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Preface

Based on the overall digitalisation in all spheres of our lives, Data Science and Artificial Intelligence (AI) are 
nowadays cornerstones for innovation, problem solutions and business transformation. Data, whether struc-
tured or unstructured, numerical, textual, or audiovisual, put in context with other data or analysed and pro-
cessed by smart algorithms, are the basis for intelligent concepts and effective solutions. These solutions are 
addressing many application areas such as Industry 4.0, Internet of Things (IoT), smart cities, smart energy 
generation and distribution, and environmental management. Innovation dynamics and business opportuni-
ties as effective solutions for the essential societal, environment, or health challenges, are enabled and driven 
by modern data science approaches.

However, Data Science and Artificial Intelligence are forming a new field that needs attention and focused 
research. Effective data science is only achieved in a broad and diverse discourse – when data science experts 
cooperate tightly with application domain experts and scientists exchange views and methods with engineers 
and business experts. Thus, the 4th International Data Science Conference (iDSC 2021) brought together 
researchers, scientists, and business experts to discuss new approaches, methods, and tools made possible by 
data science.

The cooperation of  the Salzburg University of Applied Sciences, the Vorarlberg University of Applied Sciences, 
the University for Continuing Education Krems (Danube University Krems), and the AIT Austrian Institute 
of Technology demonstrates the strong Austrian scientific footprint and a deep commitment to a cooperative 
effort for jointly building an international community from science, research, as well as business, through data 
science and data analytics.

The iDSC is designed as a conference with a dual approach: By bringing together the latest findings in data 
science research and innovative implementation examples in business and industry, the conference is aimed 
at reflecting the current scientific breakthroughs and application expertise, as a means of stimulating shared 
professional discourse. The six thematic sessions of the conference have been mirroring all the top issues of 
the data science discipline ranging from challenges in the industrial setting, via Deep and Machine learning 
methodologies and Natural Language Processing approaches up to future innovation strategies. While the 
Research Track had a strong emphasis on Safety and Security matters like Anomaly Detection, Integrity 
Awareness or Ethical fairness of AI e.g., the Industry Track more made deep reflections on the Scaling of 
Business models, Infrastructure and Software, the Use of Data Science in SMEs, or the development of Data 
Ecosystems as an Incubator for Data Innovation.

5 keynotes, two from the research arena and three from different industries, had enhanced the con-
ference’s total outcome by deliberating on data science from a meta-level: The topics “AI everyw-
here as a Social good”, “The paradigm shift to the circular economy pushed by Smart Data”, ”The new 
cultural mindset of Data Mesh”, “Open Science with limited closed data-sharing and the develop-
ment of synthetic data models” and last but not least “Potentials for agile and transparent Data Go-
vernance with domain-driven, decentralized Data management” are representing a shining mix of 
themes – philosophically  grounded – making the iDSC an event not to miss in the community. 



Therefore - once again - the iDSC, showed that the chosen structure of research and industry tracks provided 
fascinating insights into current areas of research, as well as presenting impressive use cases to demonstrate 
the huge potential and significance of modern data science. With our new service, all talks can be now acces-
sed also via video stream from our landing page https://idsc.at.

This was also made possible by the excellent work and outstanding execution of the conference by Michael 
Mürling, Athina Lykou and the team at AIT, as well as by our technical support team brutkasten.com. We 
greatly appreciate the generous support of SBA Research, X-NET Services, SPARX Services and as well our 
media partner Trending Topics. We also want to acknowledge Julian Nöbauer and Maximilian Tschuchnig 
from the Salzburg University of Applied Sciences for their ongoing backing especially on the creation of the 
proceedings. Finally, we thank the organizing & program committee as well as the reviewers for helping to 
make the conference a reoccurring success. 

Enjoy the present proceedings of the conference and see you in 2023 at the University for Continuing Educa-
tion Krems (Danube University Krems).

Peter Haber, Thomas Lampoltshammer, Helmut Leopold, Manfred Mayr 
Conference Chairs



Data science & AI depend on smart ecosystems 
to provide society with innovative solutions 
An overview of AI solutions “Made in Austria”

Digitalisation has changed the rules of business and many social mechanisms at an amazing pace. While hu-
gely powerful devices such as smartphones, laptops, and PCs have served to network people on a global scale 
during the past decade, this transformation process has gained further momentum through the networking of 
our physical objects to create the Internet of Things (IoT). These developments, in turn, create the potential 
for new applications, business models, and value chains. However, this has simultaneously made us depen-
dent on technology platforms, to the extent that our economy, our social lives, and our public administration 
are now all unthinkable without functioning digital infrastructures.

 
Three challenges must be overcome to ensure that this transformation is beneficial for mankind:

1. Mastery of digital technology platforms has become a fundamental requirement for business and 
society. Digital technology and infrastructure must be designed for maximum availability and offer 
the best possible level of security from a wide range of threats. Developments which focus on both 
minimal resource consumption and data protection in the service of humanity are essential.

2. Establishing extremely high-performance data management and ensuring that data sovereignty re-
mains in the hands of the user is the order of the day. By living and working with a multitude of 
IoT devices, we continually generate huge data volumes which can be combined and processed 
using smart algorithms to produce essential information. This allows us to use digital platforms and 
smart data management to effectively address society’s key challenges, including the environment, 
energy, and mobility. Smart IT services and high-performance computing (HPC) play a key role in 
determining productivity in our digital future. Contrary to the current cloud megatrend, this will 
also require new network architectures to balance data transmission and computing power between 
end devices (IoT) and data centres (cloud).

3. Lastly, effective cooperation must be fostered between data scientists and domain experts. Effec-
tive and solution-oriented data science and artificial intelligence (AI) can only function based on 
new forms of cooperation between the various disciplines. Computer scientists rely on mechanical 
engineers, electrical engineers, physicists, architects, etc., and vice versa, to successfully develop 
useful, needs-based, functional data science and AI solutions.

 
These challenges are a key research focus at the Center for Digital Safety & Security at the AIT Aus-
trian Institute of Technology. Current highly innovative AIT developments “Made in Austria” include:

• Smart encryption for secure cloud solutions:

 » Smart data encryption to give data owners dedicated selective and dynamic access, even in dis-
tributed cloud systems (e.g., https://secredas-project.eu/ and https://profet.at/). 

 » Next-generation data back-up and archiving solutions in public or hybrid cloud storage. Distri-
buted and encrypted data can be stored securely in the cloud, without even the cloud provider 
being able to access and analyse the stored data (https://www.fragmentix.com/de/). 



 » Virtualized, distributed (blockchain-based) database architectures in the cloud to create new 
marketplaces. Using a highly secure cloud solution, encrypted supply and demand information 
in a distributed system can be retrieved automatically and compared anonymously (https://www.
flexprod.at/de). This innovation won the German Digital Leader Award 2020 and is marketed 
through CATCH.direct (https://www.catch.direct/).

• Cyber security AI solutions and new quality of experience for customers of digital services:

 » Modern cyber security solutions must also be able to detect unknown and non-specified threats 
and attacks on IT systems. New AI-based anomaly detection systems are therefore essential 
for future security information and event management systems (SIEM) (https://aecid.ait.ac.at/), 
H. Leopold et al. Cyber Attack Information System – Erfahrungen und Erkenntnisse aus der 
IKT-Sicherheitsforschung, 2015, Springer Verlag, https://link.springer.com/book/10.1007/978-
3-662-44306-4)  

 » Tomorrow’s software and system development need new software engineering approaches, par-
ticularly for safety-critical systems. This ensures safety & security are factored into the design, 
allowing effective security certification (https://www.threatget.com/). 

 » Modern network operators need machine learning systems for effective and dynamic network 
management and to provide the best possible quality of experience to digital end users (https://
bigdama.ait.ac.at/).

 » Effective AI solutions for protection against cyber crime (https://www.fakeshop.at/) and as wea-
pons in the battle against disinformation and fake news (https://www.defalsif.ai).

• Artificial intelligence and new data economies in the service of mankind as an important con-
tribution to solving important societal challenges: 

 » Access to the data continually being generated in the digital space (Open Data) as well as new 
IT system architectures and algorithms are needed to enable new data economies and to support 
data cooperation and data sharing. Examples include the Austrian Data Intelligence Offensive 
(DIO) (https://www.dataintelligence.at/) and the European Gaia-X initiative.

 » The general availability of data about product characteristics, materials and life cycles allows 
raw materials to be recycled and products to be specifically processed in keeping with the con-
cept of a circular economy. 

 » Shifting AI from the data centre to the edge gives rise to numerous new applications while si-
multaneously increasing resilience and data security and reducing overall energy consumption.

All these examples show what fascinating innovations are possible when data experts cooperate closely with 
domain experts, users and authorities and share their expertise in innovation processes and smart, agile de-
sign-thinking ecosystems. Ultimately, smart ecosystems are the true drivers of innovation when it comes to 
developing AI solutions that will benefit humanity.

Helmut Leopold 
Head of Center for Digital Safety & Security 
AIT - Austrian Institute of Technology



Data boost industry-academia link 

The bilateral focus of the iDSC conference is nicely reflected in the progress and results of DataKMU, which 
is a three-year research and transfer endeavour with participation from the industry as well as from academia 
including Salzburg University of Applied Sciences. The wide-spread uncertainty in small and medium-sized 
enterprises as regards utilisation of current data-driven concepts and methodologies to improve their bus-
inesses has motivated the DataKMU consortium to provide low-threshold access to a wide variety of state-
of-the-art approaches in applied data science. The central goal is to systematically establish a multi-faceted 
operational industry-academia link in the field of data science, which is presented in the following.

A pivotal step of improvement in any situation is to get a clear picture of one own‘s status quo and to derive 
from this insight well-suited potential options for enhancement. Therefore, a multi-case study was undertaken 
to infer criteria for the determination of a so-called Data Science Readiness Level specifically for SMEs. This 
multidimensional scale, which is in part based on the Data Science Maturity Model from Oracle (described in 
the article “Strategic Approaches to the Use of Data Science in SMEs” in this Proceedings), allows SMEs to 
position themselves with little effort and to derive from this proper options for initial quick-wins in advanced 
data utilisation. This can be considered ramp-up support. SMEs can also locate themselves inside groups such 
as Practitioners, Strategists, and Pioneers and get related hints and information regarding suggested action 
points and potential caveats.

Data science strategies and their technical implementation are usually very domain-specific, which is why 
several showcase prototypes were created as part of the DataKMU project. These tangible results are open 
to analysis and discussion from various stakeholders, which is specifically interesting for companies that are 
too small to have their own data science teams on their payroll. The best-practise example implementations 
such as (i) Transfer Learning for automated data labelling in marketing, (ii) Data Analytics as a Service for 
virtual sensors as system observer in production, (iii) Development of automated methods for the detection 
and data extraction of signposts in tourism, and (iv) Automated recording of road conditions in logistics 
motivate SMEs to adopt similar solutions to stay competitive in their respective markets. Thus, by acting 
as ‚innovation followers‘ in the beginning, these SMEs can lower their threshold to the level of innovation 
leaders considerably.

In addition to the above-mentioned example implementations, a rather generic big data pipeline infrastructure 
was established to support SMEs in their bootstrapping of their own data science applications. This pipeline 
is a stateful pipeline that ‘remembers’ parametrisations over time in a way that can be re-played and adopted 
to optimise the various algorithmic building blocks. Thus, variants of solutions and related success can be 
analysed easily without the usual hardware costs.

The joint operation of several tertiary educational institutions helps to sharpen the respective profiles of data 
science-related programs in various places in the western part of Austria and adjacent regions of Germany. 
Replicating similar curricula is not an option to encourage a maximum of potential students to enrol in MINT 
programs. Thus, the specific strengths of the institutions were identified in course of the DataKMU project 
and also the main present and future research focus areas representing their characteristics in the individual 
universities. It is by far better to develop specific fields of application to address a higher total number of 
young people with study interest in data science. The intended heterogeneity in education also has a broader 
publicity as a side effect. 



One of the pivotal results of the DataKMU endeavour is that the linkage between regional business players 
and regional universities is a very productive setting for the innovation system. Local businesses domain 
knowledge combined with methodological competences from research institutions enriched by the creative 
potential of young students forms an incubator setting that is beneficial to all the various stakeholders likewi-
se. This creates a faster convergence of solutions in a pre-competitive environment.

In addition, a long-term strategic roadmap was developed together with the consortium by an external partner. 
For this purpose, a catalogue of measures was developed with external expertise to sustainably anchor the 
DataKMU network regionally, nationally, and internationally. One of the next steps of the consortium is to 
apply for a follow-up grant in the realm of ecologically-oriented data science for businesses and industries, 
where several of the above-mentioned strategic benefits will again play an important role, which will also be 
in line with the European Green Deal initiative. We look forward to presenting new findings at one of the next 
iDSC conferences.

Thomas J. Heistracher 
Department Head Informatics and Software Engineering 
Research Director Information Technologies 
Salzburg University of Applied Sciences | Fachhochschule Salzburg GmbH
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German Abstracts 

Evaluation of Hyperparameter-Optimization Approaches  
in an Industrial Federated Learning System
S. Holly, T. Hiessl, S. R. Lakani, D. Schall, C. Heitzinger and J. Kemnitz

Das Federated Learning (FL) entkoppelt das Training von Modellen, von der Notwendigkeit eines direkten 
Datenzugriffs und ermöglicht es Unternehmen, mit Partnern aus der Industrie zusammenzuarbeiten, um ein 
zufriedenstellendes Leistungsniveau zu erreichen, aber ohne sensible Geschäftsinformationen zu teilen. Die 
Leistung eines Algorithmus für maschinelles Lernen hängt stark von der Wahl seiner Hyperparameter ab. In 
einer FL-Umgebung stellt die Optimierung der Hyperparameter eine neue Herausforderung dar. In dieser Ar-
beit wurden die Auswirkungen verschiedener Hyperparameter-Optimierungsansätze in einem FL-System un-
tersucht. In dem Bestreben, die Kommunikationskosten, einen kritischen Engpass in FL zu reduzieren, wurde 
ein lokaler Hyperparameter-Optimierungsansatz untersucht, der - im Gegensatz zu einem globalen Hyper-
parameter-Optimierungsansatz - jedem Client seine eigene Hyperparameter-Konfiguration erlaubt. Diese An-
sätze wurden auf der Grundlage von Gridsearch und Bayesian Optimization implementiert und infolgedessen 
die Algorithmen mit dem MNIST-Datensatz mit einer i.i.d. (dt.: unabhängig und gleichverteilt) Partition und 
einem Internet of Things (IoT)-Sensordatensatz aus der Industrie mit einer nicht i.i.d. Partition konfiguriert. 

Towards Robust and Transferable IIoT Sensor based  
Anomaly Classification using Artificial Intelligence
J. Kemnitz, T. Bierweiler, H. Grieb, S. von Dosky and D. Schall

Der zunehmende Einsatz kostengünstiger Industrial Internet of Things - Sensorplattformen in Indus-
trieanlagen bietet große Chancen für die Erkennung von Anomalie. Die Leistung eines solchen Klas-
sifizierungsmodells hängt stark von den verfügbaren Trainingsdaten ab. Modelle funktionieren gut, 
wenn diese von der gleichen Maschine stammen. Sobald die Maschine jedoch ausgetauscht, repa-
riert oder in einer anderen Umgebung in Betrieb genommen wird, ist eine Vorhersage nicht abseh-
bar. Aus diesem Grund wurde untersucht, ob es möglich ist, eine robuste und übertragbare Methode zur 
KI-basierten Anomalie-Erkennung zu entwickeln, indem verschiedene Modelle und Vorverarbeitungs-
schritte für Kreiselpumpen verwendet werden, die vorerst getrennt und in derselben sowie in unterschied-
lichen Umgebungen wieder in Betrieb genommen werden. Außerdem wurde die Modellleistung an ver-
schiedenen Pumpen desselben Typs - im Vergleich zu den vorhandenen Trainingsdaten - untersucht. 

Data-driven Cut-off Frequency Optimization  
for Biomechanical Sensor Data Pre-Processing
S. Bernhart, V. Venek, C. Kranzinger, W. Kremser and A. Martínez

Bei der Vorbereitung von biomechanischen Sensordaten werden häufig Signalfilter zur Rauschunterdrü-
ckung eingesetzt, um die Leistung von Segmentierungs- und maschinellen Lernalgorithmen zu verbessern. 
Die Suche nach einem optimalen Wert für die Grenzfrequenz des Filters ist jedoch zeitaufwendig, da sich 
die Forscher auf Heuristiken und Erfahrung verlassen müssen. Daher wurde eine Methode namens FcOpt 
entwickelt, um automatisch eine optimale Grenzfrequenz für die Rauschfilterung in eindimensionalen bio-
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mechanischen Daten zu ermitteln. Die Methode führt eine erneute Abtastung der Eingabedaten durch und 
wendet drei automatische Varianten zur Bestimmung der Grenzfrequenz an, führt anschließend deren in-
dividuell vorgeschlagene Grenzfrequenzen mit einem k-means-Cluster-Algorithmus zusammen und liefert 
eine optimale Grenzfrequenz für die Filterung eindimensionaler Datenströme. FcOpt wird exemplarisch 
im Zusammenhang mit einem Algorithmus zur Segmentierung von Skischwüngen angewendet. Diese Me-
thode wirkt der - durch hohe Abtastraten bedingten - Anfälligkeit automatisierter Verfahren für die Iden-
tifizierung von Grenzfrequenzen entgegen. FcOpt schlägt eine Cut-Off-Frequenz von 2,63 Hz, statt der 
ursprünglich vorgeschlagenen 3 Hz vor. Die Filterung mit der empfohlenen Grenzfrequenz weicht im Durch-
schnitt um 1,0 ms von der ursprünglichen zeitlichen Genauigkeit der Skischwung-Segmentierung ab, was 
nur 0,08% in Bezug auf die mittlere Schwungdauer entspricht. Obwohl FcOpt Heuristiken zur Bestimmung 
der Grenzfrequenz noch nicht vollständig ersetzen kann, ist es ein einfaches zu verwendendes Werkzeug 
für Forscher, welche die Signalvorverarbeitung für ihre Segmentierungsalgorithmen verbessern wollen. 
Es legt den Grundstein für künftige Entwicklungen auf dem Gebiet des datengesteuerten Filterdesigns. 

A Low-Complexity Deep Learning Framework  
For Acoustic Scene Classification
L. Pham, H. Tang, A. Jalali, A. Schindler, R. King and I. McLoughlin

In diesem Beitrag wird ein Low-Complexity Deep Learning Framework für acoustic scene classification 
(ASC) vorgestellt. Das vorgeschlagene Framework kann in drei Hauptschritte unterteilt werden: Front-end 
spectrogram extraction, back-end classification, und eine Zusammenführung der vorhergesagten Wahr-
scheinlichkeiten. Zunächst werden Mel filter, Gammatone filter, and Constant Q Transform (CQT) einge-
setzt, um rohe Audiosignale in Spektrogramme umzuwandeln, in denen sowohl Frequenzmerkmale als auch 
zeitliche Merkmale dargestellt werden. Drei Spektrogramme werden dann in drei faltungsneuronale Net-
ze eingespeist, die zehn Szenen im städtischen Umfeld klassifizieren. Schließlich wird eine späte Fusion 
von drei vorhergesagten Wahrscheinlichkeiten, die von drei CNNs beigesteuert werden, durchgeführt, um 
das endgültige Klassifikationsergebnis zu erhalten. Um die Komplexität des vorgeschlagenen CNN-Net-
zes zu reduzieren, wurden zwei Kompressionstechniken angewendet: Modellrestriktion und dekomponierte 
Faltung (=model restriction and decomposed convolution). Bei den umfangreichen Experimenten, die mit 
den DCASE 2021 (IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events) 
Task 1A Development and Evaluation Datensets durchgeführt wurden, konnte ein CNN-basiertes Frame-
work mit geringer Komplexität und 128 KB trainierbaren Parametern mit einer Klassifizierungsgenauig-
keit 66,7% sowie 69,6% erreicht werden, was die DCASE-Baseline um 19,0% bzw. 24,0% verbessert. 

Anomaly Detection in Medical Imaging - A Mini Review
M. E. Tschuchnig and M. Gadermayr

Die zunehmende Digitalisierung der medizinischen Bildgebung ermöglicht - auf maschinellem Lernen basie-
rende Verbesserungen - bei der Erkennung, Visualisierung und Segmentierung von Läsionen, was die Arbeit 
von medizinischen Experten erleichtert. Für das überwachte maschinelle Lernen werden jedoch zuverlässige 
gelabelte Daten benötigt, die oft nur schwer oder gar nicht zu beschaffen sind oder zumindest zeitaufwändig 
und damit kostspielig aufbereitet werden müssen. Daher werden immer häufiger Methoden eingesetzt, die 
nur teilweise über Labels überwachtes Lernen unterstützen oder gar keine Labels (nicht überwacht) benö-
tigen. Die Anomalie-Erkennung ist eine mögliche Vorgangsweise, bei der halbüberwachte und nicht über-
wachte Methoden eingesetzt werden, um Aufgaben der medizinischen Bildgebung wie Klassifizierung und 
Segmentierung zu bewältigen. Im eingereichten Beitrag dient ein umfangreicher Literaturüberblick hinsicht-
lich relevanter Arbeiten zur Anomalie-Erkennung in der medizinischen Bildgebung als Grundlage. Hiermit 
versucht man Anwendungen zu gruppieren, wichtige Ergebnisse hervorzuheben, Lehren daraus zu ziehen und 
weitere Ratschläge für die Vorgehensweise bei der Anomalie-Erkennung in der medizinischen Bildgebung zu 
geben. Die qualitative Analyse basierte auf Google Scholar und 4 verschiedenen Suchbegriffen, wodurch 120 
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verschiedene Artikel analysiert wurden. Die wichtigsten Ergebnisse zeigen, dass die derzeitige Forschung 
hauptsächlich bestrebt ist, die Verringerung des Bedarfs an gelabelten Daten, bei annähernd gleichbleibender 
Qualität der Ergebnisse, zu erreichen. Die erfolgreiche und umfangreiche Forschung auf dem Gebiet des 
Hirn-MRT zeigt auch das Potenzial für Anwendungen in anderen Bereichen wie OCT und Thorax-Röntgen. 

Deep Learning Frameworks Applied  
For Audio-Visual Scene Classification
L. Pham, A. Schindler, M. Schütz, J. Lampert, S. Schlarb and R. King

In diesem Beitrag werden Deep-Learning-Frameworks für die audiovisuelle Szenenklassifika-
tion (SC) vorgestellt und zeigen auf, wie einzelne visuelle und akustische Merkmale sowie deren Kom-
bination die SC-Leistung beeinflussen. Die umfangreichen Experimente wurden mit den DCASE 
2021 (IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events) Task 
1B Entwicklungs- und Bewertungsdatensätze durchgeführt. Die Ergebnisse mit dem Entwicklungs-
datensatz erzielen die beste Klassifizierungsgenauigkeiten von 82,2%, 91,1% und 93,9% mit jeweils nur 
Audioeingabe, nur visueller Eingabe sowie Audio- und auch visueller Eingabe. Die höchste Klassifizie-
rungsgenauigkeit von 93,9%, die von einem Ensemble aus audio- und visuell-basierten Frameworks er-
zielt wurde, zeigt eine Verbesserung von 16,5% im Vergleich zur DCASE 2021 Baseline. Das beste Er-
gebnis im Evaluationsdatensatz beträgt 91,5% und übertrifft damit die DCASE-Baseline von 77,1%. 

Toward Applying the IEC 62443 in the UAS  
for Secure Civil Applications
A. M. Shaaban, O. Jung and M. A. F. Millan

Die wachsende Nachfrage nach Drohnen für zivile Anwendungen wird in der Regel mit kommerziellen Stan-
dardgeräten bedient. Diese können zwar immer an die Bedürfnisse des Endnutzers angepasst werden, erfüllen 
aber nicht alle kritischen Aspekte wie Leistung, Effizienz oder Sicherheit. Die Cybersicherheit ist eines der 
kritischen Themen bei unbemannten Luftfahrtsystemen (engl.: Unmanned Aircraft Systems UAS), bei denen 
Cyberangriffe auf dieses System zu zahlreichen negativen Folgen führen können. Im vorliegenden Paper wird 
das Thema Cybersicherheit behandelt, indem eine Reihe strategischer Maßnahmen vorgestellt werden, um 
einen vollständigen Entwicklungsprozess für die Erstellung sicherer UAV-Anwendungen (Unmanned Aerial 
Vehicle) zu definieren. Neben der Implementierung des Sicherheitsstandards IEC 62443 in UAS wird ein um-
fassender Katalog mit Bedrohungen, Komponenten und kritischen Werten für UAVs erstellt. In der Folge wird 
das sogenannte ThreatGet-Tool eingesetzt, um automatisch relevante Bedrohungen zu identifizieren und zu be-
stimmen bzw. die Risikostufe im Zusammenhang mit einer UAS-Fallstudie abzuschätzen. Die Ergebnisse von 
ThreatGet werden verwendet, um einen Überblick über ein Mapping-Verfahren zwischen Bedrohungen und 
Sicherheitsanforderungen zu geben. Diese Strategie zielt vornehmlich darauf ab, eine Reihe von Sicherheitsan-
forderungen zu ermitteln, um potenziellen Bedrohungen zu adressieren und kritische Werte in UAS zu schützen. 

IAIDO: A Framework for Implementing Integrity-Aware  
Intelligent Data Objects
E. Davis

Die zunehmende Abhängigkeit von automatisiertem Denken, maschinellem Lernen und maschinengestützter 
Entscheidungsfindung hat zu ernsthaften Schwachstellen im Bereich der Datenintegrität geführt. Der ver-
trauenswürdige und zuverlässige Betrieb von datengesteuerten Systemen der nächsten Generation und der 
Infrastruktur, die diese Daten verwaltet, erfordert wirksame und skalierbare Lösungen für die wachsende 
Gefahr von Fehlern aufgrund von Datenintegrität. In diesem Beitrag wird das Konzept der Datenintegrität 
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diskutiert, die Bedrohungen für die Datenintegrität skizziert und der Begriff der integritätsbewussten Daten-
objekte vorgestellt, welche die Konzepte des Polymorphismus, der Subsumption, der Komposition, der Asso-
ziation und der Aggregation nutzen, um ein System zur Verbesserung der Datenintegrität für große Datensätze 
mit gemeinsamer Herkunft, Repräsentationen und Typen aufzubauen. Der Begriff dieser Datenobjekte wird 
dahingehend erweitert, indem Intelligenz in Form von erlernten Einschränkungen, Regeln und Klassifikato-
ren hinzugefügt werden, die von Datenobjekten geerbt werden, um die Toleranz gegenüber Datenintegritäts-
fehlern zu verbessern. Diese integritätsbewussten intelligenten Datenobjekte werden als IAIDO-Framework 
implementiert. Der neuartige Ansatz wird anhand von realen Daten zu Ernährungsinformationen dargestellt, 
indem Beispiele für reale Datenintegritätsfehler in der National Nutrient Data Base for Standard Referen-
ce Release 28 des USDA und in Crowd-Sourced-Daten verwendet werden. Schließlich werden die hohen 
Raten von Datenintegritätsfehlern in Crowd-Sourced-Daten gezeigt, wobei fast 27% der Daten eine oder 
mehrere SMT-basierte Einschränkung/en nicht erfüllen. Ähnlich verhält es sich mit den vom USDA ver-
öffentlichten Daten: fast 10% der Daten sind nicht konform und weisen Fehler in der Datenintegrität auf. 

Reducing Operator Overload with Context-Sensitive Event Clustering
M. Basalla, J. Schneider and J. vom Brocke

Die Betreiber komplexer, vernetzter Systeme sind ständig mit einer großen Anzahl von Fehlerereignissen kon-
frontiert, deren Behebung viel Zeit in Anspruch nimmt. Ereignisse in einer Netzkomponente können eine Rei-
he weiterer Ereignisse in anderen Komponenten auslösen, was bei vielen miteinander verknüpften Sequenzen 
zu einer großen Anzahl von Fehlermeldungen führt. Betreiber versuchen in der Regel, die Grundursache einer 
Folge von Ereignissen, die auf ein Problem hinweisen, zu identifizieren und zu verstehen, da die Behebung 
der Grundursache in der Regel die Folgeprobleme aufzeigt. Auf der Grundlage eines realen Datensatzes wer-
den zwei Techniken vorgestellt, mit denen die Anzahl der Ereignisse und Fehlerprotokolle reduziert werden 
kann, ohne die Grundursache zu vernachlässigen. Eine Technik nutzt vorhandene Process-Mining-Tools in 
Kombination mit manueller Analyse. Das andere Verfahren beruht auf der Berechnung kontextsensitiver Ein-
bettungen, ähnlich den Worteinbettungen bei der Verarbeitung natürlicher Sprache. Die Einbettungen wer-
den zum Clustern von Ereignistypen verwendet, um das gemeinsame Auftreten und die Kausalität zwischen 
ihnen zu ermitteln. Obwohl beide Techniken ihre Stärken und Schwächen haben, reduzieren sie die Anzahl 
möglicher Ereignisse erheblich, während sie gleichzeitig die Bedingungen für die Kausalität durchsetzen. 

Dynamic Review-based Recommenders
K. Cvejoski, R. J. Sánchez, C. Bauckhage and C. Ojeda

Im gleichen Ausmaß wie sich Präferenzen von Nutzern im Laufe der Zeit ändern, spiegeln die Rezensionen 
von Artikeln diese Änderungen von Präferenzen wider. Kurz gesagt, wenn man das Wissen über den Inhalt 
von Rezensionen in Empfehlungssysteme einbeziehen will, endet man auf natürliche Weise bei dynamischen 
Textmodellen. In der vorliegenden Arbeit wurde die bekannte Stärke von Rezensionen eingesetzt, um die 
Vorhersage von Bewertungen zu verbessern, und zwar auf eine Art und Weise, die (i) die Kausalität der 
Rezensionserstellung respektiert und (ii) in einer bi-direktionalen Weise die Fähigkeit von Bewertungen ein-
bezieht, sprachliche Rezensionsmodelle zu informieren und im umgekehrten Falle Bewertungen vorherzu-
sagen. Darüber hinaus sind die Darstellungen zeitintervallabhängig und liefern somit eine zeitkontinuierliche 
Darstellung der Dynamik. Die Experimente wurden mit realen Datensätzen durchgeführt und zeigen, dass die 
Methodik in der Lage ist, mehrere State-of-the-Art-Modelle zu übertreffen. 
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Abstract—Federated Learning (FL) decouples model train-
ing from the need for direct access to the data and allows
organizations to collaborate with industry partners to reach
a satisfying level of performance without sharing vulnerable
business information. The performance of a machine learning
algorithm is highly sensitive to the choice of its hyperparameters.
In an FL setting, hyperparameter optimization poses new
challenges. In this work, we investigated the impact of different
hyperparameter optimization approaches in an FL system. In an
effort to reduce communication costs, a critical bottleneck in FL,
we investigated a local hyperparameter optimization approach
that – in contrast to a global hyperparameter optimization
approach – allows every client to have its own hyperparameter
configuration. We implemented these approaches based on grid
search and Bayesian optimization and evaluated the algorithms
on the MNIST data set using an i.i.d. partition and on an Internet
of Things (IoT) sensor based industrial data set using a non-i.i.d.
partition.

Index Terms—Industrial federated learning, Optimization
approaches, Hyperparameter optimization

I. INTRODUCTION

The performance of a machine learning algorithm is highly
sensitive to the choice of its hyperparameters. Therefore,
hyperparameter selection is a crucial task in the optimization
of knowledge-aggregation algorithms. Federated Learning
(FL) is a recent machine learning approach which aggregates
machine learning model parameters between devices (hence-
forth clients) without sharing their data. The aggregation is
coordinated by a server. Industrial Federated Learning (IFL)
is a modified approach of FL in an industrial context [1]. In an
FL setting, hyperparameter optimization poses new challenges
and is a major open research area [2]. In this work, we
investigate the impact of different hyperparameter optimiza-
tion approaches in an IFL system. We believe that the data
distribution influences the choice of the best hyperparameter
configuration and suggest that the best hyperparameter con-
figuration for a client might differ from another client based
on individual data properties. Therefore, we investigate a local
hyperparameter optimization approach that – in contrast to a
global hyperparameter optimization approach – allows every
client to have its own hyperparameter configuration. The local

approach allows us to optimize hyperparameters prior to the
federation process reducing communication costs.

Communication is considered a critical bottleneck in FL
[3]. Clients are usually limited in terms of communication
bandwidth enhancing the importance of reducing the num-
ber of communication rounds or using compressed com-
munication schemes for the model updates to the central
server [3]. Dai et al. [4] introduced Federated Bayesian
Optimization (FBO) extending Bayesian optimization to the
FL setting. However, until now, there is no research on the
impact of global and local hyperparameter optimization in FL.
Therefore, we compare a local hyperparameter optimization
approach to a global hyperparameter optimization approach,
optimizing hyperparameters in the federation process.

The aim of this work is to i) analyze challenges and formal
requirements in FL, and in particular in IFL, ii) to evaluate
the performance of an Internet of Things (IoT) sensor based
classification task in an IFL system, iii) to investigate a com-
munication efficient hyperparameter optimization approach,
and iv) to compare different hyperparameter optimization
algorithms. Therefore, we want to answer the following
questions.
Q1: Does FL work for an IoT sensor based anomaly clas-

sification task on industrial assets with non-identically
distributed data in an IFL system with a cohort strategy?

Q2: Can we assume that the global and local hyperparameter
optimization approach deliver the same hyperparameter
configuration in an i.i.d. FL setting?

Q3: Can we reduce communication costs in the hyperpa-
rameter optimization of a non-i.i.d. classification task in
context of FL by optimizing a hyperparameter locally
prior to the federation process?

Q4: Does Bayesian optimization outperform grid search, both
in a global and local approach of a non-i.i.d. IoT sensor
based classification task?

II. ALGORITHMIC CHALLENGES AND FORMAL
REQUIREMENTS FOR INDUSTRIAL ASSETS

In FL, new algorithmic challenges arise that differentiate
the corresponding optimization problem from a distributed
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optimization problem. In distributed learning settings, major
assumptions regarding the training data are made which
usually fail to hold in an FL setting [5]. Moreover, non-
i.i.d. data, limited communication, and limited and unreliable
client availability pose further challenges for optimization
problems in FL [2]. Kairouz et al. [2] considered the need
for addressing these challenges as a major difference to
distributed optimization problems. The optimization problem
in FL is therefore referred to as federated optimization em-
phasizing the difference to distributed optimization [5]. In an
IFL setting, additional challenges regarding industrial aspects
arise [1]. In this section, we want to formulate the federated
optimization problem and discuss the algorithmic challenges
of FL in general, and in particular of IFL.

A. Problem Formulation

We consider a supervised learning task with features x in a
sample space X and labels y in a label space Y . We assume
that we have K available clients, K ∈ N≥2, with

Dk := DX ,k ×DY,k ⊆ X × Y

denoting the data set of client k and nk := |Dk| denoting
the cardinality of the client’s data set. Let Q denote the
distribution over all clients, and let Pk denote the data
distribution of client k. We can then access a specific data
point by first sampling a client k ∼ Q and then sampling a
data point (x, y) ∼ Pk [2]. Then, the local objective function
is

Fk(w) := E
(x,y)∼Pk

[f(x, y, w)], (1)

where w ∈ Rd represents the parameters of the machine
learning model and f(x, y, w) represents the loss of the
prediction on sample (x, y) for the given parameters w.
Typically, we wish to minimize

F (w) :=
1

K

K∑
k=1

Fk(w). (2)

B. Federated Learning

One of the major challenges concerns data heterogeneity.
In general, we cannot assume that the data is identically
distributed over the clients, that is Pk = Pl for all k and l.
Therefore, Fk might be an arbitrarily bad approximation of F
[5].

In the following, we want to analyze different non-
identically distributed settings as demonstrated by Hsieh et al.
[6] assuming that we have an IoT sensor based anomaly clas-
sification task in an industrial context. Given the distribution
Pk, let P k

X ,Y denote the bivariate probability function, let P k
X

and P k
Y denote the marginal probability function respectively.

Using the conditional probability function P k
Y|X and P k

X|Y ,
we can now rewrite the bivariate probability function as

P k
X ,Y(x, y) = P k

Y|X (y|x)P k
X (x) = P k

X|Y(x|y)P
k
Y(y) (3)

for (x, y) ∈ X × Y . This allows us to characterize different
settings of non-identically distributed data:

Feature distribution skew: We assume that P k
Y|X = P l

Y|X
for all k, l, but P k

X ̸= P l
X for some k, l. Clients that have

the same anomaly classes might still have differences in the
measurements due to variations in sensor and machine type.

Label distribution skew: We assume that P k
X|Y = P l

X|Y for
all k, l, but P k

Y ̸= P l
Y for some k, l. The distribution of labels

might vary across clients as clients might experience different
anomaly classes.

Same label, different features: We assume that P k
Y = P l

Y
for all k, l, but P k

X|Y ̸= P l
X|Y for some k, l. The same

anomaly class can have significantly different features for dif-
ferent clients due to variations in machine type, operational-
and environmental conditions.

Same features, different label: We assume that P k
X = P l

X
for all k and l, but P k

Y|X ̸= P l
Y|X for some k, l. The

same features can have different labels due to operational-
and environmental conditions, variation in manufacturing,
maintenance et cetera.

Quantity skew:We cannot assume that different clients hold
the same amount of data, that is nk = nl for all k, l. Some
clients will generate more data than others.

In real-world problems, we expect to find a mixture of
these non-identically distributed settings. In FL, heterogeneity
does not exclusively refer to a non-identical data distribution,
but also addresses violations of independence assumptions
on the distribution Q [2]. Due to limited, slow and unreliable
communication on a client, the availability of a client is not
guaranteed for all communication rounds. Communication is
considered a critical bottleneck in FL [3]. In each communi-
cation round, the participating clients send a full model update
w back to the central server for aggregation. In a typical FL
setting, however, the clients are usually limited in terms of
communication bandwidth [3]. Consequently, it is crucial to
minimize the communication costs.

C. Industrial Federated Learning

In an industrial setting, FL experiences challenges that
specifically occur in an industrial context. Industrial assets
have access to a wealth of data suitable for machine learning
models, however, the data on an individual asset is typically
limited and private in nature. In addition to sharing the model
within the company, it can also be shared with an external
industry partner [1]. FL leaves possibly critical business
information distributed on the individual client (or within the
company). However, Zhao et al. [7] proved that heterogeneity,
in particular, a highly skewed label distribution, significantly
reduces the accuracy of the aggregated model in FL. In an
industrial context, we expect to find heterogeneous clients
due to varying environmental and operational conditions on
different assets. Therefore, Hiessl et al. [1] introduced a
modified approach of FL in an industrial context and termed
it Industrial Federated Learning (IFL). IFL does not allow
arbitrary knowledge exchange between clients. Instead, the
knowledge exchange only takes place between clients that
have sufficiently similar data. Hiessl et al. [1] refer to this
set of clients as a cohort. We expect the federated learning
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approach in a cohort to approximate the corresponding central
learning approach.

III. HYPERPARAMETER OPTIMIZATION APPROACHES IN
AN IFL SYSTEM

In an FL setting, hyperparameter optimization poses new
challenges and is a major open research area [2]. The perfor-
mance of a machine learning model is linked to the amount
of communication [8]. In an effort to reduce communication
costs, a critical bottleneck in FL [3], we investigated a com-
munication efficient hyperparameter optimization approach,
a local hyperparameter optimization approach that allows us
to optimize hyperparameters prior to the federation process.
Kairouz et al. [2] introduced the idea of a separate optimiza-
tion of hyperparameters and suggest a different hyperparam-
eter choice for dealing with non-i.i.d. data.

Dai et al. [4] investigated a communication efficient lo-
cal hyperparameter optimization approach and introduced
Federated Bayesian Optimization (FBO) extending Bayesian
optimization to the FL setting. In FBO, every client locally
uses Bayesian optimization to find the optimal hyperparam-
eter configuration. Additionally, each client is allowed to
request for information from other clients. Dai et al. [4]
proved a convergence guarantee for this algorithm and its
robustness against heterogeneity. However, until now, there is
no research on the impact of global and local hyperparameter
optimization.

In the LocalHPO algorithm 1, we perform local hyperpa-
rameter optimization. We optimize the hyperparameter con-
figuration λk for each client k. In the GlobalHPO algorithm 2,
we perform global hyperparameter optimization. We optimize
the hyperparameter configuration λ in the federation process.
The LocalOptimization method in the LocalHPO algorithm
1 and the GlobalOptimization method in the GlobalHPO
algorithm 2 can be based on any hyperparameter optimization
algorithm.

