
Chapter 7
Computational Intelligence Techniques
for Chemical Process Control

N. Paraschiv, M. Oprea, M. Cǎrbureanu and M. Olteanu

Abstract The chapter focuses on two computational intelligence techniques,
genetic algorithms and neuro-fuzzy systems, for chemical process control. It has
three sub-chapters: 1. Objectives and Conventional Automatic Control of Chem-
ical Processes 2. Computational Intelligence Techniques for Process Control 3.
Case study. A case study is described in detail that describes a neuro-fuzzy control
system for a wastewater pH neutralization process.

7.1 Objectives and Conventional Automatic Control
of Chemical Processes

The chemical industry represented and continues to represent a dynamical division
of the world economy. On the terms of competitive markets, the justification of
this dynamics is conferred by the fact that the products provided by the chemical
industry represent basic materials to a number of other industries.

It is important to underline that producing conventional or renewable energy,
computers and means of communications would not be possible aside from the
existence of the products provided by the chemical industry. We can add amongst
the essential products of the chemical industry fuels, medicines and different type
of plastic.
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Although the ecologists are skeptic regarding the chemical industry, we have to
underline the fact that this industry offers new perspectives in respect of processing
waste products, obtaining non-pollutant fuels, producing biodegradable plastic,
etc. In the first part of this section we will identify the objectives of chemical
processes and the necessity of controlling these processes and in the next sections
we will approach aspects concerning the conventional automatic control of some
categories of chemical processes.

7.1.1 Objectives of Chemical Processes

Frequently met processes in the chemical industry are those associated to the
phenomena of transfer and to chemical reactions. In the category of transfer
processes, there are classified the ones of mass, thermal energy and impulse
transfer. Known as unitary processes, these develope in specific installations, such
as fractionating columns, heating furnaces, heat exchangers, condensers, reboilers,
chemical reactors, gas compressors.

In chemical plants there are complex processes whose finality is represented by
products used as such or which constitute basic materials for other plants. Irre-
spective of the character of a (complex or unitary) process, this does not represent
a goal by itself but it is subordinated to some objectives, amongst which repre-
sentatives are the ones of quality, efficiency and security.

The quality objectives are presented as specifications such as, for example, the
compositions of separated products in the case of mass transfer, the temperatures
of heated (cooled) products in the case of thermal transfer or the conversion degree
of reactants associated to the chemical reactions.

Regarding the objectives of efficiency, these refer to the profitability of the
process, respectively to the existence of a positive difference between the income
obtained from the sale of a chemical product and the costs, necessary for its
production. Concerning the objectives of security, these imply the deployment of
the process so that the safety of the people, of the environment or of the related
facilities should not be affected.

The control of a process implies the supervision of a process so that the
objectives imposed to it should be achieved. If, for the design of a process, the
objectives represent starting points, in the case of the control, these are targets.

The automatic control is based on the following functions of automation:
automatic monitoring, automatic control, automatic optimization, automatic
safety.

The function of monitoring offers the possibility of identifying the state of a
process. Practically, monitoring implies the determination of the values of the
parameters associated to a process, which can be achieved by measurement and/or
by computation. In Fig. 7.1 it is represented a hierarchical approach, in which the
inferior level (level 1) includes systems of measurement and the superior level
(level 2), the relations for calculating the values of the parameters which are not
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measured. Normally, the number of parameters which are measured represents the
number of the degrees of freedom of the respective process [1].

With reference to the function of control, a process is considered adjustable if it
can be brought and maintained in a state of reference. Reaching and/or maintaining
the state of reference imply the application of commands to the process.

From the point of view of complexity, the automatic control systems (ACS) can
be conventional or advanced. A conventional ACS is usually associated to a single
parameter. Based on the manner of action, corrective or preventive, these ACS can
be: feedback systems (effect), respectively feedforward systems (cause), considered
fundamental types of ACS, specific to the level of conventional automation.

The functioning of a conventional ACS dictates the existence of the functions
of measurement, command, execution, achieved, in order, by transducers, con-
trollers and final control elements FCE. Usually, the three elements are considered
grouped in the automatic device (AD). Thus, it can be considered that, from a
structural point of view, an ACS is composed of AD and Process. Another
approach, concerning the structure, identifies at the level of an ACS a fixed part
and a variable one. The fixed part includes the process, the transducer (for a
feedforward ACS the transducers) and the FCE, while the variable part is rep-
resented by the controller.

Figure 7.2 presents a hierarchical structure of conventional control, in which at
the inferior level it is present feedback control of the parameter y1 and at the
superior one the feedforward control of the parameter y2.

Evolved structured ACS (advanced control) have associated extended objec-
tives at the entire process. In the case of extended objectives, the controlled
variables can be represented by synthetic parameters whose values are determined
by computation. The advanced control does not exclude the conventional control,
the two categories coexisting within the hierarchical control systems. The func-
tions of monitoring are implied in the achievement of the quality objective and
partially, of the security one.

Fig. 7.1 Hierarchical monitoring system xi process parameters, xim measurement results, xic

computed variables, MSi Measurement System, CM Computing Module
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After it has been indicated, among the objectives of a process there is the one
which refers firstly to the protection of the human factor and of the environment, to
the emergence of some events generated by an abnormal evolution of the process.
The Automatic Systems of Protection (ASP), which can have information functions
and/or intervention functions, assure the achievement of this objective. The
functions of correct information are specific to the Automatic Warning Systems
(AWS) and the ones of intervention are achieved by means of Automatic Blocking
Systems (ABS) and Automatic Systems of Command (ASC).

