research results and experience reports on software technologies for
collaboration and coordination in concurrent, distributed, and complex systems.
Its distinctive feature is the emphasis on high-level abstractions that capture
interaction patterns manifest at all levels of the software architecture and ex-
tending into the realm of the end-user domain. COORDINATION 2014 called
for high-quality contributions on the usage, study, design, and implementation
of languages, models, and techniques for coordination in distributed, concurrent,
pervasive, and multicore software systems.

The Program Committee (PC) of COORDINATION 2014 consisted of 26
top researchers from 12 different countries. We received 37 abstracts that ma-
terialized in a total of 31 submissions out of which the PC selected 12 papers
for inclusion in the program. All submissions were reviewed by three to four
independent referees; papers were selected based on their quality, originality,
contribution, clarity of presentation, and relevance to the conference topics. The
review process included an in-depth discussion phase, during which the merits
of all papers were discussed by the PC. The process culminated in a shepherd-
ing phase whereby some of the authors received active guidance by one member
of the PC in order to produce a high-quality final version. The selected papers
constituted a program covering a varied range of the conference topics: program-
ming abstractions and languages, coordination models and paradigms, applied
software engineering principles, specification and verification, foundations and
types, distributed middleware architectures, multicore programming, collabo-
rative adaptive systems, and coordination related use cases. The program was
further enhanced by an invited talk by Frank Leymann from the University of
Stuttgart (Germany) entitled “Orchestrating Management Behavior of Cloud
Applications.”

The success of COORDINATION 2014 was due to the dedication of many
people. We thank the authors for submitting high-quality papers and the PC
and their sub-reviewers for their careful reviews and lively discussions during
the final selection process. We thank the providers of the EasyChair conference
management system, which was used to run the review process and to facilitate
the preparation of the proceedings. Finally, we thank the Distributed Computing
Techniques Organizing Committee from TU Berlin, led by Uwe Nestmann, for
its contribution in making the logistical aspects of COORDINATION 2014 a
success.

June 2014 Eva Kühn
Rosario Pugliese

Organization

Steering Committee

Farhad Arbab (Chair) CWI and Leiden University, The Netherlands
Gul Agha University of Illinois at Urbana Champaign,

USA
Dave Clarke Uppsala University, Sweden
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT - Institute for Advanced Studies Lucca,

Italy
Jean-Marie Jacquet University of Namur, Belgium
Christine Julien University of Texas at Austin, USA
Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI International, USA
Vasco T. Vasconcelos University of Lisbon, Portugal
Gianluigi Zavattaro University of Bologna, Italy

Program Committee

Marco Aldinucci University of Turin, Italy
Farhad Arbab CWI and Leiden University, The Netherlands
Luis Caires Universidade Nova de Lisboa, Portugal
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT - Institute for Advanced Studies, Italy
Schahram Dustdar Vienna University of Technology, Austria
Gianluigi Ferrari University of Pisa, Italy
José Luiz Fiadeiro Royal Holloway, University of London, UK
Valérie Issarny Inria, France
Jean-Marie Jacquet University of Namur, Belgium
Christine Julien University of Texas at Austin, USA
Rania Khalaf IBM T.J. Watson Research Center, USA
Eva Kühn (Chair) Vienna University of Technology, Austria
Michele Loreti University of Florence, Italy
Hanne Riis Nielson Technical University of Denmark, Denmark
Andrea Omicini University of Bologna, Italy
Kirstin Peters Technische Universität Berlin, Germany
Paolo Petta Austrian Research Institute for Artificial

Intelligence, Austria
Anna Philippou University of Cyprus, Cyprus
Rosario Pugliese (Chair) University of Florence, Italy

X Organization

Marjan Sirjani Reykjavik University, Iceland
Carolyn Talcott SRI International, USA
Emilio Tuosto University of Leicester, UK
Herbert Wiklicky Imperial College London, UK
Martin Wirsing Ludwig-Maximilians-Universität München,

Germany
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewers

Basile, Davide
Bernardo, Marco
Bettini, Lorenzo
Boix, Elisa Gonzalez
Bono, Viviana
Canciani, Andrea
Cardozo, Nicolas
Cejka, Stephan
Ciancia, Vincenzo
Craß, Stefan
Dalla Preda, Mila
Damiani, Ferruccio
Dardha, Ornela
Dinges, Peter
Ferreira, Carla
Galletta, Letterio
Garrett, Deon
Giallorenzo, Saverio
Jafari, Ali
Jaghoori, Mohammad Mahdi
Kilpatrick, Peter

Kouzapas, Dimitrios
Lange, Julien
Lienhardt, Michael
Marek, Alexander
Mariani, Stefano
Melgratti, Hernan
Mezzetti, Gianluca
Nigam, Vivek
Oostvogels, Nathalie
Peretti Pezzi, Guilherme
Petrocchi, Marinella
Philips, Eline
Ravara, Antonio
Sabouri, Hamideh
Sammartino, Matteo
Scholliers, Christophe
Schwayer, Matthias
Seco, João Costa
Tiezzi, Francesco
Tinacci, Marco
Vandin, Andrea

Invited Talk

Orchestrating Management Behavior

of Cloud Applications

Frank Leymann

Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany

Leymann@iaas.uni-stuttgart.de

Ensuring quality of services of applications in the cloud is a major concern. Ap-
plications that should benefit from the desirable properties of the cloud must
follow certain architectural principles. The most fundamental of such principles
have been described as patterns that we will motivate. In particular, the IDEAL
principle recommending Isolated state, Distribution, Elasticity, Automated man-
agement, and Loose coupling for a cloud application is described.

Just turning an application into a virtual image and running it in the cloud
does not make appropriate use of cloud properties. For example, scalability can-
not be ensured without introducing redundant componentry that often comes
with unexpected high cost and consistency problems. Thus, an application that
should adequately run in the cloud must consist of a collection of more fine-
grained components. To allow the cloud environment to perform management
actions on it, specific relations between the former components must be defined.
Together, the topology of the application must be specified.

The topology of a (not too complex) application allows for automatically
deriving the basic management behavior of the application, e.g., how it is pro-
visioned and decommissioned. More complex management behavior requires the
specification of plans, i.e., workflows that define how to perform management
actions in terms of the topology of the to-be-managed application. Pros and cons
of the former (declarative) approach and the latter (imperative) approach are
discussed.

A language (called TOSCA - Topology and Orchestration Specification for
Cloud Applications) to define the topology and associated plans of an application
has been standardized. This language is sketched. An architecture of an environ-
ment supporting this language is outlined and an open source implementation
of a such an environment (called OpenTOSCA) is briefly introduced.

Table of Contents

Encoding Synchronous Interactions Using Labelled Petri Nets 1
Paolo Baldan, Filippo Bonchi, Fabio Gadducci, and
Giacoma V. Monreale

Verifiable Decisions in Autonomous Concurrent Systems 17
Lenz Belzner

Coordination of ECA Rules by Verification and Control 33
Julio Cano, Gwenaël Delaval, and Eric Rutten

Progress as Compositional Lock-Freedom . 49
Marco Carbone, Ornela Dardha, and Fabrizio Montesi

Automata-Based Optimization of Interaction Protocols for Scalable
Multicore Platforms . 65

Sung-Shik T.Q. Jongmans, Sean Halle, and Farhad Arbab

LINC: A Compact Yet Powerful Coordination Environment 83
Maxime Louvel and François Pacull

Safe and Efficient Data Sharing for Message-Passing Concurrency 99
Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer

Affine Sessions . 115
Dimitris Mostrous and Vasco Thudichum Vasconcelos

Multiparty Session Actors . 131
Rumyana Neykova and Nobuko Yoshida

Typing Liveness in Multiparty Communicating Systems 147
Luca Padovani, Vasco Thudichum Vasconcelos, and
Hugo Torres Vieira

A Calculus of Self-stabilising Computational Fields 163
Mirko Viroli and Ferruccio Damiani

The Stochastic Quality Calculus . 179
Kebin Zeng, Flemming Nielson, and Hanne Riis Nielson

Author Index . 195

Encoding Synchronous Interactions

Using Labelled Petri Nets�

Paolo Baldan1, Filippo Bonchi2, Fabio Gadducci3, and Giacoma V. Monreale3

1 Dipartimento di Matematica, Università di Padova, Padova, Italy
2 LIP, ENS Lyon, Université de Lyon (UMR CNRS - INRIA 5668), Lyon, France

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Abstract. We present an encoding of (bound) CSP processes with repli-
cation into Petri nets with labelled transitions. Through the encoding,
the firing semantics of Petri nets models the standard operational se-
mantics of CSP processes, which is both preserved and reflected. This
correspondence allows for describing by net semantics the standard CSP
observational equivalences. Since the encoding is modular with respect to
process syntax, the paper puts on a firm ground the technology transfer
between the two formalisms, e.g. recasting into the CSP framework well-
established results like decidability of coverability for nets. This work
complements previous results concerning the encoding of asynchronous
interactions, thus witnessing the expressiveness of (open) labelled nets
in modelling process calculi with alternative communication patterns.

Keywords: Communicating sequential processes (CSP), labelled Petri
nets, net encoding of processes, synchronous interaction.

1 Introduction

Petri nets [17] are among the most widely used formalisms for the visual specifi-
cation of concurrent and distributed systems. Their appeal lies in the ease of use
as well as in the expressiveness. Indeed, their graphical presentation allows for a
simple description of possibly complex interaction patterns, in such a way that
both synchronous and asynchronous features are plainly represented. Also, in a
Petri net the behavioural relations between computational steps, such as causal
dependencies and nondeterministic choices, are explicit and easier to analyse.

These characteristics also favoured Petri nets as the target for the encoding of
many textual formalisms, such as different process calculi. This is partly due to
the availability of many tools and techniques for the analysis of net behavioural
properties, like coverability, boundedness, and deadlock-freedom, so that any
suitable encoding might offer the possibility of a fruitful technology transfer.
However, it is the same simple and immediate graphical presentation of nets
that attracted the attention of researchers, in the hope of clarifying the nature
of concurrency and distributivity in the formalism at hand. Indeed, there has

� Supported by EU FP7-ICT IP ASCENS, MIUR PRIN CINA and ANR PACE.

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 1–16, 2014.
c© IFIP International Federation for Information Processing 2014

2 P. Baldan et al.

been since a long time an interest for the encoding of synchronous calculi such
as Milner’s CCS. Intuitively, the handshaking communication pattern of CCS
and π-calculus can be implemented via nets in such a way that the operational
behaviour of a process is (at least) preserved by the encoding [10,7].

In a recent work we offered a further witness to the flexibility of nets by
providing an encoding for asynchronous CCS [1]. More precisely, our encoding
preserves the operational behaviour of processes as well as asynchronous bisim-
ilarity, captured by standard net bisimilarity. In order to model the intrinsic
reactivity of CCS processes, the encoding resorted to open Petri nets [2], i.e.,
nets extended with the possibility of interacting with the environment through
an interface. Specifically, the interface consists of a set of places designated as
open, where the environment can create and consume tokens. Interfaces were
also essential to define composition operations on nets, thus allowing for a mod-
ular definition of the encoding. The need of considering reactive extensions of
Petri nets in order to have a modular model, with compositional semantics,
have been felt by several authors, leading to the Box Calculus [3], the Petri net
components [13] and other open net models [15,4], just to mention a few.

This paper aims at further extending our results by moving back to syn-
chronous processes, yet taking into account the broadcast communication pat-
tern, as provided by Hoare’s CSP [12]. More precisely, we identify an expressive
fragment of CSP which can be mapped modularly into Petri nets via an encod-
ing that is preserving as well as reflecting the operational semantics. Since most
of CSP semantics are based on traces, the encoding is guaranteed to preserve
and reflect also the common observational equivalences for the calculus. This
allows some immediate technology transfer from nets to processes. For instance,
coverability, the maximal degree of parallelism of a process (given by the number
of its sub-processes occurring in parallel) and convergence (i.e., the possibility
of termination) can be proved to be decidable in the CSP setting. Some of these
decidability results seem to be the first of their kind for (bound) CSP processes.

The idea of mapping CSP processes into nets arose early on, see among oth-
ers [9,16,6]. Conceptually, all these encodings are syntax-driven: each process is
split into a family of sequential components, which represent the places of a net,
and a (possibly concurrent) semantics for the calculus is thus obtained. As of
more recent advances, we are aware of [14]. There, an on-the-fly algorithm is
devised for building (and optimising) a net from a CSP process by exploiting its
transition system. In our encoding we followed the spirit of the former proposals,
striving for modularity: the encoding itself has a denotational flavor, mapping
each operator of the calculus into an operator on nets, and as a consequence
preservation and reflection of CSP standard operational semantics are easily
stated and proved. We believe that such clarity is due to the identification of the
right CSP fragment. Indeed, it is noteworthy that in all the papers mentioned
above the recursion of nested parallel processes is not allowed “because the set
of places of the generated Petri net would be infinite” [14, p.111]. Our paper
lifts such a constraint: our chosen CSP fragment is not finite state, but rather it
bounds the number of parallel processes synchronising on the same channel.

Encoding Synchronous Interactions Using Labelled Petri Nets 3

P ::= STOP inactive process

⊕n
i=1ai.Pi guarded alternative

P +Q nondeterministic choice

P |X Q parallel composition

P\X hiding

!a.P replication

Fig. 1. CSP processes

The paper is structured as follows. Section 2 recalls the syntax and the opera-
tional semantics of CSP, while Section 3 introduces labelled nets with interfaces,
as well as a suitable algebra for them. The core of the paper is Section 4, which
presents the modular encoding from (bound) CSP processes into labelled nets. In
Section 5 the encoding is proved to preserve and reflect the operational seman-
tics, and hence the standard observational equivalences of the calculus (such as
trace equivalence). The encoding is exploited in Section 6, which provides some
examples of its effects on the technology transfer between the two formalisms.
Finally, Section 7 discusses some expressiveness issues for the considered mod-
els, taking advantage from the encoding, and it draws some conclusions while
providing a few pointers to future works.

2 Communicating Sequential Processes

In this section we briefly review the calculus of Communicating Sequential Pro-
cesses (CSP) [12], presenting its syntax and operational semantics. We actually
focus on a fragment of the calculus, which will be used throughout the paper.

Definition 1 (CSP processes). Let Σ be the alphabet of communication
events, ranged over by a, b, c . . . The set of CSP processes P, ranged over by
P,Q,R, . . ., is generated by the grammar in Fig. 1, where X ⊆ Σ is a finite set
of events.

The process STOP cannot perform any event, i.e., it is a deadlocked process.
The guarded alternative ⊕n

i=1ai.Pi can perform any event ai, for i ∈ {1, . . . , n},
and then behave as Pi. For the sake of simplicity, we assume that ∀j, ∀z. aj �= az.
The nondeterministic choice P +Q can behave as either P or Q. The operators
⊕ and + differs for the fact that for ⊕ the choice is external, i.e., it is the
environment that determines the branch to be chosen, while for + the choice
is internal to the process. The process P |X Q is the parallel composition of P
and Q, where the events in X are forced to synchronise, while those in Σ \X
can be performed by P and Q independently. The hiding P\X behaves like P
except for the fact that the events in X are hidden to the environment, that is,
they become internal to the process. Finally, the replication !a.P can indefinitely
perform an event a and spawn a parallel copy of P .

4 P. Baldan et al.

(Alt)
j ∈ {1, . . . , n}

⊕n
i=1ai.Pi

aj−→ Pj

(Cho1)
P +Q

τ−→ P
(Cho2)

P +Q
τ−→ Q

(Syn1)
P

μ−→ P ′ μ �∈ X

P |X Q
μ−→ P ′ |X Q

(Syn2)
Q

μ−→ Q′ μ �∈ X

P |X Q
μ−→ P |X Q′

(Syn3)
P

a−→ P ′ Q
a−→ Q′ a ∈ X

P |X Q
a−→ P ′ |X Q′

(Hid1)
P

μ−→ P ′ μ �∈ X

P\X μ−→ P ′\X (Hid2)
P

a−→ P ′ a ∈ X
P\X τ−→ P ′\X

(Repl)
!a.P

a−→ !a.P |∅ P

Fig. 2. CSP operational semantics

The guarded alternative is a specialisation of the external choice operator.
This restriction does not represent a serious limitation since, as explained in [18],
it is rare to find a usage of the external choice which cannot be expressed as a
guarded alternative. More interestingly, we consider guarded replication in place
of recursion. This will be important for ensuring the existence of a finite Petri
net encoding for the class of CSP processes considered (see Section 5).

The behaviour of CSP processes, intuitively described above, is formalised in
terms of a set of syntax directed rules which axiomatise a transition relation.

Definition 2 (operational semantics of CSP). The labelled transition sys-
tem (LTS) for CSP processes is the relation →⊆ P × (Σ � {τ})×P inductively

defined by the rules in Fig. 2, where we write P
μ−→ P ′ for 〈P, μ, P ′〉 ∈→.

We write P
s−→ ∗ P ′ for a sequence P = P1

μ1−→ P2
μ2−→ . . .

μn−1−−−→ P ′ with

s = μ1μ2 . . . μn−1. Moreover, we write P
s
=⇒ P ′ when P

s′−→∗ P ′ for some s′ such
that s is obtained from s′ by removing the τ ’s. We write simply P −→ P ′ and
P −→∗ P ′ instead of P

μ−→ P ′ and P
s−→∗ P ′, respectively, whenever we are not

interested in identifying the labels.

Definition 3 (bound processes). A CSP process P ∈ P is called bound if
parallel compositions |X occur under the scope of replications only with X = ∅.

In a bound process only pure parallel composition, without synchronisation,
is allowed under the scope of replications. This avoids the possibility of hav-
ing an unbounded number of parallel components synchronising on the same
event. Additionally, a synchronisation under a replication would possibly lead
to the generation of an unbounded number of conceptually different names as in

Encoding Synchronous Interactions Using Labelled Petri Nets 5

!a.(b.b.STOP |{b} b.STOP). As discussed in Section 4, this fact will be essential
for defining a finite encoding of bound CSP processes into Petri nets.

Relying on the LTS defined above several observational semantics can be
defined over CSP processes. In this paper, we will focus on the one based on
traces, i.e., sequences of visible transitions.

Definition 4 (traces). Let P ∈ P be a CSP process. We define traces(P) =

{s ∈ Σ∗ : ∃Q.P
s
=⇒ Q}.

Traces are exploited to provide a behavioral equivalence for processes.

Definition 5 (trace equivalence). Let P,Q ∈ P be two CSP processes. They
are called trace equivalent, written P =T Q, if traces(P) = traces(Q).

Example 1. Consider the processes P = a.(d.b.STOP\d)⊕ b.a.STOP and Q =
(c.a.STOP |{c} c.b.STOP)\c. It is easy to see that traces(P) = traces(Q) =
{ε, a, ab, b, ba}. Hence they are trace equivalent.

3 Labelled Petri Nets with Interfaces

This section reviews labelled Petri nets, i.e., ordinary P/T nets with labelled
transitions [17]. Nets are also enriched with interfaces and endowed with com-
position operators in order to allow for an inductive encoding of CSP processes.

3.1 Labelled Petri Nets

Let X⊕ be the free commutative monoid over a set X . An element m ∈ X⊕, a
multiset over X , is often viewed as a function m : X → N (the set of natural
numbers) that associates a multiplicity with every element of X . We write m1 ⊆
m2 if ∀x ∈ X , m1(x) ≤ m2(x). The symbol 0 denotes the empty multiset. Given
f : X → Y we denote its extension to multisets by f⊕ : X⊕ → Y ⊕.

Hereafter Σ denotes a fixed set over which all nets are labelled. In the encoding
of processes into nets, Σ is the set of CSP communication events.

Definition 6 (labelled Petri net). A labelled Petri net is a tuple N =
(S, T, •(.), (.)•, λ) where S is the set of places, T is the set of transitions,
•(.), (.)• : T → S⊕ are functions mapping each transition to its pre- and post-set
and λ : T → Σ is the labelling of transitions.

The state of a net is given by a marking, i.e., a multiset of places m ∈ S⊕.
Hereafter, the components of a net N will be assumed S, T , •(.), (.)• and λ,
possibly with subscripts. We will often write •t and t• instead of •(t) and (t)

•
.

Definition 7 (net morphism). Let N1, N2 be two labelled nets. A net mor-
phism f : N1 → N2 is a pair of functions f = 〈fS , fT 〉 where fS : S1 → S2,
fT : T1 → T2 satisfy for any t ∈ T1:

6 P. Baldan et al.

α

β

δ

γ

ν

σ

η

ρ

a

b

c

c

d

α

β

γ

δ

η

σ
c

a

b

Fig. 3. Graphical representation of labelled nets, the rightmost with interfaces

1. f⊕
S (•t) ⊆ •fT (t) (reflection of pre-set)

2. f⊕
S (t•) ⊆ fT (t)

• (reflection of post-set)
3. λ1(t) = λ2(fT (t)) (preservation of labels).

Net morphisms roughly represent the insertion of a net into a context. As a
consequence the pre- and post-set of transitions can be larger in the target net.

Example 2. Fig. 3 (left) shows a labelled net. As usual, circles represent places
and rectangles transitions. Arrows represent pre- and post-sets of transitions.
Bullets in places, referred to as tokens, represent the current marking m of the
net. Transition labels are placed inside the corresponding rectangle. For the sake
of readability, also some places are provided with an identifier, yet positioned
outside of the corresponding circle.

3.2 Petri Nets with Interfaces

In order to define the encoding of CSP processes into Petri nets inductively,
we equip nets with “handles” for interacting with the environment and define
operations for composing them.

Definition 8 (Petri net with interfaces). A Petri net with interfaces is a tu-
ple N = 〈I, O,N, V 〉, where N is a labelled net, I and O are subsets of places, the
input and output places, and V is a subset of transitions, the visible transitions.

Hereafter, the components of a net with interfaces N will be assumed to be
I,N,O, and V , possibly with subscripts.

The standard operational semantics on Petri nets naturally induces a seman-
tics for nets with interfaces, where the firing of a transition that is not visible is
turned into a silent action τ . This is expressed by the rules in Fig. 4.

Graphically, a net with interfaces is depicted as a net with input interface on
the left and output interface on the right, marked with incoming and outgoing
dotted arrows, respectively. Places in the input and output interface are in blue
and red, respectively (grey if in b&w), while internal places are white. Moreover,
visible transitions are green (grey if in b&w) and hidden ones are white.

Encoding Synchronous Interactions Using Labelled Petri Nets 7

(vis) m = •t⊕m′ t ∈ V

m
λ(t)−−→ t• ⊕m′

(hid)
m = •t⊕m′ t ∈ T \ V

m
τ−→ t• ⊕m′

Fig. 4. Operational semantics of nets with interfaces

Example 3. An example of net with interfaces is shown in Fig. 3 (right). The
input interface consists of the places α and β, while the output interface contains
the places η and σ. The white places γ and δ are internal, i.e., they do not
belong to the interfaces. The white transition labelled c is hidden, while those
labelled a and b are visible. Finally, in the current marking m0 of the net, the
places α and β are marked. By applying the (hid) rule in Fig. 4 we obtain

the firing m0
τ−→ m1 = {γ, δ}. By rule (vis), we get m1

a−→ m2 = {η, δ} and

m1
b−→ m3 = {γ, σ}. Finally, m2

b−→ m4 and m3
a−→ m4, with m4 = {η, σ}.

As in the case of CSP processes, we write m
s−→∗ m′ when there is a sequence

m = m1
μ1−→ m2

μ2−→ . . .
μn−1−−−→ m′ with s = μ1μ2 . . . μn−1. We also write m

s
=⇒ m′

when m
s′−→∗ m′ for some s′ such that s is obtained from s′ by removing the τ ’s.

We next define suitable composition operators on nets with interfaces.

Definition 9 (sequential composition). Let N1 and N2 be nets with inter-
faces such that O1 = I2 = S1∩S2 and T1∩T2 = ∅. Their sequential composition
is the net with interfaces N1◦N2 = 〈I1, O2, N, V1∪V2〉, where N is the pointwise
union N1 ∪N2, with the obvious pre-set, post-set and labelling functions.

Intuitively, the sequential composition N1 ◦ N2 is obtained by taking the
disjoint union of the nets underlying N1 and N2, and gluing the output places
of N1 with the corresponding input places of N2. For the sake of presentation,
it is convenient to assume that the two nets intersect only on the input/output
interfaces and take the plain union. This could require some alpha-renaming.

In the following, given a net with interfaces N and a set X ⊆ Σ, we denote
by V X = {t ∈ V : λ(t) ∈ X} the set of transitions labelled with an event in X .

Definition 10 (synchronised parallel composition). Let N1 and N2 be
nets with interfaces such that S1∩S2 = ∅ and T1∩T2 = ∅, and let X ⊆ Σ. Their
synchronised parallel composition on X is the net with interfaces N1 ⊗X N2 =
〈I1 ∪ I2, O1 ∪O2, N, V 〉, where the set of visible transitions is

V = V1 ⊗X V2 = {〈t1, t2〉 : t1 ∈ V X
1 ∧ t2 ∈ V X

2 ∧ λ1(t1) = λ2(t2)}
∪{〈t1, ∗〉 : t1 ∈ V X

1 ∧ V
λ1(t1)
2 = ∅}

∪{〈∗, t2〉 : t2 ∈ V X
2 ∧ V

λ2(t2)
1 = ∅}

∪{t : t ∈ Vi \ V X
i }

and N = (S, T, •(.), (.)•, λ) defined as follows

– S = S1 ∪ S2 � {p}
– T = (T1 \ V1) ∪ (T2 \ V2) ∪ V

8 P. Baldan et al.

– •t =
{ •t if t ∈ Ti \ V X

i•t1 ⊕ •t2 if t = 〈t1, t2〉 with the convention •∗ = p

– t• =

{
t• if t ∈ Ti \ V X

i

t1
• ⊕ t2

• if t = 〈t1, t2〉,with the convention ∗• = 0

– λ(t) =

⎧⎨⎩
λi(ti) if t ∈ Ti \ V X

i

λ1(t1) if t = 〈t1, t2〉 ∧ t1 �= ∗
λ2(t2) if t = 〈t1, t2〉 ∧ t2 �= ∗.

We write N1 ⊗N2 for N1 ⊗∅ N2. Intuitively, the synchronised parallel com-
position N1 ⊗X N2 is obtained by taking the disjoint union of the nets N1 and
N2, except for those visible transitions labelled with a symbol x ∈ X , which
are forced to fire synchronously. Concretely, for each pair of transitions t1 ∈ V1

and t2 ∈ V2, with identical label in X , a new transition 〈t1, t2〉 is inserted whose
pre- and post-set is obtained as the union of the pre- and post-set of t1 and t2.
If a transition t1 in N1 has no possibility of synchronising with a transition of

N2 since V2 does not include transitions with the same label (V
λ1(t1)
2 = ∅), it

will not be executable in the synchronised product. This is obtained by turning
transition t1 into 〈t1, ∗〉 and adding to its pre-set a new place p, which will never
be marked. The same happens for transitions in N2 that cannot synchronise with
any transition in N1. An alternative solution, equivalent from the point of view
of the behaviour, would be the removal of the dead transitions. We preferred
this solution since, when used for the encoding of CSP processes into nets, it
will ensure a closer structural correspondence between reducts of a process and
the markings of the net encoding. Finally, transitions which are labelled outside
X can fire asynchronously and thus are kept unchanged.

Lastly, we introduce an operation for restricting the set of visible transitions
of a net. It is called hiding as it has an obvious analogy with the corresponding
operation of CSP processes.

Definition 11 (hiding). Let N be a net with interfaces and let X ⊆ Σ. The
hiding of N with respect to X is the net N\X = 〈I, O,N, V ′〉 where V ′ = V \V X .

Given a net N, the restriction N \ X behaves exactly as N, but transitions
labelled in X , which were previously visible, are now hidden.

When a starting state is fixed, nets are called marked.

Definition 12 (marked nets). A marked net with interface N is a pair
〈N,m〉, where N is a net with interfaces and m ∈ S⊕ is the initial marking.

For marked nets we can consider the language of traces starting from the
initial marking and the corresponding equivalence.

Definition 13 (traces). Let N be a marked net with interfaces. Its set of traces

is traces(N) = {s ∈ Σ∗ : ∃n.m s
=⇒ n}. Two marked nets with interfaces N1 and

N2 are trace equivalent, written N1 =T N2, if traces(N1) = traces(N2).

After building the net encoding of a CSP process, we need to mark its input
places in order to fix the initial state. The following operation will then be used.

Encoding Synchronous Interactions Using Labelled Petri Nets 9

p

(a) stop

p

p1

pn
a

(b) replaI

p

p11

p1m1

pn1

pnmn

a1

an

(c) ⊕n
i=1aiIi

p

p1

pn

q1

qm

σ

σ

(d) sumI1∪I2

Fig. 5. The constant nets stop, replaI , ⊕n
i=1aiIi

and sumI1∪I2

Definition 14 (closing). Let N be a net with interfaces. We denote by Cl(N)
the marked net with interfaces 〈〈∅, O,N, V 〉, I〉.

4 From Processes to Nets

This section introduces an encoding for CSP processes into nets with interfaces.
It is defined inductively by exploiting the composition operators for nets intro-
duced in Section 3. As anticipated, the encoding is restricted to bound processes.

The encoding relies on a set of constant nets, depicted in Fig. 5, which are
combined using the composition operators on nets. The net stop in Fig. 5(a)
consists of a single place. The net replaI in Fig. 5(b), where a ∈ Σ and I =
{p1, . . . , pn}, by repeated firing of transition a allows for an arbitrary number of
“parallel activations” of the net which follows. This will be used as a combinator
for replication. The set I is the set of input places of the encoding of the process
under the replication operator. The net ⊕n

i=1aiIi in Fig. 5(c), where ai ∈ Σ and
each Ii is a set of places, is intended to provide a combinator for the guarded
alternative. It consists of n transitions, labelled a1,. . . , an, all competing for the
token in their common pre-set. Each transition ai has Ii = {pi1, . . . , pimi} as
post-set, corresponding to the input places of the encoding of the continuation
of ai. Finally, the net sumI1∪I2 in Fig. 5(d) is a combinator for nondeterministic
(internal) choice. As above, I1 = {p1, . . . , pn} and I2 = {q1, . . . , qn} are sets
of places which are the input places of the encodings of the processes involved
in the choice. Note that the two transitions are hidden, so by definition of the
operational semantics they will be turned into silent actions τ . Hence the label
σ ∈ Σ, fixed for the hidden transitions of the internal choice, is totally irrelevant.

Definition 15 (encoding for processes). Let P be a bound process. The en-
coding of P , denoted by �P �, is defined as �P � = Cl(|P |), where |.| is given
inductively according to the rules in Fig. 6.

The encoding of a process P is obtained by composing the encoding of its
subprocesses and finally marking the input places. It therefore contains one place

10 P. Baldan et al.

|STOP | = stop
|⊕n

i=1ai.Pi| = ⊕n
i=1aiI|Pi| ◦ (

⊗n
i=1 |Pi|)

|P +Q| = sumI|P |∪I|Q| ◦ (|P | ⊗ |Q|)
|!a.P | = replaI|P | ◦ |P |
|P\X| = |P | \X
|P |X Q| = |P | ⊗X |Q|

Fig. 6. Encoding for CSP processes

for each operator !, +, ⊕ and process STOP of P . Some additional places are
inserted by the synchronised parallel composition of nets in order to keep some
components inactive (see Definition 10). Note that, in the following examples, we
avoid to represent such places when they are isolated. Recall that whenever two
components are in a synchronised parallel composition a transition is inserted for
each possible synchronisation, i.e., for each pair of events with the same name.

Example 4 (prefix and parallel synchronised processes). Consider the process
P = (a.c.STOP ⊕ b.d.STOP) |{d} c.d.STOP . Its encoding is depicted in Fig. 7
(right), where input and output interfaces are empty and all transitions are vis-
ible. It is obtained by closing the net |P |, the result of the parallel composition,
synchronised on d, of the encodings |a.c.STOP ⊕ b.d.STOP | and |c.d.STOP |,
in turn depicted in the left part of Fig. 7. More precisely, the net on the up-
per part illustrates |a.c.STOP ⊕ b.d.STOP |. The places ν and σ represent the
subnets encoding the STOP processes (those reached after the events c and d,
respectively). The subnet rooted at place δ is the encoding of the subprocess
c.STOP . Analogously, the subnet rooted γ is the encoding of the subprocess
d.STOP . The encoding of the subprocess a.c.STOP ⊕ b.d.STOP is obtained by
sequentially composing the net a.I{δ} ⊕ b.I{γ} with |c.STOP | ⊗ |d.STOP |. The
net in the lower part represents the encoding |c.d.STOP | of c.d.STOP .

Example 5 (bound processes). Consider the process Q = a.a.STOP |{a}
a.STOP . The encodings |a.a.STOP | and |a.STOP | are depicted in Fig. 8(a)
and (b). The encoding |Q| is obtained as their parallel composition, synchro-
nised on a, as shown in Fig. 8(c). Each transition labelled by a of |a.a.STOP |
is “combined” with any other transition labelled by a in |a.STOP |. Observe
that the second a-labelled transition in the encoding of Q cannot fire since af-
ter the firing of the first a-labelled transition, place δ is emptied and never
filled again. This is consistent with the operational semantics of CSP where
Q

a−→ a.STOP |{a} STOP , in such a way that the remaining occurrence of a
cannot be executed since it has no counterpart in the parallel subprocess.

Now consider the process R =!b.Q =!b.(a.a.STOP |{a} a.STOP), that is the
process Q inserted in a replication. Observe that R is not bound as it contains
a non-trivial parallel synchronised product (where synchronisation is on a non-
empty set of events) under the scope of a replication.

Encoding Synchronous Interactions Using Labelled Petri Nets 11

α

δ

γ

ν

σ

a

b

c

d

(a) |a.c.STOP ⊕ b.d.STOP |

β η

ρc d

(b) |c.d.STOP |

α

β

δ

γ

ν

σ

η

ρ

a

b

c

c

d

(c) �(a.c.STOP ⊕ b.d.STOP) |{d} c.d.STOP �

Fig. 7. Some process encodings

The net �R� in Fig. 8 (d) is obtained by closing the net |R|, which in turn is the
sequential composition of replb{α,δ} with |Q|. Notice that the b-labelled transition
can fire any number of times, thus generating an unbounded number of tokens
in α and δ. Hence also the second a-labelled transition has the opportunity of
being fired, in a way which disagree with the semantics of the CSP process.

Roughly speaking, the above problem arises since tokens corresponding to
different occurrences of the replicated process are mixed in an improper way.
Solving the problem by a different encoding, where each occurrence of a process
involved in a replication corresponds to a different subnet in the encoding, would
lead to an infinite net for non-bound processes.

α β

γa a

δ

σa

(a) |a.a.STOP | (b) |a.STOP |

α

δ

β

γ

σ

a a

α′ α

β

γ

δ σ

a ab

(c)
∣∣a.a.STOP |{a} a.STOP

∣∣ (d)�!b.a.a.STOP |{a} a.STOP �

Fig. 8. Process encodings

12 P. Baldan et al.

5 Relating CSP and Labelled Nets

In this section we show that any bound CSP process and its net encoding be-
have essentially in the same way. More precisely, the net encoding of processes
preserves and reflects process transitions, and, consequently, the standard be-
havioural CSP equivalences such as, for instance, trace equivalence.

In order to state these results, we first need to establish a correspondence
between the processes reachable from P , hereafter denoted by the set reach(P) =
{Q : P −→∗ Q}, and the markings of �P �.

The encoding of a bound process P is inductively defined as the composition of
the encoding of its subprocesses. Note that, by definition of the CSP operational
semantics, whenever a process P performs a transition to P ′, the process P ′ is
obtained from P by replacing a subprocess with its reduct. Then, it is easy to
see that the encoding of those processes reachable from P can be mapped to
subnets of �P �.

Lemma 1 (reachable processes as subnets). Let P be a bound process and
let Q be a subprocess of P or a process reachable from P . Let NP and NQ be
the labelled nets underlying the encodings �P � and �Q�, respectively. Then, a net
morphism fQ,P : NQ → NP can by uniquely chosen.

The proof relies on the fact that given a subprocess Q of a process P , a
mapping between the net underlying the encoding �Q� into the one underlying
�P � can be obtained by the inductive definition of the encoding. Hence, each
subprocess of P corresponds to a subnet of �P �. Using this fact, it is not difficult
to prove that also the encoding of a process reachable from P can be mapped
to a subnet of �P �. In fact, the processes in reach(P) consist of compositions of
reducts of subprocesses of P , where, due to replication, for some reducts we may
have several parallel copies. The encodings of these copies, since by definition
they do not synchronise on any event, can be mapped to the same subnet.

By using the lemma above, we can easily define a correspondence between the
processes belonging to reach(P) and the markings of �P �.

Definition 16. Let P be a bound process. The function mP : reach(P)→ S⊕
�P �

maps any process Q ∈ reach(P) into the marking f⊕
Q,P (m�Q�).

Once established that each process reachable from a bound process P identifies
a marking in the net �P �, we can state the two main correspondence results of
this section.

Theorem 1. Let P be a bound process and let Q ∈ reach(P). Then

1. if Q
μ−→ R then mP (Q)

μ−→mP (R) in �P �;

2. if mP (Q)
μ−→ m in �P � then Q

μ−→ R with m = mP (R).

The result establishes a bijection between the labelled transitions performed
by any process Q ∈ reach(P) and the transition firings in the net �P � from the
marking mP (Q).

Encoding Synchronous Interactions Using Labelled Petri Nets 13

α

δ

γ

ν

σ

ρ

b

a

a

d b

Fig. 9. Net encoding the process (d.a.b.STOP)\d⊕ b.a.STOP

Such a bijection can then be lifted to a fundamental correspondence between
the trace semantics of processes and of their encodings.

Theorem 2. Let P , Q be bound processes. Then

P =T Q if and only if �P � =T �Q�.

Example 6. Consider the processes P = a.(d.b.STOP\d)⊕ b.a.STOP and Q =
(c.a.STOP |{c} c.b.STOP)\c of Example 1. The encoding of P is in Fig. 9, while
the encoding of Q is the net in Fig. 3 (right), once the interfaces are removed.
Note that there is a correspondence between the labelled transitions of each
process and those of its encoding. For instance, P

a−→ d.b.STOP\d corresponds

to mP (P) = {α} a−→ {γ} = mP (d.b.STOP\d). The transition d.b.STOP\d τ−→
b.STOP\d corresponds to mP (d.b.STOP\d) = {γ} τ−→ {σ} = mP (b.STOP\d)
and b.STOP\d b−→ STOP\d to mP (b.STOP\d) = {σ} b−→ {ρ} = mP (STOP\d).
Moreover, P

b−→ a.STOP corresponds to mP (P) = {α} b−→ {δ} = mP (a.STOP),

and finally a.STOP
a−→ STOP to mP (a.STOP) = {δ} a−→ {ν} = mP (STOP).

We have a correspondence also between the transitions of Q and those of its
net encoding. Therefore, it is easy to conclude that the nets are trace equivalent.

6 Some Hints about Technology Transfer

The encoding of bound CSP processes into labelled nets enables to transfer
results concerning expressiveness and tractability from one formalism to the
other, as it was the case for the net encoding of CCS in [1].

Observe that trace equivalence is obviously undecidable for both bound CSP
processes and Petri nets (since they include as a fragment the basic parallel
processes for which trace equivalence is known to be undecidable [11]). Still,
even though this does not give new insights, we note that by using the encoding,
the undecidability of trace equivalence for Petri nets can be also deduced directly
from the undecidability of trace equivalence for bound CSP.

Reachability, namely the possibility of reaching a given process Q via a se-
quence of transitions from a start process P , is not a particularly interesting
property for CSP. Since during process evolution the number of parallel compo-
nents can only increase, the property turns out to be decidable. Indeed, in order

14 P. Baldan et al.

to establish whether Q is reachable it suffices to consider the fragment of the
LTS including the processes reachable from P having a number of parallel sub-
processes bounded by that of Q. It is instead more interesting the reachability
under the garbage collection of STOP : it breaks the monotonicity mentioned
above, and the removal itself is not trivial. In fact, P |X STOP is equivalent to
P only when X does not include channel names on which P can synchronise.
E.g., think of the process a.STOP which can perform an a-labelled transition
while a.STOP |{a} STOP is deadlocked.

Alternatively one can consider control state reachability, i.e., the reachability
of a configuration including a given subprocess. In this last case, it is sufficient to
consider net coverability. It is folklore that the control state reachability problem
is undecidable for full CSP, while the corresponding property of coverability is
known to be decidable for Petri nets [8]. By exploiting the encoding, decidability
of coverability can be transferred from Petri nets to bound processes.

Corollary 1 (reachability). Let P,Q be bound processes. The problem of es-
tablishing whether there exists bound process R such that P −→∗ R and Q is a
sub-process of R is decidable.

Thanks to the correspondence between processes reachable from a process P
and reachable markings in the net encoding of P , decidability of boundedness
in Petri nets [8] implies that it is possible to determine whether a CSP process
has a finite number of states.

Corollary 2 (finite state). Let P be a bound process. It is decidable whether
P has a finite number of reachable states.

Again, the property of being finite state can be more interesting for CSP pro-
cesses when working up to garbage collection of useless STOP parallel compo-
nents. It can be seen that this property is naturally captured by the boundedness
of the subset of places of �P � not corresponding to STOP processes.

Analogously, it is possible to identify an upper bound to the degree of par-
allelism of a bound CSP process, i.e., to the number of parallel subcomponents
of a process during its evolution. More precisely, define the structural degree
of a CSP process P as sdeg(P |X Q) = sdeg(P) + sdeg(Q) and sdeg(P) = 1
otherwise. Then the degree of P is deg(P) = sup{sdeg(P ′) : P →∗ P ′}. The
close correspondence between deg(P) and the maximal total number of tokens
in the reachable markings of �P � immediately leads to the following result.

Corollary 3 (parallelism). Let P be a bound process. The problem of deter-
mining whether deg(P) is finite is decidable. Moreover, for any given k ∈ N, it
is decidable whether deg(P) ≤ k.

A classical property in the analysis of the expressiveness of process calculi
is convergence, i.e., the existence of a terminating computation. We recall such
notion below, according to [5].

Definition 17 (convergence). A process P is called convergent if there exists
Q such that P −→∗ Q �→.

Encoding Synchronous Interactions Using Labelled Petri Nets 15

Convergence of a bound process can be reduced to the existence of a deadlock
in its encoding, a property which is known to be decidable for Petri nets [8].

Corollary 4 (convergence). Convergence is decidable for bound processes.

7 Conclusions and Further Works

In this work we have identified a fragment of CSP, consisting of what we called
bound processes, that can be encoded into (labelled) Petri nets. The encod-
ing preserves and reflects the (strong) transitions of the process calculus and,
consequently, the whole spectrum of (both strong and weak) behavioural equiv-
alences definable on the transition system of CSP processes. Furthermore, the
encoding is syntax-driven, hence modular, mapping each process operator into
a suitable one for labelled nets with interfaces. As far as we know, this is a main
improvement with respect to former proposals.

Interfaces are in fact the key ingredient to achieve modularity: they are needed
in defining the net operators upon which our encoding lays its foundations. Re-
active extensions of Petri nets, endowed with means for interacting with the
environment [3,13,2,4], naturally arise as extensions of nets allowing for com-
positional reasoning. This feature plays a key role for modelling various brands
of process calculi. Indeed, in [1] they were pivotal in the encoding of an asyn-
chronous fragment of CCS into open nets. Interestingly enough, asynchronous
interactions are captured by a form of composition where net components inter-
act only over places, while in this paper the synchronous interaction is realised
by letting net components interact over an interface consisting of transitions.
This should have been intuitively expected, since in Petri nets the token flow is
eminently asynchronous, while transitions synchronise different token flows.

Therefore, our results confirm that (open) Petri nets can accommodate both
asynchronous message passing and barrier synchronisation. In principle, this
leaves space for a calculus combining both characteristics, endowed with a direct
encoding into nets. This would take us back in full circle, since this calculus would
trace its roots on some early proposals for net encoding of processes [16].

Acknowledgements. We are grateful to the referees for their insightful sug-
gestions on the submitted version of the paper, and, in particular, for pointing
out the relevance of control state reachability in the analysis of CSP processes.

References

1. Baldan, P., Bonchi, F., Gadducci, F.: Encoding asynchronous interactions using
open Petri nets. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 99–114. Springer, Heidelberg (2009)

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfigurations of open Petri nets. In: Mossakowski, T.,
Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142.
Springer, Heidelberg (2007)

16 P. Baldan et al.

3. Best, E., Devillers, R., Hall, J.G.: The Petri box calculus: a new causal algebra with
multi-label communication. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609,
pp. 21–69. Springer, Heidelberg (1992)

4. Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras for
C/E and P/T nets’ interactions. Logical Methods in Computer Science 9(3), 1–65
(2013)

5. Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing recursion, replication, and it-
eration in process calculi. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)

6. Degano, P., Gorrieri, R., Marchetti, S.: An exercise in concurrency: a CSP process
as a condition/event system. In: Rozenberg, G. (ed.) APN 1988. LNCS, vol. 340,
pp. 85–105. Springer, Heidelberg (1988)

7. Devillers, R., Klaudel, H., Koutny, M.: A compositional Petri net translation of
general pi-calculus terms. Formal Aspects of Computing 20(4-5), 429–450 (2008)

8. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Elektronische
Informationsverarbeitung und Kybernetik 30(3), 143–160 (1994)

9. Goltz, U., Reisig, W.: CSP-programs with individual tokens. In: Rozenberg, G.
(ed.) APN 1984. LNCS, vol. 188, pp. 169–196. Springer, Heidelberg (1985)

10. Gorrieri, R., Montanari, U.: SCONE: A simple calculus of nets. In: Baeten, J.C.M.,
Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 2–30. Springer, Heidelberg
(1990)

11. Hirshfeld, Y.: Petri nets and the equivalence problem. In: Börger, E., Gurevich, Y.,
Meinke, K. (eds.) CSL 1993. LNCS, vol. 832, pp. 165–174. Springer, Heidelberg
(1994)

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

13. Kindler, E.: A compositional partial order semantics for Petri net components. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997)

14. Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Generating a Petri net from a CSP
specification: A semantics-based method. Advances in Engineering Software 50,
110–130 (2012)

15. Nielsen, M., Priese, L., Sassone, V.: Characterizing behavioural congruences for
Petri nets. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962,
pp. 175–189. Springer, Heidelberg (1995)

16. Olderog, E.R.: Operational Petri net semantics for CCSP. In: Rozenberg, G. (ed.)
APN 1987. LNCS, vol. 266, pp. 196–223. Springer, Heidelberg (1987)

17. Reisig, W.: Understanding Petri Nets. Springer (2013)
18. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper

Saddle River (1998)

Verifiable Decisions in Autonomous

Concurrent Systems�

Lenz Belzner

LMU Munich, PST Chair, Germany
belzner@pst.ifi.lmu.de

Abstract. Being able to take decisions at runtime is a crucial ability for
any system that is designed to act autonomously in uncertain or even
unknown environments. This autonomy necessitates to formally check
system properties at design time to ensure avoidance of problems or
even harm caused by the system at runtime. This paper is about the
formal specification of concurrent systems that are capable of reasoning
about the consequences of their actions, enabling them to coordinate and
decide on what to do autonomously. A non-deterministic procedural ac-
tion programming language is defined to constrain system behaviour at
design time. Rewriting logic is employed to construct and evaluate possi-
ble traces of programs in a decision-theoretic manner, allowing agents to
perform goal-based actions autonomously at runtime as well as providing
possibilities to model-check system properties at design time.

1 Introduction

Concurrent multiagent systems designed to act autonomously in highly dynamic,
non-deterministic environments expose a number of requirements that have to
be addressed by modelling and specification approaches. In fact, their design has
to enable a system to reason about possibly uncertain outcomes of its actions
in order to decide what behaviour to perform at runtime. This kind of cognitive
ability requires specification of knowledge about actions’ preconditions and ef-
fects. Algorithms have to be provided to enable a system to evaluate and decide
on particular behavioural alternatives. Also, in the presence of multiple agents
that share the same environment, the issues of concurrency and synchronization
have to be accounted for by any specification approach.

Along with the specification of knowledge about actions and uncertainty, it
should be possible to constrain the behaviour of an autonomous system at de-
sign time. To this end, non-deterministic action programming languages [1] allow
for specification of behavioural constraints. In fact, non-deterministic programs
allow to specify plan sketches that can be seen as behavioural alternatives pro-
vided to a system. These alternatives can then be evaluated in the context of a
situation that a system finds itself in at runtime.

For systems that act autonomously, formal verification of properties at de-
sign time, e.g. by model checking, is a valuable source of information for design

� This work has been partially funded by the EU project ASCENS, 257414.

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 17–32, 2014.
c© IFIP International Federation for Information Processing 2014

18 L. Belzner

choices and error detection. In this paper, the formalization of knowledge and
behavioural constraints for ensembles is realized in rewriting logic [2,3,4]. Do-
main knowledge is represented as a relational Markov Decision Process [5,6];
a non-deterministic action programming language is defined to allow for spec-
ification of behavioural constraints. The rewriting logic concepts of matching
and rewriting are employed to provide to a system the ability to reason about
the consequences of its behaviour. A number of problems that are typical for
cognitive systems are addressed in this paper:

– Specification of knowledge about actions. Besides providing to a system in-
formation about pre- and postconditions of actions, it is necessary that the
system knows what properties of the environment remain unchanged. In
static logics like first-order logic, this is a non-trivial issue known as the
frame problem [7].

– Legality & projection. If a system is provided with the ability to choose from
various behavioural alternatives, this may lead to action choices that cannot
be executed at runtime due to precondition violations. To decide whether a
certain behavioural trace is legal (i.e. executable w.r.t. action preconditions),
a cognitive agent has to be capable of deciding whether certain properties of
the environment hold as consequences of its actions; an ability that is known
as projection [8].

– Trace evaluation & system property verification. Non-deterministic action
programs are employed to constrain system behaviour, giving raise to various
execution traces, thus enabling a system to evaluate behavioural alternatives
w.r.t. its goals. Also, the consequences arising from the execution of traces
can be used to verify properties of the given action program at design time.

– Concurrency. When multiple agents interact dynamically at runtime, the
issues of concurrency, synchronization and coordination arise, especially in
the presence of sharing. Reasoning about concurrent execution should be
possible with specified knowledge about a domain; also, the legality and
projection problems have to be dealt with in the presence of concurrency.

This paper extends previous work on action programming in rewriting logic
[9] by decision-theoretic concepts, and discusses in more detail the integration of
concurrency and coordination. Also, an approach towards probabilistic model-
checking for action programs is discussed. The paper is outlined as follows. Sec-
tion 2 introduces rewriting logic and action programming. Section 3 discusses
the specification of knowledge and behaviour for autonomous concurrent sys-
tems in terms of a rewrite theory, and defines how the concepts of matching and
rewriting are employed to interpret and reason about the specification. Section
4 discusses how to perform model checking of action programs for typical de-
sirable system properties. A short example illustrating the approach is given in
section 5. In section 6, related work is compared with the presented specification
approach. Finally, section 7 summarizes the results and gives a brief outlook on
further research venues.

Verifiable Decisions in Autonomous Concurrent Systems 19

2 Preliminaries

This section gives a brief introduction to rewriting logic (section 2.1) and action
programming (section 2.2).

2.1 Rewriting Logic

The core concept of rewriting logic are rewrite theories (Σ,A∪E,R, φ) [2,3,4]. Σ
is a signature defining sorts, sort-orders and operations to build terms from sorts
in the signature. A are axiomatic definitions for operations in Σ like associativity,
commutativity, idempotency or identity, and E specifies a set of equations for
terms in Σ. A ∪ E defines equivalence classes for terms, representing the static
structure of the rewrite theory.R is a set of possibly conditional rewrite rules that
specify the theory’s dynamics. Finally, φ is a function from operations to natural
numbers that defines which arguments of an operation are frozen, meaning that
no rewriting will take place on this argument.

Term rewriting with rewrite theories is performed by matching terms with
rules. In rewriting logic, matching is performed modulo axioms with extensions
(called Ax-matching). For example, consider an operation ◦ that is associative
and commutative. Then, the term a◦b◦c would Ax-match the term c◦a, because
a ◦ b ◦ c =A c ◦ a ◦ b due to axioms for ◦, and obviously c ◦ a is a subterm of the
given term. If terms contain variables, matching applies if there is a substitution
that renders a subterm of a given subject term equal to a term to be matched;
thus, a more concrete term matches a more general one.

Rewrite rules are of the form l → r if Conditions, where l and r are terms in Σ
that have an equal least sort, and Conditions can either be boolean expressions,
matching conditions (true if a term t Ax-matches a term t′, denoted t := t′) and
rewriting conditions (true if a term t rewrites to a term t′ according to rules in
R, denoted t→ t′). Rewriting of a subject term t is performed if a non-variable
subterm of t matches a rule’s left-hand side, and the conditions of the rule hold
for the particular matching substitution. The matched subterm is then replaced
by the rules right-hand side. Rewriting of a term to its normal form, where no
more rewrite rules can be applied, is denoted by t→! t

′.
As Ax-matching a term with rules may result in different matched subterms

and substitutions, rewriting can naturally express non-determinism. Also, as
multiple rules may be applied to different subterms in parallel, rewriting logic is
considered an intuitive way to deal with concurrency [4].

As long as some admissibility requirements are satisfied (e.g. if there are
no fresh variables in a rule’s right-hand side), the process of rewriting can be
performed computationally. This fact has led to the development of the term-
rewriting language Maude [2,3]. Rewrite theories can straightforwardly be im-
plemented as Maude modules. The language provides a built-in breadth-first
search command to compute all possible rewrites of a term, where search depth
and the number of desired solutions are parametrized. This approach can for
example be used to perform automated state-space search on rewrite theories in
order to model-check a given specification (see section 4).

20 L. Belzner

2.2 Action Programming

Action programming is “the art and science of devising high-level control strate-
gies for autonomous systems which employ a mental model of their environment
and which reason about their actions as a means to achieve their goals” [1].

Action programming allows to specify non-deterministic programs that can
be considered as a plan sketch, roughly outlining desired behaviour of a system
without committing to a certain trace of actions. In other words, an action pro-
gram defines a constrained space of behavioural alternatives. To allow a system
to reason about these alternatives at runtime, a domain specification is pro-
vided that contains definitions of fluents (i.e. state properties) that are subject
to change (e.g. due to action execution) as well as actions in terms of their pre-
conditions and effects, which may also be non-deterministic. This knowledge can
then be employed by the system to decide what to do at runtime.

For example, consider fluents x, y and z, and actions α and β. Informally,
assume x, y →α z, x →β y and y →β z, denoting an action’s precondition and
(non-deterministic) effects. Then, given the action program α # β where # is a
non-deterministic choice operator and a current situation where x and y hold,
an agent can derive that executing α will lead to a situation where z holds, and
that execution of β could result in a state where either y holds (as x, y →β y, y)
or where x and z hold (according to the latter specification of β).

Influential action programming formalisms are the situation calculus with its
language Golog [8] and the fluent calculus and its language Flux [10]. The
situation calculus employs a fluent-wise regressive specification of action effects
known as successor state axioms, where the frame problem is explicitly handled
by also stating under what conditions some fluent does not change. States are not
explicitly managed, but rather the notion of a situation is used to test whether
a fluent holds after execution of an action program. On the other hand, the
fluent calculus uses a progressive, action-wise specification of domain dynamics
by defining modifications of an associative-commutative representation of a state
that arise due to action execution.

3 Decisions in Autonomous Concurrent Systems

As mentioned in section 2.2, to provide to a system the ability to reason in
terms of action programming, specification of domain dynamics as well as a
language to define behavioural alternatives are necessary. In section 3.1, the
encoding of domain knowledge in terms of a rewrite theory encoding a relational
MDP is discussed. Section 3.2 defines a non-deterministic, procedural action
programming language that employs the specified rewrite theory to construct
trace consequences through Ax-matching and rewriting (see section 2.1), and
introduces the notion of a trace’s value, thus enabling systems to reason about
action preferences. Section 3.3 deals with the explicit treatment of projection,
and provides definitions for branching and loops. Section 3.4 discusses action
programming with concurrency in the presence of sharing, allowing for agent
synchronization and coordination.

Verifiable Decisions in Autonomous Concurrent Systems 21

3.1 RMDPs as Rewrite Theories

For specification of non-deterministic domain dynamics, the proposed approach
employs the notion of a relational MDP. A relational MDP is a tuple (S,A, T,R),
where S is a set of relational states, A a set of actions, T : S × A × S → [0; 1]
is a transition function specifying the probability that execution of a particular
action in a state results in another one, and R : S → R is a reward function. To
encode such a relational MDP as a rewrite theory, a set of fluents F is defined
(see section 2.2), from which the set of states Σ is built by means of the following
syntax. Both ∧ and ∨ are associative and commutative with identity element εσ.
The equivalence classes of terms in Σ can be considered the set of states S of a
relational MDP.

Σ := εσ f ∈ F ¬Σ Σ ∧Σ Σ ∨Σ

States annotated with probability are denoted by σp := (σ ∧ prob(p)) ∈ Σ,
with a fluent prob : [0; 1] → F encoding the probability of a system being in
state σ. The set of states annotated with a probability fluent is denoted by ΣP .

The transition function T is encoded in terms of rewrite rules. If there are n
non-deterministic transitions in T that define the effects of executing action α
in state σ each leading to a state σi with probability pi, i ∈ {1, ..., n}, a rule is
defined for each of them in the form ΣP×A→ ΣP as follows (with

∑n
i=1 pi = 1).

σpi × α→ σi
p∗T (σ,α,σi) . (1)

The states σ and the σi can be considered as pre- and postconditions of action α.
Note that this notation of transitions provides a solution to the frame problem
[7], as subject terms are matched with extension when applying rules. Thus,
there is no necessity to explicitly specify state properties that remain unchanged
by application of a rule.

Example 1. (Action rules) A rule for defining an action move that moves a robot
R at position P (denoted by a fluent pos : Robot × Position → F) to a desired
position P ′ with a probability of 0.9 and has no effect otherwise is specified by
the following rules.

pos(R,P)p ×move(R,P ′)→ pos(R,P ′)p∗0.9 .

pos(R,P)p ×move(R,P ′)→ pos(R,P)p∗0.1 .

Finally, a MDP’s reward function R can simply be encoded in terms of an
operation together with corresponding equations. For example, considering a
variable S of sort state1, the equations R(pos(r, p)∧S) = 1, R(S) = 0 [otherwise]
specify a reward of 1 for states where robot r is at position p and zero reward
for all other states.

1 Throughout the paper, variables are denoted by uppercase letters.

22 L. Belzner

3.2 Progressive Action Programming

This section describes how to constrain system behaviour in terms of an action
program, and how a system can construct and evaluate behavioural alternatives
according to these constraints when given a rewrite theory as domain specifica-
tion as outlined in section 3.1. To this end, a procedural non-deterministic action
programming language is defined with syntax Π .

Π := επ α ∈ A Π;Π Π#Π

Here, επ denotes the empty program, α is an action from the domain specifica-
tion, ; is an associative sequential operator, and # is an associative-commutative
non-deterministic choice operator, offering behavioural alternatives to a system
executing the program. Both operators have επ as identity element.

To allow for numerical evaluation of states, these are annotated with a value
(i.e. gathered reward), denoted by σp×v := (σp ∧ value(v)) ∈ Σ with a fluent
value : R → F encoding the value v gathered in a state σ. The corresponding
set of states annotated with probability and value is denoted by ΣP×V .

Program interpretation and trace evaluation is then performed by rewriting
configurations ΣP×V × Π × Π × N that consist of a current state, an action
program to be evaluated, an action trace leading to the current state and a
planning horizon. The set of configurations is denoted as Ξ. For ease of notation,
functions σξ, pξ, vξ, πξ, τξ, hξ are defined, taking as parameter a configuration
ξ := σp×v × π × τ × h, returning its respective values, e.g. σξ(ξ) = σ.

To compute possible consequences of executing for h steps an action program
π in a particular state σ, an initial configuration ξinit := σ1.0×0.0 × π × επ × h
is rewritten according to the following rules, resulting in a set of configurations
{ξ ξinit →! ξ ∈ Ξ}.2

σp×v ∨
(∨

i

σi
pi×vi

)
→ σp×v . (2)

σp×v × α× τ × h→ σ′
p′×v′ × επ × (τ;α)× (h− 1)

if h > 0 ∧ σp × α→ σ′
p′ ∧ v′ := v +R(σ′) . (3)

σp×v × (π1;π2)× τ × h→ σ′
p′×v′ × π2 × τ ′ × h′

if σp×v × π1 × τ × h→ σ′
p′×v′ × επ × τ ′ × h′ . (4)

σp×v × (π1#π2)× τ × h→ σp×v × π1 × τ × h . (5)

As state disjunction is associative and commutative, rule (2) rewrites a state
in disjunctive normal form to all its conjunctive subterms, leading to subse-
quent rewriting of configurations only containing conjunctive states. Note that
disjunctive normal form for states can easily be assured by specifying according
equations for state-terms.

2
Maude’s built-in search operator performs a breadth-first search; a depth-first strat-
egy can be defined using Maude’s internal strategies [3] or a dedicated strategy
language [11], e.g. by assigning rule application preferences.

Verifiable Decisions in Autonomous Concurrent Systems 23

Rule (3) rewrites a configuration containing a single action α as program if
the planning horizon has not yet been reached and the action’s preconditions are
satisfied by the current state. Satisfaction of preconditions is tested by rewriting
the current state σp with the given action according to the transition rules for
actions in the domain. If σp × α can be rewritten, the preconditions are satis-
fied, and any rewards of the reached state are added to v3. Otherwise rewriting
terminates, thus solving the legality problem by Ax-matching left-hand sides of
rewrite rules encoding the transition function of a relational MDP with σp×α.4

Note that Ax-matching is highly efficient; for ac-terms typically met in practice,
its complexity does not exceed O(log n), where n is term size [12]. Ax-matching
also results in a non-deterministic argument pick if a parameter of the action
that is to be processed is a variable.

Rewriting of sequential programs determines all configurations that can result
by executing the sequence’s head, which are then further rewritten according to
the sequence’s tail (rule (4)). Choice programs are rewritten according to rule
(5), that will rewrite a configuration according to all possible program choices
as the choice operator is associative and commutative.