Algorithm 1: LocalHPO
Server executes:
initialize w0

for each client k = 1, . . . ,K do
λk := LocalOptimization(k, w0)

end
return (λk)Kk=1

Algorithm 2: GlobalHPO
Server executes:
λ := GlobalOptimization()
return λ

We want to differentiate between a global hyperparameter
λi whose value is constant for all clients and a local hyper-
parameter λk

i whose value depends on a client k. Here, λk
i

denotes the hyperparameter λi on client k. We notice that
this differentiation is only relevant for settings with non-i.i.d.

data. In an i.i.d. setting, we assume that a hyperparameter
configuration that works for one client also works for another
client. In our experiments, we verified this assumption for a
proxy data set.

IV. DATA, ALGORITHMS AND EXPERIMENTS

In the next section, we want to make our benchmark design
explicit and present our experimental setup. We will present
the machine learning tasks including the data partition of the
training data, the machine learning models, the optimization
algorithms and our experiments. We considered an image
classification task on a data set, the MNIST data set of hand-
written digits, and an IoT sensor based anomaly classification
task on industrial assets.

A. Data
In order to test the IFL system on the MNIST data set,

we still need to specify on how to distribute the data over
artificially designed clients. To systematically evaluate the
effectiveness of the IFL system, we simulated an i.i.d. data
distribution. This refers to shuffling the data and partitioning
the data into 10 clients, each receiving 6 000 examples.
Following the approach of McMahan et al. [5], we applied
a convolutional neural network with the following settings:
2 convolutional layers with 32 and 64 filters of size 5×5 and
a ReLu activation function, each followed by a max pooling
layer of size 2×2, a dense layer with 512 neurons and a
ReLu activation function, a dense layer with 10 neurons and
a softmax activation function.

The industrial task concerns IoT sensor based anomaly
classification on industrial assets. The data was acquired
with the SITRANS multi sensor, specifically developed for
industrial applications and its requirements [9]. We considered
multiple centrifugal pumps with sensors placed at different
positions, in different directions to record three axis vibra-
tional data in a frequency of 6644Hz. Per minute, 512 sam-
ples were collected. We operated the pumps under 6 varying
conditions, including 3 healthy states and 3 anomalous states.
A client is either assigned data of an asset in a measurement,
or data of several assets in a measurement ensuring that
each client sees all operating conditions. However, since
in the process of measurement, the assets were completely
dismantled and rebuilt, we consider the data to be non-i.i.d.
regarding its feature distribution. We applied an artificial
neural network with the following settings: a dense layer with
64 neurons and a ReLu activation function, a dropout layer
with a dropout rate of 0.4, a dense layer with 6 neurons and a
ReLu activation function, a dropout layer with a dropout rate
of 0.4, and a softmax activation function. We remapped the
features using the Kabsch algorithm [10], applied a sliding
window, extracted the Melfrequency cepstral coefficients,
applied the synthetic minority oversampling technique [10],
and normalized the resulting features.

B. Algorithms
Our evaluations include the Federated Averaging (Fe-

dAvg) algorithm according to McMahan et al. [5], and the
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hyperparameter optimization approaches LocalHPO 1 and
GlobalHPO 2. We implemented these approaches based on
grid search and Bayesian optimization. In this section, we
give their pseudocode. We searched for the learning rate
η with fixed fraction of participating clients C, number of
communication rounds R, number of local epochs E, and
mini-batch size B.

In algorithm 3, we give the pseudocode of the LocalOp-
timization method in LocalHPO 1 based on the grid search
algorithm with a fixed grid G. We iterate through the grid G,
train the model on the training data of client k based on the
ClientUpdate method used in the FedAvg algorithm [5] with
the learning rate η as an additional argument, and validate the
performance of the model wη on the validation data Dk

valid

of client k. Finally, the learning rate that yields the highest
accuracy Aη on the validation data is selected. Here, wη

denotes the resulting model trained on the training data with
learning rate η and A(Dk

valid, wη) denotes the accuracy of the
model tested on the validation data Dk

valid of client k.

Algorithm 3: Local Grid Search
LocalOptimization(k, w0):
for each learning rate η ∈ G do

wη := ClientUpdate(k, w0, η)
Aη := A(Dk

valid, wη)
end
η∗
k := argmax

η∈G
Aη

return η∗
k

Algorithm 4: Global Grid Search
GlobalOptimization():
for each learning rate η ∈ G do

wη := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Ak
η := A(Dk

valid, wη)
end
Aη := 1

K

∑K
k=1 A

k
η

end
η∗ := argmax

η∈G
Aη

return η∗

In algorithm 4, we give the pseudocode of the GlobalOp-
timization method in GlobalHPO 2 based on the grid search
algorithm with a fixed grid G. We iterate through the grid,
perform the FedAvg algorithm [5] with the learning rate η as
an additional argument, validate the performance of the model
wη on the validation data Dk

valid for all clients k and compute
the average accuracy of all clients. Finally, the learning rate
that yields the highest average accuracy Aη is selected.

In algorithm 5, we give the pseudocode of the LocalOp-
timization method in LocalHPO 1 based on Bayesian opti-
mization. The objective function f takes the learning rate
η as an argument, trains the model on the training data
of client k based on the ClientUpdate method used in the
FedAvg algorithm [5] with the learning rate η as an additional

argument, validates the performance of the model w on the
validation data Dk

valid of client k, and returns the resulting ac-
curacy. We initialize a Gaussian process GP for the objective
function f with ninit sample points. Then, we find the next
sample point ηninit+i by maximizing the acquisition function,
evaluate f(ηninit+i), and update the Gaussian process GP .
Finally, we select the learning rate η∗ that yields the highest
accuracy. We repeat this for niter iterations.

In algorithm 6, we give the pseudocode of the Glob-
alOptimization method in GlobalHPO 2 based on Bayesian
optimization. The objective function f takes the learning
rate η as an argument, performs the FedAvg algorithm [5]
with the learning rate η as an additional argument, validates
the performance of the model w on the validation data
Dk

valid for all clients k, computes the average accuracy of
all clients and returns the resulting accuracy. We initialize a
Gaussian process GP for the objective function f with ninit

sample points. Then, we find the next sample point ηninit+i

by maximizing the acquisition function, evaluate f(ηninit+i),
and update the Gaussian process GP . Finally, we select the
learning rate η∗ that yields the highest average accuracy. We
repeat this for niter iterations.

Algorithm 5: Local Bayesian Optimization
LocalOptimization(k, w0):
initialize a Gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition
function

evaluate objective function f at ηninit+i

update the Gaussian process GP
end
η∗ := argmax

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η):
w := ClientUpdate(k, w0, η)
A := A(Dk

valid, w)
return A

C. Experiments

In order to systematically investigate the impact of global
and local hyperparameter optimization, we compared the
global and local hyperparameter optimization approach in an
i.i.d. setting, the MNIST machine learning task, as well as
in a non-i.i.d. setting, the industrial task. Therefore, we im-
plemented the global and local optimization approach based
on grid search with a grid G := [0.0001, 0.001, 0.01, 0.1],
and based on Bayesian optimization with the widely used
squared exponential kernel and the upper confidence bound
acquisition function. We searched for the learning rate η with
fixed R, C, E and B.

In order to evaluate the global and local optimization
approaches in a direct comparison, we chose the number
of epochs E in the local optimization approach as E =
EglobalR, where Eglobal is the number of epochs in the global

Algorithm 6: Global Bayesian Optimization
GlobalOptimization():
initialize a Gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition
function

evaluate objective function f at ηninit+i

update the Gaussian process GP
end
η∗ := argmax

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η):
w := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Ak := A(Dk
valid, w)

end
A := 1

K

∑K
k=1 A

k

return A

optimization approach and R is the number of communication
rounds. In the global optimization task, we set R := 10,
C := 1, E := 1 and B := 128 for the MNIST data, and
R := 10, C := 1, E := 5 and B := 128 for the industrial
data. In the local optimization task, we set E := 10 and
B := 128 for the MNIST data, and E := 50 and B := 128
for the industrial data. For the evaluation of the global hyper-
parameter optimization approach, we optimized the learning
rate using the global approach, trained the federated model
with a global learning rate, and tested the resulting federated
model on the cohort test data. Then, we optimized the learning
rate using the local approach, trained the federated model with
local individual learning rates for each client in the cohort,
and tested the resulting federated model on the cohort test
data.

V. EXPERIMENTAL RESULTS

Following the approach of Hiessl et al. [1], we demon-
strated the effectiveness of the IFL System for the industrial
task and showed that the IFL approach performs better
than the individual learning approach and approximates the
central learning approach. Fig. 1 shows the test accuracy on
the central cohort test data for each client, for i) a model
trained on the individual training data of the client (individual
learning), ii) a central model trained on the collected training
data of all clients in the cohort (central learning), and iii) the
federated model trained in the cohort.

Fig. 2 a) shows the results for the MNIST data. The opti-
mization approaches are based on the grid search algorithm.
For the training posterior to the optimization, we set R := 10,
C := 1, E := 1, and B := 128 in the IFL system. The color
indicates the optimized learning rate on the corresponding
client. Since the MNIST data is i.i.d., there is only one
cohort and all clients have the same federated model and
thus the same test accuracy. Our results show that the grid
search algorithm selected 10−3 in the local optimization of
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Fig. 2. Comparison of the optimization approaches based on a) grid search
for the MNIST task, b) grid search for the industrial task, and c) Bayesian
optimization for the industrial task for all clients (Task ID).

the learning rate on each client. According to our expectation,
the global optimization approach yielded the same learning
rate.

For the industrial task, we evaluated the global and local
optimization approach based on grid search and Bayesian
optimization. For the training posterior to the optimization,
we set R := 20, C := 1, E := 5, and B := 128 in the
IFL system. Fig. 2 b) shows the results for the industrial data
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Algorithm 6: Global Bayesian Optimization
GlobalOptimization():
initialize a Gaussian process GP for f
evaluate f at ninit initial points
for i = 1, . . . , niter do

find sample point ηninit+i that maximizes acquisition
function

evaluate objective function f at ηninit+i

update the Gaussian process GP
end
η∗ := argmax

i=1,...,ninit+niter

f(ηi)

return η∗

objective function:
f(η):
w := FederatedAveraging(η)
for each client k = 1, . . . ,K do

Ak := A(Dk
valid, w)

end
A := 1

K

∑K
k=1 A

k

return A

optimization approach and R is the number of communication
rounds. In the global optimization task, we set R := 10,
C := 1, E := 1 and B := 128 for the MNIST data, and
R := 10, C := 1, E := 5 and B := 128 for the industrial
data. In the local optimization task, we set E := 10 and
B := 128 for the MNIST data, and E := 50 and B := 128
for the industrial data. For the evaluation of the global hyper-
parameter optimization approach, we optimized the learning
rate using the global approach, trained the federated model
with a global learning rate, and tested the resulting federated
model on the cohort test data. Then, we optimized the learning
rate using the local approach, trained the federated model with
local individual learning rates for each client in the cohort,
and tested the resulting federated model on the cohort test
data.

V. EXPERIMENTAL RESULTS

Following the approach of Hiessl et al. [1], we demon-
strated the effectiveness of the IFL System for the industrial
task and showed that the IFL approach performs better
than the individual learning approach and approximates the
central learning approach. Fig. 1 shows the test accuracy on
the central cohort test data for each client, for i) a model
trained on the individual training data of the client (individual
learning), ii) a central model trained on the collected training
data of all clients in the cohort (central learning), and iii) the
federated model trained in the cohort.

Fig. 2 a) shows the results for the MNIST data. The opti-
mization approaches are based on the grid search algorithm.
For the training posterior to the optimization, we set R := 10,
C := 1, E := 1, and B := 128 in the IFL system. The color
indicates the optimized learning rate on the corresponding
client. Since the MNIST data is i.i.d., there is only one
cohort and all clients have the same federated model and
thus the same test accuracy. Our results show that the grid
search algorithm selected 10−3 in the local optimization of
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the learning rate on each client. According to our expectation,
the global optimization approach yielded the same learning
rate.

For the industrial task, we evaluated the global and local
optimization approach based on grid search and Bayesian
optimization. For the training posterior to the optimization,
we set R := 20, C := 1, E := 5, and B := 128 in the
IFL system. Fig. 2 b) shows the results for the industrial data
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with the optimization approaches based on the grid search
algorithm. The results show that, in all cohorts, the global
approach yielded an equal or larger accuracy than the local
approach.

Fig. 2 c) shows the results for the industrial data with
the optimization approaches based on the Bayesian algo-
rithm. Note that the search space of the learning rate was
[10−4, 10−1] in the optimization while the scale in the plot
starts from 10−3. The results show that the global approach
yielded a larger accuracy than the local approach in cohort 0
and cohort 1.

The local Bayesian approach yielded different learning
rates, see Fig. 2 c), on clients with no difference in data, that
is, the same number of samples, the same class distribution,
and the same measurement protocol. However, the local grid
search approach yielded the same learning rate as the global
grid search approach, see Fig. 2 b). Therefore, we suggest
that the reason lies in the implementation of the Bayesian
optimization approach and a not sufficiently large number of
iterations to guarantee convergence.

In order to compare the optimization approaches for the
industrial task, we performed a paired t-test regarding the
test accuracy to determine the statistical significance, see
table I. We observe that the global optimization approach
is significantly better than the local approach, both for the
grid search approach (p = 0.028) and for the Bayesian
approach (p = 0.012). Furthermore, the results show that the
grid search approach is significantly better than the Bayesian
approach, both for the global approach (p = 0.004) and for
the local approach (p = 0.008). Note that we considered
cohort 2 an outlier and excluded this cohort from our cal-
culations. Cohort 2 only consists of client 8, a client whose
data was not generated according to the standard measurement
protocol. Without outlier removal, the global grid search
approach is still significantly better than the local grid search
approach (p = 0.032), and the local grid search approach is
significantly better than the local Bayesian approach (p =
0.010). However, there is no significant difference in the
global Bayesian approach vs. the local Bayesian approach
(p = 0.755) and in the global grid search approach vs. the
global Bayesian approach (p = 0.230).

VI. CONCLUSION AND FUTURE WORK

The results show that the federated learning approach
approximates the central learning approach, while outper-
forming individual learning of the clients. In this work,
we investigated the impact of global and local optimization
approaches in an IFL System based on a proxy data set and a
real-world problem. In our experiments on the industrial data,
local optimization yielded different learning rates on different
clients in a cohort. However, the results show that a globally
optimized learning rate, and thus, a global learning rate for all
clients in a cohort improves the performance of the resulting
federated model. Therefore, we conclude that the global
optimization approach outperforms the local optimization
approach resulting in a communication-performance trade-off

TABLE I
TEST ACCURACY OF FEDERATED MODEL ON CENTRAL COHORT TEST

DATA OF INDUSTRIAL TASK POSTERIOR TO CORRESPONDING
OPTIMIZATION APPROACH AND TRAINING

client global grid local grid global Bayesian local Bayesian
1 0.7756 0.7720 0.7659 0.6897
2 0.7756 0.7720 0.7659 0.6897
3 0.7756 0.7720 0.7659 0.6897
4 0.7756 0.7720 0.7659 0.6897
5 0.8230 0.7921 0.7882 0.7889
6 0.8230 0.7921 0.7882 0.7889
7 0.8230 0.7921 0.7882 0.7889
8 0.9740 0.9749 0.3867 0.9736
9 0.7756 0.7720 0.7659 0.6897

in the hyperparameter optimization in FL. In our experiments
on the proxy data set, however, the local approach achieved
the same performance as the global approach.

A limitation of our study is that we only considered one
hyperparameter in our optimization task. Hence it would
be interesting to explore whether we can confirm these
observations for a hyperparameter configuration of more
hyperparameters. The results show that the grid search ap-
proaches outperform the Bayesian approaches, both globally
and locally. However, we suggest a convergence analysis for
the Bayesian approach.
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with the optimization approaches based on the grid search
algorithm. The results show that, in all cohorts, the global
approach yielded an equal or larger accuracy than the local
approach.

Fig. 2 c) shows the results for the industrial data with
the optimization approaches based on the Bayesian algo-
rithm. Note that the search space of the learning rate was
[10−4, 10−1] in the optimization while the scale in the plot
starts from 10−3. The results show that the global approach
yielded a larger accuracy than the local approach in cohort 0
and cohort 1.

The local Bayesian approach yielded different learning
rates, see Fig. 2 c), on clients with no difference in data, that
is, the same number of samples, the same class distribution,
and the same measurement protocol. However, the local grid
search approach yielded the same learning rate as the global
grid search approach, see Fig. 2 b). Therefore, we suggest
that the reason lies in the implementation of the Bayesian
optimization approach and a not sufficiently large number of
iterations to guarantee convergence.

In order to compare the optimization approaches for the
industrial task, we performed a paired t-test regarding the
test accuracy to determine the statistical significance, see
table I. We observe that the global optimization approach
is significantly better than the local approach, both for the
grid search approach (p = 0.028) and for the Bayesian
approach (p = 0.012). Furthermore, the results show that the
grid search approach is significantly better than the Bayesian
approach, both for the global approach (p = 0.004) and for
the local approach (p = 0.008). Note that we considered
cohort 2 an outlier and excluded this cohort from our cal-
culations. Cohort 2 only consists of client 8, a client whose
data was not generated according to the standard measurement
protocol. Without outlier removal, the global grid search
approach is still significantly better than the local grid search
approach (p = 0.032), and the local grid search approach is
significantly better than the local Bayesian approach (p =
0.010). However, there is no significant difference in the
global Bayesian approach vs. the local Bayesian approach
(p = 0.755) and in the global grid search approach vs. the
global Bayesian approach (p = 0.230).

VI. CONCLUSION AND FUTURE WORK

The results show that the federated learning approach
approximates the central learning approach, while outper-
forming individual learning of the clients. In this work,
we investigated the impact of global and local optimization
approaches in an IFL System based on a proxy data set and a
real-world problem. In our experiments on the industrial data,
local optimization yielded different learning rates on different
clients in a cohort. However, the results show that a globally
optimized learning rate, and thus, a global learning rate for all
clients in a cohort improves the performance of the resulting
federated model. Therefore, we conclude that the global
optimization approach outperforms the local optimization
approach resulting in a communication-performance trade-off

TABLE I
TEST ACCURACY OF FEDERATED MODEL ON CENTRAL COHORT TEST

DATA OF INDUSTRIAL TASK POSTERIOR TO CORRESPONDING
OPTIMIZATION APPROACH AND TRAINING

client global grid local grid global Bayesian local Bayesian
1 0.7756 0.7720 0.7659 0.6897
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4 0.7756 0.7720 0.7659 0.6897
5 0.8230 0.7921 0.7882 0.7889
6 0.8230 0.7921 0.7882 0.7889
7 0.8230 0.7921 0.7882 0.7889
8 0.9740 0.9749 0.3867 0.9736
9 0.7756 0.7720 0.7659 0.6897

in the hyperparameter optimization in FL. In our experiments
on the proxy data set, however, the local approach achieved
the same performance as the global approach.

A limitation of our study is that we only considered one
hyperparameter in our optimization task. Hence it would
be interesting to explore whether we can confirm these
observations for a hyperparameter configuration of more
hyperparameters. The results show that the grid search ap-
proaches outperform the Bayesian approaches, both globally
and locally. However, we suggest a convergence analysis for
the Bayesian approach.
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Abstract—The increasing deployment of low-cost industrial
IoT (IIoT) sensor platforms on industrial assets enables great
opportunities for anomaly classification in industrial plants. The
performance of such a classification model depends highly on
the available training data. Models perform well when the
training data comes from the same machine. However, as soon
as the machine is changed, repaired, or put into operation
in a different environment, the prediction often fails. For this
reason, we investigate whether it is feasible to have a robust
and transferable method for AI based anomaly classification
using different models and pre-processing steps on centrifugal
pumps which are dismantled and put back into operation in the
same as well as in different environments. Further, we investigate
the model performance on different pumps from the same type
compared to those from the training data.

Index Terms—Internet of Things (IoT), Industry and Produc-
tion 4.0, Predictive Maintenance

I. INTRODUCTION

The NAMUR open architecture (NOA) enables the mon-
itoring and optimization sensors of existing ”brownfield”
plants in the process industry. It sketches a second data
channel in addition to existing core process control systems
like Simatic PCS neo. With the help of low cost multi-
sensors, previously non instrumented assets can be retrofitted
with a communication layer. This enables monitoring and
classification of the operational states and anomalies of an asset
based on the retrofitted sensor measurements. Machine learning
models have great potential for these classification tasks for
each individual asset in a production plant. The performance
of machine learning models, however, strongly depends on
the available training data and respective data distribution.
Acquiring training data and labels through measurements of
normal and anomaly conditions of industrial assets is expensive
and very time-consuming. Anomaly conditions may negatively
impact these monitored assets by down wearing or wrecking.
Further, it is often difficult to transfer the models from one
asset to another one, even if those are from the same type and
highly standardized. Numerous real-world factors, as minimal
divergence in production, wear and tear, or environmental
factors influences the data distribution recorded by a sensor
and consequently the derived predictions of machine learning
models. Further, the data distribution is influenced by the
sensor itself with several degrees of freedom in position and
rotation. On the other hand, the same, industry-standard assets
are often used in production facilities around the world. For
example, having hundreds of the same type of filling pumps

in one food and beverage plant is very common. Therefore, a
robust and reusable model for a specific asset type is required
for an application of economic condition monitoring. In other
words, a single robust machine learning model, which can be
delivered together with a respective sensor.

Therefore, aim of this paper are the following: (i) introduce
the IIoT measurement system and deployment, (ii) analyze
challenges deriving requirements for a robustness and scalable
model dissemination, (iii) systematically evaluate the impact
and challenges of production divergence, wear and tear, and
maintenance in the context of robustness and transferability in
machine learning models (iv) compare a feature-based Neural
Network approach and ROCKET, including different pre-
processing and post-processing combinations (v) derive initial
guidelines to address these complex classification problem.

II. RELATED WORK

A. IIoT Sensor Systems

In the era of industry 4.0, Industrial IoT (IIoT) sensor
devices are increasingly used to monitor and adapt to changes
in the environment [1]–[3]. Sensors can capture a variety
of physical values as light, temperature, pressure, vibration,
and sound. The information is linked to the IIoT network
to share data and connect between devices and management
systems. The correct operation of IIoT sensors play an essential
role in the overall system performance [4]. Several IIoT
sensor kits exist [1], [2], but only a few are appropriate for
industrial conditions. In the industrial context, IIoT sensor
devices are often deployed in harsh environments, with ambient
temperature, humidity, and strong vibrational conditions [5].
Further, a simple communication and a long battery and
overall sensor lifespan is required [5]. Additionally, sensors
within the IIoT should be high quality and low cost so that
they can be used in very large numbers and enable the data
collection from the variety of physical values simultaneously.
The SITRANS multi sensor was specifically developed for
industrial applications and its requirements [6]. Further, the
compromise between high sampling rate and long sampling
duration required for an accurate model prediction and limited
data acquisition required for a long battery lifespan still
remains an open challenge [3].

B. Time Series Classification

Several traditional and deep learning based approaches for
time series classification have been explored over the last
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decade [7]–[10]. Often methods are tested on the UCR/UEA
archive, an open collection of over 150 different data sets,
having almost 20 sensor data sets available, with currently
no data set in the automation or IIoT context. Deep learning
approaches such as Convolutional Neural Networks (CNNs)
and deep Residual Networks are less computational expensive
and showed to be the most promising in a recent systematic
method study on the UCR/UEA data set [7], [9], [10].
In a recent paper [8], ROCKET a simple linear classifier
based on random convolutional kernel transformations showed
a comparable high accuracy to Neural Networks (NN) at
the UCR/UEA data set, but required only fraction of the
computational expense compared to existing methods [8].
While, in general, these methods show great potential for
time series classification, they have only been developed and
tested within public repositories as the UCR/UEA archive [11].
Besides the impressive number and amount of data collected,
the transfer and robustness towards similar assets and the
influence of maintenance work or environmental conditions
have not been considered yet. However, it is important to
evaluate whether a model dissemination from a lab to a real-
world scenario can be achieved with the method developed.

III. IIOT MEASUREMENT SYSTEM

A. Industrial Asset

An industrial asset can be any kind of machine or me-
chanical device that uses power to apply forces and control
movement to perform an intended action. This asset can vary
in size, purpose, and placement condition. Typical examples
are pumps, motors, or manufacturing robots. An asset can be
placed in a lot of scenarios: a motor pump combination can
be placed outdoors or be part of a large bottling plant.

B. Sensor Measurement System

With the help of low-cost multi-sensors measurement
system, previously non instrumented assets can be retrofitted
with a dedicated communication channel (Fig 1). These sensors
can record airborne, structure-borne sound or temperature data,
for example. We suggest that condition and the future behavior
of any assets can be assessed using system-specific or central
functions and methods (advanced analytic, scheduling). The
respective experiments in this context have taken place only
with the structure-bone data. These data offer a sampling rate
of 6644 Hz. In order to keep the sensor battery lifespan as
long as possible, the data is only collected for 512 samples
every min, i.e. a total of 77 ms. Variations in the signal are
observed due to any variations in the asset, the environment
conditions of the asset, the asset health status and due to the
sensor mounting and rotation. The sensor uses a Bluetooth
low energy (BLE) wireless interface to communicate with a
gateway device. Data collection is performed periodically for
a short period of time. Within a fraction of a sec, the 512
samples are collected. Afterwards, the sensor goes into sleep
mode, thereby saving energy. The gateway is connected to
the internet and transmits the data via the Message Queuing
Telemetry Transport (MQTT) protocol to the cloud-based

backend services. Both, the number of samples and the
data collection interval can be adjusted depending on the
monitoring requirements. These requirements depend on the
actual operational behavior of the asset.

Fig. 1. IIoT measurement system and deployment

C. Machine Learning System and Deployment

1) Training: The raw sensor data is stored in a blob-store in
the cloud. The user can use a web dashboard to load the sensor
data for a particular asset and sensor. The web dashboard is
used by the machine operator to visually analyze and label the
data. The dashboard offers a wizard-like approach to select
the labelled data set and use a machine learning template
to trigger the training. A template is a predefined machine
learning algorithm and a set of hyperparameters that can be
fine-tuned. The template abstracts the details of the algorithm
so that non-ML experts can use the system. The actual training
is done on a high-performance compute cluster. The cluster
offers state-of-the-art elastic scaling capabilities, which is an
essential requirement for large-scale sensor deployments. The
final model is saved in the blob store. Model metrics are
saved in a model lifecycle management database and can be
visualized in the dashboard.

2) Prediction: The user can view the metrics and perform
the model deployment. The system loads the model from the
blob store and provisions the model to a runtime service called
inference server. The inference server handles the execution
of multiple concurrent models by subscribing to live sensor
data in the cloud and passing the data to corresponding
models. Pre- and post-processing steps are described at a
later point in the paper. Prediction results are handled by a
rule-based system. For example, a detected anomaly is routed
to the notification application. The user loads an anomaly
documentation application to view and validate anomaly
detection or classification results.

D. Model Dissemination and Requirements

Migrating a data science model from a research lab to a real-
world deployment is non-trivial and potentially a continuous,
ongoing process. Consequently, many machine learning models
never go into production. A major challenge in industrial
setups is the positive economic impact of a machine learning
model. The economic impact can be considered positive when
the costs and effort to create, deploy and update the model
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are below the savings gained by the model. Therefore, it is
important to have a scalable machine learning solution that
can be used on the same asset types in various environments.
A scalable model can be considered as a digital product where
replications are easy to achieve and can broadly distributed to
the same asset-sensor combination anywhere in the world. This
would result in high costs for the initial phase and marginal
costs for each additional model application, mainly driven by
the deployment infrastructure and low-cost sensors.

A machine learning model can be considered as scalable
when replications are easy to achieve and identical copies can
broadly be distributed to the same asset-sensor combination
anywhere in the world. This can be achieved in the two main
machine learning paradigms, supervised and unsupervised
learning, in different ways. In an unsupervised machine
learning approach, the collection of training data is mostly
automated, does not require any labels and is consequently
time and cost wise inexpensive. However, unsupervised
learning can only be used in specific anomaly detection
tasks. In the supervised learning approach, the training data
requires labels, which are very hard to collect, especially in
classes reflecting anomaly behavior. Therefore, in a supervised
learning approach, scalability is achieved by an increased
robustness of the machine learning model, so it can be
transferred easily to any other asset. Our aim is to thrive
forward towards an all-in-one solution machine learning model
solution applicable for one asset type sensor combination.
Therefore, we suggest employing the advantages of both,
supervised and unsupervised learning through an ensemble
based model voting of an anomaly classification and an
anomaly detection model.

Further, we believe that a stable prediction may be more
important compared to an instant prediction. This reasoning
is derived by the assumption, that in real-world applications,
a normal or anomaly class of an industrial asset will be given
through a longer period. Therefore, a smoothing filter for the
resulting model probabilities is suggested. Another important
point is to lower the entry barrier as far as possible for the user.
The user, ideally the domain expert, using the machine learning
models for holistic asset monitoring, should be enabled to
carry out all sensor and model related tasks using the web
dashboard (Fig 1). The installation of the sensor should also be
as simple as possible. An exact sensor position can be specified
on an asset, while an exact sensor rotation is challenging.
Consequently, a virtual sensor alignment is required.

IV. PROPOSED MACHINE LEARNING PIPELINE

The proposed machine learning pipeline consists of 1)
virtual sensor alignment 2) employment of a general clas-
sification model learning from all classes 3) post-processing
of the classification output 4) specific model learning from
healthy class and 5) the model voting (Fig 2). Virtual sensor
alignment ensures the rotational invariance of the sensor by
remapping the sensor from the sensor coordinate system which
can differ between sensors into a unified virtual one. The
generic classification model is trained with all classes and

is assumed to be trained long-term on an increased number
of data from various different assets. An autoencoder can be
employed as specific detection model and only trained on
healthy data. As this data is relatively inexpensive to collect,
the autoencoder is assumed to be trained individually for each
asset. Two different approaches were explored, a) a feature-
based ANN and b) an end-to-end approach ROCKET. From
the resulting Logits the probabilities of both approaches were
derived and smoothed with a moving average filter. Finally,
voting between generic classification and specific detection
model was applied.

Fig. 2. Proposed machine learning pipeline

1) Virtual Sensor Alignment. To increased robustness and
transferability, rotational invariance of the machine learning
model input data is suggested. We propose remapping the data
from sensor coordinate system si into the world coordinate
system wi using the Kabsch algorithm [12] minimizing the
following loss function L which is solved for the rotation
matrix C (to align si to wi):

L(C) =
n∑

i=1

||Si − Cwi
||2 (1)

2) Classification Model.
a) Feature-based Approach: ANN. The ANN approach

employed a sliding window on the time series data of
the virtual axes, followed by the extraction of the Mel-
frequency cepstral coefficients (mfccs), minority oversampling
and normalization (Fig 3). The resulting 20 coefficients were
feed into the ANN.

Data Augmentation and Feature Selection. Besides more
widely used as features for audio classification, we suggest
mfccs for vibration data as both having strong relation due
to air-borne and structure-borne sound transmission [13]. The
mfccs represent the power spectrum of the short-term Fourier
transform on a nonlinear frequency scale inspired by human
biology, uniformly spaced below 1 kHz and logarithmic scale
above 1 kHz. Two different data augmentation techniques
are suggested, a) sliding window on time series data and
b) minority oversampling on the extracted features. Sliding
window: The 1x512 input values are artificially increased
towards 16x256 with window size of 256 and on offset of
16. Minority oversampling: Collecting data from anomaly
classes is challenging and often has a detrimental effect on an
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industrial asset. Therefore, synthetic minority oversampling
technique (SMOTE) [14] of the mfccs features is proposed in
the pipeline.

Fig. 3. Data visualization for 1) virtual Sensor alignment, 2) feature-based
ANN and 3) probability smoothing of the proposed machine learning pipeline

Hyperparameter Consideration. When designing the archi-
tecture for an ANN, a variety of parameters can be tuned.
The art is to find the right combination for these parameters
to achieve the highest accuracy and lowest loss. Therefore,
TALOS [15] was employed for the hyperparameter search.
The framework allows to randomly sample from a given
grid of hyperparameters and train the respective networks to
support the user finding the best combination. The following
parameters resulted from the framework: The respective α:
0.001, β: 0.9 β1: 0.9, β2:0.999, ε: 10−8 for Adam optimization,
# layers: 2, # hidden units: 64 (each hidden layer), relu
activation function, mini batch size: 16 and a SoftMax output
layer. The TALOS framework, however, does not allow to
design best network parameters for training and test data from
different distribution. Consequently, this resulted in a very
small bias, but high variance as the model was overfitting to
the training data. Therefore, we employed dropout of 40%
and early stopping after 30 epochs. The resulting mccfs were
normalized between [-1,1] based on a transformation resulting
in a Gaussian distribution before fed into the Neural Network.

A. End-to-End-Approach: ROCKET.

The end-to-end machine learning model ROCKET [8]
transforms the virtual aligned sensor signal using a large
number of convolutional kernels. The convolutional kernels
are randomly created varying length, weights, bias, dilation,
and padding. The transformed features were used to train a
linear ridge classifier. The classifier relies on cross-validation
and L2 regularization to avoid overfitting to the training
data, accepting a defined bias to reduce the variance. The

combination of ROCKET and regression forms, in effect, a
single-layer convolutional neural network with random kernel
weights, where the transformed features form the input for a
trained SoftMax layer [8].

3) Output Probability Considerations. As the network
prediction only takes the current point in time into account,
which have been observed to fluctuate quite strongly (Fig 3,
Classification Output Probabilities, Fig 4, (2)), we employed a
filter to smooth the probabilities. In this case a moving average
filter [size: 15] was employed (Fig 3, Smoothed Classification
Output Probabilities, Fig 4, (3)). Since it is a SoftMax layer,
raw probabilities can be acquired similar to the ANN and
ROCKET approach.

4) Detection Model. It can be assumed that an unlimited
amount of healthy training data is available for an industrial
asset. This data can be used for asset specific anomaly
detection to increase the overall robustness of our ML pipeline.
Therefore, we trained an unsupervised machine learning model
to detect the anomalies in our dataset by using an autoencoder
architecture based fully connected deep neural network (DNN).
The autoencoder learns to reconstruct the input for healthy
sensor data, as it was trained to do so, but will fail to
reconstruct anomaly data. The reconstruction error, the error
between input and output signal, was used as an anomaly score.
The threshold was calculated as mean + standard deviation of
the reconstruction error of healthy data. The DNN architecture
consists of five fully connected layers with the respective
number of neurons per layers #512 input #256 encoding 126
bottleneck #256 decoding #512 output; tanh was employed
as activation function.

5) Model Voting. The model voting was done in a way,
that the autoencoder always overruled the classification results
and a non-healthy class had to change to the anomaly class
with the highest probability and vice versa, if the autoencoder
predicted the other class (Fig 4, (5)).

Fig. 4. Prediction results at different steps within the proposed machine
learning pipeline. Training data 1; example On/Off, feature-based ANN
approach

V. MEASUREMENT SETUP AND DATA SET DESCRIPTION

All measurements were done in a laboratory test bench. As
an industrial asset, a centrifugal pump motor combination was
selected. Two series of measurements with each one training
data set and four test data sets were created. The first series



of measurements was created to examine the robustness of
a model during maintenance work or sensor battery change
within the same pump, and the second to examine how well
the models can be transferred to other pumps of the same
construction.

Measurement Series I (within pump):
• Training Set I: Reference
• Test Set 1 Asset was turned off and cooled down
• Test Set 2: Sensor was removed and reattached
• Test Set 3: Screws were removed and reattached
• Test Set 4: Asset was completely dismantled and rebuilt
Measurement Series II (between pumps):
• Training Set II: Pump X
• Test Set 5: Pump I
• Test Set 6: Pump II
• Test Set 7: Pump III
• Test Set 8: Pump IV
The data sets consisted of six classes, i.e., three healthy

operational conditions and three non-healthy operational
conditions.

Healthy (Normal) Operational Conditions:
• Class 1, normal load (flow rate of 50m3 h−1)
• Class 2, partial load (flow rate of 12.5− 37.5m3 h−1)
• Class 6, idle state (flow rate of 0m3 h−1)
Non-Healthy (Anomaly) Conditions:
• Class 3, dry running pump (flow rate of 0m3 h−1)
• Class 4, hydraulic blockage (flow rate of 0m3 h−1)
• Class 5, cavitation (nominal point 50 60m3 h−1, net

positive suction head (NPSH) of -0.8)
Each class was measured at least 30 min per pump, correspond-
ing to 30 labels. The measurements were acquired on different
days and even months, but according to the same measurement
protocol. As anomalies were introduced manually, there are
deviations within the classes. This, however, can be considered
as a real-world problem, as those data are also expected to
be broader distributed.

VI. MACHINE LEARNING EXPERIMENTS

We aimed to evaluate the impact and challenges of produc-
tion divergence and maintenance in the context of robustness
and transferability systematically. Therefore, we performed an
initial baseline experiment where training and test set were
derived from the same data sets for Training Data I and II.
Subsequently, we performed systematic experiments: first, we
trained one Model I on Training Set I and Model II on Training
Set I and II. The trained models were tested on all eight
test sets. To compare different pre-processing algorithms and
machine learning models, we evaluated all experiments with
an ANN and ROCKET. Both methods were evaluated without
virtual sensor alignment (M), with virtual sensor alignment
(V+M), with subsequent probability smoothing (V+M+S) and
subsequent employing of the autoencoder (V+M+S+A). The
ideal criteria for using an autoencoder, that training and test
set come from the same pump where no maintenance work

has been performed on either the pump or the sensor, was
met only by test set 1.
Hypothesis were tested with paired or unpaired t-test

(depending on the comparison).

VII. EXPERIMENTAL RESULTS AND CONCLUSION

The baseline classification accuracy was quite high (>0.972)
for both data sets (table 1). ROCKET showed slightly higher
performance and was essential faster during the training (but
not prediction).

TABLE I
ACCURACY, BASELINE EXPERIMENTS

ANN ROCKET
M V+M M V+M

Training Data I 0.976 0.978 0.983 0.973
Training Data II 0.972 0.973 0.986 0.986
M-model; V-virtual sensor alignment

Results for the robustness and transferability experiments
are shown in table 2.

1) Feature-based ANN vs ROCKET approach: The average
accuracy over all robustness and transferability experiments
was higher in the ROCKET approach (0.862±0.116) compared
to the feature-based ANN (0.857±0.078), the difference
was statistically significant (p=0.002, paired t-test) (Model
Voting was excluded as available for one experiment only).
Including only results with respective pre- and post-processing
steps (virtual sensor alignment and probability smoothing)
the differences vanished: ROCKET approach (0.909±0.104)
compared to ANN (0.908±0.063) (p=0.965, paired t-test).
2) Same vs Different Measurement Series: The impact

of using the same measurement series vs a different one
is clearly high, with an average accuracy of both models
0.978±0.005 on the baseline experiments vs 0.829±0.067 on
the transferability and robustness experiments without pre-
and post-processing (unpaired t-test: <0.001). Pre- and post-
processing, however, decreased the difference for average
results of both models (0.908±0.068), but remained significant
(unpaired t-test: <0.015).

3) Same vs Different Pump Series: Average accuracy
classification accuracy was notably higher in same pumps
(0.848±0.062) vs different pumps (0.809±0.069) but did not
reach statistically significance (p=0.055, unpaired t-test). The
difference was somewhat lower (but still notable even though
significance vanished even more), employing pre- and post-
processing methods: same pumps (0.924±0.058) vs different
pumps (0.892±0.105), (p=0.154, unpaired t-test).