AWS have an open structure and have also the role of informing the personnel
implied in supervising and operating the process about the momentary state of a
plant or about the apparition of an event. ABS assures the supervised removal of a
plant or section of a plant from functioning, whereas it has not been intervened
duly after the warning of prevention. Practically, the removal from functioning
implies the blockage of supplying with energy and/or with raw material. A
peculiarity of ABS is represented by the fact that these operate only when removed
from functioning and not when reconnected. ACS are open systems, components
of ASP, which assure the conditioned start of some plants or their normal stop (not
in case of a breakdown). The conditioning of the start infers the authorization of
reconnecting a facility only after it is observed the achievement of all the specified
conditions.

All the three types of APS contain a Logical Block of Command (LBC) to
whose level the logical functions which describe the sequences associated to the
warning, blocking and command programs are implemented. LBC from the cur-
rent APS have the related programs implemented exclusively in a programmed
type of logic.

Fig. 7.2 Hierarchical conventional structure: SProc1, SProc2 subprocesses, FF_AD Feedfor-
ward Automatic Device, FB_AD Feedback Automatic Device
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Beginning with the functions carried out in a SAP, we can assign to this a
hierarchical structure on two levels, illustrated in Fig. 7.3, in which, at the first
level, we find the informational systems, represented by AWS and at the second
level there are the systems of intervention, represented by ABS and ACS.

The optimal control supposes the application to the process of those commands
which bring to extreme an objective function (criterion or function of perfor-
mance). The optimal commands are obtained by means of solving a problem of
optimization which also assumes, besides the objective function, the existence of a
method of searching the optimum, usually in the presence of some restrictions.

By optimal control, it is assured the achievement of the objective of efficiency,
the objective function (functions) usually having an economical element or with
economical implications.

The optimal control is situated at a hierarchical level, superior to the conven-
tional automation, receiving values of information from this level and sending
values of coordination to this one.

A particular case of control by fixing the values of reference is the one in which
these values appear as a result of solving a problem of optimization. In the Fig. 7.4
there is represented the hierarchical structure organized on two levels, in which the
first level concerns the conventional automation and the second one the
optimization.

Fig. 7.3 Hierarchical structure of an AWS (Automatic Warning System): ABS Automatic
Blocking System, AWS Automatic Warning System, ACS Automatic Command System
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7.1.2 Conventional Automatic Control of Fractionating
Processes

The fractionation represents one of the separation methods of a mixture in com-
ponents or in groups of components. The main objective of a fractionation process
is represented by conformation to the quality specifications for the products
obtained by fractionation, which can be quantified in their compositions.

In the case of a fractionation column with a single feed flow rate, made up of
n components and without side draw, the minimum number of parameters which
must be measured for a complete knowledge of the column state is
F = (n + 2) + 10 [1].

Regarding the control, for the exact conformation to the quality specifications,
we should control the compositions on each tray of the fractionating column.
Considering that the internal liquid and steam fluxes between the plates are not
accessible, only the compositions of the products extract from the column can be
controlled. Under these conditions, in case of a fractionating column without
lateral fractions, there can be controlled only the compositions at the top of the
column (distilled) respectively at its bottom (residue).

Another important parameter, determining for the fractionation is the pressure
at which this process occurs. Thus, it is necessary also the control of this
parameter. Beside the compositions and the column pressure, it is also necessary
the control of the liquid stock on each tray, in the base of the column and in the
reflux drum. Of reasons similar to the ones highlighted at the control of the
compositions, it appears that only the accumulations of liquid (the stocks) from

Fig. 7.4 Hierarchical structure of an optimal control system with fixed reference values
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the base of the column and the from the reflux drum can be controlled. These are
indirectly controlled, by means of the levels of the liquid HB in the base of the
column and HRD in the reflux drum.

The control of a parameter is possible only for a fractionation column with a
single feed flow rate and without intermediate products, the five control agents can
be: the outputs of the products extracted from the column D (distilled) and
B (residue), the reflux flow rate L and flow rates of the heating agent Qst and
cooling agent Qc. In the Fig. 7.5 the five parameters which must be controlled have
associated transducers (T) and to the five available commands we assign control
valves. In the same figure, xD and xB represent the concentrations of the light
component in the top product and in the bottom product.

The Relative Gain Array (RGA) [1] method is used to obtain an optimal pairing
(i.e. minimum interactions between control loops) between the manipulated
variables and controlled variables. Because the mass transfer (respectively the
fractionation) is influenced by the liquid L and steam V fluxes that come into
contact, it appears that for the quality control of the products extracted from the
column, we must intervene upon the reflux flow rate L and/or the heating agent in
the reboiler Qst.

Reasons concerning material balance [2] impose the inclusion of the one of the
manipulated variables: distilled (D) or residue (B) [2] among the manipulated

Fig. 7.5 Controlled
variables and manipulated
variables for a fractionating
column, xD, xB the
concentration of light
component in the top product
and bottom product
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variables associated to the control of the compositions. There are several possible
pairs, in the Fig. 7.6 being represented the structure of control based on the pair L-B.

This structure uses as manipulated variables for the control of the compositions
xD and xB the reflux flow rate L respectively the residue flow rate B. This structure
is of type with direct material balance because one of the product flow rate,
respectively the residue flow rate, is used as command for the control of one of the
compositions. The levels HB and HRD are controlled by means of the residue flow
rate B and the heating agent flow rate in the reboiler Qst.

All the control systems in the Fig. 7.6 are feedback systems. In the case of the
control systems for the compositions (the AC controllers) the durations of the
transient regime are determined by the dynamics of the mass transfer (of the order
of hours). In order to avoid the very long duration of the transient regime, during
which the distillation products compositions are varying, we can use the feed-
forward control. In the Fig. 7.7 it is presented a structure of feedforward control, in
which there are considered the disturbances represented by the feed flow rate F and
the concentration of the light component in the feed xF.