In contrast to configurations for which rewriting terminated due to precondi-
tion violation, rewriting also terminates for a configuration ξ exposing hξ(ξ) = 0
(due to rule (3)) or πξ(ξ) = επ (because there is no rule for interpreting επ).
Thus, these properties can be used to define the set of legally terminating con-
figurations Ξ↓ arising from rewriting an initial configuration ξinit ∈ Ξ according
to program traces where no action precondition is violated.

Ξ↓(ξinit) := {ξ ξinit →! ξ ∧ (πξ(ξ) = επ ∨ hξ(ξ) = 0)}

The set of legally terminating program traces T↓ for an initial configuration
ξinit ∈ Ξ is defined as follows.

T↓(ξinit) := {τ ξ ∈ Ξ↓(ξinit) ∧ τξ(ξ) = τ)}

Similarly, the set of configurations yielding a particular, legally terminating
trace Ξτ↓ is defined.

Ξτ↓(ξinit) := {ξ ξ ∈ Ξ↓(ξinit) ∧ τξ(ξ) = τ}

The expected value of a legally terminating trace Ve is the sum of expected values
(which is the product of probability and value) of its non-deterministic outcomes.

Ve (τ, ξinit) :=
∑

ξ∈Ξτ↓ (ξinit)

(pξ(ξ) ∗ vξ(ξ)) (6)

3 When rewards are specified action-wise, i.e. R : Σ ×A×Σ, the computation of v in
the condition of rule (3) changes to v := R(σ, α, σ′).

4 To allow for Ax-matching of states and actions technically, conjunction of fluents
and concurrency of actions (see section 3.4) are implemented in terms of a single
associative-commutative operation, e.g. ◦ : state → state, with sorts fluent and
action being subsorts of sort state. I.e. σ∧σ′ = σ◦σ′, σ×α = σ◦α, α ‖ α′ = α◦α′.

24 L. Belzner

The legal termination probability P↓ of a particular trace is the sum of all
probabilities of configurations that yield the trace.

P↓ (τ, ξinit) :=
∑

ξ∈Ξτ↓ (ξinit)

pξ(ξ) (7)

Summarizing, given a domain specification and an initial configuration (i.e.
a current state5, an action program and a planning horizon), rules (2) to (5)
together with the definitions for Ve and P↓ enable a system to perform the
following tasks: (i) Computation of all program traces and their consequences.
(ii) Determination of expected values for traces. (iii) Determination of legal
termination probability of a particular trace.

Example 2. (Expected trace values and legal termination probability) Consider
the rule for action move from example 1. Let S be a variable of sort Σ and
r(pos(R, sa) ∧ S) = 1.0 (0 otherwise). Consider ξinit = pos(r, pos)1.0×0.0 ×
move(r, sa) × επ × 1. Then, expected value and legal termination probability
of a possible trace of the program move(r, sa) that tries to move a robot r to
the safety area sa compute as follows when executing it in a state where r is at
position pos (with pos �= sa).

ξinit → pos(r, sa)0.9×1.0 × επ ×move(r, sa)× 0 .

ξinit → pos(r, pos)0.1×0.0 × επ ×move(r, sa)× 0 .

Ve (move(r, sa), ξinit) = 0.9 ∗ 1.0 + 0.1 ∗ 0.0 = 0.9 .

P↓(move(r, sa), ξinit) = 0.9 + 0.1 = 1.0 .

3.3 Projection, Branching and Loops

The projection problem is to decide whether a certain property holds in a state
or not (e.g. after a number of actions have been executed). As discussed in
section 3.2, when interpreting action execution a state term is updated to yield
the information about the resulting state. Thus, the projection problem reduces
to deciding whether a property holds in a given state term. This is easily solved
in rewriting logic: It suffices to check whether a given condition term in Σ Ax-
matches a particular state term for a substitution of variables θ. To this end,
state subsumption (denoted by �) is defined as follows.

σ? � σ → θ if σ?/θ := σ .

σ? � σ ⇔ ∃θ : σ? � σ → θ .

σ? �� σ ⇔� ∃θ : σ? � σ → θ .

A state σ? ∈ Σ thus subsumes another state σ ∈ Σ if its corresponding
state term is more general than the state term of σ, which is checked by Ax-
matching the two terms. With this definition of state subsumption, operations

5 Note that partial observable domains can be accounted for by rewriting an initial
configuration

∨
i(σ

i
pi×vi)×π×επ×h with

∑
i p

i = 1, where the σi represent different

possible states an agent considers, each with probability pi.

Verifiable Decisions in Autonomous Concurrent Systems 25

are introduced for action programs that check whether a condition holds (or
does not hold, respectively) at a particular stage of execution. The syntax for
action programs is extended as follows.

Π? := Π ?(Σ){Π?} ¬?(Σ){Π?}
if Σ then Π? else Π? endif

while Σ do Π? endwhile

Interpretation of ?(σ?){π} succeeds if there is a substitution θ for which a
condition σ? subsumes the state of the current configuration to be rewritten.
If so, the variable substitutions for which the condition hold are applied to the
argument action program π (rule (8)). Similarly, rewriting ¬?(σ?){π} succeeds
if there is no such substitution (rule (9)).

σp×v×?(σ?){π} × τ × h→ σp×v × π/θ × τ × h if σ? � σ → θ . (8)

σp×v × ¬?(σ?){π} × τ × h→ σp×v × π × τ × h if σ? �� σ . (9)

With these operations, conditional branching can be defined as a macro.

if σ? then π1 else π2 endif = ?(σ?){π1}#¬?(σ?){π2} . (10)

Testing whether a condition σ? holds in (i.e. subsumes) a particular state σ
also allows for interpretation of loops. If σ? subsumes σ for a substitution θ, the
loop body will be executed with θ applied, followed by the loop itself; otherwise,
the loop reduces to the empty program.

σp×v ×while σ? do π endwhile × τ × h→
σp×v × π/θ;while σ? do π endwhile × τ × h if σ? � σ → θ . (11)

σp×v ×while σ? do π endwhile × τ × h→
σp×v × πε × τ × h if σ? �� σ . (12)

3.4 Concurrency

To allow for specification of action programs for agents that act concurrently,
the set of actions is extended to A� := εα A A� ‖ A� where ‖ is associative-
commutative with identity εα and denotes parallel execution of actions. Pro-
grams are allowed to be executed in parallel as well: Π� := Π?(A/A�) Π� ‖ Π�,
where the syntax of programs in Π? is extended to allow for parallel actions.

As action rules are applied sequentially to the current state term when rewrit-
ing, it is necessary to lock changing subterms of the state term to model true
concurrency, disallowing interleaving application of actions that would result in
race conditions. To this end, action dynamics as in rule (1) (see section 3.1) are
automatically compiled to rules of form (13), explicitly denoting which fluents of
the precondition σ are changed by action execution and which ones are left un-
changed. Changed fluents are locked by an operation φ : Σ → Σ, φ(σ)∧φ(σ′) =

26 L. Belzner

φ(σ ∧ σ′), keeping them from being further matched with parallel actions’ pre-
conditions.

σp × α� → σi
p∗T (σ,α�,σi) where σi = φ(σi

changed) ∧ σi
unchanged . (13)

Example 3. (Action Rules for Concurrent Domains) Consider the specification of
actions grab and drop in a domain with concurrency. Note how state properties
changed by the actions are locked.

(pos(R,P) ∧ pos(O,P))p × grab(R,O)→ (pos(R,P) ∧ φ(on(R,O)))p∗0.9 .

(pos(R,P) ∧ pos(O,P))p × grab(R,O)→ (pos(R,P) ∧ pos(O,P))p∗0.1 .

(pos(R,P) ∧ on(R,O))p × drop(R,O)→ (pos(R,P) ∧ φ(pos(O,P)))p∗1.0 .

For instance, grab(r1, o) ‖ drop(r2, o) should always be considered illegal,
as at least one precondition is violated in any case before applying any of the
actions; if interleaving rewriting was performed without locking state changes,
the application of drop would in turn render grab executable (and vice versa),
which is something that should not occur when the actions are considered truly
concurrent. I.e., locking of changed properties resembles a precondition check
before any action is applied and a check of postconditions after application of
all actions. Note that, if interleaving concurrency is to be modelled, locking of
changing state properties can simply be dropped. Interleaving is then achieved
by the non-deterministic application of rewrite rules for action dynamics from
the domain specification.

Concurrent action programs are normalized to sequential and choice terms as
shown in equations (14) and (15) (for αi ∈ A�, πi ∈ Π�). Due to this normaliza-
tion, interpretation of sequences and choices (rules (4) and (5), see section 3.2)
can be performed without rule modification by rewriting configurations with
concurrent action programs.

(π1#π2) ‖ π3 = (π1 ‖ π3)#(π2 ‖ π3) . (14)

(α1;π1) ‖ (α2;π2) = (α1 ‖ α2);(π1 ‖ π2) . (15)

Rewriting (i.e. interpretation) of a parallel action (rule (3) for domains without
concurrency, see section 3.2) resulting from transformation of a concurrent action
program according to equation (15) is changed to account for resolution of locked
state properties arising from rewriting according to rules of form (13) that specify
action dynamics for concurrent domains. 6

σp×v × α� × τ × h→
(σ1 ∧ σ2)p′×v′ × επ × (τ;α�)× (h− 1)

if h > 0 ∧ σp × α� → (φ(σ1) ∧ σ2)p′ ∧ v′ := v +R(σ1 ∧ σ2) . (16)

6 For action-wise rewards, it is v′ := v + R(σ, α�, σ1 ∧ σ2). Then, for parallel actions
reward is additive: R(σ, α ‖ α′, σ′) = R(σ, α, σ′) +R(σ, α′, σ′).

Verifiable Decisions in Autonomous Concurrent Systems 27

Example 4. (Concurrency) Consider the move action from example 1. The ex-
ample shows rewriting a state according to a concurrent action that tries to move
two robots to a position p3, illustrating the evaluation of the rewrite condition in
rule (16). Rewrite results in the following set of states matching the conditions
right-hand side (i.e. all actions have been rewritten). Note that depending on
the outcome of actions, different state properties are locked.

(pos(r1, p1) ∧ pos(r2, p2))p ×move(r1, p3) ‖ move(r2, p3)→
φ(pos(r1, p3) ∧ pos(r2, p3))p∗0.9∗0.9 ∨ (φ(pos(r1, p3)) ∧ pos(r2, p2))p∗0.9∗0.1
∨ (pos(r1, p1) ∧ φ(pos(r2, p3)))p∗0.1∗0.9 ∨ (pos(r1, p1) ∧ pos(r2, p2))p∗0.1∗0.1 .

If particular actions require synchronization of agents, this can be specified
by defining a rewrite rule according to rule (13) with an action that is explicitly
parallel. A rule specified this way will only rewrite to a legal configuration if
concurrent processes manage to synchronize their actions accordingly.

Example 5. (Synchronization) Consider an action t (for transport) that moves a
victim to a target position when two agents perform it synchronously. A single
agent trying to transport a victim has no effect and should be interpreted as
a precondition violation. Thus, this action requires synchronization of agents’
actions. This fact is specified as follows (considering a deterministic outcome for
the sake of simplicity).

(pos(R,P) ∧ pos(R′, P) ∧ pos(V, P))p × t(R, V, P ′) ‖ t(R′, V, P ′)→
φ(pos(R,P ′) ∧ pos(R′, P ′) ∧ pos(V, P ′))p∗1.0 .

If there is need for agents to synchronize, it may be valuable for agents to
coordinate their actions by waiting for others to collaborate, eventually rendering
a desired action executable. To this end, if an agent should execute an action α as
soon as its precondition σpreα is satisfied, waiting for satisfaction of preconditions
(e.g. collaborating agents) can be specified in terms of a macro waitFor. Note
that σpreα can be determined from the lefthand side of the domain specification
rule that specifies the dynamics of α.

waitFor(α) = while ¬σpreα do noop endwhile;α . (17)

4 Probabilistic Model Checking of Action Programs

This section shows how to perform symbolic probabilistic model checking for
action programs, whose interpretation results in configurations containing action
traces determined through application of Ax-matching and rewriting as shown
in section 3. To this end, this section discusses the relation between typical
system properties to be model-checked and rewriting of configurations. System
properties are expressed in terms of PCTL formulas. For an in-depth discussion

28 L. Belzner

of model-checking in general, and model-checking with PCTL in particular, see
e.g. [13]. For the relation of model-checking and classical planning see e.g. [14].

A typical property that can be checked for an action program is whether it
contains a legal trace that will reach a particular goal state satisfying7 a prop-
erty σgoal within a given number of steps h with at least a desired probability
pmin. This property can be expressed in terms of a PCTL formula, where P≥pmin

denotes the requirement that its argument is satisfied at least with probabil-
ity pmin, and the eventually operator ♦≤h denotes that its argument state is
eventually reached within the given horizon h.

P≥pmin(♦≤hσgoal) (18)

To check whether a given configuration ξinit satisfies this property, a positive
reward is specified for states that satisfy σgoal, i.e. R(σgoal) > 0; all other states
expose a reward of zero. Then, (legally terminating) traces eventually satisfying
σgoal expose a positive reward.

Ξ+
τ↓(ξinit) = {ξ ξ ∈ Ξτ↓(ξinit) ∧ vξ(ξ) > 0} (19)

To determine the probability of a trace eventually satisfying σgoal, the proba-
bilities of terminated configurations with equal traces (arising due to nondeter-
minism) are summed up. If there is no such trace, the probability is zero.

P+
↓ (τ, ξinit) =

∑
ξ∈Ξ+

τ↓ (ξinit)

pξ(ξ) (20)

Property (18) is satisfied if there exists a legally terminating trace with an
expected value greater than zero and a probability of eventually reaching a state
satisfying σgoal greater than pmin.

8

P≥pmin(♦≤hσgoal)⇔ ∃τ ∈ T↓(ξinit) : Ve(τ, ξinit) > 0 ∧ P+
↓ (τ, ξinit) ≥ pmin (21)

In general, a PCTL formula of the form PJ (♦≤hσ), where J is an interval
in [0; 1] can be checked for any initial configuration ξinit ∈ Ξ by specifying a
reward greater than zero for states subsumed by σ, and zero reward for all other
states; then, it is checked by rewriting whether probabilities of legal traces whose
expected value is bigger than zero are in the interval J .

PJ(♦≤hσgoal)⇔ ∃τ ∈ T↓(ξinit) : Ve(τ, ξinit) > 0 ∧ P+
↓ (τ, ξinit) ∈ J (22)

In particular situations, a systemmay be required to maintain a particular state
property σmaintain. In these cases, it may be valuable to ensure a minimal probabil-
ity pmin that the desired property will sustain with program execution. The PCTL
formula P≥pmin(�≤hσmaintain) expresses this system property, where the always

7 A state σ satisfies a property σ? if σ?
 σ (see section 3.3).
8 Depending on the property to be checked, existential quantification is to be replaced
by universal quantification.

Verifiable Decisions in Autonomous Concurrent Systems 29

operator �≤h denotes that its argument state is always satisfied within the given
horizon h. This property can be reformulated in terms of an achieve goal that re-
quires an upper bound on the maximal probability that the desired property will
be violated by program execution: P<1−pmin(♦≤h¬σmaintain). This property can
then be checked according to (21). Due to the duality of the always and eventu-
ally operators, transformation of maintain to achieve goals can be generalized for
probability intervals [13].

P]p,p′](�≤hσ) = P[1−p′,1−p[(♦≤h¬σ) (23)

5 Example

As a short informal example, consider a rescue scenario. There are two robots r1
and r2 at positions p1 and p2, respectively. There are also two victims v1 and v2,
the former at position p1, the latter at a position p3. I.e. σ

init := pos(r1, p1) ∧
pos(r2, p2) ∧ pos(v1, p1) ∧ pos(v2, p3) (see figure 1). The robots are supposed to
transport victims to the safety area; to this end, a reward of one is given if
there is any victim at the safety area sa, i.e. R(pos(V, sa)) = 1. Consider the
following part of an action program that specifies a behavioural policy for the
robots, where actions move and t are defined as in examples 1 and 5. It states
that a robot R either moves to the position P of a victim V if there is any, or, if
the robot is already at a position of a victim, it waits until it can transport the
victim to the safety area in collaboration with another robot.9

policy(R) := while σε do

?(pos(V, P)){move(R,P)}#
?(pos(V, P) ∧ pos(R,P)){waitFor(t(R, V, sa))}

endwhile

The robots can interpret the action program π := policy(r1) ‖ policy(r2) for a
σinit, for example for a planning horizon of 2 (because, for example, their energy
resources suffice only for this horizon). Interpretation of the program leads to
various traces due to the choice operator and due to the non-deterministic effect
of move. Rewriting of an initial configuration ξinit := σinit

1.0×0.0 × π × πε × 2 will
result in a number of configurations, two of which are considered in more detail.

ξinit →! (pos(r1, sa) ∧ pos(r2, sa) ∧ pos(v1, sa))0.9×1.0 × π × τ1 × 0

∨ (pos(r1, sa) ∧ pos(r2, sa) ∧ pos(v2, sa))0.81×1.0 × π × τ2 × 0

∨ ...

where τ1 = noop ‖ move(r2, p1);t(r1, v1, sa) ‖ t(r2, v1, sa)
τ2 = move(r1, p3) ‖ move(r2, p3);t(r1, v2, sa) ‖ t(r2, v2, sa)

9 The loop condition σε will always subsume any state, as it is the identity element
for states and subsumption is performed through Ax-matching.

30 L. Belzner

τ1 is arising from r1 waiting and r2 moving successfully to p1 before they
transport v1 to the safety area, τ2 represents the trace where both robots suc-
cessfully move to p3 and subsequently transport v2 to the safety area. Figure 1
informally illustrates σinit and the two traces τ1 and τ2.

Fig. 1. Two traces τ1 and τ2 of executing policy(r1) ‖ policy(r2) in state σinit

For the robots to decide which choice is more valuable according to reward
specification, the traces’ expected values can be determined: Ve(τ1, ξinit) = 0.9
and Ve(τ2, ξinit) = 0.81. Therefore, deciding on τ1 is the preferable choice of
actions in the state σinit.

Expected values and legal termination probabilities can also be used to prove
that executing π in σinit satisfies the PCTL property P≥0.9(♦≤2pos(V, sa)), as
τ1 ∈ T↓(ξinit) and Ve(τ1, ξinit) > 0 ∧ P+

↓ (τ1, ξinit) = 0.9 (see section 4).

6 Related Work

As mentioned in section 2.2, prominent action programming formalisms have
been developed: the situation calculus with its languageGolog [8] and the fluent
calculus with its language Flux [10]. As already outlined, the situation calculus
uses regressive fluent-wise specification of dynamics, which contrasts strongly
with modern software design where dynamics are typically progressively defined
operation-wise. Regarding this issue, the fluent calculus is more close to modern
software design paradigms, as is the approach presented in this paper. While
there is a decision-theoretic variant of Golog called DT-Golog employing the
situation calculus [15], and there is a decision-theoretic extension to the fluent
calculus (the probabilistic fluent calculus [16]), there is no procedural language
exploiting decision-theoretic evaluation for a progressive action calculus, as Flux
is purely declarative. The relationship of classical planning and model checking
has been investigated thoroughly [14], but, to the best of the author’s knowledge,
symbolic PCTL model checking approaches have not been investigated in the
context of action programming in particular.

Both Golog and Flux have been implemented in the Prolog language,
where specification of domain theories and action programs is done in terms
of a logic program. While this is a reasonable approach for the reasoning tasks

Verifiable Decisions in Autonomous Concurrent Systems 31

tackled by these formalisms, Prolog does not explicitly provide support for for-
mal, algebraic software engineering like Maude [2,3]. Thus, Maude’s features
like modularization, explicit sort-hierarchies and polymorphism as well as meta-
language operations and user-definable syntax provide additional properties to
an action language specified in rewriting logic, as rewrite theories can be im-
plemented in terms of Maude modules straightforwardly. Also, model checking
as shown in section 4 is quite naturally supported by a Maude implementation
due to its built-in search operator.

7 Conclusion and Further Work

7.1 Conclusion

This paper reports on efforts to integrate various aspects of action programming,
algebraic software engineering and model checking to ease the specification of
concurrent autonomous systems which expose formally verifiable behaviour and
are able to evaluate action alternatives in a decision-theoretic manner, allowing
them to autonomously take decisions at runtime that are sensible w.r.t. specified
system goals. Domain knowledge (i.e. a relational MDP) is specified as a rewrite
theory; system behaviour in terms of a procedural action program. Decision-
theoretic evaluation and model-checking of action programs are performed by
matching and rewriting modulo the given rewrite theory. Solutions have been
provided for typical problems of symbolically reasoning systems like the frame,
projection and legality problems. The approach supports true concurrency in the
presence of sharing, and provides facilities to specify synchronization and coor-
dination of actions. Symbolic PCTL model checking of typical system properties
has been discussed. Action programming in rewriting logic without support for
decision-theoretic concepts has been implemented in the Maude language [9].10

7.2 Further Work

Some directions for further work remain. It would be interesting to provide
support for situations with incomplete knowledge, where properties of the en-
vironment have to be actively sensed. To this end, sensing actions have to be
induced to plans, possibly considering sensing costs and expected rewards.

While explicit specification of concurrency has been discussed in this paper,
evaluation of concurrent programs is performed centralized. In large-scale multi-
agent domains it is valuable to decentralize the decision making process by local-
izing and distributing knowledge. In order to coordinate behaviour, sophisticated
communication and interaction models (e.g. scel [17]) should be integrated with
reasoning abilities of agents.

Finally, the relation of action programming and model checking discussed in
section 4 only treated a particular class of PCTL formulae. Generalizing this
approach as done for classical planning [14] could allow for specification of more
complex goals and model checking of more complex system properties.

10 http://www.pst.ifi.lmu.de/~belzner/action-programming/

http://www.pst.ifi.lmu.de/~belzner/action-programming/

32 L. Belzner

References

1. Thielscher, M.: Action Programming Languages. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers (2008)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.F.: Maude: specification and programming in rewriting logic. Theor. Comput.
Sci. 285(2), 187–243 (2002)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

4. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

5. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. John Wiley & Sons, Inc., New York (1994)

6. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order
mdps. In: Nebel, B. (ed.) IJCAI, pp. 690–700. Morgan Kaufmann (2001)

7. Mccarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4, 463–502 (1969)

8. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems, illustrated edn. The MIT Press, Massachusetts (2001)

9. Belzner, L.: Action programming in rewriting logic. TPLP 13(4-5-online-suppl.)
(2013)

10. Thielscher, M.: Flux: A logic programming method for reasoning agents. TPLP 5(4-
5), 533–565 (2005)

11. Eker, S., Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and
rewriting. Electronic Notes in Theoretical Computer Science 174(11), 3–25 (2007)

12. Eker, S.: Associative-commutative rewriting on large terms. In: Nieuwenhuis, R.
(ed.) RTA 2003. LNCS, vol. 2706, pp. 14–29. Springer, Heidelberg (2003)

13. Baier, C., Katoen, J.P., et al.: Principles of model checking, vol. 26202649. MIT
Press, Cambridge (2008)

14. Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M.
(eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 1–20. Springer, Heidelberg (2000)

15. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S., et al.: Decision-theoretic, high-
level agent programming in the situation calculus. In: AAAI/IAAI, pp. 355–362
(2000)

16. Hölldobler, S., Skvortsova, O.: A logic-based approach to dynamic programming.
In: Proceedings of the Workshop on Learning and Planning in Markov Processes–
Advances and Challenges at the Nineteenth National Conference on Artificial In-
telligence (AAAI 2004), pp. 31–36 (2004)

17. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-based approach
to autonomic computing. In: Beckert, B., Bonsangue, M.M. (eds.) FMCO 2011.
LNCS, vol. 7542, pp. 25–48. Springer, Heidelberg (2012)

Coordination of ECA Rules
by Verification and Control

Julio Cano1, Gwenaël Delaval2, and Eric Rutten1

1 INRIA, Grenoble, France
{julio-angel.cano-romero,eric.rutten}@inria.fr

2 LIG / UJF, Grenoble, France
gwenael.delaval@inria.fr

Abstract. Event-Condition-Action (ECA) rules are a widely used lan-
guage for the high level specification of controllers in adaptive systems,
such as Cyber-Physical Systems and smart environments, where devices
equipped with sensors and actuators are controlled according to a set of
rules. The evaluation and execution of every ECA rule is considered to be
independent from the others, but interactions of rule actions can cause
the system behaviors to be unpredictable or unsafe. Typical problems
are in redundancy of rules, inconsistencies, circularity, or application-
dependent safety issues. Hence, there is a need for coordination of ECA
rule-based systems in order to ensure safety objectives. We propose a
tool-supported method for verifying and controlling the correct interac-
tions of rules, relying on formal models related to reactive systems, and
Discrete Controller Synthesis (DCS) to generate correct rule controllers.

1 Coordination Problems in ECA Rules

Event-Condition-Action (ECA) rules are defined [13] as a set of rules where
each of them ’autonomously reacts to actively or passively detected simple or
complex events by evaluating a condition or a set of conditions and by executing
a reaction whenever the event happens and the condition is true’. The form of
the rule is: ON Event IF Condition DO Action. Some characteristics are that:

– a rule is activated only by events;
– its execution is autonomous and independent of other rules in the system;
– it implements a reaction to the incoming event;
– it contains a guarding condition to execute such actions.

Research on ECA rules is often related to active database management systems
(ADBMS) [3,14], where events represent modifications produced in the database,
and ECA rules are used to control the integrity. But they have also been used
in different control environments [8] or adaptation frameworks [10], and there
are many different implementations of ECA rule-based systems. ECA rules are
a language derived from practice, and not constructed from a formal definition
in the beginning. This is comparable to other cases like StateCharts and its mul-
tiple variants and implementations (e.g. in UML, or in the StateMate tools of

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 33–48, 2014.
© IFIP International Federation for Information Processing 2014

34 J. Cano, G. Delaval, and E. Rutten

iLogix [1], or in Stateflow/Simulink), or like works on the verification of imple-
mentation languages like Java or C. Therefore, there is no unique reference or
formal semantics, and they can not be submitted to formal analysis as such.

Coordination Problems. The nature of ECA rule-based systems shows different
problems in their execution, the most extended [18] being as follows.

Redundancy means that there are two (or more) rules in the system whose
functionality is replicated. This can happen in large rule systems where rules are
written by different persons. An example in a smart home automated system is
to have two similar rules: one detects the presence of a person in a room and,
if temperature is lower than 15 degrees, then turns on room heaters. The other
rule does the same, but also closes the room door. This can be described in ECA
syntax as follows (a concrete grammar is described later in Section 3):

ON presence IF (temperature_get < 15) DO heater_on
ON presence IF (temperature_get < 15) DO heater_on, door_close

This represents an overload in the rules system in the best of cases, and an
undesired repetitive activation of orders on environment devices.

Inconsistency occurs when contradictory actions are sent to devices. This can
occur if multiple rules are activated at the same time, and their execution order
may render different final states in the system. An example is: upon the presence
of a person in the room lights are activated, and TV will also be activated. A
third rule will turn off the lights then the TV is turned on.

ON presence IF true DO lights_on
ON presence IF true DO TV_on
ON TV_light IF TV_on DO lights_off

Depending on the order of execution of rules, the final state of the system will
be different. If rules 2 and 3 are activated before rule 1 is executed then the final
state of lights will be different than executing rule 1 before rule 3. So the result
of the execution of these rules is not predictable.

Circularity occurs when rules get activated continuously without reaching a
stable system state that makes them finish their execution. For example, the
first two rules will try to change the second light to a state different from the
first light ; the third and fourth rules will try to maintain both in the same state.

ON light1_change IF light1_on DO light2_off
ON light1_change IF light1_off DO light2_on
ON light2_change IF light2_on DO light1_on
ON light2_change IF light2_off DO light1_off

Application-specific issues can be considered additionally in an environment.
An example is ordering to open a windows and to turn on the room heaters. It
can be considered as a contradiction by the user. In order to know which actions
are contradictory, specific information must be provided about the environment.
In this paper we will consider that multiple actions sent to the same device are
contradictory. Only one action can be requested to every device at every instant.

Coordination of ECA Rules by Verification and Control 35

Coordinating ECA rules is therefore necessary in order to enforce safety proper-
ties. One of the problems of ECA rules is that they are considered to be executed
independently or autonomously. This means that possible interactions between
rules and their effects are not controlled. In contrast, synchronous reactive lan-
guages, used to design and program control systems, provide some characteris-
tics, such as determinism and verifiability [9]. This is useful for the safe execution
of control systems. The objective of this work is to provide validation of the ECA
rule system before and during the execution of the system, by relating them to
synchronous languages. Here, safety is meant for the control system and people
in the environment controlled by this control system. The system should not go
into undesired states, and controlled devices are considered part this state.

Our approach proposed in this paper consists of a model transformation from
an ECA rules description to a synchronous programming language, which will
be used to validate the set of rules. ECA rule systems are validated, detecting
the described issues. Our proposal constitutes a formal semantics of ECA rules,
covering variants of rule engines, and defined concretely by translation into a
formally defined language, for which formal tools are available. Rules execution
is also controlled and coordinated to avoid the described problems at run-time.
We will concentrate on small or home environment as target systems, although
our results are generic enough to be applied in any ECA rule-based system.

The Heptagon/BZR programming language [2] is used here because of its
capability to express behavioral invariants in the system in the form of contracts,
which allows verifying the application by model checking as well as controlling
or coordinating the execution according to the described invariants.

In the following, Section 3 formalizes the ECA rules used in this paper. Section
4 shows their translation to a synchronous program, on which Section 5 shows
how we perform verification and control. Section 6 concludes.

2 State of the Art

2.1 ECA Rule Based Control Systems and Their Validation

ECA rule systems are widely used to control the environment as well as to control
reconfiguration of software systems. Here are described the closest proposals to
our approach and ECA rule-based systems verification and validation. In [10], an
adaptation framework is proposed. It detects the state of the system in the form
of events. When these events are detected the associated rules can be applied.
These rules will perform the required actions according to the detected state, to
adapt the behavior of the system to the changes of the environment. In [16,17], a
method is proposed to design applications with reconfiguration capabilities. At
design time, invariants can be described for every state and transitions between
states. These invariants are used in the design of Petri Nets representing the
desired behavior of the application. Designed Petri Nets can be used to check
the previously defined invariants and to create prototypes of the system. The
system is supposed to be safe by design, if the design is correctly translated

36 J. Cano, G. Delaval, and E. Rutten

to the implementation. No control is performed at run-time about the specified
invariants. A mixture of rule based system and utility functions is proposed in
[5]. Rules are mainly used to change the priorities for the utility functions when
a state change is detected. The number of possible available configurations can
grow exponentially, so calculation of the utility functions at run-time is costly.

The following work cover basic aspects in verification and validation of ECA
rule systems. In [15], a way to validate a set of rules in a knowledge based systems
is proposed. It defines different types of rules to create a rule net consisting of
chained rules, which explicitly invoke other rules. In the rule net, it checks if
different paths contain inconsistencies according to the constraints defined in
the system or other rules. In [11], an infrastructure is described to detect and
solve static (compilation time) and dynamic (execution time) conflicts for a
framework of WS-ECA. This framework is based in the use of ECA rules for
Web Services. The existence of distributed devices with their own rules may
lead to conflicting rules. No implementation is described for this infrastructure.

In [18], a more complete proposal is described to verify an ECA rule based
system. It starts formalizing the system to be able to define the problems of
redundancy, inconsistency and circularity. Three levels are described regarding
the verification and validation of these problems. Level 1 refers only to rule
set level, where no information about run-time execution is considered. Level 2
takes into account direct results of the execution of actions on the environment.
This means actions that will directly provoke new events activating rules. Level 3
takes into account all the possible responses of the environment, which cannot be
previously known because they are completely random or unpredictable. Certain
problems can only be verified at some levels because of the required information
to perform such verifications. In [4], a method is provided to verify ECA rule
systems with formal methods, transforming the ECA rules set into a set of
different kinds of automata for every part of the process, and using the automata
verification tool Uppaal. This verification is limited to performing model checking
of timed automata and their correspondence to the provided ECA rule set.

Every ECA rule-based system implementation imposes different execution
semantics. These semantics can vary from parallel synchronized execution of
rules to execution in depth first and discard of previously activated rules. So the
result of the execution of a rule set differs depending on the execution policy
of the implementation. All the proposals described above are centered in one
kind of ECA rule system execution policy, or they do not take into account that
results depend on the execution policy used by every different implementations.
In this paper, we propose a solution that takes into account the desired execution
policy of the target implementation to verify an ECA rules set.

2.2 Synchronous Reactive Programming and Heptagon/BZR

Reactive systems are interactive systems that constantly communicate with their
environment taking into account the timing needs of this environment [9]. These
systems will work reacting to received events or by sampling incoming signals.
Synchronous programming languages allow programming of reactive systems

Coordination of ECA Rules by Verification and Control 37

using automata, where reactions will correspond to the automata transitions.
Computations and transitions performed by composed automata are considered
to occur in parallel at the same time instant. This intrinsic synchronism makes
it easier to preserve the determinism, and allows these programming languages
to be based on sound formal semantics. Thus, these languages are provided with
tools for the verification (e.g., by automated test or model-checking) or control
(e.g., by controller synthesis) of programs.

Heptagon/BZR [2] is a synchronous dataflow programming language with
support for equations and automata. This language also provides a contract
mechanism allowing the use of discrete controller synthesis (DCS) within the
compilation, using the Sigali synthesis tool [12]. The discrete controller synthe-
sis method is based in partitioning input variables into controllable and uncon-
trollable ones. For a given objective, such as staying in a subset of states, its
DCS algorithm will automatically compute, by symbolic exploration of the state
space, the constraint on controllable variables, so that the behavior satisfies the
objective, whatever be the values of the inputs from the environment. Figure
1(a) represents the control loop. The automata-based program is in charge of
controlling the environment. The behavior of the automata is constrained by
the synthesized controller, which is in charge of maintaining the system in the
desired subset of states. The main elements of a Heptagon/BZR program are:

– Nodes: blocks of equations or automata with input and output signals
– Equations: determining the value of node outputs. A set of equations in

parallel are separated by semicolons.
– Automata: mode automata using states, input and output signals.
– Contracts: describing invariants to be enforced by control at execution.

The compiler generates executable code in C or Java. Figure 1(b) shows an
example of Heptagon/BZR code. It contains a delay node, with an automaton
which makes use of a controlled variable to delay the emission of a received
signal. A main node makes use of this automaton. It includes a contract to
enforce that both signals are not emitted at the same time. Heptagon/BZR
makes use of Sigali at compilation time to synthesize the needed controller that
will provide the correct value for every controlled variable (c1 and c2), and
hence forcing the delay of one of the signals. The control variable (c) in Figure
1(b) determines when the signal has to be delayed. When a new_sig is received,
depending on the value of the controlled variable, the new_sig value is emitted
(staying in the Idle state) or delayed (performing a transition to the Waiting
state) until the controlled variable indicates that it can be released. The value of
the out variable is described in function of new_sig and the controlled variable.
Automata transitions will be effective in the next step of its execution. To avoid
delays in the desired automaton output, the value of the out variable is described
in function of new_sig and the controlled variable. This allows emitting the
desired value in the same execution step.

Heptagon/BZR has been used by some work in smart home / environment
context, to design safe control systems. In [19], Heptagon/BZR is proposed for
the autonomic management of small environments. The behavior of devices is

38 J. Cano, G. Delaval, and E. Rutten

(a)

DCS ctrlr

model
automaton

system
managed

BZR program

executemonitor

(b)

node delay
(new_sig: bool; c:bool)

returns (out: bool)
let automaton
state Idle
do out=new_sig & c
until new_sig & not c

then Waiting
| new_sig & c then Idle

state Waiting
do out=c
until c then Idle

end tel

node main
(signal1, signal2: bool)

returns (d1, d2:bool)
contract
enforce not (d1 & d2)
with (c1,c2:bool)
let
d1 = delay(signal1, c1);
d2 = delay(signal2, c2);
tel

Fig. 1. Discrete control: (a) control model; (b) controlled automaton example

represented using automata and control objectives are described as contracts. For
instance, it can avoid the request to turn on a device if it can generate an energy
consumption higher than the specified. In [7], a similar approach is proposed
to provide safe environment for disabled people. However, none of these works
featured ECA rules as a high-level description language. In another domain, the
coordination of multiple autonomic loops in adaptive computing systems has
been approached with a discrete control approach [6].

3 Modeling ECA Rules

Here we describe a formalization of an ECA rule-based system to be able to
translate it into a Heptagon/BZR program. The ECA rule-based system is as-
sumed to be connected to the physical world through devices that may work
as sensors or actuators. The control system loop is generated providing devices
information about the environment to the rules and then sending the result of
rules again to devices. A rule based system S = (R,E,D) is composed of a set
of rules R, a set of events E and a set of devices D. We consider that rules,
events, devices and signals are identified by unique names, taken in a name set
N . Thus, events are names, i.e., E ⊂ N . Devices d ∈ D are a virtual repre-
sentation of physical devices in the system as sensors and actuators. A device
d = (n, I, O), named n, is composed of a set of input signals I ⊂ N and a
set of output signals O ⊂ N . In the following, we will denote by Expr(O) the
set of Boolean expressions defined on the set of output signals O. The function
EventExpr ∈ E → Expr(O) maps events to boolean expressions based on output
signals received from devices. The event e ∈ E is activated whenever the expres-
sion EventExpr(e) is true. Rules r ∈ R are defined by a tuple r = (n, e, c, A),
where n ∈ N is the name of the rule, e ∈ E the activating event, c ∈ Expr(O)
the condition, and A ⊂ I a set of actions to perform. The condition is a boolean
expression based on the output of devices. If the event occurs and the condition
is true, the corresponding actions will be performed.

Figure 2 shows the concrete grammar used by the implemented tool to trans-
late a ECA rule-based system into a Heptagon/BZR program. The descriptions

Coordination of ECA Rules by Verification and Control 39

<ECA-system> ::= <events_list> <rules_list> <devices_list>
<event_lists> ::= <event> | <event> <event_lists>
<event> ::= EVENT <event_name> IF <expression> | EVENT <event_name> IS INTERNAL
<rules_list> ::= <rule> | <rule> <rule_list>
<rule> ::= ON <event_name> IF <condition> DO <action_list>
<action_list> ::= <action_name> | <action_name>, <action_list>
<device_list> ::= <device> | <device> <device_list>
<device> ::= DEVICE <device_name> [SIMULTANEOUS (DISCARD | DELAY)]

[INPUTS (<input_list>)] [OUTPUTS (<outputs_list>)]

Fig. 2. ECA rule-based system description grammar

contains lists of events, rules and devices. Events can be internal (generated by
rules as an action, indicated by the INTERNAL term) or be generated if the de-
scribed expression becomes true (when the term IF is used in its description).
Rules contain the event name that activates them (preceded by term ON), a
boolean expression to determine if certain conditions apply (preceded by term
IF), and the list of actions that have to be performed if event and condition are
true (preceded by term DO). The device contains the device name, a specification
of the policy to be used in the device when multiple simultaneous actions are
sent to this device, a list of inputs and a list of outputs of the device. The term
SIMULTANEOUS allows specifying the policy used when multiple signals are sent
to the same device. DISCARD allows discarding all the signals but one. DELAY
allows delaying all the signals but one. Delayed signals will be emitted later,
in following executions of the controller, in order of priority. The priority in all
cases is given by the order in which input and output signals are declared. Inputs
and outputs are optional in the description of the device. At least one should be
indicated. If the device policy is not specified, the default value is DISCARD.

Figure 3 shows an example including rules from Section 1: light1_change
will be activated if light1 is turned on or off. The needed events and devices are
also described: presence and temperature sensors are used, with only outputs.

EVENT presence:BOOL IF presence_get
EVENT TV_lights:BOOL IF TV_on
EVENT light1_change IF light1_on or light1_off
EVENT light2_change IF light2_on or light2_off

ON presence IF (temperature_get < 15) DO heater_on
ON presence IF (temperature_get < 15) DO heater_on, door_close
ON presence IF true DO light1_on
ON presence IF true DO TV_on
ON TV_lights IF TV_on DO light1_off
ON light1_change IF light1_on DO light2_off
ON light1_change IF light1_off DO light2_on
ON light2_change IF light2_on DO light1_on
ON light2_change IF light2_off DO light1_off

DEVICE presence OUTPUTS (get:BOOL)
DEVICE temperature OUTPUTS (get:BOOL)
DEVICE light1 SIMULTANEOUS DISCARD INPUTS (on:BOOL, off:BOOL) OUTPUTS (on:BOOL, off:BOOL)
DEVICE light2 SIMULTANEOUS DISCARD INPUTS (on:BOOL, off:BOOL) OUTPUTS (on:BOOL, off:BOOL)
DEVICE TV SIMULTANEOUS DELAY INPUTS (on:BOOL, off:BOOL) OUTPUTS (on:BOOL, off:BOOL)

Fig. 3. ECA rule-based system description example

40 J. Cano, G. Delaval, and E. Rutten

4 Transformation to Synchronous Language

We propose a transformation to Heptagon/BZR code from the described ECA
rule-based system. As shown in Figure 4, the generated Heptagon/BZR program
will be defined in the body of a main node. This node is structured into three
sub-nodes named events, rules and devices. The main node will receive all
the sensor signals from the devices. The events node will use them to determine
if events occur according to their definition. Events and devices signals are then
passed to the rules node, where rules are activated according to their firing
event and condition. Actions corresponding to activated rules are then used in
the devices node, to be processed before being sent to devices, according to the
corresponding device policy. The Rule Engine contains the execution policy to
be simulated, determining the behavior of the rule-based system. Its output is
the activated internal events, according to the specified policy.

4.1 Code Transformations

Figure 5 shows the skeleton for the code generated from a textual representation
of an ECA rule-based system according to the grammar of Figure 2, with terms
that are defined in the following. The order of the program is that nodes are de-
fined before being used as sub-nodes in later nodes. The main node (e) invokes
the sub-nodes events (defined in (a)), rules (c) and devices (d) nodes. The
rules node (c) invokes the sub-node rule_engine (b), which models the execu-
tion policy, as described in 4.2. Event detectors, rules and devices are translated
as lists of equations inside of the indicated nodes.

The developed tool implements several transformation schemes to translate
events, rules and devices descriptions into Heptagon/BZR code, which are de-
scribed for every element. We consider an ECA system S = (R,E,D). The
function name is used to define Heptagon/BZR variable names from the set

Rule 1

Rule 2

Rule 3

Rule 4

Event 2

Event 1

Event 3

R
ul

e
E

ng
in

e

4Device

Device 3

Device 2

Device 1
Sensors Events

Actions

Internal Events

main

events rules devices

Fig. 4. Heptagon/BZR code detailed model

Coordination of ECA Rules by Verification and Control 41

(a)

node events(<devices_outputs>)
returns (<event_names>)

let <event_detections>
tel

(b)

node rule_engine(<event_names>)
returns (<final_event_names>)
<execution_policy_contracts>

let <execution_policy>
tel

(c)

node rules(<event_names>,
<devices_outputs>)

returns (<request_devices_inputs>)
var <temp_event_names>:bool;
<rule_names>:bool;

let (<temp_event_names>)
= rule_engine (<event_names>) ;

<rules_activations> ;
<signals_activation>

tel

(d)

node devices(<request_devices_inputs>)
returns (<final_devices_inputs>)
contract
enforce <device_policy_contracts>
with <device_policy_controllables>

let
<devices_policies>

tel

(e)

node main(<devices_outputs>)
returns (<final_devices_inputs>)
var <event_names> ;

<request_devices_inputs> ;
let
(<event_names>)

= events(<devices_outputs>) ;
(<request_devices_inputs>)

= rules(<event_names>,
<devices_outputs>);

(<devices_inputs>)
= devices(<request_devices_inputs>);

tel

Fig. 5. Program structure in Heptagon/BZR

N of rules, events and devices names. We consider for the sake of clarity and
simplicity that Boolean expressions in the ECA language corresponds to the
Heptagon/BZR ones, and thus they can be used as they are.

Figure 6 gives transformations to Heptagon/BZR for several terms. The <de-
vice_outputs> list is generated over all the devices and their corresponding out-
puts. Similarly, we can generate <device_inputs>. The <final_event_names>
list is build similarly to <event_names>, but adding the “final_” prefix, to dif-
ferentiate inputs and outputs of the rule_engine node. Other lists are created
similarly, <request_devices_inputs> and <temp_event_names>, but adding
“req_” or “temp_” prefixes respectively to the names in their counterpart lists.

The <rules_activation> defines the Boolean corresponding to activation of
a rule if the corresponding event and its condition are true at the same time.

<devices_outputs> = { name(n)_ name(o) | (n, I, O) ∈ D, o ∈ O }

<event_names> = { name(e) | e ∈ E }

<event_detection> = { name(e) = EventExpr(e) | e ∈ E }

<rule_names> = { name(n) | (n, e, c,A) ∈ R }

<rules_activation> = { name(n) = final_name(e) & c | (n, e, c, A) ∈ R }

<signals_activation> = { name(a) =
∨

(n,e,c,A)∈R|a∈A name(n) | ∃(n, I, O) ∈ D, a ∈ I }

Fig. 6. Transformations for various sets

42 J. Cano, G. Delaval, and E. Rutten

<device_policy_contracts> = true

<device_policy_controllables> = ∅

<device_policy> =
{

final_name(n)_name(o) = req_name(n)_name(o)

& not
∨

o′∈O,o≺o′
final_name(n)_name(o′) | (n, I, O) ∈ D, o ∈ O

}

Fig. 7. Transformation for devices (discarding policy)

<device_policy_contracts> =∧
(n,I,O)∈D,o1 ,o2∈O,o1 �=o2

not (final_name(n)_name(o1) & final_name(n)_name(o2))

<device_policy_controllables> = { name(n)_ name(o)_c | (n, I, O) ∈ D, o ∈ O }

<device_policy> = {final_m= delay(req_m,m_c) |(n, I, O) ∈ D, o ∈ O,m = name(n)_ name(o)}

Fig. 8. Transformation for devices (delaying policy)

Then, <signals_activation> allows activating every device input if it has been
requested by any of the rules. Given that multiple rules could activate the same
signal, a disjunction is used to fuse them.

Transformation for devices differs depending on the specified execution policy
to apply on signals sent to the device. Actions from rules correspond to devices
inputs. The two specified strategies are discarding or delaying contradictory
signals sent to a device. Equations are used in the first case, shown in Figure 7,
to discard contradictory signals: the total order ≺ is used to give priorities. Once
a signal with higher priority has already been activated, the rest are discarded.
The <device_policy> equations are composed for every device in the system. In
the second case, shown in Figures 8, a contract is used to delay signals. Only
one of them is sent to the device. The delay automaton from Figure 1 will store
the input signal until it can be released and sent to the device. The generated
controller will be in charge of selecting the right values for the controlled variables
to send only one signal at a time and delay the others.

node rule_engine(<event_names>) returns (<final_event_names>)
contract enforce

∧
e1,e2∈E,e1 �=e2

not (final_name(e1) & final_name(e2))

with { name(e)_c | e ∈ E }
let { final_name(e) = delay(name(e), name(e)_c) | e ∈ E }
tel

Fig. 9. Delayed execution model

Coordination of ECA Rules by Verification and Control 43

node rule_engine(<event_names>) returns (<final_event_names>)
let { final_name(e) = name(e) | e ∈ E }
tel

Fig. 10. Parallel execution model

4.2 Execution Models

As said before, the transformation is designed to support different execution
policies in ECA rule-based systems. We currently support transformations for
parallel and delayed execution. The code generation for the rule_engine node
will differ for every case. For the delaying of events, as shown in Figure 9, the
delay automaton is used as for the device node code generation. Only one event
will be sent to the rules node for every execution of the controller. For the
parallel execution model, as shown in Figure 10, all the events are allowed to
be activated in the same execution step without restrictions. Other execution
policies can be added in this node to simulate any ECA execution model.

5 ECA Rule Set Verification and Control

The previous transformation makes it possible to handle the problems described
in Section 1 and to validate, verify or control the execution of the ECA rule
set. Different kinds of verifications can be performed on the ECA rule based
system, depending on the available information, as described in [18]. Verifications
can be static (performed at compilation time) or dynamic (performed at run-
time). They can also be classified as generic ECA rule verifications or domain
specific issues that can verified. Diagnosis information about the detection of
static errors can be extracted in the form of rule identifiers or line position, as
well as identifiers of involved signals, by instrumenting the generated code.

5.1 Verifications at Compilation Time

The first verification to be performed is the detection of syntax errors. The use
of undeclared events or unavailable device actions are examples of such errors
in the declaration of rules. Syntax errors are easily detected by any compiler or
interpreter when recognizing the ECA rules source code.

Redundancy of rules is detected when the condition and actions of one rule
represent a subset of conditions and actions of the other rule. This means that
having two rules r1 = (n1, e1, c1, A1) and r2 = (n2, e2, c2, A2) where e1 = e2,
c1 ⇒ c2 and A1 ⊆ A2.

Redundant rules are not directly detected by Heptagon/BZR. Duplicated rules
will be compiled and executed at run-time without problems. Rule actions will
be activated using the or operator, so the results will not result in redundancy.
Here is a simple example of redundancy:

44 J. Cano, G. Delaval, and E. Rutten

ON presence IF true DO Tv_on
ON presence IF true DO Tv_on

This example generates the following Heptagon/BZR code:
rule6 = (presence) & (true);
rule7 = (presence) & (true);
req_tv_on = rule6 or rule7;

The Sigali tool is used to solve this problem. The redundancy can be better
checked using this tool. The capability of working with equations [12] in Sigali
is used to detect the situation where the condition of one rule is included in the
condition of another rule, thus making them redundant. For Sigali this means
that the solutions for the equation c1 = true is a subset of the solutions of
c2 = true. Sigali code performing this check is generated for every couple of
rules that fulfills the following conditions:

– Rules are activated by the same event
– The set of actions of one rule is a subset of actions of the other one.
– The set of variables used in the conditions of both rules are not disjoint.

This filtering also helps reducing the quantity of operations in Sigali.
Inconsistency is also detected at compilation time. It can be defined as

the result of contradictory actions, provided as result of activation of differ-
ent rules. It can be formalized as having two rules r1 = (n1, e1, c1, A1) and
r2 = (n2, e2, c2, A2) where e1 = e2 and c1 = c2, but A1 and A2 are contradictory.
As previously defined in Section 1, we consider as contradictory actions sending
more than one signal to the same device at the same step of the rule system.
Due to having the same event and condition to be activated, they will always
be activated together, generating contradictory actions, even if not executed
simultaneously. This verification is performed by compiling the corresponding
Heptagon/BZR contracts on the device node, but not discarding or delaying sig-
nals. The Sigali tool will detect inconsistencies failing to generate the controller,
indicating that the program it not executable regarding the contracts.

Circularity generated by internal events can be detected by Heptagon/BZR,
for the case of the parallel execution model, as a causality error at compilation
time. The following code generates a circularity problem:
ON internal1 IF true DO internal2
ON internal2 IF true DO internal3
ON internal3 IF true DO internal1

A dependency cycle occurs in the definition of rules in a way that these rules
are always activating themselves. The circularity is detected independently of
the number of involved events. The generated code is as follows:
rule0 = (internal3) & (true);
rule1 = (internal2) & (true);
rule2 = (internal1) & (true);
internal2 = rule2;
internal1 = rule0;
internal3 = rule1;

Coordination of ECA Rules by Verification and Control 45

The dependency cycle will be detected by Heptagon/BZR as a causality error.
Detection is conservative, so even if conditions in rules may avoid this depen-
dency for some values, it is detected as a possible violation.

5.2 Control at Run-Time

It can not be foreseen at compilation time if two different rules with different
events and contradictory actions will be activated at the same time instant at
run-time. Coordination or control techniques have to applied in that case. Hep-
tagon/BZR is designed to provide this kind of run-time control.

Inconsistency at run-time is controlled with the already described code gen-
erated for the devices. Contradictory signals can be discarded or delayed depend-
ing on the chosen policy. This provides more control on the execution of rules
than avoiding the rules. In case that one rule has more than one action, only
the inconsistent actions will be discarded or delayed, allowing the rest of ac-
tions to be performed. In this case, inconsistency is not only detected, as in the
compilation time, but solved using the order priority to discard or delay signals.

Circularity is detected using automata and model checking capabilities of
Heptagon/BZR, for two different circular behaviors. Automata are used to rep-
resent the behavior of devices. The actual state of the device and possible tran-
sitions are represented. Automata are designed to send the required signals to a
device only if it represents a change of state in the signal. In this case the action
of the corresponding rule is avoided, interrupting an endless chained execution
of rules. Figure 11(a) represents an automaton for a devices with two states.
The automaton receives requests to change the state. The outputs are the ac-
tual state of the device (st_On or st_Off become true or false respectively), and
the signal to change the state of the device (On or Off). These signals are only
emitted if the devices is not already in this state.

The other possibility is that rules continuously modify the state of a device.
This represents an oscillation in the state of the device. An observer automaton
is used to detect undesired oscillations. Oscillations can be considered unde-
sired if they have not been generated by external events, this means not directly
generated by the execution of rules. For instance, user actions are considered
external events, while a light turned on by a rule is not an external event. In

(a) Off On

Req_On

Req_Off

Req_On

Req_Off

On

Off

st_On

st_Off

(b)

Ok

tick

On & not tick

Off & not tick

On & not tick

Off & not tick

Off

On

Error

tick

tick

Fig. 11. (a) Two states device behavior (b) Observer for oscillation detection

46 J. Cano, G. Delaval, and E. Rutten

Figure 11(b) an automaton is represented. This is an observer automaton able
to detect if the state of a two states devices is oscillating. A tick signal is used
to represent the activation of an external event. In case that the oscillation is
produced by the presence of external events, then it is considered as a desired
oscillation. In case of the absence of the tick signal, the oscillation is considered
as undesired. To avoid this situation, besides the automaton, a contract is in-
cluded in the Heptagon/BZR code. This contract indicates that the Error state
must not be reached. The use DCS in Heptagon/BZR can control the avoidance
of this oscillation at run-time using the delaying automata.

node device1(on, off: bool; c:bool) returns (st_on, st_off: bool; power:int)
let
automaton
state Off do st_off = true; st_on = false; power = 0;
until on & c then On

state On do st_on = true; st_off = false; power = CONSUMPTION;
until off & c then Off

end
tel

node devices(req_d1_on, req_d1_off: bool; req_d2_on, req_d2_off: bool)
returns (st1_on, st1_off: bool; ... ; power:int)

contract
enforce (power ≤ LIMIT)
with (dev1_c, dev2_c:bool)

var power1, power2:bool
let
power = power1 + power2;
(st1_on, st1_off, power1) = device1(req_d1_on, req_d1_off, dev1_c);
(st2_on, st2_off, power2) = device1(req_d2_on, req_d2_off, dev2_c);
...

tel

Fig. 12. Application-specific scenario behavior control

Application-specific issues can be considered additionally to the above
generic ECA rule-based system issues, for specific scenarios with specific require-
ments. These requirements can also be expressed in Heptagon/BZR, to provide
more control on the ECA rule set execution. These requirements are also diffi-
cult to express in ECA rules, because of the lack of language support to describe
them, but their violation would cause inconsistencies during the execution.

Additional information is required about the environment to be able to per-
form the specific control actions on the environment, following the approach in
[19]. An example of such application-specific scenario requirements would be to
forbid an energy power consumption higher than a given threshold LIMIT. A
model should be provided in the form of automata representing the devices be-
haviors. Figure 12 shows an automaton called device1, representing the behavior
of one device type, with states On and Off, associated with consumption levels,
here valued for the example at 0 and CONSUMPTION. A node called devices,
shown here only partially, describes a composite system with two such devices,
each represented by an instantiation of the former node. The overall power con-
sumption is defined as the sum of local power consumptions. A contract is then

Coordination of ECA Rules by Verification and Control 47

declaratively specified, as defined in Section 2.2, such that the global power is
lower than the given limit. DCS is applied during the compilation of this pro-
gram, to automatically solve the control problem. The generated controller will
avoid entering the On state of a device if it makes the total power consumption
to overcome the threshold. An ECA rule would be able to detect the situation
when it is already occurring, whereas DCS performs an analysis predicting possi-
ble problems, and the controller generated by Heptagon/BZR will directly avoid
reaching the undesired state.

6 Conclusions

We propose a novel method for coordination in ECA rule-based systems, by
verification and control based on behavioral models, in order to avoid problems
of redundancy, inconsistency, and circularity, as well as application-specific is-
sues. This method is based on the use of model checking and a control technique
(DCS) which provides safe control during the execution of the system. Verifica-
tions are performed at compilation time with simple transformations and model
checking, ensuring that the desired system defined invariants apply. So, for the
execution of the ECA rule set, the generated controller ensures that the desired
properties will always apply. Our method also takes into account different pos-
sible execution models for the ECA rule-based system. These execution models
can be modeled, ensuring that the final implementation of the system is cor-
rectly verified. Our work offers users with a combination of a high-level ECA
rules language with the compiler and formal tool support of Heptagon/BZR,
which can seen in both ways: formal support of ECA rules, and user-friendly
language above Heptagon/BZR.

We are presently working on the integration of the generated controller, using
the executable code in C or Java, in an experimental embedded platform for small
or home environments where users could introduce ECA rules in the system
to control home sensors and actuators using the automatically generated safe
controller. We are also working on the possibility to automatically provide device
models representing their behavior. This allows specifying, at the same level
as ECA rules rather than in Heptagon/BZR, safety properties for application-
specific scenarios as the one described in last section. Other perspective involves
modular compilation and DCS, which can improve scalability of the approach,
as well as distribution of the executable code, to design distributed controllers.

References

1. Beauvais, J.-R., Rutten, E., Gautier, T., Houdebine, R., Le Guernic, P., Tang, Y.-
M.: Modeling statecharts and activitycharts as signal equations. ACM Transactions
on Software Engineering and Methodology 10(4), 397–451 (2001)

2. Delaval, G., Rutten, É., Marchand, H.: Integrating discrete controller synthesis into
a reactive programming language compiler. Discrete Event Dynamic Systems 23(4),
385–418 (2013)

48 J. Cano, G. Delaval, and E. Rutten

3. Dittrich, K., Gatziu, S., Geppert, A.: The Active Database Management System
Manifesto: A Rulebase of ADBMS Features. In: Sellis, T.K. (ed.) RIDS 1995.
LNCS, vol. 985, pp. 1–17. Springer, Heidelberg (1995)

4. Ericsson, A.: Enabling Tool Support for Formal Analysis of ECA Rules. Phd thesis,
University of Skövde (2009)

5. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Spec-
ification, Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg
(2009)

6. Gueye, S.M.K., de Palma, N., Rutten, E.: Component-based autonomic managers
for coordination control. In: De Nicola, R., Julien, C. (eds.) COORDINATION
2013. LNCS, vol. 7890, pp. 75–89. Springer, Heidelberg (2013)

7. Guillet, S., Bouchard, B., Bouzouane, A.: Correct by construction security ap-
proach to design fault tolerant smart homes for disabled people. Procedia Com-
puter Science 21, 257–264 (2013)

8. Gürgen, L., Cherbal, A., Sharrock, R., Honiden, S.: Autonomic management of
heterogeneous sensing devices with ECA rules. In: 2011 IEEE International Con-
ference on Communications Workshops (ICC), pp. 1–5 (2011)

9. Halbwachs, N.: Synchronous Programming of Reactive Systems. Springer (2010)
10. Keeney, J., Cahill, V.: Chisel: a policy-driven, context-aware, dynamic adaptation

framework. In: Proceedings POLICY 2003. IEEE 4th International Workshop on
Policies for Distributed Systems and Networks, pp. 3–14 (2003)

11. Lee, W., Lee, S., Lee, K.: Conflict Detection and Resolution method in WS-ECA
framework. In: The 9th International Conference on Advanced Communication
Technology, pp. 786–791 (February 2007)

12. Marchand, H., Bournai, P., Borgne, M., Guernic, P.: Synthesis of discrete-event
controllers based on the signal environment. Discrete Event Dynamic System: The-
ory and Applications, 1–26 (2000)

13. Paschke, A.: ECA-RuleML: An approach combining ECA rules with temporal
interval-based KR event/action logics and transactional update logics. Computer
Research Repository, abs/cs/061 (2006)

14. Turker, C., Gertz, M.: Semantic Integrity Support in SQL-99 and Commercial
Object- Relational Database Management Systems. The International Journal on
Very Large Data Bases 10(4), 241–269 (2001)

15. Yoon, J.P.: Techniques for data and rule validation in knowledge based systems. In:
Proceedings of the Fourth Annual Conference on Computer Assurance, ’Systems
Integrity, Software Safety and Process Security, pp. 62–70 (1989)

16. Zhang, J., Cheng, B.: Specifying adaptation semantics. ACM SIGSOFT Software
Engineering Notes, 1–7 (2005)

17. Zhang, J., Cheng, B.: Model-based development of dynamically adaptive software.
In: Proc. of the 28th International Conference on Software Engineering (2006)

18. Zhang, J., Moyne, J., Tilbury, D.: Verification of ECA rule based management and
control systems. In: IEEE Int. Conf. Automation Science and Engineering (2008)

19. Zhao, M., Privat, G., Rutten, E., Alla, H.: Discrete Control for the Internet of
Things and Smart Environments. In: Int. Workshop on Feedback Computing (2013)

Progress as Compositional Lock-Freedom

Marco Carbone1,
, Ornela Dardha2, and Fabrizio Montesi1

1 IT University of Copenhagen, Denmark
{carbonem,fmontesi}@itu.dk

2 University of Glasgow, United Kingdom
Ornela.Dardha@glasgow.ac.uk

Abstract. A session-based process satisfies the progress property if its
sessions never get stuck when it is executed in an adequate context. Pre-
vious work studied how to define progress by introducing the notion of
catalysers, execution contexts generated from the type of a process. In
this paper, we refine such definition to capture a more intuitive notion
of context adequacy for checking progress. Interestingly, our new catal-
ysers lead to a novel characterisation of progress in terms of the stan-
dard notion of lock-freedom. Guided by this discovery, we also develop a
conservative extension of catalysers that does not depend on types, gen-
eralising the notion of progress to untyped session-based processes. We
combine our results with existing techniques for lock-freedom, obtaining
a new methodology for proving progress. Our methodology captures new
processes wrt previous progress analysis based on session types.