4) Sensor Alignment: Without post-processing, the sensor
alignment had a slightly negative impact with averaged model
results without (0.829±0.069) vs with (0.811±0.096) virtual
sensor alignment (p=0.05); with post-processing the relation-
ship turned around model results without (0.889±0.106) vs
with (0.908±0.086) virtual sensor alignment (p=0.06). Note:
Sensor position was attached according to the same protocol
and sensor was not rotated intentionally.
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TABLE II
ACCURACY, ROBUSTNESS AND TRANSFERABILITY EXPERIMENTS

Feature-based Approach: ANN
Within Pumps Between Pumps

T1 T2 T3 T4 T5 T6 T7 T8
Model I (Training Data I)
M 0.842 0.804 0.884 0.788 0.809 0.755 0.816 0.825
MS 0.917 0.929 0.951 0.800 0.819 0.822 0.992 0.905

VM 0.852 0.822 0.888 0.616 0.822 0.783 0.843 0.807
VMS 0.928 0.931 0.974 0.788 0.819 0.953 0.992 0.921
VMSA 0.985
Model II (Training Data I + Training Data II)
M 0.861 0.801 0.876 0.721 0.811 0.772 0.825 0.922
MS 0.928 0.904 0.938 0.804 0.819 0.819 0.990 0.975

VM 0.849 0.787 0.849 0.637 0.821 0.818 0.796 0.884
VMS 0.913 0.891 0.912 0.813 0.819 0.982 0.912 0.972
VMSA 0.980

End-End-based Approach: ROCKET
Model I (Training Data I)
M 0.893 0.850 0.934 0.760 0.779 0.778 0.661 0.725
MS 0.920 0.936 0.994 0.646 0.795 0.923 0.523 0.806

VM 0.882 0.846 0.944 0.835 0.822 0.779 0.518 0.658
VMS 0.917 0.934 0.995 0.939 0.819 0.951 0.622 0.742
VMSA 0.994
Model II (Training Data I + Training Data II)
M 0.910 0.895 0.952 0.801 0.782 0.909 0.840 0.933
MS 0.991 0.975 0.993 0.904 0.803 0.984 0.987 0.966

VM 0.909 0.887 0.944 0.637 0.821 0.887 0.848 0.876
VMS 0.990 0.986 0.992 0.884 0.819 0.998 0.987 0.967
VMSA 0.998
Rem-Removal and Installation; T-Test; M-Model; V-Virtual Sensor Alignment
S-Smoothing of Probabilities; A-Autoencoder; Training data 1: smaller model;
Training data 2: larger, more diverse model

5) Probability Smoothing: The impact of probability
smoothing is clearly high on all averaged model accu-
racy before smoothing (0.812±0.063) and after smoothing
(0.901±0.066) and highly significant (p<0.001, paired-t-test).

6) Variation in Training Data: There was no worsening
nor any improvement when the training data was either only
acquired from the same pump (training data 1: 0.873±0.087)
or from the same and a different pump (training data 1:
0.879±0.091) (p<0.308, paired-t-test). However, when train-
ing and test measurements were acquired from different pumps,
the more complex training data had significantly positive
impact on the accuracy: average accuracy training data 1
(0.800±0.087) vs training data 2 (0.879±0.091) (p<0.001,
paired-t-test).
7) Impact of Model Voting: The model voting employing

the anomaly detection results of an autoencoder, trained on
normal data only, increased the classification accuracy in all
cases explored (test set 1 only): without (0.937±0.036) with
(0.989±0.008) (p<0.042, paired-t-test).

VIII. CONCLUSION AND FUTURE WORK

This work is limited to a single asset type and a single
environment. The influence of these factors may be investigated
in future studies. A limitation of the study is the small numbers
of models compared. However, the aim was to provide some
initial guideline for the overall machine learning pipeline.
First, we endorse a fixed sensor position. The virtual

sensor alignment showed a small impact, however, in all
measurements, the sensor position was attached according

to the same protocol and not rotated intentionally. Such an
exact placement of the sensor may not always be the case
in a real-world scenario. Therefore, the virtual alignment is
recommended. Additionally, we suggest the employment of
probability smoothing as post-processing. The approach can be
used independent of the model, as the raw probabilities can be
acquired from the Logits in each model using a SoftMax layer
for classification. Additionally, we recommend increasing the
complexity of the training data. Further, a specific autoencoder,
trained on easy-to-collect healthy data combined with the
classification results is proposed.
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Abstract—The pre-processing of biomechanical sensor data
often involves signal filters for noise removal in order to
improve the performance of segmentation and machine learning
algorithms. However, finding an optimal value for the filter’s
cut-off frequency is time consuming, as researchers have to rely
on heuristics and experience. Therefore, we introduce a method
called FcOpt for automatically estimating an optimal cut-off
frequency for noise filtering in one-dimensional biomechanical
data. The method resamples the input data and applies three
automated cut-off frequency determination methods, pools their
individually suggested cut-off frequencies with a k-means cluster
algorithm and provides an optimal cut-off frequency for filtering
one-dimensional data streams. We demonstrate FcOpt in the
context of a ski turn segmentation algorithm. This methodology
counteracts the susceptibility for incongruously identifying cut-
off frequencies by automated methods caused by high sampling
rates. FcOpt suggests a cut-off frequency of 2.63 Hz instead of
the originally proposed 3 Hz. Filtering with the suggested cut-off
frequency on average deviates from the original temporal accu-
racy of the ski turn segmentation by 1.0 ms, which corresponds
to only 0.08% in relation to the mean turn duration. Although
FcOpt cannot entirely replace heuristics for cut-off frequency
determination yet, it is an easy tool for researchers who want
to improve the signal pre-processing for their segmentation
algorithms. It lays the groundwork for future developments in
the area of data-driven filter design.

Index Terms—cut-off frequency optimization, automated fil-
tering techniques, clustering algorithm, human motion data
analytics

I. INTRODUCTION

Knowledge extraction from biomechanical sensor data
involves a number of steps, the first of them being pre-
processing [1], [2]. The main purpose is de-noising, i.e. the
removal of unwanted artefacts from the signal. These artefacts
are caused by electromagnetic or -static interferences on the
sensor data [3]. For successive processing steps, cleansed
training and test data improves the accuracy of segmentation
algorithms and machine learning models [4]. The most com-
mon method to filter unwanted frequencies in time series is
to apply digital filtering algorithms. Their application requires
the definition of the filter type, filter order and in particular the
cut-off frequency Fc, which defines the threshold for removal.
Finding an optimal Fc is a time-consuming pre-processing
step in data analysis and requires experience and domain
knowledge. The cut-off frequency has to be adjusted to the
certain use case, including the subsequent segmentation or

classification task and, thus, is hardly generalizable [5]. So
far, in the field of human motion data analysis, the process
of differentiating noise from the signal has mostly been a
heuristic approach performed by experts. However, automatic
methods have been developed for supporting this heuristic and
time-consuming Fc determination process, in particular for
the initial exploratory data analysis. Within the last decades,
for biomechanical data the residual analysis (RA) of Winter
[6] and Wells [7] and the power spectral analysis (PSA) of
D’Amico M. and Ferrigno [8] were repeatedly compared in
literature [5], [9]–[11]. The comparisons investigated the per-
formance of the methods on kinematic walking and running
data from lower extremities. Giakas and Baltzopoulos [9]
identified the PSA as best method in their work. For the
evaluation, they used the root mean squared error between the
filtered signal with their optimal Fc and the reference signal.
Sinclair, Taylor and Hobbs [10] did not yield a preference
between the PSA and the RA. They claimed that the PSA
requires a predefined threshold, but suggested using 95% of
the signal power for the Fc determination based on their
outcomes. Aissaoui, Husse, Mecheri, Parent and de Guise [12]
compared PSA and an autocorrelation (AC) function based
on knee rotation data. They stated that the AC function of
Challis [13] behaves well compared to spline functions. The
described methods aim to find the Fc that filters out a high
amount of noise without removing any power of the signal.
Nevertheless, the authors could not generally commit to one
method as the optimal automated filtering technique. Giakas
and Baltzopoulos mentioned that an appropriate application of
automated filtering methods require expert knowledge about
the limitation of automated methods and signal characteris-
tics [9]. In addition, Mullineaux [11] and Fazlali, Sadeghi,
Saba, Ojaghi and Allard [5] stated that the performance of
automated methods is highly dependent on the type of the
input data and underlined that higher sampling rates of the
input signals result in a higher cut-off frequency outcome.
The Shannon theorem [14] states that a signal must be
sampled with at least twice of its signal frequency in order
to be reproducible. Additionally, the authors Fazlali, Sadeghi,
Saba, Ojaghi and Allard [5] and Campbell, Bradshaw, Ball,
Hunter and Spratford [15] remarked that Fc is dependent on
individual properties of humans and the motion primitive (i.e.
the motion segment), which is aimed to be determined. Recent
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literature of Inertial Measurement Unit (IMU) data analysis in
skiing exemplifies the discrepancies in filter selection proce-
dures. Whereas Martı́nez et al. [16] and Danielsen, Sandbakk,
McGhie and Ettema [17] presented examples where Fc was
determined heuristically, Klous, Müller and Schwameder [18]
and Reid, Haugen, Gilgien, Kipp and Smith [19] used the
residual AC method of Challis [13] to identify the optimal cut-
off frequency. Meland [20] performed Welch’s power spectral
density analysis to identify a proper Fc, which is similar to
the power spectral analysis of D’Amico M. and Ferrigno
[8] but additionally contains a heuristic determination of Fc.
Therefore, this paper presents a method called FcOpt to help
finding an optimal Fc for signal-noise separation by clustering
the results of three commonly used and automated cut-off
frequency determination methods in biomechanical data pre-
processing with a k-means cluster algorithm. We validated the
method on a gyroscope signal coming from an IMU attached
onto ski boots and compared the outcome to the heuristic
cut-off frequency determination process originally reported
in Martı́nez et al. [16].

II. METHODS

A. The FcOpt method

FcOpt consist of two components: Fc-aggregator and
FcOpt-identifier. In order to determine the optimal cut-off
frequency Fc for one-dimensional time series, three automated
methods were applied to the raw sensor signal, which were
further pooled with a cluster algorithm to determine an
optimal Fc (see Fig. 1):

Fig. 1. FcOpt method overview separated into two components: Fc-
Aggregator and FcOpt-Identifier

1) Winter&Yu: Residual analysis of Winter [6] and Wells
[7] with the regression extension of Yu, Gabriel, Noble
and An [21]: A predefined set of possible cut-off
frequencies is determined in the range of zero and half
of the sampling rate Fs. The input signal is filtered with
a zero-lag second order Butterworth filter for each Fc,
respectively. The residuals are computed between the
input signal and each filtered signal. A regression line

is calculated with the residuals computed at the cut-off
frequencies Fs

10 and Fs

2 − 5 [21]. The intersection of
the regression line and the residual y-axis determines
consequently the optimal Fc.

2) Challis: Autocorrelation (AC) function by Challis
[13]: The filtered signals for a predefined set of possible
cut-off frequencies are computed as described in (1).
The AC function is defined as the average product
of a signal and a shifted version of itself. The AC
function is applied several times on a predefined set
of lag values. The AC function outputs are summed up
for each filtered signal. The Fc that corresponds to the
minimal summed up value is determined as the optimal
Fc.

3) PSA95: Power spectrum analysis of D’Amico M. and
Ferrigno [8]: A Fast Fourier Transform (FFT) is per-
formed on the input signal. The optimal Fc is deter-
mined by selecting the frequency in which 95% of the
signal power is contained. The percentage was set to
95% according to the suggestion of Sinclair, Taylor and
Hobbs [10].

As the methods of Winter&Yu and Challis require further
preparation to control the settle phases, a zero-padding of
20% of the input data length was added at the beginning
and end of each input signal [22] before the automated cut-
off frequency determination methods were applied in the Fc-
aggregator. As mentioned in the introduction, all methods
depend on the sampling rate (Fs) of the input time series:
higher sampling rates cause a larger amount of noise in the
data. This results in an increased Fc output of the exem-
plified automated filtering methods. The generalized FcOpt
method solved this issue by applying the cut-off frequency
determination methods on downsampled input time series.
Each downsampled sampling rate (Fds) was in the interval
Ids = [1;Fs]. Setting the lower limit of Ids to 1 Hz enabled
the detection of very low Fc–values (close to 0 Hz) because
the input signal was downsampled to a Fds close to 1 Hz.
This definition intercepted if the initial Fs had been set
exceedingly higher than the recommendation by the Shannon
theorem [14]. Defining the upper limit of Ids to Fs enabled
the detection of an optimal Fc close to Fs

2 (see definition
in (1)), which caught the case that the initial Fs had been
approximately set to Shannon’s suggestion. Therefore, an
optimal Fc could be determined in the range of 0 Hz and
Fs

2 . Moreover, exceeding the upper limit of Ids to higher
sampling rates would have required an oversampling of the
initial signal and added noise that would have unnecessarily
increased the FcOpt output. In the range of the interval Ids, 16
equally separated Fds were determined based on pilot tests
on the dataset. Subsequently, the interval Ic was computed
for each Fds, respectively, because Winter&Yu and Challis
additionally need this predefined set of possible Fc. For each
of the 16 Fds, a cut-off frequency was determined out of
Ic, which was divided into hundred evenly distributed cut-
off frequencies. Thus, a matrix containing the Fc–values was
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created with the shape of 16 × 3 derived from the number
of investigated sampling rates and the three determination
methods. Firstly, the automated methods Winter&Yu, Challis
and PSA95 were executed on the dataset with the median Fds

of the interval Ids. Then, the median Fds was discarded from
Ids and the methods were applied again to the next median
Fds of Ids. The algorithm converges when Fds < 50

4 holds.
This threshold is derived from Winter&Yu’s method, as it
ensures that Fs

10 < Fs

2 − 5 and f c,b < f c,e hold [21]. This
convergence criterion prevents the formation of clusters in a
very low range of Fc close to 0 Hz. Hence, the shape of the
matrix was n×3 with n ≤ 16∧n ∈ N . In order to determine
the optimal Fc of the signal, the resultant matrix was converted
to a one-dimensional vector. All matrix values were inserted
into a one-dimensional vector sorted in ascending order, with
the Fc losing their information about their automated method.
In the FcOpt-identifier, a cluster algorithm was applied to
detect groups of similar Fc in the vector. In advance, the
number of clusters had to be specified. Therefore, an adopted
version of the k-means cluster algorithm by Wang and Song
[23] was used, which is applicable to one-dimensional data
and inherits the number of cluster determination. It defines the
number of clusters using the Bayesian information criterion
to subsequently separate the Fc in the defined number of
clusters. This method was chosen because it was described in
the documentation [23] as an optimal, fast and reproducible
univariate clustering method. The centers of the clusters
signified possible FcOpt outcomes. Finally, the FcOpt method
returned the center of the largest cluster as optimal Fc.
Fig. 2 shows the Fc-aggregation after applying the automated
methods to the downsampled time series and the subsequent
FcOpt-identification in the center of the largest cluster of the
one-dimensional vector.

Fig. 2. Example of applying FcOpt on one dataset.

B. Evaluation

The FcOpt method was validated regarding two aspects:

1) Robustness against data sampling rate to evaluate if
FcOpt was able to accommodate input signals with high
sampling rates;

2) The accuracy of the FcOpt determination compared to
a heuristic cut-off frequency determination process for
the application of segmentation algorithms.

The kinematic human motion data of Martı́nez et al. [16]
was used for the evaluation. The authors gathered three-
dimensional accelerometer and gyroscope data from an IMU
attached onto each (left and right) ski boot while one partici-
pant performed “ski turns” on a ski-ergometer. The resulting
dataset consisted of twelve data signals resampled to 50 Hz.
The aim of their work was to validate a ski turn segmen-
tation methodology. Furthermore, the authors heuristically
investigated the optimal Fc for their segmentation algorithm
development. They compared the temporal accuracy of the
segmentation algorithm when it was applied to the available
IMU signals, as well as, to the averaged data of the left and
right boot for each signal. The dataset contained 124 skiing
turns. Different conditions regarding speed and slope were
simulated to add robustness to the developed algorithm: two
different time durations based on the average duration of giant
slalom and slalom turns (1.45 and 0.90 sec, respectively), and
three different inclinations of the ski-ergometer [16]. Thus,
the whole dataset consists of six runs. The authors gained the
highest accuracy by applying the segmentation algorithm to
the averaged gyroscope’s z-axis (GYRO-Z), i.e. the roll axis
of the sensor, when the data stream was low-pass filtered with
a fourth-order zero-lag Butterworth filter with a Fc of 3 Hz
[16]. Hence, the GYRO-Z signal was used in the current work
to validate the FcOpt method.

1) Sampling rate robustness: The GYRO-Z data of the
presented dataset were resampled to sampling rates in the
range of 15 and 50 Hz stepped by 5 Hz, in the range of 50
and 400 Hz stepped by 25 Hz and in the range of 400 and
1000 Hz stepped by 100 Hz. Linear interpolation was used
for upsampling the dataset above 50 Hz, whereby the results
rely on estimation. Since 12.5 Hz fulfills the condition (1)
required for the application of Winter&Yu, the minimal start-
ing sampling rate of 15 Hz was chosen. The selected ranges
differ in order to investigate the behaviour of the methods
for lower and very high sampling rates. The 100 Hz steps
at the higher frequencies were selected due to computation
efficiency. After resampling, the FcOpt, Winter&Yu, Challis
and PSA95 were applied to the dataset, respectively. For each
automated method, optimal Fc-values were determined over
the different sampling rates. The second derivative of the
generated Fc-signals was computed to identify the critical
sampling rate. The first peak in the second derivative implies
a strong increase of the optimal Fc, i.e. characteristic for the
loss of a stable state or rather the critical sampling rate for
each method.

2) Temporal accuracy evaluation: The segmentation algo-
rithm by Martı́nez et al. [16] was validated comparing the
timestamps detected by the algorithm to the expert-labelled
skiing turn switches based on video data. The absolute time
difference between the detected turn switches and the limits
of agreement (LoA) of the expert-labelled timestamps was
computed. This time difference was presentative for the
temporal accuracy, which was decisive for the determination
of an optimal Fc. Between the five evaluated Fc ([0, 3, 6, 9,
12] Hz), 3 Hz was defined as an optimal cut-off frequency
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for the segmentation task. In the current study, FcOpt was
applied to the same dataset with a sampling rate of 50 Hz
to match the resampling in the original experiment. The 3
Hz of the low-pass filter was replaced by the FcOpt’s output
and the temporal accuracy of the segmentation algorithm
was compared with the results of Martı́nez et al. [16]. The
temporal difference was computed in average per turn. In
addition, the absolute values were presented in relation to
the mean turn duration. In order to evaluate the performance
of FcOpt, statistical metrics, such as the standard deviation of
the temporal differences, were computed. A comparison was
rendered to evaluate if the segmentation algorithm was more
biased or contained outliers after changing the Fc, e.g. turn
switches were detected too early or too late.

III. RESULTS

A. FcOpt sampling rate robustness

Table I and Fig. 3 present the optimal Fc outputs of the
automated methods dependent on the sampling rate of the
input signals. All methods resulted in a rising optimal Fc when
the sampling rate increased. Winter&Yu, Challis and PSA95
varied between [0.85 – 93.44] Hz, [3.52 – 183.50] Hz and
[1.73 – 37.31] Hz, respectively. The FcOpt output provided
values between 0.00 Hz and 31.79 Hz. Fig. 5 underlines that
FcOpt produced an output very close to 0 Hz until a Fs of
25 Hz. Whereas, PSA95 and Challis showed an irregularly
increasing slope, the Winter&Yu method delivered a linear
increasing Fc with rising Fs. Furthermore, Fig. 4 presents
that the median optimal Fc of Winter&Yu, Challis and PSA95
were 17.83 Hz, 52.28 Hz and 10.02 Hz, respectively. FcOpt
provided a median value of 5.98 Hz. The methods also dif-
fered in their deviation of the lower and upper quartiles of the
Fc output. Whereas Winter&Yu, Challis and PSA95 yielded
an interquartile range of 32.91 Hz, 105.20 Hz and 25.56 Hz,
respectively, FcOpt provided a deviation of 3.85 Hz. Fig. 6
illustrates the second derivative of the methods’ outputs,
showing large peaks at 125 Hz and 250 Hz for Challis.
PSA95 displays a single peak at 200 Hz, as well as FcOpt
and Winter&Yu at 400 Hz.

B. FcOpt temporal accuracy evaluation

For the turn segmentation algorithm of Martı́nez et al.
[16], the FcOpt proposed an optimal cut-off frequency of
2.63 Hz for the sampling rate of 50 Hz. In comparison to
the given accuracy of 6.6 ms in average per turn (mean
bias = 0.2 ms, LoA = 56.6 ms) [16], the application of the
FcOpt-determined Fc resulted in an absolute difference of
5.6 ms (mean bias = -0.2 ms, LoA = 53.7 ms). This absolute
difference corresponded to 0.48% of the mean turn duration
of 1.175 sec compared to the 0.56% of Martı́nez et al. [16].
FcOpt deviates only by 1.0 ms per turn (0.08% of the mean
turn duration) in the temporal accuracy compared to the result
of Martı́nez et al. [16].

The comparison between the suggested Fc of Martinez et al.
[16] and FcOpt yielded a difference of 0.37 Hz. The standard
deviation of the time differences per turn was 18.7 ms for

TABLE I
FC OPT OUTCOMES FOR THE DEFINED SAMPLING RATES (FS ) (ALL IN HZ)

Methods

Fs Winter&Yu Challis PSA95 FcOpt
15 0.85 3.52 1.73 0.00
20 1.47 5.17 2.20 0.00
25 1.98 5.45 2.39 0.00
30 2.53 6.21 2.55 0.89
35 3.07 6.34 2.59 2.55
40 3.54 6.94 2.70 1.84
45 4.06 7.39 2.87 2.43
50 4.51 7.07 3.02 2.63
75 5.69 7.83 3.39 3.01

100 6.49 7.92 4.22 4.59
125 8.11 14.31 4.70 4.79
150 10.23 48.74 5.46 5.08
175 12.67 49.94 6.03 5.09
200 16.33 51.52 6.66 6.05
225 19.32 53.03 13.36 6.08
250 22.73 53.87 24.05 5.94
275 25.47 98.84 26.47 6.01
300 28.79 108.08 27.36 6.10
325 31.19 109.15 27.98 6.22
350 33.59 110.48 28.31 6.41
375 35.99 112.06 28.51 6.33
400 38.39 112.79 28.51 6.47
500 47.98 125.84 29.35 16.33
600 57.07 152.53 31.19 21.94
700 59.52 166.75 34.72 29.15
800 65.32 172.39 35.93 26.67
900 80.31 178.03 36.98 31.41
1000 93.44 183.50 37.31 31.79

Fig. 3. Comparison of the sampling rate robustness in the range of from 15
to 1000 Hz.

the FcOpt’s outcome in comparison to the estimated Fc of
19.0 ms [16]. This resulted in an increased standard deviation
by 0.3 ms with the application of FcOpt. Moreover, the
maximum temporal deviation for a specific turn was 80 ms
in both cases.

IV. DISCUSSION

The results of the sampling rate robustness experiment
illustrated that the Fc interquartile range of the FcOpt outputs
was the smallest compared to the other assessed automated
methods for the sampling rates between 15 Hz and 1000 Hz.
The Challis method was found to be mostly dependent on the
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Fig. 4. Distributions of the Fc-results compared between the automated
methods in the sampling rate range between 15 Hz and 1000 Hz.

Fig. 5. Comparison of the sampling rate robustness in a closer look in the
range from 15 and 50 Hz.

sampling rate, while FcOpt was the most robust one against
data sampling rates. The results confirmed that FcOpt can be
applied on datasets with high sampling rates in contrast to the
other exemplified automated methods. Applying Winter&Yu,
Challis and PSA95 on differently sampled data increased the
probability of finding a properly sampled input data setting for
each method. Therefore, the methods’ outputs coincided at a
certain frequency range. Selecting the center of this frequency
range as optimal Fc is more reliable than choosing a Fc based

Fig. 6. Comparison of the second derivative of the automated methods’
outputs.

on one method’s output on a predefined sampling rate. As
the first peak is decisive for the loss of the stable state,
only Winter&Yu showed a peak later at 400 Hz in Fig. 6.
However, since the Fc of Winter&Yu in Fig. 3 and 5 increased
continuously, the loss of the stable state of this method cannot
be clearly detected on this experiment. In summary, these
aspects highlight the improved robustness of FcOpt against
high sampling rates.
The optimal Fc determined by FcOpt only slightly deviated
from the segmentation algorithm outcome of Martı́nez et al.
[16]. Thus, FcOpt is a Fc proposing method, but does not fully
replace the heuristic determination process. Nevertheless,
FcOpt definitely can reduce the time spent by researchers
to evaluate possible cut-off frequencies, in particular, when
familiarizing with sensor signals. Therefore, the proposed
approach can be integrated into data processing and prepa-
ration platforms, e.g. the extended human motion activity
recognition chain [1].
The influence of the size of the interval Ids (Fds-resolution)
and the pre-defined vector of possible Fc (Fc-resolution)
required for Winter&Yu and Challis on the FcOpt-outcome
was additionally investigated. Table II and Table III present
that the output differed between 0.38 Hz for the Fds-resolution
and 0.31 Hz for the Fc-resolution. While the Fc did not
converge to a certain value for the Fc-resolution comparison,
the Fc converged at approximately 2.5 Hz for a Fds-resolution
of 32 steps and higher. Hence, FcOpt is only slightly affected
by altering the Fds-resolution and Fc-resolution.
FcOpt does not deliver above 0 Hz until a sampling rate of 25
Hz is reached (see Fig. 5). This can be prevented by starting
applying Winter&Yu, Challis and PSA95 on the data with the
maximum Fds of the interval Ids. Therefore, FcOpt provides
results for data that at least meet the threshold Fs < 50

4
required for FcOpt to apply.
The proposed method was validated on gyroscope data of an
IMU sensor attached onto ski boots for alpine skiing turns. It
must be investigated if FcOpt is applicable for other kinematic
sensor data and movement primitives despite skiing turns. The
methods of Winter&Yu, Challis and PSA95 are established
methods in the field of kinematic data. Nevertheless, the
integration of recent automated Fc determination methods
into the FcOpt approach from other research areas than
data science in sport would be beneficial and should be
investigated. The other way around, the application of the
FcOpt method in other research areas could benefit the initial
estimation and determination of a cut-off frequency to start
processing and mining available sensor signals.

TABLE II
FC OPT OUTCOME DEPENDENCY ON FDS -RESOLUTION.

Fds-resolution FcOpt output

4 2.76 Hz
8 2.38 Hz
16 2.63 Hz
32 2.55 Hz
64 2.54 Hz



TABLE III
FCOPT OUTCOME DEPENDENCY ON FC-RESOLUTION.

Fc-resolution FcOpt output
25 2.47 Hz
50 2.76 Hz
100 2.63 Hz
200 2.57 Hz
400 2.45 Hz

V. CONCLUSION

This work developed and validated a generalized method
that can be used as a data-driven cut-off frequency determi-
nation method for signal and noise separation when sampling
rates above 25 Hz are given. The validation dataset illus-
trated that FcOpt can approach the heuristic Fc-determination
process but not completely replace it. Nevertheless, FcOpt
can save time resources by supporting experts with data pre-
processing. Additionally, the exemplified method helps non-
experts for the determination of a proper cut-off frequency
for rapid noise filtering and data smoothing. Particularly, only
the sampling rate of the dataset must be known to apply the
method. Furthermore, FcOpt has potential to be integrated in
real-time applications to implement segmentation algorithms
that require an adaptive filter for non-stationary signal pro-
cessing.
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Abstract—In this paper, we presents a low-complexity deep
learning frameworks for acoustic scene classification (ASC). The
proposed framework can be separated into three main steps:
Front-end spectrogram extraction, back-end classification, and
late fusion of predicted probabilities. First, we use Mel filter,
Gammatone filter, and Constant Q Transform (CQT) to trans-
form raw audio signals into spectrograms, where both frequency
and temporal features are presented. Three spectrograms are
then fed into three individual back-end convolutional neural
networks (CNNs), classifying into ten urban scenes. Finally, a
late fusion of three predicted probabilities obtained from three
CNNs is conducted to achieve the final classification result. To
reduce the complexity of our proposed CNN network, we apply
two compression techniques: model restriction and decomposed
convolution. Our extensive experiments, which are conducted on
DCASE 2021 (IEEE AASP Challenge on Detection and Classi-
fication of Acoustic Scenes and Events) Task 1A Development
and Evaluation datasets, achieve a low-complexity CNN based
framework with 128 KB trainable parameters and the best
classification accuracy of 66.7% and 69.6%, improving DCASE
baseline by 19.0% and 24.0% respectively.

Index Terms—Convolutional neural network, Gammatone fil-
ter, constant Q transform, MEL filter, spectrogram, deep learning
models.

I. INTRODUCTION

Acoustic Scene Classification (ASC), one of main research
fields of ‘Machine Hearing’ [1], has drawn much attention
in recent years and has been applied to a wide range of
real-life applications such as enhancing the listening expe-
rience of users by detecting scene context [2], [3], support-
ing sound event detection [4], or integrating in a multiple-
sensor automatic system [5]. To deal with ASC challenges
such as unbalanced data, lacking data input, or mismatched
recording devices, various methods have been proposed, which
can be separated into two main approaches. The first ap-
proach makes use of multiple data input such as ensemble
of spectrograms [6]–[9] or audio channels [10]. Meanwhile,
the second approach focuses on back-end classification, and
proposes powerful deep learning network architectures, which
are able to enforce the training process [11]–[15]. Although
these two approaches can achieve good results, they present
high-complexity systems. Indeed, while multiple input data
requires an ensemble of multiple individual classification mod-
els [16], [17], powerful network architectures show a number

of convolutional layers [13], [14]. All top-10 systems proposed
in recent DCASE challenges in 2018, 2019, 2020 are also
based on complex architectures, requiring larger than 2 MB
of trainable parameters. The issue of large model prevents
implementing edge devices concerning real-life applications
which require a low footprint. Although there are various
methods proposed to deal with the issue of model complexity
such as quantization [18], pruning [19], model restriction
(i.e. restriction on the number of layers [20], the number
of kernel [21], or both of these factors [22]), decomposed
convolution [23], hybrid methods using pruning and decom-
posed convolution [23], pruning and distillation [24], these
are mainly applied for image data. Therefore, our work in-
troduces a low-complexity deep learning framework for ASC.
To deal with ASC challenges, we propose an ensemble of
multiple spectrogram inputs, using Mel filter [25], Gammatone
filter [26], and CQT [25]. Regarding each network used for
training an individual spectrogram input, we deal with the
issue of model complexity by combining model restriction and
decomposed convolution methods.

The remaining of our paper is organized as follows: Section
2 presents proposed deep learning frameworks and model
compression techniques. Section 3 introduces evaluation setup
where experimental setting, metric, and implementation of
deep learning frameworks proposed are presented. Next, Sec-
tion 4 presents and analyses the experimental results. Finally,
Section 5 presents conclusion and future work.

II. THE LOW-COMPLEXITY DEEP LEARNING FRAMEWORK
PROPOSED

A. Our baseline

We first propose a baseline with a high-level architecture
shown in Fig. 1, which comprises three main steps in the
order of front-end spectrogram feature extraction, back-end
classification, and a fusion of predicted probabilities. At the
first step, a raw audio signal is firstly transformed into a
spectrogram of 128 × 704 by using 128 MEL filter [25]
with Fast Fourier Transform (FFT) number, window size, and
hope size set to 8192, 4096, and 620, respectively. As delta
and delta-delta across the temporal dimension are applied
to the spectrogram, we then generate the spetrograms of
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Abstract—The increasing digitization of medical imaging
enables machine learning based improvements in detecting,
visualizing and segmenting lesions, easing the workload for
medical experts. However, supervised machine learning requires
reliable labelled data, which is is often difficult or impossible to
collect or at least time consuming and thereby costly. Therefore
methods requiring only partly labeled data (semi-supervised)
or no labeling at all (unsupervised methods) have been applied
more regularly. Anomaly detection is one possible methodol-
ogy that is able to leverage semi-supervised and unsupervised
methods to handle medical imaging tasks like classification
and segmentation. This paper uses a semi-exhaustive literature
review of relevant anomaly detection papers in medical imaging
to cluster into applications, highlight important results, establish
lessons learned and give further advice on how to approach
anomaly detection in medical imaging. The qualitative analysis
is based on google scholar and 4 different search terms, resulting
in 120 different analysed papers. The main results showed that
the current research is mostly motivated by reducing the need
for labelled data. Also, the successful and substantial amount
of research in the brain MRI domain shows the potential for
applications in further domains like OCT and chest X-ray.

Index Terms—anomaly detection, medical imaging, lessons
learned

I. INTRODUCTION

The increasing digitization of medical imaging enables
the collection of data and machine learning (ML) based
approaches to aid medical experts. One powerful part of
ML comes from supervised methods, using both data and
corresponding labels in e.g. segmentation or classification
models. However, since the collection of annotations (labels)
is often times time consuming and thereby costly [1] as
well as in many cases a confident ground truth even being
unobtainable, their usability is reduced. Due to this, semi-
supervised and unsupervised methods are applied. This is
often achieved through anomaly detection.
Definitions: Pathologies in medical images can often be

described as a rare deviance from a norm, or a non-anomalous
(in the case of medical imaging mostly healthy) sample.
This fits the definition of outliers (or anomalies) in the
data, motivating the application of anomaly detection [2].
In this publication, the terms anomaly detection and out-
lier detection are used interchangeably. This is motivated
by the fact that outliers are sometimes defined as valid

but out of order datapoints, while anomalies also include
further differences (e.g. different image capture modalities).
Therefore outliers can be defined as a subset of anomalies.
Anomaly detection can be separated into 3 classes, point,
collective and contextual anomalies. Point anomaly detection
is the task of recognizing a single anomalous point from a
larger dataset. Most anomaly detection models handle point
anomalies. Collective anomalies are anomalies that may not
be identified as anomalies if viewed as a single point but as a
set of many they form an anomaly. Contextual anomalies can
only be recognized as anomalies if context is added. There are
also 3 different anomaly detection setups, supervised, semi-
supervised and unsupervised anomaly detection. Supervised
anomaly detection is comparable with classification using a
very unbalanced dataset. Semi-supervised anomaly detection
aims to train a model on only one, typically the normal (in
our case healthy) class and then applies the model to both
healthy and pathological data, reporting the corresponding
scores. Unsupervised anomaly detection uses both, normal
and anomalous data, does not make use of labels at all and
works purely on intrinsic properties of the dataset (using
distances or densities) [3]. In anomaly detection, the usage of
semi-supervised and unsupervised anomaly detection (UAD)
is confused, and repeatedly applied to both semi-supervised
and unsupervised methods. We believe that the separation
into semi-supervised (healthy data being clearly defined) and
unsupervised (no definition of labels at all) makes sense and
advise to use this terminology as also pointed out by [3].
Deviation based anomaly detection: Anomaly detection

using medical image data, e.g. computed tomography (CT)
scans, is typically performed using either convolutional neural
network (CNN) based feature extractors, followed by one-
class (OC) classifiers or deviation based methods like au-
toencoders (AEs) [4]–[6] or even more recently, generative
adversarial network (GAN) [7]–[9] based methods. Both
AEs and GANs use convolutional kernels, however their
applications in the sense of deviation based anomaly detection
are fundamentally different to CNN based feature extractors.
In order to generate deviation based scores from an AE, the
encoder of the encoder-decoder based neural network typi-
cally encodes a sample image into a lower dimensional latent
space, also called a bottleneck. The decoder uses this latent

© The Author(s), under exclusive license to
Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2022
P. Haber et al. (Eds.), Data Science – Analytics and Applications,
https://doi.org/10.1007/978-3-658-36295-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-36295-9_4&domain=pdf


46     L. Pham, H. Tang, A. Jalali, A. Schindler, R. King and I. McLoughlin

TABLE I
THE CNN-7 NETWORK ARCHITECTURE BASELINE (INPUT PATCH OF 128×128×3)

Network architecture Output

BN - Convolution ([3×3]@Cout1 = 32) - ReLU - BN - Dropout (10%) 128×128×32
BN - Convolution ([3×3]@Cout2 = 32) - ReLU - BN - AP [2×2] - Dropout (10%) 64×64×32
BN - Convolution ([3×3]@Cout3 = 64) - ReLU - BN - Dropout (10%) 64×64×64
BN - Convolution ([3×3]@Cout4 = 64) - ReLU - BN - AP [2×2] - Dropout (10%) 32×32×64
BN - Convolution ([3×3]@Cout5 = 128) - ReLU - BN - AP [2×2] - Dropout (10%) 16×16×128
BN - Convolution ([3×3]@Cout6 = 128) - ReLU - BN - GAP - Dropout (10%) 128
FC - Softmax C = 10

128×704×3. Next, the spectrograms are split into 10 patches
of 128× 128× 3 with 50% overlapping before feeding into a
CNN based network for classification.

As we illustrate our proposed CNN based network architec-
ture in Table I, it contains sub-blocks, which perform convolu-
tion with CoutK channel (Convolution ([kernel size]@CoutK,
1 ≤ K ≤ 6), batch normalization (BN) [27], rectified linear
units (ReLU) [28], average pooling (AV [kernel size]), global
average pooling (GAP), Dropout (percentage dropped) [29],
fully-connected (FC), and Softmax layers. The dimension of
Softmax layer is set to C = 10 that equals to the number
of scene context classified. In total, we have 6 convolutional
layers and 1 fully-connected layers that makes the proposed
network architecture like CNN-7.

As the CNN-7 works on patches, the final predicted proba-
bility of an entire spectrogram is computed by averaging of all
patches. Let us consider Pn = (pn

1 ,p
n
2 , ...,p

n
C), with C being

the category number and the nth out of N patches fed into
the CNN-7, as the probability of all patches, then the average
classification probability is denoted as p̄ = (p̄1, p̄2, ..., p̄C)
where,

p̄c =
1

N

N∑
n=1

pnc for 1 ≤ n ≤ N (1)

and the predicted label ŷ of the entire spectrogram is deter-
mined as:

ŷ = argmax(p̄1, p̄2, ..., p̄C) (2)

B. Ensemble of multiple spectrogram inputs

Although both of CQT and STFT spectrograms are built
on Fourier Transform theory, they extract different central
frequencies. Meanwhile, both Mel spectrogram and Gamma-
tonegram are generated from STFT spectrogram, but use two
different filter banks: Mel and Gammatone filters. We can
conclude that three spectrograms either extract different central
frequencies or apply different auditory models. Therefore, each
spectrogram may contain its own distinct and complimentary

information. This inspires us to propose an ensemble of these
three spectrograms as a rule of thumb to improve the ASC
performance [16], [17]. To evaluate the ensemble of multiple
spectrograms, we proposed a late fusion scheme, referred
to as PROD fusion. In particular, we conduct experiments
over individual networks with different spectrogram inputs,
then obtain predicted probability of each network as p̄s =
(p̄s1, p̄s2, ..., p̄sC), where C is the category number and the sth

out of S networks evaluated. Next, the predicted probability
after PROD fusion pf−prod = (p̄1, p̄2, ..., p̄C) is obtained by:

p̄c =
1

S

S∏
s=1

p̄sc for 1 ≤ s ≤ S (3)

Finally, the predicted label ŷ is determined by (2).

C. Model compression methods applied to the CNN-7 network

Our proposed single CNN-7 architecture reports a complex-
ity of 1,129 MB for non-zero parameters with using 32 bits
for representing one parameter. Additionally, using ensemble
of three spectrogram inputs makes the number of trainable
parameters further increase three times. To reduce the model
complexity, we firstly restrict the number of channels used in
the CNN-7 baseline, then reduce the channels of Cout1 from
32 to 16, Cout3 and Cout4 from 64 to 32, Cout5 and Cout6
from 128 to 64. Our proposed channel restriction (CR) helps
to reduce an individual CNN-7 complexity to 313 KB that
nearly equals to 1/4 of the original size.

We further reduce the CNN-7 complexity by applying the
decomposed convolution (DC) technique described in [23],
[30]. Let us consider Cin and Ccout as the input and output
channel numbers respectively, W = 3 and L = 3 are the
dimensions of kernel size, which are used for a convolu-
tional layer. Then, the number of trainable parameters at a
convolutional layer is computed by W × L × Cin × Cout =
9×Cin×Cout . We reduce the number of trainable parameters
at a convolutional layer by decomposing the convolutional
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Fig. 1. High-level architecture of ASC baseline system proposed.
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Fig. 2. Decomposed convolution technique applied to a convolutional layer.

layer into four sub-convolutional layers as described in Fig. 2.
For all four sub-convolutional layers, the output channel is
reduced to Cout/4. Regarding the first sub-convolutional layer
(the upper path shown in Fig. 2), although we still use
kernel size of [W×L]=[3×3], we reduce the input channels
to Cin/4, then cost (9×Cin ×Cout)/16 trainable parameters.
Regarding the other sub-convolution layers, we reduce the
kernel size to [W×L]=[1×1]. While the second and third sub-
convolutional layers (two middle paths shown in Fig. 2), the
input channel is reduced to Cin/2, it is remained in the fourth
sub-convolutional layer (the lower path shown in Fig. 2). As
a result, it requires (Cin × Cout)/8 for the second and third
sub-convolutional layers, and (Cin × Cout)/4 for the fourth
sub-convolution layer. By decomposing a convolutional layer
into four sub-convolutional layers, the model complexity is
reduced to nearly 1/8.5 of the original size. By combining the
two model compression techniques, we can achieve a CNN-
7 network architecture with complexity of 42.6 KB, which
nearly equals to 1/25 of the original size (i.e. the original CNN-
7 network architecture is proposed in the baseline framework
in Table I). As we need to use three CNN-7 for three different
spectrogram inputs, the final complexity of the proposed
framework is approximately 128 KB.