Fig. 7.6 L-B structure for dual concentration control of light component in top product and
bottom product
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The system illustrated in the Fig. 7.7 allows the determination and the appli-
cation to the process of values of the manipulated variables L and B, so that the
influence of the disturbances F and xF upon the compositions xD and xB should be
rejected. The stationary value of the command B is obtained from the relations
associated to general balance and component balance,

F ¼ Bst þ Dst ð7:1Þ

FxF ¼ BstxB þ DstxD ð7:2Þ

Solving the system formed of the Eqs. (7.1) and (7.2) it results:

Bst ¼ F
xD � xF

xD � xB

ð7:3Þ

Fig. 7.7 Hierarchical control system of a fractionating column ACP dual feedforward
concentration controller
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The output value Lst can be determined using a simplified rapid design method
adapted for control. One of these models is Douglas-Jafarey-McAvoy [3], that is
based on a double expression of the separation factor S respectively:

S ¼ am
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=ðRxFÞ
p

 !N

ð7:4Þ

S ¼ xD=xB

ð1� xDÞ=ð1� xBÞ
ð7:5Þ

am
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=ðRxFÞ
p

 !N

¼ xD=xB

ð1� xDÞ=ð1� xBÞ
ð7:6Þ

In the relations (7.4) and (7.5), am is the mean relative volatility of the light
component in comparison, N the number of theoretical trays and R the reflux ratio.
From the relation (7.6) we determine R, and implicitly Lst considering that the
reflux ratio is defined as the ratio between the outputs L and D (R = L/D).

In order that the effect of the disturbances should be synchronized with the one
of the manipulated variables, the stationary model is completed with first order,
deadtime elements, which ensure a delay of the commands application,
respectively:

aB

dBðtÞ
dt
þ BðtÞ ¼ Bstðt � sBÞ ð7:7Þ

aL

dLðtÞ
dt
þ LðtÞ ¼ Lstðt � sLÞ ð7:8Þ

In the differential equations (7.7) and (7.8), the time constants aL and aB as well
as the deadtimes sL and sB are determined by respecting the delays caused by the
hydraulic phenomena from the column. By solving these equations in real time we
obtain the dynamic values of the commands L(t) and B(t) which are applied as set
points to the associated controllers.

The stationary model of control represented by the Eqs. (7.1)–(7.6) is valid only
in the proximity of a mean functioning point of the process. When this point
changes, the model must be adapted, variables used in adaptation being the relative
volatility a and the number of theoretical trays N.

The structure of feedforward control, concisely presented above, has been
successfully implemented in industry for a propylene-propane separation column
[4, 5]. The results of the implementation have been quantified in the growth of
conform propylene production correlated to the decrease of the separation effort,
respectively of the flow rate of the steam in the reboiler of the column.

A parameter that directly influences the fractionation is the pressure. The
processes of fractionation are designed taking into account a certain functioning
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pressure, for which reason this parameter must be maintained at a precise reference
value. Usually the control of the pressure is achieved by intervening upon the
quantity of thermal energy extract from the column. Because the biggest part of the
thermal energy is given by the condensation of the steam, it appears that we can
control the pressure by intervening upon the process of condensation.

In the case of the control structure presented in Fig. 7.5, the pressure is con-
trolled by intervening upon the flow rate of the cooling agent Qc. This solution is
vulnerable due to the emergence, over a certain value of the flow rate Qc of the
phenomena of condensation saturation and implicitly of the possibility to control
the pressure.

Much more efficient is the control of the pressure by intervening upon the
condensation area from the steam space of the condenser. In the Fig. 7.7 it is
presented this solution for the situation in which the condenser is situated under the
reflux drum of the fractionation column. As it can be observed, the vapor flow QV

is divided, the secondary vapor flow QS being used as command for the pressure
control. We demonstrate [1] that the difference between the liquid levels from the
reflux drum and the condenser can be controlled through the flow rate QE as
manipulated variable. Considering that the level in the reflux drum is controlled, it
appears that, by modifying the flow rate QE we can control the measure of the
condensation area and implicitly the pressure.

7.1.3 Conventional Automatic Control of Heat Transfer
Processes

Heat represents a form of energy specific to chemical processes. The processes that
absorb heat are called endothermic and the processes that generate heat are called
exothermic. Usually, thermal processes implies the production, exhaust and the
transfer of heat. Taking into account the importance of heat exchange for chemical
processes, we can admit that thermal processes have a strong interaction with
chemical processes. As part of the technological equipment used by the thermal
processes we can enumerate heating furnaces, steam generators, reboilers, con-
densers, etc.

No matter the type of thermic process, the quality objective depends on the
amount of produced heat, exhausted or exchanged. From the control point of view,
the most important parameter of a thermal process is represented by the temper-
ature. Regarding efficiency, it is quantified by indicators like combustion effi-
ciency, heat recovery rate, etc. Security objectives relate avoiding of environment
pollution by dangerous emissions, explosions avoiding, etc.

The control function corresponding to these processes relates especially to
temperature. In the following it will be presented as examples two control struc-
tures for heating furnaces with gas fuel. In such a furnace, the combustion process
represented by the exothermic reaction between a fuel and an oxidant develops, the
two components being also actuating quantities.
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As the first control structure it is presented Fig. 7.8 in which the temperature is
controlled in a feedback manner. As it can be observed, the temperature is con-
trolled with the aid of combustion flow Qfuel. The combustion is controlled by
adjusting air flow with the aid of the ratio block RB, as a function of fuel flow.
Closed loop control of temperature presents the disadvantage of a non-steady state
in the case of set point change or disturbances.

The second variant, presented in Fig. 7.9 obtains temperature control by a
feedforward structure, taking into account the disturbances represented by the feed
flow Qp and its temperature T0.