1 Introduction

Progress is a fundamental property of safe programs in a language model. Intu-
itively, a program with the progress property should never get “stuck”, i.e., reach
a state that is not designated as a final value and that the language semantics
does not tell how to evaluate further [23]. Progress is well-understood in mod-
els such as the λ-calculus, and typically analysed in closed terms through type
systems. On the other hand, we have only recently begun to scratch the surface
of its meaning in models for concurrency. A basic property related to progress
in concurrency is deadlock-freedom: a process is deadlock-free if it can always
reduce unless it terminates [16]. In a deadlock-free process, some subprocesses
can get stuck. For instance, consider the following process in the π-calculus [18]:

P = (νx)
(
x?(y).0 | Ω)

where Ω is a diverging process executing an infinite series of internal actions.
Although the subterm x?(y).0 will never reduce, process P is deadlock-free. Fol-
lowing this observation, lock-freedom has been proposed as a stronger property
that requires every input/output action to be eventually executed under fair
process scheduling [15]: all communications must be reduced even if the whole
process diverges. Various static analyses, in particular many type systems, have
been proposed for ensuring deadlock- or lock-freedom [5, 6, 15–17].

� Research supported by the Danish Agency for Science, Technology and Innovation.

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 49–64, 2014.
© IFIP International Federation for Information Processing 2014

50 M. Carbone, O. Dardha, and F. Montesi

The aforementioned analyses are applied to closed processes, i.e., processes
that do not communicate with the environment. However, process models are
often used to capture open-ended systems where participants can join the sys-
tem dynamically [10, 19–21]. A recent line of work has begun investigating a
compositional formulation of progress for such systems, which are captured by
open processes missing some participants. An open process has then the progress
property if it can reduce within all adequate execution contexts, called catalysers,
that provide the missing participants [4, 8]. Interestingly, this compositionality
seems to lead back to the notion of lock-freedom, in that both notions inspect
the behaviour of subprocesses in a system. Thus, we ask:

What is the relationship between the notions of lock-freedom and progress for
open-ended systems?

Answering the question above would lead to a better understanding of the
progress property for concurrent systems. Ideally, it would allow techniques and
results obtained for one property to be applied to the other.

1.1 Contributions

We list our major contributions. Full proofs and definitions can be found in [3].

Progress through Typed Closure. We study progress and lock-freedom in the
π-calculus with sessions [25], by conservatively extending the notion of catalysers
based on session types [13, 25] (§ 3). We show that progress and lock-freedom
coincide for well-typed closed processes (§ 3, Theorem 2). Building on this result
we construct a procedure, called typed closure, that wraps an open process in
a special catalyser to transform it into a closed process. Typed closure allows
us to relate the progress and lock-freedom properties for well-typed processes: a
well-typed process has progress if and only if its typed closure is lock-free (§ 3,
Theorem 4), i.e., progress is a compositional form of the notion of lock-freedom.

Progress through Untyped Closure. We explore an alternative procedure for
closing a process that is not based on session types, but rather on the structure
of the process itself, called untyped closure (§ 4). Interestingly, we can show that
a process has progress if and only if its untyped closure is lock-free, yielding a
new characterisation of progress that can capture also untyped processes.

Progress through Lock-Freedom. We combine our results with existing tech-
niques for guaranteeing lock-freedom, obtaining a new methodology for prov-
ing progress in the π-calculus with sessions (§ 5). Specifically, we present how
Kobayashi’s type system for lock-freedom, from [15], can be reused for establish-
ing whether a process has progress. Our methodology captures new processes
wrt previous progress analysis based on session types (§ 5, Comparison).

2 The Model

In this section we introduce the π-calculus with sessions and its typing discipline,
from [25], which we will use as reference model for our investigation of progress.

Progress as Compositional Lock-Freedom 51

2.1 The π-Calculus with Sessions

Syntax. The syntax of the π-calculus with sessions is given in Fig.1.

P,Q, . . . ::= x!〈v〉.P (output) | x?(y).P (input)
| x � {li.Pi}i∈I (selection) | x � {li : Pi}i∈I (branching)
| P | Q (parallel) | (νxy)P (restriction)
| recX.P (rec) | X (call)
| 0 (inaction)

v ::= x (var) | unit (unit)

Fig. 1. π-calculus with sessions, syntax

P,Q range over processes, x, y over variables, and v over values. Values can be
either variables or the unit value unit, which abstracts basic values. An output
process x!〈v〉.P sends a value v on channel x and proceeds as process P ; the
input process x?(y).P receives a value on channel x, stores it in variable y and
proceeds as P . Process x� {li.Pi}i∈I is a generalisation of the standard selection
x� lj.Pj found in [13, 25]: it sends on channel x the selection of a label lj among
the labels in {li}i∈I , and then proceeds as the corresponding process Pj . This
generalised selection will be important for our characterisation of progress, in
§ 3. A label selection is received by a branching process x � {li : Pi}i∈I , which
offers a range of labelled alternatives on channel x followed by their respective
process continuations. Term (νxy)P binds two variables x and y in P as the two
respective endpoints of a session; when restricted together as in (νxy)P , we say
that x and y are co-variables. All the other terms are standard.

Semantics. We give semantics to the π-calculus with sessions in terms of the
reduction relation →, a binary relation over processes, defined by the rules in
Fig. 2. Rule (R-Com) is the rule for communication: the process on the left
sends a value v on x, while the process on the right receives the value on y and
substitutes the placeholder z with it. A key difference wrt the standard π-calculus
is that the subject of the output, x, and the subject of the input, y, are required
to be co-variables of each other, formalised by the external restriction (νxy).
A consequence of this is that communication happens only on bound variables.
Rule (R-Choice) models an internal choice, in which a process x�{li.Pi}i∈I non-
deterministically chooses one of its possible labelled continuations. Rule (R-Sel)
is similar to rule (R-Com), but in this case captures the communication of a
label selection. We require the label selected by the process on the left to be
among the labels offered by the process on the right. Rule (R-Rec) models the
recursion process reduction. The remaining rules and the structural congruence
≡ are standard (see [25] for a more complete explanation).

2.2 Typing the π-Calculus with Sessions

We report a typing discipline for typing sessions in processes, from [25].

52 M. Carbone, O. Dardha, and F. Montesi

(R-Com) (νxy)(x!〈v〉.P | y?(z).Q | R) → (νxy)(P | Q[v/z] | R)

(R-Choice) x � {li.Pi}i∈I → x � lj .Pj if j ∈ I

(R-Sel) (νxy)(x � lj .P | y � {li : Pi}i∈I | R) → (νxy)(P | Pj | R) if j ∈ I

(R-Rec) P [recX.P/X] → P ′ ⇒ recX.P → P ′

(R-Res) P → Q ⇒ (νxy)P → (νxy)Q

(R-Par) P → P ′ ⇒ P | Q → P ′ | Q
(R-Struct) P ≡ P ′, P ′ → Q′, Q′ ≡ Q ⇒ P → Q

Fig. 2. π-calculus with sessions, semantics

Types. The syntax of types is given in Fig. 3.

q ::= lin (linear) | un (unrestricted)

p ::= !T.U (send) | ?T.U (receive)
| ⊕{li : Ti}i∈I (select) | &{li : Ti}i∈I (branch)

T,U ::= q p (qualified pretype)
| end (termination) | 1 (unit type)
| μt.T (recursive type) | t (rec var)

Fig. 3. Session types, syntax

Let q range over type qualifiers, p over pretypes, q p over qualified pretypes,
and T, U over types. Qualifiers are lin (for linear) or un (for unrestricted) and are
used respectively to distinguish between types for sessions, i.e., channels whose
pretype is executed exactly once, and standard channel types that can be used
any number of times in parallel. In the pretypes, !T.U and ?T.U are, respectively,
the types of a sending and receiving of a value of type T with continuation of type
U . Select and branch are sets of labelled session types indicating, respectively,
internal and external choice. A type T can be a qualified pretype q p; end, the
type of a terminated session; the unit type unit; a recursive type μt.T ; or, finally,
a type variable t. Recursive types are required to be contractive. Type equality in
recursive types is based on the regular infinite trees and we consider a recursive
type and its unfolding to be equal. In the rest of the paper, we implicitly assume
that the qualifier lin is used in every qualified pretype unless it is explicitly stated
otherwise. Also, we refer to types with a lin qualifier as session types.

Session Typing. We present now the session typing discipline for the π-calculus
with sessions, which avoids communication errors such as type mismatches and
race conditions. The syntax of typing environments is defined as:

Γ ::= ∅ | Γ, x : T

Θ ::= ∅ | Θ, X : Γ

Progress as Compositional Lock-Freedom 53

un(Γ)
(T-Inact)

Θ;Γ � 0

Θ;Γ1 � P Θ;Γ2 � Q
(T-Par)

Θ;Γ1 ◦ Γ2 � P | Q

un(Γ)
(T-Var)

Θ;Γ, x : T � x : T

Θ;Γ, x : T, y : T ′ � P T⊥T ′
(T-Res)

Θ;Γ � (νxy)P

Θ;Γ1 � x : q?T.U Θ; (Γ2 + x : U), y : T � P
(T-In)

Θ;Γ1 ◦ Γ2 � x?(y).P

Θ;Γ1 � x : q!T.U Θ;Γ2 � v : T Θ;Γ3 + x : U � P
(T-Out)

Θ;Γ1 ◦ Γ2 ◦ Γ3 � x!〈v〉.P

Θ;Γ1 � x : q&{li : Ti}i∈I Θ;Γ2 + x : Ti � Pi ∀i ∈ I
(T-Brch)

Θ;Γ1 ◦ Γ2 � x � {li : Pi}i∈I

Θ;Γ1 � x : q ⊕ {li : Ti}i∈I Θ;Γ2 + x : Ti � Pi J ⊆ I
(T-Sel)

Θ;Γ1 ◦ Γ2 � x � {lj .Pj}j∈J

Θ,X : Γ ;Γ � P
(T-RecP)

Θ;Γ � recX.P

Θ(X) = Γ
(T-RecV)

Θ;Γ � X

Fig. 4. π-calculus with sessions, typing rules

We adopt the standard convention that we can write Γ, x : T only if x does
not appear in Γ , and Θ, X : Γ only if X does not appear in Θ. Therefore, we
can write Γ, Γ ′ (or Θ,Θ′) only if the two environments have disjoint domains.
Typing judgements have the form Θ;Γ � P , reading “process P is well-typed
using variables according to Γ and recursion variables according to Θ”. With
an abuse of notation, we also write Θ;Γ � x : T for “x has type T in Γ”. We
report the typing rules in Fig. 4. Rule (T-Inact) states that the terminated
process 0 is well-typed under an unrestricted Γ , i.e., a Γ containing only types
qualified with un, and any Θ. Rule (T-Par) types the parallel composition of two
processes; it uses the split operator for typing environments ◦, which is defined
by the following equations, and is undefined otherwise.

∅ ◦ ∅ = ∅
Γ ◦ x : T = Γ, x : T if x /∈ dom(Γ)

(Γ, x : T) ◦ x : T = Γ, x : T if T is not a session type,

The operator ◦ ensures that each linearly-typed channel x occurs either in P
or in Q but never in both, to avoid races. Rule (T-Var) says that a variable
x has type T if the pair x : T is in the environment Γ . Rule (T-Res) states
that (νxy)P is well-typed if P is well-typed and the co-variables have dual

54 M. Carbone, O. Dardha, and F. Montesi

types. Type duality ⊥ is standard, as ⊥c in [12], and relates two types that
describe compatible behaviours (for example, inputs are matched with outputs
and selections are matched with compatible branchings). Rules (T-In) and (T-

Out) type, respectively, the receiving and the sending of a value; these rules deal
with both linear and unrestricted types. Rule (T-Brch) types an external choice
on channel x, checking that each branch continuation Pi follows the respective
type continuation in the type of x. Similarly, rule (T-Sel) types an internal
choice communicated on channel x by checking the possible continuations. The
operator + is used to update the type of a variable with the continuation type
in order to enable typing after an input (or branch) or an output (or select)
operation has occurred. Rules (T-RecP) and (T-RecV) are standard, and type
respectively a recursive process and a recursive process variable.

The type system above guarantees type preservation.

Theorem 1 (Preservation [25]). If Θ;Γ � P and P → Q then Θ;Γ � Q.

Remark 1 (Type Safety and Well-Formedness). In [25], type safety is defined
using an auxiliary definition of well-formedness. Intuitively, all enabled actions
in a well-formed process must be such that (i) guards of conditionals are boolean
values; (ii) unrestricted channels are used in the same way; (iii) actions on co-
variables form a redex. Well-formedness is then guaranteed to follow from well-
typedness, but only in the case of closed processes due to a technicality with
condition (i). In our setting without conditionals, condition (i) does not apply
and therefore well-typed processes are always well-formed.

3 Lock-Freedom and Progress

3.1 Definitions

Lock-Freedom. Intuitively, a process is lock-free if any communication action
that becomes active during execution is eventually consumed. Below, we assume
that reduction sequences are fair, as formalised in [15].

Definition 1 (Lock-Freedom for Sessions). A process P0 is lock-free if for
any fair reduction sequence P0 → P1 → P2 → . . ., we have that

1. Pi ≡ (νx̃y)(x!〈v〉.Q | R), for i ≥ 0, implies that there exists n ≥ i such that

Pn ≡ (νx̃′y′)(x!〈v〉.Q | y?(z).R1 | R2) and Pn+1 ≡ (νx̃′y′)(Q | R1[v/z] | R2);
2. Pi ≡ (νx̃y)(x � lj .Q | R), for some i ≥ 0, implies that there exists n ≥ i

such that Pn ≡ (νx̃′y′)(x � lj.Q | y � {lk : Rk}k∈I∪{j} | S) and Pn+1 ≡
(νx̃′y′)(Q | Rj | S).

For simplicity, above we have omitted the dual cases for input and branching.

Progress. Before giving the formal definition of progress, we first need to in-
troduce some auxiliary definitions. We start with the definition of characteristic
process, which is the simplest process that can inhabit a type:

Progress as Compositional Lock-Freedom 55

Definition 2 (Characteristic Process). Given a type T , its characteristic
process �T �xg is inductively defined on the structure of T as:

(inVal) �q?1.U�xg = x?(y).�U�xg
(outVal) �q!1.U�xg = x!〈unit〉.�U�xg
(inSess) �q′?(qp).U�xg = x?(y).(�U�xg | �qp�yg)

(outSess) �q′!(qp).U�xg = (νzw)(x!〈z〉.(�U�xg | �qp�wg))

(inSum) �q&{li : (qipi)i}i∈I�
x
g = x � {li : �qipi�

x
g}i∈I

(outSum) �q ⊕ {li : (qipi)i}i∈I�
x
g = x � {li : �qipi�

x
g}i∈I

(end) �end�xg = 0

(recVar) �t�xg = g(t)

(rec) �μt.T �xg = recX.�T �xg,{t
→X}

Above, the characteristic process �T �xg is a process that implements type T on
session channel x; function g maps type variables for recursion in T to the
recursion variables in the process that implements them. The definition above is
a refinement of that in [4, 8], with two modifications. The first is an extension to
recursive processes. The second is that our rule (OutSum) produces a process
that may select any label among those reported in the selection type. Previous
work, instead, limited the characteristic process to selecting only the first label.
We will show that this difference directly refines our definition of progress.

We now define catalysers, execution contexts that contain only restrictions
and characteristic processes:

Definition 3 (Catalyser). A catalyser C [·] is a context such that:

C [·] ::= [·] | (νxy)C [·] | C [·] | �qp�xg

Example 1. The following context C [·] is a catalyser obtained by compos-
ing the characteristic processes P1 and P2 respectively of the types T1 =
un ?(!1.end).un end and T2 = lin ⊕ {l1 : end, l2 : !1.end}:

C [·] = (νwx)(νuy)([·] | P1 | P2)

P1 = x?(z).(z!〈unit〉.0 | 0)
P2 = y � {l1.0, l2.y!〈unit〉.0} �

The duality operator �� is a relation over processes with respective co-actions.

Definition 4 (��). The duality ��{x,y} is defined as follows:

x!〈v〉.P ��{x,y} y?(z).Q
x � {li.Pi}i∈I ��{x,y} y � {li : Qi}i∈I

As last auxiliary definition for progress, we define evaluation contexts. An
evaluation context (or context, for short) E [·] is a process with holes such that:

E [·] ::= [·] | P | (νxy)E [·] | E [·] | E [·] | recX.E [·]

We are now ready to give the formal definition of progress.

56 M. Carbone, O. Dardha, and F. Montesi

Definition 5 (Progress). A process P has progress if for all catalysers C [·]
such that C [P] is well-typed, C [P] →∗ E [R] (where R is an input or an output)
implies that there exist C′ [·], E ′ [·][·] and R′ such that C′ [E [R]]→∗ E ′ [R][R′] and
R ��{x,y} R′ for some x and y such that (νxy) is a restriction in C′ [E [R]].

Remark 2. Our formulation of progress is inspired by [4, 8]. However, our catal-
ysers are different when it comes to selection. Consider the following example:

P = x �

{
l1 : 0,
l2 : (νy1y2)(y1!〈unit〉.y2?(z).0)

}
Process P above offers branches l1 and l2 on x. If l2 is chosen, then P gets stuck
into a deadlock. In previous works, P has progress since only the first branch is
checked (l1 in our example). This is unsatisfactory, because P may be composed
with other systems that select branch l2, and then get stuck. Instead, process P
does not satisfy Definition 5 since all branches are checked by our characteristic
processes (Definition 2, rule (outSum)).

3.2 Properties

We now move to presenting the relationship between progress and lock-freedom.
For well-typed closed terms, i.e., well-typed processes with no free variables,
the properties of lock-freedom and progress coincide. Intuitively, this is because
closed processes cannot interact with catalysers and the latter are always lock-
free by construction. We formalise this aspect in the theorem below.

Theorem 2 (Lock-freedom ⇔ Closed Progress). Let P be a well-typed
closed process. Then, P is lock-free if and only if P has progress.

We now switch to a more general setting, i.e., processes that can be open.
Differently than in the case of closed terms, the definitions of lock-freedom and
progress do not coincide for open terms. For example, consider the process:

P = x!〈unit〉.x?(z).0 (1)

Process P above has progress, since we can find a catalyser for reducing it, but
it is not lock-free as it does not respect Definition 1.

Even if progress and lock-freedom do not coincide for open terms, we can still
formally relate the two properties. The key idea for reaching this objective is to
wrap an open term using catalysers until all sessions are closed, a procedure we
call typed closure. We formally define typed closure below.

Definition 6 (Typed Closure). Let Γ � P . Then, the typed closure of P ,
denoted by tclose(P), is the process C [P] where

C [·] = (νx̃y)
(
[·] |

∏
∀xi:Ti∈Γ

�Ti�
yi

∅
)

Above, all xi in x̃y correspond exactly to the domain of Γ . Typed closure is the
identity for closed processes, since those are typed with empty environments.

Progress as Compositional Lock-Freedom 57

Example 2. Consider the previous open process P in (1):

P = x!〈unit〉.x?(z).0

P can be typed with environment Γ = x : !1.?1.end. Its typed closure is then:

tclose(P) = (νxy)(P | y?(w).y!〈unit〉.0)
�

Typed closure preserves typability:

Proposition 1 (Closure preserves typability). If Γ � P then ∅ � tclose(P).

We are now going to present one of the major properties in our technical
development, which will be crucial in establishing our main results: a process
has progress if and only if its typed closure reduces to terms where actions
at the top level can always be matched with their respective co-actions in a
parallel subterm. Intuitively, this is because the catalysers in the typed closure
of a process are exactly all those ones needed for further reducing the process as
required by the definition of progress (Definition 5).

Lemma 1 (From Closure to Progress). Let P be well-typed. Then, P has
progress if and only if tclose(P) →∗ E [R] (where R is an input or an output
process) implies that there exist E ′ [·][·] and R′ such that E [R]→∗ E ′ [R][R′] and
R ��{x,y} R′ for some x and y such that (νxy) is a restriction in E [R].

Thanks to Lemma 1, we are able to establish that checking progress for a
process P is equivalent to checking the progress property for its closure:

Theorem 3 (Closure Progress ⇔ Progress). If P is well-typed then
tclose(P) has progress if and only if P has progress.

We are finally able to link progress and lock-freedom in the general case of
open processes: a well-typed process has progress if and only if its typed closure
is lock-free. This is an immediate consequence of Theorem 2 and Theorem 3.

Theorem 4 (Progress ⇔ Closed Lock-Free). If P is well-typed then P has
progress if and only if tclose(P) is lock-free.

4 Untyped Closure

4.1 Definitions

So far, we have investigated the notion of progress and its connection with lock-
freedom by building on top of the typing discipline for the π-calculus with ses-
sions. Typing is useful for defining the adequate contexts for checking progress,
namely our catalysers. In this section, we show that adequate contexts can be
defined without the need for a typing discipline. Such contexts are based solely
on the structure of processes, and lead to a more general notion of progress.
Below, we introduce the notion of co-process :

58 M. Carbone, O. Dardha, and F. Montesi

Definition 7 (Co-Process). Given a process P , its co-process co[P]f is in-
ductively defined as:

co[x?(y).P]f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
co[P]f if x �∈ dom(f)

(νzw)(fx!〈z〉.co[P]f,y �→w) if x ∈ dom(f), y is a channel, z, w fresh

fx!〈unit〉.co[P]f otherwise

co[x!〈v〉.P]f =

{
co[P]f if x �∈ dom(f)

fx?(y).co[P]f otherwise

co[(νxy)P]f = co[P]f
(
if x, y �∈ dom(f)

)
co[X]f = X

co[recX.P]f = recX.co[P]f co[P | Q]f = co[P]f | co[Q]f co[0]f = 0

co[x � {li : Pi}i∈I]f =

{
fx � {li : co[Pi]f}i∈I if x ∈ dom(f)

� co[Pi]f otherwise

co[x � {li.Pi}i∈I]f =

{
fx � {li : co[Pi]f}i∈I if x ∈ dom(f)

� co[Pi]f otherwise

Roughly, the co-process co[P]f of a process P is P with all its actions replaced
with respective compatible co-actions. The function f is a renaming for variables.
Intuitively, we use it for mapping free variables in P , which identify the open
communication endpoints in P , to their respective co-variables in co[P]f . For an
input x?(y).P , its co-process is: the co-process of the continuation P if x is not
in f ; the output of a fresh variable z if y is used as a channel in P (we distinguish
channels in inputs using standard sorting from the π-calculus, omitted here); the
output of a unit value otherwise. The rule for outputs is similar. For a restriction
(νxy)P , we check that the restricted names are not in f since their actions are
already matched inside P . The cases of recursion, parallel, and the terminated
process are simply homomorphisms. We assume that in co[P]f , any occurrence
of recursion calls not guarded by actions, e.g., recX.X , are replaced with 0.
Branching and selection are defined similarly to inputs and outputs whenever
the subject of the communication is in f . Otherwise, since we cannot predict
which choice will be made at run-time, we make use of the auxiliary operator
to merge the behaviours in the different branches. We formally define below.

Definition 8 (Merge). The merge operator is defined by the equations below.

x � {l̃ : P , l̃′ : P ′} x � {l̃ : Q, ˜l′′ : P ′′} = x � { ˜l : P Q, l̃′ : P ′, ˜l′′ : P ′′}

x � {l̃ : P , l̃′ : P ′} x � {l̃ : Q, ˜l′′ : P ′′} = x � { ˜l : P Q}

P Q = P if P ≡ Q

We say that P and Q are mergeable, written P♣Q, whenever P Q is defined.

Progress as Compositional Lock-Freedom 59

Using co-processes, we can define a new closure independent from types.

Definition 9 (Untyped Closure). The untyped closure of P , uclose(P), is:

(νx̃fx)(P | co[P]f)

where dom(f) = fn(P).

Example 3. Untyped closure is not always defined. For example,

P = (νxx′)
(
x � {l1 : y � l3, l2 : y!〈v〉} | x′ � {l1 : y′ � l3, l2 : y′?(z)}

)
cannot be expressed as P ≡ (νx̃y)(Q | co[Q]f) because the merge operation
given in Definition 8 cannot be defined. This is because y and y′ perform once a
selection and once an output, which cannot be merged together. �

For well-typed processes, untyped closure preserves typability:

Proposition 2. If P is well-typed, then uclose(P) is well-typed.

4.2 Adequacy of Untyped Closure

We conclude this section by showing that untyped closure is a conservative exten-
sion of typed closure, i.e., it preserves the same connection between lock-freedom
and progress for well-typed processes. Technically, for well-typed processes, un-
typed closure and typed closure have equivalent behaviours. First, we show that
for a typed process, the reductions of its untyped closure can mimic the reduc-
tions of its typed closure and vice versa. Below, we denote with tclose0(P) the
typed closure of P generated using the simplest output typing of P , namely if
Γ �0 P then all carried types in the output types of Γ are equal to end.

Lemma 2. Let P be well-typed. Then, uclose(P) → ♣uclose(P ′) iff
tclose0(P)→ tclose0(P

′).

As a consequence of Lemma 2, we obtain that the untyped closure of a well-
typed process is lock-free if and only if its typed closure is lock-free.

Theorem 5. Let P be well-typed. uclose(P) is lock-free iff tclose(P) is lock-free.

Proof (Sketch). By Lemma 2, we observe that if two processes can be merged
then they are related by a strong typed bisimulation (cf. [5]). Then, the thesis
follows by observing that tclose(P) is closed under reductions, and uclose(P) is
closed under reductions up-to strong bisimulation (merging). �

From Theorem 4 in § 3.2, and Theorem 5 we conclude:

Corollary 1. Let P be well-typed. If uclose(P) is lock-free, then P has progress.

60 M. Carbone, O. Dardha, and F. Montesi

5 Progress through Static Analysis for Lock-Freedom

Our technical development reduced the problem of checking whether a process
has progress to the problem of checking whether its closure (typed or untyped)
is lock-free. A direct consequence of this result is that static analysis for lock-
freedom can be lifted to static analysis for progress. In this section we show an
example of how to apply this methodology, by using the typing discipline for
lock-freedom in the standard π-calculus by Kobayashi [15].

The π-Calculus. We report the syntax of the standard π-calculus [18] where
standard choice is replaced by the case v of {li (xi) � Pi}i∈I constructor:

P,Q ::= x!〈ṽ〉.P | x?(ỹ).P | P | Q | 0 | (νx)P
| case v of {li (xi) � Pi}i∈I | X | recX.P

v ::= x | unit | l v

The differences wrt to the syntax of the π-calculus with sessions are that restric-
tion is now on a single variable and that there are no constructs for branching
and selection. Values include variables and the unit value, as in the π-calculus
with sessions, and also the labelled values l v, used in the case process.

We report below the main reduction rules:

(Rπ- Com) x!〈ṽ〉.P | x?(z̃).Q→ P | Q[ṽ/z̃]

(Rπ- Case) case lj v of {li (xi) � Pi}i∈I → Pj [v/xj] j ∈ I

The main difference wrt the π-calculus with sessions is that communications
happen when sending and receiving actions have the same subject (the variable
used as a channel for sending or receiving a value), and not when the two ac-
tions in question have different subjects that were linked by a shared restriction.
Moreover, the communicating channels need not be restricted. For simplicity, we
omit all the other rules, as well as the definition of the structural congruence
relation ≡ between standard π-calculus processes.

Kobayashi’s Typing for Lock-Freedom. We briefly introduce Kobayashi’s
type system for checking lock-freedom in the standard π-calculus, from [15]. The
syntax of types is defined as.

(actions) α ::= ? | !
(usage types) U ::= 0 | αo

c .U | U1 | U2 | U1&U2 | t | μt.U

(channel types) T ::= [T̃] U | 〈li : Ti〉i∈I | 1

Types T include channel types [T̃] U , the variant type 〈li : Ti〉i∈I , and the unit

type 1. In a channel type [T̃] U , T̃ are the types of the values transmitted over
the channel and U is a usage type, describing how the channel is used. Usage
types are similar to session types. Usage 0 describes a channel that cannot be
used anymore (we will often omit it when not necessary); usage αo

c .U describes
a channel used for an input action (when α = ?) or output action (when α = !),

Progress as Compositional Lock-Freedom 61

and then used according to U . The annotations o and c, called tags, are natural
numbers that indicate respectively the obligation and capability of an action,
described below. Usage U1 | U2 describes a channel used according to U1 and
U2 in parallel. Usage U1&U2 describes a channel used according to either U1 or
U2. Usages μt.U and t indicate standard recursive types.

We describe the intuition behind reasoning with tags in usage types (see [15]
for a full description). The tags o and c are abstract representations of time
steps and describe dependencies between the usage of channels, corresponding
to how actions on channels are interleaved in processes. Intuitively, an obligation
o denotes a guarantee that its action will become available at most in time o,
while a capability c denotes a requirement that a compatible co-action becomes
available at most in time c. This information is crucial to ensure that processes
do not get stuck, and it is checked to be consistent by Kobayashi’s typing rules.
As an example, we consider the rules for typing input and restriction:

Γ, ỹ : T̃ �LF P
(LF-In)

x : [T̃] ?0c ;Γ �LF x?(ỹ).P

Γ, x : [T̃] U �LF P rel(U)
(LF-Res)

Γ �LF (νx)P

Rule (LF-In) states that the x?(ỹ).P is well-typed if x is a channel used in
input with obligation 0. Moreover, the operator ; raises (increases by one) the
obligations of the other channels in Γ in the conclusion of the rule, in order to
reflect that actions inside process P are prefixed by an input action and will
thus become available later. Rule (LF-Res) is the key rule for establishing lock-
freedom; it states that the restriction of a name x in process P is well-typed if x
is used reliably in P . The notion of reliability of a usage is as follows. A usage U
is said to be reliable, denoted with rel(U), if after any step, whenever it contains
an action (input or output) having capability tag c, it also contains the co-action
with an obligation tag at most c. This means that the guarantee that the action
will become available is at most the requirement for its availability (we refer the
reader to [15] for the formal definition of rel(U)).

Kobayashi’s type system guarantees lock-freedom:

Theorem 6 (Lock-Freedom [15]). If Γ �LF P and rel(Γ), then P is lock-free.

Above, rel(Γ) checks rel(U) for all the usage types in Γ .
From the above theorem, we immediately get the following corollary:

Corollary 2. ∅ �LF P implies that P is lock-free.

Encoding. Processes in the π-calculus with sessions can be translated to equiv-
alent processes in the standard π-calculus, using the encoding �−�f presented
in [9]. Intuitively, such encoding transforms each action on sessions in the orig-
inal process into an action on a linear channel in the standard π-calculus. We
report a selection of the rules defining �−�f in Fig. 5.

The parameter f renames the variables involved in a communication in order
to simulate the structure of sessions using linear channels that are used exactly
once. For example, in (E-Output) a new channel c is created and sent along

62 M. Carbone, O. Dardha, and F. Montesi

�x!〈v〉.P �f = (νc)fx!〈v, c〉.�P �f,x �→c (E-Output)

�x?(y).P �f = fx?(y, c).�P �f,x �→c (E-Input)

�x � {li : Pi}i∈I�f = fx?(y). case y of {li (c) � �Pi�f,x �→c}i∈I (E-Branching)

�(νxy)P �f = (νc)�P �f,x �→c,y �→c (E-Res)

Fig. 5. π-calculus with sessions, encoding to standard π-calculus

with the original value v. The function f is then updated by mapping x to the
new channel c, which is used in the continuation process. On the other hand,
the process produced by rule (E-Input) performs the dual action by receiving
the value of the communication and the new channel. (E-Branching) encodes
the branching process by using the case process, after the guard of the case is
received in input. Rule (E-Res) encodes the restriction (νxy) as (νc).

The encoding �−�f is semantically correct:

Theorem 7 (Operational Correspondence [9]). Let P be a process in the
π-calculus with sessions. Then:

– If P → P ′ then ∃Q such that �P �f → Q and Q ↪→ �P ′�f , where ↪→ denotes
a structural congruence extended with a case normalisation;

– If �P �f →≡ Q then, ∃ P ′ such that (νxy)P → (νxy)P ′ and Q→n≡ �P ′�f ′ ,
where fx = fy, n ∈ {1, 2} and f ′ is f updated after the reduction.

From lock-freedom in the π-calculus to progress for sessions. We can
finally present how to use our results in combination with Kobayashi’s typing
system for lock-freedom. First, from Theorem 7 we get that:

Corollary 3. P in the π-calculus with sessions is lock-free iff �P �f is lock-free.

From our Corollaries 1 and 3, we can lift Kobayashi’s analysis to progress in the
π-calculus with sessions:

Theorem 8 (Typing Progress). Let P be a well-typed process in the π-
calculus with sessions. If ∅ �LF �uclose(P)�f , then P has progress.

Comparison. We conclude this section by comparing our approach with other
static analysis for guaranteeing the progress property for session-based calculi in
the literature [4, 11, 22]. For readability reasons, we omit some empty processes
and restrictions of unused channels.

Example 4. The following process is lock-free and has progress:

(νa1a2)
(
a1!〈unit〉 | (νb1b2)

(
b1!〈unit〉 | b2?(y).a2?(z)

))
However, it is rejected by [22], since the type system presented therein does not
distinguish between obligation and capability tags, but uses a single tag instead.
If we consider its encoding in the π-calculus, we obtain the following process

(νa)
(
a!〈unit〉 | (νb)

(
b!〈unit〉 | b?(y).a?(z)

))
This process is accepted by Kobayashi’s type system with types a :!01 | ?10 and
b :!00 | ?00 and therefore our initial process has progress. �

Progress as Compositional Lock-Freedom 63

Example 5. Consider the session process

(νa1a2)(νb1b2)
(
a1?(x). b1!〈x〉. b1?(y). a1!〈y〉 | a2!〈unit〉. b2?(z). b2!〈unit〉. a2?(z)

)
This process satisfies the progress property, but it is rejected by the type systems
in [1] and [4]. This is because, in the two processes in parallel, there is a circular
dependency between channels that such type systems cannot handle. Let us now
consider its encoding in the π-calculus, given as the process:

(νa)(νb)

⎛⎝a?(x, c1). (νc2)
(
b!〈x, c2〉. c2?(y). c1!〈y〉

)
|

(νc1)
(
a!〈unit, c1〉. b?(z, c2). c2!〈unit〉. c1?(z)

)⎞⎠
This process is correctly recognised as having progress by our technique, since
it is well-typed in Kobayashi’s type system. �

6 Conclusions and Future Work

In this paper we studied the relationship between the notions of progress and
lock-freedom in the π-calculus with sessions, proving that they are strongly
linked: progress can be thought of as a generalisation of lock-freedom to open
processes. We have shown how to characterise progress using session types (typed
closure) or the structure of processes (untyped closure). Our results can be used
to lift static analyses for lock-freedom to the progress property. For example, we
showed that reusing Kobayashi’s type system [15] captures new interesting cases
of processes that have progress that could not be recognised by previous work.

Future Work. As future work, we plan to extend our approach to multiparty
sessions [7, 14]. For the multiparty setting, we need to investigate an extension of
the encoding in [9] to a setting where sessions are established between more than
two peers and messaging is asynchronous. It is not clear whether Kobayashi’s
usage types are expressive enough for handling such situations.

The works in [2, 26] use linear logic to type processes in the π-calculus with
sessions. While these works guarantee lock-freedom, we conjecture that their
techniques can be reused for progress, similarly to what we have done with
Kobayashi’s type system. We leave such an investigation as future work.

Kobayashi’s type system comes with the reference implementation TyPi-
Cal [24]. We are currently implementing a tool that allows to write processes in
the π-calculus with sessions, checks that they are well-typed, and then uses the
encoding in [9] for generating π-calculus code that can be analysed in TyPiCal.

References

1. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: van Breugel,
F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer,
Heidelberg (2008)

2. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

64 M. Carbone, O. Dardha, and F. Montesi

3. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom
(2014), http://www.dcs.gla.ac.uk/~ornela/my_papers/CDM-Extended.pdf

4. Carbone, M., Debois, S.: A graphical approach to progress for structured commu-
nication in web services. In: Proc. of ICE 2010, pp. 13–27 (2010)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

6. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274 (2013)

7. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Global progress for dynamically
interleaved multiparty sessions (long version) (2008),
http://www.di.unito.it/~dezani/papers/cdy12.pdf

8. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Mathematical Structures of Computer
Science (to appear)

9. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Schreye, D.D.,
Janssens, G., King, A. (eds.) PPDP, pp. 139–150. ACM (2012)

10. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: Proc. of POPL,
pp. 435–446. ACM (2011)

11. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On Progress for Structured
Communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912,
pp. 257–275. Springer, Heidelberg (2008)

12. Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta Informat-
ica 42(2-3), 191–225 (2005)

13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. of POPL, vol. 43(1), pp. 273–284. ACM (2008)

15. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177(2), 122–159
(2002)

16. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C.,
Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer,
Heidelberg (2006)

17. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst. 32(5) (2010)

18. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Infor-
mation and Computation 100(1), 1–40, 41–77 (1992)

19. Montesi, F., Carbone, M.: Programming services with correlation sets. In: Kappel,
G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084,
pp. 125–141. Springer, Heidelberg (2011)

20. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer, Heidelberg
(2013)

21. OASIS. Web Services Business Process Execution Language,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

22. Padovani, L.: From lock freedom to progress using session types. In: Proc. of
PLACES (2013)

23. Pierce, B.C.: Types and programming languages. MIT Press (2002)
24. TYPICAL. Type-based static analyzer for the pi-calculus,

http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
25. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
26. Wadler, P.: Propositions as sessions. In: ICFP, pp. 273–286 (2012)

http://www.dcs.gla.ac.uk/~ornela/my_papers/CDM-Extended.pdf
http://www.di.unito.it/~dezani/papers/cdy12.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/

Automata-Based Optimization of Interaction

Protocols for Scalable Multicore Platforms

Sung-Shik T.Q. Jongmans, Sean Halle, and Farhad Arbab

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{jongmans,sean,farhad}@cwi.nl

Abstract. Multicore platforms offer the opportunity for utilizing mas-
sively parallel resources. However, programming them is challenging. We
need good compilers that optimize commonly occurring synchronization/
interaction patterns. To facilitate optimization, a programming language
must convey what needs to be done in a form that leaves a considerably
large decision space on how to do it for the compiler/run-time system.

Reo is a coordination-inspired model of concurrency that allows com-
positional construction of interaction protocols as declarative specifica-
tions. This form of protocol programming specifies only what needs to
be done and leaves virtually all how -decisions involved in obtaining a
concrete implementation for the compiler and the run-time system to
make, thereby maximizing the potential opportunities for optimization.
In contrast, the imperative form of protocol specification in conventional
concurrent programming languages, generally, restrict implementation
choices (and thereby hamper optimization) due to overspecification.

In this paper, we use the Constraint Automata semantics of Reo pro-
tocols as the formal basis for our optimizations. We optimize a generaliza-
tion of the producer-consumer pattern, by applying CA transformations
and prove the correctness of the transforms.

1 Introduction

Context. Coordination languages have emerged for the implementation of proto-
cols among concurrent entities (e.g., threads on multicore hardware). One such
language is Reo [1,2], a graphical language for compositional construction of
connectors (i.e., custom synchronization protocols). Figure 1a shows an exam-
ple. Briefly, a connector consists of one or more edges (henceforth referred to as
channels), through which data items flow, and a number of nodes (henceforth
referred to as ports), on which channel ends coincide. The connector in Figure 1a
contains three different channel classes, including standard synchronous channels
(normal arrows) and asynchronous channels with a buffer of capacity 1 (arrows
decorated with a white rectangle, which represents a buffer). Through connector
composition (the act of gluing connectors together on their shared ports), pro-
grammers can construct arbitrarily complex connectors. As Reo supports both
synchronous and asynchronous channels, connector composition enables mixing
synchronous and asynchronous communication within the same specification.

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 65–82, 2014.
c© IFIP International Federation for Information Processing 2014

66 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

Benchmark

A Z

B

C Y

Prod1

Prod2

Prod3

Cons

(a) Connector (b) Per-interaction overhead for
the Pthreads-based implementa-
tion (continuous line; squares)
and the pre-optimized ca-based
implementation (dotted line; di-
amonds)

Fig. 1. Producers–consumer benchmark

Especially when it comes to multicore programming, Reo has a number of ad-
vantages over conventional programming languages with a fixed set of low-level
synchronization constructs (locks, mutexes, etc.). Programmers using such a con-
ventional language have to translate the synchronization needs of their protocols
into the synchronization constructs of that language. Because this translation oc-
curs in the mind of the programmer, invariably some context information either
gets irretrievably lost or becomes implicit and difficult to extract in the resulting
code. In contrast, Reo allows programmers to compose their own synchroniza-
tion constructs (i.e., connectors) at a high abstraction level to perfectly fit the
protocols of their application. Not only does this reduce the conceptual gap for
programmers, which makes it easier to implement and reason about protocols,
but by preserving all relevant context information, such user-defined synchro-
nization constructs also offer considerable novel opportunities for compilers to
do optimizations on multicore hardware. This paper shows one such occasion.

Additionally, Reo has several software engineering advantages as a domain-
specific language for protocols [3]. For instance, Reo forces developers to separate
their computation code from their protocol code. Such a separation facilitates
verbatim reuse, independent modification, and compositional construction of
protocol implementations (i.e., connectors) in a straightforward way. Moreover,
Reo has a strong mathematical foundation [4], which enables formal connector
analyses (e.g., deadlock detection, model checking [5]).

To use connectors in real programs, developers need tools that automati-
cally generate executable code for connectors. In previous work [6], we therefore
developed a Reo-to-C compiler, based on Reo’s formal semantics of constraint

Automata-Based Optimization of Interaction Protocols 67

automata (ca) [7]. In its simplest form, this tool works roughly as follows. First,
it extracts from an input Xml representation of a connector a list of its primitive
constituents.1 Second, it consults a database to find for every constituent in the
list a “small” ca that formally describes the behavior of that particular con-
stituent. Third, it computes the product of the ca in the constructed collection
to obtain one “big” ca describing the behavior of the whole connector. Fourth,
it feeds a data structure representing that big ca to a template. Essentially,
this template is an incomplete C file with “holes” that need be “filled”. The
generated code simulates the big ca by repeatedly computing and firing eligible
transitions in an event-driven fashion. It runs on top of Proto-Runtime [8,9], an
execution environment for C code on multicore hardware. A key feature of Proto-
Runtime is that it provides more direct access to processor cores and control over
scheduling than threading libraries based on os threads, such as Pthreads [10].

Problem. Figure 1a shows a connector for a protocol among k = 3 producers
and one consumer in a producers–consumer benchmark. Every producer loops
through the following steps: (i) it produces, (ii) it blocks until the consumer
has signaled ready for processing the next batch of productions, and (iii) it
sends its production. Meanwhile, the consumer runs the following loop: (i) it
signals ready, and (ii) it receives exactly one production from every producer in
arbitrary order. We compared the ca-based implementation generated by our
tool with a hand-crafted implementation written by a competent C programmer
using Pthreads, investigating the time required for communicating a production
from a producer to the consumer as a function of the number of producers.

Figure 1b shows our results. On the positive side, for k ≤ 256, the ca-based
implementation outperforms the hand-crafted implementation. For k = 512,
however, the Pthreads-based implementation outperforms the generated imple-
mentation. Moreover, the dotted curve looks disturbing, because it grows more-
than-linearly in k: indeed, the ca-based implementation scales poorly. (We skip
many details of this benchmark, including those of the Pthreads-based implemen-
tation, and the meaning/implications of these experimental results. The reason
is that this paper is not about this benchmark, and its details do not matter.
We use this benchmark only as a concrete case to better explain problems of our
compilation approach and as a source of inspiration for solutions.)

Contribution. In this paper, we report on work at improving the scalability of
code generated by our Reo-to-C compiler. First, we identify a cause of poor
scalability: briefly, computing eligibility of k transitions in producers–consumer-
style protocols (and those generalizations thereof that allow any synchronization
involving one party from every one of � groups) takes O(k) time instead of O(1),
of which the Pthreads-based implementation shows that it is possible. Second,
to familiarize the reader with certain essential concepts, we explain a manual
solution (in terms of Reo’s ca semantics) that achieves O(1). Third, we propose

1 Programmers can use the Ect plugins for Eclipse (http://reo.project.cwi.nl) to
draw connectors such as the one in Figure 1a, internally represented as Xml.

http://reo.project.cwi.nl

68 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

AB ,
d(A) = d(B)

AB ,
�

(a) LossySync

AZBC ,
d(A) = d(Z)

BZAC ,
d(B) = d(Z)

CZAB ,
d(C) = d(Z)

(b) Merger3

AHZBY ,
d(A) = d(H) = d(Z)

AHYBZ ,
d(A) = d(H) = d(Y)

BHZAY ,
d(B) = d(H) = d(Z)

BHYAZ ,
d(B) = d(H) = d(Y)

(c) Hourglass

Fig. 2. Example ca, called LossySync, Merger3 and Hourglass

an automated, general solution, built upon the same concepts as the manual
solution. We formalize this automated solution and prove it correct. Although
inspired by our work on Reo and formulated in terms of ca, we make more
general contributions beyond Reo and ca, better explained in our conclusion.

We organized the rest of this paper as follows. In Section 2, we explain ca. In
Section 3, we analyze how the Pthreads-based implementation avoids scalability
issues and how we can export that to our setting. In Sections 4–6, we automate
the solution proposed in Section 3. Section 7 concludes this paper. Definitions
and detailed proofs appear in the appendix of a technical report [11].

Although inspired by Reo, we can express our main results in a purely
automata-theoretic setting. We therefore skip a primer on Reo [1,2].

2 Constraint Automata

Constraint automata are a general formalism for describing systems behavior and
have been used to model not only connectors but also, for instance, actors [12].
Figure 2 shows examples.2,3 In the context of this paper, a ca specifies when
during execution of a connector which data items flow where. Structurally, every
ca consists of finite sets of states, transitions between states, and ports. States
represent the internal configurations of a connector, while transitions describe
its atomic execution steps. Every transition has a label that consists of two
elements: a synchronization constraint (sc) and a data constraint (dc). An sc is a

2 The LossySync ca models a connector with one input port A and one output port B.
It repeatedly chooses between two atomic execution steps (constrained by availability
of pending i/o operations): synchronous flow of data from A to B or flow of data
only on A (after which the data is lost, before reaching B). The Merger3 ca models
a connector with three input ports A, B, and C and one output port Z. It repeatedly
chooses between three atomic execution steps: synchronous flow of data from A to Z,
from B to Z, or from C to Z. Finally, the Hourglass ca models a connector with two
input ports A and B, one internal port H, and two output ports Y and Z. It repeatedly
chooses between four atomic execution steps: synchronous flow of data from A via H
to Y, from A via H to Z, from B via H to Y, or from B via H to Z.

3 We show only single state ca for simplicity. Generally, a ca can have any finite
number of states, and the results in this paper are applicable also to such ca.

Automata-Based Optimization of Interaction Protocols 69

p ::= any element from Port

Ψ ::= any set of scs
a ::= 0 | 1 | p

ψ ::= a | ψ | ψ + ψ | ψ · ψ | ⊕
(Ψ)

(a) Synchronization constraints

p ::= any element from Port

P ::= any subset of Port
b ::= ⊥ | � | Eq(P) | d(p) = d(p)
φ ::= b | ¬φ | φ ∨ φ | φ ∧ φ

(b) Data constraints

Fig. 3. Syntax

propositional formula that specifies which ports synchronize in a firing transition
(i.e., where data items flow); a dc is a propositional formula that (under)specifies
which particular data items flow where. For instance, in Figure 2a, the dc d(A) =
d(B) means that the data item on A equals the data item on B; the dc " means
that it does not matter which data items flow. Let Port denote the global set of
all ports. Formally, an sc is a word ψ generated by the grammar in Figure 3a,
while a dc is a word φ generated by the grammar in Figure 3b.

Figure 3a generalizes the original definition of scs as sets of ports interpreted
as conjunctions [7] (shortly, we elaborate on the exact correspondence). Operator⊕

is a uniqueness quantifier:
⊕

(Ψ) holds if exactly one sc in Ψ holds. Also, we
remark that predicate Eq(P) is novel. It holds if equal data items are distributed
over all ports in P . In many practical cases—but not all—we can replace a dc

of the shape d(p1) = d(p2) with Eq(P) if {p1 , p2} ⊆ P . In the development of
our optimization technique, Eq(P) plays an important role (see also Section 7).

Let Data denote the set of all data items. Formally, we interpret scs and dcs
over distributions of data over ports, δ : Port ⇀ Data, using relations |=sc and
|=dc and the corresponding equivalence relations ≡sc and ≡dc. Their definition for
negation, disjunction, and conjunction is standard; for atoms, we have:

δ |=sc p iff p ∈ Dom(δ)
δ |=dc Eq(P) iff |Img(δ|P)| = 1
δ |=dc d(p1) = d(p2) iff δ(p1) = δ(p2)

Let
∑

({ψ1 , . . . , ψk}) and
∏
({ψ1 , . . . , ψk}) abbreviate ψ1 + · · · + ψk and

ψ1 · · ·ψk, let SC denote the sets of all scs, and let SC(P) and DC(P) denote
the sets of all scs and all dcs over ports in P .

A constraint automaton is a tuple (Q , P , −→ , ı) with Q a set of states,
P ⊆ Port a set of ports, −→ ⊆ Q × SC(P) × DC(P) × Q a transition relation
labeled with

[
sc, dc

]
-pairs of the form (ψ , φ), and ı ∈ Q an initial state.

A distribution δ represents a single atomic execution step of a connector in
which data item δ(p) flows on port p (for all ports in the domain of δ). A ca

α accepts streams (i.e., infinite sequences) of such distributions. Every such a
stream represents one possible infinite execution of the connector modeled by α.
Intuitively, to see if α accepts a stream σ, starting from the initial state, take
the first element σ(0) from the stream, check if α has a (ψ , φ)-labeled transition
from the current state such that σ(0) |=sc ψ and σ(0) |=dc φ, and if so, make this
transition, remove σ(0) from the stream, and repeat.

70 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

α

alpha

g1

(a) Current

α

alpha beta

g1
h

(b) Manual improvement

α β

alpha beta

f

g1 g2
h

(c) Automated improvement

Fig. 4. Code generation diagrams

Our ca definition generalizes the original definition of ca [7], because Fig-
ure 3a generalizes the original definition of scs. However, ca as originally defined
still play a role in the development of our optimization technique: all input ca

that this technique operates on are original. Therefore, we make more precise
what “originality” means. First, let a P -complete product be a product of either
a positive or a negative literal for every port in P . Intuitively, a P -complete
product specifies not only which ports participate in a transition, but it also
makes explicit which ports idle in that transition. Let cp(P , P+) denote a P -
complete product with positive literals P+ ⊆ P . Then, we call an sc ψ original
if a set P+ exists such that cp(P , P+) ≡ ψ (originally, set P+ would be the sc);
we call a ca original if it has only original scs. All ca in Figure 2 are original.

We adopt bisimilarity on ca as behavioral congruence, derived from the defi-
nition for original ca of Baier et al. [7]. Roughly, if α and β are bisimilar, denoted
as α ∼ β, α can simulate every transition of β in every state and vice versa (see
Definition 32 in [11, Appendix A]).

3 Enhancing Scalability: Problem and Solution

We study the scalability of code generated by our compiler using Figure 4.
We start with Figure 4a, which summarizes the code generation process of our
current tool: given an original ca α (computed for the connector to generate
code for), it generates a piece of code alpha by applying transformation g1.

Essentially, alpha consists of an event-driven handler, which simulates α. This
handler runs concurrently with the code of its environment (i.e., the code of the
entitites under coordination), whose events (i.e., i/o operations performed on
ports) it listens and responds to, as follows. Whenever the environment performs
an i/o operation on a port p, it assigns a representation of that operation to
an event variable in a data structure for p (also generated by transformation g1
and part of alpha). This causes the handler to start a new round of simulating
α. Based on the state of α that the handler at that point should behave as,
the handler knows which transitions of α may fire. Which of those transitions
actually can fire, however, depends also on the pending events that previously
occurred (i.e., the pending i/o operations on ports). To investigate this, the
handler checks for every transition that may fire if the pending events (including
the new one) can constitute a distribution δ that satisfies the transition’s label.
If so, the handler fires the transition: it distributes data over ports according to

Automata-Based Optimization of Interaction Protocols 71

δ, and the events involved dissolve. Otherwise, if no transition can fire, all events
remain for the next round, and the handler goes dormant.

Now, recall our producers–consumer benchmark in Section 1. Figure 2b shows
the ca for the connector in Figure 1a.4 Generally, for an arbitrary number of
producers k, the corresponding ca αk has k transitions. Consequently, in the
worst case, the handler in the generated alpha k code performs k checks in every
event handling round, which takes O(k) time. Figure 1b shows this as a more-
than-linear increase in execution time for the dotted curve.5 The Pthreads-based
implementation, in contrast, uses a queue for lining up available productions. To
receive a production, the consumer simply dequeues, which takes only O(1) time
(ignoring, for simplicity, the overhead of synchronizing queue accesses). Figure 1b
shows this as a linear increase in execution time for the continuous curve.

Intuitively, by checking all transitions to make the consumer receive, the gen-
erated ca-based implementation performs an exhaustive search for a particular
producer that sent a production. In contrast, by using a queue, the Pthreads-
based implementation avoids such a search: the queue embodies that in this
protocol, it does not matter which particular producer sent a production as long
as some producer has done so (in which case the queue is nonempty). The pro-
ducers are really indistinguishable from the perspective of the consumer. Thus,
to improve the scalability of code generated by our tool, we want to export the
idea of “using queues to leverage indistinguishability” to our setting.

Figure 4b shows a first attempt at achieving this goal: we introduce a manual
transformation h that takes alpha as input and hacks together a new piece of
code beta, which should (i) behave as alpha, (ii) demonstrate good scalability,
and (iii) use queues. For instance, in our producers–consumer example (k = 3),
h works roughly as follows. First, h replaces the event variable in the data
structure for every port p ∈ {A,B,C,Z} with an eventQueue variable that points
to a queue of pending events. In this new setup, to perform an i/o operation,
the environment enqueues an eventQueue, while handler code tests eventQueues
for nonemptiness to check scs, peeks eventQueues to check dcs, and dequeues
eventQueues to fire transitions. Subsequently, h adds initialization code to alpha
to ensure that the eventQueue variables of ports A, B, and C all point to the
same shared queue, while the eventQueue variable for port Z points to a different
queue. Here, h effectively exploits the indistinguishability property of producers

4 To be precise, the ca in Figure 2b describes the behavior of one of the synchronous
regions of the connector in Figure 1a (i.e., a particular subconnector of the whole).
This point is immaterial to our present discussion, however, and ignoring it simplifies
our presentation without loss of generality or applicability.

5 The growth is more-than-linear instead of just linear because of the barrier in the
protocol. When producer P is ready to send its (i+1)-th production, the consumer
may not yet have received the i-th production from all other producers. Then, P
must wait until the consumer signals ready (i.e., the barrier). In the worst case,
however, the consumer has received an i-th production only from P such that P has
to wait (k − 1) · O(k) time. Afterward, it takes another O(k) time for P to send its
(i+1)-th production. Consequently, sending the (i+1)-th production takes k ·O(k)
time, and the complexity of sending a production lies between O(k) and O(k2).

72 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

(a) With barrier (b) Without barrier

Fig. 5. Per-interaction overhead for the Pthreads-based implementation (continuous
line; squares), the pre-optimized ca-based implementation (dotted line; diamonds),
and the optimized, h-transformed ca-based implementation (dashed line; triangles) of
the producers–consumer scenario in Figure 1

by making the ports that those producers use indistinguishable in our setting.
Finally, h updates the handler code such that it processes the shared queue only
once per event handling round instead of thrice (i.e., once for every transition).
From an automata-theoretic perspective, h replaces the implementation of the
three “physical” transitions with an implementation of one merged “virtual”
transition. When the handler fires this virtual transition at run-time, it actually
fires one of the three physical transitions.

Property (iii) holds of the piece of code beta resulting from applying h to
alpha as just described. Figure 5 shows that also property (ii) holds. The dashed
curve in Figure 5a shows execution times of h-transformed code of the ca-based
implementation in the producers–consumer benchmark. The h-transformed code
scales much better than the original code. Additionally, Figure 5b shows execu-
tion times of the producers–consumer benchmark without a barrier (i.e., produc-
ers send productions whenever they want). In this variant, h achieves even better
results: it transforms a poorly scalable program into one that scales perfectly.6

Establishing property (i), however, is problematic. Although we can infor-
mally argue that it holds, proving this—formally showing the equivalence of two
concurrent C programs—seems prohibitively complex. That aside, the manual
nature of h makes its usage generally impractical, and it seems extremely diffi-
cult to automate it: an automated version of h would have to analyze C code

6 Of course, in many cases and for many applications, a purely asynchronous
producers–consumer protocol without a barrier, as in Figure 5b, suffices. The reason
that we initially focused on a producers–consumer protocol with a barrier, which is
also useful yet in other applications, is that its mix of synchrony and asynchrony
makes it a harder, and arguably more interesting, protocol to achieve good scalability
for. Comparing the results in Figures 5a and 5b also shows this.

Automata-Based Optimization of Interaction Protocols 73

to recover relevant context information about the protocol, which is not only
hard but often theoretically impossible. Similarly, it seems infeasible to write an
optimizing compiler able to transform, for instance, less scalable Pthreads-based
implementations of the producers-consumer scenario (without queues) into the
Pthreads-based implementation (with queues) used in our benchmark. The in-
ability of compilers for lower-level languages to do such optimizations seems a
significant disadvantage of using such languages for multicore programming.

We therefore pursue an alternative approach, outlined in Figure 4c: we intro-
duce a transformation f that takes ca α as input—instead of the low-level C
code generated for it—and transforms it into an equivalent automaton β, a vari-
ant of α with merged transitions (cf. transformation h, which implicitly replaced
the implementation of several physical transitions with one virtual transition).
Crucially, α still explicitly contains all relevant context information about the
protocol, exactly what makes f eligible to automation. In particular, to merge
transitions effectively, f carefully inspects transition labels and takes port indis-
tinguishability into account. The resulting merged transitions have an “obvious”
and mechanically obtainable implementation using queues. A subsequent trans-
formation g2, from β to beta, performs this final straightforward step.

We divide transformation α
f−−→ β into a number of constituent transforma-

tions α
f1−−→ β′ f2−−→ (β′ , Γ)

f3−−→ β, discussed in detail in the following sections.

4 Transformation f1: Preprocessing

Transformation f1 aims at merging transitions t1 , . . . , tk into one transition (q ,
ψ , Eq(P) , q′), where ψ =

∑
({ψ1 , . . . , ψk}). It consists of two steps.

In the first step, transformation f1 replaces dcs on transitions of α = (Q ,
P , −→ , ı) with Eq(P), as follows. Because α is an original ca (our current
code generator can handle only original ca), every sc in α is an original sc: for
every transition label (ψ , φ), a set of ports P+ exists such that cp(P , P+) ≡ ψ.
Now, for every product in disjunctive normal form (dnf) of φ, transformation f1
constructs a graph with vertices P+ and an edge (p1 , p2) for every d(p1) = d(p2)
literal. Because cp(P , P+) ≡ ψ, if the resulting graph is connected, the product
of the d(p1) = d(p2) literals is equivalent to Eq(P). Thus, f1 replaces every
transition label (ψ , φ) in α with an equivalent label (ψ , φ′), where φ′ denotes
the modified dnf of φ, with Eq(P) for every product of d(p1) = d(p2) literals if
those literals induce a connected graph. Let α′ denote the resulting ca. We can
prove that α′ ∼ α holds (see Lemma 16 in [11, Appendix A]).

In the second step, transformation f1 merges, for every pair of states (q ,
q′), all transitions from q to q′ labeled by dc φ into one new transition. (The
individual transitions differ only in their sc.) Every resulting transition has as
its sc the sum of the scs of the individual transitions. Figure 6 shows examples.
We denote the resulting ca by f1(α). The following proposition holds, because
choices between individual transitions in α are encoded in f1(α) by sum-scs of
merged transitions. Consequently, α and f1(α) can simulate each other’s steps.

Proposition 1. f1(α) ∼ α′

74 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

AB ,
Eq({A , B})

AB ,
�

(a) LossySync

AZBC + BZAC + CZAB ,
Eq({A , B , C , Z})

(b) Merger3

AHZBY + AHYBZ + BHZAY + BHYAZ ,
Eq({A , B , H , Y , Z})

(c) Hourglass

Fig. 6. Application of transformations f1 to the ca in Figure 2

5 Transformation f2: Constructing Hypergraphs

Every merged transition resulting from the previous preprocessing transforma-
tions can perhaps be implemented using queues along the same lines as transfor-
mation h (see Section 3). In the first place, this depends on the extent to which
ports in a merged transition are indistinguishable: no indistinguishable ports
means no queues. Second, the sc of a merged transition should make port indis-
tinguishability (i.e., queues), if present, apparent and mechanically detectable.
The scs of transitions in f1(α) fail to do so. For instance, we (hence a computer)
cannot directly derive from the syntax of sc AZBC+BZAC+CZAB in Figure 6b
that its transition has a scalable implementation with queues. In contrast, the
equivalent sc

⊕
({A , B , C}) · Z makes this much more apparent. From this sc,

we can “obviously” (and mechanically by transformation g2 in Figure 4c) con-
clude that ports A, B, and C may share the same queue, from which exactly one
element is dequeued per firing, because they are indistinguishable indeed: intu-
itively, if δ |=sc

⊕
({A , B , C}) · Z, we cannot know which one of A, B, or C holds,

unless we inspect δ. Thus, beside automatically detecting indistinguishable ports
in a transition, to actually reveal them as queues, we additionally need an al-
gorithm for syntactically manipulating that transition’s sc. We formulate both
these aspects in terms of a per-transition hypergraph [13]. Working with hyper-
graph representations simplifies our reasoning about, and manipulation of, scs
modulo associativity and commutativity. We compute hypergraphs as follows.