III. EVALUATION SETTING

A. TAU Urban Acoustic Scenes 2020 Mobile, the Develop-
ment [31] and Evaluation [32] datasets (DCASE 2021 Task
1A)

The Development dataset was proposed for DCASE 2021
Task 1A challenge [33], which requires a limitation of model
complexity set to 128 KB with using 32 bits for one trainable
parameter. The dataset in slightly unbalanced, recorded from
12 large European cities: Amsterdam, Barcelona, Helsinki,
Lisbon, London, Lyon, Madrid, Milan, Prague, Paris, Stock-
holm, and Vienna. It consists of 10 scene classes: airport,
shopping mall (indoor), metro station (underground), pedes-
trian street, public square, street (traffic), traveling by tram,
bus and metro (underground), and urban park. The audio
recordings were recorded from 3 different devices namely A
(10215 recordings), B (749 recordings), C (748 recordings).

TABLE II
THE NUMBER OF 10-SECOND AUDIO RECORDINGS CORRESPONDING TO

EACH SCENE CATEGORIES IN THE TRAIN. AND EVAL. SUBSETS
SEPARATED FROM THE DCASE 2021 TASK 1A DEVELOPMENT

DATASET [35], AND THE EVALUATION DATASET [32].

Category Train. Subset Eval. Subset Evaluation
Airport 1393 296 -
Bus 1400 297 -
Metro 1382 297 -
Metro Station 1380 297 -
Park 1429 297 -
Public square 1427 297 -
Shopping mall 1373 297 -
Street pedestrian 1386 297 -
Street traffic 1413 297 -
Tram 1379 296 -
Total 13962 2968 7920

(≈38.79 hours) (≈8.25 hours) (22 hours)

Additionally, synthetic data for 11 mobile devices was created
based on the original recordings, referred to as S1 (750
recordings), S2 (750 recordings), S3 (750 recordings), S4 (750
recordings), S5 (750 recordings), and S6 (750 recordings).

As a result, this task not only requires a low complexity
model, but it also proposes an issue of mismatch recording
devices. To evaluate, we follow the DCASE 2021 Task 1A
challenge [33], separate this dataset into training (Train.) and
evaluation (Eval.) subsets as shown in Table II. Then, Train.
subset is used for training the framework proposed and Eval.
subset is used for evaluating. Notably, two of 12 cities and
S4, S5, S6 audio recordings are only presented in the Eval.
subset for evaluating the issue of mismatch recording devices
and unseen samples.

Furthermore, the DCASE 2021 Task 1A challenge releases
the Evaluation dataset without labels, which is used to
evaluate the submitted systems. The total number of 10-s
segments is 7920 (22 hours), which is significantly larger
than the Development dataset. In this paper, our results on
both Eva. subset and Evaluation dataset (i.e. Accuracy scoring
on Evaluation datset is conducted by DCASE 2021 task 1A
challenge as labels is not published) are reported and compared
with the state-of-the-art systems.

B. Deep learning framework implementation

We use Tensorflow framework to build all classification
models in this papers. The cross-entropy loss function used
for training is described as

LOSSEN (Θ) = − 1

N

N∑
n=1

yn log {ŷn(Θ)}+ λ

2
||Θ||22 (4)

defined over all parameters Θ, and N is the number of training
samples. λ denotes the �2-norm regularization coefficient.
yn and ŷn denote ground truth and predicted output. The
training is carried out for 100 epochs using Adam [34] for
optimization.
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TABLE III
PERFORMANCE COMPARISON OF CNN-7 W/ CR & DC AMONG THREE SPECTROGRAMS, WITH DIFFERENT TIME LENGTHS, WITH OR WITHOUT USING

DATA AUGMENTATIONS (ACC. %)

Without data augmentations With Data augmentations
Spectrogram 1-second 2-second 5-second 10-second 1-second 2-second 5-second 10-second

MEL 56.7 57.9 56.2 60.5 54.6 57.9 59.5 58.4
GAM 53.2 55.0 53.1 53.9 58.9 60.1 60.6 57.1
CQT 44.3 47.7 48.6 49.2 44.2 45.7 48.6 49.1

TABLE IV
PERFORMANCE COMPARISON AMONG DCASE BASELINE, THE CNN-7

BASELINE, THE CNN-7 BASELINE WITH CHANNEL RESTRICTION (CNN-7
W/ CR), THE CNN-7 BASELINE WITH CHANNEL RESTRICTION AND
DECOMPOSED CONVOLUTION (CNN-7 W/ CR & DC) (ACC. %).

DCASE CNN-7 CNN-7 CNN-7 w/
baseline baseline w/ CR CR & DC

Category (90.3 KB) (1.1 MB) (313 KB) (42.6 KB)
Airport 40.5 59.5 50.3 64.5
Bus 47.1 73.7 70.4 69.0
Metro 51.9 57.6 49.8 70.0
Metro station 28.3 53.9 48.1 45.1
Park 69.0 73.1 78.5 74.4
Public square 25.3 34.3 38.4 25.9
Shopping mall 61.3 52.9 50.2 43.4
Street pedestrian 38.7 39.4 35.0 32.7
Street traffic 62.0 84.5 88.2 89.6
Tram 53.0 67.9 62.5 52.7
Average 47.7 59.7 57.1 56.7

C. Metric for evaluation

Regarding the evaluation metric used in this paper, we
follow DCASE 2021 Task 1A challenge. Let us consider C as
the number of audio/visual test samples which are correctly
classified, and the total number of audio/visual test samples is
T , the classification accuracy (Acc. %) is the % ratio of C to
T .

D. Optimize the proposed framework by evaluating factors of
time length and data augmentation

In this paper, we further evaluate factors of time length and
data augmentation which may affect the ASC performance,
then find the most optimized framework. In particular, we
evaluate four different time lengths of 1 second (i.e. 1-second
patch is used in the baseline proposed), 2 seconds, 5 seconds
and 10 seconds (i.e. an entire audio recording is 10-second
length). In order to evaluate different time lengths mentioned
but still keep the input patch of 128×128×3 unchanged, the
hop size is set to 620, 1120, 1850 for 1-second, 2-second,
and 5-second lengths respectively, while the other setting
mentioned in Section II-A are unchanged. To evaluate an entire
10-second recording, the hop size is set to 2048, then generate
one patch of 128×200×3.

We enforce the back-end classifiers by applying two meth-
ods of data augmentation on the patches: mixup [36], [37],
and spectrum augmentation [38]. We then compare the ASC
performance with and without using these data augmentation
methods. As we apply mixup data augmentation [36], [37],
the labels of the mixup data input are no longer one-hot. We
therefore train back-end classifiers with Kullback-Leibler (KL)

divergence loss [39] rather than the standard cross-entropy loss
over all N mixup training samples:

LOSSKL(Θ) =

N∑
n=1

yn log

(
yn

ŷn

)
+

λ

2
||Θ||22, (5)

where Θ denotes the trainable network parameters and λ de-
note the �2-norm regularization coefficient. yc and ŷc denote
the ground-truth and the network output, respectively. The
training is carried out for 100 epochs using Adam [34] for
optimization.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Performance comparison between DCASE baseline and the
CNN-7 baseline with or without using model compression
methods

As experimental results are shown in Table IV, although
the CNN-7 baseline outperforms DCASE baseline and helps
to improve the accuracy by 12%, the CNN-7 baseline com-
plexity is much larger than DCASE baseline. By using model
compression methods, we can achieve a low-complexity model
referred to as CNN-7 with CR & DC, which is nearly 1/2 of
the DCASE baseline complexity, but still outperforms DCASE
baseline, showing an accuracy improvement of 9%.

B. Effect of time length, data augmentation, spectrogram input

Next, we conduct experiments to evaluate effect of spec-
trogram input, time length, and data augmentations on the
CNN-7 with CR & DC, which are shown in Table III. As
experimental results are shown in Table III, MEL and GAM
outperform CQT at different time lengths and with or without
using data augmentation. Without using data augmentations,
MEL obtains better results than GAM at different time lengths.
However, both MEL and GAM achieve competitive results
with using data augmentations. It can be seen that using
data augmentations is effective only for GAM. Additionally,
increasing time length helps to improve the accuracy for
both CQT and MEL, but not much effective for GAM. As a
result, we finally configure an optimized and low-complexity
framework for ASC task with setting: CNN-7 with CR &
DC, 5-second time length, and using mixup & spectrum data
augmentations.

C. Evaluate ensemble of different spectrogram inputs

Given the optimized framework, we conduct PROD fusion
of three predicted probabilities from three spectrogram inputs
(i.e. PROD fusion is mentioned in Section II-B) to obtain the
final classification accuracy. We then compare performances
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Fig. 3. Performance comparison (Acc.%) of DCASE baseline, individual spectrograms (CQT, GAM, and MEL), and the ensemble of three spectrograms
across all scene categories (using CNN-7 with CR & DC, 5-second time length, and mixup & spectrum data augmentations)

TABLE V
THE NUMBER OF 10-SECOND AUDIO SCENE RECORDINGS

CORRESPONDING TO EACH DEVICE IN THE TRAIN. AND EVAL. SUBSETS
SEPARATED FROM THE DCASE 2021 TASK 1A DEVELOPMENT

DATASET [35] AND PERFORMANCE FOR EACH DEVICES.

Devices Train. Eval. Acc. %
A 10215 330 79.1
B 749 329 69.6
C 748 329 70.8
S1 750 330 65.8
S2 750 330 63.6
S3 750 330 67.0
S4 0 330 63.9
S5 0 330 60.0
S6 0 330 60.3

TABLE VI
TOP-10 ACCURACY PERFORMANCE (ACC. %) SYSTEMS SUBMITTED FOR

DCASE 2021 TASK 1A CHALLENGE

Systems Evaluation dataset Eva. Subset
Top-1 [40] 76.1 75.9
Top-2 [41] 72.9 -
Top-3 [42] 72.1 69.5
Top-4 [43] 70.3 69.0
Top-5 [44] 70.1 -
Our system 69.6 66.7
Top-7 [45] 69.6 65.0
Top-8 [46] 68.8 70.2
Top-9 [47] 68.5 65.2
Top-10 [48] 68.3 69.7

DCASE baseline [31] 45.6 47.7

among DCASE baseline, the optimized framework with in-
dividual spectrograms, the optimized framework with the
ensemble of multiple spectrograms, across all scene categories.
As experimental results are shown in Fig.3, GAM and MEL
achieve competitive results, and outperform CQT at almost
scene categories except for ‘Airport’. The ensemble of three
spectrogram inputs helps to achieve an average accuracy of
66.7%, improving DCASE baseline by 19.0%, and notably
showing improvement over all scene categories.

Further analysing performance over different recording de-
vices as shown in Table V, we see that device A outperforms
the other devices as this device is dominant in Train. subset.
Although there is a lacking of training samples for device

B and C, they achieves competitive accuracy of 69.6% and
70.8% respectively, compared with device A performance of
79.1%. Regarding synthesized devices from S1 to S6, although
there is no samples from S4, S5, S6 in Train. subset, the
performance of these devices are competitive to the other
S1, S2, S3. Our results and analysis indicate that the ASC
framework proposed not only achieves a low complexity of
128 KB, but it also can tackle the issue of mismatched
recording devices.

D. Compare with the state-of-the-art systems

Compare with the state-of-the-art systems as shown in
Table VI, our result on Evaluation dataset [32] achieves 69.6%,
occupying top-6 team ranking with respect to accuracy per-
formance. Furthermore, the low gap of accuracy performance
between Eval. Subset [35] (66.7%) and Evaluation dataset [32]
(69.6%) proves our proposed framework robust and general.

V. CONCLUSION

We have just presented a low-complexity framework for
ASC, which makes use of multiple spectrogram inputs and
model compression techniques. While the ensemble of mul-
tiple spectrograms helps to tackle different ASC challenges
of mismatch recording devices or lacking input to improve
the ASC performance, a combination of model restriction and
decomposed convolution techniques is effective to achieve a
low model complexity of 128 KB. In the future, we will further
compress the model complexity by combining our proposed
approaches with other techniques of distillation, pruning, and
quantization.
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Abstract—The increasing digitization of medical imaging
enables machine learning based improvements in detecting,
visualizing and segmenting lesions, easing the workload for
medical experts. However, supervised machine learning requires
reliable labelled data, which is is often difficult or impossible to
collect or at least time consuming and thereby costly. Therefore
methods requiring only partly labeled data (semi-supervised)
or no labeling at all (unsupervised methods) have been applied
more regularly. Anomaly detection is one possible methodol-
ogy that is able to leverage semi-supervised and unsupervised
methods to handle medical imaging tasks like classification
and segmentation. This paper uses a semi-exhaustive literature
review of relevant anomaly detection papers in medical imaging
to cluster into applications, highlight important results, establish
lessons learned and give further advice on how to approach
anomaly detection in medical imaging. The qualitative analysis
is based on google scholar and 4 different search terms, resulting
in 120 different analysed papers. The main results showed that
the current research is mostly motivated by reducing the need
for labelled data. Also, the successful and substantial amount
of research in the brain MRI domain shows the potential for
applications in further domains like OCT and chest X-ray.

Index Terms—anomaly detection, medical imaging, lessons
learned

I. INTRODUCTION

The increasing digitization of medical imaging enables
the collection of data and machine learning (ML) based
approaches to aid medical experts. One powerful part of
ML comes from supervised methods, using both data and
corresponding labels in e.g. segmentation or classification
models. However, since the collection of annotations (labels)
is often times time consuming and thereby costly [1] as
well as in many cases a confident ground truth even being
unobtainable, their usability is reduced. Due to this, semi-
supervised and unsupervised methods are applied. This is
often achieved through anomaly detection.

Definitions: Pathologies in medical images can often be
described as a rare deviance from a norm, or a non-anomalous
(in the case of medical imaging mostly healthy) sample.
This fits the definition of outliers (or anomalies) in the
data, motivating the application of anomaly detection [2].
In this publication, the terms anomaly detection and out-
lier detection are used interchangeably. This is motivated
by the fact that outliers are sometimes defined as valid
but out of order datapoints, while anomalies also include
further differences (e.g. different image capture modalities).
Therefore outliers can be defined as a subset of anomalies.

Anomaly detection can be separated into 3 classes, point,
collective and contextual anomalies. Point anomaly detection
is the task of recognizing a single anomalous point from a
larger dataset. Most anomaly detection models handle point
anomalies. Collective anomalies are anomalies that may not
be identified as anomalies if viewed as a single point but as a
set of many they form an anomaly. Contextual anomalies can
only be recognized as anomalies if context is added. There are
also 3 different anomaly detection setups, supervised, semi-
supervised and unsupervised anomaly detection. Supervised
anomaly detection is comparable with classification using a
very unbalanced dataset. Semi-supervised anomaly detection
aims to train a model on only one, typically the normal (in
our case healthy) class and then applies the model to both
healthy and pathological data, reporting the corresponding
scores. Unsupervised anomaly detection uses both, normal
and anomalous data, does not make use of labels at all and
works purely on intrinsic properties of the dataset (using
distances or densities) [3]. In anomaly detection, the usage of
semi-supervised and unsupervised anomaly detection (UAD)
is confused, and repeatedly applied to both semi-supervised
and unsupervised methods. We believe that the separation
into semi-supervised (healthy data being clearly defined) and
unsupervised (no definition of labels at all) makes sense and
advise to use this terminology as also pointed out by [3].

Deviation based anomaly detection: Anomaly detection
using medical image data, e.g. computed tomography (CT)
scans, is typically performed using either convolutional neural
network (CNN) based feature extractors, followed by one-
class (OC) classifiers or deviation based methods like au-
toencoders (AEs) [4]–[6] or even more recently, generative
adversarial network (GAN) [7]–[9] based methods. Both
AEs and GANs use convolutional kernels, however their
applications in the sense of deviation based anomaly detection
are fundamentally different to CNN based feature extractors.
In order to generate deviation based scores from an AE, the
encoder of the encoder-decoder based neural network typi-
cally encodes a sample image into a lower dimensional latent
space, also called a bottleneck. The decoder uses this latent
space representation to recreate the sample and a deviation
between the sample and the reconstruction can be calculated.
During training, this deviation is used to backpropagate and
update the network. The AE in an anomaly detection setting
is trained using healthy data to en- and decode features of
healthy samples, leading to a higher deviation for non-healthy
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samples, assuming that there is a difference between the
learned healthy and the lesioned latent space [10]. GANs
can also be used to facilitate a deviation based score. In
addition to training a generator and a discriminator in an
adversarial setup, an additional encoder needs to be trained,
mapping the generated image back to the latent space (input to
generator) [7]. By doing this, any input image can be mapped
to a latent space and reconstructed into an image using the
generator. This results in a reconstruction which can be used
to facilitate a reconstruction loss.

Additionally there are conventional methods to facilitate
anomaly detection, using e.g. z-score thresholds [11], [12],
boxplots [13] or methods built on the ideas of principal
components analysis (PCA) [14], [15]. OC support vector
machines (SVM)s [16] are one of the most known semi-
supervised anomaly detection methods. In principle they
apply the ideas of SVMs (using hyperplanes to separate two
classes using support vectors with the aim of generating the
largest possible margin) to a OC problem. One possibility
to achieve this is to model a hypersphere to encompass all
support vectors, creating the smallest possible hypersphere.

Contribution: This papers contribution is the analysis of the
current state of anomaly detection in medical imaging. Using
this analysis, we show lessons learned and give an outlook
for future applications and research targets.

II. METHOD

The method used was a semi-exhaustive literature review
based on Randolph [17]. The formulated problem was the
evaluation of anomaly detection in medical imaging. For data
collection, the search engine Google Scholar was used. In
order to obtain meaningful results, the search terms anomaly
detection in medical imaging, unsupervised anomaly detection
in medical imaging, outlier detection in medical imaging
and unsupervised outlier detection in medical imaging were
chosen. From these results the following criteria for exclusion
were chosen. Only the first 3 pages of results (sorted by
relevance, 10 articles per page) were used. Further, the criteria
for exclusion duplicate, in context of medical imaging (in
abstract, title or conclusion), peer-review and date were
identified. Since the search terms were similar, duplicates
had to be removed. Papers without a clear focus on medical
imaging in the abstract, title or conclusion were also removed.
A further criterion was to only include peer-reviewed research
items. This mainly lead to the exclusion of preprints. The data
timeframe was set to not include papers after the resurgence
of deep-learning (AlexNet [18]) and to still include papers
after the U-net was proposed [19], resulting in a timeframe
of January 2015 − July 2021. This lead to a reduction of
papers from 120 to 49. Since these papers also included 4
survey papers, the final number of application based research
papers was 45. These survey papers were used as a qualitative
comparision to the our extracted lessons learned. Next, the
papers were manually clustered with respect to their imaging
method and the following information was extracted: Aim,

Applied Method and Results. From these clusters, lessons
learned were extracted, which are reported in section III.

III. RESULTS

The semi-exhaustive literature review resulted in 45 re-
search items, from which further 6 were removed due to not
containing applications in medical imaging (only exemplar
stated in abstract) or being non-available. The resulting papers
were further clustered into 5 categories (corresponding to Tab.
I-V by their imaging methods. Tab. I shows papers applying
anomaly detection to occular medical images with retinal
fundus images and optical coherence tomography (OCT).
Tab. II focuses on papers with applications in the center body
region, with chest X-rays and mammography. Tab. III sum-
marizes application papers, using CT and functional magnetic
resonance imaging (fMRI). Tab. IV displays papers applying
ML to brain Magnetic resonance imaging (MRI) datasets.
Tab. V shows mixed applications from the domains of breast
ultrasound, chest radiographs, histology and fundus images
as well as multi-spectral imaging (MSI).

Overall, these tables show a narrow field of application
with 15 (38.46%) of all selected papers working on MRI
scans of the brain. Further 6 papers use fMRI and CT
scans of the brain, increasing the amount of brain image
data based applications to 53.85%. Further clusters could be
observed using chest X-rays and mammography, as well as
ocular imaging techniques, especially OCT. Of note is, that
although medical imaging includes methods like histology,
only 1 paper [20] applied anomaly detection to such data.
A further result is the relevance of deviation based methods,
with 27 papers (69.23%) applying some form or adaptation,
mostly using autoencoders AEs or GANs [7]–[9], [20]–[43].
Investigating MRIs, 7 [37], [39], [40], [42]–[45] of the 15
publications using brain MRI data focus explicitly on tumours
or metastases, showing the usefulness of anomaly detection
and segmentation of tumours in brains using MRI. Most other
brain MRI based methods more generally handle the task of
lesion classification or segmentation with only two focusing
specificly on cerebral small vessel diseases [41], [46]. A
further cluster uses X-ray for the detection of pneumonia
[23], [47] or lung disease like COVID-19 [15]. Several
advancements have also been made in OCT segmentation of
retina lesions [7], [8], [25], [26], [48], with one publication
performing visual touring test using 2 experts, which were
unable to recognize differences in the correctly reconstructed
data [8]. Breast cancer and pathology detection was also
improved using anomaly detection [28], [29], [49].

One result of this analysis is the statement that anomaly
detection can be motivated by the lack of available labelled
training data, which was stated in 19 publications. The
reported results of these papers proved that these semi-
and unsupervised approaches successfully completed their
tasks [7], [8], [14], [20], [22], [24]–[26], [28], [29], [31],
[33], [36], [38], [40], [41], [44], [48], [49]. However, some
papers also show semi-supervised methods outperforming
fully supervised methods. These outperforming methods are
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TABLE I
TABLE CONSISTING OF OCULAR IMAGE BASED RESULTS OBTAINED BY THE LITERATURE REVIEW

Paper Imaging Method Aim Applied Method

[48] retinal fundus images transfer learning (general and reti-
nal lesions) TL (IMNet feature extrator)

[7] OCT new anomaly detection method AnoGAN
[8] OCT new anomaly detection method fAno-GAN

[25] OCT segmentation (retina lesions) Bayesian U-Net. Episdemic uncertainty estimations and post
processing

[26] OCT and chest X-ray new anomaly detection method encoder-decoder with additional GAN discriminators

TABLE II
TABLE CONSISTING OF CENTER BODY IMAGE BASED RESULTS OBTAINED BY THE LITERATURE REVIEW

Paper Imaging Method Aim Applied Method
[23] chest radiographs anomaly detection (pneumonia) α-GAN

[47] chest X-ray anomaly detection (virial pneumo-
nia)

CNN feature extractor with anomaly score (Fully connected)
and confidency (Fully connected)

[27] chest X-ray new anomaly detection method
(pleural effusions) DeScarGAN

[15] chest X-ray anomaly detection (coronavirus) edge detection and morphology. PCA to reduce features and
use in RNN

[28] mammography anomaly detection (compressions
or implants) Stacked AE as feature extractor, K-Means for clustering

[49] (MIL) mammography anomaly detection (breast cancer) Simultaniously trained MIL algorithms (DD, APR, and MIL-
Boost)

[29] mammography anomaly detection (breast anoma-
lies) cAE with RMSD threshold

TABLE III
TABLE CONSISTING OF CT AND FMRI IMAGE BASED RESULTS OF THE BRAIN OBTAINED BY THE LITERATURE REVIEW

Paper Imaging Method Aim Applied Method

[21] head CT (3D) anomaly detection (emergency
head CTs) 3D cAE

[30] brain CT (2D) anomaly detection (brain lesions) Bayesian AE

[31] PET-CT and brain
MRI

image-to-image translation (image
artifacts) Cycle-MedGAN

[14] Brain fMRI pca based outlier removal (image
artifacts) PCA (robust distance and leverage)

[32] brain rs-fMRI AE and frame prediction (conv-LSTM)

[50] Brain fMRI
anomaly detection using constraint
programming (cognitive impair-
ment)

Constraint Programming using 3 constraints

based on classical feature extraction followed by multiple-
instance learning (MIL) based models [49], through adap-
tations to GANs [27] (using skip-connections and weight-
sharing subnetworks) and through the adaptation of AEs to
the SegAE model [32] (using pairs of T1-w, T2-w and FLAIR
data for improved anomaly detection). For this improvement
in comparison to fully supervised models, Khosla et al. [32]
reason that fully supervised methods systematically either
under or overestimate lesion volumes (when segmenting le-
sions), while their proposed method was reported to be free
of this bias.

Zhang et al. and Kim et al. both show interesting ap-
proaches, applying conventional feature extractors (CNN and
edge detection) with further OC classifiers (fully connected
neural networks and recurrent neural networks). By using
these methods both papers reach relatively high scores, but
still lower scores then their CT based baselines.

A further finding is the obvious bias in the amount of
research items regarding OCT, chest X-Ray, mammography

and Brain MRI. An investigation in the used datasets shows
a strong dataset and community driven effect. For all of
the above mentioned image categories, datasets are publicly
available. Further, a community driven effect can be observed,
comparing new models against older ones, evaluated on the
same dataset.

In addition to medical image based application papers, sev-
eral authors proposed improvements to the general anomaly
detection pipelines. 3 papers showed an improvement of
subsequent methods by removing anomalies from the data or
reducing complexity in the data [11], [12], [14]. Also, con-
straint programming is shown successfully by Kuo et al. [50].
showing further approaches to perform anomaly detection.
CycleGAN is also shown to work for transforming images
into a space that showed reduced image artefacts [31]. Heer et
al. [38] showed issues with the general idea of anomaly detec-
tion and their application of anomalies as out-of-distribution
(OOD) data, remarking a blind spot using deviation based
methods. They state that denoting anomalies as OOD is
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TABLE IV
TABLE CONSISTING OF FMRI IMAGE BASED RESULTS OF THE BRAIN OBTAINED BY THE LITERATURE REVIEW

Paper Imaging Method Aim Applied Method
[33] brain MRI segmentation (brain lesions) SegAE
[34] brain MRI anomaly detection (epilepsy) siamese network, stacked cAE, wasserstein AE

[35] brain MRI improvements to AE based meth-
ods (glioma) VAE + LG (and several baselines)

[46] brain MRI segmentation (cerebral small vessel
disease)

PHI-Syn [51] (image synthesis) and Gaussian mixture models
used by oc-SVM

[44] Brain MRI segmentation (brain lesions) Hidden markov models
[36] Brain MRI anomaly detection (brain lesion) siamese, stacked cAE for latent representations in oc-SVM
[45] Brain MRI segmentation (brain tumor) DistGP-Seg. Incooperating DistGP into CNN
[37] Brain MRI anomaly detection (MS and cancer) spatial AE with skip connections

[38] Brain MRI awareness for OOD
VAE. Scores: l1, Kullback–Leibler divergence, Watan-
abe–Akaike information criterion score, Density of States
Estimation

[39] Brain MRI improvements to cycleGAN (brain
tumor) SteGANomaly

[9] Brain MRI anomaly segmentation (brain le-
sions) AnoVAEGan

[40] Brain MRI anomal localization (brain tumor) VAE with additional KL divergence term in Backprop
[41] Brain MRI anomaly detection (brain infarct) GANomaly

[42] brain MRI new anomaly detection method
(brain mestastases) (Wasserstein based) MaDGAN using self attention (paired)

[13] Brain MRI (DTI) quality assurance of segmentation
(brain lesions) non parametric (box-plots); supervised classification models

[43] Brain MRI new anomaly detection method (tu-
mor) GMVAE

TABLE V
TABLE CONSISTING OF REMAINING MIXED LITERATURE REVIEW RESULTS

Paper Imaging Method Aim Applied Method

[22] breast ultrasound anomaly detection (normal, begn-
ing, malignant in breasts) bidirectional GAN

[20] hisotlogy images image synthesis (tumor) DCGAN & WGAN
[24] fundus image anomly localization (glaucoma) adversarial attention guided VAE

[11] MSI outlier removal to improve burn
detection z-score based outlier detection to improve SVM and KNN

[12] MSI outlier removal to improve burn
detection z-score based outlier detection to improve SVM and KNN

dangerous, since non anomalous data from different sensors
or image modalities may also be detected as OOD although
this data not being anomalous. In their paper they further
present a method based on prior knowledge to disentangle
lesion based OOD from non-lesion based counterparts.

IV. DISCUSSION

In this paper we analysed the current state of research in
anomaly detection using medical image data and extracted
lessons learned. To accomplish this, a semi-exhaustive lit-
erature review was performed, resulting in 120 papers, from
which 44 were further investigated (after filters were applied).
This resulted in 4 major clusters of image domains, with the
brain MRI domain comprising 39.45% of all papers.

One takeway is that especially in the brain MRI domain,
both lesion and tumour classification as well as segmentation
have been successfully implemented multiple times. It is
shown that both AE and GAN based methods as well as Gaus-
sian mixture models, hidden Markov models and CNNs with
specific feature extractors can work in this anomaly detection
setup. This was further shown to be the case with chest X-ray,
mammography as well as OCT data. Extrapolating from these

results, first approaches in similar domains, using anomaly
detection for tasks in the domains of e.g. CT scans of the
skeleton or spines seem promising and should be investigated.
Also, an investigation of the suitability for histological data
would be of high interest, since histological data was very
under-represented (1 publication). However, there are multiple
differences between CT/MRI and histology. In histology it
is not sufficient to detect a large object (e.g. tumor) which
is indicated by different intensity values. It would rather be
important to learn the shape and interaction of nuclei and
cells which is supposed to be a more challenging task, relying
more on high frequency information which is a reported weak
point of several proposed deviation based mehtods. Further,
histology images are extremely high resolution, leading to
issues using current GAN or AE based anomaly detection.
Štepec et al. [20] show one way to circumvent these issues
successfully using patch extraction and MIL.

As reported in the results, there were some semi-supervised
anomaly detection models that resulted in higher or similar
scores than their fully supervised alternatives. One inter-
pretation is that, especially regarding segmentation, human
labelled segmentation masks with rough edges may introduce
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bias. This is however still unclear and should further be
investigated.

Another useful takeaway is that not only improvements
to state of the art (SOTA) models are needed but also
simpler models or cheaper image modalities can be a major
improvement, even if the SOTA scores cannot be reached
e.g. replacing CT with X-ray based methods. One example
was shown by Zhang et al. [47] who used X-ray images,
approaching relatively high scores. Although their method did
not outperform the CT based baselines, the methods is still
of high significance, since it reached similar levels using X-
rays requiring a lower radiation dose and an more available
imaging method.

As stated by [52] we also recognized the generation of free
and comparable datasets as a high priority to facilitate further
research. The fast growing brain MRI community showed,
that open datasets are an important asset to boost research.
Therefore the development and open distribution should be
pursued for different medical image domains. In order to fa-
cilitate anomaly detection research, a semi-supervised dataset
(only including a small amount of annotations) should be
developed.

A disadvantage, reported by several deep learning based
approaches was [30], [44], that results were still unstable and
more research was needed before a clinical application could
be performed. This however was not always the case [22]
but there are still doubts in the clinical applicability of deep
learning based anomaly detection methods. Large clinical
application studies would be needed to show their suitability.

Conclusion: In this paper we investigated the current state
of research in medical image based anomaly detection and
generated lessons learned. The lessons learned can be con-
verted into the following future targets: a very narrow domain
of application that should be expanded, development of freely
accessible datasets, investigation of the OCT blindspot and
improvements of working approaches like constraints on the
AE bottleneck.
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Abstract—In this paper, we present deep learning frameworks
for audio-visual scene classification (SC) and indicate how indi-
vidual visual, audio features as well as their combination affect
SC performance. Our extensive experiments are conducted on
DCASE 2021 (IEEE AASP Challenge on Detection and Classifi-
cation of Acoustic Scenes and Events) Task 1B Development and
Evaluation datasets. Our results on Development dataset achieve
the best classification accuracy of 82.2%, 91.1%, and 93.9%
with audio input only, visual input only, and both audio-visual
input, respectively. The highest classification accuracy of 93.9%,
obtained from an ensemble of audio-based and visual-based
frameworks, shows an improvement of 16.5% compared with
DCASE 2021 baseline. Our best results on Evaluation dataset is
91.5%, outperforming DCASE baseline of 77.1%

Index Terms—Audio-visual scene, pre-trained model, Ima-
geNet, AudioSet, deep learning framework.

I. INTRODUCTION

Analysing both audio and visual (or image) information
from videos has opened a variety of real-life applications such
as detecting the sources of sound in videos [1], lip-reading
by using audio-visual alignment [2], or source separation [3].
Joined audio-visual analysis shows to be effective compared to
the visual only data proven in tasks of video classification [4],
multi-view face recognition [5], emotion recognition [6], or
video recognition [7]. Although a number of audio-visual
datasets exist, they mainly focus on human for specific tasks
such as detecting human activity [8], action recognition [9],
classifying sport types [10], [11], or emotion detection [6].
Recently, the DCASE community [12] has released an audio-
visual dataset proposed for DCASE 2021 Task 1B challenge
which aims to classify ten different scene contexts [13]. We
therefore evaluate this dataset by leveraging deep learning
techniques, then present main contributions following: (1) We
evaluate various deep learning frameworks for audio-visual
scene classification (SC), indicate individual roles of visual
and audio features as well as their combination within SC task;
(2) We then propose an ensemble of audio-based and visual-
based frameworks, which outperforms the DCASE baseline
and are competitive with the state-of-the-art systems; and (3)
We evaluate whether the ensemble proposed is effective for
detecting scene contexts early.
The paper is organized as follows: Section 2 presents deep

learning frameworks proposed for separate audio and visual
data input. Section 3 introduces the evaluation setup where
the proposed experimental setting, metric, and implementation
of deep learning frameworks are presented. Next, Section 4
presents and analyses the experimental results. Finally, Section
5 presents conclusion and future work.

TABLE I
THE VGG14 NETWORK ARCHITECTURE USED FOR AUDIO-SPECTROGRAM

BASED FRAMEWORKS (INPUT PATCH OF 128×128×6)

Network architecture Output
BN - Conv [3×3]@64 - ReLU - BN - Dr (25%) 128×128×64
BN - Conv [3×3]@64 - ReLU - BN - AP - Dr (25%) 64×64×64
BN - Conv [3×3]@128 - ReLU - BN - Dr (30%) 64×64×128
BN - Conv [3×3]@128 - ReLU - BN - AP - Dr (30%) 32×32×128
BN - Conv [3×3]@256 - ReLU - BN - Dr (35%) 32×32×256
BN - Conv [3×3]@256 - ReLU - BN - Dr (35%) 32×32×256
BN - Conv [3×3]@256 - ReLU - BN - Dr (35%) 32×32×256
BN - Conv [3×3]@256 - ReLU - BN - AP - Dr (35%) 16×16×256
BN - Conv [3×3]@512 - ReLU - BN - Dr (35%) 16×16×512
BN - Conv [3×3]@512 - ReLU - BN - Dr (35%) 16×16×512
BN - Conv [3×3]@512 - ReLU - BN - Dr (35%) 16×16×512
BN - Conv [3×3]@512 - ReLU - BN - GAP - Dr (35%) 512
FC - ReLU - Dr (40%) 1024
FC - Softmax C = 10

II. DEEP LEARNING FRAMEWORKS PROPOSED

As we aim to evaluate individual roles of audio and visual
features within SC task, deep learning frameworks using either
audio or visual input are presented in separate sections.

A. Audio-based deep learning frameworks

In audio-based deep learning frameworks proposed, audio
recordings are firstly transformed into spectrograms where
both temporal and frequency features are presented, referred to
as front-end low-level feature extraction. As using an ensemble
of either different spectrogram inputs [14]–[18] or different
deep neural networks [18]–[20] has been a rule of thumb to
improve audio-based SC performance, we therefore propose
two approaches for back-end classification, referred to as
audio-spectrogram and audio-embedding frameworks.
The audio-spectrogram approach uses three spectrogram

transformation methods: Mel filter (MEL) [21], Gammatone
filter (GAM) [22], and Constant Q Transform (CQT) [21].
To make sure the three types of spectrograms have the same
dimensions, the same setting parameters are used with the
filter number, window size and hop size set to 128, 80
ms, 14 ms, respectively. As we have two channels for each
audio recording and apply deltas, delta-deltas on individual
spectrogram, we finally generate spectrograms of 128×704×6.
These spectrograms are then split into ten 50%-overlapping
patches of 128 × 128 × 6, each which represents for a 1-
second audio segment. To enforce back-end classifiers, mixup
data augmentation [23], [24] is applied on these patches of
spectrogram before feeding them into a VGGish network for
classification as shown in Table I. As shown in Table I, the VG-
Gish network architecture contains sub-blocks which perform
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Abstract—The increasing digitization of medical imaging
enables machine learning based improvements in detecting,
visualizing and segmenting lesions, easing the workload for
medical experts. However, supervised machine learning requires
reliable labelled data, which is is often difficult or impossible to
collect or at least time consuming and thereby costly. Therefore
methods requiring only partly labeled data (semi-supervised)
or no labeling at all (unsupervised methods) have been applied
more regularly. Anomaly detection is one possible methodol-
ogy that is able to leverage semi-supervised and unsupervised
methods to handle medical imaging tasks like classification
and segmentation. This paper uses a semi-exhaustive literature
review of relevant anomaly detection papers in medical imaging
to cluster into applications, highlight important results, establish
lessons learned and give further advice on how to approach
anomaly detection in medical imaging. The qualitative analysis
is based on google scholar and 4 different search terms, resulting
in 120 different analysed papers. The main results showed that
the current research is mostly motivated by reducing the need
for labelled data. Also, the successful and substantial amount
of research in the brain MRI domain shows the potential for
applications in further domains like OCT and chest X-ray.

Index Terms—anomaly detection, medical imaging, lessons
learned

I. INTRODUCTION

The increasing digitization of medical imaging enables
the collection of data and machine learning (ML) based
approaches to aid medical experts. One powerful part of
ML comes from supervised methods, using both data and
corresponding labels in e.g. segmentation or classification
models. However, since the collection of annotations (labels)
is often times time consuming and thereby costly [1] as
well as in many cases a confident ground truth even being
unobtainable, their usability is reduced. Due to this, semi-
supervised and unsupervised methods are applied. This is
often achieved through anomaly detection.

Definitions: Pathologies in medical images can often be
described as a rare deviance from a norm, or a non-anomalous
(in the case of medical imaging mostly healthy) sample.
This fits the definition of outliers (or anomalies) in the
data, motivating the application of anomaly detection [2].
In this publication, the terms anomaly detection and out-
lier detection are used interchangeably. This is motivated
by the fact that outliers are sometimes defined as valid
but out of order datapoints, while anomalies also include
further differences (e.g. different image capture modalities).
Therefore outliers can be defined as a subset of anomalies.

Anomaly detection can be separated into 3 classes, point,
collective and contextual anomalies. Point anomaly detection
is the task of recognizing a single anomalous point from a
larger dataset. Most anomaly detection models handle point
anomalies. Collective anomalies are anomalies that may not
be identified as anomalies if viewed as a single point but as a
set of many they form an anomaly. Contextual anomalies can
only be recognized as anomalies if context is added. There are
also 3 different anomaly detection setups, supervised, semi-
supervised and unsupervised anomaly detection. Supervised
anomaly detection is comparable with classification using a
very unbalanced dataset. Semi-supervised anomaly detection
aims to train a model on only one, typically the normal (in
our case healthy) class and then applies the model to both
healthy and pathological data, reporting the corresponding
scores. Unsupervised anomaly detection uses both, normal
and anomalous data, does not make use of labels at all and
works purely on intrinsic properties of the dataset (using
distances or densities) [3]. In anomaly detection, the usage of
semi-supervised and unsupervised anomaly detection (UAD)
is confused, and repeatedly applied to both semi-supervised
and unsupervised methods. We believe that the separation
into semi-supervised (healthy data being clearly defined) and
unsupervised (no definition of labels at all) makes sense and
advise to use this terminology as also pointed out by [3].