The algorithm associated with the controller TC is, in this case, process
dependent and reflects the heat transferred to the product heated by burning the
fuel as expressed in the following thermal balance equation:

Qfuelqfuel ¼ QpcpðTi � T0Þ þWl ð7:9Þ

where:

• Qfuel—fuel flow rate
• qfuel—fuel thermal value
• Qp—product flow rate
• cp—product specific heat capacity

Fig. 7.8 Temperature and
air/fuel ratio feedback control
structure for a heating
furnace: RB Ratio Block; Ki

reference ratio
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• Ti—temperature reference value
• T0—product temperature at the furnace input
• Wl—flow rate of heat losses

From Eq. (7.9) it can be obtained the stationary state fuel flow rate:

Qfuel st ¼ Qp

cp

qfuel

ðTi � T0Þ þ
Wl

qfuel

ð7:10Þ

where: Qp and T0 are measured and Ti, cp, qfuel and Wl are considered known
constants.

In order to obtain the dynamic regime output it is necessary to solve the fol-
lowing differential equation associated with the dynamics of heat transfer process:

aT

dQfuelðtÞ
dt

þ QfuelðtÞ ¼ Qfuel stðt � sTÞ ð7:11Þ

The dynamic section of the model, represented by (7.11) is justified by the
necessity of applying the output value, that means the changing of fuel flow rate
respectively in accordance to the heat transfer process dynamic behavior.

Fig. 7.9 Temperature and
air/fuel ratio feedforward
control structure for a heating
furnace: RB Ratio Block; Ki

reference ratio
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7.1.4 Conventional Automatic Control of Chemical Reactors

The control of a chemical reaction poses problems regarding the stoichiometry,
thermodynamics and kinetics of the reaction. Deciding the appropriate control
structure depends also on the type of reactor in which the chemical reaction takes
place.

Stoichiometry of the chemical reaction allows fixing the ratios between the
amounts of reactants that make the reaction possible. From the automatic control
point of view, it is necessary to provide a certain ratio between the reactants flow
rate.

Applying thermodynamics tools to a chemical reaction allows the evaluation of
the reaction heat and of the equilibrium conversion rate, respectively [1]. The
development of a chemical reaction at equilibrium requires meeting certain values
for temperature and pressure, automatic control of these parameters respectively.

Chemical reaction kinetics studies mainly the reaction rate of the reaction
development. When maintaining a certain reaction rate, temperature control is
essential. The existence of catalysts provides, in certain conditions, an increase in
the reaction rate. From the point of view of automatic control, the ratio of reactant
flow rate and of catalyst flow rate can represent a process action for the reaction
rate automatic control.

As far as the chemical reaction equipment host is concerned, chemical reactors
respectively, there are diverse types of reactor from which we mention the Con-
tinuous Stirred-Tank Reactors and the Tubular Reactors.

From the automatic control point of view, continuous stirred-tank reactors are
treated as concentrated-parameter systems. In other words, inside the reactor,
parameters values (temperature, composition of reactants, conversion rate, pres-
sure, etc.) are only functions of time and not of spatial coordinates.

As shown in Fig. 7.10, in order to control the temperature inside a continuous
stirred-tank reactor there should be varied the heat carrier flow by means of a
cascade temperature-temperature of the heat carrier control system. Cascade
control provides the advantage of compensating all the disturbance effects that
affect heat carrier temperature. The reactor load is also controlled when using the
A1 reactant flow rate as a control action and the reactor’s holdup, actuating upon
the reactor’s output flow rate.

For the reactors for which the number of moles of substance is changing, such
as the polymerization reactions, it is necessary to control the pressure, such an
example being presented in Fig. 7.11.

In order to control the pressure, the reaction product flow rate is used as a
control value. Also, the flow rates of the reactants are controlled in order to
maintain a proper development of the reaction.

Tubular reactors are distributed parameter systems characterized by variable
parameters, as functions of both time and spatial coordinates. Specific to such a
reactor are the following parameters: temperature, composition, conversion rate,
etc.
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Fig. 7.10 Control structure of a Continous Stirred-Tank Reactor

Fig. 7.11 Pressure control for a Continous Stirred-Tank Reactor
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For such a reactor, the main objective of the automatic control is represented by
the fulfillment of quality specifications of the reaction product. Among these
specifications, a special parameter is considered the composition of the product.
Because composition measurement poses several difficulties, including high
inertia, it is preferred the control of the reaction with the aid of temperature.
Practically, it is necessary to control the temperature profile along the reactor, the
reactor itself being a composition profile indicator.

For these reactors, in which strong exothermic reactions take place, it is nec-
essary to consider the injection of the cooling medium in many points.

It can be observed in Fig. 7.12 that every injected flow rate is used as an action
control for controlling the temperatures from different points of the tubular reactor.

7.2 Computational Intelligence Techniques for Process
Control

The most advanced process control strategies are model-based and make use of
some artificial intelligence techniques, usually applied to non-algorithmic problem
solving, such as expert systems, artificial neural networks, genetic algorithms etc.
Computational intelligence was introduced in 1994 [6] as a paradigm that com-
bines three main complementary computing technologies: fuzzy computing (based
on fuzzy logic and fuzzy sets), neural computing (based on artificial neural net-
works) and evolutionary computing (based on genetic algorithms and evolutionary
strategies). Recent developments in this area revealed the efficiency of using the

Fig. 7.12 Temperature profile control along a tubular reactor
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new computational intelligence techniques such as those provided by swarm
intelligence (e.g. particle swarm optimization, ant colony optimization).

In literature is presented a set of applications of artificial intelligence techniques
in various processes control, such as BIOEXPERT, AQUALOGIC, etc. [7–10]. In
this subchapter it is presented an introduction to the basic computational intelli-
gence techniques (fuzzy systems, artificial neural networks and genetic algorithms)
and a brief overview of some computational intelligence applications in chemical
process control.

7.2.1 Computational Intelligence Techniques

The main basic computational intelligence techniques are fuzzy systems, artificial
neural networks and genetic algorithms. Fuzzy systems are a proper technique for
imprecision and approximate reasoning, artificial neural networks for learning, and
genetic algorithms for optimization.