Let α = (Q , P , −→ , ı) be an original ca as before, and let (q , ψ , φ , q′) be
a (merged) transition in f1(α). Because α is an original ca and by the construc-
tion of f1(α), we know that ψ is a sum of P -complete products of ports (e.g.,
Figure 6). Because every single port p is equivalent to

⊕
({p}), transformation f2

can represent ψ as a set E of sets E of sets V : E represents the outer sum, every E
represents a P -complete product (E includes/excludes every positive/negative
port), and every V represents an inner exclusive sum. For instance, {{{A} , {
Z}} , {{B} , {Z}} , {{C} , {Z}}} represents the sc of the transition in Figure 6b.
Transformation f2 considers E as the set of hyperedges of a hypergraph over
the set of vertices ℘(Port(ψ)), where Port(ψ) denotes the ports occurring in ψ
(i.e., every vertex is a set of ports). Formally, f2 computes a function graph. Let
Graph denote the set of all hypergraphs with sets of ports as vertices.

Automata-Based Optimization of Interaction Protocols 75

Definition 1. graph : SC ⇀ Graph denotes the partial function from scs to
hypergraphs defined as:7

graph(ψ) = (℘(Port(ψ)) ,

{
E

E = {V | V = {p} and p ∈ P+}
and P+ ⊆ Port(ψ) and P+ ∈ P

}
)

if
[
ψ =

∑
(

{
ψ′ ψ′ ≡sc cp(Port(ψ) , P+) and

P+ ⊆ Port(ψ) and P+ ∈ P

}
) for some P

]
A

B

C

Z

(a) Merger3

A

H

Y

B Z

(b) Hourglass

Fig. 7. Hypergraphs for the transitions
of the ca in Figure 6

(The side condition states just that ψ is
a sum of P -complete products of ports.)

Figure 7 shows example hypergraphs
(without unconnected vertices).

We define the meaning of a hyper-
graph as a sum of products of exclusive
sums, where every product corresponds
to a hyperedge. Such a product consists
of exclusive sums of positive ports (one
for each vertex in the hyperedge), and it consists of negative ports (one for ev-
ery port outside the vertices in the hyperedge). We can show that graph is an
isomorphism (i.e., graph(ψ) is a sound and complete representation of ψ).

Definition 2. �·� : (℘(Ver) × ℘(Port)) ∪ Graph → SC denotes the function
from

[
hyperedge, set of ports

]
-pairs and hypergraphs to scs defined as:

�E�P =
∏
({ψ | ψ =

⊕
(V) and V ∈ E} ∪

{ψ | ψ = p and p ∈ P \ (
⋃
E)})

�(V , E)� =
∑

({ψ | ψ = �E�⋃V and E ∈ E})

Theorem 1. (Theorem 3 in [11, Appendix A]) ψ ≡ �graph(ψ)�

In summary, transformation f2 computes graph for every merged transition
in f1(α) and stores each of those graphs in a set Γ (indexed by transitions).

Hypergraphs as introduced are generic representations of synchronization pat-
terns, isomorphic to but independent of scs in ca. This reinforces that our op-
timization approach, transformation f , is not tied ca but a generally applicable
technique when relevant context information is available.

6 Transformation f3: Manipulating SCs

Transformation f3 aims at making all indistinguishable ports (hence queues) in
scs on (merged) transitions in f1(α) apparent by analyzing and manipulating
the hypergraphs in Γ , computed by transformation f2. It consists of two steps.

In the first step, transformation f3 computes the indistinguishable ports under
every transition t = (q , ψ , φ , q′) in f1(α). We call the ports in a set I indis-
tinguishable under t if for every distribution δ such that δ |=sc ψ and |I ∩ Dom(

7 Let ℘(X) denote the power set of X.

76 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

δ)| = 1, we cannot deduce from δ|P\I which particular port in I is satisfied by δ.
An example appeared in the first paragraph of Section 5. In an implementation
with a queue shared among the ports in I, this means that whenever t fires, we
know that exactly one port in I participated in the transition but not which one,
even if we know all other participating ports (i.e., those outside I).

By analyzing hypergraph γt ∈ Γ for the sc ψ of t, transformation f3 computes
maximal sets of indistinguishable ports under t (larger sets of indistinguishable
ports means larger queues means better scalability), as follows. Recall from Sec-
tion 5 that γt represents a sum (hyperedge relation) of P -complete products
(hyperedges) of singleton exclusive sums (vertices). To understand how port
indistinguishability displays in γt, suppose that ports p1 , p2 ∈ P are indistin-
guishable, and let δ be a distribution such that δ |=sc �γt�. Because γt’s hyperedge
relation E represents a sum of P -complete products, exactly one hyperedgeE ∈ E
exists such that δ satisfies �E�P . Then, because |{p1 , p2}∩Dom(δ)| = 1, a vertex
V ∈ E exists such that p1 ∈ V or p2 ∈ V .8 In fact, because every hyperedge
consists of singleton vertices, either {p1} ∈ E or {p2} ∈ E. Now, by inspecting
δ|P\{p1,p2}, we can infer the other vertices in E, beside either {p1} or {p2}. Let
E′ denote this set of vertices, and observe that either E = E1 = E′ � {{p1}} or
E = E2 = E′�{{p2}}. Because both options are possible, E necessarily includes
both E1 and E2, and importantly, E1 and E2 are equal up to p1 and p2.

Generalizing this example from {p1 , p2} to arbitrarily sized sets I, informally,
the ports in I are indistinguishable if every port in I is involved in the same hy-
peredges as every other port in I up to occurrences of ports in I. The following
definitions make this generalization formally precise. First, we introduce a func-
tion Edge that determines for a port p which hyperedges in E include p. (In fact,
Edge(p , E) contains all such hypergedges up to occurrences of vertices with p.)
Then, we define a function � that computes maximal sets of ports with the
same set Edge(p , E). Importantly, � yields a partition of the set of ports in
vertices connected by E , denoted by Port(E). Henceforth, we therefore call every
maximal set of indistinguishable ports computed by � a part.

Definition 3. Edge : Port × ℘2(Ver) → ℘2(Ver) denotes the function from[
port, set of hyperedges

]
-pairs to sets of hyperedges defined as:

Edge(p , E) = {W | W = E \ {V } and p ∈ V ∈ E ∈ E}

Definition 4. � : ℘2(Ver) → ℘2(Port) denotes the function from sets of
hyperedges to sets of sets of ports defined as:

�(E) = {P | P ∈ ℘+(Port(E)) and
[[
p ∈ P iff T = Edge(p , E)

]
for all p

]
}

Lemma 1. (Lemma 12 in [11, Appendix A])

1.
⋃
�(E) = Port(E)

2.
[
P1 �= P2 and P1 , P2 ∈ �(E)

]
implies P1 ∩ P2 = ∅

8 Otherwise, if p1 , p2 /∈ V for all V ∈ E, the P -complete product represented by E
contains p1 and p2 such that δ �|=sc p1 and δ �|=sc p2. This contradicts the assumption
|{p1 , p2} ∩Dom(δ)| = 1, which implies either δ |=sc p1 or δ |=sc p2.

Automata-Based Optimization of Interaction Protocols 77

Edge(A , E) = {{{Z}}}
Edge(B , E) = {{{Z}}}
Edge(C , E) = {{{Z}}}
Edge(Z , E) = {{{A}} , {{B}} , {{C}}}
�(E) = {{A , B , C} , {Z}}

(a) Merger3

Edge(A , E) = {{{H} , {Y}} , {{H} , {Z}}}
Edge(B , E) = {{{H} , {Y}} , {{H} , {Z}}}
Edge(H , E) = {{{A} , {Y}} , {{A} , {Z}} , {{B} , {Y}} , {{B} , {Z}}}
Edge(Y , E) = {{{A} , {H}} , {{B} , {H}}}
Edge(Z , E) = {{{A} , {H}} , {{B} , {H}}}
�(E) = {{A , B} , {H} , {Y , Z}}

(b) Hourglass

Fig. 8. Maximal sets of indistinguishable ports of the hypergraphs in Figure 7

In summary, in the first step, transformation f3 computes maximal sets of
indistinguishable ports in every merged transition t = (q , ψ , φ , q′) by applying
� to hyperedge relation E in hypergraph γt for ψ. Figure 8 shows examples.

In the second step, f3 manipulates E of every hypergraph γt such that af-
terward, every vertex in every hyperedge in E is a part in �(E). Importantly,
every vertex V ∈ E ∈ E such that V ∈�(E) represents not just any

⊕
-formula

but one of indistinguishable ports. Consequently, in the meaning of the manipu-
lated γt, indistinguishable ports become apparent as inner

⊕
-formulas as in the

example in the first paragraph of Section 5.
For manipulating hyperedge relation E , we introduce an operation that

combines two combinable hyperedges into one in a semantics-preserving way.
Roughly, we call two distinct hyperedges E1 , E2 ∈ E combinable if we can
select disjoint vertices V1 , V2 ∈ E1 ∪ E2 such that E1 and E2 are equal up to
inclusion of V1 and V2. We denote this property as (E1 , V1)�E (E2 , V2). Applied
to combinable hyperedges E1 and E2, operation removes E1 and E2 from E
and adds their combination E† = {V1 ∪ V2} ∪ (E1 ∩E2) to E . Formally, we have
the following. Let Ver denote the set of all vertices.

Definition 5. �⊆ (℘(Ver)× Ver)× (℘(Ver)× Ver)× ℘2(Ver) denotes the
relation on tuples consisting of two sets of

[
hyperedge, vertex

]
-pairs and a set of

hyperedges defined as:

(E1 , V1)�E (E2 , V2) iff

⎡⎣E1 , E2 ∈ E and E1 �= E2 and V1 ∩ V2 = ∅
and E1 = (E2 \ {V2}) ∪ {V1}
and E2 = (E1 \ {V1}) ∪ {V2}

⎤⎦
Definition 6. : (℘(Ver) × Ver) × (℘(Ver) × Ver) × ℘2(Ver) ⇀ ℘2(Ver)
denotes the partial function from tuples consisting of two

[
hyperedge, vertex

]
-

pairs and a set of hyperedges to sets of hyperedges defined as:

(E1 , V1) E (E2 , V2) = E \ {E1 , E2}) ∪ {{V1 ∪ V2} ∪ (E1 ∩ E2)}
if (E1 , V1)�E (E2 , V2)

Lemma 2. (Lemma 8 in [11, Appendix A])

(E1 , V1)�E (E2 , V2) implies �(V , E)� ≡sc �(V , (E1 , V1) E (E2 , V2))�

Transformation f3 uses operation in the algorithm for combining hyperedges
in Figure 9. Essentially, as long as vertices V1 and V2 exist such that the ports

78 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

while
[[(X , V1) �E (Y , V2) and

V1 ∪ V2 ⊆ P and P ∈ �(E)
]

for some X , Y , V1 , V2 , P
]
do

while
[[
(E1 , V1) �E (E2 , V2)

]
for some E1 , E2

]
do

E := (E1 , V1) �E (E2 , V2)

Fig. 9. Algorithm for combining hyperedges

A

H

Y

B Z

=⇒

A

H

Y

B Z

Y, Z =⇒

A

H

B

Y, Z =⇒ HA, B Y, Z

Fig. 10. Evolution of the hypergraphs in Figure 7b

in V1 ∪V2 are indistinguishable (as computed by �), the algorithm combines all
combinable hyperedges that include V1 and V2. For instance, Figure 10 shows
the evolution of the hypergraph in Figure 7b during the run of the algorithm in
which it first selects Y and Z as V1 and V2 and afterward A and B. (In another
run, the algorithm may change this order to obtain the same result.)

Let Ein and Eout denote the sets of hyperedges before and after running the
algorithm. To consider the algorithm correct, Eout must satisfy two properties: it
should represent an sc equivalent to the sc represented by Ein (i.e., the algorithm
is semantics-preserving), and every vertex in every hyperedge in Eout should be
a part in �(Ein) (i.e., the algorithm effectively reveals indistinguishability). We
use Hoare logic to prove these properties [14,15]. In particular, we can show that
the triple {Pre} A {Post} holds, where A denotes the algorithm in Figure 9. Pre-
condition Pre states that γt = (V , Ein) is a hypergraph (for the sc of transition
t) such that every port in a connected vertex inhabits at most one connected ver-
tex, and such that every connected vertex is nonempty. The definition of graph
in Definition 1 implies these conditions. (However, because its precondition is
more liberal, the algorithm is more generally applicable.) The postcondition Post
states that correctness as previously formulated holds. Formally:

�(V , Eout)� = �(V , Ein)� and
[[E ∈ Eout implies

E ⊆�(Ein)

]
for all E

]
Figure 11 shows the algorithm annotated with assertions for total correctness.
By the axioms and rules of Hoare logic, this proof is valid if we can prove that
for all six pairs of consecutive assertions, the upper assertion implies the lower
one. For brevity, below, we discuss some salient aspects.

First, the algorithm terminates, because (i) every iteration of the outer loop
consists of at least one iteration of the inner loop, for X = E1 and Y = E2,
(ii) in every iteration of the inner loop, E decreases by one, and (iii) E is finite.
Second, the algorithm is semantics-preserving by Lemma 2. The main challenge
is proving that the algorithm is also effective. A notable step in this proof is
establishing the property labeled Interm from Inv2 (the invariant of the inner

Automata-Based Optimization of Interaction Protocols 79

{
Pre

}
{
Inv1

}
while

[[(X , V1) �E (Y , V2) and
V1 ∪ V2 ⊆ P and P ∈ �(E)

]
for some X , Y , V1 , V2 , P

]
do{

Inv1 and Cond1 and |E| = z1
}

{
Inv2

}
while

[[
(E1 , V1) �E (E2 , V2)

]
for some E1 , E2

]
do{

Inv2 and Cond2 and |E| = z2
}

{
Inv2[E := (E1 , V1) �E (E2 , V2)] and (|E| < z2)[E := (E1 , V1) �E (E2 , V2)]

}
E := (E1 , V1) �E (E2 , V2){
Inv2 and |E| < z2

}
{
Inv2 and

[
not Cond2

]}
{
Inv2 and Interm and |E| < z1

}
{
Inv1 and |E| < z1

}
{
Inv1 and

[
not Cond1

]}
{
Post

}

Fig. 11. Algorithm for combining hyperedges with assertions for total correctness

loop) and
[
not Cond2

]
(the negation of the inner loop’s condition). Informally,

Interm states that if F denotes the hyperedge relation before running the inner
loop, we have E = F \ (F1,2) ∪ F† after running the inner loop. Here, F1,2

contains all hyperedges from F that include V1 or V2, while F† denotes all new
hyperedges added by during the loop. This property subsequently enables us
to prove Inv1 (the invariant of the outer loop), which among other properties
states �(Ein) = �(E). Consequently, to prove the algorithm’s effectiveness, it
suffices to show that E ∈ Eout implies E ⊆�(Eout) (for all E).

Theorem 2. (Theorem 4 in [11, Appendix A]) {Pre} A {Post}

In summary, in the second step, for every (merged) transition t = (q , ψ , φ ,
q′) in f1(α), transformation f3 manipulates hypergraph γt to γ′

t by running the
algorithm in Figure 9, given the maximal sets of indistinguishable ports com-
puted in f3’s first step with �. Afterward, f3 replaces ψ in t with �γ′

t�, which by
the correctness of the algorithm is equivalent to �γt� and has made indistinguish-
able ports (hence queues) apparent. We denote the resulting transition relation
by (f3◦f1)(−→) and the resulting ca by (f3◦f1)(α). Because ψ ≡sc �γt� ≡sc �γ′

t�
for all transitions t in f1(α), the following proposition follows from Lemma 16
in [11, Appendix A]. Together, Propositions 1 and 2 imply that transformation
f is semantics-preserving.

Proposition 2. (f3 ◦ f1)(α) ∼ f1(α)

We end with some examples in Figure 12. Transformation f3 has not had
any effect on the LossySync ca, so its implementation does not benefit from
queues (no indistinguishable ports), as expected. The Merger3 and Hourglass
ca, in contrast, have changed significantly. In the sc of Merger3, we can now
clearly recognize one queue for ports A, B, and C and one queue for port Z (cf.
transformation h in Section 3); similarly, in the sc of Hourglass, we can now
clearly recognize one queue for ports A and B and one queue for ports Y and Z.

80 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

AB ,
Eq({A , B})

AB ,
�

(a) LossySync

⊕
({A , B , C}) · Z ,

Eq({A , B , C , Z})

(b) Merger3

⊕
({A , B}) · H · ⊕({Y , Z}) ,
Eq({A , B , H , Y , Z})

(c) Hourglass

Fig. 12. Application of transformation f3 to the ca in Figure 6

Applied to Merger3, transformation f optimizes a multiple-producer-single-
consumer protocol. More abstractly, in this case, f optimizes a protocol among
two groups of processes, X1 (producers) and X2 (consumer), such that |X1| = 3
and |X2| = 1 and all processes in X1 are indistinguishable to all processes
in X2 and vice versa. Generally, f can optimize protocols among n groups of
processes X1 , . . . , Xn such that for all 1 ≤ i , j ≤ n, all processes in Xi are
indistinguishable to all processes in Xj and vice versa. For instance, applied to
Hourglass, f optimizes a protocol among three groups of processes such that
|X1| = |X3| = 2 and |X2| = 1.

After having applied transformation f , the automatic generation of actual
implementations is straightforward (i.e., transformation g2 in Figure 4c). The
resulting code is, in fact, exactly the same as the code that results from manually
applying transformation h as in Section 3 (and consequently, it has the same
performance): instead of checking an event structure for every port as pre-
optimized code does, optimized code checks one eventQueue structure for every
maximal set of indistinguishable ports, which transformation f has made explicit
as
⊕

-formulas in scs (and are thus easy to detect in the f -transformed ca). As
such, optimized code checks the sc of all transitions in the pre-transformation
ca that differ only in indistinguishable ports (before applying f) at the same
time. For k such transitions, consequently, an unscalable exhaustive O(k) search
is optimized to perfectly scalable O(1) queue operations. Thus, with respect to
Figure 4c, the fully mechanical transformation g2 ◦ f = g2 ◦ f3 ◦ f2 ◦ f1 yields the
same code and scalability as the partially manual transformation h ◦ g1.

7 Concluding Remarks

In this paper, we analyzed scalability issues of the code generated by our Reo-
to-C compiler, we explained a manual solution, and we studied the various steps
of a mechanical procedure for transforming a ca α to an equivalent ca β, which
makes port indistinguishability (hence queues) maximally apparent, using the⊕

-operator. Our tool can use this mechanical procedure to generate code for α
via β with good scalability. In particular, whereas unoptimized code generated
for α requires O(k) time to compute eligibility of k transitions—essentially an
exhaustive search—the optimized code generated for β requires only O(1) time:
all maximal sets of indistinguishable ports (explicit in β as a

⊕
-formulas in scs)

in the implementation share the same queue, which optimizes the unscalable
O(k) search to perfectly scalable O(1) queue operations.

Automata-Based Optimization of Interaction Protocols 81

Although inspired by our work on a Reo compiler and formulated generally
in terms of ca, we make contributions beyond Reo and ca. The synchronization
pattern that we identified and optimized is common and occurs in many classes
of protocols and their implementation, regardless of the particular language.
Therefore, compilers for other high-level languages may use the same approach as
explained in this paper to similarly optimize code generated for programs in those
languages. In fact, this paper led to adding new features to Proto-Runtime to
enable our optimization technique, thereby facilitating efficient implementation
of our f -transformed ca. Importantly, these new features in Proto-Runtime can
now benefit other languages implemented on top of Proto-Runtime as well.

Automatically performing our optimization directly on low-level code such
as C (instead of on ca) is extremely complex, if not impossible. This shows
that using higher-level languages (that preserve relevant context information
about protocols) for multicore programming can indeed be advantageous for
performance, a significant general observation in language and compiler design
for multicore platforms. Indeed, the work presented in this paper serves as ev-
idence that it is possible not only to specify interaction protocols at a higher
level of abstraction (than locks, mutex, semaphores, message exchanges, etc.)
but also automatically compile and optimize such high-level specifications down
to executable code. Such higher-level specifications convey more of the inten-
tion behind the protocol, which gives more room for a compiler/optimizer to
find and apply efficient implementation alternatives. Lower-level, more impera-
tive, specifications of interaction protocols either lose or obscure the intentions
behind protocols and seriously constrict the ability of compilers/optimizers to
find efficient implementation alternatives. See [11] for related work on high-level
approaches to multicore programming.

This paper makes primarily conceptual and theoretical contributions, and we
used performance figures only to motivate and explain the development of our
optimization technique. An in-depth study of the use of this technique in prac-
tice, including more benchmarks and experiments with different kinds of proto-
cols and contexts, is our next objective, now that we know that the technique
is correct. As part of this future work, we will also extend our current, limited
proof-of-concept implementation (used in obtaining the data for Figure 5) to a
full implementation. We end with the following remarks.

Indistinguishability of data. Transformation f effectively merges transitions with
labels of the form (ψ , Eq(P)). The reason is that the ports in Eq(P) are indis-
tinguishable from a data perspective. (Whether those ports are also indistin-
guishable in ψ is exactly what transformation f3 investigates.) Detecting port
indistinguishability in arbitrary dcs so as to improve the applicability of f seems
an interesting and important future challenge.

Guarded automata. Our scs, as arbitrary propositional formulas, seem similar
to guards on transitions in the guarded automata used by Bonsangue et al.
for modeling connector behavior [16]. The intuitive meaning of such guards,
however, significantly differs: guards specify a constraint on the environment,

82 S.-S.T.Q. Jongmans, S. Halle, and F. Arbab

while scs specify a constraint on an execution step. (In fact, transition labels of
guarded automata carry both a guard and an sc.)

Model-based testing. We skipped an explanation of the actual code generation
process (i.e., transformation g2 in Figure 4), dismissing it as “straightforward”
and “obviously correct”. An interesting line of work to better substantiate the
latter statement is to have our tool generate not only executable code but also
test cases derived from the input ca. Kokash et al. have already worked on such
model-based testing for ca in a different context [17].

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
MSCS 14(3), 329–366 (2004)

2. Arbab, F.: Puff, The Magic Protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Talcott Festschrift. LNCS, vol. 7000, pp. 169–206. Springer, Heidelberg (2011)

3. Jongmans, S.S., Arbab, F.: Modularizing and Specifying Protocols among Threads.
In: Proceedings of PLACES 2012. EPTCS. CoRR, vol. 109, pp. 34–45 (2013)

4. Jongmans, S.S., Arbab, F.: Overview of Thirty Semantic Formalisms for Reo.
SACS 22(1), 201–251 (2012)

5. Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: A framework for model-
checking dataflow in service compositions. FAC 24(2), 187–216 (2012)

6. Jongmans, S.S., Halle, S., Arbab, F.: Reo: A Dataflow Inspired Language for Mul-
ticore. In: Proceedings of DFM 2013 (2013)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61(2), 75–113 (2006)

8. Halle, S.: A Study of Frameworks for Collectively Meeting the Productivity, Porta-
bility, and Adoptability Goals for Parallel Software. PhD thesis, University of Cal-
ifornia, Santa Cruz (2011)

9. Halle, S., Cohen, A.: A Mutable Hardware Abstraction to Replace Threads. In:
Rajopadhye, S., Mills Strout, M. (eds.) LCPC 2011. LNCS, vol. 7146, pp. 185–202.
Springer, Heidelberg (2013)

10. Butenhof, D.: Programming with POSIX Threads. Addison-Wesley (1997)
11. Jongmans, S.S., Halle, S., Arbab, F.: Automata-based Optimization of Interaction

Protocols for Scalable Multicore Platforms (Technical Report). Technical Report
FM-1402, CWI (2014)

12. Sirjani, M., Jaghoori, M.M., Baier, C., Arbab, F.: Compositional Semantics of an
Actor-Based Language Using Constraint Automata. In: Ciancarini, P., Wiklicky, H.
(eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 281–297. Springer, Heidelberg
(2006)

13. Bretto, A.: Hypergraph Theory: An Introduction. Springer (2013)
14. Hoare, T.: An Axiomatic Basis for Computer Programming. CACM 12(10), 576–580

(1969)
15. Apt, K., de Boer, F., Olderog, E.R.: Verification of Sequential and Concurrent

Programs. Springer (2009)
16. Bonsangue, M., Clarke, D., Silva, A.: A model of context-dependent component

connectors. SCP 77(6), 685–706 (2009)
17. Kokash, N., Arbab, F., Changizi, B., Makhnist, L.: Input-output Conformance

Testing for Channel-based Service Connectors. In: Proceedings of PACO 2011.
EPTCS. CoRR, vol. 60, pp. 19–35 (2011)

LINC: A Compact Yet Powerful

Coordination Environment

Maxime Louvel and François Pacull

Univ. Grenoble Alpes, F-38000 Grenoble, France
CEA, LETI, MINATEC Campus, F-38054 Grenoble, France

17 rue des Martyrs 38000 Grenoble, France
{maxime.louvel,francois.pacull}@cea.fr

Abstract. This paper presents LINC, a coordination programming en-
vironment. It is an evolution of earlier middlewares (the Coordination
Language Facility (CLF) and Stitch). The aim is to provide a more flex-
ible and expressive language correcting several of their limitations and
an improved run-time environment. LINC provides a compact yet pow-
erful coordination language and an optimised run-time which executes
rules. This paper describes the intrinsic properties brought by the LINC
environment and how it helps the coordination aspects in a distributed
system. This paper also emphasises on the reflexivity of LINC and its
usage at system level. Finally, it illustrates through several case studies,
how LINC can manage a wide range of application domains.

Keywords: Coordination, language, tuplespace, distributed systems.

1 Introduction

Today’s systems are not only distributed, they are composed of other systems
more or less opaque. They have to interact with real world and thus have to
consider on the one hand very small embedded systems and on the other end
unbounded resources sprayed in the ”cloud”. Some pieces of work consider that
the traditional approaches based on objects and services cannot hold such com-
plexity [18]. In this context, coordination models and languages [25] are essential
to coordinate basic elements as well as systems of systems. The last decades have
seen a lot of work in the coordination area [24], starting with Linda [13]. Linda
firstly introduced the notion of tuple-space as the ground for coordination. In
Linda, components exchange and synchronise through tuples addition and re-
moval in a shared tuple-space. This approach allows the decoupling of processes
both in space and time. Indeed to exchange data between two components, the
first one simply puts a tuple in the shared tuple-space. It does not have to worry
if another component is currently waiting for this information or how this infor-
mation should be exchanged. The data is exchanged when another component
reads the tuple. The read may come before, at the same time or after the put.

Based on Linda, a number of evolutions have been proposed. Starting in
the 2000s, researchers have focused on using tuple-spaces for mobile computing

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 83–98, 2014.
c© IFIP International Federation for Information Processing 2014

84 M. Louvel and F. Pacull

[8, 12, 22, 33]. To support mobile environment, one of the main improvement is
the use of several tuple-spaces instead of a single one shared by all the processes.
Then, from mobile computing, researchers have focused on making applications
context aware by the use of tuple-spaces [5, 7, 15]. To go a step further with the
mobility, toward autonomous systems, researchers considered more intelligent
tuples [21,30]. They have shown the interest of relying on tuple-spaces in nowa-
days systems. However, there is still a gap between what people express and how
the developer will implement it. We believe it is essential to provide means for
developers to focus on the coordination of the systems. It is also tremendously
important to provide them with a simple programming environment powerful
enough to handle the system complexity. The response to the management of
complex system should not be a complex programming environment.

This paper presents the full set of LINC features with a special focus on how
it eases the coordination tasks. It complements partial description in earlier ap-
plication domain oriented papers [10,20]. LINC is a compact yet powerful coor-
dination environment which relies on the three basic primitives of Linda to read,
add and remove tuples in a tuple-space. It uses distributed tuple-spaces called
bags. A bag is responsible for storing the tuples and may provide a special imple-
mentation of the three primitives. This is very convenient when communicating
with the physical world (e.g. sensors or actuators) or when integrating legacy
systems. LINC uses production rules to interact on the tuple-space rather than
using imperative code to glue the primitives. Actions on the bags are embedded
into distributed transactions which simplifies a lot the job of the developer that
does not have to worry about writing code to roll back half of the actions done
so far when something goes wrong. Transactions also enforce the consistency be-
tween the actual system and the software view. This, once again aims at helping
developers to focus only on the coordination.

The paper is structured as follows. Section 2 presents the coordination lan-
guage of LINC. Then, Section 3 describes its main features. Section 4 sketches
several concrete case studies where LINC has been used. Section 5 positions our
approach with respect to related works. Finally, Section 6 concludes the paper.

2 LINC Coordination Language

LINC is the natural evolution of the Coordination Language Facility (CLF) [2]
and Stitch [1] middlewares initially developed for deploying distributed appli-
cations. The three of them share the resource oriented approach manipulated
through a high level rule-based language. However, the architecture of LINC has
been completely revisited to adapt to the new landscape defined by the combi-
nation of the Internet-of-things, the cloud and the Cyber-Physical Systems.
The main differences are:

– in LINC, the coordination engine has been improved both in term of CPU us-
age and memory footprint. It is embedded in every object while CLF/Stitch
relied on more complex dedicated objects. This allows to better distribute
the coordination by delegating some parts to more modest CPU;

LINC: A Compact Yet Powerful Coordination Environment 85

– the rule language has been extended to improve its expressiveness;
– the environment comes with tools: monitoring, rule analysis (memory, time

and dependencies) and a replaymechanismallowing post-mortem re-execution
preserving causal order to debug the initial run. Tools are not the focus of this
paper, details may be found in the LINC wiki (http://linc.middlewares.info).

2.1 LINC Roots

We briefly recall here the basics of LINC to make the paper self contained. LINC,
like CLF or Stitch, is rooted in Linda-like tuple-spaces (Associative Memory),
Production Rules and Distributed Transactions.

Associative Memory: The global tuple-space is composed of several distributed
tuple-spaces called bags. Tuples in bags are accessed with the three operations:
rd(), get() and put(). The rd() verifies the presence of resources matching
some given criteria: resources corresponding to the requested pattern (partially
instantiated tuple) passed as parameter. The get() (in in Linda) removes a
tuple while the put() (out in Linda) inserts a new tuple in a bag.

Production Rules: In LINC, the rd(), get() and put() primitives are invoked
through production rules [9]. This prevents to write a huge amount of impera-
tive code such as Java, C or Python by the use of a coordination language to
define how the resources are manipulated in the system. A production rule is
decomposed in a precondition and a performance part. The precondition part
uses rd() operations combined with an inference engine in order to evaluate
distributed conditions in the system. Then, the performance part uses:

– rd() to verify that conditions are still valid at performance time;
– get() to consume resources (e.g. manage critical resources, consume events);
– put() to generate resources (e.g update the system, command actuator).

A rule typically uses several bags, physically distributed or not, to access the
necessary information and update the system accordingly. The particularity of
LINC is that the performance part is embedded in Distributed Transactions.

Distributed Transactions: They are used in the performance part to ensure
the all-or-nothing [6] property. They group in the same set of operations the
verification of some conditions, the consumption of critical resources and the
update of the global state of the system. Thus, the performance part is a list of
transactions that are executed in sequential order.

The combination of these three paradigms enables to build transactional reac-
tions to complex events. Complex events in a building automation context could
be the combination of several events such as people in the room and temperature
lower than sixteen degrees and HVAC system is OFF. Transactional reactions
consist in put the heating ON, and update the state of the system.

2.2 Bags Abstraction

The main interest of splitting the global tuple-space into several bags is that
each bag may define its own semantic associated to the rd, get and put and

86 M. Louvel and F. Pacull

the tuples themselves. As a result, bags can encapsulate software or hardware
components.

a database: each table of the database can be associated to a bag; rd() and
put() corresponds to the reads and writes on the database.

a service: This concerns remote services as well as local services directly
embedded in the bag. The partially instantiated tuple composed of the input
parameters is passed to the rd(). The concerned service is invoked from the
bag, using the legacy protocol imposed by the remote service (e.g. SOAP for
a Webservice based approach or a native Remote Procedure Call). The output
parameters obtained as the result of the service is added to the input parameters
defining the fully instantiated tuple returned by the rd().

an event system: Tuples contain the topic, the ID, the timestamp and a
payload; the rd() and put() operations correspond to subscribe and publish

of the event system.
a sensor: Data are collected from the gateway and inserted into different

bags storing the various relevant information. For instance, for a very simple
approach, we can consider the three bags associating the id of the sensor to the
sensed value, the type of sensor and its location. Successive values can be
obtained through the rd(), changing the location of the sensor is as simple as
modifying the resource by consuming it with a get() and inserting the updated
information with a put(). The sampling frequency, the type of bag (e.g. set,
multiset, FIFO, . . .) or the precision can be adapted at this stage. The behaviour
of the rd() may also be adapted to replace a simple tuple matching by a more
complex matching: e.g. interval, fuzzy logic or ontologies.

an actuator: When interacting with the real world, the put operation is
typically used to send actuation commands (e.g to set the speed of a motor, the
direction of the wheels or to power on or off a subsystem). We can act on the
physical actuator through a put() operation with a resource with the id, the
command to be applied and the possible parameters p1, p2 into the associated
bag. This is enough to trigger action to the actual actuator.

Finally, it is possible to associate bags. For instance, one bag can contain
the number of resources contained in the bag it is associated to. More complex
associations can be considered such as arithmetic functions (e.g. sum, average,
max or min or even a Bayesian filter). The main advantage is to have a direct
access to refined information computed from a set of resources. It has been used
for instance in the application described in 4.2 to filter outliers values coming
from a matrix of Rfid readers.

2.3 Coordination Language

Bags are grouped into objects for identification purposes, thus objects are a
logical decomposition of an application. For instance an object may manage
all the sensors communicating with the same protocol or located in the same
space. An object may execute rules to coordinate the system by acting on its
own bags and the other objects’ ones. When an object executes rules, it plays
the role of coordinator. Rules can be executed by any object. This means that

LINC: A Compact Yet Powerful Coordination Environment 87

the programmer is free to distribute them among the different objects of an
application.

To illustrate how LINC rules are working Listing 1.1 gives a very simple
rule involving two sensors (presence and temperature) and an actuator (heating
controller) using three different technologies (e.g. different protocols). This rule
adjusts the heating of a room when someone is inside and the temperature is
lower than 16 ◦C. The rule is composed of the precondition (when to trigger the
rule) and the performance (what to do) separated by the symbol ::.

1{∗ , !} [”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) &
{∗ , !} [”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a” , temp) &

3ASSERT: temp < 16 &
{ 1 , ! } [”Techno1” , ”l o c a t i o n ”] . r d (”p r e s 1 ” , l o c a t i o n) &

5{∗ , !} [”Techno3” , ”a c t u a t o r s l i s t ”] . r d (i d a c t , ”h e a t i n g ” , l o c a t i o n)
: :

7{
[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) ;

9[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;
[”Techno3” , ”a c t u a t o r s ”] . put (i d a c t , ”h e a t i n g ” , ”2”) ;

11}
{ . . . # o t h e r g roup o f a c t i o n s } .

Listing 1.1. LINC rule example

Precondition. The precondition is composed of tokens processed by an infer-
ence engine with a right propagation. Listing 1.1 contains 8 tokens (1 per line).
The first token invokes a rd() operation into the bag ”sensors” of the object
”Techno1”. This object encapsulates the gateway of the first technology. The to-
ken looks for the resource (”pres 1”, ”True”) where the first field is the sensor id
(generally imposed by the technology) and the second the value ”True” meaning
that a presence is detected. In a similar way, the second token asks for the tem-
perature currently sensed by the sensor whose id is ”temperature a”. When the
rd is done, all the matching tuples are returned one by one. For every returned
tuple, a new branch is created with the value of the instantiated variables temp.
The instantiated variables are right propagated. For instance in the third token
this variable is compared to the threshold (16 degrees) thanks to the ASSERT:

extension1. If the condition is false, the rule will not progress. If it is true, the
next token asks the bag location, of the object "Techno1" (responsible for the
presence sensor), for the location of sensor "pres 1". With this information,
the last token can ask the id of the co-located heating system.

The tokens in the precondition phase are preceded with modifiers embraced in
curly brackets. The first field defines the number of maximum expected replies
awaited by the rd() operation. Normally a rd() is blocked waiting for new
matching resources that could become available. In this example, we use * for
the first 2 tokens since we want to have all the replies. On the contrary, for the
4th we used 1 since a sensor has a single location and it is useless to wait for
another resource. The second field is used to define the amount of time a pending
rd() is waiting for a reply. Both are used to reduce the size of the inference tree
as detailed in Section 3.2.
1 The extensions ASSERT:, COMPUTE: and SLEEP: allows to respectively verify a condi-
tion, execute simple computation or wait for a given time.

88 M. Louvel and F. Pacull

Performance. The performance part may contain several transactions enclosed
in curly brackets. The first transaction embeds the verification of the conditions
presence and temperature and the operation on the heating system. Indeed, if
the presence detector becomes false, this means the person is out of the room and
nothing is required from the system. If the temperature has changed, it is not
required to react. Indeed another inference will start with the new temperature,
and a more accurate heating command will be computed. Finally, the last action
of the transaction does the required operation on the heating system. Contrary
to the Event-Condition-Action [32] model, events and conditions are managed
in the same way. Moreover, they may be enclosed with actions in a transaction.

The transactions are executed sequentially. If several transactions perform
a get() on a same unique resource, they become exclusive. It is explained in
context with the guards controlled alternatives (Section 3.3) and the graceful
degradation (Section 3.4) mechanisms. The distributed transactions are enforced
through a classical 2 Phase-Commit [6] to provide atomicity property (all-or-
nothing). However, no hypothesis is made on how the bags implement these 2
phases. Thus, it is possible on the one hand to take advantage of the context
and to implement a bag fully compliant with the 2PC on small microcontroller
if required. On the other hand, it allows for a given bag to relax the 2PC.

2.4 Improvement with Respect to CLF/Stitch

The explicit usage of the operations rd(), get() and put() in LINC allows to
verify in the performance phase only the useful resources while in CLF/Stitch
all the resources used in the precondition where systematically verified in the
performance phase. The major drawback is that some rd() were verified even if
it was not required. Indeed, among the rd() operations done in the precondition
a significant part are just informative and not subject to change. Verifying them
again in the performance was a waste of time and resources.

Another difference concerns the rd() and get() done in the performance.
The presence of the resources returned in the precondition is verified in CLF /
Stitch via a unique resource identifier. In LINC, it is not based on this identifier
but on the value. This decreases the size of the inference tree and the amount of
useless work when we have to deal with multiple resources with the same value
(e.g. a sensor returning the same value).

Moreover, CLF considers in the performance a transaction for the rd() and
the get() operations and the guaranty that the put() operations are eventually
done by re-trying them until completion. This was motivated by the fact a put()

was not supposed to fail. Indeed, for a tuple space, it is reasonable to consider
that inserting a resource is always possible. However, in LINC we want also to
target physical world, such as actuators that may fail when a put() is tried.

Thus, LINC enforces a transaction for (rd(), get() and put()) operations
allowing a richer transactional model in the performance part.

In addition to a stronger model, we do not restrict the performance to a
single transaction but we can have a sequence of transactions. This brings the
possibility of alternative treatments sharing the same precondition part. This

LINC: A Compact Yet Powerful Coordination Environment 89

not only decreases the work to be done by the coordination engine but also
offers a better view to the programmer by replacing a set of CLF/Stitch rules by
a single LINC rule. Powerful mechanisms using this capability, such as guards
controlled alternatives and graceful degradation are described in Section 3.

Finally, the usage of modifiers in the precondition offers the programmer to
specify information that helps the inference engine to better optimise the size of
its data structures. This reduces both memory footprint and CPU usage.

All these improvements brought the required scale down in the rule manage-
ment that allows LINC to target smaller computing units such as Raspberry PI,
Pandaboard or even ARM9 custom board.

3 LINC Features

This section presents several features offered by the LINC coordination language.

3.1 Control the Frequency of a Rule

In some circumstances it can be useful to control the pace of a rule. For in-
stance, in Listing 1.1 the rule is triggered each time the temperature changes
and a presence is detected. This is obviously too much for controlling the heating
system. We can modify the rule by adding a new token at the first place of the
precondition and at the first place of the performance part (cf. Listing 1.2).

We use a bag of type set called tick in which a new instance of the same
resource is regularly inserted. The set property guaranties that a resource with
the same value is present only once at a given time even if inserted several times
(e.g. every 10 minutes). The precondition waits for the presence of this resource
to start the evaluation of subsequent rd operations. If, in addition a token doing
a get is added in the performance, it enforces that only one performance of the
rule is performed per tick. Indeed, even if several instances of the rule reach the
performance point, only one transaction will succeed. For the others, the get

action (e.g. in line 5) will fail because the resource is not in the bag anymore.

{∗ , !} [”Con t r o l ” , ”t i c k ”] . r d (t i c k) &
2. . . # token s o f L i s t i n g 1 . 1

: :
4{

[”C on t r o l ” , ”t i c k ”] . ge t (t i c k) ;
6. . . # token s o f L i s t i n g 1 . 1

}

Listing 1.2. LINC rule with tick

3.2 Reduction of the Inference Tree

When a rule is executed, an inference tree is built. Its size, and the number of
branches waiting for new resources to appear may become a problem, especially
on embedded devices. Hence, it is important to limit the size of this inference tree
to limit the memory used and to decrease the CPU load. For this, LINC relies
on directives exploiting the knowledge of the developer and on an automatic
process (garbage collector pruning useless branches).

90 M. Louvel and F. Pacull

Information from the Developer: Via the modifiers introduced in Section 2,
the developer can:

Limit the number of matching tuples to consider is typically used when the
developer knows that only a given number of resources is really useful. For
instance in the rule of Listing 1.1, the 4th token asks for the presence sensor
location. As a sensor has a single location, we know that we can close the flow
of reply to the rd() operation right after the first reply. This can be done by
replacing the * in {*,!} with 1, i.e. the number of expected replies.

Limit the time to wait for matching tuples is used to model the expiration of
some tuples. For instance, in the modified rule of Listing 1.2 a tick is generated
every 10 minutes. A new branch is then started at each generation of a new tick
resource. Thus, if no presence is detected during 2 hours, 12 branches will be
waiting for the presence detection. When a presence is detected, the 12 branches
will be activated, creating useless work. If we replace the ! in {*,!} with 600, the
number of seconds to wait, the rd("pres 1","True") operation will be closed
after 10 minutes and thus only one branch is active at a time.

Garbage Collector. When waiting on rd for matching tuples, it might be-
come a point where branches of the inference tree built so far do not make
sense any more. For instance here, when the presence sensor becomes "False",
the resource (”pres 1”,”True”) disappears from the bag (i.e. it is replaced by
(”pres 1”,”False”)). Then, it is not necessary to continue to maintain the
branches depending on (”pres 1”,”True”). Indeed when the performance will
be executed it will fail because this resource is not available.

A garbage collector periodically browses the inference tree asking the bags if
the tuples are still present. By tuple we do not mean the exact same tuple but one
with the same value. If the tuple is not there, the branch of inference tree starting
from this node can safely be garbaged. Indeed, continuing the precondition will
only lead to failures in the performance phase. If a branch is garbaged and the
same value is added again in the bag, this will trigger a new inference.

3.3 Guards Controlled Alternatives

1. . .
: :

3{
[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) ; # F i r s t gua rd

5[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;
[”Techno3” , ”a c t u a t o r s ”] . put (i d a c t , ”h e a t i n g ” , ”2”) ;

7} .
{

9[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”F a l s e ”) ; # Second gua rd
[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;

11[”Techno3” , ”a c t u a t o r s ”] . put (i d a c t , ”h e a t i n g ” , ”1”) ;
} .

Listing 1.3. Extension of rule in Listing 1.1 with guards

LINC: A Compact Yet Powerful Coordination Environment 91

In the rule of Listing 1.3 we show how to implement a simple guards mecha-
nism in the performance. Here we define how to manage the heating depending
on the occupant’s presence (i.e. putting the set point to ”1” or ”2”). Here, we do
not test the presence in the precondition since we want to act in both case. We
use 2 transactions, one for each case and we place in each of them a rd() respec-
tively on (”pres 1”,”True”) and (”pres 1”,”False”). Depending on the actual
value of the resource, one of them commits and the other aborts.

3.4 Graceful Degradation

Graceful Degradation is achieved by adding in the transactions a get() on a
unique resource (created by the first transaction at line 3 in Listing 1.4). As
transactions are tried in sequence, if transaction A succeeds, i.e. the heating
command is successfully done, transaction B fails at line 9. If the heating system
is not reachable, transaction A fails, transaction B succeeds (the temperature
and presence have not changed). The unique is consumed and a SMS is sent
to alert the maintenance. If the temperature has changed (or nobody is in the
room anymore) at performance time, transactions A and B fail. However, as a
new temperature resource is now available it is taken into account by another
instance of the rule. Thus, a single rule can define what to do in the normal case
and what to do in case of partial failures.

. . .
2: :

{ [”C on t r o l ” , ”un i q u e”] . put (u n i q u e) ; } # c r e a t e u n i q u e
4{ # t r a n s a c t i o n A

[”C on t r o l ” , ”un i q u e”] . ge t (u n i q u e) ;
6. . .

}
8{ # t r a n s a c t i o n B

[”C on t r o l ” , ”un i q u e”] . ge t (u n i q u e) ;
10[”Techno1” , ”s e n s o r s ”] . r d (”p r e s 1 ” , ”True”) ;

[”Techno2” , ”s e n s o r s ”] . r d (”t empe r a t u r e a ” , temp) ;
12[”A l e r t ” , ”SMS”] . put (”512123123” , ”Hea t i ng s ys t em i s b roken ”) ;

}
14{ [”C on t r o l ” , ”un i q u e”] . ge t (u n i q u e) ; } . # garbage un i q u e

Listing 1.4. Extension of rule in Listing 1.1 with graceful Degradation

3.5 Mutual Exclusion

Mutual exclusion is not easy to solve with classic programming schemes such as
semaphores or monitors. In LINC, the transactions greatly simplify the problem.
To illustrate this, we propose our implementation of the classical philosophers
dinner. The problem is solved by the two rules of Listing 1.5.

The bag philosopher contains resources associating the philosopher name
and the id of his left and right forks. The bag forkmanages the critical resources:
the forks. When the first rule succeeds, it means a philosopher has gotten its
two forks and moved from thinking to eating. If another rule instance wants to
get a fork already attributed, it will fail because the resource is not in the bag
anymore. The second rule makes the philosophers go from eating to thinking
and put back the fork resources in the bag. This will wake up instances of the
first rule waiting for available forks.

92 M. Louvel and F. Pacull

t h i n k i n g −> e a t i n g
2{∗ , !} [”D inne r ” , ”p h i l o s o p h e r ”] . r d (name, f o r k l , f o r k r) &

{∗ , !} [”D inne r ” , ”f o r k ”] . r d (f o r k l) &
4{∗ , !} [”D inne r ” , ”f o r k ”] . r d (f o r k r) &

{∗ , !} [”D inne r ” , ”s t a t e ”] . r d (name, ”t h i n k i n g ”) &
6: :

{
8[”D inne r ” , ”f o r k ”] . ge t (f o r k l) ;

[”D inne r ” , ”f o r k ”] . ge t (f o r k r) ;
10[”D inne r ” , ”s t a t e ”] . ge t (name, ”t h i n k i n g ”) ;

[”D inne r ” , ”s t a t e ”] . put (name, ”e a t i n g ”) ;
12} .

e a t i n g −> t h i n k i n g
14{∗ , !} [”D inne r ” , ”s t a t e ”] . r d (name, ”e a t i n g ”) &

{∗ , !} [”D inne r ” , ”p h i l o s o p h e r ”] . r d (name, f o r k l , f o r k r) &
16SLEEP: 10

: :
18{

[”D inne r ” , ”s t a t e ”] . ge t (name, ”e a t i n g ”) ;
20[”D inne r ” , ”s t a t e ”] . put (name, ”t h i n k i n g ”) ;

[”D inne r ” , ”f o r k ”] . put (f o r k l) ;
22[”D inne r ” , ”f o r k ”] . put (f o r k r) ;

} .

Listing 1.5. Philosophers dinner problem in LINC

3.6 Rules Activation / Deactivation

One major issue when dealing with rules is how to control them and to ensure
some guaranties when we decide to enable or disable some of them. To control the
rules execution, we rely on the reflexivity of LINC. Indeed, in LINC everything
is a resource in a bag. Naturally, rules are also controlled by resources in a
dedicated bag of coordinator objects. This bag is called RulesId and contains
tuples shaped as ”(rule id, status)”. When the rule is compiled, a rd is added at
the beginning of the precondition and in each transaction as shown in Listing 1.6.
The variable ego, used for object name, refers to the object executing the rule.

1[ego , ”Ru l e s I d ”] . r d (”RU0001” , ”ENABLED”) ;

Listing 1.6. Control of rules execution

Adding these rd allows to stop a rule by simply changing the resource (”RU0001”,

”ENABLED”) to (”RU0001”, ”DISABLED”). Indeed the rd on the rule status
will make the transactions fail. To reactivate the rule, the resource status is put
back to ”ENABLED”. Note that the rd on the rule status is the first rd of the
precondition. This has three main interests:

– when disabled, no new inference is started;
– when disabled, the inference tree is completely garbaged because the resource

(rule id, ”ENABLED”) is no longer in the bag;
– if (rule id, ”ENABLED”) is put back, a new inference tree is built.

Note that this generic principle used at system level can be easily used at ap-
plication level to activate and deactivate groups of rules according to application
context. For instance, we can use the same principle with a resource controlling
a set of rules. This can be used, for instance, to put in place a very sophisticated
scenario manager in the building automation domain [10].

LINC: A Compact Yet Powerful Coordination Environment 93

3.7 Dynamic Rules Generation

For some applications, it can be required to dynamically generate rules corre-
sponding to contextual information. To do so, a resource is added in a dedicated
bag, called AddRules. This bag receives resources of the form (package,source)
where package is the logical name of a group of rules and source the actual code
of the rules (as shown in Listing 1.1 for instance).

When a resource is added in this bag, the rule is dynamically compiled. This
compilation includes syntax verifications, and various checks to prevent potential
issues at execution time. For instance the coordinator object checks that the bags
used by the rule are accessible, and that each variable will be instantiated at
some point by a rd() operation in the precondition phase. If the rule contains
no detectable error, the coordinator starts to execute it right away.

3.8 Registry-Based Programming

When interfacing with the hardware (very small embedded systems such as com-
plex actuators) it is required to prepare the data in some dedicated registries and
then to trigger the global action by acting on the control register. To reproduce
this behaviour in a rule is straightforward because actions inside a transaction
are executed sequentially. As shown in Listing 1.7, where two bags are used, one
to map the data registers and one to map the control one. It is just mandatory
to place the action of the control register at the last position in the transaction.

1. . .
: :

3{
[”o b j e c t ” , ”d a t a”] . put (”r 1 ” , v a l u e 1) ;

5[”o b j e c t ” , ”d a t a”] . put (”r 2 ” , v a l u e 2) ;
[”o b j e c t ” , ”cmd”] . put (”s end ”) ;

7} .

Listing 1.7. Registry like programming

4 Case Studies

This section presents case studies where the features of LINC have been used.

4.1 Building Automation

Building automation is a typical case where coordination is essential and may
become very complex. We need to coordinate a high number of sensors (e.g.
temperature, light, co2, presence) and actuators (e.g. Heating, Ventilation and
Air-Conditioning (HVAC), dimmable spotlights). These devices belong to inde-
pendent subsystems distributed in the building and using different protocols:
BACnet [3], LONWorks [19], KNX [16] or Zigbee, 433Mhz/868Mhz for wireless.
These subsystems work autonomously but most of the time cannot cooperate.

In the context of the SCUBA (Self-organising, Co-operative and robUst Build-
ing Automation) FP7 project [28], LINC has successfully been used to offer the
abstraction layer required to make all these devices able to coexist. In addition

94 M. Louvel and F. Pacull

LINC has provided the coordination in order to allow the binding of devices
of different constructors across a set of buildings [10]. Several scenarios have
been defined to coordinate the HVAC and the lighting systems in order to im-
prove the energy efficiency. The graceful degradation feature of LINC has proven
very efficient to handle partial failure of autonomous systems. The application
is currently distributed across 6 partners’ sites controlling 5 buildings.

Another important role played by LINC was the administration of autonomous
subsystems according to context. It has been used to reconfigure the LONWorks
bindings in a room that can be either two individual offices or a single larger
room, depending on the presence of a removable wall. The binding of the buttons,
temperature sensors, motion detectors to the lights, shutter, HVAC have to be
reconfigured accordingly. In LONWorks, this would involve the manual interven-
tion of a skilled technician. With LINC we have coordinated the reconfiguration
process with rules dynamically generated according to the current context [29].

4.2 RFID Table

To illustrate the capability of LINC to manage complex events detection, [20]
describes our experiment with an original hardware. This hardware is a table
stacking a 42” LCD screen with a HD 1080p resolution on top of a set of rfid
readers organised as a matrix of 6 x 4 tiles, with each tile containing itself a
matrix of 4 x 4 rfid readers. As a result there are 24 x 16 (384) rfid readers
distributed in the table. The table works with classical rfid tags that can be
attached to any physical object. The raw information received is, for each rfid
reader, the set of detected tags. In addition, we have encapsulated as LINC bags
two software components: a 2D engine able to display arbitrary content on the
screen table allowing user interaction and a 3D engine able to render in a virtual
world the tagged physical objects placed on the table.

The coordination language of LINC allowed to manage complex events result-
ing from the manipulation of the tags frequently added and removed from the
table. The full application is managed by a dozen of rules distributed on the
laptop responsible for displaying the 3D scene on the external display and the
Raspberry PI managing the screen embedded in the table.

4.3 Smart Actuators

In [14] we have designed smart actuators able to directly understand the LINC
coordination protocol and thus to be participant to transactions. The actuator is
thus able to locally detect that it will not be able to do the requested action. For
instance, this may be due to currently insufficient energy or unfeasible physical
actuation (e.g. due to an obstacle or an out of range request). This simplifies
the error management and allows synchronised physical actions. For instance,
we used these smart devices for the obstacle avoidance of an autonomous robot
where actions on the motors failed when associated sensors detect obstacles in
the considered direction. The bags encapsulating the control of the motor have
been implemented on small microcontrollers of type ATmega328 or PIC24.

LINC: A Compact Yet Powerful Coordination Environment 95

5 Related Works

Since the introduction of tuple-spaces by Linda [13] in 1985, many contributions
have been proposed to improve, extend and adapt the model.

MARS [8] extends the Linda tuple-spaces to add reactions. A reaction is
implemented by an agent which triggers an operation on a matching tuple. Re-
actions are implemented with “meta” tuples containing a reference to the agent.
In LINC, the reactions are defined by high-level coordination rules which embed
actions in distributed transactions.

LIME [23] (Linda In a Mobile Environment) replaces the globally accessi-
ble persistent tuple-space of Linda by transiently shared tuple-spaces. In LIME
each agent has its own tuple-space. When agents meets, they form a shared
tuple-space and can exchange tuples. Strong reactions (ensuring a transaction)
are restricted to a host or an agent. For distributed reactions, Weak reactions
are used to ensure that eventually the reactions will be done if connectivity is
preserved. LINC always uses distributed transactions in order to maintain the
system in a consistent state. A similar approach to LIME is proposed in [12],
with a lighter implementation of tuple-spaces.

The Holoparadigm [5] is a programming model to build context aware applica-
tions which introduces the concept of Being containing an interface, a behaviour
and a history. History is a blackboard (similar to tuple-spaces) with Linda-like
primitives. Holoparadigm offers the architecture for building agents however it
mixes the coordination with the agents’ code.

EgoSpaces [15] is a middleware targeting development of context aware mobile
applications. It defines an agent as a unit of modularity and mobility with its
own local tuple-space. EgoSpaces adds the View concept to limit the data seen
by an agent (e.g. cost of the communication, physical location, thresholds on
data). The view concept is interesting because it allows the developer to define
when an agent should react.

The MobiGATE Coordination Language (MCL) [33] insists on the separation
between computation and coordination which is a shared approach with LINC.
Their approach seems well suited for distributing a stream or a known service in
a mobile environment. However, in MCL it seems difficult to focus on the coor-
dination when a very complex and dynamic system is considered. UbiCoMo [7]
proposes a coordination model that mainly focuses on accessing data in ubiqui-
tous environments. However, this limits too much UbiCoMo expressiveness to fit
into this specific paradigm. MCL and UbiCoMo share with LINC the importance
of separation between coordination and computation.

In [11] the authors propose a process-based methodology to design event-based
mobile applications. They aim to translate UML activity diagram to event based
models offering more flexibility. As outlined in their conclusion, event-based ap-
proaches does not make synchronisation easy. We believe this issue could be over-
come by the transactional guaranties of LINC. We also believe that LINC rules
could be generated from the activity diagram. This could be an interesting track
to consider.

96 M. Louvel and F. Pacull

In [17] the authors present a programming model for concurrent coordina-
tion patterns targeting highly parallel and distributed applications. Similarly to
LINC, they provide a language to focus on the coordination in complex environ-
ment. They aim to provide a high level language, relying on a formal language
from which LINC could also take advantage of. Finally, their model relies on
a tuple-space middleware. LINC seems a good candidate to implement their
model. Generating LINC rules from a higher level model is in our future work.

In TOTA (Tuples On The Air) [21], tuples are not associated to a specific
host, they are injected in the network and can autonomously propagate in the
network according to a specified pattern. A tuple is defined by a content and
a propagation rule. The TOTA approach might be interesting in some context
where the data moves around the network while hosts come and go. However,
in other cases this might include an overhead in the traffic because tuples are
propagated even if no host is interested in them. On the contrary, in LINC, tuples
are exchanged only when a rule is needing them. We believe that the autonomous
and self evolution idea of TOTA could be implemented in LINC thanks to its
reflexivity. Indeed objects and rules can evolve to reach an emergent behaviour.

Inspired by Gamma [4], another approach to reach self evolving system is to
use chemical inspired tuple-spaces [30]. The idea is to rely on the semantic of
chemical reactions to build coordination laws. High level information are then
given on tuples and they autonomously evolve and move. The goal is to have an
emergent behaviour with this approach. For instance, services scarcely used will
automatically disappear from the tuple-space. This work only focus on the long
run emerging behaviour, they do not allow to directly build coordination for the
physical world. Moreover, focus has been on simulation [26] even if a middleware
is under development in the scope of the SAPERE project [27]. Finally, in [31]
the author define a spatial computing coordination language to extend Linda
with space and time information in the tuples. As far as we understand, no
implementation exists so far. LINC, with its reflexivity, could implement these
proposal on large scale distributed systems.

6 Conclusion

This paper has presented the LINC coordination environment. It provides a com-
pact yet powerful coordination language based on the three paradigms: associa-
tive memory, production rules and distributed transactions. This combination
provides a language with a high expressiveness. High level coordination rules can
be written while relying on the tuple-space to abstract low level implementation
and communication details.

In addition, LINC is highly reflexive. Because everything is a resource it is
easy to control the execution of rules or group of rules. Coordination rules can
be dynamically added, removed or moved to another object. Objects themselves
can migrate and independently designed applications can be merged at run-time.

With all these properties and its reflexivity, LINC is a powerful environment
to tackle the challenges of the future systems of systems.

LINC: A Compact Yet Powerful Coordination Environment 97

We illustrated this with several real world case studies implemented on top
of LINC. This demonstrated the ability of LINC to be used in contexts such as
building automation, power efficiency or monitoring network systems.

Future work will focus on providing a high-level language such as automata
in order to prove the correctness of the coordination and then to automatically
generate the corresponding coordination rules. We envisage to use this mech-
anism for self-evolving system where we can prove that the evolution will not
break the running application.

Acknowledgement. This work has been partially funded by the FP7 SCUBA
project under grant nb 288079.