Deviation based anomaly detection: Anomaly detection
using medical image data, e.g. computed tomography (CT)
scans, is typically performed using either convolutional neural
network (CNN) based feature extractors, followed by one-
class (OC) classifiers or deviation based methods like au-
toencoders (AEs) [4]–[6] or even more recently, generative
adversarial network (GAN) [7]–[9] based methods. Both
AEs and GANs use convolutional kernels, however their
applications in the sense of deviation based anomaly detection
are fundamentally different to CNN based feature extractors.
In order to generate deviation based scores from an AE, the
encoder of the encoder-decoder based neural network typi-
cally encodes a sample image into a lower dimensional latent
space, also called a bottleneck. The decoder uses this latent
space representation to recreate the sample and a deviation
between the sample and the reconstruction can be calculated.
During training, this deviation is used to backpropagate and
update the network. The AE in an anomaly detection setting
is trained using healthy data to en- and decode features of
healthy samples, leading to a higher deviation for non-healthy
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TABLE II
THE PRE-TRAINED MODELS IN [29] PROPOSED FOR

EXTRACTING AUDIO EMBEDDINGS

Pre-trained models Embedding dimension
1/ CNN14 2048
2/ MobileNetV1 1024
3/ Res1dNet30 2048
4/ Resnet38 2048
5/ Wavegram 2048

TABLE III
THE MLP-BASED NETWORK ARCHITECTURE PROPOSED FOR

CLASSIFYING AUDIO/VISUAL EMBEDDINGS

Network architecture Output
FC - ReLU - Dr (40%) 8192
FC - ReLU - Dr (40%) 8192
FC - ReLU - Dr (40%) 1024
FC - Softmax C = 10

convolution (Conv), batch normalization (BN) [25], rectified
linear units (ReLU) [26], average pooling (AV), global average
pooling (GAP), dropout (Dr) [27], fully-connected (FC) and
Softmax layers. The dimension of Softmax layer is set to
C = 10 which corresponds to the number of scene context
classified. In total, we have 12 convolutional layers and 2
fully-connected layers containing trainable parameters that
makes the proposed network architecture like VGG14 [28]. We
refer to three audio-spectrogram based frameworks proposed
as audio-CQT-Vgg14, audio-GAM-Vgg14, and audio-MEL-
Vgg14, respectively.
In the audio-embedding approach, only the Mel filter is

used for generating the MEL spectrogram. the Mel spec-
trograms are fed into pre-trained models proposed in [29]
for extracting audio embedding (i.e. the audio embedding,
likely vector, is the output of the global pooling layer in pre-
trained models proposed in [29]). In this paper, we select
five pre-trained models, which achieved high performance
in [29], as shown in Table II, for evaluating the audio-
embedding approach. As these five pre-trained models are
trained on AudioSet [30], a large-scale audio dataset provided
by Google for the task of acoustic event detection (AED),
using audio embeddings extracted from these models aims to
evaluate whether information of sound events detected and
condensed in audio embeddings may be effective for SC
task. Finally, the audio embeddings are fed into a MLP-based
network architecture, as shown in Table III, for classifying
into 10 different scene categories. We refer to five audio-
embedding based frameworks proposed as audio-emb-CNN14,
audio-emb-MobileNetV1, audio-emb-Res1dNet30, audio-emb-
Resnet38, and audio-emb-Wavegram, respectively.
In both approaches, the final classification accuracy is

obtained by applying late fusion of individual frameworks
(i.e. an ensemble of three predicted probabilities from audio-
CQT-Vgg14, audio-GAM-Vgg14, audio-MEL-Vgg14, or an en-
semble of five predicted probabilities from audio-emb-CNN14,
audio-emb-MobileNetV1, audio-emb-Res1dNet30, audio-emb-
Resnet38, audio-emb-Wavegram).

B. Visual-based deep learning frameworks

Similar to the audio-based frameworks mentioned above,
we also propose two approaches for analysing how visual

TABLE IV
THE NETWORK ARCHITECTURES [31] PROPOSED FOR DIRECTLY
TRAINING IMAGE FRAMES OR EXTRACTING IMAGE EMBEDDINGS

Network architectures Size of image inputs Embedding dimension
1/ Xception 299×299×3 2048
2/ Vgg19 224×224×3 4096
3/ Resnet50 224×224×3 2048
4/ InceptionV3 299×299×3 2048
5/ MobileNetV2 224×224×3 1280
6/ DenseNet121 299×299×3 1024
7/ NASNetLarge 331×331×3 4032

features affect the SC performance: A visual-image approach
where classifying process is directly conducted on the image
frame inputs, and a visual-embedding approach where the
classification is conducted on image embeddings extracted
from pre-trained models. In both approaches proposed, we
use the same network architectures from Keras application
library [31], which are considered as benchmarks for eval-
uating ImageNet dataset [32] as shown in Table IV. In order
to directly train image frame inputs with the network archi-
tectures in Table IV, we reduce the C dimensions of the final
fully connected layer (C = 1000 that equals to the number of
object detection defined in ImageNet dataset) to C = 10 that
matches the number of scene categories classified. The visual-
image frameworks proposed are referred to as visual-image-
Xception, visual-image-Vgg19, visual-image-Resnet50, visual-
image-InceptionV3, visual-image-MobileNetV2, visual-image-
DenseNet121, and visual-image-NASNetLarge, respectively.
Regarding the visual-embedding approach, the network ar-

chitectures mentioned in Table IV are trained with the Ima-
geNet dataset [32]. Then, image frames of the scene dataset are
fed into these pre-trained models to extract image embeddings
(i.e. the image embedding, likely vector, is the output of
the second-to-last fully connected layer of pre-trained mod-
els). Finally, the extracted image embeddings are fed into a
MLP-based network architecture as shown in Table III for
classifying into ten scene categories (Note that we use the
same MLP-based network architecture for classifying audio
or image embeddings). The visual-embedding frameworks
proposed are referred to as visual-emb-Xception, visual-emb-
Vgg19, visual-emb-Resnet50, visual-emb-InceptionV3, visual-
emb-MobileNetV2, visual-emb-DenseNet121, and visual-emb-
NASNetLarge, respectively.
Similar to the audio-based approaches, the final classifi-

cation accuracy of visual-based frameworks is obtained by
applying late fusion of individual frameworks (i.e. an ensemble
of seven predicted probabilities from seven visual-image based
frameworks, or an ensemble of seven predicted probabilities
from seven visual-embedding based frameworks).

III. EVALUATION SETTING

A. TAU Urban Audio-Visual Scenes 2021 dataset [13] (De-
velopment and Evaluation datasets)

The Development dataset is referred to as DCASE Task
1B Development, which was proposed for DCASE 2021
challenge [12]. The dataset is slightly unbalanced and contains
both acoustic and visual information, recorded from 12 large
European cities: Amsterdam, Barcelona, Helsinki, Lisbon,
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TABLE V
THE NUMBER OF 10-SECOND AUDIO-VISUAL SCENE RECORDINGS

CORRESPONDING TO EACH SCENE CATEGORIES IN THE TRAIN. AND EVAL.
SUBSETS SEPARATED FROM THE DCASE 2021 TASK 1B DEVELOPMENT

DATASET, AND EVALUATION DATASET [13].

Category Train. Eval. Evaluation
Airport 697 281 -
Bus 806 327 -
Metro 893 386 -
Metro Station 893 386 -
Park 1006 386 -
Public square 982 387 -
Shopping mall 841 387 -
Street pedestrian 968 421 -
Street traffic 985 402 -
Tram 763 308 -
Total 8646 3645 7200

(≈24 hours) (≈10 hours) (20 hours)

London, Lyon, Madrid, Milan, Prague, Paris, Stockholm, and
Vienna. It consists of 10 scene classes: airport, shopping
mall (indoor), metro station (underground), pedestrian street,
public square, street (traffic), travelling by tram, bus and metro
(underground), and urban park, which can be categorised into
three meta-class of indoor, outdoor, and transportation. To
evaluate, we follow the DCASE 2021 Task 1B challenge [12],
separate this dataset into training (Train.) subset for the train-
ing process and evaluation (Eval.) subset for the evaluating
process as shown in Table V.
The DCASE 2021 Task 1B challenge also releases the Eval-

uation dataset without labels, which is used to evaluate the
submitted systems. The total number of 10-second segments
is 7200 (20 hours). In this paper, our results on both Eva.
subset and Evaluation dataset (accuracy scoring for Evaluation
dataset is conducted by DCASE 2021 task 1A challenge as
labels is not released) are reported and compared with the
state-of-the-art systems.

B. Deep learning framework implementation

Extract audio/visual embeddings from pre-trained mod-
els: Since the pre-trained models, which are used for extracting
audio embeddings from [29], are built on Pytorch framework,
the process of extracting embedding from these models is also
implemented with Pytorch framework. Meanwhile, we use the
Tensorflow framework for extracting visual embeddings as the
pre-trained models are built with the Keras library [31] using
back-end Tensorflow.
Classification models for audio/visual data: We use

Tensorflow framework to build all classification models in
this papers (i.e. Vgg14 and MLP-base network architectures
mentioned in Table I and Table III, respectively). As we apply
mixup data augmentation [23], [24] for both high-level feature
of audio/visual embeddings and low-level feature of audio
spectrograms/image frames to enforce back-end classifiers, the
labels of the mixup data input are no longer one-hot. We
therefore train back-end classifiers with Kullback-Leibler (KL)
divergence loss [33] rather than the standard cross-entropy loss

over all N mixup training samples:

LOSSKL(Θ) =
N∑

n=1

yn log

(
yn

ŷn

)
+

λ

2
||Θ||22, (1)

where Θ denotes the trainable network parameters and λ
denotes the �2-norm regularization coefficient. yc and ŷc

denote the ground-truth and the network output, respectively.
The training is carried out for 100 epochs using Adam [34]
for optimization.

C. Metric for evaluation
Regarding the evaluation metric used in this paper, we

follow DCASE 2021 Task 1B challenge. Let us consider C as
the number of audio/visual test samples which are correctly
classified, and the total number of audio/visual test samples is
T , the classification accuracy (Acc. (%)) is the % ratio of C
to T .

D. Late fusion strategy for multiple predicted probabilities
As back-end classifiers work on patches of spectrograms or

image frames, the predicted probability of an entire spectro-
gram or all image frames of a video recording is computed by
averaging of all images or patches’ predicted probabilities. Let
us consider Pn = (pn

1 ,p
n
2 , ...,p

n
C), with C being the category

number and the nth out of N image frames or patches of
spectrogram fed into a learning model, as the probability of
a test instance, then the average classification probability is
denoted as p̄ = (p̄1, p̄2, ..., p̄C) where,

p̄c =
1

N

N∑
n=1

pnc for 1 ≤ n ≤ N (2)

and the predicted label ŷ for an entire spectrogram or all image
frames evaluated is determined as:

ŷ = argmax(p̄1, p̄2, ..., p̄C) (3)

To evaluate ensembles of multiple predicted probabilities
obtained from different frameworks, we proposed three late
fusion schemes, namely MEAN, PROD, and MAX fusions.
In particular, we conduct experiments over individual frame-
works, thus obtain the predicted probability of each frame-
work as p̄s = (p̄s1, p̄s2, ..., p̄sC) where C is the category
number and the sth out of S framework evaluated. Next,
the predicted probability after late MEAN fusion pf−mean =
(p̄1, p̄2, ..., p̄C) is obtained by:

p̄c =
1

S

S∑
s=1

p̄sc for 1 ≤ s ≤ S (4)

The PROD strategy pf−prod = (p̄1, p̄2, ..., p̄C) is obtained
by,

p̄c =
1

S

S∏
s=1

p̄sc for 1 ≤ s ≤ S (5)

and the MAX strategy pf−max = (p̄1, p̄2, ..., p̄C) is obtained
by,

p̄c = max(p̄1c, p̄2c, ..., p̄Sc) (6)

Finally, the predicted label ŷ is determined by (3):
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TABLE VI
PERFORMANCE COMPARISON OF AUDIO-BASED FRAMEWORKS

Audio-spectrogram Acc. Audio-embedding Acc.
based models based models
audio-CQT-Vgg14 68.3 audio-emb-CNN14 64.4
audio-GAM-Vgg14 69.6 audio-emb-MobileNetV1 57.8
audio-MEL-Vgg14 72.2 audio-emb-Res1dNet30 58.0

audio-emb-Resnet38 62.7
audio-emb-Wavegram 63.4

MAX Fusion 78.0 MAX Fusion 64.9
MEAN Fusion 79.7 MEAN Fusion 69.6
PROD Fusion 80.4 PROD Fusion 68.4

Fig. 1. Confusion matrix result (Acc. %) obtained by PROD fusion of audio-
CQT-Vgg14, audio-GAM-Vgg14, audio-MEL-Vgg14, and audio-emb-CNN14

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Analysis of audio-based deep learning frameworks for
scene classification

As Table VI shows the accuracy results obtained from
audio-based deep learning frameworks, we can see that all
late fusion methods help to improve the performance signifi-
cantly regarding both audio-spectrogram and audio-embedding
approaches, achieving the highest score of 80.4% from PROD
fusion of three audio-spectrogram based frameworks and
69.6% from MEAN fusion of five audio-embedding based
frameworks. Compare the performance between two audio-
based approaches proposed, it can be seen that directly train-
ing spectrogram inputs is more effective, achieving 68.3%,
69.6%, and 72.2% from CQT, GAM, and MEL spectrogram
respectively, which outperform all results obtained from audio-
emmbedding based frameworks. We further conduct PROD
fusion of predicted probabilities obtained from three audio-
spectrogram based frameworks (audio-CQT-Vgg14, audio-
GAM-Vgg14, audio-MEL-Vgg14) and the audio-emb-CNN14
framework (the best framework in the audio-embedding based
approach), achieving the classification accuracy of 82.2% with
the confusion matrix shown in Fig. 1 and improving the
DCASE baseline by 17.1% (Note that only audio data input is
used for these frameworks and DCASE baseline). This proves
that although the audio-embedding based approach gains
low performance rather than the audio-spectrogram based

TABLE VII
PERFORMANCE COMPARISON OF VISUAL-BASED FRAMEWORKS

Visual-image Acc. Visual-embedding Acc.
based models based models
visual-image-Xception 85.9 visual-emb-Xception 80.3
visual-image-Vgg19 83.8 visual-emb-Vgg19 80.8
visual-image-Resnet50 86.3 visual-emb-Resnet50 82.0
visual-image-InceptionV3 88.9 visual-emb-InceptionV3 83.4
visual-image-MobileNetV2 84.4 visual-emb-MobileNetV2 80.2
visual-image-DenseNet121 87.8 visual-emb-DenseNet121 83.5
visual-image-NASNetLarge 86.9 visual-emb-NASNetLarge 81.5
MAX Fusion 90.2 MAX Fusion 86.5
MEAN Fusion 90.5 MEAN Fusion 81.8
PROD Fusion 91.1 PROD Fusion 84.3

Fig. 2. Confusion matrix result (Acc. %) obtained by PROD fusion of seven
visual-image based frameworks

approach, audio embeddings extracted from AudioSet dataset
for AED task contain distinct features which is beneficial for
SC task.

B. Analysis of visual-based deep learning frameworks for
scene classification

As obtained results are shown in Table VII, we can see that
the visual-image based frameworks, which directly train image
frame inputs, outperform visual-embedding based frameworks.
While all late fusion methods over visual-image based frame-
works help to improve the performance, only MAX fusion
of image-embedding based frameworks shows to be effective.
The PROD fusion of seven visual-image based frameworks
achieves the best accuracy of 91.1%, improving DCASE
baseline by 13.7% (Note that these frameworks and DCASE
baseline only use visual data input). Comparing the per-
formance between audio-based and visual-based approaches,
the PROD fusion of seven visual-image based frameworks
(91.1%) outperforms the best result of 82.2% from PROD
fusion of audio-CQT-Vgg14, audio-GAM-Vgg14, audio-MEL-
Vgg14, and audio-emb-CNN14 mentioned in Section IV-A.
Further comparing the two confusion matrixes obtained from
these two PROD fusions, as shown in Fig. 1 and Fig. 2, we can
see that PROD fusion of seven visual-image based frameworks
outperforms over almost scene categories except to ‘Park’ and
‘Tram’. As a result, we can conclude that visual data input
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contains more information for scene classification rather than
audio data input.

C. Combine both visual and audio features for scene classi-
fication

As individual analysis of either audio or visual features
within scene context classification is shown in Section IV-A
and IV-B respectively, we can see that directly training and
classifying audio/visual data input is more effective, rather
than audio/image-embedding based approaches. We then eval-
uate a combination of audio and visual features by propos-
ing two PROD fusions: (1) three audio-spectrogram based
frameworks (audio-CQT-Vgg14, audio-GAM-Vgg14, audio-
MEL-Vgg14) and top-3 visual-image frameworks (visual-
image-DenseNet121, visual-image-InceptionV3, visual-image-
NASNetLarge) referred to as all-models, and (2) one audio-
spectroram based framework (audio-MEL-Vgg14) and one
visual-image based framework (visual-image-InceptionV3) re-
ferred to as MEL-InceptionV3. As results shown in Fig. 3,

all-models helps to achieve the highest accuracy classification
score of 93.9%, improving DCASE baseline by 16.5% and
showing improvement on all scene categories. Although MEL-
InceptionV3 only fuses two frameworks, it achieves 92.8%,
showing competitive to all-models fusing 6 frameworks. No-
tably, misclassification cases mainly occur among high cross-
correlated categories in meta-class such as indoor (Airport,
Metro station, and Shopping mall), outdoor (Park, Public
square, Street pedestrian, and Street Traffic), and transportation
(Bus, Metro, and Tram). If we aim to classify into three meta-
classes (indoor, outdoor, and transportation), all-models helps
to achieve a classification accuracy of 99.3%.

D. Early detecting scene context

We further evaluate whether deep learning frameworks
can help to detect scene context early. To this end, we
evaluate 10 different frameworks: (1-2-3) 3 individual audio-
spectrogram based frameworks (audio-CQT-Vgg14, audio-
GAM-Vgg14, audio-MEL-Vgg14), (4) PROD fusion of these
three audio-spectrogram frameworks referred to as all-audio-
models, (5-6-7) 3 visual-image based frameworks (visiual-
image-NASNetLarge, visual-image-Densnet121, visual-image-
InceptionV3), (8) PROD fusion of these three visual-image
based frameworks referred to as all-visual-models, (9) MEL-
InceptionV3, and (10) all-models. As the results are shown
in Fig. 4, while performance of audio-based frameworks is
improved by time, visual-based frameworks are stable. As a
result, when we combine audio and visual features, which
are evaluated in MEL-InceptionV3 and all-models, the perfor-
mance is improved by time and stable after 6 seconds. Notably,
accuracy scores of both MEL-InceptionV3 and all-models are
larger than 90.0% at the first second, which is potentially for
real-life applications integrating the function of early detecting
scene context.

E. Compare with the state-of-the-art systems

Compare with the state-of-the-art systems, our result on Eva.
subset achieves 93.9%, occupying the top-5 team ranking with
respect to accuracy performance. Similarly, our accuracy result
on Evaluation dataset is 91.5%, also achieving the top-5 team
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ranking. Furthermore, the low gap of accuracy performance
between Eval. Subset (93.9%) and Evaluation dataset (91.5%)
proves our proposed framework robust and general.

V. CONCLUSION

We conducted extensive experiments and explored various
deep learning based frameworks for classifying 10 categories
of urban scenes. Our method, which uses an ensemble of
audio-based and visual-based frameworks, achieves the best
classification accuracy of 93.9% on DCASE Task 1B Devel-
opment dataset and 91.5% on DCASE task 1B Evaluation
dataset. The obtained results outperform DCASE baseline,
improving by 17.1% with only audio data input, 26.2% with
only visual data input, and 16.5% with both audio-visual
data on Development dataset, and improving by 14.3% with
both audio-visual data for Evaluation dataset. In further work,
we will evaluate whether an end-to-end system using joint
learning of audio-visual data input may help to improve the
performance.
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Abstract—The growing demand for drones in civil applications
is usually satisfied with commercial off-the-shelf devices. These
can always be adapted to meet the final user’s needs, but
they could not satisfy critical aspects such as performance,
efficiency, or security. Cybersecurity is one of the critical issues
in Unmanned Aircraft Systems (UAS), where cyberattacks on
this system could lead to multiple negative consequences. We
address the cybersecurity issue in this work by introducing a
set of strategic actions to define a complete development process
of building secure Unmanned Aerial Vehicle (UAV) applications.
We introduce the first steps toward implementing IEC 62443
security standard in UAS. We create comprehensive threats,
components and critical assets catalogues for UAVs. Then,
we employ the ThreatGet tool to automatically identify and
determine relevant threats and estimate risk severities associated
with a UAS case study. ThreatGet’s findings are then used
to outline a mapping procedure between threats and security
requirements. This strategy aims to identify a set of security
requirements to address potential threats and protect critical
assets in UAS.

Index Terms—UAV, Potential Threats, Security Requirements,
Risk Management, Cybersecurity.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have a growing pres-
ence in civil applications domains. They are not only used in
agriculture or for infrastructure maintenance and surveillance
but are also considered as a means of transport, including ur-
ban areas. The Single European Sky ATM Research (SESAR)
project, in charge of the modernization of the European
airspace, expects a fleet of 400 000 drones to be used for
commercial and government missions in 2050 [1]. For man-
aging the access to the airspace for large numbers of drones
efficiently, SESAR promoted the development of the U-space
concept of operations (ConOps), which sets the baselines for
a harmonized, safe, efficient, respectful and secure integration
of the drones in the airspace. Regarding security, the ConOps
( [2], 4.6 Cyber security of U-space) stresses the need to
mitigate the risks concerning the following five aspects. The
most important aspect is the integrity. A second aspect is
the availability; a typical measure to ensure the continuity
of the service is redundancy. Confidentiality of information
stored or in transfer should be maintained, e.g only authorized
users or services should be able to gain access. Security
awareness is another aspect that should be boosted, operators
as well as drone pilots should undergo encouraging cyber

security trainings. The last aspect is enforcement, which
includes monitoring operations to verify instruction compli-
ance or the possibility of identifying rogue drone that could
imply a risk for people or infrastructures. Given this, the goal
of the Labyrinth project 1 is to implement and test in real
scenarios [3] some of the services and procedures that are
part of the U-space [2] ConOps, taking into consideration
aspects like the performance of communications.

In order to achieve a specific mission, UAVs need commu-
nication channels to communicate to other nodes (e.g., UAVs,
roadside base stations, central base stations, etc.). Any single
vulnerable point in the system design could lead to multiple
ways for attackers to perform malicious activities. Therefore,
it is necessary to define applicable security requirements for
each system’s node to protect the whole system against cyber-
attacks and address existing security vulnerabilities. However,
integrating requirements into system design is considered a
challenging process since these requirements could be redun-
dant or unsuitable for addressing identified security issues.
There are many existing security standards from related
domains that can be used to build secure UAS applications,
such as the ISO27000 family [4], Common Criteria [5], and
the IEC 62443 family [6]. The IEC 62443 family presents
procedures for implementing secure Industrial Automation
and Control Systems (IACS).

Therefore, this work introduces the first steps into adopting
IEC 62443 security standard in the UAS. We apply IEC
62443-4-2 [7] in order to secure the UAS on the components
level. In order to achieve the main target of this work, we
propose a threat modelling approach to assist in applying IEC
62443 in an UAS. We define security zones and conduits
in the system design and specify the security requirements
according to the Foundational Requirements (FRs) defined in
IEC 62433. Each security zone and conduit has particular Se-
curity Targets (ST) that need to be achieved. These targets are
estimated according to the impact of each zone and conduit
from multiple potential threats. Furthermore, to estimate STs
and define the existing security vulnerabilities in the system
design, we use the ThreatGet threat analysis tool. ThreatGet
is a plugin for the Enterprise Architect UML modelling tool

1http://labyrinth2020.eu
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developed by AIT - Austrian Institute of Technology 2 [8].
It analyses the security-related vulnerabilities in a system
model and estimates the risk severity for each of the identified
threats. The tool also classifies threats according to the
STRIDE model. The outcomes of ThreatGet help in achieving
the main objective of this work by:

1) Estimating the security target for each zone/conduit
according to the risk degree of the identified threats.

2) Defining the security property violations to assist in
mapping security requirements for addressing existing
potential threats based on the mapping between FRs
and STRIDE classification.

According to the proposed work’s findings, we can estimate
ST for each zone/conduit and easily describe a specific set
of security requirements that can handle existing security
vulnerabilities to meet the actual security goal.

A. Related Work

As a response to the SESAR 2020 RPAS Exploratory
Research Call, under Topic 06 Security & cyber-resilience, the
SECOPS project (SECurity concept for drone OPerationS) [9]
developed a methodology based on the SESAR2020 Security
Risk Assessment methodology (SecRAM 2.0) [10] to evaluate
the risk of the operations focusing on cyber security threats.
SECOPS suggested requirements, mitigations, and security
controls for U-space. Security controls deal with medium
and high risks; these risks are classified according to a
combination of likelihood and impact values. The impact
represents the harm that a threat can cause to U-space services
regarding confidentiality, integrity, or availability.

However, SECOPS is not the only security assess-
ment method for U-space. The same U-space ConOps in-
cludes a MEthoDology for the USpace Safety Assessment
(MEDUSA). MEDUSA is a holistic approach, considering
the drone and operator perspective, the Unmanned Traffic
Management (UTM) service provisioning, and its coordina-
tion with the manned Air Traffic Management. The UTM
is the implementation of the U-space concept, a system to
control the unmanned traffic. In short, it can be seen like an
automated version of the air traffic controllers but applied
to small drones. This system does not necessarily run in a
single server, and its different functions (called services in
the ConOps) can be distributed, and performed by different
companies. It also makes use of external information, like
meteorological reports or terrain elevation maps, to perform
its tasks. This system must also be coordinated with human
air traffic controllers, especially when manned aviation needs
to enter the very low level altitude airspace volumes occupied
by the drones. Therefore, the UTM implies an exchange of
critical information between different actors.

The drone and operator safety perspective is taken from the
Specific Operational Risk Assessment methodology (SORA)
[11] outcome, which is applied during the flight planning
process to determine the risk of the operation and the possible

2https://www.ait.ac.at/en/

mitigation mechanisms. The UTM viewpoint is based on
EUROCONTROL’s Safety Reference Material (SRM) [12].
The purpose of MEDUSA is to identify and develop safety
requirements and recommendations for U-space. This identi-
fication is made using two approaches; one considering the
system in the absence of failures and a second evaluating the
risks that the U-space could generate in case of a failure in
the system. It starts by determining the acceptable level of
safety for each risk during the operation.

Finally, it is worth mentioning the approach of the Federal
Aviation Administration’s Security Considerations for Oper-
ationalization of the UTM Architecture as part of its Mid
Atlantic Aviation Partnership (MAAP) UTM Pilot Program
Phase 2 (UPP2) [13], which has some common points with
SECOPS. In particular, this risk analysis is based on the
ISO 27005 Risk Management Standard [14] and the NIST
SP800 series of security standards [15]. In it, three domains
are defined: trusted parties, including UAS Service Suppliers
providing critical services to the UTM network; intermediate
trusted parties, like Supplemental Data Service Providers
(SDSP), accessing to the network through Virtual Private
Networks and authenticated services; and other third parties,
which could include other services or consumers of data. Each
domain with its associated security controls and processes for
authentication and interaction with other parties.

The topic of threat analyses in the UAS has been adopted
in multiple types of research. Ref. [16] identifies a new set
of potential threats for UAVs, which require careful security
considerations in the development process. A set of UAV
challenges regarding safety, security,privacy, and liability is
discussed in [17]. The authors developed a set of recom-
mendations to address and tackle these challenges. Multiple
security threats in the UAS system are discussed and pre-
sented in [18], which provides a comprehensive understanding
of threats and related mitigation mechanisms. Cybersecurity
vulnerabilities could be identified within the strategic, op-
erational, acquisition, and tactical levels. Ref. [19] focused
on the tactical level for defining a cybersecurity assessment.
Also, [20] presented multiple cyberattacks and relevant coun-
termeasure. The Afarcloud 3 project finally investigated a set
of potential threats relevant to the UAS to be considered for
building secure smart farming applications [21].

II. APPLYING IEC 62443 SECURITY STANDARD IN UAS

Cybersecurity plays a vital role in the UAS domain because
it protects data and critical units responsible for controlling
the UAV’s functional safety from various attack scenarios.
Accordingly, the safety-security relationship is considered
directly proportional any malicious activity against the UAS
network could lead to safety hazards against civilians, in-
frastructure, and other targets. For instance, attackers could
compromise transmitted commands; and the UAV might then
receive falsified commands. This attack could jeopardize the
safety of UAV’s operations and cause it to act as a weapon

3http://www.afarcloud.eu

66      A. M. Shaaban, O. Jung and M. A. F. Millan



by injuring people or damaging infrastructure. Also, some
other scenarios could be expected, such as camera hijacking
when critical cybersecurity properties are exploited. There-
fore, we use ThreatGet for identifying potential threats and
relevant security vulnerabilities in the UAS. For this purpose,
we built a complete database containing a wide range of
potential threats in the UAS domain based on the state-of-
the-art [18], [19], [22], [20], [21], [23], [24], and [25].

Then we address the potential threats obtained by Threat-
Get by applying IEC 62443 to the UAS-domain to guarantee
a satisfied protection level and to avoid any unanticipated
adverse outcomes.

We formalize these actions in a set of steps to define a
complete development process for secure UAV applications.
Figure 1 illustrates a flowchart that represents the proposed
strategic actions for building a secure UAV infrastructure.

The figure depicts the primary steps described in this paper
for adopting IEC 62443 and selecting the appropriate sets of
requirements for the UAS.

A. Assets Identification

As a part of our research in the Labyrinth project, we
investigate the most common components (i.e., elements,
connectors, and critical assets) that can be used to model
UAS examples. An element is defined as a physical or
logical item of a system model, whereas connectors define
the data flow between many elements in the system design.
In addition, it is necessary to identify UAS assets that need
more security concerns. An asset means something valuable
for the stakeholder, which needs more security measures to
protect it from various malicious actions. On the other hand,
an asset is a worthwhile target for attackers (i.e., information,
signals, configurations, collected images, etc.). Therefore, a
comprehensive component catalogue for ThreatGet is created
to build multiple UAS application models. A simple example
of the UAS model is depicted in Figure 2.

The figure illustrates the data flow among different termi-
nals in a U-space framework. On the right side, the Ground
Control Station (GCS) is identified as the primary central
unit responsible for controlling UAV flight activities. A set
of commands that regulate the UAV’s travel directions can be
sent from the GCS to the UAV. The GCS can also receive data
from the UAV through a wireless connection, such as UAV’s
telemetry data. Additionally, the UAV can transmit reports
to the UTM (on the left side) with information on its flight
status. These reports can be sent to the GCS via an Internet
connection to keep the GCS up to date on the UAV’s mission
flight status. The GCS can also receive instructions from the
UTM and then translate them into commands to the UAV. The
”A” letters in the figure indicate assets, defined as critical
items requiring more security concern. Each component of
this model is contained inside a security zone referred to as
a boundary. ThreatGet specifies the UAV, UTM, and GCS
boundaries as ”Boundary [USER]” because of the user created
for that purpose.

Each asset in the UAS has security properties representing
protection against different attack scenarios, such as authenti-
cation, authorization, temper protection, encryption, etc. The
system architect can specify these properties to provide a set
of risk mitigation actions against potential threats. ThreatGet
checks the violations of these properties and indicates if there
is a security gap that could allow a malicious activity.

B. Identify Security Zones

Identifying security zones is essential in defining a physical
or logical segmentation of the system design. These zones
consist of a set of system assets that share the corresponding
security requirements [6]. According to IEC 62443-4-2 [7],
seven FR classes described the security requirements. The
FR5 - Restricted Data Flow (RDF) describes constraints of
unnecessary data flows to limit the spread of any cyberattacks
in the form of a set of zones. In addition, data transmission
between zones is accomplished via communication channels;
these channels are grouped into small clusters of zones called
conduits. Furthermore, in our example, we split the UAS
model into a set of zones and conduits according to the FR5.
ThreatGet helps in describing these security zones as bound-
aries (i.e., UTM, UAV, and GCS), as depicted in Figure 2. We
create a tagged value ”Security Conduit” for each communi-
cation channel to build conduits for communication channels
between zones. The ”Security Conduit” has three values (i.e.,
UTM-UAV, UTM-GCs, and UAV-GCS) that indicate to which
conduits this communication channel belongs. For example,
all communication channels between the UAV and GCS shall
have the ”UAV-GCS” value assigned to the ”Security Conduit,
” which indicate that all communication channels exist in the
same conduit.

In this work, we apply a direct mapping approach between
potential security threats and relevant security requirements
based on the FRs; these FRs are discussed in Section II-E.

C. Risk Analysis

The risk analysis plays a significant role to identify and
determine the exact cybersecurity issues in the UAV system
model, leading to different types of potential cyber threats.
Therefore, we build a threat database for the UAS based
on the related work, which ThreatGet can utilize to identify
relevant threats in various UAS case studies. All threats
are translated into a formal grammatical structure in order
to automate the threat analysis and identify affected units.
For example, as described in Figure 2, the UAV receives
commands from the GCS through the data flow; attackers
could falsify these commands by compromising the integrity
of the transferred messages. We can formalize this attack
using the ThreatGet’s grammar by considering a data flow
crossing security zone. List 1 illustrates as a simple snippet of
ThreatGet’s grammar. The ”connector pattern,”, is a connector
that has a source element (i.e., source filter) and a target
element (i.e., target filter). Each source and target element
contain a collection of security properties expressed as a
combination of tagged values. Each tagged value may have a
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Fig. 1: The proposed steps of applying IEC 62443 for the UAS

Fig. 2: A diagrammatic representation of components and communications in a U-space framework.

single value expressed by the equal sign (”=”) or a range of
many values represented by IN [”value1”, ”value2”, ”etc.”).
The grammar can also describe connectors that cross bound-
aries in order to investigate the flow between borders. The
”crosses filter” checks whether connectors cross an element
or a boundary. Additionally, an ”asset filter” is defined in
the grammar to describe that the connection has an asset, as
shown in figure 2 on the flow from GCS to the UAV.

Listing 1: Part of the ThreatGet formal grammar, the full-
description of the grammar is discussed in [26]

connector_pattern -> CONNECTOR (type_filter)?
{source_filter & target_filter (&
connector_filters)}

source_filter -> SOURCE element_pattern
target_filter -> TARGET element_pattern
element_pattern -> (element_pattern (|

element_pattern)+) ELEMENT (type_filter)?
({element_filters})?

element_filters -> element_filters (&
element_filters)+ ( element_filters (|
element_filters)+ ) tagged_value_filter

tagged_value_filter -> "key" = "value" "key"
!= "value" "key" IN ["value" (,
"value")*] "key" NOT IN ["value" (,
"value")*]

connector_filters -> connector_filters (&
connector_filters)+ ( connector_filters
(| connector_filters)+ )
tagged_value_filter crosses_filter
asset_filter

crosses_filter -> CROSSES element_pattern
CROSSES boundary_pattern

asset_filter -> HOLDS asset_pattern HOLDS NO
asset_pattern

ThreatGet classifies threats according to the STRIDE
model. STRIDE is the abbreviation of the Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege [27]. It was invented in
1999 and adopted by Microsoft 4 in 2002 [28]. Each classified
category of threats violates a particular security property. The
threat categories are discussed in [29] as follows:

• Spoofing: Get unauthorized access by violating authen-
tication.

• Tampering: Modify or damaging data in an unautho-
rized way by violating integrity.

• Repudiation: Denying an activity that a legal/illegal user
by violating non-repudiation.

• Information Disclosure: An undesirable manner could
reveal data by violating confidentiality.

• Denial of Service: An unauthorized action leading to the
unavailability of a specific service, system, or application
by violating availability.

• Elevation of Privilege: A restricted authorized user
could claim a higher privilege than they hold by vio-
lating authorization.

Afterwards, we perform the threat analysis using ThreatGet

4www.microsoft.com
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to identify potential threats in the UAV scenario as described
in Figure 2, initially assuming that the assets do not hold
any security properties, i.e. are not protected by any security
mechanism.

The tool detects 35 threats that have negative consequences
against multiple units in our UAV example. These threats
are classified according to the STRIDE model, as discussed
previously. There are six threats classified as Spoofing attacks,
where 16 threats violate the integrity of data. Hence, these
threats are classified as Tampering. Four other threats are
categorized as Information Disclosure. Besides, only one
threat is targeting Repudiation, and another one Elevation
of Privilege; seven threats are classified as denial of service
attacks. ThreatGet also automatically performs risk evaluation
to estimate the severity level for each identified threat, as
discussed in Section II-D.

D. Risk Evaluation and Security Target Estimation

It is essential to estimate the ST for each zone and
conduit in order to be able to select the most applicable
security requirements that address existing security issues.
Therefore, we estimate the security target for each zone and
conduit according to the risk severity of threats that ThreatGet
identifies. ThreatGet calculates the overall risk of the whole
UAS model by estimating the risk severity of each identified
threat. This calculation is based on parameter values impact
and likelihood.

• Impact: Estimates the harm that could be caused by a
particular threat. Furthermore, in this work, we propose
five scenarios that could be affected by cyberattacks.
– UAV Safe Operation: The degree of harm caused

by a threat against UAV’s safe operation.
– Operation Stop Working: The impact degree of

a threat can affect the operation of a UAV.
– Financial Impact: This scenario reflects the impact

degree against the financial assets.
– Breach Data Integrity: This scenario expresses the

degree of data integrity violation by attackers.
– Breach Data Confidentiality: This scenario rep-

resents the degree of a data confidentiality breach.
• Likelihood: Estimate the probability of a threat that

could occur.
ThreatGet’s impact values are determined based on four

degrees that reflect the severity of the threat’s impact. The
lowest degree of impact is Negligible (i.e., 1), while the
maximum degree of impact is Severe (i.e., 4). We then
estimate the Mean and determine the impact degree for each
threat based on the five scenarios as previously discussed.
ThreatGet also uses four degrees to express the likelihood
values. The lowest degree is ”Very Low” (i.e., 1), where
the maximum degree is ”High” (i.e., 4). According to this
estimation, ThreatGet estimates the risk severity for each
identified threat based on the following formula:

Risk Severity = Impact ∗ Likelihood

TABLE I: Security target analysis of GCS security zone and
UTM-GCS conduit based on ThreatGet’s findings

Threats GCS UTM-GCS Risk Severity STRIDE Violation
T1 X 1 I Confidentiality
T4 X 1 I Confidentiality
T8 X 4 T Integrity
T9 X 3 D Availability
T11 X 3 D Availability
T12 X 2 R non repudiation
T13 X X 3 D non repudiation
T14 X 2 T Integrity
T19 X 2 T Integrity
T20 X X 2 T Integrity
T21 X 2 T Integrity
T22 X 2 S Authentication
T23 X 2 S Authentication
T24 X X 2 T Integrity
T25 X 4 E Authorization
T26 X 3 T Integrity
T27 X 2 T Integrity
T28 X 3 T Integrity
T29 X 1 S Authentication
T30 X 1 D Availability
T32 X 1 S Authentication
T34 X X 1 D Availability
T35 X 2 S Authentication

ST of GCS Level 4
ST of UTM-GCs Level 3

Estimating the risk severity for each threat helps to deter-
mine the security target that needs to be achieved for each
security zone and conduit. Therefore, we analyze the risk
estimation process results to define the risk severity associated
with each security zone (i.e., UAV, UTM, and GCS) and
conduit (i.e., UTM-UAV, UTM-GCs, and UAV-GCS). Table I
illustrates all threats that are identified by ThreatGet, within
the GCS zone and UTM-GCS conduit.

The table contains 23 threats that affect the GCS security
zone; each threat is classified according to the STRIDE
category, as discussed in Section II-C. Similarly, at the UTM-
GCS conduit, this conduit is affected by four threats. We
estimate the ST for each zone and conduit based on the
threat’s highest risk severity. The highest risk severity for
the GCS is 4, while the highest severity for UTM-GCs is
3. Therefore, the GCS’s ST is assumed to be level 4, whereas
the UTM-GCS’s ST is level 3. The table also describes threats
according to the STRIDE categories and its violation based on
these categories. For example, T8 is classified as Tampering
category, which violates the integrity of data in unauthorized
behaviour.

Section II-E, discusses how the finding of ThreatGet could
assist in applying IEC 62443 based on the ST and violation
of security properties.

E. Apply Security Requirements and Map FRs with STRIDE

In this work, we propose using the IEC 62443 [7] to
provide a complete cybersecurity framework for address-
ing existing cybersecurity issues. Security requirements are
classified according to their level of capability, referred to
as Security-Level Capability (SL-C). This level describes
the security level that system units should fulfill without
additional measures [30]. Each security requirement is defined
in the IEC 62443 with a range of capability levels varying
from 1 (i.e., casual exposure) to 4 (i.e., sophisticated means).
The standard describes security requirements into FRs. These
requirements are discussed in [30], as follows:
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• FR1 - Identification and Authentication Control

(IAC) Supports authentication and manages cybersecu-
rity issues relevant to spoofing activities.