Fuzzy systems combines fuzzy logic with fuzzy sets theory [11], the key idea
being that truth values (from the fuzzy logic) and the membership values (from the
fuzzy sets theory) are real values in the interval [0, 1], where 0 means absolute
false, and 1 absolute true. A fuzzy system is developed by structuring the domain
knowledge (provided by the human experts from the chosen field of application)
under the form of linguistic variables and fuzzy rules set. A fuzzy set can be
defined by assigning to each possible object a value that represent the fuzzy set
membership degree. The fuzzy sets theory express imprecision quantitatively by
introducing the membership degree from it is not member to it is totally member.
If F is a fuzzy set than the l membership function measures the degree under
which x is a member of F. This membership degree represents the possibility that
x can be described by F. Each membership function, specific to a certain fuzzy
term, is represented by four parameters grouped in the Ti term: Ti = (ai, bi, ci, di),
corresponding to the weighted interval from Fig. 7.13. The form of the member-
ship function can be triangular, trapezoidal, Gaussian, sigmoidal etc., depending
on the application.

In the sets theory the high, medium and small symbolic values of the temper-
ature variable, for example, have mutual exclusive associated values. If the
numerical value of the temperature is smaller than 100 �C then the symbolic value
is small, if the value is in the interval [100 �C, 300 �C] then the value is medium,
and if it is greater than 300 �C then the value is high, as shown in Fig. 7.14, where
there are overlappings in the neighbourhood of the interval limits (100 and
300 �C).

Figure 7.15 presents the general scheme of a fuzzy system. The role of the
fuzzy system is to make fuzzy inferences that interpret the input values and based
on a fuzzy rules set assign values to the outputs.

The most important engineering applications of fuzzy systems are control
applications (e.g. system control and process control). Figure 7.16 shows the block
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diagram of a fuzzy control system. A fuzzy inference system (FIS) is a non linear
system that applies if-then fuzzy rules and can model the qualitative aspects of the
human knowledge and of the reasoning processes without accurate quantitative
analysis. The fuzzy logic modeling techniques can be classified in three categories:

Fig. 7.13 The membership
function parametric
representation

Fig. 7.14 Examples of fuzzy
values for the temperature
variable

Fig. 7.15 The general
scheme of a fuzzy system
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the Mamdani type linguistic technique, the relational equation, and the Takagi-
Sugeno-Kang (TSK) technique.

Artificial neural networks are universal approximators [12], capable to learn
complex mappings that are dependent on their structures. An artificial neural
network (ANN) is composed by a number of processing units named neurons that
are connected under a specific topological structure. Each connection has asso-
ciated a numerical weight, that is usually, randomly initialized and later deter-
mined, during the neural network training process. Each neuron has an activation
function that allow information transmission toward other neurons. The con-
struction of a neural network for solving a certain problem consists in setting the
network topology with the number of layers, number of neurons (for each layer:
input, output, hidden), the type of each neuron (i.e. activation function) and the
way of interconnecting the neurons. The next step is weights initialization and
the network training by applying a training algorithm to a training set for which the
final values of the weights are computed.

In Fig. 7.17 it is given the block diagram of a generic artificial neural network.
The generic neural computing algorithm written in pseudocode is given in

Fig. 7.18.
The first step of the algorithm makes weights initialization, usually with random

values from the interval [0, 1]. During the second step the network is trained by
using a training algorithm (one of the most used is backpropagation and its various
improved versions) and a training set, and the final values of the weights are
determined. In the last step, the artificial neural network is tested and validated on
specific testing and validation data sets.

The main neural network topological structures are feedforward and recurrent.
Examples of neural networks types are feedforward neural networks, radial based
neural networks, Elman neural networks, Hopfield neural networks, Kohonen
neural networks, Boltzman neural networks, probabilistic neural networks, etc.

Artificial neural networks are applied with success in various applications:
pattern recognition, time series prediction, optimization problems (such as optimal
control) etc. They are a proper tool for solving engineering problems that have
complex noisy input data.

Genetic algorithms (GA) are a subclass of evolutive algorithms that are opti-
mization methods that mimics the processes that appear in genetics and natural
evolution [13]. They maintain a population of solutions (named individuals) that
evolve in time by applying genetic operators of selection, recombination and

Fig. 7.16 The block diagram of a fuzzy control system
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mutation. The rate of applying mutation operators is much smaller than the
recombination rate.

A genetic algorithm provides an efficient optimization technique, being a sto-
chastic algorithm. Several solutions are investigated in parallel. The final solution
is the global optimal solution. A genetic algorithm is a search algorithm that finds
the best solution that maximizes a fitness function (FF) that is problem dependent.
In the classical variant of a genetic algorithm, a solution is represented as a string
from a finite alphabet, each element of the string being a gene. In general, the
string is a string of bits. The classical form of a genetic algorithm is provided in
Fig. 7.19 under the form of a function written in pseudocode.

Genetic algorithms can be applied to process control, either as a standalone
technique or in combination with other computational intelligence techniques.

Fig. 7.17 The block diagram of a generic ANN

Fig. 7.18 The generic ANN
computing algorithm
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The new computational intelligence techniques provided by swarm intelligence
are part of the evolutionary computing. They are using nature inspired collective
intelligence. Examples of such techniques are particle swarm intelligence (PSO)
and ant colony optimization (ACO). These techniques can be applied also to
process control.

As stated initially in [14] and lately confirmed by the research results reported
in the literature, combinations of computational intelligence techniques (i.e. hybrid
techniques) are more effective and robust in process control.

One of the most used hybrid fuzzy systems is ANFIS—the Adaptive Neuro-
Fuzzy Inference System introduced in [15], that is a FIS based on adaptive artificial
neural networks. ANFIS uses the TSK model and is actually a FIS implemented
under the form of an artificial neural network. Each layer of the network corresponds
to a part of the FIS and the FIS parameters are codified as the artificial neural
network weights.