References

1. Andreoli, J.-M., Arregui, D., Pacull, F., Willamowski, J.: Resource-based scripting
to stitch distributed components. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS
2002. LNCS, vol. 2480, pp. 429–443. Springer, Heidelberg (2002)

2. Andreoli, J.-M., Pacull, F., Pagani, D., Pareschi, R.: Multiparty negotiation of
dynamic distributed object services. Science of Computer Programming 31(2),
179–203 (1998)

3. BACNet (2014), http://www.bacnet.org/
4. Banâtre, J.-P., Fradet, P., Le Métayer, D.: Gamma and the chemical reaction

model: Fifteen years after. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa,
A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 17–44. Springer, Heidelberg
(2001)

5. Barbosa, J., Dillenburg, F., Lermen, G., Garzão, A., Costa, C., Rosa, J.: Towards a
programming model for context-aware applications. Computer Languages, Systems
& Structures 38(3), 199–213 (2012)

6. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery
in database systems, vol. 370. Addison-Wesley, New York (1987)

7. Bortenschlager, M., Castelli, G., Rosi, A., Zambonelli, F.: A context-sensitive in-
frastructure for coordinating agents in ubiquitous environments. Multiagent and
Grid Systems 5(1), 1–18 (2009)

8. Cabri, G., Leonardi, L., Zambonelli, F.: Mars: A programmable coordination ar-
chitecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

9. Cooper, T., Wogrin, N.: Rule-based Programming with OPS5, vol. 988. Morgan
Kaufmann (1988)

10. Ducreux, L.-F., Guyon-Gardeux, C., Lesecq, S., Pacull, F., Thior, S.R.: Resource-
based middleware in the context of heterogeneous building automation systems.
In: IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society,
pp. 4847–4852. IEEE (2012)

11. Fjellheim, T., Milliner, S., Dumas, M., Vayssière, J.: A process-based methodol-
ogy for designing event-based mobile composite applications. Data & Knowledge
Engineering 61(1), 6–22 (2007)

12. Fok, C.-L., Roman, G.-C., Hackmann, G.: A lightweight coordination middle-
ware for mobile computing. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.)
COORDINATION 2004. LNCS, vol. 2949, pp. 135–151. Springer, Heidelberg
(2004)

http://www.bacnet.org/

98 M. Louvel and F. Pacull

13. Gelernter, D.: Generative communication in linda. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 7(1), 80–112 (1985)

14. Iris, H., Pacull, F.: Smart sensors and actuators: A question of discipline. Sensors
& Transducers Journal 18(special issue), 14–23 (2013)

15. Julien, C., Roman, G.-C.: Egospaces: Facilitating rapid development of context-
aware mobile applications. IEEE Transactions on Software Engineering 32(5),
281–298 (2006)

16. KNX (2014), http://www.knx.org/
17. Kühn, E., Craß, S., Joskowicz, G., Marek, A., Scheller, T.: Peer-based programming

model for coordination patterns. In: De Nicola, R., Julien, C. (eds.) COORDINA-
TION 2013. LNCS, vol. 7890, pp. 121–135. Springer, Heidelberg (2013)

18. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th IEEE In-
ternational Symposium on Object Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. IEEE (2008)

19. LONWorks (2013), http://www.lonmark.org/
20. Louvel, M., Pacull, F.: A coordinated matrix of rfid readers as interactions in-

put. In: SENSORDEVICES 2013, The Fourth International Conference on Sensor
Device Technologies and Applications, pp. 91–96 (2013)

21. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing ap-
plications: The tota approach. ACM Transactions on Software Engineering and
Methodology 18(4), 15 (2009)

22. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A middleware for physical and
logical mobility. In: 21st International Conference on Distributed Computing Sys-
tems 2001, pp. 524–533. IEEE (2001)

23. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A coordination model and mid-
dleware supporting mobility of hosts and agents. ACM Transactions on Software
Engineering and Methodology 15(3), 279–328 (2006)

24. Omicini, A., Viroli, M.: Coordination models and languages: From parallel comput-
ing to self-organisation. The Knowledge Engineering Review 26(01), 53–59 (2011)

25. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Advances in
Computers 46, 329–400 (1998)

26. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of computa-
tional systems with alchemist. Journal of Simulation 7(3), 202–215 (2013)

27. SAPERE (2013), http://www.sapere-project.eu
28. SCUBA (2011), http://www.aws.cit.ie/scuba/
29. Scuba. Deliverable 5.3 (2013),

http://linc.middlewares.info/wiki1/images/8/81/Scuba_d_5_3.pdf

30. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of per-
vasive services through chemical-inspired tuple spaces. ACM Trans. Auton. Adapt.
Syst. 6(2), 14:1–14:24 (2011)

31. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination
model for mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION
2012. LNCS, vol. 7274, pp. 212–229. Springer, Heidelberg (2012)

32. von Bültzingsloewen, G., Koschel, A., Lockemann, P.C., Walter, H.-D.: Eca func-
tionality in a distributed environment. In: Active Rules in Database Systems,
pp. 147–175. Springer (1999)

33. Zheng, Y., Chan, A.T.S., Ngai, G.: Mcl: a mobigate coordination language for
highly adaptive and reconfigurable mobile middleware. Software: Practice and
Experience 36(11-12), 1355–1380 (2006)

http://www.knx.org/
http://www.lonmark.org/
http://www.sapere-project.eu
http://www.aws.cit.ie/scuba/
http://linc.middlewares.info/wiki1/images/8/81/Scuba_d_5_3.pdf

Safe and Efficient Data Sharing

for Message-Passing Concurrency

Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer

Department of Computer Science, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

http://se.inf.ethz.ch/

Abstract. Message passing provides a powerful communication abstrac-
tion in both distributed and shared memory environments. It is partic-
ularly successful at preventing problems arising from shared state, such
as data races, as it avoids sharing in general. Message passing is less
effective when concurrent access to large amounts of data is needed, as
the overhead of messaging may be prohibitive. In shared memory envi-
ronments, this issue could be alleviated by supporting direct access to
shared data; but then ensuring proper synchronization becomes again the
dominant problem. This paper proposes a safe and efficient approach to
data sharing in message-passing concurrency models based on the idea
of distinguishing active and passive computational units. Passive units
do not have execution capabilities but offer to active units exclusive and
direct access to the data they encapsulate. The access is transparent due
to a single primitive for both data access and message passing. By distin-
guishing active and passive units, no additional infrastructure for shared
data is necessary. The concept is applied to SCOOP, an object-oriented
concurrency model, where it reduces execution time by several orders of
magnitude on data-intensive parallel programs.

1 Introduction

In concurrency models with message passing, such as the Actor model [14],
CSP [15], and others [6], a computational unit encapsulates its own private data.
The units interact by sending synchronous or asynchronous messages. These
concurrency models are implementable in environments with and without shared
memory. Based on these models, several languages and libraries support message
passing, e.g., Erlang [8], Ada [16], MPI [19], and SCOOP [22].

To operate on shared data, a client must send a message to the supplier
encapsulating that data. In environments with shared memory, however, the
client could access this data directly and avoid the messaging overhead. The
difficulty is to prevent data races and to combine the data access primitives with
the messaging primitives in a developer-friendly way.

Some languages and libraries [8, 16, 19, 25] have already combined mutually
exclusive shared data with message passing and observed performance gains on
shared memory systems. However, as discussed in Section 6, these approaches

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 99–114, 2014.
© IFIP International Federation for Information Processing 2014

http://se.inf.ethz.ch/

100 B. Morandi, S. Nanz, and B. Meyer

either impose restrictions on the shared data or do not provide unified primitives
for data access and message passing. As a consequence of the latter limitation,
programmers are required to change their code substantially when switching
from messaging to shared data or vice versa.

To close this gap, this paper proposes passive computational units for safe
and efficient data sharing in message-passing models implemented on shared
memory. A passive unit is a supplier stripped from its execution capabilities.
Its only purpose is to provide a container for shared data and exclusive access
to it. The passive unit can contain any data that is containable by a regular
supplier. A client with exclusive access uses existing communication primitives
to operate on the data; instead of sending a message, these primitives access the
data directly. By overloading the primitives’ semantics, programmers only need
to change few lines of code to set a unit passive. Furthermore, passive units are
implementable with little effort as existing supplier infrastructure can be reused.

This paper develops this concept in the context of SCOOP [20,22], an object-
oriented concurrency model based on message passing, where processors en-
capsulate objects and interact by sending requests. The implementation of the
concept is shown to reduce execution time by several orders of magnitude on
data-intensive parallel programs.

The remainder of this paper is structured as follows. Section 2 introduces
a running example. Section 3 develops the concept of passive processors infor-
mally, and Section 4 develops it formally. Section 5 evaluates the efficiency, and
Section 6 reviews related work. Finally, Section 7 discusses the applicability to
other concurrency models and concludes with an outlook on future work.

2 Pipeline System

A pipeline system serves as the running example for this paper. The pipeline
parallel design pattern [18] applies whenever a computation involves sending
packages of data through a sequence of stages that operate on the packages.
The pattern assigns each stage to a different computational unit; the stages
then synchronize with each other to process the packages in the correct order.
Using this pattern, each stage can be mapped for instance to a CPU core, a
GPU core, an FPGA, or a cryptographic accelerator, depending on the stage’s
computational needs.

The pipeline pattern can be implemented in SCOOP (Simple Concurrent
Object-Oriented Programming) [20,22]. The starting idea of SCOOP is that ev-
ery object is associated with a processor, called its handler. A processor is an
autonomous thread of control capable of executing actions on objects. An ob-
ject’s class describes its actions as features. An entity x belonging to a processor
can point to an object with the same handler (non-separate object), or to an ob-
ject on another processor (separate object). In the first case, a feature call x.f on
the target x is non-separate: the handler of x executes the feature synchronously.
In the second case, the feature call is separate: the handler of x, i.e., the supplier,
executes the call asynchronously on behalf of the requester, i.e., the client. The

Safe and Efficient Data Sharing for Message-Passing Concurrency 101

possibility of asynchronous calls is the main source of concurrent execution. The
asynchronous nature of separate feature calls implies a distinction between a
feature call and a feature application: the client logs the call with the supplier
(feature call) and moves on; only at some later time will the supplier actually
execute the body (feature application).

In the SCOOP pipeline implementation, each stage and each package is han-
dled by its own processor, ensuring that stages can access the packages in parallel.
Each stage is numbered to indicate its position in the pipeline; it receives this
position upon creation:

class STAGE create make feature
position: INTEGER −− The stage’s position in the pipeline.

make (new position: INTEGER)
−− Create a stage at the given position.

do position := new position end

process (package: separate PACKAGE)
−− Process the package after the previous stage is done with it.

require package.is processed (position − 1) do
do work (package) −− Read from and write to the package.
package.set processed (position) −− Set the package processed.

end
end

The process feature takes a package as an argument. The keyword separate
specifies that the package may be handled by a different processor than the stage;
without this keyword, the package must be handled by the same processor. To
ensure exclusive access, a stage must first lock a package before accessing it. In
SCOOP, such locking requirements are expressed in the formal argument list:
any target of separate type within the feature must occur as a formal argument;
the arguments’ handlers are locked for the duration of the feature execution,
thus preventing data races. In process, package is a formal argument; hence the
stage has exclusive access to the package while executing process.

To process each package in the right order, the stages must synchronize with
each other. For this purpose, each package has two features is processed and
set processed to keep track of the stages that already processed the package.
The synchronization requirement can then be expressed elegantly using a pre-
condition (keyword require), which makes the execution of a feature wait until
the condition is true. The precondition in process delays the execution until the
package has been processed by the previous stage.

The SCOOP concepts require execution-time support, known as the SCOOP
runtime. Each processor is protected through a lock and maintains a request
queue of requests resulting from feature calls of other processors. When a client
executes a separate feature call, it enqueues a separate feature request to the
supplier’s request queue. The supplier processes the feature requests in the order
of queuing. A non-separate feature call can be processed without the request

102 B. Morandi, S. Nanz, and B. Meyer

queue: the processor creates a non-separate feature request and processes it right
away using its call stack.

A client makes sure that it holds the locks on all suppliers before executing a
feature. At the end of the feature execution, the client issues an unlock request to
each locked processor. Each locked processor unlocks itself as soon as it processed
all previous feature requests.

3 Passive Processors

The pipeline system from Section 2 showcases an important class of concur-
rent programs, namely those that involve multiple processors sharing data. In
SCOOP, it is necessary to assign the data to a new processor. For frequent and
short read or write operations this becomes problematic:

1. Each feature call to the data leads to a feature request in the request queue
of the data processor, which then picks up the request and processes it on
its call stack. This chain of actions creates overhead. For an asynchronous
write operation, the overhead outweighs the benefit of asynchrony. For a
synchronous read operation, the client not only waits for the data processor
to process the request, it also gets delayed further by the overhead.

2. The data consumes operating system resources (threads, processes, locks,
semaphores) that could otherwise be freed up.

On systems with shared memory, the clients can directly operate on the data,
thus avoiding the overhead. This frees most of the operating system resources
attached to the data processor. Before accessing shared data, a client must ensure
its access is mutually exclusive; otherwise, data races can occur. For this purpose,
shared data must be grouped, and each group must be protected through a lock.
Since SCOOP processors offer this functionality already along with execution
capabilities, one can use processors, stripped from their execution capabilities,
to group and protect shared data. This insight gives rise to passive processors:

Definition 1 (Passive processor). A passive processor q does not have any
execution capabilities. Its lock protects the access to its associated objects. A
client p holding this lock uses feature calls to operate directly on q’s associated
objects. While operating on these objects, p assumes the identity of q. Processor q
becomes passive when another processor sets it as passive. When q is not passive,
it is active. Processor q becomes active again when another processor sets it as
active. It can only become passive or active when unlocked, i.e., when not being
used by any other processor.

When a processor p operates on the objects of a passive processor q, it assumes
q’s identity. For example, if p creates a literal object or another non-separate
object, it creates this object on q and not on itself; otherwise, a non-separate
entity on q would reference an object on p.

Safe and Efficient Data Sharing for Message-Passing Concurrency 103

Besides safe and fast data sharing, passive processors have further benefits:

– Minimal user code changes. The feature call primitive unifies sending mes-
sages to active processors and accessing shared data on passive processors,
ensuring minimal code changes to set a processor passive or active. With
respect to SCOOP’s type system [22], the same types can be used to type
objects on passive and active processors. The existing type system rules en-
sure that no object on a passive processor can be seen as non-separate on a
different processor, thus providing type soundness.

– Minimal compiler and runtime changes. To implement passive processors,
much of the existing infrastructure can be reused. In particular, no new
code for grouping objects and for locking request queues is required.

package processor (active)

call stack: package.put(v)
request queue: package.item
locked: yes
locks:
handled objects:

stage processor (active)

call stack: stage.process(package)
request queue: ...
locked: yes
locks: package processor
handled objects:

stage : STAGE package : PACKAGE record : RECORD

(a) The package processors are active.

package processor (passive)

locked: yes
handled objects:

stage processor (active)

call stack: package.put(v) ; stage.process(package)
request queue: ...
locked: yes
locks: package processor
handled objects:

stage : STAGE package : PACKAGE record : RECORD

(b) The package processors are passive.

Fig. 1. A stage processor processes a package. The stage object, handled by the left-
hand side processor, has a separate reference (depicted by an arrow) to the package
object, handled by the right-hand side processor. The package object references a non-
separate record object to remember the processing history.

In the pipeline system, each package can be handled by a passive processor
rather than an active one. To achieve this, it suffices to set a package’s processor
passive after its construction. The following code creates a package on a new
passive processor and asks the stages to process the package.

create package.make (data, number of stages) ; set passive (package)
stage 1.process (package) ; ... ; stage n.process (package)

104 B. Morandi, S. Nanz, and B. Meyer

No other code changes are necessary. The existing feature calls to the packages
automatically assume the data access semantics. Furthermore, a stage can still
use separate PACKAGE as the type of a package because the stage is still
handled by a different processor than the package. Similarly, a package can
still use the type RECORD for its record because the package still has the same
handler as the record.

Figure 1 illustrates the effect of the call to set passive. In Figure 1a, active
package processors have a call stack, a request queue, and a stack of locks. The
stage processors send asynchronous (see put) and synchronous (see item) feature
requests. In Figure 1b, passive package processors do not have any execution
capabilities. Therefore, the stage processors operate directly and synchronously
on the packages, thus making a better use of their own processing capabilities
rather than relaying all operations to the package processors.

4 Formal Specification

This section provides a structural operational semantics for the passive processor
mechanism and shows that setting a processor passive or active preserves the
execution order of called features.

State Formalization. Let Ref be the type of references, let Proc be the type of
processors, and let Entity be the type of entities. A state σ is then a 6-tuple
(σh, σl, σo, σi, σf , σe) of functions:

– σh : Ref → Proc maps each reference to its handler.
– σl : Proc → Boolean indicates which processors are locked.
– σo : Proc → Stack [Set [Proc]] maps each processor to its obtained locks.
– σi : Proc → Boolean indicates which processors are passive.
– σf : Proc → Proc maps each processor p to the handler of the object on

which p currently operates. Normally σf (p) = p, but when operating on the
objects of a passive supplier q, then σf (p) = q.

– σe : Proc → Stack [Map[Entity,Ref]] maps each processor to its stack of
entity environments.

Execution Formalization. An execution is a sequence of configurations. Each
configuration of the form 〈p1 :: sp1 | . . . | pn :: spn, σ〉 is an execution snap-
shot consisting of the schedule, i.e., the call stacks and the request queues of
processors p1, . . . , pn, and the state σ. The call stack and the request queue of
a processor are also known as the action queue of the processor. The commu-
tative and associative parallel operator | keeps the processors’ action queues
apart. Within an action queue, a semicolon separates statements. Statements
are either instructions, i.e., program elements, or operations, i.e., runtime ele-
ments. The following overview shows the structure of statements, instructions,
and operations. The elements et, e, and all items in ea are entities of type Entity .
The element rt and all items in ra are references of type Ref . The element f of

Safe and Efficient Data Sharing for Message-Passing Concurrency 105

type Feature denotes a feature where f.body returns the feature’s body. Lastly,
q1, . . . , qn and w are processors of type Proc, and x is a flag of type Boolean .

s � in | op
in �

et.f(ea) | Call a feature.
create et.f(ea) | Create an object.
set passive(e) | Set the handler of the referenced object passive.
set active(e) Set the handler of the referenced object active.

op �
apply(rt, f, ra) | Apply a feature.
revert({q1, . . . , qn}, w, x) | Finish a feature application or an object creation.
unlock Unlock a processor.

Figure 2 shows the transition rules. A processor q becomes passive when a
processor p executes the set passive instruction (see Set Passive) with an entity
e that evaluates to a reference r on q. Processor q becomes active again when
a processor p executes the set active instruction (see Set Active). Processor q
can only become passive or active when q is unlocked, guaranteeing that q is not
being used by any other processor.

To perform a feature call et.f(ea) (see call rules) a client p evaluates the target
(see rt) and the arguments (see ra). It then looks at the handler q of the target.
If q is different from p and not passive, p creates a feature request (see apply)
and appends it to the end of q’s request queue. If q is p or if q is passive, then p
itself immediately processes the feature request.

To process a feature request (see Apply), a processor p first determines the
missing locks q as the difference between required locks and already obtained
locks. It only proceeds when all missing locks are available, in which case it
obtains these locks. It also adds a new entity environment and updates σf with
the target handler, i.e., p for non-passive calls or the handler of the target for
passive calls. Processor p then executes the feature body and cleans up (see
Revert). It releases the obtained locks, restores σf , and removes the top entity
environment. The locked suppliers unlock themselves asynchronously once they
are done with the issued workload (see Unlock).

To execute a creation instruction create et.f(ea) (see creation rules), a proces-
sor p looks at the type of the target et. If the type is separate, i.e., its declaration
has the separate keyword, p creates an active and idle processor q with a new
object referenced by rt. It then locks that processor, performs the creation call
(see call rules), and cleans up. If the type of et is non-separate, i.e., no separate
keyword, p creates a new object on the handler on whose objects p currently
operates on, i.e., σf (p). In case σf (p) = q �= p, it is important to create the new
object on q rather than on p; otherwise the non-separate entity et on q would
point to an object not on q, thus compromising the soundness of the type system.

We embedded the transition rules from Figure 2 into the comprehensive formal
specification for SCOOP [10], implemented in Maude [5]. This specification uses
σf (p) also in other situations where p performs an action on behalf of a passive

106 B. Morandi, S. Nanz, and B. Meyer

Set Passive

r
def
= σe(p).top.val(e) q

def
= σh(r) ¬σl(q)

〈p :: set passive(e); sp, σ〉 → 〈p :: sp, (σh, σl, σo, σi[q �→ true], σf , σe)〉
Set Active

r
def
= σe(p).top.val(e) q

def
= σh(r) ¬σl(q)

〈p :: set active(e); sp, σ〉 → 〈p :: sp, (σh, σl, σo, σi[q �→ false], σf , σe)〉
Separate Call

rt
def
= σe(p).top.val(et) ra

def
= σe(p).top.val(ea) q = σh(rt) p �= q ∧ ¬σi(q)

〈p :: et.f(ea); sp | q :: sq , σ〉 → 〈p :: sp | q :: sq; apply(rt, f, ra), σ〉
Non-Separate/Passive Call

rt
def
= σe(p).top.val(et) ra

def
= σe(p).top.val(ea) q = σh(rt) p = q ∨ σi(q)

〈p :: et.f(ea); sp, σ〉 → 〈p :: apply(rt, f, ra); sp, σ〉
Apply

q
def
= σh(ra) \ (σo(p).flat ∪ {p}) ∧

q∈q ¬σl(q)

〈p :: apply(rt, f, ra); sp, σ〉 →
〈p :: f.body ; revert(q, σf (p), true); sp, (σh, σl[q �→ true], σo[p �→ σo(p).push(q)], σi,

σf [p �→ σh(rt)], σe[p �→ σe(p).push((current �→ rt, f.formals �→ ra))])〉
Revert

e′
def
=

{
σe[p �→ σe(p).pop] if x

σe otherwise

〈p :: revert({q1, . . . , qn}, w, x); sp | q1 :: sq1 | . . . | qn :: sqn, σ〉 →
〈p :: sp | q1 :: sq1; unlock | . . . | qn :: . . . , (σh, σl, σo[p �→ σo(p).pop], σi, σf [p �→ w], e′)〉
Unlock

〈p :: unlock; sp, σ〉 →
〈p :: sp, (σh, σl[p �→ false], σo, σi, σf , σe)〉

Parallelism

〈P, σ〉 → 〈P ′, σ′〉
〈P | Q,σ〉 → 〈P ′ | Q,σ′〉

Separate Creation

et.type = separate q
def
= fresh proc(σh) rt

def
= fresh obj (σh)

〈p :: create et.f(ea); sp, σ〉 → 〈p :: et.f(ea); revert({q}, σf (p), false); sp | q ::,
(σh[rt �→ q], σl[q �→ true], σo[p �→ σo(p).push({q})][q �→ ()], σi[q �→ false],

σf [q �→ q], σe[p �→ σe(p).update(et �→ rt)][q �→ ()])〉
Non-Separate Creation

et.type = non–separate rt
def
= fresh obj (σh)

〈p :: create et.f(ea); sp, σ〉 →
〈p :: et.f(ea); sp, (σh[rt �→ σf (p)], σl, σo, σi, σf , σe[p �→ σe(p).update(et �→ rt)])〉

Fig. 2. Transition rules

Safe and Efficient Data Sharing for Message-Passing Concurrency 107

processor, namely to create literals, to set the status of a once routine (a routine
only executed once), and to import and copy object structures. We used the
specification to test [21] the passive processor mechanism against other SCOOP
aspects and used the results to refine the specification.

4.1 Order Preservation

The formal semantics can be used to prove Theorem 1, stating that a supplier
can always be set passive or active without altering the sequence in which called
features get applied. This property enables developers to use the same reasoning
in determining a feature’s functional correctness, irrespective of whether the
suppliers are passive or active. Lemma 1 is necessary to prove Theorem 1.

Lemma 1 (Action queue order preservation). Let p be a processor with
statements s1, . . . , sl in its action queue. In a terminating program, p will execute
s1, . . . , sl in the sequence order.

Proof. The transition rules in Figure 2 only allow p to execute the leftmost
statement and then continue with the next one. Since none of the rules delete
or shuffle any statements, and since p’s program is terminating, p must execute
s1, . . . , sl in the sequence order.

Theorem 1 (Feature call order preservation). Let p be a processor that is
about to apply a feature f in a terminating program. Let q be the processors that
p locks to apply f . For each q ∈ q, regardless whether it is passive or active, the
feature requests for q, resulting from feature calls in f ’s body, will be processed
in the order given by f ’s body.

Proof. Processor p first inserts f ’s instructions s1, . . . , sl into its action queue
(see Apply). Lemma 1 states that processor p executes all of these instructions
in code order. Hence, the proof can use mathematical induction over the length
l of f ’s body. In the base case, i.e., l = 0, p did not execute any instructions;
hence, the property holds trivially. For the inductive step, the property holds for
l = i − 1; the proof needs to show that the property holds for l = i. Consider
the instruction si at position i:

– si is set passive or set active. Processor p does not change any action queues
(see Set Passive and Set Active); the property is preserved.

– si is a separate feature call to a passive processor q. Processor p processes the
resulting feature request (see Non-Separate/Passive Call). Processor q
must already have been passive during earlier calls because a processor can-
not be set passive when it is locked (see Apply and Set Passive). Hence,
processor p must have processed all requests from earlier calls. Because of
the induction hypothesis, it must have done so in the order given by the
code. Consequently, processing the request for si now preserves the prop-
erty for q. Because of the induction hypothesis, the configuration after si−1

satisfied the property for all other suppliers in q; Lemma 1 guarantees that
these processors will execute their statements in the same order even after
si, thus the property is preserved.

108 B. Morandi, S. Nanz, and B. Meyer

– si is a separate feature call to an active processor q. Processor q must already
have been active during earlier calls because a processor cannot be set active
when it is locked (see Apply and Set Active). Processor p executes a
separate call (see Separate Call) to add a feature request to the end of
q’s action queue. Because of the induction hypothesis, q must either have
processed all requests from earlier calls in the code order, or some of these
requests must be scheduled in q’s action queue, to be executed in code order.
In either case, adding a feature request for si to the end of the action queue
preserves the property for q (see Lemma 1). As in the passive case, Lemma 1
guarantees that the property is preserved for all other suppliers in q as well.

– si is a non-separate feature call. Regardless of the suppliers’ passiveness, p
executes a non-separate feature call (see Non-Separate/Passive Call).
Lemma 1 guarantees that the property is preserved for all q in q.

– si is a separate creation instruction. Regardless of the suppliers’ passiveness,
p executes a separate feature call (see Separate Creation), adding a new
feature request to a new processor. Lemma 1 guarantees that the property
is preserved for all q in q.

– si is a non-separate creation instruction. Regardless of the supplier’s passive-
ness, p executes a non-separate feature call (seeNon-Separate Creation).
Lemma 1 guarantees that the property is preserved for all q in q.

5 Evaluation

The pipeline system from Section 2 is a good representative for the class of pro-
grams targeted by the proposed mechanism: multiple stages share packages of
data. This section experimentally compares the performance of the pipeline sys-
tem when implemented using passive processors, active processors, and low-level
synchronization primitives; the latter two are the closest competing approaches.
To this end, we extended the SCOOP implementation [9] with passive processors.

5.1 Comparison to Active Processors

A low-pass filter pipeline is especially suited because it exhibits frequent and
short read and write operations on the packages, each of which represents a signal
to be filtered. The pipeline has three stages: the first performs a decimation-in-
time radix-2 fast Fourier transformation [17]; the second applies a low-pass filter
in Fourier space; and the third inverses the transformation. The system supports
any number of pipelines operating in parallel and splits the signals evenly.

Table 1 shows the average execution times of various low-pass filter systems
processing signals of various lengths. The experiments have been conducted on a
4 × Intel Xeon E7-4830 2.13 GHz server (32 cores) with 256 GB of RAM running
Windows Server 2012 Datacenter (64 Bit) in a Kernel-based Virtual Machine
on Red Hat 4.4.7-3 (64 Bit). A modified version of EVE 13.11 [9] compiled the
programs in finalized mode with an inline depth of 100. Every data point reflects
the average execution time over ten runs processing 100 signals each. Using ten

Safe and Efficient Data Sharing for Message-Passing Concurrency 109

Table 1. Average execution times (in seconds) of various low-pass filter systems with
various signal lengths

configuration 2048 4096 8192 16384 32768 65536 131072 262144 524288

sequential, SCOOP 1.00 1.66 3.22 6.35 12.71 26.19 55.05 120.37 272.38
sequential, thread 0.62 1.09 2.19 4.66 9.57 20.23 41.45 93.40 213.59
1 pipeline, active 337.55 682.29 1456.67 2875.23 - - - - -
1 pipeline, passive 1.64 2.72 5.02 10.99 24.68 55.29 118.30 247.29 533.83
1 pipeline, thread 0.31 0.58 1.16 2.44 5.26 11.11 23.59 53.24 122.00
2 pipelines, passive 1.19 1.77 3.05 6.35 14.19 29.82 60.24 124.99 263.96
3 pipelines, passive 1.07 1.47 2.34 4.71 9.87 20.65 41.78 85.72 185.19
5 pipelines, active 231.25 496.68 1048.95 2192.53 - - - - -
5 pipelines, passive 0.87 1.23 1.86 3.27 6.35 13.50 27.17 55.95 117.12
5 pipelines, thread 0.16 0.23 0.40 0.74 1.53 3.05 6.30 13.76 31.82
10 pipelines, active 334.93 726.83 1549.01 3322.70 - - - - -
10 pipelines, passive 0.84 1.08 1.38 2.36 4.13 8.28 16.89 35.13 76.64
10 pipelines, thread 0.16 0.22 0.33 0.59 1.08 2.09 4.26 9.21 20.93

1

10

100

1000

2048 4096 8192 16384 32768 65536 131072 262144 524288

average
execution time (s)

signal length

1 pipeline, active 5 pipelines, active 10 pipelines, active

sequential 1 pipeline, passive 2 pipelines, passive

3 pipelines, passive 5 pipelines, passive 10 pipelines, passive

Fig. 3. The speedup of passive processors over active processors

pipelines, it took nearly ten hours to compute the average for active signals of
length 16384; thus we refrained from computing data points for bigger lengths.

Figure 3 visualizes the data. The upper three curves belong to the active signal
processors. The lower curves result from the passive processors and a sequential
execution. As the graph indicates, the passive processors are more than two
orders of magnitude faster than the active ones. In addition, with increasing
number of pipelines, the passive processors become faster than the sequential

110 B. Morandi, S. Nanz, and B. Meyer

program. In fact, two pipelines are enough to have an equivalent performance.
The overhead is thus small enough to benefit from an increase in parallelism.
In contrast, active processors deliver their peak performance with around five
pipelines but never get faster than the sequential programs.

5.2 Comparison to Low-Level Synchronization Primitives

Figure 4 and Table 1 compare pipelines with passive processors to pipelines
based on low-level synchronization primitives. In the measured range, the pas-
sive processors are between 3.7 to 5.4 times slower. As the signal length increases,
the slowdown tends to becomes smaller. With more pipelines, the slowdown also
tends to decrease at signal lengths above 8192. The two curves for sequential exe-
cutions show that a slowdown can also be observed for non-concurrent programs.

0.1

1

10

100

1000

2048 4096 8192 16384 32768 65536 131072 262144 524288

average
execution time (s)

signal length

sequential, SCOOP sequential, thread 1 pipeline, passive 1 pipeline, thread

5 pipelines, passive 5 pipelines, thread 10 pipelines, passive 10 pipelines, thread

Fig. 4. The slowdown of passive processors over EiffelThread

The slowdown is the consequence of SCOOP’s programming abstractions.
Compare the following thread-based stage implementation to the SCOOP one
from Section 2. Besides the addition of boilerplate (inherit clause, redefinition of
execute), this code exhibits some more momentous differences. First, the thread-
based stage class implements a work queue: it has an attribute to hold the
packages and a loop in execute to go over them. In SCOOP, request queues
provide this functionality. Second, each thread-based package has a mutex and
a condition variable for synchronization. To process a package, stage i first locks
the mutex and then uses the condition variable to wait until stage i − 1 has
processed the package. Once stage i− 1 is done, it uses the condition variable to

Safe and Efficient Data Sharing for Message-Passing Concurrency 111

signal all waiting stages. Only stage i leaves the loop. In SCOOP, wait conditions
provide this kind of synchronization off-the-shelf. We expect the cost of wait
conditions and other concepts to drop further as the implementation matures.

class STAGE inherit THREAD create make feature
position: INTEGER −− The stage’s position in the pipeline.
packages: ARRAY[PACKAGE] −− The packages to be processed.

make (new position: INTEGER; new packages: ARRAY[PACKAGE])
−− Create a stage at the given position to operate on the packages.

do position := new position ; packages := new packages end

execute −− Process each package after the previous stage is done with it.
do

across packages as package loop
package.mutex.lock −− Lock the package.
−− Sleep until previous stage is done; release the lock

meanwhile.
from until package.is processed (position − 1) loop

package.condition variable.wait (package.mutex)
end
process (package) −− Process the package.
package.condition variable.broadcast −− Wake up next stage.
package.mutex.unlock −− Unlock the package.

end
end

process (package: PACKAGE) −− Process the package.
do

do work (package) −− Read from and write to the package
package.set processed (position) −− Set the package processed.

end
end

5.3 Other Applications

A variety of other applications could also profit from passive processors. Object
structures can be distributed over passive processors. Multiple clients can thus
operate on dynamically changing but distinct parts of these structures while
exchanging coordination messages. For example, in parallel graph algorithms,
the vertices can be distributed over passive processors. In producer-consumer
programs, intermediate buffers can be passive. Normally, about half of the oper-
ations in producer-consumer programs are synchronous read accesses. Without
the messaging overhead, the consumer can execute these operations much faster
than the buffer. Passive processors can also be useful to handle objects whose
only purpose it is to be lockable, e.g., forks of dining philosophers, or to encap-
sulate a shared state, e.g., a robot’s state in a controller.

112 B. Morandi, S. Nanz, and B. Meyer

6 Related Work

Several languages and libraries combine shared data with message passing. In
Ada [16], tasks execute concurrently and communicate during a rendezvous :
upon joining a rendezvous, the client waits for a message from the supplier,
and the supplier synchronously sends a message to the client. The client joins a
rendezvous by calling a supplier’s entry. The supplier joins by calling accept on
that entry. To share data, tasks access protected objects that encapsulate data
and provide exclusive access thereon through guarded functions, procedures, and
entries. Since functions may only read data, multiple function calls may be active
simultaneously. In contrast, passive processors do not support multiple readers.
However, unlike protected objects, passive processors do not require new data
access primitives. Furthermore, passive processors can become active at runtime.

Erlang [8] is a functional programming language whose concurrency support
is based on the actor model [14]. Processes exchange messages and share data
using an ets table, providing atomic and isolated access to table entries. A process
can also use the Mnesia database management system to group a series of table
operations into an atomic transaction. While passive processors do not provide
support for transactions, they are not restricted to tables.

Schill et al. [25] developed a library offering indexed arrays that can be ac-
cessed concurrently by multiple SCOOP processors. To prevent data races on an
array, each processor must reserve a slice of the array. Slices support fine-grained
sharing as well as multiple readers using views, but they are restricted to indexed
containers. For instance, distributed graphs cannot be easily expressed.

A group of MPI [19] processes can share data using the remote memory ac-
cess mechanism and its passive target communication. The processes collectively
create a window of shared memory. Processes access a window during an epoch,
which begins with a collective synchronization call, continues with communica-
tion calls, and ends with another synchronization call. Synchronization includes
fencing and locking. Locks can be partial or full, and they can be shared or
exclusive. Passive processors neither offer fences nor shared locks; they do, how-
ever, offer automatic conditional synchronization based on preconditions. MPI
can also be combined with OpenMP [23]. Just like MPI alone, this combina-
tion does not provide unified concepts. Instead, it provides distinct primitives to
access shared data and to send messages. Uniformity also distinguishes passive
processors from further approaches such as [13].

Several studies agree that performance gains can be realized if the setup of a
program with both message passing and shared data fits the underlying architec-
ture. For instance, Bull et al. [3] and Rabenseifner et al. [24] focus on benchmarks
for MPI+OpenMP. Dunn and Meyer [7] use a QR factorization algorithm that
can be adjusted to apply only message passing, only shared data, or both.

A number of approaches focus on optimizing messaging on shared memory
systems instead of combining message passing with shared data. Gruber and
Boyer [12] use an ownership management system to avoid copying messages
between actors while retaining memory isolation. Villard et al. [26] and Bono
et al. [1] employ static analysis techniques to determine when a message can

Safe and Efficient Data Sharing for Message-Passing Concurrency 113

be passed by reference rather than by value. Buntinas et al. [4], Graham and
Shipman [11], as well as Brightwell [2] present techniques to allocate and use
shared memory for messages.

7 Conclusion

Passive processors extend SCOOP’s message-passing foundation with support
for safe data sharing, reducing execution time by several orders of magnitude on
data-intensive parallel programs. They are useful whenever multiple processors
access shared data using frequent and short read or write operations, where
the overhead outweighs the benefit of asynchrony. Passive processors can be
implemented with minimal effort because much of the existing infrastructure can
be reused. The feature call primitive unifies sending messages to active processors
and accessing shared data on passive processors. Therefore, no significant code
change is necessary to set a processor passive or active. This smooth integration
differentiates passive processors from other approaches. The concept of passive
computational units can also be applied to other message-passing concurrency
models. For instance, messages to passive actors [14] can be translated into
direct, synchronous, and mutually exclusive accesses to the actor’s data.

Passive processors currently do not offer shared read locks, which allow mul-
tiple clients to simultaneously operate on a passive processor. Shared read locks
require features that are guaranteed to be read-only. Functions could serve as
a first approximation since they are read-only by convention. Further, passive
processors are not distributed yet. Because frequent remote calls are expensive,
implementing distributed passive processors requires an implicit copy mechanism
to move the supplier’s data into the client’s memory.

Acknowledgments. We thank Eiffel Software for valuable discussions on the
implementation. The research leading to these results has received funding from
the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC Grant agreement no. 291389.

References

1. Bono, V., Messa, C., Padovani, L.: Typing copyless message passing. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 57–76. Springer, Heidelberg (2011)

2. Brightwell, R.: Exploiting direct access shared memory for MPI on multi-core pro-
cessors. International Journal of High Performance Computing Applications 24(1),
69–77 (2010)

3. Bull, J.M., Enright, J.P., Guo, X., Maynard, C., Reid, F.: Performance evaluation
of mixed-mode OpenMP/MPI implementations. International Journal of Parallel
Programming 38(5-6), 396–417 (2010)

4. Buntinas, D., Mercier, G., Gropp, W.: Implementation and evaluation of shared-
memory communication and synchronization operations in MPICH2 using the
Nemesis communication subsystem. Parallel Computing 33(9), 634–644 (2007)

114 B. Morandi, S. Nanz, and B. Meyer

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

6. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Con-
cepts and Design, 5th edn. Addison-Wesley (2011)

7. Dunn, I.N., Meyer, G.G.: Parallel QR factorization for hybrid message pass-
ing/shared memory operation. Journal of the Franklin Institute 338(5), 601–613
(2001)

8. Ericsson: Erlang/OTP system documentation. Tech. rep., Ericsson (2012)
9. ETH Zurich: EVE (2014), https://trac.inf.ethz.ch/trac/meyer/eve/
10. ETH Zurich: SCOOP executable formal specification repository (2014),

http://bitbucket.org/bmorandi/

11. Graham, R.L., Shipman, G.M.: MPI support for multi-core architectures: Opti-
mized shared memory collectives. In: Lastovetsky, A., Kechadi, T., Dongarra, J.
(eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 130–140. Springer, Heidelberg
(2008)

12. Gruber, O., Boyer, F.: Ownership-based isolation for concurrent actors on multi-
core machines. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 281–301.
Springer, Heidelberg (2013)

13. Gustedt, J.: Data handover: Reconciling message passing and shared memory. In:
Foundations of Global Computing (2005)

14. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: International Joint Conference on Artificial Intelligence,
pp. 235–245 (1973)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
16. International Organization for Standardization: Ada. Tech. Rep. ISO/IEC

8652:2012, International Organization for Standardization (2012)
17. Jones, D.L.: Decimation-in-time (DIT) radix-2 FFT (2014),

http://cnx.org/content/m12016/1.7/

18. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for Parallel Programming.
Addison-Wesley (2004)

19. Message Passing Interface Forum: MPI: A message-passing interface standard.
Tech. rep., Message Passing Interface Forum (2012)

20. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall (1997)
21. Morandi, B., Schill, M., Nanz, S., Meyer, B.: Prototyping a concurrency model.

In: International Conference on Application of Concurrency to System Design,
pp. 177–186 (2013)

22. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. Ph.D. thesis, ETH Zurich (2007)

23. OpenMP Architecture Review Board: OpenMP application program interface.
Tech. rep., OpenMP Architecture Review Board (2013)

24. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, pp. 427–436 (2009)

25. Schill, M., Nanz, S., Meyer, B.: Handling parallelism in a concurrency model.
In: Lourenço, J.M., Farchi, E. (eds.) MUSEPAT 2013 2013. LNCS, vol. 8063,
pp. 37–48. Springer, Heidelberg (2013)

26. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z.
(ed.) APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009)

https://trac.inf.ethz.ch/trac/meyer/eve/
http://bitbucket.org/bmorandi/
http://cnx.org/content/m12016/1.7/

Affine Sessions

Dimitris Mostrous and Vasco Thudichum Vasconcelos

University of Lisbon, Faculty of Sciences and LaSIGE
Lisbon, Portugal

Abstract. Session types describe the structure of protocols from the
point of view of each participating channel. In particular, the types de-
scribe the type of communicated values, and also the dynamic alternation
of input and output actions on the same channel, by which a protocol can
be statically verified. Crucial to any term language with session types is
the notion of linearity, which guarantees that channels exhibit exactly
the behaviour prescribed by their type. We relax the condition of linear-
ity to that of affinity, by which channels exhibit at most the behaviour
prescribed by their types. This more liberal setting allows us to incorpo-
rate an elegant error handling mechanism which simplifies and improves
related works on exceptions. Moreover, our treatment does not affect the
progress properties of the language: sessions never get stuck.

1 Introduction

A session is “a semantically atomic chain of communication actions which can
interleave with other such chains freely, for high-level abstraction of interaction-
based computing” [21]. Session types capture this intuition as a description of the
structure of a protocol, in the simplest case between two programs (binary ses-
sions). This description consists of types that indicate whether a communication
channel will next perform an output or input action, the type of the value to send
or receive, and what to do next, inductively. For example, !nat.!string.?bool.end
is the type of a channel that will first send a value of type nat, then one of type
string, then wait for a value of type bool, and nothing more. This type can be
materialised by the π-calculus [19] process a5.a “hello”.a(x).0. To compose two
processes that communicate over a channel, we require that each has a comple-
mentary (or dual) type, so that an input will match an output, and vice versa.
The dual of the previous type is ?nat.?string.!bool.end, and can be implemented
by a(x).a(y).a(x + 1 < 2).0. To ensure that the actions take place in the pre-
scribed order, session typing relies crucially on the notion of linearity [12], which
means that a causal chain can be assumed. To see why, imagine that we write the
first process as a5.0 | a “hello”.a(x).0. Now we cannot determine which output
can react first, and the second process can receive a “hello” first, which would
clearly be unsound and would most likely raise an error.

Beyond the basic input/output types, sessions typically provide constructors
for alternative sub-protocols, which are very useful for structured interaction.
For example, & {go : T1, cancel : T2} can be assigned to an (external) choice a �

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 115–130, 2014.
c© IFIP International Federation for Information Processing 2014

116 D. Mostrous and V.T. Vasconcelos

{go.P1 � cancel.P2}. The dual type, where T denotes T with an alternation of all
constructors, is ⊕

{
go : T1, cancel : T2

}
, and corresponds to a process that will

make a (internal) choice, either a � go.Q1 or a � cancel.Q2. In the first case the
two processes will continue as P1 and Q1, respectively.

As can be seen, sessions are very suitable as a static verification mechanism
for interacting programs. However, they are also quite rigid, since everything
in the description of a session type must be implemented by a program with
that type. Indeed, in many real world situations, interactions are structured but
can be aborted at any time, for example an online store should be prepared for
clients that get disconnected, that close their web browsers, or for general errors
that abruptly severe the expected pattern of interaction.

In this work, we address the above issues. In technical terms, we relax the
condition of linearity to that of affinity, inspired by Affine Logic (which is the
variation of Linear Logic with unrestricted weakening; see [2] for an introduc-
tion), and this allows processes to terminate their sessions prematurely. However,
a naive introduction of affinity can leave programs in a stuck state: let us re-write
the first process into a5.a “hello”.0, i.e., without the final input; then, after two
communications the dual process will be stuck trying to perform a(5+1 < 2).0.
One of the basic tenets of sessions, progress, is now lost. Actually, the study of
Proof Nets for Affine Logic [2] reveals that weakening is not, and should not
be, invisible. In particular, there exists a device that will perform the weakening
step by step, progressing through the dependencies of a proof, and removing
all that must be removed. This is exactly what we need in order to handle an
abrupt termination of an interaction in an explicit way, and we denote it by
a�, which reads cancel a. Now we can write a5.a “hello”.a�, and after two steps
against the dual process we obtain a(5 + 1 < 2).0 | a�, which results in the
cancellation of the output (and in general, of any subsequent actions on a). We
take this idea a step further: if cancellation of a session is explicit, we can treat
it as an exception, and for this we introduce a do-catch construct that can pro-
vide an alternative behaviour activated when a cancellation is encountered. For
example, we can write do a(5+ 1 < 2).0 catchP , and a composition with a� will
replace a(5+ 1 < 2).0 with the exception handler P . A do-catch is not the same
as the try-catch commonly found in sequential languages: it does not define a
persistent scope that captures exceptions from the inside, but rather it applies
to the first communication and is activated by exceptions from the outside (as
in the previous example). Thus, do a(5 + 1 < 2).0 catch P in parallel to a(x).0
becomes 0, because the communication was successful.

2 Affine Sessions by Example

We describe a simple interaction that implements a book purchase taking place
between three processes, Buyer, Seller, and Bank. The buyer sends the title of a
book, receives the price, and makes a choice to either buy it or cancel. If the
buyer chooses to buy the book, the credit card is sent over the session, and the
buyer is informed whether or not the transaction was successful. The diagram
in Figure 1 shows the interactions of a specific purchase.

Affine Sessions 117

Buyer Seller Bank

b : “Proofs and Types”

b : e 178

b : select buy

c : e 178

c : session on b

b : ccard

c : session on b

c : select accepted

b : select accepted

Fig. 1. Sequence Diagram for Succesful Book Purchase

We now show how this scenario can be implemented using sessions, and how
our treatment of affinity can be used to enable a more concise and natural han-
dling of exceptional outcomes. Our language is an almost standard π-calculus
where replication is written acc a(x).P and plays the role of “accept” in ses-
sions terminology [15]. Dually, an output that activates a replication is written
req ab.P , and is called a “request”. We will use some standard contructs that are
encodable in π-calculus, like ae for an expression e. Also, we use if t thenP elseQ
that can be implemented by a new session, specifically a � {true.P � false.Q}
against some process representing the test t that communicates the result by a
selection of one of the labels, a � true or a � false.

An implementation of the protocol we described in Figure 1 is shown below:

Buyer .
= (νb)

(
req seller b | b “Proofs and Types”.b(price).if (price < 200)

then b � buy.b ccard.b � {accepted.P � rejected.Q} else b � cancel

)

Seller .
= acc seller(s).

⎛⎜⎜⎝
s(prod).s price(prod).
s � {buy.(νc)(req bank c | c price(prod).cs.c(r).

c � {accepted.r � accepted � rejected.r � rejected})
� cancel.0}

⎞⎟⎟⎠
Bank .

= acc bank(k).
(
k(amount).k(r).r(card).kr.
if charge(amount, card) then k � accepted else k � rejected

)
First we note how sessions are established. For example, in Buyer the fresh

name b is sent to Seller via the request req seller b, where it will substitute s in a
copy of the replication, and it appears also locally. These are the two endpoints of

118 D. Mostrous and V.T. Vasconcelos

the session, and it is easy to check that the interactions match perfectly. Another
point is the “borrowing” of the session b (which becomes identified with s) from
Seller to Bank, with cs.c(r) and k(r).r(card).kr (again, c and k are identified),
respectively, so that the credit card is received directly by Bank; see also Figure 1.

A more robust variation of Seller could utilise the do-catch mechanism to
account for the possibility of the Bank not being available (or being crashed), by
providing an alternative payment provider. This can be achieved if we substitute
req bank c with do req bank c catch req paymate c, so that a failure to use the bank
service (bank�) will activate req paymate c (which must have the same type) and
the protocol has a chance to complete successfully.

The Buyer might also benefit from our notion of exception handling. For exam-
ple, we show an adaptation that catches a cancellation at the last communication
of the buy branch and prints an informative message:

BuyerMsg .
= (νb)

⎛⎜⎜⎜⎜⎝
req seller b | b “Proofs and Types”.b(price).
if (price < 200) then b � buy.b ccard.
do b � {accepted.P � rejected.Q}
catch req print “Error 42”

else b � cancel

⎞⎟⎟⎟⎟⎠
As mentioned in the Introduction, a do-catch on some communication does not
catch subsequent cancellations. For instance, if in the above example the do-catch
was placed on b “Proofs and Types”, then any b� generated after this output was
performed would be uncaught, since reqprint “Error 42” would have been already
discarded. However, a do-catch does catch cancellations emitted before the point
of definition, so placing it near the end of a protocol is very useful if we just
want a single exception handler that catches everything.

Indeed, exception handlers that persist for the lifetime of the whole session are
definable. Specifically, we can write tryP catch (b : Q) to mean that one endpoint
of b is implemented in P and that Q should be activated if b is canceled at any
point from the outside of P . This try-catch notation translates to a do-catch on
the last prefix on b in P , in multiple branches as required, assuming that b is not
delegated (i.e., sent over another channel), as is the case in BuyerMsg.1 Then we
have, for example, that try b5.P ′ catch (b : Q) | b(x).0 becomes tryP ′ catch (b : Q)
and try b5.P ′ catch (b : Q) | b� becomes P ′′ | Q where P ′′ is P ′ with b and
all its dependencies canceled. In general, however, our mechanism is very fine-
grained, and a single session can have multiple, nested do-catch on crucial points
of communication.

Note also that a� can be very useful in itself, even without the do-catch
mechanism. Here are two ways to implement a process that starts a protocol
with Seller only to check the price of a book:

1 We assume that in BuyerMsg P and Q do not use b. The restriction to non-delegated
sessions is for simplicity: if the last action on b was to send it over some channel k,
e.g., using kb, the encoding would be more complicated, because we would not have
access to the end of the session and anything after that output would not be caught.

Affine Sessions 119

CheckPriceA .
= (νb)

(
req seller b | b “The Prince”.b(price).(b � cancel | R)

)
CheckPriceB .

= (νb)
(
req seller b | b “Beyond Good and Evil” .b(price).(b� | R)

)
Both the above processes can be typed. However, the first requires a knowledge
of the protocol, which in that case includes an exit point (branch cancel), while
the second is completely transparent. For example, imagine a buyer that selects
buy by accident and then wishes to cancel the purchase: without cancellation it
is impossible because it is not predicted by the session type; with cancellation it
is extremely simple, as shown below.

BuyerCancel .
= (νb)

(
req seller b | b “Gödel, Escher, Bach”.b(price).b � buy.b�

)
We now make a small digression to discuss how our affine sessions can be

encoded in standard sessions. The purpose is to shed light on the complexity
that is required, which motivates even more our development. First of all, it
is possible that both endpoints of a session emit a cancellation, possibly at
different moments. Therefore, if we are to encode this behaviour in a standard
session system, we must allow a protocol to end at any point and by the request
of either of the participants. This can be achieved by an exchange of a decision,
to go or to cancel, by both endpoints, before all communications. We show the
translation for output and input; the rest is similar.

�!T1.T2�
.
= ⊕

{
go : & {go : !T1.�T2�, cancel : end} ,
cancel : & {go : end, cancel : end}

}
�?T1.T2�

.
= �!T1.T2�

�end�
.
= end

The notable point is that by an alternation of constructors we obtain a transla-
tion that preserves duality, and it is easy to check that it preserves soundness.
Moreover, the only way to proceed is if both ends agree to go. The term-level
translation follows the structure of the types, and a� becomes a � cancel. All
free sessions in the term must be canceled in the branches that do not result
in normal execution so as to obtain the same typing environment, but this is
always possible.

The above translation only handles cancellation. Our do-catch mechanism can
also be encoded within the branches of the previous translation, but it becomes
quite complicated due to the typing contraints that must be respected. In any
case, we think it is obvious that the burden is heavy if one wishes to obtain
a functionality as general as the one available in the affine system, and types
would become completely illegible from the multiplication of constructors.

3 The Process Calculus of Affine Sessions

Syntax. Our language is a small extension of standard π-calculus [19]. With
respect to standard sessions systems [11,22], we avoid the need for polarities
and double binders by carefully introducing a logically-founded typing principle,
detailed later. For technical convenience we shall consider all indexing sets I

120 D. Mostrous and V.T. Vasconcelos

to be totally ordered, so that we can speak, e.g., of the maximum element.
Also for technical convenience, we separate the prefixes denoted by ρ, i.e., all
communication actions except for accept (replication). We only added two non-
standard constructs: the cancellation a� and the do-catch construct that captures
a cancellation, denoted by doρ catchP . Notice that we restricted the action to a
prefix in ρ, but this is not so limiting. In the case of replication, it does not make
sense to catch an event that never occurs, since as we shall see we never explicitly
cancel a persistent service. For parallel composition, it would be ambiguous to
allow do (P | Q) catch R since more than one action can be active in (P | Q),
and moreover we do not think it would really add any benefit since we can add
a separate do-catch for each session. Similarly, do a� catch P would be strange:
it would allow to trigger some behaviour when the other end is canceled, but
while at the same time the protected session is canceled too. It can be added if
a good use is discovered, but we preferred to keep the semantics simpler.

ρ ::= a(x : T).P (input)

| ab.P (output)

| a � {li.Pi}i∈I (branching)

| a � lk.P (selection)

| req ab.P (request)

P ::= ρ (prefix)

| acc a(x : T).P (replicated accept)

| 0 (nil)

| P | Q (parallel)

| (νa : T)P (restriction)

| a� (cancel)

| do ρ catch P (catch)

Structural Congruence. With ≡ we denote the least congruence on processes
that is an equivalence relation, equates processes up to α-conversion, satisfies the
abelian monoid laws for parallel composition, the usual laws for scope extrusion,
and satisfies the axiom:

(νa : T)(a� | · · · | a�) ≡ 0

We added this axiom mainly for the left-to-right direction which allows “leftover”
cancellations to disappear; this is convenient for technical reasons.

Reduction. We use two kinds of contexts, C[] which are standard, and H [] for
(possible) exception handling, defined below.

Standard Contexts : C[·] ::= · | (C[·] | P) | (νa : T)C[·]
Do-Catch Contexts : H [·] ::= · | do · catch P

Affine Sessions 121

Reduction is defined in two parts, first the standard rules, and then the can-
cellation rules. The standard reductions are defined below:

H1[ab.P] | H2[a(x : T).Q] −→ P | Q{b/x} (R-Com)

H1[a � lk.P] | H2[a � {li.Qi}i∈I] −→ P | Qk (k ∈ I) (R-Bra)

H [req ab.P] | acc a(x : T).Q −→ P | Q{b/x} | acc a(x : T).Q (R-Ses)

P ≡ P ′ −→ Q′ ≡ Q ⇒ P −→ Q (R-Str)

P −→ Q ⇒ C[P] −→ C[Q] (R-Ctx)

The only notable point is that we discard any do-catch handlers, since there is
no cancellation, which explains why the H-contexts disappear.

The cancellation reductions follow:

req ab.P | a� −→ a� | b� | P (C-Req)

ab.P | a� −→ a� | b� | P (C-Out)

a(x : T).P | a� −→ (νx : T)(a� | x� | P) (C-Inp)

a � lk.P | a� −→ P | a� (C-Sel)

a � {li.Pi}i∈I | a� −→ Pk | a� max(I) = k (C-Bra)

do ρ catch P | a� −→ P | a� subject(ρ) = a (C-Cat)

We discuss some notable points.
Only what is strictly needed will be deleted, in particular one might have

expected a(x : T).P | a� to result in the annihilation of P , which can be done
by generating b� for each b in the free names of P . However, this has several
drawbacks: first, it is too absolute, since some interactions in P may not depend
on a or x, and we prefer to preserve them; second, it is technically simpler, since
in this setting we can use typing restrictions to avoid the creation of any b�
for a replication acc b(x).Q inside P , which follows our decision to never delete
services; finally, it is what happens in Proof Nets for Affine Logic (see [2]).

In the cancellation of branching, (C-Bra), we choose the maximum index k
which exists by our assumption that index sets are totally ordered. This is a
simple way to avoid non-determinism solely by cancellation.2 Notice that it fol-
lows the pattern of activating a continuation, motivated above.

In the rule (C-Cat), we use a function subject(ρ) which returns the subject
in the prefix of ρ. This is defined in the obvious way, e.g., subject(ab.P) =
subject(req ab.P) = a, and similarly for the other cases. The typing system will
ensure that a does not appear in P , so it is ok to leave a� in the result; this is
needed for canceled requests, where the a� should remain until it reacts with all
of them.

2 The language remains confluent, as expected in a logically founded system.

122 D. Mostrous and V.T. Vasconcelos

We clarify some of the main points:

i) Consider a(x).(Q | acc b(z).R) | a�. The replication provided on b may or
may not depend on x. A cancellation of a does not necessarily mean that b
will be affected, but if x appears in R it is possible that subsequent sessions
will be canceled.

ii) Consider a(x).(acc x(z).Q | bx.R) | a�. As can be seen, the replicated
channel x is delegated on b, and it should not be deleted just because a is
canceled. Indeed, this situation is not allowed by the restrictions in our type
system. In other words, some sessions cannot be canceled.

iii) Consider a(x).(Q | be.R) | a�. The session output be.R will not be canceled,
but since it is possible that e = x and in general e could appear in R, other
cancellations may eventually be generated.

iv) A communication discards any handlers: do ab.P catch Q | a(x : T).R −→
P | R{b/x}. The type system ensures that it is sound to discard Q, since it
contains the same sessions as ab.P , except for a.

v) A cancellation activates a handler, which may provide some default values
to a session, completing it or eventually re-throwing a cancellation, as in:
do ab.P catch (b5.b�) | a� −→ b5.b� | a�.

4 Typing Affine Sessions

Types. The session types we use are standard [15] with two exceptions. First,
following [22] we allow a session type to evolve into a shared type. Second,
we decompose shared types into accept types acc T and request types req T ,
following the logical principles of Affine Logic. Technically, acc T corresponds to
!T (“of course T ”) and req T to ?T (“why not T ”) [12]. This has several technical
advantages that simplify our development, for example acc T retains information
on the persistence of a term with that type, since it must be replicated, which
is useful for typing. Moreover, req T is the only type allowed in the context of a
resource that can be used zero or more times.

T ::= end (nothing)

| !T.T (output)

| ?T.T (input)

| ⊕ {li : Ti}i∈I (selection)

| & {li : Ti}i∈I (branching)

| req T (request)

| acc T (accept)

Affine Sessions 123

Duality. The two ends of a session are composed when their types are dual,
which is defined as an involution over the type constructors, similarly to Linear
Logic’s negation except that end is self-dual.3

!T1.T2
.
= ?T1.T2 ?T1.T2

.
= !T1.T2

⊕{li : Ti}i∈I
.
= &

{
li : Ti

}
i∈I

& {li : Ti}i∈I
.
= ⊕

{
li : Ti

}
i∈I

req T
.
= acc T acc T

.
= req T end

.
= end

Typing Rules. Typing judgements take the form:

P � Γ where Γ ::= ∅ | Γ, a : T

meaning that term P has interface Γ . We shall also use Γ , Δ, Θ for interfaces.
We restrict replications to be unique, but allow multiple requests to take place

against them. This means that processes can have multiple uses of a : req T ,
which corresponds to the logical principle of contraction. For this, we make use
of the splitting relation from [22]:

∅ = ∅ ◦ ∅
Γ = Γ1 ◦ Γ2

Γ, a : req T = (Γ1, a : req T) ◦ (Γ2, a : req T)

Γ = Γ1 ◦ Γ2

Γ, a : T = (Γ1, a : T) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, a : T = Γ1 ◦ (Γ2, a : T)

In the typing rules, reqΓ stands for an interface of the shape a1 : req T1, . . . ,
an : req Tn. Similarly, endΓ stands for an interface a1 : end, . . . , an : end.

We also define a predicate no-requests(T), used to forbid any request type
from appearing in the type of a�, since this maps by duality to the deletion of
a persistent accept on the other side, which we do not allow.4

no-requests(req T) = false

no-requests(acc T) = no-requests(T) no-requests(end) = true

no-requests(!T1.T2) = no-requests(T1) ∧ no-requests(T2)

no-requests(?T1.T2) = no-requests(T1) ∧ no-requests(T2)

no-requests(⊕{li : Si}i∈I) = no-requests(& {li : Si}i∈I) = ∧i∈Ino-requests(Si)

The typing rules are presented in Figure 2. We focus on some key points.
First, we type modulo structural equivalence, a possibility suggested by [18] and
used in [4]. This is because associativity of “ | ” does not preserve typability, i.e.,
3 The expert might notice that logical negation suggests a dualisation of all compo-

nents, e.g., !T.T ′ .
= ?T .T

′ In fact the output type !T.T ′ and the request req T hide
a duality on T , effected by the type system, so everything is compatible.

4 This method works fine until one adds a second-order fragment: then type substitu-
tions must be carefully controlled, or some results will become slightly weaker.

124 D. Mostrous and V.T. Vasconcelos

(Out)

P � Γ, a : T2

ab.P � (Γ, a : !T1.T2) ◦ b : T1

(In)

P � Γ, x : T1, a : T2

a(x : T1).P � Γ, a : ?T1.T2

(Sel)

P � Γ, a : Tk k ∈ I

a � lk.P � Γ, a : ⊕{li : Ti}i∈I

(Bra)

∀i ∈ I . Pi � Γ, a : Ti I �= ∅
a � {li.Pi}i∈I � Γ, a : & {li : Ti}i∈I

(Req)

P � Γ

req ab.P � Γ ◦ a : req T ◦ b : T

(Acc)

P � req Γ, x : T

acc a(x : T).P � req Γ, a : acc T

(Par)

P � Γ1 Q � Γ2

P | Q � Γ1 ◦ Γ2

(ParSes)

P � Γ1, a : acc T Q � Γ2, a : req T

P | Q � (Γ1 ◦ Γ2), a : acc T

(Res)

P � Γ1, a : T Q � Γ2, a : T

(νa : T)(P | Q) � Γ1 ◦ Γ2

(Str)

Q � Γ Q ≡ P

P � Γ

(Nil)

0 � req Γ, endΔ

(Catch)

ρ � Γ, a : T P � Γ subject(ρ) = a

do ρ catch P � Γ, a : T

(Cancel)

no-requests(T)
a� � a : T

Fig. 2. Affine Session Typing

a composition between P and (Q | R) may be untypable as (P | Q) | R; see
(ParSes), (Res). This applies also to (νa) that causes similar problems. In fact,
the splitting of the terms in (Res) is inspired by the work [4] which interprets
sessions as propositions in a form of Intuitionistic Linear Logic. It is because
of this separation of terms, which applies also to (ParSes), that we can avoid
channel polarities: the two ends of a session can never become causally dependent
or intermixed. The purpose of (ParSes) is to type multiple requests against a
persistent accept, which explains why a : acc T remains in the conclusion. An
output ab.P records a conclusion b : T1, so in fact it will compose against b : T1.
Therefore !T1.T2 really means “send T1,” which matches with the dual input.
A cancellation a� can be given any type that does not contain a request, as
explained previously.

A do-catch is typed as follows: if ρ is an action on a and has an interface
Γ, a : T , then the handler P will implement Γ , i.e., all sessions of ρ except for
a : T which has been canceled. Of course, inside P these other sessions can be
canceled anyway, which corresponds to “re-throwing” the cancellation, but they
can also be implemented in whole or in part. The rule is sound, since no session
is damaged, irrespectively of which term we execute, ρ or P .

Motivating the “no requests” Restriction on the Type of a�. There are pragmatic
motivations behind our decision to not allow cancellation of replicated terms,

Affine Sessions 125

namely that we do not wish a request to cancel a service possibly shared by
many processes. However, there are also technical challenges, stemming from
the fact that multiple actions of type a : req T can appear in a well-typed term,
which as we explain below can create ambiguity in cancellation reductions.