• FR2 - Use Control (UC) Provides authorization and
handles cybersecurity issues related to violation of sys-
tem/software privigle.

• FR3 - System Integrity (SI) Supports data integrity, and
handle issues related to tampering activities.

• FR4 - Data Confidentiality (DC) It intends to pre-
vent unauthorized data access either on communication
channels or stored.

• FR5 - Restricted Data Flow (RDF) It restricts unnec-
essary data flows by building zones and conduits, which
helps in limiting the propagation of cyberattacks.

• FR6 - Timely Response to Events (TRE) Supports han-
dling security concerns associated with multiple forms of
repudiation attacks.

• FR7 - Resource Availability (RA) Supports handling
multiple forms of resource availability attacks.

The security requirements shall be selected to protect
system assets against any form of cyberattack and address
existing security issues. According to the outcomes that are
presented in Table I, we introduce a mapping procedure
that enables a direct mapping between security requirements
(defined in terms of FRs) and threats (defined in terms of
STRIDE), as illustrated in Figure 3. This procedure clarifies
how to apply IEC62443-4-2 security requirements in the UAS
domain to develop secure civil applications.

Fig. 3: The proposed mapping strategy between STRIDE and
FRS according to the common security properties
Abbreviation: Auth. Authentication, Int. Integrity, Conf.
Confidentiality, Ava. Availability, non. non-repudiation, and
Autho. Authorization

The STRIDE categories are specified as the primary cate-
gories of identified threats on the left-hand side. On the right-
hand side is the list of all FRs that classifies the security
requirements of the IEC 62443 security standard. All security
properties that are violated by threats are defined in the middle
list. Also, these properties are defined in security require-

ments in terms of FRs. Furthermore, due to threat’s violating
security properties, relevant security requirements shall be
selected to address existing security issues. In addition, based
on ThreatGet findings, we will be able to select a set of
security requirements depending on their security capabilities
(i.e., SL-C). These capabilities should equal each threat’s risk
severity to achieve the main ST for each security zone and
conduit.

Therefore, this mapping technique is considered a one-to-
one approach to provide a precise and direct linkage from
security issues (i.e., threats) to security solutions (i.e., security
requirements).

III. CONCLUSION AND FUTURE WORK

We proposed a standard-based procedure based on IEC
62443 to be integrated in the UAS-domain for addressing
potential threats. We employ ThreatGet as a threat modelling
tool to assist in this process. We define security zones/con-
duits and define the main system’s assets. Then we perform
the risk analysis using ThreatGet for analyzing, detecting,
and prioritizing security issues of a system design. The tool
defines a set of threats and classifies them using the STRIDE
model. Then the tool estimates the severity level for each
threat based on the values of impacts and likelihoods. We then
utilize these findings to describe a mapping strategy to select
a proper set of security requirements for addressing existing
threats. The proposed mapping strategy is based on selecting
a set of security requirements according to their capabilities
to fulfil the main security goal. In addition, describe a clear
understanding between FRs, that support security properties
and the STRIDE model according to the violation of common
properties.

Our future work will include developing a mathematical
model that estimates the security achieved after applying
security requirements. That helps to guarantee the achieved
level is equal to the security target level and ensure the
correctness of the applied security requirements.

IV. ACKNOWLEDGEMENT

This work is done in the LABYRINTH project, which has
received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No
861696.

REFERENCES

[1] S. J. Undertaking, “European drones outlook study. unlocking the value
for europe,” SESAR, Brussels, 2016.

[2] CORUS, “U-space concept of operations,” SESAR, Tech. Rep., 2019.
[Online]. Available: https://www.sesarju.eu/U-space

[3] L. Project, “Ensuring drone traffic control and safety,”
http://labyrinth2020.eu/the-project/, 2017, (Accessed on: September
18, 2021).

[4] “ISO/IEC 27000 – key international stan-
dard for information security revised,”
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/news/2018
/03/Ref2266.html, (Accessed on: September 10, 2021).

[5] “ISO 15408, information technology - security techniques - evaluation
criteria for IT security (Common Criteria),” 2009.

[6] ISA, “The 62443 series of standards: Industrial automation and control
systems security,” no. 1-4, 2018.



[7] IEC, “Security for industrial automation and control systems - part 4-
2: Technical security requirements for IACS components,” International
Standard, Tech. Rep., Feb. 2019.

[8] AIT, “Threatget - threat analysis and risk management,”
https://www.threatget.com, 2019, acessed: 2021-07-17.

[9] SECOPS, “Security concept for drone operations (SEC-
OPS),” SESAR, Tech. Rep., 2019. [Online]. Available:
https://www.sesarju.eu/projects/secops

[10] SJU, “SecRAM 2.0 – security risk assessment methodology for
SESAR 2020,” SESAR, Tech. Rep., 2017. [Online]. Available:
https://www.sesarju.eu/projects/secops

[11] JARUS, “Jarus guidelines on specific operations risk assessment
(sora),” JARUS, Tech. Rep., 2019. [Online]. Available: http://jarus-
rpas.org/content/jar-doc-06-sora-package

[12] SESAR, “Safety reference material, edition 4.0,” SESAR, Tech. Rep.,
2016. [Online]. Available: https://www.sesarju.eu

[13] FAA, “Security considerations for operationalization of
utm architecture,” Tech. Rep., 2021. [Online]. Avail-
able: https://www.nasa.gov/sites/default/files/atoms/files/20210112 -
final upp2 security analysis 0.pdf

[14] “ISO/IEC 27005: Information technology — security techniques —
information security risk management – second edition,” 2011.

[15] CSRC, “NIST Special Publication (SP) 800 Series,” Tech. Rep., 1990.
[Online]. Available: https://csrc.nist.gov/publications/sp800

[16] J. Valente and A. A. Cardenas, “Understanding security threats in
consumer drones through the lens of the discovery quadcopter family,”
in Proceedings of the 2017 Workshop on Internet of Things Security
and Privacy, 2017, pp. 31–36.

[17] B. Rao, A. G. Gopi, and R. Maione, “The societal impact of commercial
drones,” Technology in Society, vol. 45, pp. 83–90, 2016.

[18] A. Y. Javaid, W. Sun, V. K. Devabhaktuni, and M. Alam, “Cyber
security threat analysis and modeling of an unmanned aerial vehicle
system,” in 2012 IEEE Conference on Technologies for Homeland
Security (HST). IEEE, 2012, pp. 585–590.

[19] G. L. Lattimore, “Unmanned aerial system cybersecurity risk manage-
ment decision matrix for tactical operators,” NAVAL POSTGRADU-
ATE SCHOOL MONTEREY CA MONTEREY United States, Tech.
Rep., 2019.

[20] M. R. Manesh and N. Kaabouch, “Cyber-attacks on unmanned aerial
system networks: Detection, countermeasure, and future research direc-
tions,” Computers & Security, vol. 85, pp. 386–401, 2019.

[21] E. K. et al., “D2.3 Architecture Requirements and Definition
(v2),” afarcloud deliverable, Tech. Rep., February 2020. [Online].
Available: http://www.afarcloud.eu/wp-content/uploads/2020/04/D2.3-
Architecture-Requirements-and-Definition-2.0 VFINAL.pdf

[22] Sander Walters, “How to set up a drone vulnerability testing lab,”
https://medium.com/@swalters/how-to-set-up-a-drone-vulnerability-
testing-lab-db8f7c762663, 2016, (Accessed on: September 12, 2021).

[23] T. Macaulay, “The 7 deadly threats to 4g: 4g lte security roadmap and
reference design,” Accessed on: September 16, 2021, vol. 25, p. 2017,
2013.

[24] UNECE, United Nations Economic Commis-
sion for Europe, “CSOTA ad hoc ”threats 2”,”
https://wiki.unece.org/download/attachments/45383725/TFCS-ahT2-
06%20%28Chair%29%20Table%20on%20CS%20threats%20-
%20changes%20agreed%20by%20ahT2%20-%20non-
cleaned%20up.xlsx?api=v2, 2017, (Accessed on: September 18,
2021).

[25] K. Kotapati, P. Liu, Y. Sun, and T. F. LaPorta, “A taxonomy of cyber
attacks on 3g networks,” in International Conference on Intelligence
and Security Informatics. Springer, 2005, pp. 631–633.

[26] AIT, “Welcome to the threatget documentation,”
https://documentation.threatget.com/21.06/, 2019, acessed: 2021-
07-17.

[27] A. Shostack, Threat modeling: designing for security. Wiley, 2014,
OCLC: ocn855043351.

[28] N. Shevchenko, “Threat modeling: 12 available methods,”
https://insights.sei.cmu.edu/sei blog/2018/12/threat-modeling-12-
available-methods.html, 2018, accessed on: September 20, 2021.

[29] M. Abomhara, M. Gerdes, and G. M. Køien, “A STRIDE-based threat
model for telehealth systems,” NISK Journal, pp. 82–96, 2015.

[30] International Electrotechnical Commission, “IEC 62443-3-3: Industrial
communication networks – network and system security – part 3-3:
System security requirements and security levels,” 2013.

70     A. M. Shaaban, O. Jung and M. A. F. Millan Toward Applying the IEC 62443 in the UAS for Secure Civil Applications     71



IAIDO: A Framework for Implementing
Integrity-Aware Intelligent Data Objects

Eric Davis
Galois, 22203 Virginia, United States

eric.davis@galois.com

Abstract—Growing reliance on automated reasoning, machine
learning, and machine-aided decision making has lead to serious
vulnerabilities in the area of data-integrity. The trustworthy
and reliable operation of next-generation data-driven systems
and the infrastructure which manages this data will require
effective and scalable solutions to the growing threat of faults
due to data-integrity. In this paper we discuss the concept of
data-integrity, outline threats to data-integrity, and introduce
the notion of Integrity-Aware Data Objects which utilize the
concepts of polymorphism, subsumption, composition, associ-
ation, and aggregation to build a system of inheritance to
improve data-integrity for large-scale data sets with shared
provenance, representations, and types. We further extend the
notion of these data objects by adding intelligence in the form
of learned constraints, rules, and classifiers which are inherited
by data-objects to improve tolerance of data-integrity errors.
We implement these Integrity-Aware Intelligent Data Objects
as the IAIDO framework, and demonstrate this novel approach
using real data on nutrition information, providing examples of
real data-integrity faults in the USDA’s National Nutrient Data
Base for Standard Reference Release 28, and in crowd sourced
data. We demonstrate high rates of data-integrity faults in crowd
sourced data, with nearly 27% of our data failing one or more
SMT-based constraints. Similarly, in federally published data
we find nearly 10% of data published by the USDA is non-
compliant, and features data-integrity faults.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Data-driven applications, science, and processes rely on
the collection of large volumes of data at high velocities,
with additional challenges presented due to the variety of
data collected, and the strong requirements for veracity,
the so-called 4 V’s of big data [1]. As organizations and
individuals become more reliant on the trustworthy outcomes
of data-driven processes, they also increase their risk and
exposure to faults, errors, and failures due to low-integrity
data [2]. Crowd-sourced data holds the promise of rapid data-
acquisition, ease of use, and low-cost for deployment and
implementation and has seen growth in areas such as disaster
relief [3], emergency response [4], and even healthcare [5]
and clinical trials [6]. The use of crowd-sourced data becomes
a liability, however when it comes to data veracity [7] as it
reduces accountability [8], [9], and the ability to build trust
due to the provenance of the data [10]. While crowd-sourced
data is particularly vulnerable to problems with veracity, data
cleaning as a whole has long been a core unsolved problem
with data warehousing [11], [12]. When data is unreliable,
or worse still, maliciously injected to drive machine-based

reasoning towards incorrect outcomes, the integrity of the
entire system is called into question.

In order to support reliable and trustworthy next-generation
data applications, processes, and scientific techniques must
be developed to account for integrity as a core system-design
principle, not as an after-thought. Next-generation systems
will have to fight a constant battle against low-integrity data
seeking to pollute their archives, and we must move from a
more reactive, bespoke approach to core frameworks which
support reasoning about data-integrity in a formal manner.

We advance the hypothesis that data-integrity can be
improved by encapsulating all data ingested into a data-
warehouse, application, or experiment in an object-framework
that allows the assignment of formal, context-sensitive, types
and the inclusion of both data, in the form of object fields,
and procedures which can act upon that data, known as object
methods, to associate data with algorithms which reason about
the integrity of the data held within the object. This paradigm
is based on the following assumptions: (1) That data in most
large-scale systems belongs to a, often incomplete, ontology
or taxonomy of related data in which similarly typed data
objects exist within the system. (2) That knowledge about the
integrity of some data objects can be leveraged to improve
knowledge about the integrity of other data objects that are
ontologically related through subsumption (is-a, or subtype
relationships) and composition (has-a relationships). We do
not argue that these assumptions hold universally, merely that
they hold often enough to be of value when reasoning about
data-integrity and improve our ability to identify and remove
low-integrity data, and maliciously injected data from our
system.

Our contributions are summarized as follows:
We introduce a formal semantics of object inheritance
and provide formal definitions within a type environment
for what it means for a data-object to subsume another,
or be composed with another.
We use our formal semantics to implement the IAIDO
Framework and Quarantine prototype using a novel
extension of the Javascript Object Notation and python
implemented object methods that are assembled by our
IAIDO Framework parser.
We apply our IAIDO Framework to real data from a case
study investigating the relationship of food nutritional
data with blood glucose levels. This data was found
to contain many low-integrity points, and furthermore
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the low-integrity of this data impacts machine-learning
applied to the blood glucose model.
We demonstrate the efficacy of our IAIDO framework
and show the results, experimenting on a collection of
610 partially labeled data.
We identify a case of a major food manufacturer mis-
labeling product data that was previously unknown.
We do so through the implementation of FDA constraints
on food labeling as a user-defined integrity constraint.

II. RELATED WORK

Formally the issue of trustworthiness of data within a
system hinges on the dependence on that data to inform
normal service. We require trustworthy or high integrity
data when the dependability of our system relies on the
dependability of the data in order to deliver correct service.
Thus trustworthy data is data on which correctness is required,
and accepted by the system for correct service. [13], [14]
Fundamentally the problem of addressing trustworthy data-

systems through data integrity evaluation shares more with
notions of trustworthiness from the security community. The
assurance that a system performs as expected even in the
presence of hostile attacks from outsiders, or insiders, envi-
ronmental disruptions, and human/operator error. [2], [8], [9],
[15] It also has elements of data veracity, a term introduced
when talking about the four V’s of big data. In this sense data
with high integrity should exhibit consistency, or statistical
reliability. In cases where trustworthiness on the basis of data
origin and collection cannot be established, we need to instead
develop formal ontologies of data relationships where we can
repudiate low integrity data on the basis of inconsistency. [7]
The related work focuses on solving this problem using

multi-tenant environments with cooperation for security [16],
[17] in which central authorities serve as gate keepers for
data, primarily looking at data-integrity as a problem of access
control. In the literature data provenance is used to help with
policy binding for access. These sorts of solutions, however
do not help in situations of partially or wholly crowd sourced
data where provenance and trust can’t be assured [18], [19]

III. PRELIMINARIES

In this section we provide a formal definition for data-
objects, and explain the semantics of inheritance using sub-
sumption and composition. Our formal model of objects is
based on an extended Kripke structure [20] and provides two
main features encapsulation and inheritance. The members
of an object are not unrelated, but instead collectively share
responsibility for representing the state of an object (object
fields), or changing the state of an object (object methods).
Informally, an object is a collection of components which

we distinguish as fields and methods. For our purposes we
consider each field to be an object itself, and associate the set
of fields which values drawn from some set. We characterize
the set of all of an object’s fields and their current values, with
the state of the object at some moment in time. Methods can
be considered as functions or procedures which make use of

Fig. 1: Summary of the 610 data points in 32 data sets used
for our experiments. Data in column 0, marked with a green
star, represent manufacturer data. Data marked with a green
diamond are identical to manufacturer data. Data marked with
a yellow “X” were marked as suspected low-integrity by our
subjects. Data marked with a yellow hexagon were identified
as low-integrity by whomever entered the data.

an object and its fields to yield a new state for the object
after they are invoked. Formally we define an object as an
extended Kripke structure [20] represented as a 5-tuple:
o F, f0,Q,M, δ , consisting of
a finite set of n fields, F f0, f1, . . . , fn 1 each of
which is an object itself.
The special field f0 which represents self, and corre-
sponds to the object itself.
the state of the object, Q N which represents the
current state of all fields of the object.
a finite set of p method labels M m0,m1, . . . ,mp 1 .
a transition function δ Q M Q which represents the
results of method invocation of a given method mi M
when the object is in a state q Q representing some
set of values assigned to the fields of the object and
transition to a new state q Q as δ q,mi q

We use the shorthand o.X to represent some set from
F,Q,M, δ in an object o, and o.xi to represent an element
of one of the sets F,Q,M, δ in an object o providing for
method invocation, or field selection using a simpler syntax.
We allow for method override (or update) using the syntax
o.mi mi, δ mi

with

o.mi mi, δ mi

o.δ o.δ
M mi

δ
mi

, (1)

o.M o.M o.mi mi (2)

Intuitively this represents overiding the method o.mi with
a new method mi by replacing it in o.M and updating
the transition function o.δ with the new transition for o.mi

using function restriction ( ) and extension via overriding
union ( ) [21], [22]. Method updates are used to replace or

74       E. Davis



override existing methods, which may have been inherited
from another type which our type subsumes.
In addition to overriding and updating methods, we can also

remove or add methods. We use the notation o.ϵ to represent
the null method, allowing the addition of new methods with:

o.ϵ mi, δ mi

o.δ o.δ δ
mi

, (3)

o.M o.M mi (4)

Or method removal from an object using:

o.mi ϵ, ϵ o.δ o.δ
M mi

, (5)

o.M o.M o.mi (6)

Field replacement, addition, and removal semantics follow
similarly,

o.fi fi o.F o.F o.fi fi (7)
o.ϵ fi o.F o.F fi (8)
o.fi ϵ o.F o.F o.fi (9)

(10)

with the restriction that the self field, f0, cannot be removed
or replaced. The self field, f0 is special, and its value is always
given by definition as:

o.f0 o

Our objects exist with a typing environment E [23] where
each object o has a type τ written as o τ . The notation for
inference involves sequents, or inference rules of the general
form

E o0 τ0 E ok 1 τk 1

E o τ

where the rule, or sequent E o τ indicates object o has
type τ in the environment E [24]. This allows us to indicate
subclass relationships using the subsumption relation , such
as A B which indicates type A subsumes, or is a subclass
type B (intuitively A is-a B) [25], [26],

E a A E b B E A B

E a B
(11)

and to indicate composition using A B to indicate A is
composed with B, (intuitively B has-a A),

E a A E b B E A B

a b.F
(12)

Subsumption allows us to define new types either par-
tially, or wholly through implicit means. Given some type
E oi τi and E oj τj where E τi τj , if no override
oj .mk mk, δ m

k

has been defined then oj .mk oi.mk,
with similar rules for fields. By the same token if E oi τi
and E oj τj where E τi τj , there exists some field
fl oj .F E fl τi. Intuitively if one object’s type subsumes

another, that type inherits all the same methods and fields
implicitly unless replaced or removed, and if one object is
composed with another, the second object contains the first
object as a member field.
As part of our IAIDO framework prototype, we imple-

mented a basic quarantine system that operates on a rules
basis on objects in our system. We established our quarantine
protocols to be risk-averse, as in our case study we found no
cases in which incorrect identification of manufacturer data
by machine-learning methods occurred for the same point
for any two intelligent integrity checks, leading to a voting
strategy for intelligent checks. Conversely we use the user-
defined constraints from the FDA as a hard reject, because if
a product is labeled improperly, these checks will detect the
inconsistency which means the data supplied cannot possibly
comply.

IV. EXPERIMENTAL EVALUATION

We conducted our experiments on nutritional data submit-
ted to MyFitnessPal, and recorded in the diaries of subjects
being studied in order to model the impact of meals on blood
glucose over a period of one year. We selected a subset of
32 different food items, unified by UPC (universal product
code) data, and MyFitnessPal database resource number. For
each separate database entry we had our subjects mark the
entry if they suspected the entry to be of low-integrity. We
additionally added manufacturer provided data, and marked
those entries which were identical to the manufacturer’s
provided data. Further more some entries were marked as
having low-integrity by whomever entered the data, with key
phrases such as “(Net carbs)” indicating that the provided
data had been modified on the basis of some dieting trick, or
“(Carbs removed)”, and similar labels.

A. User-Defined Experimental Constraints

We applied two user-defined data integrity constraints,
one at the level of carbohydrate_info based on FDA
guidelines which state that the total grams of carbohydrates
must be greater than or equal to the sum of the component
carbohydrates (fiber and sugar in our data). This was an
important data integrity constraint for our motivating case
study as the total carbohydrate content, both fiber and non-
fiber sources, was needed for our blood glucose estimation,
and provides healthcare providers with important information
on the glycemic impact of foods consumed.
Our second user-defined data integrity constraint was de-

rived from the FDA rules on nutrition labeling and rounding
guidelines [27] which provides a formula for labeling the kilo-
caloric content (colloquially referred to simply as calories) of
food on the basis of macro nutrient composition. The FDA
defines its nutrient rules using a complex set of rounding
guidelines which provides that if the total kilocalories are

5, or the total grams of a macro nutrient are 0.5g
they should be expressed as zero. For products with caloric
content 5 x 50 kilocalories, the kilocalories should be
rounded to the nearest 5 kilocalorie increment. For caloric
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content x 50 kilocalories, they should be rounded to
the nearest 10 kilocalorie increment. Macronutrients should
likewise be rounded to 0.5g increments when total content
is 0.5g x 5g, and to the nearest one gram increment
when total macronutrient content is x 5 grams. These were
implemented as constraints as a Python 3 module imported
as a method for our data objects as shown in Figure 2.

B. food_info Intelligent Constraints

We applied two machine-learned constraints that were
inherited by call subsumptions of the food_info class (and
thus encompassed all classes). We trained both a linear, and
non-linear regression of kilocalories on all other fields in the
food_info class on when unmarked by our users to attempt
and derive a non-user supplied constraint similar to the
FDA supplied constraint, but to also look for other possible
violations beyond macro-level kilo-caloric content. A random
subset of 30% of our unlabeled data was submitted as training
data, with k-fold cross validation techniques employed [28],
[29].

C. food_info Sub-Class Intelligent Constraints

Our last intelligent constraint consisted of a random forest
[30] over all features for a two-class classifier to attempt to
mimic the classification procedure conducted by our users
when marking data as “suspected low-integrity”. A random
subset of 30% of our labeled data was submitted as training
data, with k-fold cross validation techniques employed [28].

D. Experimental Results

When we applied our user-defined constraints, we recov-
ered a number of violations immediately, some of which were
labeled by our users, or those entering the data, some of which
were not, Figure 3 summarizes these results. A total of 93
data entries violated the FDA carbohydrate constraint in our
data set. A total of 143 data entries violated the FDA kilo-
caloric constraint in our data set. Most interestingly, data
provided by the manufacturer for item number 3 was
found to violate the FDA’s constraints on labeling. These
results were hand checked and confirmed after appearing in
quarantine.

Applying intelligent constraints resulted in highly accurate
results, which in general improved as more data sets were
added (each contributing 30% new training points so the
classifier improved over time). Once all 32 data sets were
included, the classifier mis-predicted only 8 points while
correctly identifying 138 points as low-integrity. Of the 8
points that were misclassified, they were misclassified by
only one of the two regression methods in all but one case,
that of data set zero. Both methods agreed on the 138 other
points correctly identified as low-integrity. The one outlier
experiment, data set zero, was a singular case in our case
study.

The random forest classifier proved exceptionally good at
identifying why users tended to mark data as “suspected low-
integrity”. Results for the questbar class are shown above

in isolation to help better visualize and understand these
results. This classifier was not shared by all food_info
classes, but only the questbar food_info type. Each
type had its own random forest classifier with similar results.
For the questbar type, 109 suspected low integrity data
points were identified, including 42 not identified by other
intelligent, or user-defined constraints. Similar results were
achieved with the other classes, which are omitted for space
reasons. There were no cases of the random forest classifier
mis-predicting data which matched the manufacturer’s sup-
plied data.

E. Reasoning with Quarantine

Figure 4 shows a summary of the data our quarantine
prototype used for reasoning. In general the darker the square,
and higher the indicated number, the more sure the quarantine
system is that the data lacks integrity. The one exception is
row 3, wherein the single violations account for violations of
the user supplied kilocaloric constraints from the FDA, and
are removed due to violation of federal standard.

Subclass indicators, such as the random forest, showed
great promise. Across all of our subclass classifiers, 0.79 of
user marked data was recalled using only 30% of the marking
as training data, 0.00 of data which matched the manufacturer
was marked as “suspected low-integrity”, and 0.45 of the
unlabeled data which did not match the manufacturer was
also identified as more closely matching the “suspected low-
integrity” data than manufacturer data.

V. CONCLUSIONS

We have presented a new semantics for data objects
which provides rules for formal inheritance in data objects
of both fields, and integrity-aware methods under the rules
of subsumption and composition to support the creation
of Integrity-Aware Intelligent Data Objects as part of our
IAIDO framework. We have implemented a prototype of
our framework using an extension of the Javascript Object
Notation, and Python, and included as part of our framework
a prototype quarantine system based on empirical results with
real data from a case study in personalized health data which
suffers from data-integrity problems. Our method has proven
effective in the identification and elimination of large portions
of low-integrity data from our data set, ensuring data is more
representative and accurate for machine-driven reasoning and
data scientific applications.

In our case study we additionally uncovered a case of
a manufacturer violating federal labeling requirements
for quite some time that has gone unnoticed by federal
regulatory bodies. This provides increased motivation for the
further development and deployment of data-integrity aware
systems to help enforce important standards for honest and
safe labeling of products. While it is unclear how long this
manufacturer has been labeling their products in violation of
FDA regulations, we found product labels from over a decade
ago with these incorrect labels. It is impossible for us to tell,
from the data we have access to, whether the mislabeling is
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kcal εkcal f εf 9 p εp 4 c epsilonc df εdf 4 (13)

kcal 0 0 εkcal 5 0 kcal 50 5 εkcal 5 50 kcal 10 εkcal 10 (14)

f 0.5 f εf f 0.5 f 5 0.5 εf 0.5 5 f f f εf f f (15)

p 0.5 p εp p 0.5 p 1 1 εp 1 1 p p p εp p p (16)

c 0.5 c εc c 0.5 c 1 1 εc 1 1 c c c εc c c (17)

df 0.5 df εdf df 0.5 df 1 1 εdf 1 1 df df df εdf df df (18)

Fig. 2: The background theories derived from FDA guidlines provided in “Labeling & Nutrition Guidance Documents &
Regulatory Information” used to model the kilocaloric content of food on the basis of macronutrient composition.

(a) Summary of violations of the FDA kilocaloric constraints.
Data points with a red background were found in violation of the
contraint.

(b) Summary of violations of the FDA carbohydrate constraints.
Data points with a red background were found in violation of the
contraint.

Fig. 3: Violations found of the FDA kilocaloric and carbohydrate user-defined constraints.
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due to misrepresentation of caloric content, or macro-nutrient
content, but it is clear that the label is inconsistent with FDA
regulations and the error has gone uncaught.

There was a single instance of potentially good data being
discarded from our set, from data set zero. In data set zero
none of the data matched the manufacturers label. This was
a singular incident for our test data, and we do not treat its
quarantine as necessarily a bad thing. While manufacturer
data for this product does match FDA guidelines, for some
reason all crowd-sourced provided failed to match the manu-
facturer data. The item in question was rather generic (a slice
of bread from a name brand manufacturer) and so may often
be input improperly.

VI. FUTURE WORK

In order to support time-series data integrity checks, which
include constraints on rates of reasonable change, and relation
between points both learned from the data, and supplied
by the user, additional semantics must be added to IAIDO
for aggregation relationships between data objects. Aggre-
gation extends the current relationship modeled by
composition to include when the a set of related data types

are stored in an aggregate composed relationship in which
position in the aggregate may be contextually important. We
are currently exploring both the semantics, implementation,
and experimental considerations of aggregate relationships
using time-series data recorded for heart-rate, position, and
other health-indicators for our study groups.

Currently all objects are defined by the user, and when
new data is entered into the system, it must be typed. We
are investigating means of conducting type-inference on data
drawn from a finite set of known types to further automate the
process, based both on user-defined constraints, and learned
type rules similar to those employed for data-integrity.
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Abstract— Operators of complex, networked systems are 
constantly confronted with a large number of error events that are 
time-consuming to address.  Events in one network component can 
trigger a cascade of events in other components leading to many 
intertwined sequences of a large number of error messages. 
Operators often only seek to identify and understand the root 
cause of a sequence of events indicating a problem, since 
addressing the root cause commonly elevates consequential issues. 
Based on a real world dataset we introduce two techniques to 
reduce the number of events and error logs without discarding the 
root cause. One technique leverages existing process mining tools 
combined with manual analysis. The other relies on computing 
context sensitive embeddings, similar to word embeddings in 
natural language processing. The embeddings are used to cluster 
event types to identify co-occurrence and causality between them. 
While both techniques have their strengths and weaknesses, they 
each significantly reduce the number of possible events, while 
enforcing conditions for causality.  

Keywords— Event Logs, Error Logs, Root cause 
identification, Word2Vec, Clustering, Process Mining.  

I. INTRODUCTION 
In complex, networked systems error events occur almost 

constantly. Within milliseconds an error in one machine can 
trigger an error in another machine and so on. Thus, interrelated 
errors are accumulating quickly. While at the same time, other 
independent errors might occur. The sheer amount of error 
messages confronting a human operator can easily lead to the 
problem of information overload [1]. The machine operators can 
be overwhelmed with thousands of error messages that make it 
difficult and time-consuming to figure out the exact nature of the 
problem, i.e., the root cause. The root cause is the initial error 
event that triggered all the consecutive error events. Such initial 
events might occur almost simultaneously at different network 
entities leading to multiple intertwined event sequences that 
might potentially also interact. This is illustrated in Figure 1. We 
assume that our event log contains no structuring, i.e. there is no 
obvious partitioning into traces, but rather a stream of more or 
less continuous events.  

In this work, we aim to transform error logs by reducing the 
number of errors displayed to an operator who is tasked with 
root cause identification. This is achieved by removing or 
grouping error events. Our goal is not to fully automatically 
identify all root causes, but rather to reduce the workload of the 
operator by reducing the event log size. Once a root cause is 
identified in the reduced event log, an operator might validate 
the finding in the original log. As we do not focus on perfectly 
identifying root causes themselves but on reducing the size of 
the event log without discarding root causes, we can make use 

of co-occurrences and their order as a proxy for causal effects 
between event types. 

 

Fig. 1 Example of an error log (right side) triggered by two independent root 
cause events occurring at different locations in the production site (left side). 

We apply two techniques: (standard) process discovery [2, 
3] combined with manual analysis and a method inspired by 
word embeddings combined with clustering. For each cluster 
(independently), rules to remove or merge event types are 
applied. Both allow to significantly reduce the number of 
candidate events for root causes by enforcing logical conditions 
regarding causality. However, relaxing (strict) causality 
conditions is generally beneficial. That is, allowing for a slight 
risk of removing a root cause or a somewhat larger risk of falsely 
reporting a root cause, can re-duce event logs significantly more. 
We apply both techniques to a real-world dataset from a 
production site of a company that offers batch size systems for 
state-of-the-art fully automated, networked, and digitized 
production.  We achieve a reduction of about a factor of 5 with 
fairly strict causality constraints. 

II. RELATED WORK 
Most work on event logs focuses on root cause identification 

based on graph models [3, 4]. Several recent papers focus on 
discovering and utilizing causal relationships to this end [5, 6, 
7]. For example, [5] generates a partial ancestral graph from a 
situation feature table and uses causal structure learning to 
generate a graph of causal relationships. However, these works 
rely on enriching the event log with additional information e.g. 
a business process model or known information about the 
process each entity of the log occurs in. In contrast, our methods 
focus on the situation where such information cannot be easily 
accessed. Further, these works differ from ours as they aim for a 
clear identification of causal structures, while we focus solely on 
reducing the complexity of the event logs without missing root 
causes. In this regard, our work is similar to [8], which uses co-
occurrence and causal rules to detect anomalous process traces. 

Similar to [9] our work uses a clustering approach to identify 
clusters of event logs. However, they rely on human experts to 
further annotate these clusters and event descriptions, while our 
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method relies only on collected data, i.e., the context in which 
an event occurs in the event log. Another field related to root 
cause identification is the detection of anomalies in complex 
event logs [10, 11]. For example, [11] applies a Word2Vector 
based event log representation similar to the one used in our 
clustering solution. However, instead of event log reduction, 
they focus on the detection of anomalous event sequences. This 
method is similar to trace embeddings, where instead of 
individual events, entire event traces are encoded as vectors [12]. 
The seminal work introducing the α-algorithm [3] is for a 
different setup, where a workflow log is logically organized into 
cases. Identifying the root cause given a “case”, i.e. a sequence 
of events, is trivial: It is simply the first event. However, if the 
“case IDs” are missing, the problem becomes more difficult. 

III. METHODOLOGY  
The overall strategy is to identify relationships between 

event types that allow to reduce the number of potential root 
causes by either excluding event types or combining multiple 
event types. Before describing our two techniques, we first 
formally define two core concepts characterizing the event log 
and problem. 

Definition 1a: An event log 𝐸𝐸 = (𝑒𝑒�, 𝑒𝑒�, … , 𝑒𝑒�) is a sequence 
of events 𝑒𝑒�  =  (𝑐𝑐�, 𝑡𝑡�), with 𝑐𝑐� being an event type (or class), 
and 𝑡𝑡� being the time the event was registered. To allow 
interpretation of the error by human operators, each class 𝑐𝑐� is 
associated with an event message 𝑚𝑚�. 

Definition 1b: The set of events 𝑒𝑒𝑡𝑡� of a specific event type 
𝑐𝑐 is the subset of all events in 𝐸𝐸 of the same type 𝑐𝑐:  

 𝑒𝑒𝑡𝑡� = {𝑒𝑒� = (𝑐𝑐�, 𝑡𝑡�) |𝑐𝑐� = 𝑐𝑐}  

We used two approaches: For the first, we compute event 
type embeddings based on all events of a specific type and the 
context in which they occur. Then, we cluster event types. This 
allows us to reduce the number of comparisons for each event 
type to assess interdependencies to the most likely candidates. 
More precisely, we apply Word2Vec [10] to calculate an 
embedding for each event type. We use the agglomerative 
hierarchical clustering [14] to group event types into clusters. As 
Word2Vec embeddings are context sensitive, meaning words 
that appear in a similar context in the text have similar 
embeddings, the idea is that event types in one group typically 
bear some relationship, i.e. are commonly found in temporal 
proximity, while event types in different clusters are more likely 
unrelated and occur relatively rarely within a short time span. 
Then, we compute a co-occurrence matrix between event types 
for each cluster. Finally, we check which pairs of events within 
a cluster are root causes and which event types can be merged or 
discarded. An illustration of the methodology is shown in Figure 
2. The second methodology is based on process mining using the 
process discovery software “Disco”1.   

A. EventType2Vec 
EventType2Vec assigns a vector to each event type as is 

done for words in the context of text mining, i.e. Word2Vec [13]. 
Word2Vec is a technique from natural language processing for 

 
1 https://fluxicon.com/disco/ 

statistical analysis of texts. Word2Vec has been applied in prior 
work in the context of log analysis [11]. It is based on the idea 
to represent words as vectors.  A vector is sensitive to the context 
in which a word typically appears (i.e. the words before and 
after) and condenses this information into a vector by using a 
small, shallow neural network [13]. Thus, Word2Vec might be 
seen as a dimensionality reduction of the co-occurrence matrix 
that results from partitioning texts into small segments, counting 
pairs of words within each segment, and aggregating the counts.  
The widespread success of Word2Vec is arguably due to two 
factors, namely, its computational speed, allowing it to process 
a large amount of data, and its novel computational properties. 
It allows computing similarities between words (rather than just 
comparisons for equality), which is useful for many 
applications. Vectors also allow for arithmetic operations, e.g. 
the formula “king – man + woman” yields roughly the vector for 
“queen”. Such operations are not easily possible when words are 
represented as tokens or as one-hot encodings, i.e., a vector with 
just a single entry differing from zero.  

When using Word2Vec for error events, we interpret the 
sequence of events as one large text document and the instances 
of events as tokens. Each token is of one specific event type. 
EventType2Vec vectors for each event type are computed using 
subsequences of the event log of a fixed length. The subsequence 
length is defined by a window size parameter w. For each event, 
all w/2 previous and all w/2 consecutive events are considered 
as the context. The choice of the parameter w depends heavily 
on the expected overlap of sequences of events of independent 
root causes. The more sequences overlap the larger w should be. 
For illustration, consider a common sequence of events (𝑒𝑒�, 𝑒𝑒�) 
having root cause 𝑒𝑒� and a second event 𝑒𝑒𝑘𝑘. If a lot of 
independent errors occur, the two events might always be 
separated by multiple other events, e.g. in the log an instance 
might appear as  (𝑒𝑒�, 𝑒𝑒�, 𝑒𝑒�, … , 𝑒𝑒�).  Thus, if a small window size 
is used 𝑒𝑒�, 𝑒𝑒� do not occur in the same window and, thus, they 
will be treated as unrelated. However, w should not be chosen 
too large, i.e., if it is chosen two be the entire size of the event 
log, all contexts are the same for all event types. That is, too large 
w fosters similarity between unrelated event types.  

The similarity score based on vectors of event types ranges 
from -1 to 1. A value of “1” denotes maximal positive 
correlation, i.e., the two event types always occur together. A 
value of “-1” shows a maximum negative correlation, i.e. the 
presence of one event type in a specific part of the sequence 
coincides with the absence of the other. The property of 
Word2Vec that makes it interesting for this task is that event 
types, which usually occur in the same context, also have 
resembling similarity vectors [13].  
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Fig. 2 Overview of the EventType2Vec based clustering approach 

B. Agglomerative Clustering  
Agglomerative hierarchical cluster analysis (AHCA) allows 

the creation of clusters from unlabeled data based on how 
relatively similar/dissimilar they are [14]. That is, event types in 
the same group (or cluster) are similar and require manual 
analysis, while event types in distinct clusters are dissimilar and 
do not need to be investigated. This allows us to reduce the 
number of event type combinations that have to be considered 
as possible co-occurring, i.e. bearing any form of relationship. 
The maximum reduction is from a single cluster with 𝑛𝑛�/2 
combinations down to k clusters each with 𝑛𝑛�/(2𝑘𝑘�) 
combinations to consider. Thus, the number of clusters k 
controls a trade-off between the time that the search for co-
occurring pairs takes by the operator and its recall. Increasing 
the number of clusters speeds up computation, but increases the 
likelihood of a pair being neglected since we treat clusters in 
isolation, i.e. we assume that if an event type A is in one cluster 
and type B in another then they do not bear any relationship. 

The clustering objective of AHCA is to minimize the sum of 
distances within every cluster. AHCA does not take into account 
if clusters strongly differ concerning the number of components, 
which means that a single event type can end up in a cluster on 
its own. Thus, the effective benefit of using k clusters is highly 
data-dependent. A single event type in a cluster indicates that 
this event type bears little to no relation to any other type of 
event and hence can be ignored in further analysis. On the other 
hand, events that occur in similar contexts have a small distance 
between their vector representations. Therefore, they are likely 
to appear in the same cluster.  

To quantify how ‘relatively similar’ objects are, we used the 
Euclidean distance. We applied standard AHCA, where 
distances between all vectors are computed. Since it requires 
O(n2) run-time, computational speed is a concern for large n, i.e., 
a large number of event types. In this case, one might resort to 
approximation algorithms [15, 16] that might rely on some 
randomness in contrast to classical methods that allow for better 
reproducibility.  