7.2.2 Applications of Computational Intelligence
in Chemical Process Control

Several applications of computational intelligence in chemical process control
were reported in the literature. Some of them are using one of the three main
computational intelligence techniques (FIS, ANN, GA), while others are using
combinations of these techniques. In this section we are making a brief presen-
tation of selected applications, grouped by the computational intelligence tech-
nique that was applied.

7.2.2.1 Fuzzy Systems Applications

In [16] it is presented a fuzzy logic control used as a promising control technique
for improved process control of a fluid catalytic cracking unit in refinery process
industry. A recent example of applying real time fuzzy control to a pH neutral-
ization process is given in [17]. The experiments were done at laboratory level and

Fig. 7.19 The general form
of a classical genetic
algorithm
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showed a good behavior of the proposed PI fuzzy controller. Another example of a
pH fuzzy controller was proposed more than a decade ago in [18]. A fuzzy
dynamic learning controller was proposed in [19] for time delayed, non linear and
unstable chemical processes control.

7.2.2.2 Artificial Neural Networks Applications

In [20] it is tackled the modeling problem of complicated batch processes in the
context of model-based control of chemical processes. The authors proposed a novel
hybrid neural network, called a structure approaching hybrid neural network (SA-
HNN), for intelligent modeling of a batch reactor with partially unmeasurable states.
The predictive control of a wastewater treatment process is described in [21]. A
predictive controller based on a feedforward artificial neural network as internal
model of the process, alters the dilution rate and control the concentration of the
dissolved oxygen. The artificial neural networks approach was used in the last two
decades as a powerful tool for a wide range of applications in the oil and chemical
industry. A recent example is reported in [22], where a feedforward neural network
was applied to model the desalting and dehydration process, with the purpose of
optimizing the whole chemical process and increasing the efficiency of oil pro-
duction. In [23] it is presented a review of some applications of artificial neural
networks in chemical process control, at simulation and online implementation
level. Most of the reported applications use feedforward neural networks. As shown
in [24] the most popular domain in which artificial neural networks were applied is
chemical engineering. The applications reported by authors included chemical
process control optimization. Finally, a computer simulation study of industrial
process control of chemical reactions by using spectroscopic data and artificial
neural networks is described in an older research work [25].

7.2.2.3 Genetic Algorithms Applications

In [26] it is presented an intelligent technique based on genetic algorithms for
optimal controller tuning in a pH neutralization process. The experimental results
showed the capability of the genetic algorithm to quickly adapt the controller to
dynamic plant characteristic changes in the pH neutralization process. The biogas
plant control and optimization by using genetic algorithms and particle swarm
optimization is discussed in [27]. The authors apply the two computational intel-
ligence techniques (GA and PSO) for the optimization of the substrate feed with
regard to its flow rate and composition in the case of a biogas plant. The use of two
computational intelligence techniques, genetic algorithms and fuzzy systems, for
fed-batch fermentation process control is presented in [28]. The experimental results
showed that the two techniques performed better than conventional optimizations
methods in the presence of noise, parameter variation and randomness.

212 N. Paraschiv et al.



7.2.2.4 Swarm Intelligence Applications

In [29] it is discussed in detail the implementation of particle swarm optimization
(PSO) algorithm in PID tuning for a controller of a real time chemical process.
Particle swarm optimization is an evolutionary computation algorithm that simu-
lates social behavior in swarms (e.g. bird flocking and fish schooling). The main
advantages of the proposed swarm intelligence based solution are given by its
simplicity and low cost, as well as by its good performance in case of PID con-
trollers tuning. Another application of using PSO is described in [27]. The
application of another swarm intelligence technique, ant colony optimization
(ACO) is reported in [30]. The authors proposed a new optimal method for
designing and computing the parameters of an ACO-based controller for non linear
systems described by TSK models (Fig. 7.19).

7.2.2.5 Hybrid Computational Intelligence Applications

The neuro-fuzzy control of chemical technological processes is discussed in [31].
A combination of the predictive and ANFIS controller was proposed and tested as
intelligent control system for a Continuous Stirred-Tank Reactor (CSTR) control
problem. The experiments showed better results than those obtained with the
original predictive and PID controller. Another successful application of neuro-
fuzzy intelligent process control is presented in [32].

7.3 Case study: The Wastewater pH Neutralisation Process
in a Wastewater Treatment Plant

Through treatment process it is understood the set of physical procedures (that
compose the physical wastewater treatment plant (WWTP) step), physical-
chemical procedures (physical-chemical WWTP step) and the biological ones
(the biological step) through which is achieved the pollutants removing from
wastewater. Such procedures are: neutralization, flotation, absorption, extraction,
etc. The pH neutralization process is achieved in the WWTP physical-chemical
step, in chemical reactors of high capacity, the so called Continuous Stirred Tank
Reactors (CSTR). The quality indicator pH is a measure of solution acid or
alkaline (basic) character and is measured on a scale from 0 to 14 pH units. For
acid type wastewater neutralization (with pH \ 7), namely for increasing the pH
value, are used basic (alkaline) type substances, such as: lime (calcium lime-CaO)
under calcium hydroxide form-Ca(OH)2), dolomite (calcium and magnesium
carbonate), limestone, hydroxide sodium (NaOH), etc. For alkaline (basic) type
wastewater neutralization (with pH [ 7), namely for decreasing the pH value, are
used: sulphuric acid (H2SO4), carbonic acid (H2CO3) and chlorine hydride (HCl)
[33]. In Fig. 7.20 are presented examples of dynamic characteristics (the process
response in time) for pH neutralization process [1].
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As it can be observed in Fig. 7.20, the wastewater pH neutralization process is a
complex one having a high nonlinear behaviour.