Let us assume that the no-requests(T) restriction was lifted. Now, as an ex-
ample consider the composition req ab.P | a� | ca.Q | c(x).acc x(y).R. First, let
us look at the underlined term: it is impossible to know what is the type of a�,
as it could be either acc T or req T . If the type is acc T , which means that the
(dual) accept is canceled, we should apply cancellation to req ab.P ; if the type
is req T , i.e., if a� is in fact the cancellation of another request, then we should
not touch req ab.P . In our example, it is easy to check that the replication will
appear after a communication on c so the type of a� must be req T , but in
general it is not possible to determine this information (again, consider just the
underlined term). Our restriction on the type of a� ensures that, in a case like
the underlined term above, we can be sure that the type cannot be req T , so it
must be acc T and we can proceed to cancel req ab.P using (C-Req). Indeed, the
full composition is not typable since in that case the type of a� must be req T ,
and no-requests(req T) is not true. In fact, without our restriction, (C-Req) does
not work any more, since it assumes a� to be of type acc T , so we would need
to replace it with:

(νa : T)(
∏

i∈I req abi.Pi | a�) −→ (νa : T)(
∏

i∈I(bi� | Pi) | a�) (C-Req’)

This is the special case in which we know the type of a� must be acc T , since
it is bound and all other elements are requests. This variation is more complex,
and we would also have to forego the ability to use do-catch on req ab.P , so we
chose not to introduce it. Even if we did use this seemingly more liberal system,
we would anyway not want replications to be deleted, so it would be of limited
value. The only advantage of this alternative solution is that it does not put
restrictions on the shape of types assigned to a�, and therefore it works also
with polymorphism (i.e., a second-order setting).

Typing the Book Purchase Example

It is easy to verify that the examples from Section 2 are well-typed. For the
Buyer we obtain the following (for some req Γ1 and endΔ1):

Buyer � req Γ1, endΔ1, seller : req T1

with T1 = !string.?double.⊕
{
buy : !string.& {accepted : end, rejected : end} ,
cancel : end

}
.

The type T1 is the behaviour of b inside Buyer.
For the Seller we obtain:

Seller � req Γ2, bank : req T2, seller : acc T1

with T2=?double.?(?string.T3).!T3.T3) and T3=⊕{accepted : end, rejected : end} .

126 D. Mostrous and V.T. Vasconcelos

For the Bank we obtain:

Bank � req Γ3, bank : acc T2

Interestingly, no type structure is needed for the affine adaptations: cancella-
tion is completely transparent. The variation of Seller with an added do-catch,
doreqbank c catchreqpaymate c, will simply need paymate : req T2 in its interface,
i.e., with a type matching that of bank, but the original Seller can also be typed
in the same way by weakening. Similarly, BuyerMsg has the same interface as
Buyer, except that it must include print : req string, and again the two processes
can be assigned the same interface by weakening, if needed. The processes Check-
PriceA, CheckPriceB, and BuyerCancel can be assigned the same type for seller,
namely req T1, exactly like Buyer.

Finally, as we shall see next affinity does not destroy any of the good properties
we expect to obtain with session typing.

5 Properties

Typed terms enjoy the expected soundness properties. In particular we have:

Lemma 1 (Substitution). If P � Γ and a �∈ dom(Γ) then Q{a/b} � Γ{a/b}.

Theorem 1 (Subject Reduction). If P � Γ and P −→ Q then Q � Γ .

Proof. The proof relies on several results including Lemma 1. The non-standard
case is for cancellations and in particular for doρ catchP | Q. However, it can be
easily checked that the substitution of ρ by P is sound, because both terms offer
the same interface except for the canceled session (and dually P can be thrown
away in standard communication).

Theorem 2 (Diamond property). If P �Γ and Q1 ←− P −→ Q2 then either
Q1 ≡ Q2 or Q1 −→ R←− Q2.

Proof. The result is actually easy to establish, since the only critical pairs arise
from multiple requests to the same replication or to the same cancellation. How-
ever, even in that case the theorem holds because: a) replications are immediately
available and functional (uniform availability); b) cancellations are persistent.
The fact that a� can never be assigned req T simplifies the proof.

The above strong confluence property indicates that our sessions are com-
pletely deterministic, even considering the possible orderings of requests.

Progress

Our contribution to the theory of session types is well-behaved affinity, in the
sense that we can guarantee that any session that ends prematurely will not affect
the quality of a program. Indeed, if we simply allowed unrestricted weakening,

Affine Sessions 127

for example by a type rule Γ � 0 as done in [13], but without any apparatus at
the language level, it would be easy to type a process such as (νa)ab.P | b(x).Q
and clearly not only a but also b would be stuck for ever. In this section we prove
that this never happens to a well-typed term.

Let us write λ for a prefix ρ that is not a request, i.e., such that ρ �= req ab.P .

Proposition 1. If P � Γ and P ≡ (νã)(H [λ] | Q) and subject(λ) = b and
b ∈ fn(Q) then b ∈ ã.

This is proved very easily by induction on typing derivations.
We now define a notion of permanently blocked process, which intuitively

is a process that cannot proceed in any context, either because of deadlock
or because of (restricted) sessions without a dual. We will use the fact that
linear communications are always under the corresponding bound name, from
Proposition 1. As usual P �−→ means that P cannot reduce.

Definition 1 (Blocked process). A process P is blocked if P �−→ and:

P ≡ (νã : T̃) (H1[ρ1] | · · · | Hn[ρn]) n ≥ 1 ∀i ∈ {1, . . . , n} . subject(ρi) ∈ {ã}

We give some examples to clarify the definition:

i) reqax.req by.P | req br.reqak.Q is not considered blocked since it can reduce
properly if we add the appropriate replications.

ii) (νa)(req ax.req by.P | req br.req ak.Q) is not considered blocked because
we can add a replication acc b(x).R and it will perform one step (before
becoming blocked).

iii) both (νa)(req ax.req by.P | req ak.req br.Q) and (νa, b)(req ax.req by.P |
req br.req ak.Q) are blocked, and indeed they have no chance of reducing.

iv) a(x).by.P | b(z).ar.Q is not considered blocked, even if it can never reduce,
but from Proposition 1 we don’t need to consider this case.

v) (νa, b, c)(a(x).by.P | b(z).cr.Q | c(s).ae.R) is blocked; there is a cycle span-
ning all three sub-processes.

vi) (νa)ab.P and (νa, b)(ab.P | b(x).Q) are blocked; this is “bad” affinity.
vii) The above examples can be extended with do-catch, which explains the

H-contexts in the definition.

We can now present the main result:

Theorem 3 (Progress). If P � Γ then:

a) for all Q, C[] such that P ≡ C[Q], Q is not blocked.
b) if P �−→, then either P ≡ 0 or there exists Q, ã, Δ, Θ with Q �Δ and Q �−→,

such that (νã)(P | Q) � Θ and (νã)(P | Q) −→.

Part a) is shown by Theorem 1 and with the help of a lemma: if P � Γ then
P is not blocked. Part b), which is similar to the formulation in [9], is shown by
induction on the type derivation.

The theorem is actually very strong, since it holds also for requests, contrary
to related works such as [9] where terms enjoy progress only for the linear part

128 D. Mostrous and V.T. Vasconcelos

of sessions, i.e., where a request (that may never be activated) can permanently
disable any sessions that depend on it.

Moreover, notice that b) in itself is not enough: we could have a blocked
subterm in parallel to a request req a1b.P

′, then we could iterate compositions
with forwarders acc ai(x).req ai+1x and there would always be a reduction. In
general, the existence of a “good” Q does not exclude a “bad” one that leads to
deadlock. However, from a) we know that there is no subterm that is blocked.

Also, we have not considered circular dependencies for replications; it is easy
to check that they cannot lead to deadlock, and actually they cannot be typed.

Finally, we have checked that typed processes are strongly normalising, which
is not so surprising since we followed closely the logical principles of Affine Logic.
We leave the complete proof of this result, which uses the technique of Reducibil-
ity Candidates [12] in conjunction with Theorem 2, to a longer version. Note that
Progress (Theorem 3) is in a sense more important, for two reasons: first, a sys-
tem without progress can still be strongly normalising, since blocked terms are
by definition irreducible; second, practical systems typically allow divergence,
and in that case the progress property (which we believe can be transferred
without surprises to this setting) becomes much more relevant.

6 Related Work and Future Plans

We divide our discussion on the related work in three parts: relaxing linearity in
session types, dealing with exceptional behaviour, and logical foundations.

The study of language constructs for exceptional behavior (including excep-
tional handling and compensation handling) has received significant attention;
we refer the reader to a recent overview [10], while concentrating on those works
more closely related to ours. Carbone at al. are probably the first to introduce
exceptional behaviour in session types [7]. They do so by extending the program-
ming language (the π-calculus) to include a throw primitive and a try-catch pro-
cess. The language of types is also extended with an abstraction for a try-catch
block: essentially a pair of types describing the normal and the exceptional be-
haviour. The extensions allow communication peers to escape, in a coordinated
manner, from a dialogue and reach another point from where the protocol may
progress. Carbone [6] and Capecchi et al. [5] port these ideas to the multi-party
setting. Hu et al. present an extension of multi-party session types that allow
to specify conversations that may be interrupted [16]. Towards this end, an in-
terruptible type constructor is added to the type language, requiring types that
govern conversations to be designed with the possible interrupt points in mind.
In contrast, we propose a model where programs with and without exceptional
behaviour are governed by the same (conventional) types, as it is the norm in
functional and object-oriented programming languages.

Caires et al. proposed the conversation calculus [23]. The model introduces
the idea of conversation context, providing for a simple mechanism to locally
handle exceptional conditions. The language supports error recovery via throw
and try-catch primitives. No type abstraction is proposed.

Affine Sessions 129

Contracts take a different approach by using process-algebra languages [8]
or labeled transition systems [3] for describing the communication behaviour of
processes. In contrast to session types, where client-service compliance is given
by a symmetric duality relation, contracts come equipped with an asymmetric
notion of compliance usually requiring that a client and a service reach a success-
ful state. In these works it is possible to end a session (usually on the client side
only) prematurely, but there is no mechanism equivalent to our cancellation, no
relationship with exception handling, and no clear logical foundations.

Caires and Pfenning gave a Curry-Howard correspondence relating Intuition-
istic Linear Logic and session types in a synchronous π-calculus [4]. Although
we do not use their types, there is a clear correspondence between !T1.T2 and
�T1� ⊗ �T2�, and similarly for input. The splitting of the term when composing
session endpoints, in our case with (Res), which is standard from [1], was never
used in sessions before the work [4]. For output (and request) we followed a dif-
ferent but equivalent approach in which b in ab.P is free, when in [4] it would
be restricted to appear strictly under P . In fact, we did not change anything
compared to the usual output rule [15], which shows that a logical system can
be obtained from a standard session system simply by an adaptation of (Res) so
that it plays the role of a logical “cut.”

Indeed, the system we presented can be mildly adapted to obtain an embed-
ding of typed processes to proofs of Affine Logic. In any case, our formulation
allows to type more processes than Linear Logic interpretations, and to our
knowledge it is the first logical account of exceptions in sessions, based on an
original interpretation of weakening. Moreover, Propositional Affine Logic is de-
cidable, a result by Kopylov [17], so there are better prospects for type inference.

As part of future work, we would like to develop an algorithmic typing system,
along the lines of [22]. We also believe it would be interesting to apply our
technique to multiparty sessions [14] based on Proof Nets [20].

Acknowledgments. This work was supported by FCT through funding of
MULTICORE project, ref. PTDC/EIA-CCO/122547/2010, and LaSIGE Strate-
gic Project, ref. PEst-OE/EEI/UI0408/2014. We would like to thank the
anonymous reviewers and also Nobuko Yoshida, Hugo Torres Vieira, Francisco
Martins, and the members of the Gloss group in the University of Lisbon, for
their detailed and insightful comments.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer
Science 111, 3–57 (1993)

2. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Com-
pututational Logic 3(1) (2002)

3. Bravetti, M., Zavattaro, G.: Contract-based discovery and composition of web
services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 261–295. Springer, Heidelberg (2009)

130 D. Mostrous and V.T. Vasconcelos

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010)

5. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. In:
FSTTCS. LIPIcs, pp. 338–351. Schloss Dagstuhl (2010)

6. Carbone, M.: Session-based choreography with exceptions. In: PLACES. ENTCS,
vol. 241, pp. 35–55. Elsevier (2009)

7. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Transactions on Programming Languages and Systems 31(5), 1–61 (2009)

9. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912,
pp. 257–275. Springer, Heidelberg (2008)

10. Ferreira, C., Lanese, I., Ravara, A., Vieira, H.T., Zavattaro, G.: Advanced Mecha-
nisms for Service Combination and Transactions. In: Wirsing, M., Hölzl, M. (eds.)
SENSORIA Project. LNCS, vol. 6582, pp. 302–325. Springer, Heidelberg (2011)

11. Gay, S.J., Hole, M.J.: Subtyping for session types in the pi calculus. Acta Infor-
matica 42(2/3), 191–225 (2005)

12. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
13. Giunti, M.: Algorithmic type checking for a pi-calculus with name matching and

session types. The Journal of Logic and Algebraic Programming 82(8), 263–281
(2013)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL, pp. 273–284. ACM (2008)

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

16. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical interrupt-
ible conversations: Distributed dynamic verification with session types and Python.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 130–148. Springer,
Heidelberg (2013)

17. Kopylov, A.P.: Decidability of linear affine logic. Information and Computa-
tion 164(1), 173–198 (2001)

18. Milner, R.: Functions as processes. Mathematical Structures in Computer Sci-
ence 2(2), 119–141 (1992)

19. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, parts I and II.
Information and Computation 100(1) (1992)

20. Mostrous, D.: Multiparty sessions based on proof nets. In: Programming Lan-
guage Approaches to Concurrency and Communication-cEntric Software, PLACES
(2014)

21. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

22. Vasconcelos, V.T.: Fundamentals of session types. Information and Computa-
tion 217, 52–70 (2012)

23. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-
oriented computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960,
pp. 269–283. Springer, Heidelberg (2008)

Multiparty Session Actors

Rumyana Neykova and Nobuko Yoshida

Imperial College London

Abstract. Actor coordination armoured with a suitable protocol description lan-
guage has been a pressing problem in the actors community. We study the ap-
plicability of multiparty session type (MPST) protocols for verification of actor
programs. We incorporate sessions to actors by introducing minimum additions
to the model such as the notion of actor roles and protocol mailboxes. The frame-
work uses Scribble, which is a protocol description language based on multiparty
session types. Our programming model supports actor-like syntax and runtime
verification mechanism guaranteeing communication safety of the participating
entities. An actor can implement multiple roles in a similar way as an object
can implement multiple interfaces. Multiple roles allow for cooperative inter-
concurrency in a single actor. We demonstrate our framework by designing and
implementing a session actor library in Python and its runtime verification mech-
anism. Benchmark results demonstrate that the runtime checks induce negligible
overhead.

1 Introduction

The actor model [2,3] is (re)gaining attention in the research community and in the
mainstream programming languages as a promising concurrency paradigm. Unfortu-
nately, the programming model itself does not ensure correct sequencing of interactions
between different computational processes. A study in [26] points out that “the property
of no shared space and asynchronous communication can make implementing coordi-
nation protocols harder and providing a language for coordinating protocols is needed”.
This reveals that the coordination of actors is a challenging problem when implement-
ing, and especially when scaling up an actor system.

To overcome this problem, we need to solve several shortcomings existing in the
actor programming models. First, although actors often have multiple states and com-
plex policies for changing states, no general-purpose specification language is currently
in use for describing actor protocols. Second, a clear guidance on actor discovery and
coordination of distributed actors is missing. This leads to adhoc implementations and
mixing the model with other paradigms which weaken its benefits [26]. Third, no verifi-
cation mechanism (neither static nor dynamic) is proposed to ensure correct sequencing
of actor interactions. Most actor implementations provide static typing within a single
actor, but the communication between actors – the complex communication patterns
that are most likely to deadlock – are not checked.

We tackle the aforementioned challenges by studying applicability of multyparty ses-
sion types (MPST) [14], a type theory for communicating processes, to actor systems.
The tenet of MPST safety assurance methodology is the use of a high-level, global spec-
ification (also called protocol) for describing the interactions of communication entities.

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 131–146, 2014.
c© IFIP International Federation for Information Processing 2014

132 R. Neykova and N. Yoshida

From the global protocol each entity is given a local session type defining the order and
the payload type of the interactions. Programs are then written as a collection of pos-
sibly interleaved conversations, verified against prescribed protocols and constraints at
runtime. The practical incarnation of the theoretical MPST is the protocol specifica-
tion language Scribble [24]. Scribble is equipped with a verification mechanism, which
makes protocol creation easier and protocol verification sound. Declarative protocol
specifications in Scribble can readily avoid typical errors in communications program-
ming, including type errors, disrespect of call orders, circular service dependencies and
deadlocks. We call these safety properties ensured by MPST communication safety.

Recent works from [18,15] prove the suitability of Scribble and its tools for the
dynamic verification of real world complex protocols [20] and present a runtime ver-
ification framework that guarantees safety and session fidelity of the underlying com-
munications. The verification mechanism is applied to a large cyberinfrastructure. The
MPST dynamic verification framework is built on a runtime layer for protocol manage-
ment and developers use MPST primitives for communication, which limits the veri-
fication methodology to a specific infrastructure. In this paper, we take the MPST one
step further. We adapt and distil the model to present a MPST verification of actors
systems. A main departure from our previous work is that [18,15] required special con-
versation runtime, built into the application, which restrict the programming style and
the model applicability. In this paper, we prove the generality of MPST framework by
showing Scribble protocols offer a wider usage, in particular, for actor programming.

Our programming model is grounded on three new design ideas: (1) use Scribble pro-
tocols and their relation to finite state machines for specification and runtime verifica-
tion of actor interactions; (2) augment actor messages and their mailboxes dynamically
with protocol (role) information; and (3) propose an algorithm based on virtual routers
(protocol mailboxes) for the dynamic discovery of actor mailboxes within a protocol.
We implement a session actor library in Python to demonstrate the applicability of the
approach. To the best of our knowledge, this is the first design and implementation of
session types and their dynamic verification toolchain in an actor library.

The paper is organised as follows: § 2 gives a brief overview of the the key features
of our model and presents the running example. § 3 describes the constructs of Session
Actors and highlights the main design decisions. § 4 presents the implementation of
the model on concrete middleware. § 5 evaluates the framework overheads, compares
it with a popular Scala actor library [4] and shows applications. Finally, § 6 discusses
related work and concludes. The code for the runtime and the monitor tool, example
applications and omitted details are available at [25].

2 Session Actors Programming Model

2.1 Actor Models and Design Choices

Actor Model Overview. We assume the following actor features to determine our de-
sign choices. Actors are concurrent autonomous entities that exchange messages asyn-
chronously. An actor is an entity (a class in our framework) that has a mailbox and
a behaviour. Actors communicate between each other only by exchanging messages.
Upon receiving a message, the behaviour of the actor is executed, upon which the actor

Multiparty Session Actors 133

can send a number of messages to other actors, create a number of actors or change
its internal state. Each actor is equipped with a mailbox where messages are buffered.
Actors have states and behaviours. Behaviours of an actor can only be changed by that
actor itself, while processing a message. Active threads within actors continuously pro-
cess messages whenever their mailboxes are not empty. There are only three primitive
operations each actor can perform: (1) create new actors; (2) send messages to other
actors whose address the sender knows; and (3) become an actor with a new state and
behaviour. All these operations are atomic. The only order inherent is a causal order,
and the only guarantee provided is that messages sent by actors will eventually be pro-
cessed by their receivers. Other synchronisation and coordination constraints need to
be externally enforced, by the unit called roles. The notion of roles is crucial in our
framework and is explained below.

Session Actors. To verify actor interactions, we introduce multiparty roles that enable
multiple local control flows inside an actor. Each actor is annotated with supported pro-
tocols and roles it implements. As a result, session actors are containers for roles. Each
actor also holds a reference to the other participating roles in the protocols. These ref-
erences are bound to their physical actor containers through the actor discovery mech-
anism (during the protocol creation, explained in § 4.3), Without session annotations a
session actor behaves identically to a plain actor. In a nutshell, an actor can be trans-
formed to a session actor by applying the following design methodology:

1. the global protocol the actor is part of is written in Scribble and projected to local
specifications;

2. the actor class is annotated with a @protocol decorator, which links to the local
protocol specification;

3. each method is annotated with @role decorator that exposes a role instance (acting
as a container for all protocol roles); and

4. interactions with other actors are performed via the exposed role instance.

The changes and additions that the MPST annotations bring to the original actor
model are as follows (we link to the subsections where they are explained):

(a) different passive objects (called roles) that run inside an actor are given a session
type (§ 4.2);

(b) an actor engages in structured protocol communications via a protocol mailbox
(§ 4.3) and dynamically learns the roles it is communicating with; and

(c) an actor message execution is bound to a protocol structure (§ 4.4). This structure
is checked via the internal FSM-based monitor.

This design choice (incorporating roles inside actors) enables to apply the MPST veri-
fication framework to actors, as explained in this and the next two sections.

Scribble Overview. Scribble [24,13] is a practical and human-readable language for
protocol specification that is designed from the multiparty session types theory [14,6].
It is a language to describe application-level protocols among communicating systems
and aims to prevent communication mismatches and type errors during communica-
tions. A Scribble protocol represents an agreement on how participating systems inter-
act with each other by describing an abstract structure of message exchanges between
roles. Roles abstract from the actual identity of the endpoints that may participate in a

134 R. Neykova and N. Yoshida

Fig. 1. MPST-development methodology (left) and session actors (right)

run-time conversation instantiating the protocol. The core structures supported in Scrib-
ble are asynchronous message passing, choice, parallel and recursion constructs. The
Scribble toolkit comes with libraries for parsing, well-formedness checking algorithms
and several language bindings. An implementation of Python-based Scribble tools for
projection and validation [24], as well as static verification for various languages,
e.g.[19] are explained in the literature [12].

MPST Verification Framework. The top-down development methodology for MPST
verification is shown in the left part of Fig. 1 and the additions for session actors is
illustrated on the right.

A distributed protocol is specified as a global Scribble protocol, which collectively
defines the admissible communication behaviours between the participating entities,
called roles inside the protocol. Then, the Scribble toolchain is used to algorithmically
project the global protocol to local specifications.

For each role a finite state machine (FSM), which prescribes the allowed actions
and communicating parties, is generated from the local specification and stored in a
distributed storage to be retrieved whenever a role is instantiated. When a party requests
to start or join a session, the initial message specifies which role it intends to play as.
Its monitor retrieves the local specification based on the protocol name and the role.
A runtime monitor ensures that each endpoint program conforms to the core protocol
structure.

To guarantee session fidelity we perform two main checks. First, we verify that the
type (operation and payload) of each message matches its specification (operations can
be mapped directly to message headers, or to method calls, class names or other rele-
vant artefacts in the program). Second, we verify that the overall order of interactions
is correct, i.e. interaction sequences, branches and recursions proceed as expected, re-
specting the explicit dependencies (for example, m1() from A to B; m2() from B to

C; where A, B and C denote roles and m1() and m2() denote methods imposes an input-
output causality). These measures rule out errors, e.g. communication mismatches, that
violate the permitted protocol.

Verification of Session Actors. We explain how we apply the above methodology.
As observed in [23] in many actor systems an actor encapsulates a number of passive
objects, accessed from the other actors through asynchronous method calls. Similarly
session actors are a collection of interleaving control flows of actor roles. An actor role

Multiparty Session Actors 135

is associated with a FSM, generated from a global protocol. This verification structure
is depicted in the right hand side of Fig. 1.

The association is done through annotating the actor type (class) and receive mes-
sages (methods) with protocol information. Annotating the actor type with protocol in-
formation results in registering the type for a particular role. When a session is started,
a join message is sent (in a round-robin style) to all registered actors. When this join
message is received, the generated FSM is loaded into the actor role and all subsequent
messages on that protocol (role) are tracked and checked via the verification mecha-
nism explained above. Message receive is delegated to the appropriate FSM via pattern
matching on the protocol id, contained in the message. If all actors messages comply to
their assigned FSMs, the whole communication is guaranteed to be safe. If participants
do not comply, violations (such as deadlocks, communication mismatch or breakage of
a protocol) are detected and delegated to a Policy actor. Further implementation details
are explained in § 4.

2.2 Warehouse Management Use Case

To illustrate and motivate central design decisions of our model, we present the buyer-
seller protocol from [14] and extend it to a full warehouse management scenario. A
warehouse consists of multiple customers communicating to a warehouse provider. It
can be involved in a Purchase protocol (with customers), but can also be involved in a
StoreLoad protocol with dealers to update its storage.

Scribble Protocol. The interactions between the entities in the system are presented as
two Scribble protocols, shown in Fig. 2(a) and 2(b). The protocols are called Purchase

and StoreLoad and involve three (a Buyer (B), a Seller (S) and an Authenticator (A))
and two (a Store (S), a Dealer (D)) parties, respectively. At the start of a purchase
session, B sends login details to S, which delegates the request to an Authentication
server. After the authentication is completed, B sends a request quote for a product to
S and S replies with the product price. Then B has a choice to ask for another product,
to proceed with buying the product, or to quit. By buying a product the warehouse
decreases the product amount it has in the store. Products in stock are increased as
prescribed by the StoreLoad protocol, Fig. 2(b). The protocol starts with a recursion
where the warehouse (in the role of S) has a choice to send a product request to a
dealer (D) to load the store with n numbers of a product. After receiving the request, D
delivers the product (operation put on Line 8). These interactions are repeated in a loop
until S decides to quit the protocol (Line 11). The reader can refer to [24] for the full
specification of the Scribble syntax.

Challenges. There are several challenging points to implement the above scenario.
First, a warehouse implementation should be involved in both protocols, therefore it can
play more than one role. Second, initially the user does not know the exact warehouse it
is buying from, therefore the customer learns dynamically the address of the warehouse.
Third, there can be a specific restriction on the protocol that cannot be expressed as
system constants (such as specific timeout depending on the customer). The next section
explains the implementation of this example in Session Actors.

136 R. Neykova and N. Yoshida

1 global protocol Purchase(role B,
2 role S, role A)
3 {
4 login(string:user) from B to S;
5 login(string:user) from S to A;
6 authenticate(string:token) from A to B, S

;
7 choice at B
8 {request(string:product) from B to S;
9 (int:quote) from S to B;}

10 or
11 {buy(string:product) from B to S
12 delivery(string) from S to B; }
13 or
14 {quit() from B to S; }}

1 global protocol StoreLoad
2 (role D, role S)
3 {
4 rec Rec{
5 choice at S
6 {request(string:product, int:n)
7 from S to D;)
8 put(string:product, int:n) from

D to S;
9 continue Rec;}

10 or
11 {quit() from S to D;
12 acc() from D to S;}}}

Fig. 2. Global protocols in Scribble for (a) Purchase protocol and (b) StoreLoad protocol

3 Session Actor Language

This section explains the main operations in the session actor language and its usecase
implementation in Python.

Session Actor Language Operations. Fig. 3 presents the main session actor operations
and annotations. The central concept of the session actor is the role. A role can be
considered as a passive object inside an actor and it contains meta information used for
MPST-verification. A session actor is registered for a role via the @protocol annotation.
The annotation specifies the name of the protocol and role the session actor is registered
for and the rest of the participants in the protocol. The aforementioned meta information
is stored in a role instance created in the actor. To be used for communication, the
method should be annotated with the role using the @role decorator and passing the
role instance name. The instance serves as a container for references to all protocol
roles, which allows sending a message to a role in the session actor without knowing
the actor location. A message is sent via c.role.method, where c is the self role instance
and role is the role the message is intended for.

Sending to a role without explicitly knowing the actor location is possible by the
actor discovery mechanism (the details will be explained in § 4). When a session is
started via the create method, actors receive an invitation for joining the protocol. The

Conversation API operation Purpose
@protocol(variable name, protocol name, Annotating actor class

self role, other roles) actor class

@role(self role, sender role) msg handler Annotating message handler
c.create(protocol name, invitation config.yml) Initiating a conversation, sending invitations
c.role.method(payload) Sending a message to an actor in a role
join(self, role, principal name) Actor handler for joining a protocol
actor.send.method(payload) Sending a message to a known actor

Fig. 3. Session Actor operations

Multiparty Session Actors 137

1 @protocol(c, Purchase, seller, buyer, auth)
2 @protocol(c1, StoreLoad, store, dealer)
3 class Warehouse(SessionActor):
4 @role(c, buyer)
5 def login(self, c, user):
6 c.auth.send.login(user)
7

8 @role(c, buyer)
9 def buy(self, c, product):

10 self.purchaseDB[product]-=1;
11 c.seller.send.delivery(product.

details)
12 self.become(update, product)

13

14 @role(c, buyer)
15 def quit(self, c):
16 c.send.buyer.acc()
17

18 @role(c1, self)
19 def update(self, c1, product):
20 c1.dealer.send.request(product, n)
21

22 @role(c1, dealer)
23 def put(self, c1, product):
24 self.purchaseDB[product]+=1:

Fig. 4. Session Actor implementation for the Warehouse role

operation join is a default handler for invitation messages. If a session actor changes the
join behaviour and applies additional security policies to the joiners, the method should
be overloaded. Introducing actor roles via protocol executions is a novelty of our work:
without roles and the actor discovery mechanism, actors need additional configurations
to introduce their addresses, and this would grow the complexity of configurations.

Warehouse Service Implementation. We explain the main constructs by an imple-
mentation of a session actor accountable for the Warehouse service. Fig. 4 presents the
implementation of a warehouse service as a single session actor that keeps the inven-
tory as a state (self.purchaseDB). Lines 1–2 annotate the session actor class with two
protocol decorators – c and c1 (for seller and store roles respectively). c and c1 are
accessible within the warehouse actor and are holders for mailboxes of the other actors,
involved in the two protocols.

All message handlers are annotated with a role and for convenience are implemented
as methods. For example, the login method (Line 5) is invoked when a login message
(Line 4, Fig. 2 (a)) is sent. The role annotation for c (Line 4) specifies the sender to be
buyer.

The handler body continues following Line 5, Fig. 2 (a) – sending a login message
via the send primitive to the session actor, registered as a role auth in the protocol
of c. Value c.auth is initialised with the auth actor mailbox as a result of the actor
discovery mechanism (explained in the next section). The handling of authenticate

(Line 6, Fig. 2 (a)) and request (Line 6, Fig. 2 (b)) messages is similar, so we omit
it and focus on the buy handler (Line 9–12), where after sending the delivery details
(Line 11), the warehouse actor sends a message to itself (Line 12) using the primitive
become with value update. Value update is annotated with another role c1, but has as a
sender self. This is the mechanism used for switching between roles within an actor.
Update method (Line 19–20) implements the request branch (Line 6–9, Fig. 2 (b)) of
the StoreLoad protocol – sending a request to the dealer and handling the reply via
method put.

The correct order of messages is verified by the FSM attached to c and c1. As a
result, errors such as calling put before update or executing two consecutive updates,
will be detected as invalid.

138 R. Neykova and N. Yoshida

4 Implementations of Session Actors

This section explains our implementation of Session Actors. The key design choices
follow the actor framework explained in § 2.1. We have implemented the multiparty
session actors on top of Celery [8] (a Python framework for distributed task processing)
with support for distributed actors [1]. Celery uses advanced message queue protocol
(AMQP 0-9-1 [5]) as a transport. The reason for choosing AMQP network as base
for our framework is that AMQP middleware shares a similar abstraction with the ac-
tor programming model, which makes the implementation of distributed actors more
natural.

4.1 AMQP Background

We first summarise the key features of the AMQP model. In AMQP, messages are
published by producers to entities, called exchanges (or mailboxes). Exchanges then
distribute message copies to queues using binding rules. Then AMQP brokers (virtual
routers) deliver messages to consumers subscribed to queues. Exchanges can be of dif-
ferent types, depending on the binding rules and the routing strategies they implement.
We explain the three exchange types used in our implementation: round-robin exchange
(deliver messages, alternating to all subscribers), direct exchange (subscribers subscribe
with a binding key and messages are delivered when a key stored in the message meta
information matches the binding key of the subscription) and broadcast exchange (de-
liver a message to all subscribers).

Distributed actors are naturally represented in this AMQP context using the abstrac-
tions of exchanges. Each actor type is represented in the network as an exchange and is
realised as a consumer subscribed to a queue based on a pattern matching on the actor
id. Message handlers are implemented as methods on the actor class.

Our distributed actor discovery mechanism draws on the AMPQ abstractions of ex-
changes, queues and binding, and our extensions to the actor programming model are
built using Python advanced abstraction capabilities: two main capabilities are greenlets
(for realising the actors inter-concurrency) and decorators (for annotating actor types
and methods).

A greenlet (or micro/green thread) is a light-weight cooperatively-scheduled execu-
tion unit in Python. A Python decorator is any callable Python object that is used to
modify the function, method or class definition it annotates using the @ symbol. A dec-
orator is passed the original object being defined and returns a modified object, which is
then bound to the name in the definition. These decorators in Python are partly inspired
by Java annotations.

4.2 Actor Roles

A key idea of actor roles is each role to run as a micro-thread in an actor (using Python
greenlet library). Actors are assigned to session roles by adding the @protocol decorator
to the actor class declaration. Methods that implement a part of a protocol are annotated
with the @role decorator. A role is activated when a message is received and ready to be
processed. Switching between roles is done via the become primitive (as demonstrated

Multiparty Session Actors 139

in Fig. 4), which is realised as sending a message to the internal queue of the actor.
Roles are scheduled cooperatively. This means that at most one role can be active in a
session actor at a time.

4.3 Actors Discovery

Fig. 5 presents the network setting (in terms of AMQP objects) for realising the actor
discovery for buyer and seller of the protocol Purchase. We use the three types from
AMQP explained in § 4.1. For simplicity, we create some of the objects on starting of
the actor system – round-robin exchange per actor type (warehouse and customer in
Fig. 5) and broadcast exchange per protocol type (purchase in Fig. 5). All spawned
actors alternate to receive messages addressed to their type exchange. Session actors
are registered for roles via the protocol decorator and as a result their type exchange
is bound to the protocol exchange (Line 1 in Fig. 4 binds warehouse to purchase in
Fig. 5).

We now explain the workflow for actor discovery. When a protocol is started, a fresh
protocol id and an exchange with that id are created. The type of the exchange uses
AMPQ type, direct explained in § 4.1. A direct type is used so that messages with a rout-
ing key are delivered to actors linked to the exchange with binding to that key (it corre-
sponds to protocol id in Fig. 5). Then join message is sent to the protocol exchange
and delivered to one actor per registered role (join is broadcasted to warehouse and
customer in Fig. 5). On join, an actor binds itself to the protocol id exchange with
subscription key equal to its role (bindings seller and buyer in Fig. 5). When an actor
sends a message to another actor within the same session (for example c.buyer.send

in Fig. 4), the message is sent to the protocol id exchange (stored in c) and from there
delivered to the buyer actor.

Fig. 5. Organising Session Actors into protocols Fig. 6. Session Actors Monitoring

140 R. Neykova and N. Yoshida

4.4 Preservation through FSM checking

Before a message is dispatched to its message handler, the message goes through a mon-
itor. Fig. 6 illustrates the monitoring process. Each message contains meta information
(a routing key) with the role name the message is intended for and the id of the protocol
the message is in the part of. When an actor joins a protocol, the FSM, generated from
the Scribble compiler (as shown in Fig. 1) is loaded from a distributed storage to the
actor memory.

Then the checking goes through the following steps. First, depending on the role
and the protocol id the matching FSM is retrieved from the actor memory. Next the
FSM checks the message labels/operators (already in the part of the actor payload) and
sender and receiver roles (in the part of the message binding key implemented as our
extension) are valid.

The check assertions step verifies that if any constraints on the size/value of the
payload are specified in Scribble, they are also fulfilled. If a message is detected as
wrong the session actor throws a distributed exception and sends an error message back
to the sending role and does not pass the message to its handler for processing. This
behaviour can change by implementing the wrong message method of the session actor.

5 Evaluations of Session Actors

This section reports on the performance of our framework. The goal of our evaluation is
two fold. First, we compare our host distributed actor framework [8] with a mainstream
actor library (AKKA [4]) to show our host framework is a suitable choice. Second, we
show that our main contribution, verification of MPST protocols, can be realised with
reasonable cost. The full source code of the benchmark protocols and applications and
the raw data are available from the project page [25].

5.1 Session Actors Performance

We test the overhead in message delivery implementation using the pingpong bench-
mark [16] in which two processes send each other messages back and forth. The orig-
inal version of the code was obtained from Scala pingpong.scala from http://

scala-lang.org/old/node/54 and adapted to use distributed AKKA actors (in-
stead of local). We distinguish two protocols. Each pingpong can be a separate session
(protocol FlatPingPong) or the whole iteration can be part of one recursive protocol
(RecPingPong). The protocols are given in Fig. 7(b). This distinction is important only
to session actors, because the protocol shape has implications on checking. For AKKA
actors the notion of session does not exist and therefore the two protocols have the same
implementation.

Set Up. We prepared each scenario 50 times and measured the overall execution time
(the difference between successive runs was found to be negligible). The creation and
population of the network was not measured as part of the execution time. The client
and server actor nodes and the AMQP broker were each run on separate machines (Intel
Core2 Duo 2.80 GHz, 4 GB memory, 64-bit Ubuntu 11.04, kernel 2.6.38). All hosts are

http://scala-lang.org/old/node/54
http://scala-lang.org/old/node/54

Multiparty Session Actors 141

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Monitor RecMonitor With Role

Celery AKKA

Number of pings (in thousands)

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(in

se
cs

)
global protocol FlatPingPong(

role C, role S)
{

ping(string) from C to S;
pong(string) from S to C;

}

global protocol RecPingPong(
role C, role S)

{
rec Loop{

ping(string) from C to S;
pong(string) from S to C;
continue Loop

}
}

Fig. 7. (a) The PingPong benchmark (the overhead of message delivery) and (b) The PingPong
protocol

interconnected through Gigabit Ethernet and Latency between each node was measured
to be 0.24 ms on average (ping 64 bytes). The version of Python used was 2.7, of Scala
– 2.10.2 and of the AKKA-actors – 2.2.1.

Results. Fig. 7(a) compares three separate benchmark measurements for session actors.
The base case for comparison. ”Celery” is a pure actor implementation without the ad-
dition of roles. ”With Role” measures the overhead of roles annotations without having
the monitor capabilities enabled. The two main cases, ”Rec Monitor” and ”Monitor”,
measure the full overhead of session actors. This separation aims to clearly illustrate the
overhead introduced by each of the additions, presented in the paper: roles annotations,
MPST verification and actor discovery. Note that the FSMs for the recursive and for the
flat protocol have the same number of states. Therefore, the observed difference in the
performance is a result of the cost of the actor discovery.

The goal of the benchmarks is two fold. First, to compare the actor framework that
we use with one of the most widely used frameworks for distributed actors. Second,
to evaluate the performance implications of our extensions. A difference between the
performance of AKKA and Celery is not surprising and can be explained with a distinct
nature of the frameworks. AKKA runs on top of JVM and the remote actors in these
benchmarks use direct TCP connections. On the other hand, Celery is Python-based
framework which uses a message middleware as a transport, which adds additional layer
of indirection. Given these differences, Celery actors have reasonable performance and
are a viable alternative.

Regarding our additions we can draw several positive conclusions from the bench-
marks: (1) the cost of the FSM checking is negligible and largely overshadowed by the
cost of the communication (such as latency and routing); and (2) the cost of the actor
discovery is reasonable, given the protocol load.

142 R. Neykova and N. Yoshida

Table 1. Execution Time for checking protocol with increasing length

States 100 1000 10000
Time (ms) 0.0479 0.0501 0.0569

5.2 MPST Verification Overhead

In this subsection, we discuss the row overhead of monitor checking, which is a main
factor that can affect the performance and scalability of our implementation. Know-
ing the complexity of checking protocols of different length is useful to reason on the
applicability of the model.

We have applied two optimisations to the monitor, presented in [18,15], which sig-
nificantly reduce the runtime overhead. First, we pre-generate the FSM based on the
global protocol. Second, we cache the FSM protocols the first time when a role is
loaded. Therefore, the slight runtime overhead, observed in the previous section is a
result of the time required to choose the correct FSM among all in-memory FSMs in-
side the actor and the time required to check the FSM transition table that the message
is expected. Both have the linear complexity on the number of roles running inside the
actor and the number of states inside the FSM respectively. Table 1 shows the approx-
imate execution time for checking a protocols of increasing length. The small numbers
are omitted since the time taken is negligible.

5.3 Applications of Session Actors

As a practical evaluation of our framework, we have implemented two popular actor
applications and adapted them to session actors.

The first application is a distributed chat with multiple chat rooms, where a number
of clients connect to a reactive server and execute operations based on their privileges.
Depending on privileges some clients might have extended number of allowed mes-
sages. We impose this restriction dynamically by annotating the restricted operations
with different roles. An operation is allowed only if its actor has already joined a ses-
sion in the annotated role.

The second usecase is a general MapReduce for counting words in a document. It is an
adaptation from an example presented in the official website for celery actors: http://
cell.readthedocs.org/en/latest/getting-started/index.html. The session
actor usage removes the requirement for the manual actor spawning of Reducers actors
inside the Mapper actor, which reduces the code size and the complexity of the imple-
mentation.

We give in Fig. 8 the implementation of the latter example. For sake of space and
clarity, the implementation reported here abstracts from technical details that are not
important for the scope of this paper–interested readers can find the full sources in [25].
The protocol is started on Line 26 specifying the type of the actors for each role and
passing the arguments for the initial execution – n (the number of reducers) and file

(the name of the source file to be counted). The Mapper implements the join method,
which is invoked when the actor joins a protocol. Since the Mapper is the starting role,

http://cell.readthedocs.org/en/latest/getting-started/index.html
http://cell.readthedocs.org/en/latest/getting-started/index.html

Multiparty Session Actors 143

1 #======SCRIBBLE CODE======

2 global protocol WordCount(

3 A, R[n], M):

4 rec Loop{

5 count_lines(string) from M to R[1..n];

6 aggregate(string) from R[1..n] to A;

7 continue Loop;}

8 #======PYTHON CODE======

9 @protocol(c, WordCount, R, A, M)

10 class Mapper(Actor):

11 # invoked on protocol start

12 @role(c)

13 def join(self, c, file, n):

14 self.count_document(self, file, n)

15

16 @role(c, self)

17 def count_document(self, c, file, n):

18 with open(file) as f:

19 lines = f.readlines()

20 count = 0

21 for line in lines:

22 reducer = c.R[count % n]

23 count+=1

24 reducer.count_lines(line)

25 #start the protocol

26 Protocol.create(WordCount,

27 M=Mapper, R=Reducer, A=Aggregator,

28 n=10, file="file1.txt")

29

30 @protocol(c, WordCount, A, M, R)

31 class Aggregator(Actor):

32 @role(c, master)

33 def aggregate(self, c, words):

34 for word, n in words.iteritems():

35 self.result.setdefault(word, 0)

36 self.result[word] += n

37 # when a treshhold is reached

38 # print the results

39 c.close()

40

41 @protocol(c, WordCount, R, A, M)

42 class Reducer(Actor):

43 @role(c, M)

44 def count_lines(self, c, line):

45 words = {}

46 for word in line.split(" "):

47 words.setdefault(word, 0)

48 words[word] += 1

49 c.A.aggregate(words)

Fig. 8. WordCount in Session Actors

when it joins, it sends a message to itself, scheduling the execution of count document.
Note that spawning and linking of the actors are not specified in the code because the
actor discovery mechanism accounts for it. The protocol proceeds by Mapper sending
one message for each line of the document. The receiver of each message is one of
the Reducers. Each Reducer counts the words in its line and sends the result to the
Aggregator (c.A, Line 48), which stores all words in a dictionary and aggregates them.
When a threshold for the result is reached, the Aggregator prints the result and stops
the session explicitly.

Our experiences with session actors are promising. Although they introduce new
notions, i.e. a protocol and a role, we found that their addition to a class-based ac-
tor framework is natural to integrate without requiring a radical new way of thinking.
The protocol and role annotations are matched well with typical actor applications, and
even they result in simplifying the code by removing the boilerplate for actor discovery
and coordination. The protocol-oriented approach to actor programming accounts for
the early error detection in the application design and the coordination of actors. The
runtime verification guarantees and enforces the correct order of interactions, which is
normally ensured only by hours of testing.

6 Related Work

Behavioural and Session Types for Actors and Objects. There are several theoretical
works that have studied the behavioural types for verifying actors [17,9]. The work
[9] proposes a behavioural typing system for an actor calculus where a type describes
a sequence of inputs and outputs performed by the actor body. In [17], a concurrent
fragment of Erlang is enriched with sessions and session types. Messages are linked to
a session via correlation sets (explicit identifiers, contained in the message), and clients

144 R. Neykova and N. Yoshida

create the required references and send them in the service invocation message. The
developed typing system guarantees that all within-session messages have a chance of
being received. The formalism is based on only binary sessions.

Several recent papers have combined session types, as specification of protocols on
communicating channels, with object-oriented paradigm. A work close to ours is [10],
where a session channel is stored as a field of an object, therefore channels can be
accessed from different methods. They explicitly specify the (partial) type for each
method bound to a channel. Our implementation also allows modularised sessions based
on channel-based communication. Their work [10] is mainly theoretical and gives a
static typing system based on binary session types. Our work aims to provide a design
and implementation of runtime verification based on multiparty session types, and is
integrated with existing development frameworks based on Celery [8] and AMQP [5].

The work in [7] formalises behaviours of non-uniform active objects where the set of
available methods may change dynamically. It uses the approach based on spatial logic
for a fine grained access control of resources. Method availability in [7] depends on the
state of the object in a similar way as ours.

See [27] for more general comparisons between session types and other frameworks
in object-oriented paradigms.

Other Actor Frameworks. The most popular actor’s library (the AKKA framework
[4] in Scala studied in [26]) supports FSM verification mechanism (through inheritance)
and typed channels. Their channel typing is simple so that it cannot capture structures
of communications such as sequencing, branching or recursions. These structures en-
sured by session types are the key element for guaranteeing deadlock freedom between
multiple actors. In addition, in [4], channels and FSMs are unrelated and cannot be in-
termixed; on the other hand, in our approach, we rely on external specifications based
on the choreography (MPST) and the FSMs usage is internalised (i.e. FSMs are auto-
matically generated from a global type), therefore it does not affect program structures.

Several works study an extension of actors in multicore control flows. Multithreaded
active objects [11] allow several threads to co-exist inside an active object and provide
an annotation system to control their concurrent executions. Parallel Actor Monitors
(PAM) [23] is another framework for intra actor parallelism. PAMs are monitors at-
tached to each actor that schedule the execution of the messages based on synchroni-
sation constraints. Our framework also enables multiple control flows inside an actor
as [11,23]. In addition, we embed monitors inside actors in a similar way as [23,11]
embed schedulers. The main focus of the monitors in [11,23] is scheduling the order
of the method executions in order to optimise the actor performance on multi-core ma-
chines, while our approach aims to provide explicit protocol specifications and verifi-
cation among interactions between distributed actors in multi-node environments.

The work [22] proposes a solution to have multiple cooperatively scheduled tasks
within a single active object similar to our notion of cooperative roles within an ac-
tor. The approach is implemented as a Java extension with an actor-like concurrency
where communication is based on asynchronous method calls with objects as targets.
They resort to RMI for writing distributed implementations and do not allow specifying
sequencing of messages (protocols) like ours.

Multiparty Session Actors 145

The work [21] proposes a framework of three layers for actor roles and coordina-
tors, which resembles roles and protocol mailboxes in our setting. Their specifications
focus on QoS requirements, while our aim is to describe and ensure correct patterns of
interactions (message passing).

Comparing with the above works, our aim is to provide effective framework for
multi-node environments where actors can be distributed transparently to different ma-
chines and/or cores.

7 Conclusion

We propose an actor specification and verification framework based on multiparty ses-
sion types, providing a Python library with actor communication primitives. Coopera-
tive multitasking within sessions allows for combining active and reactive behaviours in
a simple and type-safe way. The framework is naturally integrated with Celery [8] which
uses advanced message queue protocol (AMQP [5]), and uses effectively its types for
realising the key mechanisms such as the actor discovery. We demonstrate the overhead
of our implementation is very small. We then show that programming in session actors
is straightforward by implementing and rewriting usecases from [4]. To our best knowl-
edge, no other work is linking FSMs, actors and choreographies in a single framework.
As a future work, we plan to extend to other main stream actor-based languages such as
Scala and Erlang to test the generality of our framework. As actor languages and frame-
works are getting more and more attractions, we believe that our work would offer an
important step for writing correct large-scale actor-based communication programs.

Acknowledgement. We thank Ask Solem for his support and guidance. This work
has been partially sponsored by VMWare, Pivotal and EPSRC EP/K011715/1 and
EP/K034413/1.

References

1. Cell - actors for celery, http://cell.readthedocs.org/
2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,

Cambridge (1986)
3. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. Journal

of Functional Programming 7, 1–72 (1997)
4. Akka - scala actor library, http://akka.io/
5. Advanced Message Queuing Protocol homepage, http://www.amqp.org/
6. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida, N.:

Global progress in dynamically interleaved multiparty sessions. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

7. Caires, L.: Spatial-behavioral types for concurrency and resource control in distributed sys-
tems. Theor. Comput. Sci. 402(2-3), 120–141 (2008)

8. Celery, http://www.celeryproject.org/
9. Crafa, S.: Behavioural types for actor systems. arXiv:1206.1687

10. Gay, S.J., Vasconcelos, V.T., Ravara, A., Gesbert, N., Caldeira, A.Z.: Modular session types
for distributed object-oriented programming. In: POPL, pp. 299–312. ACM (2010)

http://cell.readthedocs.org/
http://akka.io/
http://www.amqp.org/
http://www.celeryproject.org/

146 R. Neykova and N. Yoshida

11. Henrio, L., Huet, F., István, Z.: Multi-threaded active objects. In: De Nicola, R., Julien, C.
(eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 90–104. Springer, Heidelberg (2013)

12. Honda, K., Hu, R., Neykova, R., Chen, T.-C., Demangeon, R., Deniélou, P.-M., Yoshida, N.:
Structuring Communication with Session Types. In: COB 2012. LNCS (2012) (to appear)

13. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling interactions
with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT 2011. LNCS, vol. 6536,
pp. 55–75. Springer, Heidelberg (2011)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL
2008, pp. 273–284. ACM (2008)

15. Hu, R., Neykova, R., Yoshida, N., Demangeon, R., Honda, K.: Practical Interruptible Con-
versations: Distributed Dynamic Verification with Session Types and Python. In: Legay, A.,
Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 130–148. Springer, Heidelberg (2013)

16. Imam, S.M., Sarkar, V.: Integrating task parallelism with actors. SIGPLAN Not. 47(10),
753–772 (2012)

17. Mostrous, D., Vasconcelos, V.T.: Session Typing for a Featherweight Erlang. In: De Meuter,
W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 95–109. Springer,
Heidelberg (2011)

18. Neykova, R., Yoshida, N., Hu, R.: SPY: Local Verification of Global Protocols. In: Legay, A.,
Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 358–363. Springer, Heidelberg (2013)

19. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: Safe parallel programming with
message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304,
pp. 202–218. Springer, Heidelberg (2012)

20. Ocean Observatories Initiative, http://www.oceanobservatories.org/
21. Ren, S., Yu, Y., Chen, N., Marth, K., Poirot, P.-E., Shen, L.: Actors, roles and coordina-

tors - a coordination model for open distributed and embedded systems. In: Ciancarini,
P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 247–265. Springer,
Heidelberg (2006)

22. Schäfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing active objects to concurrent compo-
nents. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299. Springer, Heidel-
berg (2010)

23. Scholliers, C., Tanter, É., Meuter, W.D.: Parallel actor monitors: Disentangling task-level par-
allelism from data partitioning in the actor model. Sci. Comput. Program. 80, 52–64 (2014)

24. Scribble project home page, http://www.scribble.org
25. Online appendix for this paper, http://www.doc.ic.ac.uk/~rn710/sactor
26. Tasharofi, S., Dinges, P., Johnson, R.E.: Why do Scala developers mix the actor model

with other concurrency models? In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920,
pp. 302–326. Springer, Heidelberg (2013)

27. BETTY WG3 - Languages Survey, http://www.doc.ic.ac.uk/~yoshida/WG3/BETTY_
WG3_state_of_art.pdf

http://www.oceanobservatories.org/
http://www.scribble.org
http://www.doc.ic.ac.uk/~rn710/sactor
http://www.doc.ic.ac.uk/~yoshida/WG3/BETTY_WG3_state_of_art.pdf
http://www.doc.ic.ac.uk/~yoshida/WG3/BETTY_WG3_state_of_art.pdf

Typing Liveness in Multiparty Communicating Systems

Luca Padovani1, Vasco Thudichum Vasconcelos2, and Hugo Torres Vieira2

1 Dipartimento di Informatica, Università di Torino, Italy
2 LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract. Session type systems are an effective tool to prove that communicat-
ing programs do not go wrong, ensuring that the participants of a session follow
the protocols described by the types. In a previous work we introduced a typ-
ing discipline for the analysis of progress in binary sessions. In this paper we
generalize the approach to multiparty sessions following the conversation type
approach, while strengthening progress to liveness. We combine the usual session-
like fidelity analysis with the liveness analysis and devise an original treatment
of recursive types allowing us to address challenging configurations that are out
of the reach of existing approaches.

1 Introduction

The importance of error detection in the early cycles of software development, and the
consequent savings arising from it, can never be overemphasized. The problem becomes
even more acute when concurrency comes into play, for concurrency faults are notori-
ously hard to track down. This work focuses on early error detection of concurrent
message passing systems, and addresses, apart from the usual communication safety,
the static identification of states in which liveness is compromised.

The setting in which we operate is that of (multi-party) sessions [2–4, 8, 10–12]. Ses-
sions are private conversations occurring between two or more interacting participants.
Each participant behaves according to a session type that describes the messages that
the participant is supposed to send/receive and their relative order. One of the strengths
of sessions is that they provide a structuring construct on top of which complex sys-
tems can be built in a modular way. The relatively simple typing discipline imposed by
session types ensures strong properties such as liveness, that is the eventual completion
of communication operations. This point in favor of sessions is also, somewhat para-
doxically, a weakness: since session types describe only intra-session communications,
but say nothing on inter-session dependencies, it may be the case that a well-typed par-
ticipant simultaneously involved in two or more sessions finds itself in a deadlocked
situation because of mutual dependencies between sessions. We address this problem
by identifying potentially dangerous dependencies between sessions, so that liveness is
ensured also when communications on several different sessions are interleaved.

To illustrate the basic ingredients of our approach, consider the process

(νs)(recX .s?x.X | recX .s?y.X | recX .s!5.s! true.X) (1)

describing three participants (say A, B, and C, composed in parallel) that interact within
the scope of a multiparty session s. The aim of C is to repeatedly send two messages

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 147–162, 2014.
c© IFIP International Federation for Information Processing 2014

148 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

(here exemplified as the constants 5 and true) respectively to A and B. All participants
interact within the same session s. However, the order of the synchronizations cannot
be predicted and it may well be the case that a 5 message is received by B and a true
message is received by A or, in fact, that one of A or B does not receive any message
at all! In order to recover the linearity of communications (i.e., at most one possible
synchronization per session channel at a given moment) we tag messages with labels,
following the approach of [4]. In this way, we refine (1) to

(νs)(recX .s?lx.X | recX .s?my.X | recX .s!l5.s!m true.X) (2)

so that l- and m-tagged messages respectively and uniquely identify synchronizations
with A and B. We are then able to characterize the overall protocol that takes place on
session s with the following type.

Ts � μα.τ l int.τ mbool.α

The type describes a conversation consisting of an infinite exchange of alternated l- and
m-tagged messages whose payload is described by the int and bool types, respectively.
The occurrences of τ in the type denote synchronizations that are supposed to occur
in a session typed by Ts. To specify the behavior of the participants involved in the
conversation, we split Ts into “slices” which we distribute among the participants. First
of all, we separate the behavior of C from the rest of the system, and obtain

Ts = TC ◦T ′ where TC � μα. !l int. !mbool.α and T ′ � μα.?l int.?mbool.α

In particular, TC says that C repeatedly sends alternated l and m messages and T ′ says
that the rest of the system should be ready to receive the very same messages, in this
order. Then, we further split T ′ in the behaviors of A and B, thus:

T ′ = TA ◦TB where TA � μα.?l int.α and TB � μα.?mbool.α

Note that this splitting is valid assuming that the environment in which A and B execute
guarantees that the synchronization on each l message occurs before the synchroniza-
tion on each m message. This is indeed guaranteed by the sequential structure of pro-
cess C. Since TA, TB, and TC match the behaviors of A, B, and C with respect to s we may
show that (2) is well typed and consequently that it enjoys communication safety (no
message with wrong type is ever sent), session fidelity (the interactions follow the pro-
tocol described by Ts), and liveness (each interaction described in Ts eventually occurs).

Of all these properties, liveness is the most delicate one, in the sense that it may
easily break up when two or more sessions are interleaved with each other. To illustrate
the issue, consider the following refinement of (2)

(νs)((νr)(recX .r?ny.s?lx.X | recX .s?my.r!ny.X) | recX .s!l5.s!m true.X) (3)

in which A and B are engaged in another session r, different from s, while C behaves
exactly as before. Now B forwards y in a n-tagged message to A, perhaps so that A and
B can double-check that they are given consistent information from C. Session s is still
well typed according to Ts and session r is well typed according to Tr � μα.τ nbool.α .
Yet, (3) is stuck because A waits for the message from B before having received the

Typing Liveness in Multiparty Communicating Systems 149

message from C, but C sends its message to B only after it has successfully delivered the
message to A. So, none of the synchronizations in Ts and Tr ever happens, although the
structure of the participants in (3) agrees to these types.

One possibility for detecting the problem in (3) stems from the observation that the
two sessions s and r are mutually dependent on each other. So, one may devise a static
analysis technique that keeps track of inter-session dependencies and flags any system
that gives rise to circularities as ill typed. This approach has been pursued, for instance,
in [3, 6, 7]. The limit of this approach is that, by considering sessions as atomic units,
it is quite coarse grained when it comes to analyzing dependencies. For instance,

(νs)((νr)(recX .s?lx.r?ny.X | recX .s?my.r!ny.X) | recX .s!l5.s!m true.X) (4)

is a simple variation of (3) where A performs the same two inputs, but in the “correct”
order. Also in (4) there are actions on session s interleaving with actions on session
r and vice versa, so the approach based on session dependencies also flags (4) as ill
typed, which is unfortunate because (4), contrarily to (3), enjoys liveness.

The approach we pursue here is based on the idea of tracking the dependencies be-
tween actions instead of sessions. Towards this aim, we annotate each interaction in a
type with an identifier—which we call event—and we keep track of the dependencies
between events by means of a strict partial order ≺. To get the flavor of the technique
at work, let us apply it to the sessions s and r discussed above. First of all, we annotate
the actions in the types of s and r with three events e, f , and g:

s : μα.eτ l int. f τ mbool.α r : μα.gτ nbool.α

Then, we analyze the dependencies between the actions in the participants of (3): it
must be e≺ f (read, e precedes f) because C first sends the l-tagged message, and only
then it sends the m-tagged message; it must be g ≺ e because A waits for the n-tagged
message before waiting for the l-tagged one; finally, it must be f ≺ g by looking at the
structure of B. Overall, ≺ is not a strict partial order because of the circularity in the
relation g≺ e≺ f ≺ g between the two sessions s and r, hence (3) is ill typed.

Our approach builds on previous works [16, 22] that use analogous annotations for
reasoning on the dependencies between actions. With respect to these works, our con-
tributions are along two major axes. First of all, we show that the techniques can be
applied to sessions/conversations with an arbitrary number of participants. Second, we
support complex recursive process structures. The latter aspect requires a non-trivial
extension of the technique described in [22] because, in order to declare that a system
like (4) is well typed, we must be able to distinguish occurrences of the same event that
pertain to different iterations of a recursive process.

The next section formally describes our language. Sections 3 and 4 introduce the
notion of types, the type system and the main results. Section 5 concludes the paper
including a more detailed comparison with related work and hints on future develop-
ments. Additional material can be found in the associated technical report [18].

2 Process Model

We consider an infinite set of names ranged over by x,y, . . . representing communica-
tion channels, an infinite set of process variables ranged over by X , . . . , and a set of

150 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

P,Q ::= 0 (Inaction) | x!l y.P (Output)
| P |Q (Parallel) | x?{liyi.Pi}i∈I (Input Summation)
| (νx)P (Restriction) | recX .P (Recursion)
| X (Recursion Variable)

Fig. 1. Syntax of processes

k ∈ I
x?{liyi.Pi}i∈I |x!lk z.Q→ Pk{z/yk}|Q

P → Q
(νx)P → (νx)Q

(R-Com,R-New)

P→ P′

P |Q→ P′ |Q
P≡ P′ P′ → Q′ Q′ ≡ Q

P→ Q
(R-Par,R-Cong)

Fig. 2. Reduction relation

message labels l, Processes, ranged over by P,Q, . . . , are the terms defined by the
grammar in Fig. 1. The language is that of TyCO [20] that extends the π-calculus [15]
by considering labeled communications. The terms 0, P |Q, and (νx)P respectively de-
note the inactive process, the parallel composition of P and Q, and the restriction of
name x to P. Terms recX .P and X are used to build recursive processes. The term
x!l y.P denotes a process that sends a message on channel x and then continues as P. A
message is made of a label l and an argument y. The term x?{liyi.Pi}i∈I denotes a pro-
cess that waits for a message from channel x and then continues as Pi according to the
label of the received message. The argument of the received message replaces the name
yi in Pi. To keep the setting as simple as possible, we have not included conditional or
non-deterministic processes. These constructs can be easily added.

The binders of the language are name restriction (νx)P, which binds the name x in P,
the input prefix x?l y.P, which binds the name y in P, and the recursion recX .P, which
binds the recursion variable X in P. The notions of free and bound names (as well as
free and bound process variables) are defined in the usual way. We identify processes
modulo renaming of bound names and of bound process variables. By convention, we
exclude recursive processes where unguarded recursion variables occur.