C. Co-Occurrence Detection 
Error events usually propagate within a specific time span. 

Thus, if two events have a large time difference, they can be said 
to be unrelated. More precisely, within our log, we say that two 
events 𝑒𝑒� and 𝑒𝑒� are unrelated, if the time difference in their 
occurrence is more than a threshold s, i.e. | 𝑡𝑡� − 𝑡𝑡�| >  𝑠𝑠. Based 
on this threshold we can define a value that measures the co-
occurrence rate of two event types as follows: 

Definition 2: The co-occurrence rate of two events types 
within the time frame of s seconds is defined as  

𝑐𝑐𝑐𝑐(𝑐𝑐�, 𝑐𝑐�) =
���𝑒𝑒�, 𝑒𝑒���𝑒𝑒� ∈  𝑒𝑒𝑡𝑡��, 𝑒𝑒�  ∈  𝑒𝑒𝑡𝑡��, |𝑡𝑡� − 𝑡𝑡�| ≤ 𝑠𝑠, ��

|𝑒𝑒𝑡𝑡��|
  

The co-occurrence rate lies within the range of [0,1], where 
0 signifies no co-occurrence and 1 signifies that always either 
events of both types or none of the two types occur with the time 
frame of s. It is important to note that the rate is not symmetric, 
i.e., generally, 𝑐𝑐𝑐𝑐(𝑐𝑐�, 𝑐𝑐�) ≠ 𝑐𝑐𝑐𝑐(𝑐𝑐�, 𝑐𝑐�).  Equality holds if both 
have the same count, i.e. |{𝑒𝑒𝑡𝑡�}| =  |{𝑒𝑒𝑡𝑡�}|. This is also 
intuitive: If events of one type occurs much more frequently than 
that events of another type then the co-occurrence of the more 
frequent event type should be lower  since it cannot always occur 
together with the rarer event type. 

The definition of the time threshold s might also be event 
type specific, however, in this work, we focus on using a global 
threshold, since, for our case study, events tend to occur 
consistently within fairly short time spans. Choosing the 
threshold too large, yields many spurious, non-relevant 
relationships, i.e. events are associated that originate from 
different root causes. It yields a lower reduction of event logs. 
Choosing it too small, tends to yield more root causes than there 
actually are. If the time between two events exceeds the (small) 
threshold, then a single chain of events (with a single root cause) 
might be treated as multiple chains of events (each with an 
alleged separate root cause). 

To identify the temporal relationships between event types 
within the same cluster, we compute a co-occurrence matrix 
based on Definition 2. As the co-occurrence matrix is calculated 
separately for each of the k (small) clusters, the method is much 
more efficient than relying on one large cluster, i.e., 𝑛𝑛� 2⁄  down 
to 𝑛𝑛� (2𝑘𝑘�)⁄ . To identify potential event types that can be 
merged or deleted, we apply a threshold t on the co-occurrence 
rate. For this, we introduce the following notation that 
essentially demands that events of one type always precede that 
of another type. 

Definition 3: We denote co-occurrences above the threshold 

f with 𝑐𝑐� ≈>�
�

𝑐𝑐� if 𝑐𝑐𝑐𝑐(𝑐𝑐�, 𝑐𝑐�) ≥ 𝑓𝑓. We will use the simplified 
notation 𝑐𝑐� ≈> 𝑐𝑐� for a fixed threshold f selected by the 
operator. 

Based on this definition we set forth the following rules to 
simplify our error logs. 

Rule 1: if  𝑐𝑐� ≈> 𝑐𝑐� there is either a causal relation between 
𝑐𝑐� and 𝑐𝑐� or they share the same root cause.  

Therefore, by merging the two event types we do not delete 
the root cause but preserve it earlier in the log or in the merged 
event type.  

Rule 2: if 𝑐𝑐� ≈> 𝑐𝑐� and ∀ �𝑒𝑒� = (𝑐𝑐�, 𝑡𝑡�). 𝑒𝑒� =

�𝑐𝑐�, 𝑡𝑡��� : 𝑡𝑡� < 𝑡𝑡�then either 𝑐𝑐� causes 𝑐𝑐� or they share the same 
root cause.  
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TABLE I.  EVENT PATTERNS AND THEIR HANDLING TO REDUCE THE NUMBER 

OF ENTRIES. 
Pattern Description Transforming Strategy 

Recurrence of a 
single event type 

Events of the same type 
occur many times in a short 

time span. No significant co-
occurrence with other 

events. 

Keep only once 

Undirected pairs A pair of events that show 
strong undirected co-
occurrence (A≈>B) and 
(B≈>A) 

Combine (A, B) into one new 
event G occurring whenever 

event A would occur. 

Directed Pairs Pair of events that show 
strong co-occurrence in one 
direction (A≈>B) but not the 
other (B≈>A) 

Combine (A, B) into one new 
event group G whenever A 

occurs; 
Occurrences of B without A 

remain unchanged 
 

Therefore, by removing an event of type 𝑐𝑐� whenever an 
event of type 𝑐𝑐� occurs, we do not delete the actual root cause 
from the log.  However, we can wrongly declare 𝑐𝑐� as the root 
cause, when the actual root cause occurs earlier in the event log 
and it is not treated as co-occurring, i.e. it is below the threshold 
t. Furthermore, we can also declare another event type 𝑐𝑐� 
wrongfully as a root cause, if 𝑐𝑐� ≈> 𝑐𝑐�   and 𝑐𝑐� ≈> 𝑐𝑐�.  The 
latter can be easily avoided if we only remove an event type 𝑐𝑐�   
if 𝑐𝑐�  ≈> 𝑐𝑐�   and there exists no 𝑐𝑐�  such that   𝑐𝑐� ≈> 𝑐𝑐�.  

For a threshold of f = 1 (100% co-occurrence) the above 
rules do not allow that a root cause event gets removed. 
However, if the threshold f is very low (significantly below 0.5) 
and events originating from different root causes are intertwined 
in certain ways, root cause events might be removed. However, 
keeping the threshold at f = 1, is not favorable, since if the order 
of events is identical in all, possibly millions of cases, but differs 
once, the event types are treated as not having a causal 
relationship. For illustration, consider two common sequences 
of events with types (𝑐𝑐�, 𝑐𝑐�) and (𝑐𝑐�, 𝑐𝑐�) having root causes  
𝑐𝑐� and 𝑐𝑐�. If in the event log only once there is a sequence being 
the concatenation of the two ((𝑐𝑐�, 1), (𝑐𝑐�, 2), (𝑐𝑐�, 3), (𝑐𝑐�, 4)) 
then no causal relationship between 𝑐𝑐1 and 𝑐𝑐2 will be assumed. 

 An initial analysis of a sub-sample of the dataset leads to the 
discovery of different patterns of event pairs analogous as for the 
α-algorithm [3] or any other algorithm aiming to fulfill causality 
constraints, where precedence of events is listed as one 
condition.  Table 1 summarizes these patterns and the strategy 
that can be applied to reduce the number of event logs. Some 
pairs show an almost perfect co-occurrence, where error A 
almost always predicts error B (A≈>B) and the other way around 
(B≈>A). These are easiest to handle in terms of reducing error 
messages as each pair can be combined into a new (aggregated) 
event group G. That is, each pair of co-occurring events (A, B) 
or (B, A) in the log is replaced by a new event “type” G replacing 
the two events. Note that our definition of co-occurring allows 
for a time gap of s between two events, i.e. they might not appear 
directly after each other, i.e. we replace (A, C, D, B) with (G, C, 
D). 

Relations do not necessarily occur only between pairs. 
Larger clusters of co-occurrences are possible, e.g. for elements 
A, B, and C we could have (A≈>B), (B≈>A), (A≈>C), (C≈>A), 
(B≈>C), and (C≈>B). Thus, multiple event types can be 
combined into a single event type group. Technically, these 

cases can be covered by iteratively applying the merging rule for 
pairs (taking into consideration newly merged event pairs) until 
no further reduction is possible, e.g. for (A≈>B), (B≈>A), 
(A≈>C), (C≈>A), (B≈>C), and (C≈>B), we merge (A, B) into G 
yielding (G≈>C), (C≈>G). Then, we merge (G, C) into G’. 

An event type can also form a cluster on its own, i.e. the 
cluster consists only of the single event type. Such an event type 
does not show significant similarity with any other event type. 
If event messages of this type occur regularly within the event 
log and within a short time of other events of the same type, this 
is an indicator for redundant messages. A possible cause can be 
a problem that generates an error message continuously in a 
fixed interval until it is solved. 

D. Process Mining 
The second approach is based on process mining and more 

specifically the analysis of process maps. This approach used 
the process mining software “Disco” for process discovery. 
The software was used repeatedly to refine clusters, excluding 
them from the dataset, and creating a new process map from 
the remaining events.  

To identify different kinds of event clusters a manual 
strategy was applied. This strategy was developed based on the 
CRISP-DM methodology and an initial manual inspection of a 
subset of the dataset. Figure 3 shows an overview of this process. 
After cleaning the event log a process map is generated. Figure 
4 (left) shows an excerpt of the initial process map. The operator 
manually identifies continuous paths of events, i.e. they appear 
as chained events. Figure 4 (right) shows an example of such a 
path found in the dataset. If the initial event of a path does not 
have any more dependencies it can be identified as a root cause. 
All events in a path after a root cause are deleted as we assume 
that resolving the root cause error resolves all depending errors. 
If the first event of the path is no root cause, all events on the 
path are merged into one event that contains the event messages 
of all merged events. While this does not directly identify a root 
cause, it still allows to reduce the number of events in the log 
and therefore the overall number of events. This process is 
formalized in Algorithm 1.  

Disco requires a process ID to identify separate events to 
properly generate a process map. As this is not explicitly defined 
in the original dataset, the hostname has been used to separate 
processes. As a result of this decision, only dependencies within 
one hostname are found through the process mining approach.  

 

Fig. 3 Overview of the Process Mining approach. 
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Algorithm 1: Process Mining Work Flow for Event Log Reduction 

1. Visualize the error log E as a process map. 
2. Identify and exclude event types without dependencies and 

duplicates. 
3. Find paths of at least two event types: 𝑝𝑝�  =  𝑐𝑐�−> 𝑐𝑐�−> ⋯ −> 𝑐𝑐� 
4. for each 𝑝𝑝�: 
5.     if 𝑐𝑐� has no dependencies: 
6.   Mark 𝑐𝑐� as root cause 
7.     else: 
8.   Replace 𝑐𝑐� with new event type 𝑐𝑐�� 
9.      Delete 𝑐𝑐�,…,𝑐𝑐� 

 

 
Fig. 4 Left: Excerpt from the process map generated by the tool “Disco” in the 
first iteration of the process mining approach. Line strength shows association 
strength between events. Right: Example of a potential cluster given by a path. 
There is a clear sequence of event dependencies without any forking. 

IV. EVALUATION AND RESULTS 

A. Dataset and Preprocessing 
The original dataset had 3,563,724 events in one large log 

file with 503 different error event types and 18 of them occurring 
more than 10,000 times. Error events are potentially logged 
repeatedly until the error is solved. We removed duplicates by 
keeping only the first event for a subsequence of events of the 
same type. One example of this is the error “FMC file not 
found”, which corresponds to a share of 76% of the entire event 
log. This message appears thousands of times in a row, with each 
message only separated by at most one second. Since this error 
originates from a remote client, an overload could be avoided by 
reducing the notification interval or even changing the 
notification procedure in such a way that this client sends the 
information about the missing file just once and waits until the 
problem is handled. By applying these adaptations to the 
production setup, the event log reductions from pre-processing 
can be carried over to an online application. Overall, 
preprocessing reduced the dataset to 732,579 event logs without 
excluding any event type from the dataset. 

B. Clustering 
Before testing our method on the complete dataset, we first 

applied it to a small subset of the event log, in order to identify 
a good configuration for the model parameters. For the 
Word2Vec encoding, we chose a window size w of 100 events. 
There is no strong sensitivity to the parameter w, i.e. w of size 
50 and 200 yield comparable results.  For the agglomerative 
clustering, we set the number of clusters to k=50 and used an 
Euclidean distance measure. Thus, given that we have 503 event 
types, this yields an average cluster size of 10 event types. Since 
clusters are analyzed manually, we found an average size of 10 
to be a well-manageable size. Otherwise, we relied on the 

standard parameters provided by the python library scikit learn. 
For computing the co-occurrence value, the co-occurrence time 
window s from Definition 2 was chosen as s = 60 seconds. The 
threshold for considering a co-occurrence from Definition 3 was 
set to f = 0.85. 

Next, we present some of our findings for the specific use 
case. We discussed these and other findings with a domain 
expert from our industrial partner, which deemed them 
reasonable. 

One interesting outcome of using EventType2Vec is that 
events that appear very often and without any apparent 
relationship to any other type of event also have highly unique 
similarity vectors, meaning each one of these is put into a cluster 
on its own and hence does not need to be checked any further. 
An extreme example of this is the event (“FMC file not found”).  

Following the clustering and co-occurrence computation 
described in Sections 4.1 to 4.3, a total of 3 event pairs were 
detected. An example for an undirected pair are the event types 
with the ids 54X05 and 54X06. Combining these two events into 
one reduces the number of messages per day by around 100. 

An undirected cluster is formed by four event types that 
occur around 600 times in the dataset and their pairwise co-
occurrences range between 92% and 100%. The root cause 
seems to be a problem with the supply voltage, which in most 
cases precedes the other three messages, whose temporal order 
follows varying patterns, though having only median distances 
of a few seconds. Merging these messages helps decrease the 
total size of the event log by around 1800 events. 

There also seems to be some link between the event pair 
61/62 and event 9300, which occurs in 87.5% of cases together 
with or a few seconds before event 61. If this happens, the three 
errors could be condensed into one message. However, there are 
also many cases where 9300 occurs on its own, making it an 
example of a directed pair. So no general merging of 61/62 and 
9300 should be performed.  

C. Process Mining 
A specific process in our dataset concerned the handling of 

external files. Each step in the file processing generated a 
different message (e.g., start, run, done, error, file not found) 
which made up a quarter of the analyzed dataset. For this 
process, only the outcomes are relevant which means only the 
logs “Done”, “Error”, or “File not found” are relevant and, 
ideally, “Error” and “Done” should only occur once for each file.  
Like in the EventType2Vec analysis, this process generated 
many redundant error events. Handling this specific process 
helped reduce the original 188,602 logs concerning files to only 
1,629 logs. Overall, process mining used 710,852 different error 
occurrences, which were reduced to 303,692 error occurrences 
through getting rid of unnecessary events and finding duplicates. 
Furthermore, 30 different processes could be found within these 
303,692 events, while 161,045 events out of these do not seem 
to have dependencies, the remaining 142,647 logs could be 
further reduced to 55,548 by applying the strategies summarized 
in Table 2. In the end, the initial 710,852 initial event logs could 
be reduced to 216,593.  
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V. DISCUSSION AND LIMITATIONS 
While both methods show a similar reduction of events, they 

both have their advantages and disadvantages. The largest 
downside of the process mining methodology is its reliance on a 
manual operator in each iteration. The application of 
EventType2Vec followed by clustering on the other hand relies 
heavily on cluster parameters both in the resulting quality and 
the run time. This is a considerable obstacle to usability in a real 
world context, where workers are generally not familiar with  
such highly technical parameters. Still, in principle, the 
computation of an embedding and the clustering can be skipped, 
if the problem size is small or large computational resources are 
available. Further, in contrast to the process mining approach, 
using EventType2Vec clustering and the following 
simplification rules does not incorporate any knowledge about 
the dataset. On the one hand, this is an advantage as it highlights 
the generality of the method. It can be used for other datasets 
from unrelated fields and it is applicable in cases where there is 
no expert available. On the other hand, there is also no 
possibility for an expert to incorporate their knowledge into the 
algorithm. In practice, a combination of both approaches will 
likely lead to the best results. One could for example imagine a 
process in which clustering is applied first to identify the most 
common event type co-occurrences and redundancies to reduce 
the workload of a more manual process mining approach 
performed by an expert further down the line.  

Our research focuses on the reduction of event logs in 
complex networked systems. As this scenario does still rely on 
a human operator to further analyze the reduced logs, it is not a 
fully automatic method for identifying error causes. We 
discussed the outcomes with our industrial partner. While the 
partner was pleased, a more exhaustive qualitative component 
based on the evaluation of actual operators would be desirable. 
However, the decrease in the total amount of event logs, along 
with the fact, that based on the co-occurrence measures from 
Definition 3 no root causes can be deleted, there is a clear case 
for practical relevance of the methods. This includes 
functionality to visually explore a reduced event log and drill 
down to expand subsequences of merged events to their original 
non-merged counterparts. A future study should focus on 
quantitatively evaluating the method on a dataset with labeled 
ground truths for event relations and root causes. Our 
methodology primarily helps in pointing towards potential root 
causes but the final verification of them is still a manual 
approach. An indicator quantifying the likelihood that an 
identified root cause is actually a root cause might be helpful. 

VI. CONCLUSION 
We introduced and evaluated two methods for reducing the 

number of events in error logs presented to human operators. 
This helps to reduce information overload and facilitate faster 
problem identification. The process mining approach relies more 
heavily on a human operator but allows the incorporation of 
domain knowledge, while the clustering methodology based on 
vectors from EventType2Vec requires no knowledge of the 
semantics of events but also does not allow the direct 
incorporation of such knowledge to improve the quality of the 
outcome. While both methods achieve a considerable event log 
reduction on their own, a combination of both methods, where 

the more automated Word2Vec clustering is used to reduce the 
event logs for more manual process mining seems to be 
promising. In future work, we also aim to leverage other NLP 
techniques, e.g. topic modeling to discern event traces and 
identify root causes [17], potentially in combination with 
explainability methods. 
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Abstract—Just as user preferences change with time, item
reviews also reflect those same preference changes. In a nutshell,
if one is to sequentially incorporate review content knowledge into
recommender systems, one is naturally led to dynamical models
of text. In the present work we leverage the known power of
reviews to enhance rating predictions in a way that (i) respects the
causality of review generation and (ii) includes, in a bidirectional
fashion, the ability of ratings to inform language review models
and vice-versa, language representations that help predict rat-
ings end-to-end. Moreover, our representations are time-interval
aware and thus yield a continuous-time representation of the
dynamics. We provide experiments on real-world datasets and
show that our methodology is able to outperform several state-
of-the-art models. Source code for all models can be found at
[1].

Index Terms—recurrent recommender networks, dynamic lan-
guage model, attention for recommendation

I. INTRODUCTION

Following the deep learning agenda, the success of mod-
ern recommender systems heavily relies on their ability to
leverage meaningful representations that allow for the accurate
prediction of a purchase or a rating. Fundamentally one must
dwell into interest modeling, as an effective recommendation
is such that it uncovers, for a given user, a hidden interest in an
unknown item. It is natural to study the change of user interest
with time and, in the present work, we seek to incorporate
these dynamical notions with those of text reviews.

Reviews are effectively a form of recommendation, and
one that is directly provided by the user. The challenge
however, stems from the unstructured and ambiguous nature
of reviews (and natural language itself). A user might, for ex-
ample, simultaneously highlight positive and negative aspects
of the different items she reviews. Following current trends
in natural language processing, we leverage review content
through neural models of text and attention mechanisms, and
guarantee the information content of those representations via
reproduction quality. We encourage the dynamical aspect of
text recommendations by learning representations which help
predict both when is the next review arriving and what does it
say. One is then led naturally to dynamical language models,
since enforcing good text predictions ensures its dynamical
representation quality.

II. RELATED WORK

There is a large body of research invested in recommender
systems (RS), a big part of which has lately been devoted
to capture the temporal dynamics of both users and items.
One of the first temporal models for recommendation is the
TimeSVD++ [2], which extends the SVD++ matrix factoriza-
tion algorithm by introducing time-dependent latent factors.
From the neural network perspective, many models for RS
have been developed [3]–[5], and Recurrent Neural Networks
(RNNs) have been used to capture time-ordered user activity.
For example, session-based item recommendation use RNNs
to infers user preferences from sessions of user behaviour [6]–
[9]. Another example, closer to our work, is the Recurrent
Recommender Networks (RRN) which uses two independent
RNNs to model user and item dynamics separately [10].

Just as with user (and item) temporal representations, in-
cluding review content representations has also been shown
to significantly improve rating prediction and item recom-
mendation [11]–[14]. However, some of these models break
causality, in the sense that they either use the review of the
item whose rate one is predicting, or use item reviews that
have not been received by the time the item of interested was
rated.

Finally, a model that combines RRN (a dynamical RS) with
character-based autoregressive language models for reviews
has recently been develop [15]. This work however, does not
leverage the review content for rating prediction.

In contrast to all these works, we combine dynamical
recommender systems with a dynamical language model that
captures review content evolution, and use the review repre-
sentations together with the user-item temporal representations
in a causal fashion, to predict the rating of the next review.

III. DYNAMIC REVIEW-BASED RECOMMENDERS (DRR)
The interests and preferences of users vary as they age, or

change their social status or lifestyle. Exogenous factors like
trends or seasons also affect user preferences. For example,
users tend to look for different clothe types in winter than
those they look for in summer. Users also tend to change their
music tastes as they age. Such preference changes are naturally
encoded in the collections of reviews and ratings given by
these users over time. Our goal is to learn representations
capturing them. We therefore develop a model that explicitly
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Fig. 1: Dynamic Review-based Recommender. The model consists of three interacting components: (i) a temporal model
composed of two RNNs, one for users and the other for items, which we called Dynamic Model of Review Sequences; (ii) a
neural language model which leverages the temporal representations of both user and items, and which we called Dynamic
Model of Review Content; and (iii) a Rating Model which combines the user and item temporal representations with the review
content representations to predict ratings. Note that when q = t in the language model component, the Dynamic Review-based
Recommender is causal. The model is non-causal when q = t+ 1.

uses the text content and ratings of past reviews together with
the history of when those reviews were written to better predict
user interest in unknown items.

Consider a dataset D with a number of V items (as e.g.
businesses or services, movies, products, etc.) and a number
of U users. An element e ∈ D consists of a sequence of Ne

reviews re = {(xe
t , τ

e
t , δ

e
t ,y

e
t )}Ne

t=1, where the t-th review is
composed of its text xe

t , creation time τet , inter-review time
δet ≡ τet − τet−1 and rating vector ye

t .
Such review sequences re effectively define time series, and

each of these can either be associate with a user u (in which
case we set e = u), or an item v (in which case e = v).

Thus the rating vector for user u is such that yu
t ∈ V ,

with yu
t,v = p if user u rated item v with rating p. Conversely,

the rating vector for item v is such that yv
t ∈ U . Note that

both of these vectors are large and sparse. To process them
efficiently we perform dimensionality reduction via hashing,
following [16].

Our main idea is to model the user and item review
sequences separately, via two independent RNNs which out-
put temporal representations encoding the nonlinear relations
between timing and rating of past reviews. We then feed these
temporal representations to neural models of text, thereby
yielding instantaneous review content models, while simul-
taneously use them to predict when are new reviews going
to arrive and what are their ratings. The model thus consists
of tree interacting components: a temporal model composed
of two RNNs, one for users and the other for items, which
we called Dynamic Model of Review Sequences, a neural
language model which leverages the temporal representations
of both user and items, and which we called Dynamic Model
of Review Content, and a Rating Model which combines the
user and item temporal representations with the review content
representations to predict ratings. In what follows we dwell
into the details of these building blocks. Figure 1 summarizes
the Dynamic Review-based Recommender (DRR) model.

A. Dynamic Model of Review Sequences

Given a sequence of reviews re, we process each of its
elements recursively via a RNN with hidden state he

t ∈ H .
At each timestep t, we first compute the hidden representation

zet = We
τ τ

e
t +We

δδ
e
t +We

yy
e
t + be, (1)

where We
τ ,W

e
δ,W

e
y and be are learnable parameters and

zet ∈ E . We then update the RNN’s hidden state thus

he
t = f

(e)
θ (zet ,h

e
t−1), (2)

where f
(e)
θ is implemented by a LSTM network [17].

Note that the superindex e is used here to emphasize that we
have two sets of functions namely, one for the user (e = u) and
one for the item (e = v) reviews. The temporal representation
he
t thus defined not only encodes the history of ratings, but

also the time lag between past reviews, thereby yielding a
continuous-time representation of the dynamics.

To enforce encoding quality, we first use he
t to predict the

arrival time of new reviews via a simple Review Creation
Model, which we shall now introduce. Later we will explicitly
use hu

t and hv
t to predict ratings through a Rating Model.

1) Review Creation Model: The inter-review times δet can
be modeled as following an exponential distribution whose rate
parameter λ(e)

θ (he
t ) is a function of the temporal representation

he
t [18], [19]. In practice we approximate the function λ

(e)
θ :

H → >0 with a multi-layer perceptron. The log-likelihood
of the Review Creation Model is then

log p(δe) =

Ne∑
t=1

log pθ(δ
e
t+1|he

t )

=

Ne∑
t=1

(
log λ

(e)
θ (he

t )− λ
(e)
θ (he

t ) δ
e
t+1

)
.

(3)

Note that predicting the arrival times of new reviews can be
done by either sampling the exponential distribution, or using
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the mean of the distribution directly. In our experiments we
use the mean of the distribution.

B. Dynamic Model of Review Content

Consider the t-th review in the sequence re, whose text
content is given by xe

t = (we,t
0 ,we,t

1 , . . . ,we,t
Le

t
), where we,t

j

and Le
t label the j-th word and the number of words in

that review, respectively. To capture how the review content
changes within re, we define the probability of observing
the word sequence xe

t at the t-th review as the conditional
probability p(xe

t |ht−1). Here we define the global temporal
representation ht encoding the nonlinear relations between
timing and ratings of past reviews as ht ≡ concat([hu

t ,h
v
t ]),

with hu,v
t defined in Eq. 2.

Note that when processing the dataset D, the modeling of
review content does not need to differentiate between user and
item. We therefore drop the superindex e in what follows.

Below we present two models for p(xt|ht−1), one based
on a Bag-of-Words (BoW) representation, and another on an
autoregressive language model. Both models will be trained
by maximising log p(xt|ht−1). These language models will
ultimately allow us to define a vector representation s̄t, sum-
marizing the content of the t-th review, which we will later
use as input to our Rating Model.

1) Bag-of-Words Neural Review Model: We assume the
words in xt are generated independently, conditioned on ht−1,
that is p(xt|ht−1) =

∏Lt

j pθ(w
t
j |ht−1), where we follow [20]

and write the probability over words as

pθ(w
t
j |ht−1) =

exp {−a(wt
j ,ht−1)}∑V

k=1 exp {−a(wt
k,ht−1)}

,

a(wt
j ,ht−1) = −h⊤

t−1Rwt
j − bwt

j ,

(4)

with R ∈ 2H×V and b ∈ V trainable parameters, ht =
concat([hu

t ,h
v
t ]) and wt

j the one-hot representation of the j-
th word in xt.

We define the summary representation for xt as the Bag-
of-Words (BoW) representation s̄t ∈ V , where V is the
vocabulary size [21].

2) Autoregressive Review Model: In contrast to the BoW
model above, autoregressive language models approximate the
probability over the word sequence xt as [22]

p(xt|ht−1) =

Lt∏
j=1

pθ(w
t
j |wt

<j ,ht−1), (5)

where wt
<j labels all words previous to wt

j .
The conditional probability above depends on both wt

<j and
the global temporal representation ht. To model it we take an
approach akin to that of the variational autoencoders of text
[23]. That is, we first concatenate ht with all word embeddings
in xt, i.e. we define w̃j = concat[wj ,ht−1], and then process
the new vector sequence with a RNN with hidden state stk ∈
S , whose update equation reads stj = gθ(w̃j , s

t
j−1). Here gθ

is implemented by a LSTM network, with equations similar
to those below Eq. (2).

The distribution pθ is then defined as a categorical distri-
bution over a vocabulary of size V , whose class probabilities
are given by πt

j = softmax(Wstj), where W ∈ V×S is a
learnable matrix.

We now define the summary representation for xt as a
weighted sum over word representations s̄t =

∑Lt

j αt
js

t
j

where the j-th weight αt
j is calculated with the gated attention

mechanism proposed in [24]

αt
j =softmax(k⊤

j q),

kj =tanh(M1 s
t
j + b1)⊙ σ(M2 s

t
j + b2),

(6)

where M1,M2 ∈ A×S and b1,b2 ∈ A are learnable
parameters, q ∈ A can be interpreted as a learnable global
query, ⊙ denotes element-wise multiplication and σ(·) denotes
the sigmoid function. This type of attention is introduced to
solve the problem of the limited expressiveness of the tanh(·)
to capture complex relations, due to the fact of approximate
linearity in the region [−1, 1].

As we shall see below, this attentive summary representation
allows us to track the most relevant words affecting the rating
of a given item as time evolves.

C. Combining temporal and summary representations
Given the temporal representations for user and item reviews

(i.e. hu
t , hv

t ), and the summary representation for review
content s̄t, we want to predict the rating ŷuvt ∈ that user
u gives to item v. There is, however, still the question of
how to combine hu

t and hv
t with s̄t. After exploring different

possibilities we found two optimal solutions namely,
1) DRR-BoW: For the Bow Neural Review Model we aug-

ment Eq. (1) and define z̃et = zet+We
s s̄t, where W

e
s ∈ H×S

is an additional learnable weight, to get h̃e
t = f

(e)
θ (z̃et , h̃

e
t−1),

where f
(e)
θ remains the same as in Eq. (2). The new repre-

sentation h̃e
t now encodes the nonlinear interaction between

timing, rating and text of past reviews.
2) DRR-LM: For the Autoregressive Review Model we

instead define

h̃e
t = W(e)concat([he

t , s̄t]) + b(e), (7)

with W(e) ∈ H×(H+S),b(e) ∈ H learnable. The resulting
representation h̃e

t also encodes the interaction between timing,
rating and text, albeit through a different route.

D. Rating Model
We have now all ingredient to predict the rating ŷuvt ∈ that

user u gives to item v. We compute ŷuvt with a factorization
machine (FM) [25], here defined as

ŷuvt+1(h) = w0 +
2H∑
i=1

wihi +
2H∑
i=1

2H∑
j=i+1

⟨vi,vj⟩hihj , (8)

where h ∈ 2H ≡ concat([h̃u
t , h̃

v
t ]), w0 ∈ , w ∈ 2H and

V ∈ 2H×K are learnable parameters, K is set to 10 and ⟨·, ·⟩
denotes dot product.

We choose the loss function of the Rating Model to be the
mean square error function between ŷuvt and our prediction
ŷuvt (h).
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E. DRR Loss function

The complete loss function of the DRR model has therefore
three components: the loss of the Rating Model, the loss of the
Dynamic Model of Review Sequences, which is the negative
log-likelihood of an exponential, and the loss of the Dynamical
Model of Review Content, which is the negative log-likelihood
of our word sequence model. Explicitly we write

L =
1

|D|
∑

u,v∈D

∑
t

(yuvt − ŷuvt=1)
2

−λ1

∑
e∈D

Ne∑
t=1

log pθ(δ
e
t+1|he

t )− λ2

∑
t

log pθ(xt|ht−1),

(9)

where λ1, λ2 ∈ + are hyperparameters.

IV. CAUSALITY

By construction, both DRR-BoW and DRR-LM models
above preserve causality — the models do not use any
information from the future to predict ratings. As mentioned in
the introduction, however, most recommender system models
that leverage review content use the review xv

t+1, written by
user u, to predict the rating yuvt+1 given by this same user to
the item v. In order to fairly compare our methodology with
such models, we use the degrees of freedom available within
the definition of the DRR-LM model and redefine

h̃e
t = W(e)concat([he

t , s̄t+1]) + b(e). (10)

This new representations encodes s̄t+1, the summary repre-
sentation of the review whose rating it predicts, and breaks
causality. Below we refer to the model using the causal
representation Eq. (7) as DRR-LM-C, whereas we denote the
model using the non-causal expression Eq. (10) as DRR-LM-
NC.

Naturally, the causal model is to be preferred as we normally
do not have review content about the item whose rating we
want to predict. Nevertheless, we shall see that the non-causal
model lends itself when one is interested in tracking the words
which most affect the rating of a given item as time evolves.

V. EXPERIMENTS AND RESULTS

Data set To test our model we choose the Amazon dataset
[26]. We pick four 5-core subcategory datasets namely, Auto-
motive (A), Digital Music (DM), Tools and Home (TH) and
Pet Supplies (PS). The review creation time is defined as the
difference in days between the original timestamp and the
timestamp of the first review in the dataset. Next we group
reviews by day, since the granularity of the timestamps is
day based. All users or items with less than 5 days (i.e. time
series with less than 5 points) are removed from the dataset.
The autoregressive language models use the review raw text,
changed into lower case. Preprocessing scripts can be found at
[1]. Statistics of the preprocessed data is summarized in Table
I.

Training Our model predicts ratings through the user and
item dynamic representations, which come from two indepen-
dent RNNs. Simply applying backpropagation through both
sequences is computationally forbidden. In order to overcome
this problem, we train the user and item RNNs alternately.
We first freeze the parameters of e.g. the items’ RNN, and
only update those of the users’ RNN, while back-propagating
the gradients of all ratings for a user batch. The items’
dynamic representations are taken to be fixed. We then repeat
these operations but now with the user parameters and user
representations frozen.

Model Configuration We split each dataset along the time
dimension into three parts: training set (80%), validation set
(10%) and test set (10%). We use grid search on the validation
set for hyperparameter tuning. We set the hidden dimension
H of the temporal representation he

t to 32, and the embedding
dimension E of zet to 100. Regarding the review content
models, we set the vocabulary size V to 2000 for DRR-BoW
and to 5000 for DRR-LM. In the latter case we also use GloVe
word embeddings [27] (these corresponds to the wt

j in Eq. (5))
with dimension 300. For DRR-LM we also set the attention
dimension A to 64 and the embedding dimension H ′ of the
(concatenation of the) temporal and summary representations
to 64. We use Adam [28] with learning rate 0.0002 and
β1 = 0.9 and limit the review length to 150 tokens. All
methods are implemented using PyTorch v1.31. Source code
for all models can be found at [1].

Results Given an user and item of interest, the DRR model
predicts the arrival time, rating and the probability over the
word sequence of the next review, and we optimize the model
to give the best performance on the rating prediction task.

Our methodology incorporates modeling the dynamic as-
pects of user-item interaction with neural models of review
content. To test the importance of each of these components
for the problem of rating prediction, we test our models
against (i) the Probabilistic Matrix Factorization (PMF) [29],
which is a static recommender system which does not model
review content; (ii) the RRN [10], a causal model which learns
dynamic user/item representations (albeit non-continous), but
does not model review content; and (iii) three static models
which do leverage review content, namely DeepCoNN [14],
D-ATT [13] and AHN [12]. These last three models are non-
casual since they either use the review of the item whose rate
they predict, or use item reviews that have not been received
by the time the item of interest was rated. Table II shows
results for all models on the chosen datasets. We use boldface
to highlight best results in both causal and non-causal cases.

Let us start by focusing on the causal models. First we note
that both DRR-BoW and DRR-LM-C outperform the RRN
model, which confirms the known fact that review content
helps in rating prediction tasks. We remark however that in this
case the models in questions are dynamic, and it is the content
of past reviews what is successfully being used. Interestingly,
DRR-BoW beats DRR-LM-C which may hint at the fact that

1https://pytorch.org/
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TABLE I: Datasets statistics. The mean and the standard deviation of the number of reviews, sentences and words per review
with respect to the user and item.

Automotive Digital Music Tools and Home Pet Supplies

user/item user/item user/item user/item

mean std mean std mean std mean std

reviews 6.1/9.3 1.7/5.5 7.8/9.0 6.2/6.5 7.8/10.6 5.3/9.0 7.44/13.7 4.4/14.2
sentences 8.7/9.7 6.3/7.5 6.3/4.9 11.9/10.2 8.4/7.5 8.1/7.8 7.8/6.5 7.7/6.9
words 89.8/101.6 68.3/82.5 52.5/38.2 106.4/94.6 80.3/70.5 85.6/83.3 68.9/55.9 71.1/66.2

TABLE II: Mean-square error on the rating prediction (* results taken from [12]).

static non-causal models causal-models

Datasets PMF* DeepCoNN* D-ATT* AHN* DRR-LM-NC RRN DRR-BoW DRR-LM-C

A 0.9187 0.7809 0.7654 0.7314 0.7791 1.0927 0.7838 0.8171
DM 0.8788 0.8754 0.8506 0.8172 0.7250 0.7961 0.7723 0.7801
TH 1.1182 0.9856 0.9850 0.9671 0.9264 1.0896 1.0406 1.0656
PS 1.4340 1.2598 1.2730 1.2515 1.0500 1.1970 1.1734 1.1918
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My two small - breed dogs - a unk mini poodle
and a unk unk unk - both love these ! The
treats are big enough that you only need to
give one at a time , and it ’s enough to make
them happy . ( Plus , an added bonus for
unk and unk is that they do n’t smell unk all
the recent news unk dog treats and food from
COUNTRY A** , I refuse to buy anything that
isn’t COUNTRY B** made - so the first thing
I check on any product label is where
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unk looking for quality ear protection
this one for you . unk around head very
comfortable , adjust very easy , and with
these things on you can unk hear a thing
. Just what the ” unk unk ” ordered .
Made of high quality impact plastic ,
these will last for a long time .

Once you use a pair of really good unk ,
you ’ll never go back to foam unk again .
These are comfortable and very effective
at unk unk noise .

Fig. 2: Upper Left: Dynamic attention on the words ’COUNTRY A’ and ’smell’ for an item in ’Pet Supplies’ dataset. Upper
Middle: Review sample from the beginning of the time series. Upper Right: Review sample from the end of the time series.
**The real names of the countries are replaced with masks ’COUNTRY A’ and ’COUNTRY B’ for fairness. Lower Left:
Dynamic attention on the words ’comfortable’ and ’ear’ for an item in the ’Tools and Home’ dataset. Lower Middle: Review
sample from the beginning of the time series. Lower Right: Review sample from the end of the time series. The darker the
highlight color for a word, the higher its attention value.

it is enough to know that certain key words are present in
the review, as opposite to e.g. word order, to better predict
the rating. Regarding the non-causal models, DRR-LM-NC
outperforms all other models in almost all datasets, which
shows that one indeed needs to not only account for review
content, but also for its dynamic character. Remarkably, both
causal models DRR-BoW and DRR-LM-C perform better than
all their non-causal competitors in two of the datasets (see
the Digital Music and Pet Suplies rows in the table), and
comparable to them in the others.

We can conclude that our models successfully learn both
temporal user/item representations and review content repre-
sentation which together are useful for rating prediction.

Let us now consider the dynamic attention mechanism of

the DRR-LM-NC, which allows us to e.g. follow in time the
weights αt

j (defined in Eq. 6) of the words in the reviews
for the item whose rate we aim at predicting. The higher
the weight of a word, the stronger its relevance to the rating
prediction. Figure 2 Upper Left shows the attention weights
on the words ‘COUNTRY A’ and ‘smell’ as time evolves for
a given product in the ‘Pet Supplies’ dataset. One can see that
although at the start of the time series the word ‘smell’ was
important for determining the rating, its relevance decreases
as the weight on the word ‘COUNTRY A’ increases. After a
closer look at the reviews we learn that at the start of the time
series most reviews were related to the smell of the product
(e.g. whether the dogs were liking the product’s smell). Later
on, however, the manufacturing company moved the product



production to COUNTRY A, and this event was successfully
captured by our attention model. Figure 2 Upper Middle shows
an example review for the item in question, from the start of
the time series. Words with darker highlights mean here words
with higher attention weight. One can see that the word ‘smell’
is highlighted as important. In contrast, Figure 2 Upper Right
displays a review sampled from the end of the time series, in
which one sees the word ‘COUNTRY A’ has more relevance
than the word ‘smell’. Similarly, the Lower row of Figure 2
shows the attention weights on the words ‘comfortable’ and
‘ear’ as time evolves for a given product in the ‘Tools and
Home’ dataset.

VI. CONCLUSION AND FEATURE WORK

In this work we proposed a recommender system model
which accounts for the dynamic aspects of user preferences, as
reflected in their history of reviews and ratings. We explicitly
learn continuous-time representations for both users and items,
and use these to define dynamic language models for review
content. The latter provided us with review content represen-
tations which, when combined with the temporal user/item
representations, proved to be useful in predicting the hidden
interest of users in unknown items. Indeed, our results outper-
formed several state-of-the-art recommender system models in
rating prediction tasks, in different datasets.

We also introduced a new dynamic attention mechanism
which allowed us to track the most relevant words for a given
rating of an item of interest at a given instant of time.

Future directions of work include developing attention
mechanisms between reviews with different timestamps, and
learning more generic dynamic representations able to charac-
terize hidden dynamics global to all users.
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production to COUNTRY A, and this event was successfully
captured by our attention model. Figure 2 Upper Middle shows
an example review for the item in question, from the start of
the time series. Words with darker highlights mean here words
with higher attention weight. One can see that the word ‘smell’
is highlighted as important. In contrast, Figure 2 Upper Right
displays a review sampled from the end of the time series, in
which one sees the word ‘COUNTRY A’ has more relevance
than the word ‘smell’. Similarly, the Lower row of Figure 2
shows the attention weights on the words ‘comfortable’ and
‘ear’ as time evolves for a given product in the ‘Tools and
Home’ dataset.