In this case study is presented a neuro-fuzzy system developed for wastewater
pH control, system that has an ANFIS (Adaptive Neuro-Fuzzy Inference System)
controller. Also, it was developed a mathematical model (under a transfer function
form) of the wastewater pH neutralization process. The architecture of the pro-
posed automatic control system for wastewater pH control (pHACS) is presented
in Fig. 7.21.

As it can be observed in Fig. 7.21, the pHACS components are [34]:

1. The process represented by the developed mathematical model (transfer
function) for wastewater pH neutralization process

2. The controller (R-ANFIS) developed using neuro-fuzzy systems (ANFIS); for
controller development were used the facilities offered by Matlab 7.9 envi-
ronment through ANFIS Editor GUI

3. Two actuators EE1 and EE2; EE1 is the acid-type neutralizer (H2SO4) dosing
pump while EE2 is the alkali-type neutralizer (NaOH) dosing pump; the
functioning of one of these two pumps depends on the pH character (acid or
alkaline)

4. A pH meter for measuring the controlled variable (pH) value at the process
output

5. The wastewater pH set point (rpH), value established at national level through
a special normative in domain, called NTPA-001/2002 [35]

6. The command (c) generated by the system controller (R-ANFIS), controller
that, depending on the error value, generates the command for the necessary
neutralizer agent flow for bringing the controlled variable (pH) to its set point

7. The error (e) defined as the difference between the pH set point (rpH) and the
measured pH value at the process output (mpH)

Fig. 7.20 Dynamic characteristics for acid and alkaline pH neutralization
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8. The manipulated variable (u) that represents neutralizer agent flow dosage
9. pH is the controlled output

10. mpH is the measurement signal

Hereinafter is presented the development of the wastewater pH neutralization
process mathematical model (under a transfer function form) and the development
of the R-ANFIS controller as a component of the proposed pHACS.

7.3.1 The Process Mathematical Model Development

The analyzed process is that of wastewater pH neutralization, process that takes
place in a wastewater treatment plant (WWTP) physico-chemical step. For this
type of process, studying the literature was chosen the mathematical model
developed by Ibrahim R. in his PhD Thesis [36]. The mathematical model of the
process was first of all analyzed and then implemented (simulated) in Matlab 7.9/
Simulink environment in [34]. According to [36] and [1], the pH neutralization
process has a high-nonlinear behaviour. Due to the process model complexity, in
order to obtain that transfer function (the simplified mathematical model of the
process) that better describes the process was applied the model linearization. The
pH neutralization process inputs and outputs are presented in Fig. 7.22 [34].

As it can be observed in Fig. 7.22, the process inputs and outputs are:

1. F1 is the acid stream flow rate;
2. F2 alkaline stream flow rate;
3. C1 is the acid concentration in basin;
4. C2 is the alkalinity concentration in basin;
5. y(pH) is the process output.

For model linearization (for obtaining the transfer function) we need to cal-
culate the proportional control factor (Kp) and the process transient time (Tp),
defined as follows:

Kp ¼
Dy

DF1
ð7:12Þ

Kp ¼
Dy

DF2
ð7:13Þ

Fig. 7.21 pHACS architecture [34]
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Tp ¼
Ttr

4
ð7:14Þ

Dy is the output variation (pH variation), DF1 is the input F1 variation (acid type-
neutralizer flow variation), DF2 is the input F2 variation (alkali type-neutralizer
flow variation) and Ttr is the transient regime duration.

As it can be observed in Fig. 7.22, we considered F1 (acid type neutralizer
agent) step input in the process and the others inputs were maintained constant. In
this case the process dynamic response is presented in Fig. 7.23.

Using (7.12) and knowing according to [36] the domains for F1

(F1 2 [0.0.260]l/h) and for pH (pH 2 [0.0.14] pHunits), we have:

1. Kp = – 0.72;
2. Ttr = t(y(0.98xDy)) = 0.795;
3. Tp = 0.19875;

4. GyF1
¼ Kp

Tpsþ1 ¼ � 0:72
0:19875sþ1 (transfer function)

Using the same reasoning was also achieved the linearization for F2 domain
(F2 2 [0.0.340]l/h), as it can be observed in Fig. 7.24.

We considered F2 (alkali-type neutralizer agent) step input in process and the
others inputs are maintained constant. The process response at input step F2 is that
presented in Fig. 7.25.

Using (7.13) and (7.14) were obtained:

1. Kp ¼ 1:72
2. Tp ¼ 0:19875

3. GyF2
¼ Kp

Tpsþ1 ¼ 0:72
0:19875sþ1 (transfer function)

Using the linearization of the model, we obtained the searched transfer function
that will be used as the model of the wastewater pH neutralization process.

Fig. 7.22 Process inputs/
outputs [34]
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7.3.2 The R-ANFIS Controller Development

As we have mentioned for developing the R-ANFIS controller from Fig. 7.21,
were used the facilities supplied by Matlab 7.9, through the anfisedit command
usage, command that calls the ANFIS Editor.

In 26, R-ANFIS (RpH2) is considered to be a first-order Sugeno type fuzzy
system with one input (error) and one output (EE1/EE2 opening degree for acid or
alkaline/basic neutralizer agent dosage).

Fig. 7.23 The process response at step input F1 [34]

Fig. 7.24 Process inputs/outputs [34]

Fig. 7.25 The process response at step input F2 [34]
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The rules base contains a number of ten rules, as it can be observed in
Table 7.1, rules automated generated through the usage of Generate Fis option,
option that based on the training data (data obtained through the process analysis)
from Table 7.2, generated the system with fuzzy inference (FIS) (FIS with the
structure presented in Fig. 7.26).

In Table 7.1, ERROR represents the controller input, defined as the difference
between the pH set point and the pH measurement at the process output, while
EE1/EE2 OPEN DEGREE is the controller command (output), defined to be the
EE1 or EE2 opening degree for acid or alkali type neutralizer agent flow necessary
for pH control.