The semantics of the language is defined via a structural congruence and a reduction
relation. Structural congruence is standard, except that it includes the law recX .P ≡
P{recX .P/X } for unfolding recursive processes, where P{Q/X } denotes the
capture-avoiding substitution of the free occurrences of X by process Q in P. Re-
duction is defined by the rules in Fig. 2. Rule (R-Com) describes the synchronization
of two processes exchanging a message: the sender emits a message with a label lk that
is among those accepted by the receiver and the argument z of the message replaces
the bound input parameter in the appropriate continuation Pk of the receiver. The re-
maining rules close the relation under language contexts—name restriction and parallel
composition—as well as under structural congruence.

3 Types and Typing Contexts

This section starts by introducing the notion of strict partial orders which allows to iden-
tify well-formed communication dependencies in processes. It then introduces types
and operations on these, most notably type split which allows to separate a type in two
disjoint “slices” of behavior.

Typing Liveness in Multiparty Communicating Systems 151

p ::= ! | ? | τ (Polarity)
T ::= an pl T (Shared type, S)

| B≺ (Linear type, L)
Γ ::= · | Γ ,x : T (Context)
Δ ::= · | Δ ,X : (Γ ;≺) (Recursion context)

B ::= end (Stop)
| B1 |B2 (Parallel)
| μα.B (Recursion)
| α (Variable)
| an p{li Ti.Bi}i∈I (Prefix summation)

Fig. 3. Syntax of types and typing contexts

Strict Partial Orders. We consider an infinite set of event identifiers E and the set
of natural numbers N, and use a,b, . . . to range over E and n,m, . . . to range over N.
We use an to denote an element in set E ×N. We further introduce a distinguished
event, ", use e, f , . . . to range over (E ×N)∪{"}, and call this set the set of events. A
strict (or irreflexive) partial order ≺ over the set of events is a binary relation that is
asymmetric (hence irreflexive) and transitive. We write e ≺ f when the pair (e, f) is in
≺, and supp(≺) for the support of ≺, namely the set of events that occur in ≺.

Next we define two partial operations over strict partial orders. We write e+≺ for
the strict partial order obtained by adding a least event e to ≺, provided that e does not
occur in supp(≺). Formally, e+≺ �≺ ∪{(e, f) | f ∈ supp(≺)}∪{(e,")}, where we
explicitly add the pair (e,") since ≺ may be empty (in which case e+ /0 is defined as
{(e,")}). We write ≺1 ·∪ ≺2 for the least strict partial order that includes both ≺1 and
≺2, if it exists. We use ·∪ to gather the communication dependency structures of, e.g.,
two parallel processes.

Types. The syntax of types is given in Fig. 3. Our types are based on conversation
types [4] extended with event annotations following the approach introduced in [22].
A polarity p describes a communication capability: ! specifies an output; ? specifies an
input; and τ specifies a synchronization, i.e., a matched communication pair (cf., [4]).
At the type level we distinguish two separate categories of channels: shared (or un-
restricted) channels—ranged over by S—are used for modeling (possibly persistent)
services having a publicly known name, with which sessions can be established; linear
channels—ranged over by L—are used for modeling the private conversations within
sessions. Note that such distinction between shared and linear channels appears at the
type level only, while they are treated uniformly in the process model. For the sake of
simplicity we omit non-channel types (e.g., Int) which could be easily added.

A type an p l T describes the behavior of a shared channel via an event an, a polarity
p, a message label l and a type T describing the message argument. We associate shared
types with events to temporally relate shared communications with others, in particular
with the communications specified by the message type T .

A type B≺ captures the linear usage of a channel: B specifies the behavior of a
process w.r.t. the channel, whereas≺ specifies the ordering of events expected from the
external environment. Informally, ≺ is used in a type B≺ to represent the sequentiality
information that B admits but does not impose. For example, when typing a process that
concurrently sends messages hello and bye the type may specify that the outputs on
hello and bye actually take place one after the other if such order is imposed by the
corresponding inputs (present in the external process environment).

Behavioral types B include inaction end, parallel composition B1 |B2 of two indepen-
dent behaviors B1 and B2, recursive types μα.B, recursion variables α , and (prefixed)

152 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

summation an p{li Ti.Bi}i∈I . Sums capture communication capabilities associated with
event an, polarity p, and a menu of synchronization options. Each entry in the menu
is identified by a distinct label li, the type of the argument of the message Ti, and the
behavior Bi that takes place after the synchronization. We say that a linear type B≺ is
well-formed if supp(≺) does not include events associated with communication actions
of polarity τ in B (since no further ordering information can be provided for such ac-
tions by the external environment). In the remainder, whenever we write B≺, we assume
that B≺ is well formed. We also identify α-equivalent (recursive) types by convention.

Following the ideas presented in [22], we associate with each linear communication
an event an so as to temporally relate the communication action described by the sum-
mation with respect to others, establishing an overall ordering of communications. In
this work, we introduce the notion of iteration, by adding to events a natural number
n, allowing to describe infinite chains of (related) events. Informally, the index allows
to capture the several “stages” of a type by means of an increment, so, for example,
μα.a1 τ lT.b1 τ mT ′.α unfolds to a1 τ lT.b1 τ mT ′.μα.a2 τ lT.b2 τ mT ′.α so as to as-
sociate the first iteration with index 1 and the second iteration with index 2 and so on
and so forth.

Operations on Types. We write labels(B) for the set of labels occurring in B. We say
that B1 and B2 are behaviorally independent, and denote it by B1#B2, if labels(B1)∩
labels(B2) = /0 so that disjoint message sets ensure behavioral independence. We also
need an operation to remove part of the partial order in a type, defined as B≺

′\≺ �
B≺

′\≺, and S\≺� S. Since linear types may contain sequentiality assumptions, we use
this operation to clear hypotheses that are proved externally.

In order to capture the several iterations of a communication that may repeat itself in
the context of recursion, we introduce an operator that increments the index associated
with an event by a given factor, defined as inc(an,m) � an+m and inc(",m) � ".
We then extend inc to strict partial orders, pointwise, and to behavior types so that
inc(an p{li Ti.Bi}i∈I,m) � an+m p{li inc(Ti,m).inc(Bi,m)}i∈I . The increment of a be-
havior is an homomorphism for all other constructs. The increment operation on types
affects only linear types, inc(B≺,m) � inc(B,m)inc(≺,m), since events associated with
shared communications are not considered to be repeated in different stages but rather
to be repeated always at the same stage, hence inc(an p l T,m) � an p l T . Essentially,
we model shared communication repetition using replication (via recursion), so shared
replicated communication actions have the same temporal ordering, while we model
linear recursive repetition using a sequential chain of events. The index is then used to
capture repetition (without cycles) in the orderings.

To simplify the typing rules, we define a type equivalence relation ≡ that includes
commutativity, associativity and neutral end for | , as well as iso-recursive equivalence
for recursive types μα.B ≡ B{μα.inc(B,m)/α} for some m > 0, saying that the next
iteration of the behavior is captured by the increment of the events (we use any positive
m so as to support misalignment between processes and types).

We now introduce operations that capture the temporal ordering prescribed by types.
We write events(B) for the set of elements of E ×N occurring in a behavior B, not
including the events in message types. Formally:

Typing Liveness in Multiparty Communicating Systems 153

events(B) �

⎧⎪⎪⎨⎪⎪⎩
/0 if B = end or B = α
events(B1)∪ events(B2) if B = B1 |B2

{e}∪⋃i∈I events(Bi) if B = e p{li Ti.Bi}i∈I

{inc(e,k) | e ∈ events(B′) and k ≥ 0} if B = μα.B′

Notice that events(μα.B) includes all the events in the body of the recursion, incre-
mented zero or more times so as to capture the first and the following iterations. We
extend the operation to types, by defining events(B≺) � events(B), as we are only inter-
ested in linear types where supp(≺)⊆ events(B), and by defining events(e p l T) � {e}.

We write B↓ for the strict partial order over E ×N induced by a type B. Notice that
B↓ is a partial operator since it uses ·∪ and + . Formally:

B↓ �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
/0 if B = end or B = α
B1↓ ·∪B2↓ if B = B1 |B2

e+(·∪i∈I Bi↓) if B = e p{li Ti.Bi}i∈I

{(inc(e,k), inc(f ,k)) | (e, f) ∈ B′↓ and k ≥ 0} ·∪
{(inc(e,m), inc(f ,n)) | e, f ∈ events(B′) and 0≤ m < n} if B = μα .B′

Notice that the operation adds a least event in the case of the prefix summation, and for
recursions it adds all pairs obtained from the body of the recursion (incremented zero or
more times) and all pairs that pertain to different iterations. We extend the definition to
types by taking (e p l T)↓ � (e,") and B≺↓ � B↓\≺, where \ denotes set difference.
The definition for linear types considers the order obtained from the behavioral type
removing the ordering expected from the external environment, so B≺↓ characterizes
exclusively the ordering imposed by the type.

To identify types that characterize channels that do not depend on the external envi-
ronment to evolve, and hence are “self-sustained” communication wise, we introduce
a predicate that is true for types containing no unmatched communication actions. We
say that a behavioral type B is matched if it contains no top-level (i.e., excluding mes-
sage types) input or output polarities. We extend the definition to linear types by con-
sidering matched(B≺) � matched(B) (which, by well-formedness, implies≺= /0), and
matched(e p l T) � p= ?. A message type of polarity ? says that a shared input is avail-
able. Since we are only interested in capturing continuously available shared inputs, ?
shared types “absorb” (as will be clear from the definition of type splitting) ! shared
types, so as to capture the fact that (replicated) shared inputs are still available after
synchronization. Hence, the definition of matched() for shared types excludes solely
(unmatched) shared outputs, and considers the (infinitely available) shared inputs to be
matched (regardless whether they are used or not).

Typing Contexts. The syntax of typing contexts is given in Fig. 3. We assume by con-
vention that, in a typing context Γ ,x : T and in a recursion environment Δ ,X : (Γ ;≺),
the name x and the process variable X do not occur in Γ and in Δ , respectively, as
usual. Also, we consider contexts up to permutations of their entries.

We denote by Γun contexts that contain only outputs on shared channels and linear
types with end behavior, that is, if x : T is in Γun, then T is either e ! l T ′ or end /0. We use
such contexts to describe systems that only use shared resources, namely to describe
(the continuation of) processes that input on shared channels. We exclude shared inputs

154 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

B = B◦end
B1 = B′1 ◦B′′1 B2 = B′2 ◦B′′2 B1#B2

B1 |B2 = B′1 |B′2 ◦B′′1 |B′′2
(B-End,B-Par)

B = B1 ◦B2

μα.B = μα.B1 ◦μα.B2

∀i ∈ I Bi = B′i ◦B e p{li Ti.end}i∈I#B

e p{li Ti.Bi}i∈I = e p{li Ti.B′i}i∈I ◦B
(B-Rec,B-Break)

α = α ◦α
∀i ∈ I Bi = B′i ◦B′′i

eτ{li Ti.Bi}i∈I = e?{li Ti.B′i}i∈I ◦e !{li Ti.B′′i }i∈I
(B-Var,B-Sync)

Fig. 4. Behavioural type splitting

B = B1 ◦B2 ≺=≺1 \B2
≺2↓ ·∪≺2 \B1

≺1↓ ·∪ B↓\ (B1↓ ·∪ B2↓)
B≺ = B1

≺1 ◦B2
≺2

(L-Split)

Fig. 5. Linear type splitting

from Γun in order to avoid “nested” shared inputs, so that inputs on shared channels
are continuously active (cf. uniform receptiveness [1, 19]). Similarly, we denote by Γlin

contexts that contain only linear types, that is, types of the form B≺.
We are interested in systems where all communications are matched, i.e., typed

against matched contexts, defined as the pointwise extension of the matched predicate
on types. We also lift the notions of type increment, inc, type equivalence,≡, and partial
order difference, \, pointwise to contexts.

Splitting and Conformance. We now introduce two notions crucial to our develop-
ment, namely splitting (inspired by [2] and by the merge operation of [4]) that explains
how behaviors can be decomposed and safely distributed to distinct parts of a process
(e.g., to the branches of a parallel composition), and conformance that captures the
desired relation between typing contexts and strict partial orders.

We say type T conforms to order ≺, noted conforms(T,≺), if T↓ ⊆ ≺. Notice that
since T↓ excludes the ordering expected from the external environment, conformance
focuses on the order imposed by the types (which is the focus of the overall ordering).
The conforms predicate is defined on typing contexts as the pointwise extension of
the predicate on types, so conforms(Γ ,≺) ensures that every communication action
specified in Γ is ordered by ≺.

Splitting is defined both on types and on typing contexts. We write T = T1 ◦T2 to
mean that type T is split in types T1 and T2, and likewise for Γ = Γ1◦Γ2. Behavioral
type splitting, linear type splitting, shared type splitting and context splitting are given
by the rules in Figs. 4–7 (where we omit symmetric rules).

We briefly describe the rules in Fig 4. A behavioral type may be split in itself and in
end, so as to allow, e.g., to give away the behavior completely to one branch of a parallel
composition—rule (B-End). A parallel composition B1 |B2 (where B1 and B2 are apart
#) may be split in two parallel compositions, the components of which are obtained
by decomposing B1 and B2—rule (B-Par). A recursive type is split in two recursive
types, the bodies of which are obtained by splitting the body of the incoming recursive
type—rule (B-Rec). Also, a recursion variable may be split in itself—rule (B-Var).

A prefix summation may be split in an independent (#) behavior, obtained by split-
ting (all) the continuations, and in the prefix whose continuations specify the remaining

Typing Liveness in Multiparty Communicating Systems 155

p ∈ {?, !}
e? l T = e? l T ◦e pl T

(S-In-L)

e ! l T = e ! l T ◦e ! l T
(S-Out)

Fig. 6. Shared type splitting

·= ·◦ · (C-Empty)
Γ = Γ1 ◦Γ2

Γ ,x : T = Γ1,x : T ◦Γ2
(C-Left)

Γ = Γ1 ◦Γ2 T = T1 ◦T2

Γ ,x : T = Γ1,x : T1 ◦Γ2,x : T2
(C-Split)

Fig. 7. Context splitting

behavior—rule (B-Break). A synchronized (τ) prefix summation may be split in prefix
with dual polarities (? and !) whose continuations are obtained by splitting the synchro-
nized prefix continuations—rule (B-Sync).

Notice that rule (B-Break) may decompose a type in such a way that the overall
ordering is not guaranteed by the splitted types. To this end we keep track of the ordering
assumptions in the linear type splitting, defined in Fig. 5. A linear type split is defined
by the behavioral split and also by a separation of the ordering assumptions ≺, such
that everything ≺ assumes may be assumed by ≺1 or ≺2, but ≺1 and ≺2 may specify
other assumptions which are actually ensured by B2

≺2 and by B1
≺1 , respectively. Also,

≺ necessarily contains the ordering present in B (i.e., B↓) that is not supported by either
B1 or B2, hence any sequentiality information that B specifies introduced via (B-Break).

Shared type splitting (Fig. 6) decomposes shared communication capabilities in two
distinct ways, depending on whether the polarity of the incoming type is ? or !. A shared
input is split in a shared input and either in an output or another input, via rule (S-In-L).
Essentially, the latter allows for typing processes that separately offer the input capa-
bility (e.g., a service that is provided by two distinct sites), and the former allows for
typing processes that offer the dual communication capabilities (e.g., a service provider
and a service client). A shared output is split in two shared outputs—rule (S-Out)—
which allows for typing processes that offer the output capability separately (e.g., two
clients of some service). Notice type splitting preserves the message types and event as-
sociation so as to guarantee the dual communication actions agree on the type of what
is communicated and on the ordering.

Context splitting (Fig. 7) allows to divide a context in two distinct ways: context
entries either go into the left or the right outgoing contexts—(C-Left) as well as the
omitted symmetric rule—or they go in both contexts—(C-Split). The latter form lifts
the (type) behavior distribution to the context level, while the former allows to delegate
the entire behavior to a part of the process, leaving no usage at all to the other part. To
lighten notation we use Γ1 ◦Γ2 to represent any Γ such that Γ =Γ1 ◦Γ2 (if such Γ exists).
Notice that, given Γ1 and Γ2, there may be more than one Γ such that Γ = Γ1 ◦Γ2.

4 Typing System

This section introduces our typing system and the main results of the paper, namely
soundness of the type system (Theorem 1) and liveness (Theorem 2).

Typing System. The typing system characterizes processes according to typing as-
sumptions for free process variables (Δ) and for names (Γ), as well as an overall order-
ing of events (≺). We say process P is well-typed if Δ ;Γ ;≺ � P is derivable using the

156 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

Δ ;Γ1;≺1 � P Δ ;Γ2;≺2 � Q
Δ ;Γ1◦Γ2;≺1 ·∪ ≺2 � P |Q

Δ ;Γ ,x : T ;≺ � P matched(T)
Δ ;Γ ;≺ � (νx)P

(T-Par,T-New)

Δ ;Γun; /0 � 0
Δ ,X : (inc(Γlin,n); inc(≺,n));Γlin;≺ � P n ∈ N

Δ ;Γlin;≺ � recX .P
(T-Inact,T-LRec)

Δ ,X : (Γ ;≺);Γ ;≺ � P Γ = Γun,x : e? l T ≺= (e+≺′′) ·∪ ≺′ e �∈ supp(≺′)
Δ ;Γ ;≺ � recX .P

(T-URec)

Δ (X) = (Γ ;≺) conforms(Γ ,≺)
Δ ;Γ ;≺ �X

Δ ,Γ2;≺ � P Γ1 ≡ Γ2

Δ ;Γ1;≺ � P
(T-Var,T-Equiv)

∀i∈I Δ ;Γ ,x : Bi
≺′

i ,yi : Ti;≺i � Pi

Δ ;Γ ,x : e?{li Ti.Bi}i∈I
·∪i∈I≺′

i ; e+(·∪i∈I ≺i) � x?{liyi.Pi}i∈I

(T-LinIn)

Δ ;Γ ,x : Bk
≺′

;≺ � P k ∈ I

Δ ;(Γ ,x : e !{li Ti.Bi}i∈I
≺′
)◦y : Tk; e+(≺ ·∪ Tk↓) � x!lk y.P

(T-LinOut)

Δ ;Γun,x : e? l T,y : T ;e+≺ � P
Δ ;Γun,x : e? l T ;e+≺ � x?l y.P

Γ = (Γun,x : e ! l T)◦y : T ·; ·; /0 � P
Δ ;Γ ;e+T↓ � x!l y.P

(T-UIn,T-UOut)

Fig. 8. Typing rules

rules in Fig. 8. We briefly comment on the rule. In rule (T-Par) the parallel composition
is typed if the branches are typed in splittings (◦) of the context and a decomposition
of the order. In rule (T-New) the name restriction is typed if the process in the scope
of the restriction is typed in the same contexts together with the typing assumption for
the usage of the restricted name which must be a matched type (all communication pre-
fixes are matched). Notice that the overall ordering ≺ is preserved, hence the ordering
prescribed by name x is still present in the conclusion, even if the type T of x is not.

In rule (T-Inact) the inaction process is typed with any usage of recursion variables
(Δ), and with only outputs on shared labels and end linear types (Γun), and an empty
overall ordering (/0). In rule (T-LRec) a recursive process is well typed if so is the body
of the recursion in the same typing context Γlin (which only includes linear usages) and
overall ordering ≺, and in the recursion environment augmented with an assumption
for the recursion variable: the variable is assumed to have exactly the same usage and
overall ordering up to an increment (for some n) of the natural exponent of the events.
Rule (T-LRec) therefore captures, in a fairly intuitive way, subsequent iterations of a
(linear) recursion: the point of the next iteration is characterized by an increment of the
typing and ordering.

Rule (T-URec) addresses a recursive process that uses only shared resources where
no increment is involved since shared communications do not have iterations (their
repetition is considered to happen at the level of a single iteration). So the recursion
environment is augmented with the typing and ordering that types the body of the re-
cursion. The typing mentions only shared exponential resources (Γun) together with a
shared input (on x), as we intend to capture replicated shared inputs. In order to ensure
that the shared input is an immediate action of the body of the recursion, the ordering
makes e a minimal event. Given the above explanation, rule (T-Var) is straightforward:

Typing Liveness in Multiparty Communicating Systems 157

the assumption for the variable provides the context and ordering for the process. In
rule (T-Equiv) we embed the notion of context equivalence in the type system, since we
need to unfold recursive types when typing the body of a recursion.

Communication prefixes are also typed in separate rules, depending on the type of
the subject of the communication. In rule (T-LinIn) the input on a channel x with linear
usage is typed if the continuation processes are typed with the usages for x prescribed
in the prefix summation type, together with a separation of the ordering assumptions;
also, by adding a typing assumption for the usage of the received name (according to
the corresponding message type), and a separation of the events greater than e in the
overall ordering. The e is the event associated with the prefix summation (notice that
we pick fresh events since + is undefined otherwise). The fact that events in the con-
tinuation are of greater order ensures that the communications in the continuation are
in fact prescribed to take place after the prefix itself. Notice that the overall ordering
registered in the conclusion is a tree rooted in e. Further notice that the communication
dependency structure of the received name is transparently kept in the conclusion (the
ordering prescribed by the channel usages is invariantly registered in the overall order-
ing). This allows us to type systems where communications on received channels are
interleaved with others, configurations out of reach of related approaches.

The reasoning is similar in rule (T-LinOut). The continuation is typed by considering
the continuations of the prefix summation (any prefix summation containing the only
label mentioned by the process) which is uniquely associated with event e, together
with the same ordering assumptions ≺′ (as we are only interested that the environment
guarantees the order of one branch). The typing context Γ is actually the result of a split
of the context registered in the conclusion, which also mentions the usage delegated in
the communication for the sent name. Finally, the overall ordering in the conclusion
also registers the ordering (of events greater than e) prescribed by the message type.

Rules (T-UIn) and (T-UOut) explain the typing for communications on shared chan-
nels. In rule (T-UIn) the input with shared usage is typed if the continuation process
is typed adding the usage for the received name to the context. Notice that since we
type the continuation with the shared input usage, the continuation must offer again the
shared input behavior (so shared inputs can be typed only in the context of a recursion).
Notice also that the overall ordering in the conclusion is that of the premise, as expected
in a replicated process, and specifies that the event associated with the shared input is
minimal (so as to ensure it is immediately available). Furthermore, we require that the
remaining context mentions exclusively shared outputs (Γun) so that no other shared in-
puts are defined in the continuation. This would be a problem for liveness since shared
inputs on free names defined in the continuation might leave a matching output dan-
gling. However, we may freely type processes in the continuation that specify shared
inputs in restricted names (or even in the received name).

In rule (T-UOut) we type the output on a shared channel if the continuation is typed
in the empty context and empty ordering. This means that our model for shared channel
communications is an asynchronous one. There are at least two approaches to guarantee
that shared inputs are always active (uniform receptiveness): one is to exclude usage of
the shared name in the continuations of both input and output prefixes [19] (we followed
a similar approach in [22] excluding the corresponding event in the continuations); the

158 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

other relies on an asynchronous model of communication [1]—which we adopt here for
shared channels. The advantage of this approach is that it supports processes that specify
in the continuation of a shared input a matching output (intuitively, think of a recursive
“service” call). Also, looking at (T-UOut) and (T-Par) we argue that every process P that
we have used in examples in the continuation of a shared output x!l y.P can be specified
(and typed) using the parallel composition P |x!l y.0, essentially since the type delegated
in the communication is obtained via a split of the context nonetheless. Notice that rule
(T-UOut) says that the event associated with the output is minimal w.r.t. the message
type in the conclusion. Notice also that the rules for communication prefixes make no
distinction whatsoever on the type of the channel communicated.

One can now show that process (4) is well typed. Consider the following types.

Ts � μα.e1 τ l int. f 1 τ mbool.α Tr � μα.g1 τ nbool.α

Each unfolding of a type increments the indexes of the events. The splitting of these
behaviors produces

TAs � μα.e1 ?l int.α TBs � μα. f 1 ?mbool.α TCs � μα.e1 !l int. f 1 !mbool.α

TAr � μα.g1 ?nbool.α TBr � μα. f 1 !nbool.α

regarding sessions s and r. Now, looking at the structure of the participants in (4), we
realize that the following relations must hold: the structure of A requires e1 ≺ g1 ≺ e2;
the structure of B requires f 1 ≺ g1 ≺ f 2; finally, the structure of C requires e1 ≺ f 1 ≺ e2.
Overall, it is possible to find a typing derivation for the whole process by considering
the strict partial order

≺ � Ts↓ ·∪ Tr↓ ·∪ {(f i,gi),(gi,ei+1) | i ∈ N}

Results. We start by mentioning some auxiliary results, in particular that conformance
between the typing context and the overall ordering is ensured for all derivations. This
result may be viewed as a sanity check saying that the conditions imposed by our rules
are enough to keep conformance invariant in a derivation. We may also show that split
is an associative relation, in particular for behavioral types. This result in particular
ensures that the derivation (sub-)trees may be moved around, and used in the proof of
the following (standard) results.

Lemma 1 (Subject Congruence). If Δ ;Γ ;≺ � P and P ≡Q then Δ ;Γ ;≺ � Q.

Lemma 2 (Substitution). If Δ ;Γ1,x : T ;≺�P and Γ2 =Γ1◦y : T then Δ ;Γ2;≺�P{x/y}.

The proofs follow by induction on the structure of the process and on the length of
the typing derivation (respectively) along unsurprising lines. Notice that substitution
uses context splitting to characterize the context that types the resulting process, since
name y may already be used by P and the soundness of the substitution is guaranteed
by the split. Before presenting our first main result we need to introduce two auxiliary
notions that characterize reduction of contexts and of strict partial orders. As expected
from a behavioral type system, as processes evolve so must the types that characterize
the processes. The reduction relations for behavioral types and contexts are given in

Typing Liveness in Multiparty Communicating Systems 159

k ∈ I
eτ{li Ti.Bi}i∈I → Bk

B1 → B′1
B1 |B2 → B′1 |B2

B1 ≡ B′1 → B′2 ≡ B2

B1 → B2

· → ·
B1 → B2

Γ ,x : B1
≺ → Γ ,x : B2

≺
Γ1 → Γ2

Γ1,x : T → Γ2,x : T

Fig. 9. Type and context reduction

≺→≺
e ∈ supp(≺)
≺→ ≺\e

Γ1 → Γ2 ≺1→≺2

Γ1;≺1→ Γ2;≺2

Fig. 10. Order and typing reduction

Fig. 9. Note that τ-prefixed summations (in “active contexts”) may reduce and a context
reduces if it has an entry on a linear type prefix that reduces. Also, the empty context
reduces so as to mimic synchronizations on restricted and shared channels (embedding
reflexivity in context reduction); these synchronizations do not change the types.

Fig. 10 shows the reduction for orders and context/order pairs. Strict partial order
reduction is also reflexive to capture both shared synchronizations and communications
that depend on shared communications (as they take place repeatedly for each of the
continuation of the shared input). Reduction is also defined by removing an event of the
ordering, so as to capture one shot synchronizations (which includes infinite chains of
synchronizations). We may now present our first main result.

Theorem 1 (Preservation). If Δ ;Γ1;≺1 � P1 and P1 → P2 then Γ1;≺1→ Γ2;≺2 and
Δ ;Γ2;≺2 � P2.

The proof follows by induction on the length of the derivation of P1 → P2. The the-
orem says that typing is preserved under process reduction, up to a reduction in the
context and ordering. Fidelity is an immediate consequence of Theorem 1, as usual
(cf. [2]), thanks to the precise correspondence between reduction in processes and in
typing contexts. We now turn our attention to the liveness result, where we use →n to
denote a sequence of n reductions.

Theorem 2 (Liveness). Let Δ ;Γ1;≺1 � P1 with matched(Γ1), and let x : L1 in Γ1 with
e ∈ events(L1). Then P1 →n P2 and (Γ1;≺1)→n (Γ2;≺2) and Δ ;Γ2;≺2� P2 with x : L2

in Γ2 and e �∈ events(L2), for some n > 0.

In words, every event e occurring in the type of a linear channel used by a well-
typed process can eventually disappear from the type environment. This means that
either e is associated with an (inter)action that can eventually be performed by the
process, or that e occurs in a branch of a choice which is not selected. This property
is akin to lock freedom [13] or progress [3, 6, 12] except that e in Theorem 2 can be
associated with an action that is arbitrarily deep within the process structure, whereas
lock freedom and progress are usually formulated for top-level actions only. The proof
invariant is that for each linear synchronization prescribed by the types there is either an
immediate corresponding synchronization in the process or there are preceding actions
which necessarily are of “lesser” order. The fact that behaviors described by linear types

160 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

have a correspondence with the communication capabilities of processes is a standard
property of linear type theories.

Notice that we are not able to characterize shared usages in the same way, as the
events associated with them are persistent. However, we may immediately conclude
that since any linear synchronization that depends on a shared synchronization takes
place then so does the shared synchronization (in fact, our proof relies on the fact that
also shared synchronizations are live, along with communications in restricted channels
with matched typings). Notice also that our type-based approach addresses processes
with “unmatched” typing, just as long as we consider them up to the composition with
any other processes for which the resulting typing is matched—in particular via rule
(T-Par) of Fig. 8. An immediate consequence of Theorem 1 and Theorem 2 combined
is that any configuration reachable from a matched typed one (as the matched predicate
is invariant under context reduction) also has the liveness property.

5 Concluding Remarks

We have presented a type system for multiparty session-based communication-centred
systems that guarantees liveness in addition to session fidelity even when multiple ses-
sions are interleaved. Compared to other models for multiparty session communication,
our approach strives to achieve minimality of both language and type features. Regard-
ing language features, we rely on message labels for preventing communication races
on linear channels, whereas other approaches make use of channel polarities [9], of dis-
tinct channel endpoints [21], or roles [3, 6]. Moreover, we do not make use of dedicated
session initialization primitives. Regarding type features, our work exploits notions in-
troduced in [2, 4] (e.g., the τ polarity and the split operator), allowing us to use the
same type language for specifying both global and local types. This is in contrast with
common multiparty session type theories such as [3, 6, 12], which introduce distinct
languages for global and local types connected by a projection operation from the for-
mer into the latter.

A number of type-based techniques guaranteeing deadlock freedom, progress, or
liveness properties have been proposed. Kobayashi [13, 14] presents type systems for
lock-free and deadlock-free processes written in the pure π-calculus. Roughly speaking,
every top-level input/output prefix in a lock-free process is guaranteed to be eventually
consumed, whereas a deadlock-free process is one that is always able to reduce, unless
it has terminated. The type systems rely on channel usages, which are behavioral types
resembling session types where actions are annotated with pairs of obligation/capability
levels, roughly denoting the time at which actions begin/are supposed to end. Top-level
actions with a finite capability level are guaranteed to succeed in a finite amount of time
(and possibly under some fairness assumption). For session-based languages, the rele-
vant works on binary sessions are [8, 16], while [3, 6] deal with multiparty sessions. The
basic idea of [3, 6, 8] is to devise a type system that detects the dependency graph be-
tween different sessions, where a dependency arises if a (blocking) action in one session
guards an action pertaining a different session. Liveness is guaranteed if the dependency
graph is acyclic. [16] leverages Kobayashi’s technique (in [13]) from channel usages to
session types showing that such technique can achieve a greater accuracy when com-
pared to [3, 6, 8]. The present work differs from these in several minor and major ways.

Typing Liveness in Multiparty Communicating Systems 161

In particular, our process model is synchronous, while the ones in [3, 6, 16] is asyn-
chronous. Asynchrony has a non-trivial impact in the type system for progress, mainly
because output actions are non-blocking. The progress property considered in [3, 6] as-
sumes that missing session participants can eventually join the system at any time. In
practice, this assumption implies that any action on shared channels is considered non-
blocking, because it is always possible to add some (well-typed) processes that provide
for the missing messages. Also, [6] defines a syntax-directed type system and automatic
inferences are known for the systems described in [13, 14]. In our case, the definition
of a syntax-directed type system and of an inference algorithm remain open problems.

One major difference between our work and the aforementioned ones, which con-
stitutes the main technical contribution, regards the treatment of recursive types. In all
previous works, annotations such as obligation/capability levels in [13, 14], dependency
graphs [3, 6], timestamps [16] are statically associated with types, regardless of their
recursive structure. In our case, unfolding a recursive type has the effect to “freshen” the
events occurring therein. This significantly increases the range of well-typed processes.
In particular, none of the aforementioned works is able to prove progress for non-trivial
recursive processes interleaving (blocking) actions on different channels. For example,
the (appropriate encoding of the) (4) is ill typed according to all previous type systems.
More recently, the first author has studied a type system for deadlock and lock free-
dom which is capable of addressing non-trivial recursive process configurations, albeit
in the context of the linear π-calculus [17]. The type system in [17] can prove that a
configuration such as (4) is (dead)lock free, but only encoding the multiparty session s
in terms of several binary sessions which, in turn, can be encoded using linear channels.
In the present work instead we consider a calculus with a primitive notion of multiparty
session, addressing scenarios that cannot be compiled down to binary sessions.

Naturally a type-based approach is only relevant if it can be taken into practice, so
decidability is a fundamental property. We may argue that we can extract a decidable
type-checking procedure from our type system, if we annotate restricted names with
their types (as usual) and process recursion variables with the increment factor (together
with confining unfoldings to a “just-in-time” setting). Inference is also an important
issue as it allows to save the programmer’s effort to specify the types and increase the
probability that such advanced type system can actually be used in practice. Although
we believe these are very important questions to address, we decided to leave them to
future clarification and focus on the principles of our approach for now, so as to make
further efforts worthwhile. Furthermore, observing that types are becoming very rich
characterizations of process behavior (in our case how and when channels are used),
one may ask if it is possible to deduce processes from types (e.g., [5]) and spare the
“programmer” the effort of writing programs and just ask him to write the types.

Acknowledgments. This work was supported by MIUR PRIN CINA 2010LHT4KM,
FCT through project Liveness, PTDC/ EIA–CCO/117513/2010, and LaSIGE Strate-
gic Project, PEst–OE/EEI/UI0408/2014. We are grateful to the COORDINATION’14
reviewers whose comments helped us clarifying and improving the paper.

162 L. Padovani, V.T. Vasconcelos, and H.T. Vieira

References

1. Amadio, R.M., Boudol, G., Lhoussaine, C.: On message deliverability and non-uniform re-
ceptivity. Fundam. Inform. 53, 105–129 (2002)

2. Baltazar, P., Caires, L., Vasconcelos, V.T., Vieira, H.T.: A type system for flexible role as-
signment in multiparty communicating systems. In: Palamidessi, C., Ryan, M.D. (eds.) TGC
2012. LNCS, vol. 8191, pp. 82–96. Springer, Heidelberg (2013)

3. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida, N.:
Global progress in dynamically interleaved multiparty sessions. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

4. Caires, L., Vieira, H.T.: Conversation types. Theor. Comput. Sci. 411, 4399–4440 (2010)
5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered programming for

web services. ACM Trans. Program. Lang. Syst. 34, 8 (2012)
6. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: Inference of Global Progress

Properties for Dynamically Interleaved Multiparty Sessions. In: De Nicola, R., Julien, C.
(eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 45–59. Springer, Heidelberg (2013)

7. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for dynami-
cally interleaved multiparty sessions. MSCS (to appear)

8. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured commu-
nications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 257–275.
Springer, Heidelberg (2008)

9. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42, 191–225
(2005)

10. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 509–523. Springer, Heidelberg (1993)

11. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

12. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL
2008, pp. 273–284. ACM (2008)

13. Kobayashi, N.: A type system for lock-free processes. Inf. Comput. 177, 122–159 (2002)
14. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.

(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)
15. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I and II. Inf. Com-

put. 100, 1–77 (1992)
16. Padovani, L.: From Lock Freedom to Progress Using Session Types. In: Proceedings of the

6th Workshop on Programming Language Approaches to Concurrency and Communication-
cEntric Software (PLACES 2013). EPTCS, vol. 137, pp. 3–19 (2013)

17. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. Technical report, HAL
(2014)

18. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty communicating
systems. Technical report (2014), http://hal.inria.fr/hal-00960879

19. Sangiorgi, D.: The name discipline of uniform receptiveness. Theor. Comput. Sci 221, 457–
493 (1999)

20. Vasconcelos, V.T.: Typed concurrent objects. In: Pareschi, R. (ed.) ECOOP 1994. LNCS,
vol. 821, pp. 100–117. Springer, Heidelberg (1994)

21. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
22. Torres Vieira, H., Thudichum Vasconcelos, V.: Typing progress in communication-centred

systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp.
236–250. Springer, Heidelberg (2013)

http://hal.inria.fr/hal-00960879

A Calculus of Self-stabilising Computational Fields

Mirko Viroli1 and Ferruccio Damiani2

1 University of Bologna, Italy
mirko.viroli@unibo.it

2 University of Torino, Italy
ferruccio.damiani@unito.it

Abstract. Computational fields are spatially distributed data structures created
by diffusion/aggregation processes, designed to adapt their shape to the topology
of the underlying (mobile) network and to the events occurring in it: they have
been proposed in a thread of recent works addressing self-organisation mecha-
nisms for system coordination in scenarios including pervasive computing, sen-
sor networks, and mobile robots. A key challenge for these systems is to assure
behavioural correctness, namely, correspondence of micro-level specification
(computational field specification) with macro-level behaviour (resulting global
spatial pattern). Accordingly, in this paper we investigate the propagation process
of computational fields, especially when composed one another to achieve com-
plex spatial structures. We present a tiny, expressive, and type-sound calculus of
computational fields, enjoying self-stabilisation, i.e., the ability of computational
fields to react to changes in the environment finding a new stable state in finite
time.

1 Introduction

Computational fields [11,17] (sometimes simply fields in the following) are an ab-
straction traditionally used to enact self-organisation mechanisms in contexts includ-
ing swarm robotics [1], sensor networks [3], pervasive computing [12], task assignment
[22], and traffic control [6]. They are distributed data structures originated from point-
wise events raised in some specific device (i.e., a sensor), and propagating in a whole
network region until forming a spatio-temporal data structure upon which distributed
and coordinated computation can take place. Example middleware/platforms support-
ing this notion include TOTA [12], Proto [13], and SAPERE [24,15]. The most paradig-
matic example of computational field is the so-called gradient [4,12,15], mapping each
node of the network to the minimum distance from the source node where the gradi-
ent has been injected. Gradients are key to get awareness of physical/logical distances,
to project a single-device event into a whole network region, and to find the direction
towards certain locations of a network, e.g., for routing purposes. A number of works

 This work has been partially supported by the EU FP7 project “SAPERE - Self-aware Perva-
sive Service Ecosystems” under contract No. 256873 (Viroli), by ICT COST Action IC1201
“BETTY: Behavioural Types for Reliable Large-Scale Software Systems” (Damiani), by the
Italian PRIN 2010/2011 project “CINA: Compositionality, Interaction, Negotiation, Auto-
nomicity” (Damiani & Viroli) and Ateneo/CSP project SALT (Damiani).

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 163–178, 2014.
c© IFIP International Federation for Information Processing 2014

164 M. Viroli and F. Damiani

have been developed that investigate coordination models supporting fields [12,21],
introduce advanced gradient-based spatial patterns [14], and develop catalogues of self-
organisation mechanisms where gradients play a crucial role [8].

As with most self-organisation approaches, a key issue is to try to fill the gap be-
tween the system micro-level (the single-node computation and interaction behaviour)
and the system macro-level (the shape of the globally established spatio-temporal struc-
ture), namely, ensuring that the programmed code results in the expected global-level
behaviour. However, the issue of formally tackling the problem is basically yet unex-
plored in the context of spatial computing, coordination, and process calculi—some
exceptions are [4,9], which however apply in rather ad-hoc cases. We note instead that
deepening the problem will likely shed light on which language constructs are best
suited for developing well-engineered self-organisation mechanisms based on compu-
tational fields, and to consolidate existing patterns or develop new ones.

In this paper we follow this direction and address the problem of finding an ex-
pressive calculus to specify the propagation process of those computational fields for
which we can identify a precise mapping between system micro- and macro-level. We
identified a core calculus with sound type systems formed by three constructs only:
sensor fields (considered as an environmental input), pointwise functional composi-
tion of fields, and a form of spreading that tightly couples information diffusion and
re-aggregation. The latter is constrained so as to enforce a special “terminating pro-
gressiveness” property that we identified, by which we derive self-stabilisation [7], that
is, the ability of the system running computational fields to reach a stable distributed
state in spite of perturbations (changes of network topology and of local data) from
which it recovers in finite time. A consequence of our results is that the ultimate (and
stable) state of an even complex computational field can be fully-predicted once the
environment state is known (network topology and sensors state).

The remainder of this paper is organised as follows: Section 2 presents the proposed
linguistic constructs by means of examples, Section 3 provides the formal calculus, Sec-
tion 4 states soundness and self-stabilisation properties, and finally Section 5 discusses
related works and concludes.

2 Computational Fields

From an abstract viewpoint, a computational field is simply a map from nodes of a
network to some kind of value. They are used as a valuable abstraction to engineer
self-organisation into networks of situated devices. Namely, out of local interactions
(devices communicating with a small neighbourhood), global and coherent patterns (the
computational fields themselves) establish that are robust to changes of environmental
conditions. Such an adaptive behaviour is key in developing system coordination in
dynamic and unpredictable environments [16].

Self-organisation and computational fields are known to build on top of three ba-
sic mechanisms [8]: diffusion (devices broadcast information to their neighbours), ag-
gregation (multiple information can be aggregated back into a single sum-up value),
and evaporation/decay (a cleanup mechanism is used to reactively adapt to changes).
For instance, these mechanisms are precisely those used to create adaptive and stable

A Calculus of Self-stabilising Computational Fields 165

e ::= x
∣∣ v ∣∣ s

∣∣ g(e1, . . . ,en)
∣∣ {e : g(@,e1, . . . ,en)} expression

g ::= f
∣∣ o function

F ::= def T f(T1 x1, . . . ,Tn xn) is e function definition

Fig. 1. Syntax of expressions and function definitions

gradients, which are building blocks of more advanced patterns [8,14]. A gradient is
used to reify in any node some information about the path towards the nearest gradient
source. It can be computed by the following process: value 0 is held in the gradient
source; each node executes asynchronous computation rounds in which (i) messages
from neighbours are gathered and aggregated in a minimum value, (ii) this is increased
by one and is diffused to all neighbours, and (iii) the same value is stored locally, to
replace the old one which decays. This continuous “spreading process” stabilises to a
so called hop-count gradient, storing distance to the nearest source in any node, and au-
tomatically repairing in finite time to changes in the environment (changes of topology,
position and number of sources).

2.1 Basic Ingredients

Based on these ideas, and framing them so as to isolate those cases where the spreading
process actually stabilises, we propose a tiny calculus to express computational fields.
Its syntax is reported in Figure 1. Following the general approach used in other lan-
guages for spatial computing [20,13], which the one we propose here can be considered
as a core, our language is functional.

An atomic expression can be a variable x, a value v, or a sensor s. Variables are
the formal parameters of a function. Values can be of different sorts: integers (0, 1, ...
and INF meaning the maximum integer), floats (e.g., 1.0, -5.7), booleans (TRUE and
FALSE), tuples (<1,TRUE>,<2,-3.5>,<1,FALSE,3>), and so on. Sensors are sources
of input produced by the environment, available in each device (in examples, we shall
use for them literals starting with symbol “#”). For instance, in a urban scenario we may
want to use a crowd sensor #crowd yielding non-negative real numbers, to represent the
perception of crowd level available in each deployed sensor over time [15].

Expressions can be composed functionally, by either a (built-in) operator o or a user-
defined function f. Operators include usual mathematical/logical ones, used either in
prefix or infix notation: e.g. to form expressions 2*#crowd and or(TRUE,FALSE). Op-
erators 1st, 2nd, and so on, are used to extract the i-th component of a tuple. Functions
are typed and can be declared by users; cyclic definitions are prohibited, and 0-ary func-
tion main is the program entry point. Types include int, float, bool, and tuple-types
like <int,int>, <int,bool> and so on; each type T has a total ordered relation ≤T—
we use natural ordering, though in principle ad-hoc ordering relations could be used in
a deployed specification language. As an example, we will use the following func-
tion restrict: def int restrict(int i, bool b) is b ? i : INF. It takes
two arguments i and b, and yields the former if b is true, or INF otherwise—as we
shall see, because of our semantics INF plays a role similar to an undefined value.

166 M. Viroli and F. Damiani

As in [20,13], expressions in our language have a twofold interpretation. When fo-
cussing on the local device behaviour, they represent values computed in a node at a
given time. When reasoning about the global outcome of a specification instead, they
represent whole computational fields: 1 is the immutable field holding 1 in each device,
#crowd is the (evolving) crowd field, and so on.

The key construct of the proposed language is spreading, denoted by syntax
{e : g(@,e1, . . . ,en)}, where e is called source expression, and g(@,e1, . . . ,en) is called
progression expression. The latter is an expression formed by an operator/function g:
if it is a function, its body should not include a spreading construct or a sensor (nor
the function it calls should). Additionally, the progression expression has one hole @

playing the role of a formal argument; hence the progression expression can be seen as
the body of an anonymous, unary function, which we simply call progression. Viewed
locally to a node, expression e = {e0 : g(@,e1, . . . ,en)} is evaluated at a given time to
value v as follows:

1. expressions e0,e1, . . . ,en are evaluated to values v0,v1, . . . ,vn;
2. the current values w1, . . . ,wm of e in neighbours are gathered;
3. for each w j in them, the progression function is applied as g(w j,v1, . . . ,vn), giving

value w′j;
4. the final result v is the minimum value among {v0,w

′
1, . . . ,w

′
m}: this value is made

available to other nodes.

Note that v ≤T v0, and if the device is isolated then v = v0. Viewed globally,
{e0 : g(@,e1, . . . ,en)} represents a field initially equal to e0; as time passes some field
values can decrease due to smaller values being received from neighbours (after apply-
ing the progressive function).

The hop-count gradient created out of a #src sensor is hence simply defined as
{ #src : @ + 1 }, assuming #src holds what we call a zero-field, namely, it is 0 on
source nodes and INF everywhere else. In this case #src is the source expression, and
g is unary successor function.

2.2 Composition Examples

As a reference scenario to ground the discussion, we can consider crowd steering in
pervasive environments [15]: computational fields run on top of a myriad of small
devices spread in the environment (including smartphones), and are used to guide
people in complex environments (buildings, cities) towards point of interested (POIs)
across appropriate paths. There, a smartphone can perceive neighbour values of a
gradient spread from a POI, and give directions towards smallest values so as to steer
its owner and make him/her quickly descend the gradient [12]. Starting from the
hop-count gradient, various kinds of behaviour useful in crowd steering can be pro-
grammed, based on the definitions reported in Figure 2. Note that as a mere syntactic
sugar, we allowed there the use of functional compositions of built-in operators and
user-defined functions as progression expressions. For instance, in function gradobs,
the composition of restrict and + is used. A pre-processor could easily lift out such
compositions into automatically-generated functions: e.g., for gradobs it could be

A Calculus of Self-stabilising Computational Fields 167

def int grad(int i) is { i : @ + #dist }

def int restrict(int i, bool b) is b ? i : INF

def int gradobs(int i, bool b) is { i : restrict(@ + #dist, b) }

def <int,bool> sum or(<int,bool> x, <int,bool> y) is

<1st(x) + 1st(y), 2nd(x) or 2nd(y)>

def bool sector(int i, bool b) is 2nd({ <i, b> : sum or(@,<#dist, b>) }

def <int,int> add to 1st(<int,int> x, int y) is <1st(x)+ y, 2nd(x)>

def <int,int> gradcast(int i, int j) is { <i, j> : add to 1st(@, #dist) }

def int dist(int i, int j) is gradcast(restrict(j,j==0),grad(i))

def bool path(int i, int j, int w) is grad(i)+grad(j)-w < dist(i, j)

def int channel(int i, int j, int w) is gradobs(grad(j),not path(i, j, w))

Fig. 2. Definitions of examples

Fig. 3. A pictorial representation of various fields: hop-count gradient (a), gradient circumventing
“crowd” obstacles (b), sector (c), and channel (d)

“def int gradobs$lifted(int x,int y,bool b) is restrict(x + y,b)”,
so the body of gradobs could become “{ i : gradobs$lifted(@,#dist,b) }”
as the syntax of our calculus actually requires.

The first function in Figure 2 defines a more powerful gradient construct, called
grad, which can be used to generalise over the hop-by-hop notion of distance: sensor
#dist is assumed to exist that reifies an application-specific notion of distance as a
positive number. It can be 1 everywhere to model hop-count gradient, or can vary from
device to device to take into consideration contextual information. For instance, it can
be the output of a crowd sensor, leading to greater distances when/where crowded ar-
eas are perceived, so as to dynamically compute routes penalising crowded areas as in
[15]. In this case, note that function g maps (v1,v2) to v1 + v2. Figure 3 (a) shows a
pictorial representation, assuming devices are uniformly spread in a 2D environment:
considering that an agent or data items moves in the direction descending the values
of a field, a gradient looks like a sort of uniform attractor towards the source, i.e., to
the nearest source node. It should be noted that when deployed in articulated environ-
ments, the gradient would stretch and dilate to accommodate the static/dynamic shape
of environment, computing optimal routes.

By suitably changing the progression function, it is also possible to block the diffu-
sion process of gradients, as shown in function gradobs: there, by restriction we turn
the gradient value to INF in nodes where the “obstacle” boolean field b holds TRUE. This
can be used to completely circumvent obstacle areas, as shown in Figure 3 (b). Note that
we here refer to a “blocking” behaviour, since sending a INF value has no effect on the

168 M. Viroli and F. Damiani

target, and could hence be avoided for the sake of performance, e.g., not to flood the
entire network. This pattern is useful whenever steering people in environments with
prohibited areas—e.g. road construction in a urban scenario.

In our language it is also possible to keep track of specific situations during the
propagation process, as function sector showcases. It takes a zero-field source i and a
boolean field b denoting an area of interest: it creates a gradient of pairs, orderly holding
distance from source and a boolean value representing whether the route towards the
source crossed area b. As one such gradient is produced, it is wholly applied to operator
2nd, extracting a sector-like boolean field as shown in Figure 3 (c). To do so, we use a
special progression function sum or working on int,bool pairs, which sums the first
components, and apply disjunction to the second. This pattern is useful to make people
be aware of certain areas that the proposed path would cross, so as to support proper
choices among alternatives [14].

The remaining functions gradcast, dist, path and channel are used to obtain
a spatial pattern more heavily relying on multi-level composition, known as channel
[20,13]. Assume i and j are zero-fields, and suppose to steer people in complex and
large environments from area i to destination j, i.e., from a node where i holds 0
to a node where j holds 0. It is important to activate the steering service (spreading
information, providing signs, and detecting contextual information such as congestion)
only along the shortest path, possibly properly extended (of a distance width w to deal
with some randomness of people movement)—see Figure 3 (d). Function gradcast

generates a gradient, holding in each node a pair of the minimum distance to source i

and the value of j in that source; this is typically used to broadcast along with a gradient
a value held in its source. Function dist uses gradcast to broadcasts the distance d
between i and j—i.e., the minimum distance between a node where i holds 0 and a
node where j holds 0. This is done by sending a gradcast from the source of j holding
the value of grad(i) there, which is exactly the distance d. Function path simply
marks as positive those nodes whose distance from the shortest path between i and j is
smaller than w. Finally, function channel generates from j a gradient confined inside
path(i,j,w), which can be used to steer people towards the POI at j without escaping
the path area.

3 The Calculus of Self-stabilising Computational Fields

After informally introducing the proposed calculus in previous section, we now provide
a formal account of it, in order to precisely state the self-stabilisation property in next
section. We first discuss typing issues in Section 3.1, then formalise the operational
semantics by first focussing on single-device computations in Section 3.2, and finally
on whole network evolution (Section 3.3).

3.1 Typing and Self-stabilisation

The syntax of the calculus is reported in Figure 1. As a standard syntactic notation in
calculi for object-oriented and functional languages [10], we use the overbar notation
to denote metavariables over lists, e.g., we let e range over lists of expressions, written

A Calculus of Self-stabilising Computational Fields 169

Expression typing: A � e : T
[T-VAR]

A ,x : T � x : T
[T-SNS]

A � s : typeof(s)
[T-VAL]

A � v : typeof(v)

[T-OPFUN] signature(g) = T g(T) A � e : T
A � g(e) : T

[T-SPR] stabilising(g) A � g(e,e) : T
A � {e : g(@,e)} : T

Function typing: F OK
[T-DEF] x : T � e : T
def T f(T x) = e OK

Fig. 4. Typing rules for expressions and function definitions

e1 e2 . . . en, and similarly for x, T and so on. We write [[T]] to denote the set of the
values of type T, and signature(g) to denote the signature T g(T) of g (which specifies
the type T of the result and the types T= T1, . . . ,Tn of the n≥ 0 arguments of g).

A program P in our language is a mapping from function names to function defi-
nitions, enjoying the following sanity conditions: (i) P(f) = def f · · · (· · ·) is · · · for
every f ∈ dom(P); (ii) for every function name f appearing anywhere in P, we have
f ∈ dom(P); (iii) there are no cycles in the function call graph (i.e., there are no recur-
sive functions in the program); and (iv) main ∈ dom(P) and it has zero arguments.

The type system we provide aims to guarantee self-stabilisation: its typing rules are
given in Figure 4. Type environments, ranged over by A and written x : T, contain
type assumptions for program variables. The typing judgement for expressions is of
the form A � e : T, to be read: e has type T under the type assumptions A for the
program variables occurring in e. As a standard syntax in type systems [10], given
x = x1, . . . ,xn, T = T1, . . . ,Tn and e = e1, . . . ,en (n ≥ 0), we write x : T as short for
x1 : T1, . . . ,xn : Tn, and A � e : T as short for A � e1 : T1 · · · A � en : Tn. Typing
of variables, sensors, values, built-in operators and user-defined functions application
are almost standard (in particular, values and sensors are given a type by construction).
The only ad-hoc typing is provided for spreading expressions {e : g(@,e)}: they are
trivially given the same type of g(e,e), though additional conditions has to be checked
to guarantee self-stabilisation, which are at the core of the technical result provided
in this paper. In particular, any function g used in a spreading expression must be a
stabilising progression function, according to the following definition.

Definition 1 (Stabilising progression). A function g with signature T g(T1, . . . ,Tm) is
a stabilising progression (notation stabilising(g)) if the following conditions hold:

(i) m > 0 and T= T1;
(ii) g is a so-called pure operator, namely, it is either a built-in operator o, or a user-

defined function f whose call graph (including f itself) does not contain functions
with spreading expressions or sensors in their body: in this case, we write [[g]] to
denote the trivial mapping that provides the semantics of g symbol to a function;

(iii) T is so-called locally noetherian, to mean that [[T]] is equipped with a total order
relation ≤T, and for every element v ∈ [[T]], there are no infinite ascending chains
of elements v0 <T v1 <T v2 · · · such that (for every n≥ 0) vn <T v;

170 M. Viroli and F. Damiani

(iv) g is monotone in its first argument, i.e., v≤T v
′ implies [[g]](v,v)≤T [[g]](v

′,v)) for
any v;

(v) g is progressive in its first argument, i.e.,
– if [[T]] has not a maximum element,1 it holds that: v<T [[g]](v,v) for any v;
– if [[T]] has a maximum element2 written top(T), it holds that [[g]](top(T),v) =
top(T) and, for all v ∈ [[T]]−{top(T)}, v<T [[g]](v,v).

Function typing (represented by judgement “F OK”) is standard. Then, in the fol-
lowing we always consider a well-typed program P, to mean that all the function decla-
rations in P are well typed.

Note that all examples provided in previous section amount to well typed functions,
with few inessential caveats. First, as already discussed, in spreading expressions we
use compositions of functions: this is legitimate since it is easy to see that composi-
tion of stabilising progressions is stabilising. Second, more refined types are needed to
correctly identify certain spreading expressions as stabilising. For instance, in function
grad, the sensor #dist must have a positive integer type (e.g., posint), and operator
+ should be replaced by a sum operator that accepts a positive number only on right
(e.g., +<int,posint>), and similarly for other cases. Third, to correctly type-check
the functions that use tuples (which have not been explicitly modelled in the calcu-
lus) one would need to consider a polymorphic type system a la ML in the usual way.
Handling all these advanced typing aspects, as well as presenting the formalisation of
the stabilising(·) predicate (that is, an algorithm to check whether the conditions for a
function to be stabilising hold), has not been considered here for the sake of space and
since they are orthogonal aspects.

3.2 Device Computation

In the following, we let meta-variables ι and κ range over the denumerable set I of
device identifiers, meta-variable I over finite sets of such devices, meta-variables u, v
and w over values. Given a finite nonempty set V ⊆ [[T]] we denote by

∧
V its minimum

element, and write v∧v′ as short for
∧{v,v′}.

To simplify the notation, we shall assume a fixed program P and write emain to denote
the body of the main function. We say that “device ι fires”, to mean that expression
emain is evaluated on device ι . The result of evaluation is a value-tree, which is an
ordered tree of values, tracking the result of any evaluated subexpression. Intuitively,
such evaluation is performed against the value-trees of neighbours and the current value
of sensors, and produces as result a new value-tree that is conversely made available
to other neighbours for their firing.3 The syntax of value-trees is given in Figure 5,
together with the definition of the auxiliary functions ρ(·) and πi(·) for extracting the
root value and the i-th subtree of a value-tree, respectively—also the extension of these

1 Like, e.g., the BigInteger type in JAVA.
2 Like, e.g., the the double type in JAVA, which has top element Double.POSITIVE INFINITY.
3 Accordingly, since a function g used in a spreading expression {e0 : g(@,e1, . . . ,en)} must be

a pure operator (cf. Section 3.1), only the root of the produced sub-tree must be stored (c.f. rule
[E-SPR]). Also, note that any implementation might massively compress the value-tree, storing
only enough information for spreading expressions to be aligned.

A Calculus of Self-stabilising Computational Fields 171

functions to sequences of value-environments θ is defined. We sometimes abuse the
notation writing a value-tree with just the root as v instead of v(). The state of sensors
σ is a map from sensor names to values, modelling the inputs received from the external
world. This is written s�v as an abuse of notation to mean s1 �v1, . . . sn �vn. We shall
assume that it is complete (it has a mapping for any sensor used in the program), and
correct (each sensor s has a type written typeof(s), and is mapped to a value of that
type). For this map, and for the others to come, we shall use the following notations:
σ(s) is used to extract the value that s is mapped to, σ [σ ′] is the map obtained by
updating σ with all the associations s � v of σ ′ which do not escape the domain of σ
(namely, only those such that σ is defined for s).

The computation that takes place on a single device is formalised by the big-step
operational semantics rules given in Figure 5. The derived judgements are of the form
σ ;θ � e ⇓ θ , to be read “expression e evaluates to value-tree θ on sensor state σ and
w.r.t. the value-trees θ”, where:

– σ is the current sensor-value map, modelling the inputs received from the external
world;

– θ is the list of the value-trees produced by the most recent evaluation of e on the
current device’s neighbours;

– e is the closed expression to be evaluated;
– the value-tree θ represents the values computed for all the expressions encountered

during the evaluation of e— in particular ρ(θ) is the local value of field expression
e.

The rules of the operational semantics are syntax directed, namely, the rule used
for deriving a judgement σ ;θ � e ⇓ θ is univocally determined by e (cf. Figure 5).
Therefore, the shape of the value-tree θ is univocally determined by e, and the whole
value-tree is univocally determined by σ , θ , and e.

The rules of the operational semantics are almost standard, with the exception that
rules [E-OP], [E-FUN] and [E-SPR] use the auxiliary function πi(·) to ensure that, in the judge-
ments in the premise of the rule, the value-tree environment is aligned with the expres-
sion to be evaluated.

The most important rule is [E-SPR] which handles spreading expressions formalising
the description provided in Section 2.1. It first recursively evaluates expressions ei to
value-trees ηi (after proper alignment of value-tree environment by operator πi(.)) and
top-level values vi. Then it gets from neighbours their values w j for the spreading ex-
pression, and for each of them g is evaluated giving top-level result w j. The resulting
value is then obtained by the minimum among v0 and the values w j (which equates to
v0 if there are currently no neighbours).

3.3 Network Evolution

We now provide an operational semantics for the evolution of whole networks, namely,
for modelling the distributed evolution of computational fields over time. Figure 6 (top)
defines key syntactic elements to this end. F models the overall computational field
(state), as a map from device identifiers to value-trees. τ models network topology,

172 M. Viroli and F. Damiani

Value-trees and sensor-value maps:
θ ,η ::= v(θ) value-tree

σ ::= s�v sensor-value map

Auxiliay functions:
ρ(v(θ)) = v πi(v(θ1, . . . ,θn)) = θi

ρ(θ1, . . . ,θn) = ρ(θ1), . . . ,ρ(θn) πi(θ1, . . . ,θn) = πi(θ1), . . . ,πi(θn)

Rules for expression evaluation: σ ;θ � e ⇓ θ
[E-SNS]

σ ;θ � s ⇓ σ(s)
[E-VAL]

σ ;θ � v ⇓ v

[E-OP] ι ;π1(θ) � e1 ⇓ η1 · · · σ ;πn(θ) � en ⇓ ηn v= [[o]](ρ(η1), . . . ,ρ(ηn))

σ ;θ � o(e1, . . . ,en) ⇓ v(η1, . . . ,ηn)

[E-FUN]

def T f(T1 x1, . . . ,Tn xn) = e σ ;π1(θ) � e1 ⇓ η1 · · · σ ;πn(θ) � en ⇓ ηn

σ ;πn+1(θ) � e[x1 := ρ(θ ′1) . . . xn := ρ(θ ′n)] ⇓ v(η)
σ ;θ � f(e1, . . . ,en) ⇓ v(θ ′1, . . . ,θ

′
n,v(η))

[E-SPR]

σ ;π0(θ) � e0 ⇓ η0 · · · σ ;πn(θ) � en ⇓ ηn

ρ(η0, . . . ,ηn) = v0 . . .vn ρ(θ) = w1 . . .wm

σ ; /0 � g(w1,v1, . . . ,vn) ⇓ u1(· · ·) . . . σ ; /0 � g(wm,v1, . . . ,vn) ⇓ um(· · ·)
σ ;θ � {e0 : g(@,e1, . . . ,en)} ⇓

∧{v0,u1, . . . ,um}(η0,η1, . . . ,ηn)

Fig. 5. Big-step operational semantics for expression evaluation

namely, a directed neighbouring graph, as a map from device identifiers to set of iden-
tifiers. Σ models sensor (distributed) state, as a map from device identifiers to (local)
sensors (i.e., sensor name/value maps). Then, E (a couple of topology and sensor state)
models the system’s environment. So, a whole network configuration N is a couple of a
field and environment.

We define network operational semantics in terms of small-steps transitions of the

kind N
�−→ N′, where � is either a device identifier in case it represents its firing, or label

ε to model any environment change. This is formalised in Figure 6 (bottom). Rule [N-
FIR] models a computation round (firing) at device ι: it reconstructs the proper local
environment, taking local sensors (Σ(ι)) and accessing the value-trees of ι’s neigh-
bours; then by the single device semantics we obtain the device’s value-tree θ , which
is used to update system configuration. Rule [N-ENV] takes into account the change of
the environment to a new well-formed environment E ′. Let ι1, . . . , ιn be the domain of
E ′. We first construct a field F0 associating to all the devices of E ′ the default value-trees
θ1, . . . ,θn obtained by making devices perform an evaluation with no neighbours and
sensors as of E ′. Then, we adapt the existing field F to the new set of devices: F0[F] au-
tomatically handles removal of devices, map of new devices to their default value-tree,
and retention of existing value-trees in the other devices.

Upon this semantics. we introduce the following definitions and notations:

Initiality. The empty network configuration 〈 /0 � /0, /0 � /0; /0 � /0〉 is said initial.

A Calculus of Self-stabilising Computational Fields 173

System configurations and action labels:
F ::= ι �θ computational field
τ ::= ι � I topology
Σ ::= ι �σ sensors-map
E ::= τ,Σ environment
N ::= 〈E;F〉 network configuration
� ::= ι

∣∣ ε action label

Environment well-formedness:
WFE(τ,Σ) holds if τ,Σ have same domain, and τ’s values do not escape it.

Transition rules for network evolution: N
�−→ N

[N-FIR] E = τ,Σ τ(ι) = ι Σ (ι);F(ι) � emain ⇓ θ
〈E;F〉 ι−→ 〈E;F [ι �θ]〉

[N-ENV]

WFE(E ′) E ′ = τ, ι1 �σ1, . . . , ιn �σn

σ1; /0 � emain ⇓ θ1 · · · σn; /0 � emain ⇓ θn F0 = ι1 �θ1, . . . , ιn �θn

〈E;F〉 ε−→ 〈E ′;F0[F]〉

Fig. 6. Small-step operational semantics for network evolution

Reachability. Write N
�

=⇒ N′ as short for N
�1→ N1

�2→ ··· �n→ N′: a configuration N is

said reachable if N0
�

=⇒ N where N0 is initial. Reachable configurations are the
well-formed ones, and in the following we shall implicitly consider only reachable
configurations.

Firing. A firing evolution from N to N′, written N =⇒ N′, is one such that N
ι

=⇒ N′

for some ι , namely, where only firings occur.

Stability. A system state N is said stable if N
ι−→ N′ implies N = N′, namely, the com-

putation of fields reached a fixpoint in the current environment. Note that if N is
stable, then it also holds that N =⇒ N′ implies N = N′.

Fairness. We say that a sequence of device fires is k-fair (k≥ 0) to mean that, for every
h (1 ≤ h ≤ k), the h-th fire of any device is followed by at least k− h fires of all

the other devices. Accordingly, a firing evolution N
ι

=⇒ N′ is said k-fair, written

N
ι

=⇒k N′, to mean that ι is k-fair. We also write N =⇒k N′ if N
ι

=⇒k N′ for some ι .
This notion of fairness will be used to characterise finite firing evolutions in which
all devices are given equal chance to fire when all others had.

Self-stabilisation. A system state 〈E;F〉 is said to self-stabilise to 〈E;F ′〉 if there is
a k > 0 and a field F ′ such that 〈E;F〉 =⇒k 〈E;F ′〉 implies 〈E;F ′〉 is stable, and
F ′ is univocally determined by E . Self-stability basically amounts to the inevitable
reachability of a stable state depending only on environment conditions, through
a sufficiently long fair evolution. Hence, the terminology is abused equivalently
saying that a field expression emain is self-stabilising if for any environment state E
there exists a unique stable field F ′ such that any 〈E;F〉 self-stabilises to 〈E;F ′〉.

174 M. Viroli and F. Damiani

3.4 An Example Application of the Semantics

Consider the function definition def int main() is { #src : @ + #dist },
where #src is a sensor of type int (with default value 0), #dist is a sensor of type
posint (positive integers, with default value 1) and + is a built-in sum operator which
can be given signature int +(int,posint). Note that operator + (which is the pro-
gression function used in this spreading expression) is a self-stabilising progression,
according to the definition in 3.1.

Starting from an initial empty configuration, we move by rule [N-ENV] to a new
environment with the following features:

– the domain is formed by 2n (n≥ 1) devices ι1, . . . , ιn, ιn+1, . . . , ι2n;
– the topology is such that any device ιi is connected to ιi+1 and ιi−1 (if they exist);
– sensor #dist gives 1 everywhere;
– sensor #src gives 0 on the devices ιi (1 ≤ i ≤ n, briefly referred to as left devices)

and a value u (u > n+ 1) on the devices ι j (n+ 1 ≤ j ≤ 2n, briefly referred to as
right devices).

Accordingly, the left devices are all assigned to value-tree 0(0,1), while the right ones
to u(u,1): hence, the resulting field maps left devices to 0 and right devices to 1—
remember such evaluations are done assuming nodes are isolated, hence the result is
exactly the value of the source expression. With this environment, the firing of a device
can only replace the root of a value-tree, making it the minimum of the source expres-
sion’s value and the minimum of the successor of neighbour’s values. Hence, any firing
of a device that is not ιn+1 does not change its value-tree. When ιn+1 fires instead by
rule [N-FIR], its value-tree becomes 1(u,1), and it remains so if more firings occur next.

Now, only a firing at ιn+2 causes a change: its value-tree becomes 2(u,1). Going on
this way, it easy to see that after any n-fair firing sequence the network self-stabilises
to the field state where left devices still have value-tree 0(u,1), while right devices
ιn+1, ιn+2, ιn+3, . . . have value-trees 1(u,1),2(u,1),3(u,1), . . ., respectively. That is, the
root of such trees form a hop-count gradient, measuring minimum distance to the source
nodes, namely, the left devices.

It can also be shown that any environment change, followed by a sufficiently long
firing sequence, makes the system self-stabilise again, possibly to a different field state.
For instance, if the two connections of ι2n−1 to/from ι2n−2 break (assuming n > 2), the
part of the network excluding ι2n−1 and ι2n keeps stable in the same state. The values
at ι2n−1 and ι2n start raising instead, increasing of 2 alternatively until both reach the
initial value-trees u(u,1)—and this happens in finite time by a fair evolution thanks to
the local noetherianity property of stabilising progressions. Note that the final state is
still the hop-count gradient, though adapted to the new environment topology.

An example of field that is not self-stabilising is { #src : @ }: there, progression
function is the identity, which is not a stabilising progression (cf. Definition 1). As-
suming a connected network, and #src holding value vs in one node and top(int)
in all others, then any configuration where all nodes hold the same value v less than
or equal to vs is trivially stable. This would model a source gossiping a fixed value vs

everywhere: if the source suddenly gossips a value v′s smaller than v, then the network
would self-organise and all nodes would eventually hold v′s. However, if the source then

A Calculus of Self-stabilising Computational Fields 175

gossips a value v′′s greater than v′s, the network would not self-organise and all nodes
would remain stuck to value v′s.

4 Properties

In this section we state the main property of the proposed calculus, namely, self-
stabilisation. Few preliminaries and results are given first. Given an expression e such
that x : T � e : T, the set WFVT(x : T,e,T) of the well-formed value-trees for e, is induc-
tively defined as follows: θ ∈ WFVT(x : T,e,T) if there exist

– a sensor mapping σ ,
– well-formed tree environments θ ∈WFVT(x : T,e,T); and
– values v such that length(v) = length(x) and /0 � v : T;

such that σ ;θ � e[x := v] ⇓ θ holds. As this notion is defined we can state the following
two theorems, guaranteeing that from a properly typed environment, evaluation of a
well-typed expression yields a properly typed result and always terminates, respectively.

Theorem 1 (Device computation type preservation). If x : T � e : T, σ is a sensor
mapping, θ ∈WFVT(x : T,e,T), length(v) = length(x), /0 � v : T and σ ;θ � e[x := v] ⇓
θ , then /0 � ρ(θ) : T.

Proof (sketch). By induction on the application of the rules in Fig. 5 (by observing that,
in rules [E-OP], [E-FUN] and [E-GRD], the use of the auxiliary function πi(·) preserves the
well formedness of the value-trees θ).

Theorem 2 (Device computation termination). If x : T � e : T, σ is a sensor mapping,
θ ∈ WFVT(x : T,e,T), length(v) = length(x) and /0 � v : T, then σ ;θ � e[x := v] ⇓ θ
for some value-tree θ .

Proof (sketch). By induction on the syntax of expressions and on the number of func-
tion calls that may be encountered during the evaluation of the closed expression
e[x := v] (cf. sanity condition (iii) in Section 3.1).

The two theorems above basically state soundness and termination of local compu-
tations, that is, from a well-typed input computation completes without errors. On top
of them we state the main technical result of the paper, namely, self-stabilisation of any
well-constructed field expression in any environment.

Theorem 3 (Network self-stabilisation). Given a well-typed program, any reachable
network configuration 〈F ;E〉 self-stabilises.

Proof (sketch). By induction on the syntax of closed expressions e and on the number
of function calls that may be encountered during the evaluation of e. Let Fe denote the
computation field associated to the closed expression e, so F = Femain . The idea is to
prove the following auxiliary statements:

1. For every network configuration N, there exists k ≥ 0 such that: N =⇒k N′ implies
N′ is stable.

176 M. Viroli and F. Damiani

2. For every network configuration 〈Fe;E〉, there exist a stable field F ′
e and an evolu-

tion 〈Fe;E〉 =⇒h 〈F ′
e;E〉 (h ≥ 0) such that: (i) F ′

e is univocally determined by E;
and (ii) for every stable network configuration 〈F ′′

e ;E〉 it holds that F ′′
e = F ′

e.

For both the statements, the key case of the proof is that of a spreading expression,
e = {e0 : g(@,e1, . . . ,en)}, which exploits the following auxiliary results: (i) If e0 sta-
bilises to Fe0 , and 〈Fe;E〉 =⇒1 〈F ′′′

e ;E〉 then the field F ′′′
e is pre-stable, i.e., for every

device ι it holds that F ′′′
e (ι) ≤ F ′′′

e0
(ι) = Fe0(ι); (ii) Pre-stability is preserved by firing

evolution (i.e., if N1 is pre-stable and N1 =⇒ N2, then N2 is pre-stable); and (iii) Every
stable network configuration is pre-stable. Moreover, statement 2 above is proved by:
(i) Building an evolution 〈Fe;E〉 =⇒1 〈F ′′′

e ;E〉 =⇒h−1 〈F ′
e;E〉 together with a set of

stable devices S such that: (i.a) at the beginning of the evolution the set S is empty; (i.b)
at the end of the evolution the set S contains all the devices of the network; (i.c) during
the construction of the evolution, if a device ι is added to S, then ι is stable, its value is
the minimum about the values of the devices �∈ S both in the current network con-
figuration and in the final network configuration 〈F ′

e;E〉, and that value is univocally
determined by E; and (ii) Showing that, for any stable network configuration 〈F ′′

e ;E〉, if
the devices fire in the same order they fire in the evolution 〈F ′′′

e ;E〉=⇒h−1 〈F ′
e;E〉 than

each device must assume the same value it has in F ′
e. So, since 〈F ′′

e ;E〉 is stable, it must
hold that F ′′

e = F ′
e. The construction of the evolution 〈F ′′′

e ;E〉 =⇒h−1 〈F ′
e;E〉 exploits

the fact that g is a stabilising progression and that 〈F ′′′
e ;E〉 is pre-stable.

The fact that any well-typed program self-stabilises in any well-formed environment
independently of any intermediate computation state is a result of key importance. It
means that any well-typed expression can be associated to a final and stable field,
reached in finite time by fair evolutions and adapting to the shape of the environment.
This acts as the sought bridge between the micro-level (field expression in program
code), and the macro-level (expected global outcome).

5 Conclusion, Related and Future Work

This paper aims at contributing to the general problem of identifying sound techniques
for engineering self-organising applications. In particular: we introduce a tiny yet ex-
pressive calculus of computational fields, we show how it can model several spatial pat-
terns of general interest (though focussing on examples of crowd steering scenarios in
ad-hoc networks) and then prove self-stabilisation. Some of the material presented here
was informally sketched in [18]: the present paper fully develops the idea, providing
a type-sound calculus, a precise definitions of self-stabilisation, and proved sufficient
conditions for self-stabilisation.

The problem of identifying self-stabilising algorithms in distributed systems is a
long investigated one [7]. Creating a hop-count gradient is considered as a preliminary
step in the creation of the spanning tree of a graph in [7]: an algorithm known to self-
stabilise. Our main novelty in this context is that self-stabilisation is not proved for a
specific algorithm/system: it is proved for all fields inductively obtained by functional
composition of fixed fields (sensors, values) and by a gradient-inspired spreading pro-
cess. As argued in [8], there is a whole catalogue of self-organisation patterns can be
derived this way.

A Calculus of Self-stabilising Computational Fields 177

To the best of our knowledge, the only work aiming at a mathematical proof of
stabilisation for the specific case of computational fields is [4]. There, a self-healing
gradient algorithm called CRF (constraints and restoring forces) is introduced to esti-
mate physical distance in a spatial computer, where the neighbouring relation is fixed
to unit-disc radio, and node firing is strictly connected to physical time. Compared to
our approach, the work in [4] tackles a more specific problem, and is highly dependent
on the underlying spatial computer assumptions.

Our work is aimed to find applications to a number of models, languages, and archi-
tectures rooted on spatial computations and computational fields, a thorough review of
which may be found in [5]. Examples of such models include the Hood sensor network
abstraction [23], the στ-Linda model [21], the SAPERE computing model [15], and
TOTA middleware [12], which all implement computational fields using similar no-
tions of spreading. More generally, Proto [13,3] and its formalisation [19,20], provides
a functional model which served as a starting point for our approach. Proto is based
on a wider set of constructs than the one we proposed, though, which makes it very
hard to formally address general self-stabilisation properties. In particular, it was key
to our end to neglect recursive function calls (in order to ensure termination of device
fires), stateful operations (in our model, the state of a device is always cleaned up before
computing the new one), and to restrict aggregation to minimum function and progres-
sion to what we called “self-stabilising” functions. In its current form, we believe our
result already implies self-stabilisation of certain Proto fields, like those intertwining
constructs rep (state), nbr (access to neighbours), and min-hood+ (min-aggregation)
as follows: (rep x (inf) (min F (g (min-hood+ (nbr x)) F1 .. Fn))). One
such connection, however, needs to be formally addressed in future works, along with
the possibility of widening the applicability of our result by releasing some assumption.
Additionally, we plan to develop an algorithm to check whether the progression func-
tion at hand is actually self-stabilising. Another interesting future thread concerns find-
ing a characterisation of expressiveness of computational field mechanisms and spatial
computing languages [2], with clear implications in the design of new mechanisms.

Acknowledgements. We thank the anonymous COORDINATION referees for com-
ments and suggestions for improving the presentation.

References

1. Bachrach, J., Beal, J., McLurkin, J.: Composable continuous space programs for robotic
swarms. Neural Computing and Applications 19(6), 825–847 (2010)

2. Beal, J.: A basis set of operators for space-time computations. In: Spatial Computing Work-
shop (2010), http://www.spatial-computing.org/scw10/

3. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator networks.
IEEE Intelligent Systems 21, 10–19 (2006)

4. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: Proceedings
of ACM SAC 2008, pp. 1969–1975. ACM (2008)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: Lan-
guages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, ch. 16, pp. 436–501. IGI Global (2013), A longer
version available at, http://arxiv.org/abs/1202.5509

http://www.spatial-computing.org/scw10/
http://arxiv.org/abs/1202.5509

178 M. Viroli and F. Damiani

6. Claes, R., Holvoet, T., Weyns, D.: A decentralized approach for anticipatory vehicle rout-
ing using delegate multiagent systems. IEEE Transactions on Intelligent Transportation Sys-
tems 12(2), 364–373 (2011)

7. Dolev, S.: Self-Stabilization. MIT Press (2000)
8. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos, J.L.: De-

scription and composition of bio-inspired design patterns: a complete overview. Natural
Computing 12(1), 43–67 (2013)

9. Giavitto, J.-L., Michel, O., Spicher, A.: Spatial organization of the chemical paradigm and the
specification of autonomic systems. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer,
A. (eds.) Software Intensive Systems. LNCS, vol. 5380, pp. 235–254. Springer, Heidelberg
(2008)

10. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for Java
and GJ. ACM Transactions on Programming Languages and Systems 23(3) (2001)

11. MacLennan, B.: Field computation: A theoretical framework for massively parallel analog
computation, parts i-iv. Technical Report Department of Computer Science Technical Report
CS-90-100, University of Tennessee, Knoxville (February 1990)

12. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The
tota approach. ACM Trans. on Software Engineering Methodologies 18(4), 1–56 (2009)

13. MIT Proto. software available at, http://proto.bbn.com/ (retrieved January 1, 2012)
14. Montagna, S., Pianini, D., Viroli, M.: Gradient-based self-organisation patterns of anticipa-

tive adaptation. In: Proceedings of SASO 2012, pp. 169–174. IEEE (September 2012)
15. Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Zambonelli,

F.: Injecting self-organisation into pervasive service ecosystems. In: Mobile Networks and
Applications, pp. 1–15 (September 2012) (online first)

16. Omicini, A., Viroli, M.: Coordination models and languages: From parallel computing to
self-organisation. The Knowledge Engineering Review 26(1), 53–59 (2011)

17. Tokoro, M.: Computational field model: toward a new computing model/methodology for
open distributed environment. In: Proceedings of the Second IEEE Workshop on Future
Trends of Distributed Computing Systems, 1990, pp. 501–506 (1990)

18. Viroli, M.: Engineering confluent computational fields: from functions to rewrite rules. In:
Spatial Computing Workshop (SCW 2013), AAMAS 2013 (May 2013)

19. Viroli, M., Beal, J., Usbeck, K.: Operational semantics of Proto. Science of Computer Pro-
gramming 78(6), 633–656 (2013)

20. Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal, C., Villari, M.
(eds.) ESOCC 2013. CCIS, vol. 393, pp. 114–128. Springer, Heidelberg (2013)

21. Viroli, M., Pianini, D., Beal, J.: Linda in space-time: an adaptive coordination model for
mobile ad-hoc environments. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274,
pp. 212–229. Springer, Heidelberg (2012)

22. Weyns, D., Boucké, N., Holvoet, T.: A field-based versus a protocol-based approach for
adaptive task assignment. Autonomous Agents and Multi-Agent Systems 17(2), 288–319
(2008)

23. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstraction for
sensor networks. In: Proceedings of the 2nd International Conference on Mobile Systems,
Applications, and Services. ACM Press (2004)

24. Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A., Serugendo, G.D.M., Risoldi,
M., Tchao, A.-E., Dobson, S., Stevenson, G., Ye, J., Nardini, E., Omicini, A., Montagna, S.,
Viroli, M., Ferscha, A., Maschek, S., Wally, B.: Self-aware pervasive service ecosystems.
Procedia CS 7, 197–199 (2011)

http://proto.bbn.com/

The Stochastic Quality Calculus

Kebin Zeng, Flemming Nielson, and Hanne Riis Nielson

DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby

Abstract. We introduce the Stochastic Quality Calculus in order to
model and reason about distributed processes that rely on each other in
order to achieve their overall behaviour. The calculus supports broad-
cast communication in a truly concurrent setting. Generally distributed
delays are associated with the outputs and at the same time the inputs
impose constraints on the waiting times. Consequently, the expected in-
puts may not be available when needed and therefore the calculus allows
to express the absence of data.

The communication delays are expressed by general distributions and
the resulting semantics is given in terms of Generalised Semi-Markov
Decision Processes. By restricting the distributions to be continuous
and by allowing truly concurrent communication we eliminate the non-
determinism and arrive at Generalised Semi-Markov Processes (GSMPs);
further restriction to exponential distributions gives rise to numerically
analysable GSMPs, in particular using techniques from stochastic model
checking.

1 Introduction

Networked communication is the key for modern distributed systems as found in
Systems of Systems [1] – encompassing service-oriented systems as well as cyber-
physical systems – and including systems that are essential for the infrastructure
in the 21st century. Safety as well as security are key concerns for many of these
systems and in particular denial of service attacks have received attention. Mas-
sive amounts of requests may be sent to a process thereby making it unavailable
for genuine communication and in the case of wireless communication the actual
communication may also be disrupted by interference with the frequency band
and physically shielding the antennas of senders and receivers.

The Quality Calculus. The classical “super-optimistic” programming style of
traditional software development no longer suffices – we need to take into ac-
count that the expected communications might not occur and that the systems
still have to coordinate to the extent possible: we have to turn to a “realistic-
pessimistic” programming style. The Quality Calculus introduced in [2] is a first
step towards a calculus supporting this change of paradigm; the communication
paradigm is point-to-point (as in the π-calculus [3]) and is accompanied by a

E. Kühn and R. Pugliese (Eds.): COORDINATION 2014, LNCS 8459, pp. 179–193, 2014.
c© IFIP International Federation for Information Processing 2014

180 K. Zeng, F. Nielson, and H.R. Nielson

SAT-based analysis for checking whether the processes are vulnerable to unre-
liable communication. Probabilistic reasoning is added to the calculus in [4] in
a setting where each input binder is annotated with a probability distribution
indicating the trustworthiness of the inputs received with respect to a security
lattice; a probabilistic trust analysis is then developed in order to identify the
extent to which a robust programming style has been adhered to. Furthermore,
a broadcast version of the calculus is developed in [5]; here it is additionally
extended with cryptographic primitives and the focus is on the development
of a rewriting semantics allowing us to reason – in a discrete setting – about
unsolicited messages as well as the absence of expected communications.

Our contribution. The Stochastic Quality Calculus (SQC) presented in this pa-
per is an extension of the previous works, and it differs in several aspects. First,
it supports truly concurrent broadcast communication meaning that several pro-
cesses may send messages at the same time (also over the same channel) and
all processes that are ready to receive these messages must do so. Another main
difference it that the timing aspect plays a central role. The time for completing
a communication depends on the hardware architecture and the communica-
tion protocols but also the cyber environment. Hence real time considerations
are relevant for those communications taking exact duration, and stochastic time
considerations are relevant for those taking random time influenced by the cyber
environment.

In our calculus, we use generally distributed random variables to characterise
communication delays, so that both continuous stochastic time and real (ex-
act duration) time can be expressed. An output process has the form t1!

Gt2.P
specifying that the value t2 should be communicated over the channel t1 within
some time determined by the general distribution G. A unique feature of the
Stochastic Quality Calculus is an input binder of the form:

&[a,a′)
q (c1?x1, · · · , cn?xn).

It specifies that the process is waiting for n inputs over the channels c1, · · · , cn;
it is waiting for at least a time units and at most a′ time units, where a < a′.
The quality predicate q determines when sufficient inputs have been achieved
and will then allow the process to continue before a′ time units have passed
(provided that a time units already have passed). The quality predicate q may
be ∃ meaning that at least one of the n inputs must have been received, it may be
∀ meaning that all the n inputs must have been received, but other combinations
are also possible. The continuation process will then have to inspect which inputs
have been received and take appropriate actions in each case – thereby enforcing
the “realistic-pessimistic” programming style alluded to above.

Related work. The challenge of combining concurrency and stochasticity has
been addressed in previous stochastic process calculi as PEPA [6] and IMC [7];
the challenge of combining concurrency, stochasticity and mobility have been
addressed in the stochastic π-calculus [8] and StoKLAIM [9]; the challenge of

The Stochastic Quality Calculus 181

combining concurrency and real time have been addressed in timed CCS [10]
and PerTiMo [11]. Most stochastic calculi make use of exponential distributions
(denoted Exp) to express random delay, and can then use classic techniques
and tools for Markov chain analysis. However, it is well-known that Exp distri-
butions often are inadequate to faithfully model many phenomena, where the
systems contain real time delays or highly variable distributed durations. The
work of e.g. [12, 13] go one step further and incorporate general distributions
thereby expressing a rich class of randomness. However, the real time (exact
duration) delays are much less frequently incorporated in stochastic process
calculi.

A CCS-like process algebraic framework introduced in [14] considers both
discrete real time and generally distributed stochastic time. It uses a “spent-
lifetime” semantics to track the time passed since activation to perform a race
among parallel processes without a clock. Differently, SQC utilizes a clock to
keep tracking residual lifetimes for the race, which avoids the complexity of time
additivity mentioned in [14]. Besides, the transformational semantics of SQC
gives a clear picture of the separation of the stochastic aspect and the real time
aspect:

– for local processes, process transitions replace all stochastic time variables
by sampled clock values with no consideration of time features;

– for global systems, real timed system transitions generate events and update
the clocks with no consideration of stochastic features.

Overview. In Section 2 we introduce the syntax of the Stochastic Quality Cal-
culus. The operational semantics of processes is presented in Section 3; it makes
use of general distributions and in Section 4 we show that it amounts to Gen-
eralised Semi-Markov Decision Processes (GSMDPs) [15] by modelling truly
concurrent broadcast communication as discrete events. Some of the discrete
events in GSMDPs are controllable, which introduces a decision dimension to
execute controllable events nondeterministically; a policy (as in Markov deci-
sion processes [16]) is introduced to deal with the nondeterminism. The classical
problem is then to find an optimal strategy to maximise some reward function
on GSMDPs and we refer to [15, 17] for the analysis.

In order to avoid the decision dimension and perform purely stochastic reason-
ing on the systems, in Section 5 we introduce two analysable fragments of SQC
that both admit truly concurrent behaviour. The first fragment does not con-
tain the non-determinism thereby obtaining Generalised Semi-Markov Processes
(GSMPs) [18, 19] that can be analysed using statistical model checking [20, 21].
The second fragment maps further to numerically analysable GSMPs [22] that
can be analysed using stochastic model checking techniques for Continuous Time
Markov Chains [23] and Continuous Stochastic Logic [24]. We conclude and
present future work in Section 6.

182 K. Zeng, F. Nielson, and H.R. Nielson

2 Syntax of SQC

The syntax of the Stochastic Quality Calculus (SQC) consists of processes P ,
input binders b and terms t, as given in Table 1. A system S consists of a number
of process definitions and a main process:

define A1 � P1

...

An � Pn

in P∗
using c1, · · · , cm

Here Ai is the name of a process, Pi is its body, P∗ is the initial main process
and c1, · · · , cm is a list of all the global channel names.

A process can have the form (νc)P introducing a new channel c with scope
P , and it can be an empty process denoted 0; we shall feel free to dispense with
trailing occurrences of the process 0. An output process has the form t1!

Gt2.P
specifying that value t2 is transmitted over channel t1 with a communication
delay specified by the general distribution G. In SQC, we use broadcast trans-
mission, so that all the receivers waiting on channel t1 receive the value t2. An
input process has the general form b.P , where b is a binder specifying the desired
inputs with real time constraints to be satisfied before continuing with P .

A binder may have the form t?x stating that some value should be received
over channel t, and stored in the variable x. More generally, a binder has the form
&I

q(t1?x1, · · · , tn?xn) indicating that n inputs are simultaneously active: a quality
predicate q determines whether sufficient inputs have been received to continue; a
non-empty semi-closed time interval I determines when control is transferred to
the continuation processes. The quality predicate q expresses when enough inputs
have been received to continue; it can be ∃ meaning that one input is required,
or it can be ∀ meaning that all inputs are required; formally ∃(x1, · · · , xn) ⇔
x1∨· · ·∨xn and ∀(x1, · · · , xn)⇔ x1∧· · ·∧xn. For more expressiveness, we shall
allow quality predicates as for example [1∨ (2∧ 3)](x1, x2, x3)⇔ x1 ∨ (x2 ∧ x3).
A non-empty semi-closed time interval I takes the form [a, a′) meaning that
the binder has the minimum waiting time a and maximum waiting time a′ (for
0 ≤ a < a′ ≤ ∞). As special cases a may be 0 or a′ may be ∞ and the
subsequent development can be simplified in these cases; we shall feel free to
leave the interval field empty when I = [0,∞).

As an example, the system &
[a,a′)
∃ (c1?x1, c2?x2).P || c1!G1t1 || c2!G2t2 expresses

that two output processes are simultaneously active at time 0, and wait for their
output to be accomplished; the quality predicate ∃ of the input process will be
evaluated at time a for the first time and the input process will continue with P
if at least one of the two inputs has arrived. If not, the input process shall wait
until one input arrives in the period [a, a′); if no input has arrived at time a′,
the process shall stop waiting (i.e. time-out) and continue with P even though
no input has been received.

The Stochastic Quality Calculus 183

Table 1. Syntax of the Stochastic Quality Calculus

P ::= (νc)P | 0 | t1!
Gt2.P | b.P | case x of some(y) : P1 else P2

| P1 ||P2 | A

b ::= t?x | &I
q(t1?x1, · · · , tn?xn)

t ::= y | c

In SQC, communication delays are associated with outputs. Thus, a process
takes a generally distributed time to send some data out on the channel, but
it takes instantaneous time for receiving and storing the data. This is reflected
in the syntax where we write t1!

Gt2 for output and t?x for input. Associating
delays with outputs rather than inputs is a deliberate design decision that is
helpful for identifying analysable fragments of SQC later.

As a consequence of using a general binder, some variables might not obtain
proper values as the corresponding inputs are missing. To model this we shall
use optional data types as known for example from Standard ML [25]. Let y de-
note data variables and let x denote optional data variables. Also, let some(· · ·)
express the presence of some data and none the absence of data. The case con-
struct case x of some(y) : P1 else P2 has the following meaning: if x evaluates to
a value some(c) then we bind c to y and continue with P1; otherwise x evaluates
to none and we continue with P2.

Continuing with the processes we also have parallel composition P1 ||P2. A
process can also be a recursive call A to one of the defined processes.

We forbid recursion through parallel composition, thereby ensuring that the
resulting semantics has a finite state space. We shall say that A � P has no
recursion through parallel composition if the syntax tree for P does not contain
any process nameB in a descendant of a || construct, such thatB might (perhaps
indirectly) call A.

We also forbid the creation of new channels in recursion, so that we have a
finite number of channels that can be used. Let fc(P) be the set of free channel
names in the process P ; for Ai � Pi we define fc(Ai) as the least solution to
the simultaneous equation system fc(Ai) = fc(Pi) (for i = 1 · · ·n). We say that
A � P has no creation of new channels in recursion if the syntax tree for P does
not contain any process name in a descendant of a (νc) construct.

Finally, for a system of the form displayed above we shall require that the
initial main process P∗ as well as the bodies Pi have no free variables over neither
data nor optional data, and that their free constants are among c1, · · · , cm.

3 Semantics of SQC

The semantics consists of a structural congruence and a transition relation for
processes and on top of this we define a transition relation for systems. To
facilitate this we need to define the semantics of binders and this includes a

184 K. Zeng, F. Nielson, and H.R. Nielson

Table 2. The structural congruence

P ≡ P (νc)P ≡ P if c /∈ fc(P)

A ≡ P if A � P P1 ≡ P2 ⇒ C[P1] ≡ C[P2]

P || 0 ≡ P P1 ||P2 ≡ P2 ||P1

P1 ≡ P2 ⇒ P2 ≡ P1 P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3

(νc) (P1 ||P2) ≡ ((νc)P1) ||P2 if c /∈ fc(P2)

(νc1) (νc2)P ≡ (νc2) (νc1)P if c1 �= c2

Table 3. Transition relation for processes

[INPUT]
b ::tt θ

b.P → Pθ
[OUTPUT]

ω ∼ G

c!Gd.P → c!ωd.P

[CONGRU]
P ≡ Q Q → R

P → R
[PARA]

P1 → P ′
1

P1 ||P2 → P ′
1 ||P2

[CASE1] case some(c) of some(y) : P1 else P2 → P1[y �→ c]

[CASE2] case none of some(y) : P1 else P2 → P2

transformation, a test on when the binder is satisfied and a transition relation for
binders. Throughout this section we need to take care of the generally distributed
output delays and the timing requirements.

The structural congruence defined in Table 2 is standard. The contexts C are
defined by:

C ::= [] | (νc)C | C ||P | P ||C

As usual we apply α-conversion whenever needed to avoid accidental capture of
names during substitution.

The transition relation for processes has the form P → P ′ and describes how a
process P evolves into another process P ′. The relation is defined in Table 3 and
we notice that the rules [CONGRU] and [PARA] are standard. The two axioms
[CASE1] and [CASE2] are straightforward and this leaves us with the rules for
input and output; before explaining those we need some preliminaries.

Transforming the binders. We take a transformational approach to give the
semantics to binders such that all the real time constraints from the binders are
encoded as Dirac distributed delays. For clarity we shall write TSQC for the
transformed version of SQC and observe that TSQC will be a fragment of SQC.

The Stochastic Quality Calculus 185

In the following let)≥0 be the set of nonnegative real numbers, let δa denote a
Dirac distribution with parameter a ∈)≥0, and let ω be a clock value generated
according to the δa distribution (written ω ∼ δa); then we have P(ω ≤ a)−P(ω <
a) = 1. Thus real time delays can be expressed because a Dirac distribution δa
is a special case of a general distribution G.

The idea is now to transform an SQC process of the form
&I

q(t1?x1, · · · , tn?xn).P into a process using specific channels for keeping
track of the time and to let a modified version of the binder react when the
time signals arrive. Depending on the interval I used in &I

q(t1?x1, · · · , tn?xn),
different transformations are considered; here we shall only consider the case
where I is [a, a′) (and 0 < a < a′ < ∞) and note that simpler transformations
are mandatory in the special cases where a is 0 and/or a′ is ∞. Then we shall

replace the SQC process &
[a,a′)
q (t1?x1, · · · , tn?xn).P with the TSQC process

(νca) (νca′)
(
&q̇(t1?x1, · · · , tn?xn, ca?xa, ca′?xa′).P || ca!δa• || ca′ !δa′ •

)
,

Here two fresh outputs with Dirac distributed delays make use of fresh channels
ca and ca′ to send the signals corresponding to the beginning and the end of
the time interval. The binder itself is modified to listen for these signals and xa

and xa′ are fresh variables used only to store the real time signal •. Finally, the
quality predicate is modified to record this by taking q̇(x1, · · · , xn, xa, xa′) =
(q(x1, · · · , xn) ∧ xa) ∨ xa′ .

We shall apply the above transformation rules for all the binders in the sys-
tem, and we call &q̇(t1?x1, · · · , tn?xn, ca?xa, ca′?xa′) a transformed binder of
TSQC. To shorten the notation (by keeping ca?xa, ca′?xa′ implicit), we write
&q̇(t1?x1, · · · , tn?xn) for the transformed binder.

Evaluation of binders. Now we introduce the relation

b ::v θ

to record whether all required inputs in b have been performed, by means of
v ∈ {tt,ff}, as well as the composite substitution that has been constructed, by
means of θ; it is defined in Table 4 and assumes that we have extended syntax

d ::= c |•
b ::= t?x |&q̇(sb1, · · · , sbn)
sb ::= t?x | [x *→ some(d)]

where [x *→ some(d)] is the substitution θ that maps the variable x to some(d).
We shall use id for the identity substitution and θ2θ1 for the composition of two
substitutions, so (θ2θ1)(x) = θ2(θ1(x)) for all x.

Returning to the definition of the transition relation P → P ′ in Table 3 we
now see that the rule [INPUT] simply checks whether the binder is satisfied and
if so it will apply the corresponding substitution to the continuation process.

186 K. Zeng, F. Nielson, and H.R. Nielson

Table 4. Evaluation of binders

t?x ::ff [x �→ none] [x �→ some(c)] ::tt [x �→ some(c)] [x �→ some(•)] ::tt [x �→ some(•)]
sb1 ::v1 θ1 · · · sbn ::vn θn

&q̇(sb1, · · · , sbn) ::v θn · · · θ1
, where v = q̇(v1, · · · , vn).

Table 5. Transition relation for binders

[AX1] (ci!
ωdi)

m
i=1 � c?x

ω,(ci)
m
i=1−→ [x �→ some(di)], if c = ci

[AX2] (ci!
ωdi)

m
i=1 � c?x

ω,(ci)
m
i=1−→ c?x, if c �∈ {c1, . . . , cm}

[AX3] (ci!
ωdi)

m
i=1 � [x �→ some(d)]

ω,(ci)
m
i=1−→ [x �→ some(d)]

[AX4]

∧
j∈{1,...,n}(ci!

ωdi)
m
i=1 � sbj

ω,(ci)
m
i=1−→ sb′j

(ci!
ωdi)

m
i=1 � &q̇(sb1, · · · , sbn)

ω,(ci)
m
i=1−→ &q̇(sb

′
1, · · · , sb′n)

.

Active and inactive outputs. To define the transition relation for binders we
shall distinguish between active and inactive outputs. An output is active when
it starts to send data over some channel, otherwise it is inactive. As soon as an
output becomes active, we replace its delay distribution G with a clock ω ∈)≥0

to track the residual time for the output to complete. The clock ω is initialised
by a sampled nonnegative value according to the distribution of the channel
(written ω ∼ G). Note that the case where ω = 0 indicates that the output
completes instantaneously. To formalise that an inactive output becomes active,
we extend the syntax by replacing the delay distribution with an explicit clock
value like c!ωd. This is depicted by the rule [OUTPUT] in Table 3.

Furthermore, we assume that all the distributed processes share a global clock,
and that the time of an output will be updated after each system transition (to
be introduced below). In this manner, all active outputs implicitly remember the
entire history of the time that has passed; we shall discuss this point later when
we define the rule for system transitions.

Transition relation for binders. The transition relation for binders takes the
form

(ci!
ωdi)

m
i=1 � b

ω,(ci)
m
i=1−→ b′

where (ci!
ωdi)

m
i=1 records the m concurrently active outputs that will modify the

binder b so that it becomes b′ and where the annotation ω, (ci)
m
i=1 records the

communication over the channels at the specified time. The relation is defined
by the axioms [AX1] to [AX4] in Table 5 and is explained below.

The first axiom [AX1] records the change of a simple input c?x by receiving
some value di from the channel ci in (ci)

m
i=1 at time ω. In the special case where

The Stochastic Quality Calculus 187

Table 6. Transition relation for systems

[MATCH]
(ci!

ωdi)i∈I � bk
ω,(ci)i∈I−→ b′k for all k ∈ K

define · · · in P using f
ω,(ci)i∈I

=⇒ define · · · in P ′ using f ,e
, if

{
{f} ∩ {e} = ∅,
I 	= ∅,

where P →∗≡ (νe)
(
(|| i∈Ici!

ωdi.Pi) || (|| j∈Jcj !
ω+ωjdj .Pj) || (|| k∈Kbk.Pk)

)
for ωj ∈ �>0,

and P ′ = (|| i∈IPi) || (|| j∈Jcj !
ωjdj .Pj) || (|| k∈Kb′k.Pk).

the (ci!
ωdi)

m
i=1 contains both c!ωd1 and c!ωd2 (i.e. two broadcasts take place over

the same channel at the same moment), it is nondeterministic whether d1 or d2
shall be received for the input, so the axiom specialises to

c!ωd1, c!
ωd2 � c?x

ω,(c,c)−→ [x *→ some(di)], where i ∈ {1, 2}.

This is a deliberate design decision and alternatives, as for example that none
of the two values are received due to the collision, can be modelled if wanted.

The axiom [AX2] records that no data is received for a simple input at time
ω because of the mismatch between inputs and outputs whereas [AX3] records
that an already received input retains its value. From the individual records, we
express the change of a transformed binder as the collection of individual input
changes as recorded in the rule [AX4].

The transition relation for systems. Let us now turn to the semantics of systems;
it is defined in Table 6 by a transition relation of the form

define · · · in P using f
ω,(ci)i∈I
=⇒ define · · · in P ′ using f ′

The annotation on the arrow describes the truly concurrent communications
(ci)i∈I happening at time ω. The rule [MATCH] expresses that the main process
P of the system first executes all the local steps from each distributed compo-
nent; for this we use the reflexive transitive closure of the transition relation for
processes →∗ composed with the structural congruence ≡. Note that the execu-
tion of the subprocesses may introduce new channels into the system; they are
denoted e.

The distributed components of the processes resulting from this can be clas-
sified into three cases:

(1) || i∈Ici!
ωdi.Pi are processes that will perform outputs at time ω;

(2) || j∈J cj !
ω+ωjdj .Pj are the processes that will perform outputs at

time ω + ωj for ωj ∈)>0 and hence later than at time ω; and
(3) || k∈Kbk.Pk are the processes that are ready to perform inputs.

Given a set of broadcasts over (ci)i∈I at time ω, the resulting system will be
composed of the processes obtained from (1), (2) and (3). The processes of (1)

188 K. Zeng, F. Nielson, and H.R. Nielson

will have completed their outputs so they will become || i∈IPi. The processes of
(2) are still waiting to perform their outputs and their clock values will now be
reduced so they become || j∈Jcj !

ωjdj .Pj . Finally, the processes of (3) will simply
be updated to record which inputs they have performed as in || k∈Kb′k.Pk.

This completes the semantics of SQC as transformed into TSQC.

4 SQC is GSMDP

The transition systems obtained from the operational semantics turn out to
constitute Generalised Semi-Markov Decision Processes (GSMDPs).

Definition 1. A Generalised Semi-Markov Decision Process (motivated by [15])
is a tuple (S,E,A, {Es}s∈S , {Ge}e∈E , {Ωe}e∈E,=⇒), where

– S is a finite and non-empty set of states,
– E is a finite and non-empty set of events,
– A ⊆ E is a set of so-called controllable events,
– Es ⊆ E specifies for a state s ∈ S a set of events enabled at s,
– Ge specifies for an event e ∈ E a general probability distribution,
– Ωe specifies for an event e ∈ E a real-valued clock; when the event e becomes

enabled, ωe ∈)≥0 is initialised by sampling from the distribution Ge to
express the residual time until event e occurs,

– =⇒: S × {Ωe}e∈E × E × S is a transition relation: given s, s′ ∈ S, ω ∈
{Ωe}e∈E, e ∈ Es, the transition s

ω,e
=⇒ s′ expresses that a transition from

s to s′ is triggered by an event e with ω being the sojourn time in state s;
the sojourn time ω in state s is determined by the smallest clock value over
{Ωe}e∈Es .

The dynamics of GSMDPs are described by execution paths. An execution

path ρ for a GSMDP is a sequence ρ = s0
ω0,e0
=⇒ s1

ω1,e1
=⇒ s2

ω2,e2
=⇒ · · · with si ∈ S,

ei ∈ Esi and ωi ≥ 0 being the sojourn time in state si. The length of an execution
path equals the number of transitions along the path, which can be either finite
or infinite. The decision dimension of GSMDPs arises in the situation where
s

ω,e
=⇒ s1, s

ω,e
=⇒ s2 and s1 �= s2. A policy (as in Markov Decision Processes [16])

picks an event in the set of enabled controllable events of a state to generate
a partial execution path. Thereafter, the optimal strategy over different policy
executions over a GSMDP can be obtained using the techniques of [15, 17].

For a system expressed in TSQC, we model a sequence (more precisely a
multiset) of truly concurrent broadcast communications as an event of a GSMDP.
Therefore, when more than one output take place at the same time on the same
channel, there exists a nondeterministic choice of the potential successive system
configurations.

Theorem 1. The semantics of systems in SQC amounts to GSMDPs.

Proof. To see this we shall now define a GSMDP for a system of the Stochastic
Quality Calculus as transformed into TSQC. First let S/≡ denote the quotient
set obtained by using the structural congruence ≡ over a set S of systems. We
then define the GSMDP (S,E,A, {Es}s∈S , {Ge}e∈E , {Ωe}e∈E ,=⇒) as follows:

The Stochastic Quality Calculus 189

– The set of states S is the quotient

{define · · · in P using · · · | define · · · in P using · · · is generated by the
rules in Table 6 from define · · · in P∗ using · · · }/≡.

The obtained state space is finite, because recursion through parallel com-
position is forbidden.

– An event e in the state s = define · · · in P using · · · is defined as a sequence
(ci)i∈I such that each ci is used as an active output ci!

ωdi in the body P of s
and all ci share the same clock value ω. The set Es is the set of events e
enabled in the state s.

– The set of events is the union of all the enabled events: E =
⋃

s∈S Es.

– The set of controllable events is the union: A =
⋃

s∈S As, where As = {e |
s

ω,e
=⇒ s1, s

ω,e
=⇒ s2 and s1 �= s2 for some s, s1, s2, ω, and e ∈ Es}.

– The distribution of an event is defined as follows:

• if the event is c where c!Gd occurs in define · · · in P∗ using · · · , the distri-
bution is G;

• if the event is (ci)i∈I where (ci!
ωdi)i∈I occurs in define · · · in P∗ using · · · ,

the distribution of the event (ci)i∈I is δω;
• for all ca where ca is introduced by the transformation of a binder b in
define · · · in P∗ using · · · , the distribution is δa.

– The real valued clock Ωe associated with the event e is ω whenever e is a
sequence (ci)i∈I where (ci!

ωdi)i∈I occurs in define · · · in P∗ using · · · , or is
introduced by the transformation of a binder in the same system.

– =⇒= {ω,(ci)i∈I
=⇒ |ω,(ci)i∈I

=⇒ generated by the rules in Table 6}. �

The GSMDP semantics of SQC captures the most general behaviour of the
systems expressed by the Stochastic Quality Calculus:

1. Output makes use of general probability distributions (expressing both
stochastic and real time delay), and runs concurrently using clocks.

2. Input makes use of stochastic quality binders (expressing both real time and
quality constraints), and enforces the “realistic-pessimistic” programming
style.

3. A sequence of broadcast communications may occur at the same time, such
that the data is determined nondeterministically when more than one com-
munication makes use the same channel at the same time.

The classical analysis of GSMDPs is to find an optimal strategy to maximise
some reward function, which may use techniques such as policy iteration [16,17].

5 Analysable Fragments of SQC

In order to perform more standard stochastic reasoning on the systems, we in-
troduce two analysable fragments of SQC sitting at different levels of generality,
so that more established analysing methods become available.

190 K. Zeng, F. Nielson, and H.R. Nielson

5.1 SQC with Continuous Distributions

To exclude the nondeterminism, we introduce a fragment of SQC disallowing
non-continuous distributions for outputs.

Definition 2. The Stochastic Quality Calculus with continuous distributions
(SQCcon) is the untransformed Stochastic Quality Calculus in Table 1 with the
condition that all the probability distributions for the outputs have continuous
Cumulative Density Functions (CDFs).

Note that the continuous CDF restriction of SQCcon does not exclude the
real time (Dirac) output delays that are created during the binder transforma-
tion and that are explicit in the TSQC form of SQCcon. However, these real
time (Dirac) output delays take place over freshly created channels. Therefore,
when more than one binder in SQCcon uses the same real time constraint, more
than one communication may occur at the same time, but only over freshly cre-
ated channels. Hence, by allowing truly concurrent transitions where all such
communications take place at the same time we avoid any non-deterministic
behaviour.

Proposition 1. The system expressed by SQCcon does not have nondetermin-
istic communications.

Proof. By the continuity of continuous probability distributions (be aware that
Dirac distributions do not have continuous CDFs), the probability of two contin-
uous random delays to be exactly the same is strictly zero, and hence we feel free
to ignore the possibility that more than one output complete at the same time
using the same channel. Hence nondeterministic communications are excluded
(with probability 1). �

Without the nondeterminism, the semantics of SQCcon turns out to become
a Generalised Semi-Markov Process, which is a subclass of GSMDPs.

Definition 3. A Generalised Semi-Markov Process (GSMP) (motivated by [19])
is a Generalised Semi-Markov Decision Process (cf. Definition 1) with the con-
trollable event set A = ∅ and the transition relation =⇒ becoming a functional

relation (meaning that s
ω,e
=⇒ s1 and s

ω,e
=⇒ s2 imply s1 = s2).

A GSMP can be analysed using discrete event simulation or statistical model
checking. We refer to [17, 20] for the technical details.

Theorem 2. The semantics of systems in the Stochastic Quality Calculus with
continuous distributions amounts to GSMPs.

Proof. The semantics of SQC is a GSMDP, and SQCcon is a fragment of SQC
without the nondeterminism. Removing the nondeterminism from a GSMDP,
one obtains a GSMP system corresponding to SQCcon. The construction of the
GSMP from SQCcon follows Theorem 1, and we shall omit the details due to
space limitation. �

The Stochastic Quality Calculus 191

5.2 SQC with Exponential Distributions

Despite the fact that statistical methods can be used to analyse the GSMPs
obtained from SQCcon, the general continuous probability distributions make
numerical methods infeasible. Statistical methods scale better with the size of
the state space, however a precise result often requires a large number of samples.
Therefore, for state space |S| < 105 (based on a set of case studies over CTMCs
in [21]), numerical methods seem to be preferable. To enable numerical methods,
we introduce another fragment of SQC by restricting output delays further to
be only exponentially distributed (denoted Exp). We first introduce a subclass
of GSMPs with only Exp and real time events, such that the numerical anal-
ysis approach in [22] is applicable, which indicates that numerical verification
techniques like stochastic model checking are also applicable.

Definition 4. A numerically analysable GSMP is a generalised semi-Markov
process, such that the general probability distributions are restricted to Exp dis-
tributions and Dirac distributions.

Numerical analysable GSMPs retain both stochastic (Exp distributions) and
real time (Dirac distributions) behaviour. Next, we introduce a fragment of SQC
that amounts to numerically analysable GSMP.

Definition 5. The Stochastic Quality Calculus with Exp distributions
(SQCexp) is the untransformed Stochastic Quality Calculus in Table 1 with the
condition that all the probability distributions for the outputs are exponentially
distributed (denoted Exp).

Theorem 3. The semantics of systems in the Stochastic Quality Calculus with
Exp distributions amounts to numerically analysable GSMPs.

Proof. Theorem 2 shows that the semantics of SQCcon amounts to GSMPs,
where the probability distributions have continuous CDFs. By Definition 5, the
systems in SQCexp are special cases of SQCcon, where the continuous prob-
ability distributions are restricted to be Exp distributions, which amounts to
numerically analysable GSMPs by definition. �

Both analysable fragments of SQC retain real time constraints on inputs to
enforce the “realistic-pessimistic” programming style. Therefore, it is not possi-
ble to reduce the semantics further into continuous–time Markov chains. How-
ever, the stochastic behaviour (Exp distributed) and the real time behaviour
(Dirac distributed) can often be split into a pure stochastic behaviour (Exp dis-
tributed) in the form of a Continuous Time Markov Chain [23] and a pure real
time behaviour (Dirac distributed) embodied in a query in Continuous Stochas-
tic Logic [24]. These ideas are developed in [26].

6 Conclusion

The motivation behind the Quality Calculus [2] is that many of the security
errors in modern distributed systems are due to an overly “optimistic” program-
ming style. Programmers tend to think of benign communication environments,

192 K. Zeng, F. Nielson, and H.R. Nielson

and hence focus on getting the software to perform as many functions as possi-
ble. To a much lesser extent, they consider malign environments and the need to
focus on avoiding errors that can be provoked by outside attackers. We believe
future programming languages need to support a more robust (“pessimistic”)
programming style: What conceivably might go wrong, probably will go wrong.
A major cause of disruption is due to the networked communication between
distributed software components.

This paper developed the Stochastic Quality Calculus (SQC) to model and
reason about truly concurrent broadcast communications. A distinguishing
feature of SQC is to consider both stochastic and real time communications
that express the influences from cyber physical environment. Furthermore, the
stochastic quality binder enforces the “realistic-pessimistic” programming style:
to program the ideal as well as default behaviour depending on the availability
or absence of desired data.

The semantics of SQC amounts to generalised semi-Markov decision processes.
To avoid the decision dimension and enable purely stochastic analysis, we intro-
duce two analysable fragments of SQC to express the systems in different levels
of generality. The first fragment of SQC amounts to Generalised Semi-Markov
Processes (GSMP) that can be analysed using statistical model checking, while
the second amounts to a numerically analysable GSMP that can be further
analysed using stochastic model checking.

These analyses lay a foundation for supporting a new discipline of robust
programming. We believe that with the quantitative information obtained from
the analysis, it will be possible to better determine whether or not the software
continues to deal appropriately with risks and threats in the new application
environment.

Acknowledgment. The research has been supported by IDEA4CPS, granted
by the Danish Research Foundations for Basic Research (DNRF86-10). The
research question addressed was largely motivated by the European Artemis
project SESAMO (www.SESAMO-PROJECT.eu).

References

[1] CONNECT, U.A.D.: Report from the European Union workshop on Directions in
Systems of Systems Engineering as part of Horizon 2012 (July 2012)

[2] Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

[3] Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

[4] Nielson, H.R., Nielson, F.: Probabilistic analysis of the quality calculus. In: Beyer,
D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892,
pp. 258–272. Springer, Heidelberg (2013)

[5] Vigo, R., Nielson, F., Nielson, H.R.: Broadcast, denial-of-service, and secure com-
munication. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940,
pp. 412–427. Springer, Heidelberg (2013)

The Stochastic Quality Calculus 193

[6] Hillston, J.: A compositional approach to performance modelling. Cambridge Uni-
versity Press, New York (1996)

[7] Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains. In: Brinksma,
E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS, vol. 2090, pp. 183–231.
Springer, Heidelberg (2001)

[8] Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578–589 (1995)
[9] De Nicola, R., Katoen, J.P., Latella, D., Massink, M.: Stoklaim: A stochastic

extension of klaim. CNR-ISTI Technical Report number ISTI-2006-TR-01 (2006)
[10] Yi, W.: CCS + time= an interleaving model for real time systems. In: Leach

Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510,
pp. 217–228. Springer, Heidelberg (1991)

[11] Ciobanu, G., Koutny, M.: PerTiMo: A Model of Spatial Migration with Safe Access
Permissions. Newcastle University, Computing Science (2011)

[12] Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with
general distributions in process algebras. In: Sangiorgi, D., de Simone, R. (eds.)
CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)

[13] Nielsen, B.F., Nielson, F., Riis Nielson, H.: Model checking multivariate state
rewards. In: QEST 2010, Seventh International Conference on the Quantitative
Evaluation of Systems, pp. 7–16. IEEE Computer Society (2010)

[14] Markovski, J.: Real and stochastic time in process algebras for performance eval-
uation. PhD thesis, Ph. D. Thesis, Eindhoven University of Technology (2008)

[15] Doshi, B.T.: Generalized semi-markov decision processes. Journal of Applied Prob-
ability, 618–630 (1979)

[16] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. John Wiley & Sons, Inc., New York (1994)

[17] Younes, H.L., Simmons, R.G.: Solving generalized semi-markov decision processes
using continuous phase-type distributions. In: Proceedings of the National Con-
ference on Artificial Intelligence, pp. 742–748 (2004)

[18] Matthes, K.: Zur theorie der bedienungsprozesse. In: Trans. of the 3rd Prague Conf.
on Information Theory, Stat. Dec. Fns. and Random Processes, pp. 513–528 (1962)

[19] Glynn, P.W.: A GSMP formalism for discrete event systems. Proceedings of the
IEEE 77(1), 14–23 (1989)

[20] Younes, H.L.: Ymer: A statistical model checker. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)

[21] Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. International Journal on Software Tools for Tech-
nology Transfer (STTT) 8(3), 216–228 (2006)

[22] Lindemann, C., Thümmler, A.: Numerical Analysis of Generalized Semi-Markov
Processes. Dekanat Informatik, Univ. (1999)

[23] Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270.
Springer, Heidelberg (2007)

[24] Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time
Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp. 269–276. Springer, Heidelberg (1996)

[25] Milner, R.: A proposal for standard ML. In: Proceedings of the 1984 ACM Sym-
posium on LISP and functional Programming, pp. 184–197. ACM (1984)

[26] Nielson, F., Nielson, H.R., Zeng, K.: Stochastic Model Checking for the Stochastic
Quality Calculus (2014) (submitted for Publication)

Author Index

Arbab, Farhad 65

Baldan, Paolo 1
Belzner, Lenz 17
Bonchi, Filippo 1

Cano, Julio 33
Carbone, Marco 49

Damiani, Ferruccio 163
Dardha, Ornela 49
Delaval, Gwenaël 33

Gadducci, Fabio 1

Halle, Sean 65

Jongmans, Sung-Shik T.Q. 65

Louvel, Maxime 83

Meyer, Bertrand 99
Monreale, Giacoma V. 1

Montesi, Fabrizio 49
Morandi, Benjamin 99
Mostrous, Dimitris 115

Nanz, Sebastian 99
Neykova, Rumyana 131
Nielson, Flemming 179
Nielson, Hanne Riis 179

Pacull, François 83
Padovani, Luca 147

Rutten, Eric 33

Vasconcelos, Vasco Thudichum 115, 147
Vieira, Hugo Torres 147
Viroli, Mirko 163

Yoshida, Nobuko 131

Zeng, Kebin 179

	Foreword
	Preface
	Organization
	Invited Talk
Orchestrating Management Behavior
of Cloud Applications

	Table of Contents
	Encoding Synchronous Interactions
Using Labelled Petri Nets

	1 Introduction
	2 Communicating Sequential Processes
	3 Labelled Petri Nets with Interfaces
	3.1 Labelled Petri Nets
	3.2 Petri Nets with Interfaces

	4 From Processes to Nets
	5 Relating CSP and Labelled Nets
	6 Some Hints about Technology Transfer
	7 Conclusions and Further Works
	References

	Verifiable Decisions in Autonomous
Concurrent Systems

	1 Introduction
	2 Preliminaries
	2.1 Rewriting Logic
	2.2 Action Programming

	3 Decisions in Autonomous Concurrent Systems
	3.1 RMDPs as Rewrite Theories
	3.2 Progressive Action Programming
	3.3 Projection, Branching and Loops
	3.4 Concurrency

	4 Probabilistic Model Checking of Action Programs
	5 Example
	6 Related Work
	7 Conclusion and Further Work
	7.1 Conclusion
	7.2 Further Work

	References

	Coordination of ECA Rules by Verification and Control
	1 Coordination Problems in ECA Rules
	2 State of the Art
	2.1 ECA Rule Based Control Systems and Their Validation
	2.2 Synchronous Reactive Programming and Heptagon/BZR

	3 Modeling ECA Rules
	4 Transformation to Synchronous Language
	4.1 Code Transformations
	4.2 Execution Models

	5 ECA Rule Set Verification and Control
	5.1 Verifications at Compilation Time
	5.2 Control at Run-Time

	6 Conclusions
	References

	Progress as Compositional Lock-Freedom
	1 Introduction
	1.1 Contributions

	2 The Model
	2.1 The π-Calculus with Sessions

	2.2 Typing the π-Calculus with Sessions

	3 Lock-Freedom and Progress
	3.1 Definitions
	3.2 Properties

	4 Untyped Closure

	4.1 Definitions
	4.2 Adequacy of Untyped Closure

	5 Progress through Static Analysis for Lock-Freedom
	6 Conclusions and Future Work
	References

	Automata-Based Optimization of Interaction
Protocols for Scalable Multicore Platforms

	1 Introduction
	2 Constraint Automata
	3 Enhancing Scalability: Problem and Solution
	4 Transformation f1: Preprocessing

	5 Transformation f2: Constructing Hypergraphs

	6 Transformation f3: Manipulating SCs

	7 Concluding Remarks
	References

	LINC: A Compact Yet Powerful
Coordination Environment

	1 Introduction
	2 LINC Coordination Language
	2.1 LINC Roots
	2.2 Bags Abstraction
	2.3 Coordination Language
	2.4 Improvement with Respect to CLF/Stitch

	3 LINC Features

	3.1 Control the Frequency of a Rule
	3.2 Reduction of the Inference Tree
	3.3 Guards Controlled Alternatives
	3.4 Graceful Degradation
	3.5 Mutual Exclusion
	3.6 Rules Activation / Deactivation
	3.7 Dynamic Rules Generation
	3.8 Registry-Based Programming

	4 Case Studies
	4.1 Building Automation
	4.2 RFID Table
	4.3 Smart Actuators

	5 Related Works
	6 Conclusion
	References

	Safe and Efficient Data Sharing
for Message-Passing Concurrency

	1 Introduction
	2 Pipeline System
	3 Passive Processors
	4 Formal Specification

	4.1 Order Preservation

	5 Evaluation
	5.1 Comparison to Active Processors
	5.2 Comparison to Low-Level Synchronization Primitives
	5.3 Other Applications

	6 Related Work
	7 Conclusion
	References

	Affine Sessions
	1 Introduction
	2 Affine Sessions by Example
	3 The Process Calculus of Affine Sessions
	4 Typing Affine Sessions
	5 Properties
	6 Related Work and Future Plans
	References

	Multiparty Session Actors
	1 Introduction
	2 Session Actors Programming Model
	2.1 Actor Models and Design Choices

	2.2 Warehouse Management Use Case

	3 Session Actor Language
	4 Implementations of Session Actors
	4.1 AMQP Background
	4.2 Actor Roles
	4.3 Actors Discovery
	4.4 Preservation through FSM checking

	5 Evaluations of Session Actors
	5.1 Session Actors Performance
	5.2 MPST Verification Overhead
	5.3 Applications of Session Actors

	6 Related Work
	7 Conclusion
	References

	Typing Liveness in Multiparty Communicating Systems
	1 Introduction
	2 Process Model
	3 Types and Typing Contexts
	4 Typing System
	5 Concluding Remarks
	References

	A Calculus of Self-stabilising Computational Fields
	1 Introduction
	2 Computational Fields
	2.1 Basic Ingredients
	2.2 Composition Examples

	3 The Calculus of Self-stabilising Computational Fields
	3.1 Typing and Self-stabilisation
	3.2 Device Computation
	3.3 Network Evolution
	3.4 An Example Application of the Semantics

	4 Properties
	5 Conclusion, Related and Future Work
	References

	The Stochastic Quality Calculus
	1 Introduction
	2 Syntax of SQC

	3 Semantics of SQC

	4 SQC is GSMDP

	5 Analysable Fragments of SQC
	5.1 SQC with Continuous Distributions
	5.2 SQC with Exponential Distributions

	6 Conclusion
	References

	Author Index