After the automatically obtaining of FIS (Fig. 7.26), can be visualized the
generated ANFIS model using Structure button from user graphical interface
(GUI). In Fig. 7.27 is presented the ANFIS model structure (Table 7.2).

In Fig. 7.27 we have a model with one input (error), one output (EE1/EE2
opening degree for acid or alkali type neutralizer agent dosage) and also a number
of ten fuzzy rules.

As it can be observed in Fig. 7.28, for training the generated fuzzy inference
system (FIS), was used a hybrid training algorithm, that according to [37] has two
steps: feed forward-propagation and back-propagation.

For model validation was used a validation data set. As it can be observed in
Fig. 7.29, we can say that the generated model is a valid one (validation data
output follows the FIS output).

In Fig. 7.30 is presented the application Rule Viewer that shows a map of the
entire fuzzy inference process.

In Fig. 7.31 is presented under a graphical form the relation between the R-
ANFIS controller input (error) and output (command-EE1/EE2 OPEN DEGREE).

Having developed the R-ANFIS controller it can be developed the automated
system for wastewater pH control (pHACS) in Simulink.

Table 7.1 R-ANFIS rule
base

No. Error EE1/EE2 open degree

1 in1mf1 out1mf1
2 in1mf2 out1mf2
3 in1mf3 out1mf3
4 in1mf4 out1mf4
5 If in1mf5 Then out1mf5
6 in1mf6 out1mf6
7 in1mf7 out1mf7
8 in1mf8 out1mf8
9 in1mf9 out1mf9
10 in1mf10 out1mf10
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7.3.3 pHACS Implementing in Matlab/Simulink

Using the fuzzy inference system presented in Fig. 7.26, generated and trained
with the help of an artificial neural network (ANN), was developed the R-ANFIS
controller. For implementing this controller in Simulink was used Fuzzy Logic
Controller with Ruleviewer block, as it can be observed in Fig. 7.32.

Error

RpH2
(sugeno)

EE1/EE2 OPEN DEGREE

f(u)

Fig. 7.26 R-ANFIS architecture

Fig. 7.27 ANFIS model structure

Table 7.2 Training data Error EE1/EE2 open degree

5 100
4 75
3 50
2 37
1 25
0 0
-1 -25
-2 -37
-3 -50
-4 -75
-5 -100
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In Fig. 7.33 is presented the neuro-fuzzy automatic system (pHACS) for an
alkali type pH control using the transfer function GyF1

obtained through model
linearization (3.1).

The pHACS for alkali-type pH control response is presented in Fig. 7.34.
In Fig. 7.35 is presented the pHACS architecture for acid-type pH neutraliza-

tion using the transfer function GyF2
.

The pHACS for acid-type pH control response is presented in Fig. 7.36.
The experimental results obtained for the above mentioned experiments are

presented in Table 7.3.

0 200 400 600 800 1000

Epochs

Optim.Method: hybrid

Training Error

5.632

5.634

5.636

5.638X0.00001

Error

Fig. 7.28 FIS training
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Fig. 7.29 ANFIS model validation
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Error= 5 EE1/EE2 OPEN DEGREE= 100
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Fig. 7.30 R-ANFIS Rule Viewer
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Fig. 7.31 R-ANFIS controller
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RpH2

Refresh rate (s)

FIS matrix

Parameters

FIS with a ruleviewer for fuzzy logic rules

Fuzzy Logic Controller with Ruleviewer

2

Parameters

Fig. 7.32 Fuzzy Logic Controller with Ruleviewer block
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Fuzzy
Logic

Controller
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Fig. 7.33 pHACS for alkali-type pH control using GyF1
(Experiment no.1)
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Fig. 7.34 pHACS response for alkali-type pH (Experiment no.1)
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7.4 Conclusion

As it can be observed in Table 7.3 using neuro-fuzzy control, the pH was brought
very close to its set point (7.7), therefore the controller (R-ANFIS) obtained using
neuro-fuzzy techniques and the developed automatic control system (pHACS) are
supplying good results, such as low error.

Controller
RpH2

-2.6700e-001

+
0.72/0.19875s+1

Neutralization
process
model

7.0078e+000

y

+

+

F1

+

F2

9.7330e+000

-2.6700e-001

-7.7591e-003

-

9.7330e+000

+

Fig. 7.35 pHACS for acid-type pH control using GyF2
(Experiment no.2)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time [h]

pHACS response for acid-type pH

Fig. 7.36 pHACS response for acid-type pH (Experiment no.2)

Table 7.3 Experimental results

No.exp. F1H2SO4

(l/h)
F2NaOH
(l/h)

pH set
point

pH process
value

pHACS error
(e = ipH - mpH)

Transient regime
duration Ttr(h)

1 10 140 7 7.0078 0.0077591 0.35
2 10 10 7 7.0078 0.0077591 0.35
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Through the usage of artificial neural networks (ANN), especially to theirs
capacity to learn and to adapt, the fuzzy systems (FIS) performances are consid-
erably improved. So, the parameters of a fuzzy system (FIS set of rules and
membership functions) are calculated through learning (training) methods using
input-output data sets.

The usage of neuro-fuzzy controllers obtained through the development,
training and testing of a Sugeno type fuzzy system can be a viable solution for
processes with essential nonlinearities, as in case of the wastewater pH neutral-
ization process.

The applicability of artificial intelligence (AI) techniques (fuzzy logic, artificial
neural networks, neuro-fuzzy systems, expert systems, etc.) in control problems is
justified due to the AI techniques advantages (for instance, fuzzy logic is indicated
to be used for complex and nonlinear process control, etc.) that AI brings to the
control domain.

Computational intelligence provides low cost robust solutions with a good
tolerance of imprecision and uncertainty, being a proper tool for process control in
real time, where the tradeoff is between accuracy and processing speed. The most
efficient chemical process control methods are those based on hybrid approaches
that combine different computational intelligence techniques.
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