VI. CONCLUSION AND FEATURE WORK

In this work we proposed a recommender system model
which accounts for the dynamic aspects of user preferences, as
reflected in their history of reviews and ratings. We explicitly
learn continuous-time representations for both users and items,
and use these to define dynamic language models for review
content. The latter provided us with review content represen-
tations which, when combined with the temporal user/item
representations, proved to be useful in predicting the hidden
interest of users in unknown items. Indeed, our results outper-
formed several state-of-the-art recommender system models in
rating prediction tasks, in different datasets.

We also introduced a new dynamic attention mechanism
which allowed us to track the most relevant words for a given
rating of an item of interest at a given instant of time.

Future directions of work include developing attention
mechanisms between reviews with different timestamps, and
learning more generic dynamic representations able to charac-
terize hidden dynamics global to all users.
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Text Based Category Code Machine Learning Classification  
for Smart Procurement
O. Ugur, A. A. Arısoy, M. Gulcakir and M. C. Ganiz

In a construction project, the procurement operation is crucial in terms of project cost. Especially for large 
scale projects the size of this operation can become very large as well, in terms of the number and variety 
of purchased items. ENKA Systems, which is a subsidiary of the ENKA, the largest construction company 
in Turkey, has developed a software system for procurement processes which includes a coding systems to 
standardize the procurements that is especially beneficial for large scale projects. As the system is kept being 
used, the hierarchical tree structured coding reached a fairly complicated system due to its extensive scope. 
This causes the procurement officials to oversee a large part of the operations manually to make sure that the 
properties of the items are correctly inputted so that they are traceable, for future purchases as well. In this 
study a machine learning model for classifying the category code of the purchased item is developed. The 
quantity, unit of measurement, description and common cost code, which is an important input according to 
the information provided by the ENKA’s procurement and supply chain management department, are used 
as input for the developed models. The models are trained with raw text data, text data with pseudo word 
inputs such as “__UNIT__” and “__QUANTITY__”, and using the text information of the item description 
combined with one-hot encoded format of unit and common cost code parameters. The performance of these 
models are compared and results are verified using 10-fold cross validation method and inputs provided by 
the procurement officials.

Scaling Artificial Intelligence in Industrial Applications
F. Niszl, S. Meixner, A. Suendermann, J. Kemnitz and D. Schall

Artificial Intelligence (AI) is increasingly explored in various domains and industries. Many companies expe-
riment with AI, but too often those experiments are one-off analyses based on outdated data and the resulting 
models never make it into production. Therefore, we suggested to structure the AI model into a predefined 
template and enable a self-serviced app a domain expert can operate via a dashboard. The operator can link 
recorded data to the model, trigger the training, check quality metrics, and deploy the model in “one-click” on 
the target platform as for example an edge device. The edge device links sensor data with the model input and 
model output as feedback back into the industrial process. Model training, deployment and lifecycle manage-
ment can be carried out in a scalable manner by a non-expert. A large number of models can be managed in 
parallel, and data can be linked to the respective sensor or machine. This approach is generic to a large set of 
typical sensor data. In this work we show the application in two different use-cases i) visual quality inspection 
in an assembly line and ii) anomaly detection in time series data.
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Data ecosystems - An incubator for data innovation
L. Höllbacher

We are witnessing a new industrial revolution driven by data, computation and automation. Data has thus be-
come a driver of economic success, but it‘s full potential only unfolds through cross-company collaboration 
that simultaneously ensures control over proprietary data across corporate boundaries. This requires a po-
werful and competitive as well as secure and trustworthy infrastructure that is compatible with the European 
GAIA-X initiatives. This is exactly the solution nexyo offers: an operational IT system for decentralised data 
networks that enables scalable data governance and cross-company data exchange.

Hybrid Method for Targeted Conversations  
in Online Classified Marketplace
Y. Rahimi, A. Kamandi, A. Hoseini and H. Haddad

Online/offline chat is a convenient approach in the electronic markets of second-hand products in which 
potential customers would like to have more information about the products to fill the information gap bet-
ween buyers and sellers. In this article, we introduce a method for the question / answer system that we have 
developed for the top-ranked electronic market in Iran called Divar which is in top 20 classified sites in the 
world by semi supervised and distributed system. When it comes to secondhand products, Incomplete product 
information in a purchase will result in loss to the buyer. One way to balance buyer and seller information of 
a product, is to help the buyer ask more informative questions when purchasing. Also, the short time to start 
and achieve the desired result of the conversation was one of our main goals, which was achieved according 
to A/B tests results. Profit of creating such systems is to help users gather knowledge about the product ea-
sier and faster. We collected a data set of around 10 million messages in Persian colloquial language and for 
each category of product we gathered 1000K messages, of which only 2K were Tagged and semi-supervised 
methods were used. In order to publish the proposed model to production, it is required to be fast enough 
to process each conversation in micro second on CPU processors. In order to reach that speed, in many sub 
tasks faster and simplistic models are preferred over deep neural models and for handling this we proposed 
distributed semi supervised method which requires only a small amount of labeled data and by utilizing text 
categorization methods to reach the information available for each messages. Currently our model used in 
Divar production on CPU processors and 15% of buyers and seller’s messages in conversations is directly 
chosen from model output and more than 27% of buyers have used this model suggestions in at least one 
daily conversation.
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Beyond Desktop Computation:
Challenges in Scaling a GPU Infrastructure

Martin Uray
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Abstract—Enterprises and labs performing computationally
expensive data science applications sooner or later face the
problem of scale but unconnected infrastructure. For this up-
scaling process, an IT service provider can be hired or in-house
personnel can attempt to implement a software stack. The first
option can be quite expensive if it is just about connecting
several machines. For the latter option often experience is
missing with the data science staff in order to navigate through
the software jungle. In this technical report, we illustrate the
decision process towards an on-premises infrastructure, our
implemented system architecture, and the transformation of the
software stack towards a scaleable Graphics Processing Unit
(GPU) cluster system.

Index Terms—Shared Computing, GPU, Infrastructure, On-
Premises, Cloud

I. INTRODUCTION

In the course of computing history, sufficient computing
power often exhibited a basis for the application of novel
ideas. But it often also has been the basis for research
ideas that were not superior because of the idea, but simply
because of sufficient computing power available. Here, in
some kind of sense, the increasing computational power
drove the development of research ideas [1]. The steadily
increasing amount of computational power was long driven
by Moore’s Law, whereas the producing industry is not driven
by this observation anymore [2]. Also the field of Artificial
Intelligence (AI) gained popularity due to the amount of
increased computational power, and evolved in new fields,
like Deep Learning (DL) [3], [4].

Due to the promising results by applications of AI methods,
a lot of research is currently performed in the field of AI
based methods. Working with AI, especially DL, the question
of the computational resources arises sooner or later. We
observed, that in a lot of companies, Data Scientists are often
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the only ones with expertise in Computer Science. Besides
their main function, they have to take care about computing
infrastructure - even if it is not their field of expertise. This
causes, that a huge amount of time is spent on research for
applicable tools, systems, and environments to develop on.

Similar to other companies, start-ups, and universities, a
simple GPU on-premises infrastructure is maintained within
our institute, consisting of only a single server. This com-
puting infrastructure was initially implemented as simple as
possible, due to the lack of expertise and time. By using
fair-share, one server with eight GPUs was set up. This
machine specification can be found in Section IV, line C1.
On this machine, for eligible people access was granted for
research and training. When submitting a computation job,
one user had to choose a not used GPU and start the job
by only using this one dedicated resource. For multi-GPU
jobs, several resources were allocated and blocked. With this
setup it was likely to happen, that one user did not restrict
a jobs resources according to the policy and blocked all
computational resources. Additionally, inferences with other
jobs are possible, leading to failures in all involved jobs. With
a growing number of users on such a shared hardware, the de-
mand for manageable permissions and restrictions increased.

Up-scaling and extending such an on-premises infrastruc-
ture, while preserving easy usage can be quite complex,
without the help of experts in the field of IT infrastructure and
High-Performance Computing. Also, the decision, on whether
to move to the cloud shall be well defined, since this must
be argued towards various stakeholders.

In the progress of planning the extension of our existing
computational resources, several questions came up while
being aligned with the set requirements:
Q1 Is a transition into the cloud financially beneficial or

should the existing on-premises infrastructure be ex-
tended?

Q2 Are there preexisting solutions available?
Q3 What hardware components are needed and how to

design the architecture?
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Abstract—The increasing digitization of medical imaging
enables machine learning based improvements in detecting,
visualizing and segmenting lesions, easing the workload for
medical experts. However, supervised machine learning requires
reliable labelled data, which is is often difficult or impossible to
collect or at least time consuming and thereby costly. Therefore
methods requiring only partly labeled data (semi-supervised)
or no labeling at all (unsupervised methods) have been applied
more regularly. Anomaly detection is one possible methodol-
ogy that is able to leverage semi-supervised and unsupervised
methods to handle medical imaging tasks like classification
and segmentation. This paper uses a semi-exhaustive literature
review of relevant anomaly detection papers in medical imaging
to cluster into applications, highlight important results, establish
lessons learned and give further advice on how to approach
anomaly detection in medical imaging. The qualitative analysis
is based on google scholar and 4 different search terms, resulting
in 120 different analysed papers. The main results showed that
the current research is mostly motivated by reducing the need
for labelled data. Also, the successful and substantial amount
of research in the brain MRI domain shows the potential for
applications in further domains like OCT and chest X-ray.

Index Terms—anomaly detection, medical imaging, lessons
learned

I. INTRODUCTION

The increasing digitization of medical imaging enables
the collection of data and machine learning (ML) based
approaches to aid medical experts. One powerful part of
ML comes from supervised methods, using both data and
corresponding labels in e.g. segmentation or classification
models. However, since the collection of annotations (labels)
is often times time consuming and thereby costly [1] as
well as in many cases a confident ground truth even being
unobtainable, their usability is reduced. Due to this, semi-
supervised and unsupervised methods are applied. This is
often achieved through anomaly detection.

Definitions: Pathologies in medical images can often be
described as a rare deviance from a norm, or a non-anomalous
(in the case of medical imaging mostly healthy) sample.
This fits the definition of outliers (or anomalies) in the
data, motivating the application of anomaly detection [2].
In this publication, the terms anomaly detection and out-
lier detection are used interchangeably. This is motivated
by the fact that outliers are sometimes defined as valid
but out of order datapoints, while anomalies also include

further differences (e.g. different image capture modalities).
Therefore outliers can be defined as a subset of anomalies.
Anomaly detection can be separated into 3 classes, point,
collective and contextual anomalies. Point anomaly detection
is the task of recognizing a single anomalous point from a
larger dataset. Most anomaly detection models handle point
anomalies. Collective anomalies are anomalies that may not
be identified as anomalies if viewed as a single point but as a
set of many they form an anomaly. Contextual anomalies can
only be recognized as anomalies if context is added. There are
also 3 different anomaly detection setups, supervised, semi-
supervised and unsupervised anomaly detection. Supervised
anomaly detection is comparable with classification using a
very unbalanced dataset. Semi-supervised anomaly detection
aims to train a model on only one, typically the normal (in
our case healthy) class and then applies the model to both
healthy and pathological data, reporting the corresponding
scores. Unsupervised anomaly detection uses both, normal
and anomalous data, does not make use of labels at all and
works purely on intrinsic properties of the dataset (using
distances or densities) [3]. In anomaly detection, the usage of
semi-supervised and unsupervised anomaly detection (UAD)
is confused, and repeatedly applied to both semi-supervised
and unsupervised methods. We believe that the separation
into semi-supervised (healthy data being clearly defined) and
unsupervised (no definition of labels at all) makes sense and
advise to use this terminology as also pointed out by [3].

Deviation based anomaly detection: Anomaly detection
using medical image data, e.g. computed tomography (CT)
scans, is typically performed using either convolutional neural
network (CNN) based feature extractors, followed by one-
class (OC) classifiers or deviation based methods like au-
toencoders (AEs) [4]–[6] or even more recently, generative
adversarial network (GAN) [7]–[9] based methods. Both
AEs and GANs use convolutional kernels, however their
applications in the sense of deviation based anomaly detection
are fundamentally different to CNN based feature extractors.
In order to generate deviation based scores from an AE, the
encoder of the encoder-decoder based neural network typi-
cally encodes a sample image into a lower dimensional latent
space, also called a bottleneck. The decoder uses this latent
space representation to recreate the sample and a deviation
between the sample and the reconstruction can be calculated.
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Q4 What software components need to be part within the
used software stack?

In this work, we are outlining the architecture of our
established GPU computing infrastructure, as it scaled from
a single server to a multi-instance computing cluster. This is
based on the decision towards an on-premises infrastructure
and the alignment with defined requirements. This report shall
not give the impression of being a best practice, however, it is
intended to show the considerations that are necessary when
transforming infrastructure to a multi-instance cluster setup.

This report is structured as follows: In Section II we give a
short overview of our considerations to decide on a Cloud or
on-premises computing infrastructure within our institution.
Section III outlines the requirements on the infrastructure,
that led to the architecture of the infrastructure Section IV and
the setup of the cluster Section V. In Section VII we discuss
about advantages and disadvantages of our implementation
with an outlook and further considerations.

II. CLOUD VS. ON-PREMISES COMPUTING

Deciding on weather to run ones projects in the cloud or as
an on-premise infrastructure involves many different aspects
which are examined in the following. As one question this re-
port shall answer is weather a transition for the computational
tasks into the cloud is beneficiary, the emphasis in this section
is put on factors which could lead or force ones intention to
one or the other solution.

Like described in [5], there are models for grasping the
scope of IT activities which shall not be our main focus
here. Nevertheless, finding an appropriate solution for the
own institution or company is key to a cost-effective solution.
When further referring to [5] not just IT based Operations
and Infrastructure (O&I) need to be considered but also ones
that influence those. Thus, each of these may change when
adopting from one model to another. Due to these manifold
influencing factors in those areas and activities, a decision is
highly based on the processes an institution applies.

Some of the important key-factors are: Cost, Scalability /
Upgradeability, Network Connectivity, Maintainability, Secu-
rity, General Data Protection Regulation, Disaster Assistance,
and Data Backup and Recovery. These factors are essential to
consider when planning to deploy services to cloud providers.
Nevertheless, cost is often the one considered first.

A. Costs

When comparing Cloud to On-Premise expenses, compa-
nies usually start looking at hardware bought for local usage
and on-demand (virtual) hardware. But it is necessary to get
a complete picture of the total costs which cannot be reduced
to a plain procurement process.

As indicated in [5], O&I needs to be accounted for which
translate to Capital Expenditures (CapEx) and Operation
Expenditures (OpEx) when referring to economical terms.
Additionally, it is noted, that especially for maintenance, it
is necessary to spend a regular, potentially high amount for
an on-premise solution compared to a similar cloud resource.

TABLE I
ROUGH ESTIMATE IN EUR WHEN ON-PREMISE SOLUTIONS PAY OFF.2

Month 1 2 3 11 16
Procurement 24500
Electricity 250 250 250 250 250
Manpower 1200 1200 30 30 30
Cost p. m. On-Premise 25950 1450 280 280 280
Overall On-Premise 25950 27400 27680 29920 31320
Cost p. m. Google 2057 2057 2057 2057 2057
Overall Google 2057 4114 6171 22627 32912
Cost p. m. Azure 2947 2947 2947 2947 2947
Overall Azure 2947 5895 8842 32420 47156

This is based on the companies needs: electricity costs,
administrative staff, licenses and trainings.

Cloud resources, therefore, are incorporating those addi-
tional costs, offering services at a fixed price per resource and
consumed time. However, it is still possible, to create solid
cost efficient structures for machine learning when reducing
OpEx and keeping CapEx at an acceptable level. Especially
when dealing with Green AI. That may be the usage of
renewable energy sources or facilitating outdated refurbished
machines/hardware, in order to establish a GPU cluster.

For the decision on the extension of the institutes in-
frastructure experiments, regarding the usage of the existing
infrastructure, where conducted. Over the period of four
months (April - July 2021) the usage was monitored and
logged. The usage over this period is used as a baseline1 for
the calculation process. Overall 7366 hours of GPU usage
were monitored, what translates to a 32% grade of operation.

In Table I an estimation of the costs over a period of
16 months is shown. The procurement costs are based on
the existing on-premise infrastructure (C1). The costs of
electricity are estimated based on the assumption, that 60% of
the maximum power consumption is used in idle mode and
the rest added based on the actual usage.3 The assumption
on manpower is based on the fact, that the initial setup was
done during the first two months and further maintenance was
barely needed. With this on-premise solution, the initial costs
were high, but the overall monthly costs were kept low.4

For the calculation of the monthly costs, the mean monthly
usage is considered (1843h/month). For both, MS Azure and
Google Cloud, a setup was chosen with a commitment to min.
three years.5

Comparing all three variants (on-premises, Google Cloud
and Microsoft Azure) with the observed rate of operation, on
the ”costs per month” the Azure configuration has a break-
even at month 11 and the one from Google Cloud from month

1Pessimistic baseline, since during the second half of the year (Aug - Dec)
a much higher usage is observed.

2Rounded to full numbers. Break-even points indicated in bold.
3Not covered in calculations: 5% of the electricity consumed in-house are

produced with solar panels.
4The hourly rate for manpower has been set to 30C/h. The server is running

at 2600 Watt and the electricity prices set at 0,28C/kWh.
5Prices (in EUR) as of 05.08.2021. Azure configuration: NC24s v3

instances with 24vCPU, 448 GiB Ram, 4x Tesla V100. Google Cloud: AI
platform with BASIC GPU training tier. All platforms hosted in Europe.
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Fig. 1. Cost tendency graph, illustrating the costs per usage for the used
on-premises (dashed line) and a fictional cloud solution (solid line) for the
calculated usage of the cluster. The shadowed areas denote varying usage in
the range of 10 − 70%. For each, on-premises and Google Cloud, a rough
estimation for the usage of 20% and 40% is indicated.

16. Although, these systems are not completely equal in terms
of hardware, the table provides a rough direction when an on-
premise solution gets profitable.

Figure 1 illustrates the same data, where the black solid
and dashed line represent the costs for the Google Cloud and
on-premises solution, respectively, over time. The shadowed
area around both lines indicate a calculated range of variance
for a mean usage between 10% and 70%. Additionally, for
both variants two further lines, indicating the theoretical trend
for 20% and 40%, are indicated by the gray lines.

More specifically, Figure 1 renders the trade-off between
cloud and on-premises computing in terms of costs. The on-
premises solution faces the issue of high costs in the initial
phase, but far less further costs. Using cloud services one pays
exactly what is consumed. Depending on the actual usage,
on-premises can pay-off sooner or later in case the system
set-up may allow to save expenses during procurement or the
running ongoing costs.

In literature also other comparisons on the costs of cloud
vs. on-premises computing can be found, see [6].

B. GDPR

The protection of the intellectual properties and values of
an institution or conforming to GDPR can be one of the
reasons which force professionals to refrain from using cloud
resources. Although, the large established cloud providers
(e.g. Microsoft, IBM, Amazon, Google) provide possibilities
to rent services which are hosted in particular regions, it is
important to note that those are mainly American companies
which may be forced to provide information, possibly sensi-
tive data, even if stored in some other a non-us region.

C. Other issues with Cloud Resources

In the following other important issues when dealing with
cloud resources are listed:

• Attacks: cloud resources might be more vulnerable to
attacks, not because they are more vulnerable in principle
but with services, domains and exploits well-known by
hackers they are rather under attack than custom services
unknown to the (international) public.

• Network connectivity dependency and downtimes: Chal-
lenges arising due to technical outages of the world
wide web may severely brake your manufacturing e.g.
when thinking about production processes demanding
real-time processing.

• Limited control and flexibility: Although, cloud
providers getting richer in terms of tools and services,
controlling remote hardware, servers or services may be
still quite hard to deal with and may come with their
own peculiarities which are difficult to manage.

• Vendor lock-in: provided services and interfaces are
often highly proprietary and do not conform to cloud
native structures or even basic IT standards.

• Disaster Assistance and Data Backup and Recovery may
grow in complexity if e.g. a non-cloud based backup
is required for cloud resources. However, for the GPU
cluster backup only exists in form of a recovery image
which restores the initial installation state. Further, as
this cluster is used as a computing engine, which is
doing batch processing, data on that cluster also resides
on other systems and is not lost when data corruption
occurs.

III. REQUIREMENTS TO OUR ON-PREMISES
INFRASTRUCTURE

The intended infrastructure is used for different purposes
(research, course work) and by different groups of people
(faculty, scientific staff, and students). Each of the stake-
holders has different requirements for the setup. Before the
design of the architecture, the requirements were defined in
order to select the components of the software stack and
the topology of the cluster accordingly. For our setup, we
identified requirements, which are discussed in the following.

(A) Ease of usage Development of all algorithms and jobs
to be executed is done on local machines. To execute
the jobs on the cluster, no modifications on code and
no major changes on the call are necessary. Data and
other necessary resources need to be available for the job,
where ever it is scheduled to be executed. Additionally,
no knowledge about the system itself is necessary for
execution.

(B) Scheduling of Jobs A jobs execution is decoupled from
the scheduling. This means, that a users, who submits a
job, does not have to know about the architecture of
the cluster or the setup of the computing nodes. When
submitting a task, this is appended to a queue of jobs.
When executing a job, the request for a certain type of
resource is stated (e.g. type of GPU, memory, etc.). The
system schedules the jobs according to first-in-first-out
and the availability of the requested resources.
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(C) Workload Distribution Resources shall be used equally
over the system, where possible. If several computing
nodes with likewise configuration exist, it must be as-
sured that the load of work is distributed among those
nodes. It must be avoided, that only few components
take care of the whole computation, whereas the others
are not used.

(D) Permission Management Different stakeholders use the
cluster for different purposes. Hence it shall be possible
to assign users to groups to restrict their usage to a
defined policy. As a figurative example, members of the
group students shall only be allowed to use x GPU at a
time for a maximum of n hours. This shall reduce the
potential risk of misusing the infrastructure.

(E) Maintainability and Scalability It shall be possible to
remove and exchange parts of the system, without too
much time effort, and downtime. The same applies to
the extension of the system: For future developments,
the system must be designed in such a way, that addi-
tional computing power can easily be extended with no
major modification to the system itself, which enhances
complexity to the architecture and the configuration.
Heterogeneous setups should be configurable.

(F) Network Speed When designing the topology of the
connection between all the components within the sys-
tem, it shall be taken care of to design this system in
such a way, that the network speed is high and influences
from other network traffic that reduce speed kept low. On
the other hand, also the traffic between the components
must not have any influence on the other resources on the
network. Printing, access to the web or file servers must
not be reduced in speed, just because of transferring data
among two nodes.

(G) Costs The last requirement concerns the monthly costs
of the infrastructure. Monthly costs are intended to be
as low as possible, while initial costs must be below a
certain predefined budget.

IV. INFRASTRUCTURE ARCHITECTURE

During the research, several solutions, offered by various
companies were found, like [7]. All of these solutions posed
the drawback to exceed the defined procurement budget.

The architecture of the up-scaled infrastructure is motivated
by [8] and inspired by [7]. The designed architecture is
illustrated in fig. 2. The whole cluster is completely abstracted
from the public network by an interface router. This interface
router creates a private network for the whole infrastructure,
without putting load on the public network by data syn-
chronization between the nodes. As a result, this hides the
complexity of the infrastructure to the outside, while being
still accessible from the public network. For the implemented
cluster, a MikroTik CRS-309-1G is being used.

For the private, cluster network, instead of a conventional
Gigabit Ethernet, a SFP+ connection is established. This
protocol support data rates up to 10 Gbit/s. This enables faster
synchronization between the nodes.

Fig. 2. The network architecture of the setup contains an interface node,
several computing nodes (C1 . . . Cn), and a storage node, all hidden behind
a router. The dashed lined indicates the default route for the ssh connection.

Within this private network, several nodes are connected.
The interface node poses as the entry point to the cluster and
the only accessible machine within the network for users. On
this device, all tasks are scheduled and distributed according
to the set policy and configuration. This node does not have
any GPU, so no accidental blocking of resources may happen.
For the setup, the interface node is the standard gateway for
the SSH access.

The actual computing tasks are scheduled to the computing
nodes (C1 . . . Cn). These machines are equipped with suffi-
cient computing power, GPUs, and memory. For the imple-
mentation, the already available machine (old infrastructure)
C1 is being used. Additionally, a further machine C2 is added
to the system. The configuration of all machines (C1, C2, and
I) are described in Section IV.

As indicated, this architecture also makes it easy to increase
the number of further nodes. In fig. 2, a dedicated storage
node is indicated. This storage is available by all components
within the cluster and enables access to all data by all nodes.
For the current implementation, this storage is not included in
the setup. A dedicated storage will be added with one of the
future extensions. Currently, only the storage from the nodes
C1 and C2 is used by all nodes.
All devices and nodes in the implemented setup are chosen,

so that they are easily built into a existing server rack within
the in-house server room.

V. CLUSTER SETUP

For the setup of the cluster and the software stack, extensive
research was needed. This was caused by the variety of soft-
ware products available and their interoperability, enterprise
products on the market, and expensive reference solutions.
The following setup is inspired by the huge computing
infrastructure of the University of Massachusetts [9]. The
selection and installation of the software stack is based on
the instructions in [10].

Each node in the initial setup of the cluster is based on
a long-term support (LTS) Linux distribution. In the setup a
Ubuntu 20.04 LTS Server is used. The decision towards a LTS
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TABLE II
CONFIGURATION OF THE NODES AS IMPLEMENTED WITHIN THE SETUP.

Node GPUs CPUs RAM Local Storage
I - 1x AMD EPYC 7302P , 3.00 GHz 126 GB 460 GB system
C1 8 NVIDIA GeForce RTX 2080Ti 2x Intel Xeon Silver 4114, 2.20 GHz 230 GB 230 GB system + 8 TB data
C2 3 NVIDIA RTX A6000 2x AMD EPYC 7452, 2.35GHz 512GB 240 GB system + 8 TB data

version was done for a long lifetime support. Among others,
consumer options used in practice are CentOS Linux 7 [9],
and Ubuntu 20.04 LTS [10]. A comprehensive overview and
comparison of the operating systems and components used in
other clusters can be found on the TOP 5006 list.

On each of the computing nodes, the appropriate CUDA
driver is installed. The correct driver and CUDA version is
dependent on the GPU and operating system.

Since the jobs to be executed are scheduled by a central
entity on a machine within the cluster, storage synchronization
is crucial. A user is only able to access the interface node.
All data and environments also need to be synchronized to the
other nodes, so that the execution of the scheduled jobs work
properly. As noted in Section IV, no dedicated storage node
is implemented within the cluster. The storage integrated in
both computing nodes, C1 and C2, is provided as storage for
the cluster. The storage is used as a ZFS (Zetta file system)
and mounted from all other nodes within the cluster. Each
machine mounts that storage to the same mount point in the
file system. With other setups different approaches can be
found, where either everything is mounted using only one
directory [10] or the storage split among several directories
for different purposes (e.g. home directories, research storage,
scratch space, temporary Space) [11]. Within the implemented
cluster, only the home directories and a data directory are
shared within the cluster.

For password-less connections from the master to all
worker nodes, the ssh keys are exchanged and munge is used
as an authentication service. For the application of the used
workload manager, MariaDB is used.

As a workload manager, the decision was made to-
wards SLURM [12]. Another workload managers commonly
used is HTCondor [13]. The decision towards SLURM
is not only based on the reference implementations, but
also since SLURM is easy to use. Let’s consider a sim-
ple script, name execute_me.py. Using SLURM, apply-
ing a standard configuration, it is scheduled as simple as
sbatch python execute_me.py. No further adapta-
tions are needed to be taken care of.

Additionally, SLURM, which has a large community, is
well documented, and even has enterprise support. Further-
more, over 60% of all supercomputers use SLURM in their
setup [14]. SLURM can be used for any size of clusters and
works well with over 1, 200, partially different, GPUs [9] and
to smaller setups and clusters. Both, HTCondor and SLURM,
can be used interoperable. An overview on this and on both
tools itself is given by [15] and [16].

6https://www.top500.org/

SLURM is a highly configurable component. This work-
load manager can be configured in the most basic approach,
where it works only as a simple workload manager that
balances jobs on all nodes, up to a system were it is a part
of a software stack, that not only restricts access to resources
for certain users but also interconnects with other plugins
like for accounting for the actual usage. For the implemented
system, the initial configuration has two groups of users,
where different types of GPUs are restricted to certain user
groups. For instance, users of the group factuly may use all
GPU, and members of students are restricted to GPUs on
computing node C1. Additionally, users from the first group
can schedule as much jobs as needed, where the jobs are
executed as soon as possible, and members of the latter can
only have one job running at a time.

Users and groups are managed using FreeIPA7. This soft-
ware component offers an intuitive Web-UI for managing all
accounts. For the initial setup, the clusters user accounts are
intentionally independent of the organizational accounts for
the rest of the official IT infrastructure. FreeIPA allows not
only to add and delete users and groups, but it also allows to
set validity periods, storage quotas, and much more.

VI. FUTURE ADAPTIONS

The purpose of this cluster is in computational power for
research and academia. In both fields, it will be likely that
the demand for computational power will increase in the
following years. For this purpose, several adaptions to the
cluster are planned already.

The first extensions on the number of computation nodes
will be with a more ‘low-spec’ hardware. Using already
available consumer hardware, the cluster will be extended, so
that the number of computational devices increases. Using,
e.g. several discarded, slower hardware can be offered in
exchange for more jobs in parallel. Given the current situation
on the international market, where only a small number and
on overpriced GPUs are available, this is a very attractive
option as long as the memory requirements of jobs are not
too high. Additionally, from an economical perspective, this
gives the hardware a second life instead of being recycled.

Depending on future usage, also more memory compu-
tational tasks may be executed on the machine. Therefore,
SLURM also needs to be configured, so that no GPU, but a
certain amount of memory can be allocated.

As noted in Section V, no dedicated storage is used within
the implemented cluster. A further extension, where dedicated

7https://www.freeipa.org
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storage is aimed. This storage is also planned to be fault-
tolerant, by using formats of storage virtualization.

Maintaining a continuously growing infrastructure, it is not
easy to keep an overview of the status on all machines and
devices in the cluster simultaneously. To make administration
easier, a cluster management system will be implemented.
Observing the status of all connected nodes and devices,
managing them, and taking actions on events will be the main
task of the component implemented by this extension.

In Section II, the comparison of the costs of using the cloud
infrastructure is elaborated. Depending on the usage of the
cluster, it is a further use case to overcome performance peaks
by including cloud resources by an external vendor/provider.
By starting a cloud instance while the cluster is in high
demand, quick jobs can be outsourced to the cloud, which
speeds up the execution of jobs.

Depended on future usage, it is also possible to improve
the hardware to enable computational jobs, with a memory
demand higher than the memory of a machine. RDMA8 is an
extension technology with the ability to access memory from
one host to another remote.

VII. DISCUSSION AND CONCLUSION

In this work, we focused on an overview of the trans-
formation of a research machine with several GPUs to an
extensible cluster of several computing nodes, each offering
several GPUs.

The requirement on the ease of usage (requirement (req.)
(A)) is preserved. Due to the usage of SLURM, no modifica-
tions need to be done on the code or the call itself, only the
execution needs to be done using SLURM. Also, the schedul-
ing of jobs (req. (B)) and the workload distribution (req. (C))
are handled by SLURM. The permission management (req.
(D)) is also covered, commonly by SLURM and FreeIPA.

The requirements on maintainability and scalability (req.
(E)), as well as on network speed (req. (F)) are both covered
by the design of the clusters architecture. Further machines
can be easily added with a minimum configuration effort.
So even when starting with a small number of computing
nodes, like in our case with two, it exhibits an effective and
efficient platform to work with. The maximum speed within
the network is above the standard network used within our
institution and the traffic on the cluster does not influence the
public network, due to its private scope.

The costs (req. (G)) are kept low and within budget. One
might argue, that the components in this proposed setup are
still not from a low-cost price range. However, all components
described within this work can be replaced with existing and
more budget-friendly components. Additionally, the monthly
costs are controlled, without surprises by an unexpected
increased demand.

In the introduction, we posed four questions that were
asked before this project and answered within this work.
Q1 was concerned, whether it is beneficial for the proposed

8Remote Direct Memory Access

use case to use cloud resources. In Section II, this topic is
elaborated extensively. By showing a comparison of the costs,
the decision was made against cloud solutions and to foster an
on-premises infrastructure. Also, preexisting solutions (Q2)
were not considered, since our research showed, that those
solutions are above the given budgets limit. The design of the
architecture (Q3) and the components of the software stack
(Q4) are shown in Section IV and Section V, respectively.

In growing enterprises, data science departments, and
research facilities data scientists, often the only computer
science or engineering experts, also have to take care of
their infrastructure. A simple solution is established fast, but
scaling is hard. A lack of expertise often results in sub-optimal
or redundant solutions or endless research.

In this work, we showed from a data scientist perspective,
how to scale an existing infrastructure with a limited budget,
while, among other requirements, maintaining extensibility.
We presented our architecture and the software stack of our
cluster with job scheduling.
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Abstract—The potential of data analytics and modeling, espe-
cially in the context of digital transformation, is well known and
seen as an opportunity to increase competitiveness and innova-
tion in companies. However, the technical and organizational
implementation of these methods poses challenges specifically
for SMEs. A regional multi-case study explores the causes and
exhibits patterns that suggest differentiated recommendations
for action. Awareness of the diverse limitations and challenges
can help all players involved – companies, universities and
governmental organizations – to design future projects in an
even more targeted manner.

Index Terms—data science, digital transformation, SME,
triple helix

I. INTRODUCTION

Data science is a team effort that usually requires sev-
eral roles: A data scientist that is not only proficient in
mathematics and programming, but can also apply machine
learning methods to target applications. A data engineer, who
is responsible for the physical data storage, which includes
infrastructure design, data access, data security etc. A data
analyst that analyzes existing data and creates visualizations,
reports or dashboards. Higher-level management tasks are
usually taken over by a Chief Data Officer (or Data Manager),
who reports to the executive management [1].

While big companies have increasingly large data science
teams, SMEs most often do not have comparable capacities.
Fortunately, this does not need to keep them from develop-
ing innovative ideas and implementing data-centric projects.
Innovation and economic development is often driven by
the successful collaboration of three players: academia (uni-
versities), governmental organizations and the industry. This
interplay is known as Triple Helix Model [2], that formalizes
the interdependencies and interactions between the three
players responsible for a region’s long-term technological
development.

The study presented in this publication was conducted as part of the
research project ”DataKMU – Vernetzung und Wissenstransfer im Bereich
Data Science” that is funded by the European Regional Development Fund
with grant number AB215.

Exchange with and input from universities and other re-
search facilities can help with the realization of new ideas.
University-industry collaborations provide access to addi-
tional know-how and human resources outside the company
and often enable testing of new ideas without risk to the
production environment. Companies cannot flourish without
the infrastructure and legal framework provided by the gov-
ernment. Besides legal frameworks for copyrights, taxation
and location policy, the government’s role is to set funding
programs to encourage collaboration and to provide incen-
tives for innovation. The interplay between government and
academia defines the long-term strategic research direction
and can shape both the academic landscape as well as the
job market.

The federal state of Salzburg offers a specific funding
program designed to support the digitization efforts of re-
gional companies, mainly SMEs. In order to assess the
program, the currently funded projects in the context of data
science were evaluated. The companies that participated in
the multi-case study were selected with the support of the
regional innovation service agency, taking care to cover as
diverse a spectrum of industries, company sizes within the
category SME and geographic locations within the federal
state of Salzburg as possible; the ICT sector and e-commerce
businesses were deliberately excluded here.

As a result, twelve semi-structured interviews [3] were
conducted via video calls with experts from the companies
who were directly involved in the project implementation
or who played a leading role in the strategic development
(e.g. owners, (technical) managers etc.). The guideline for
the interviews included closed questions that are in line
with the levels and dimensions of the Data Science Maturity
Model (see Section II) and qualitative questions to capture
the companies’ self-assessment from their own perspectives,
especially regarding risks and future opportunities that came
from their projects.

The contribution of this paper is two-fold: First, we present
the findings of our multi-case study, where we analyze
regional SMEs based on a simplified data science maturity
model and highlight interesting insights. Second, we derive
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Abstract—The increasing deployment of low-cost IoT sen-
sor platforms in industry boosts the demand for anomaly
detection solutions that fulfill two key requirements: minimal
configuration effort and easy transferability across equipment.
Recent advances in deep learning, especially long-short-term
memory (LSTM) and autoencoders, offer promising methods
for detecting anomalies in sensor data recordings. We compared
autoencoders with various architectures such as deep neural
networks (DNN), LSTMs and convolutional neural networks
(CNN) using a simple benchmark dataset, which we generated by
operating a peristaltic pump under various operating conditions
and inducing anomalies manually. Our preliminary results
indicate that a single model can detect anomalies under various
operating conditions on a four-dimensional data set without any
specific feature engineering for each operating condition. We
consider this work as being the first step towards a generic
anomaly detection method, which is applicable for a wide range
of industrial equipment.

Index Terms—Internet of Things (IoT), Industry and Pro-
duction 4.0, Predictive Maintenance, Unsupervised Machine
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I. INTRODUCTION

Prognostics and health management approaches have been
studied extensively across industrial applications, such as
aircraft engines [1], wind turbines [2], and other expensive
and mission critical machines. The application of IIoT sen-
sors [3]–[5] enables continuous monitoring on previously
unequipped industrial assets. The SITRANS multi sensor [5]
enables affordable to monitor equipment and industry expects
huge cost savings from the implementation of data-driven
predictive maintenance techniques such as anomaly detection.
However, the implementation of a traditional anomaly de-
tection technique for some specific equipment often requires
significant manual feature engineering [6], [7] and model op-
timization effort. Alternative approaches requiring less effort
and transferability to similar equipment are therefore becom-
ing increasingly relevant in industrial contexts. A number of
anomaly detection methods for predictive maintenance have
been proposed. Kato et al. [8] proposed a rule-based approach
for fault detection in spacecrafts. Principal component analy-
sis (PCA) based anomaly detection in networks was discussed
by [9]. [10] showed that autoencoders can outperform PCA
based approaches for telemetry data of spacecrafts. Unsuper-
vised anomaly detection with deep autoencoders was shown
by [11], [12].

Our aim is to develop an unsupervised anomaly detec-
tion method for a universally deployable IIoT sensor tag,
which records multivariate data. It should learn anomalies
automatically over time and thereby reduce manual feature
engineering effort. Our specific contributions so far are: (i)
define initial requirements and derive design rationals for
minimal-configuration anomaly detection for IIoT Sensors
(ii) provide a hand-crafted benchmark data set of evaluating
anomaly detection approaches, and (iii) train various deep
neural networks with autoencoder architectures and evaluated
them against benchmark models.

II. INDUSTRIAL REQUIREMENTS AND DESIGN RATIONAL

A low-cost multi sensor should be applicable to any indus-
trial asset. With the help of this multi- sensor, the conditions
should be monitored without any meta information available.
For this purpose, the healthy state with all typical operational
conditions is recorded with and used as a reference for
anomaly detection. The amount of healthy training data is not
strictly limited and several days can be expected. The system
should be minimal configurable. The only input parameter is
the healthy reference data. The system should be operable by
a non-machine learning expert. The user should be a domain
expert and select a time period with typical operational
conditions as reference. Everything else is left to the model
and the system. The decision for an unsupervised machine
learning paradigm results from the requirements.

III. DATA SET CREATION

We have selected the peristaltic pump as it can be operated
using various operating conditions and anomalies in the pipe’s
water flow resistance can be applied easily. Further, the
rotor of a peristaltic pump is representative for many rotary
equipment in the industry, such as fans, compressors and
turbines. Additionally, degradation is commonly observed and
the can be controlled as pipes can be replaced easily. Abrasion
of the pipes will be used to predict failure of the pipe system
in subsequent work. Peristaltic pumps are used for sterile
or aggressive liquids, as the pump doesn’t contact the fluid.
The flow of liquids is induced by a repeating sequential
compression of a flexible tube that pushed the liquid in one
direction.
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recommendations for the three categroies of players involved
to even increase future project output and foster innovative
collaboration.

II. DATA SCIENCE MATURITY MODEL

The Data Science Maturity Model [4], introduced by Mark
Hornick, Senior Director at Oracle Data Science and Machine
Learning, allows to assess a company’s current state concern-
ing data science strategy and technology:

”Enterprises that already embrace data science as a core
competency, as well as those just getting started, often seek a
roadmap for improving that competency. A data science matu-
rity model is one way of assessing an enterprise and guiding
the quest for data science nirvana. Upping an enterprise’s
level of data science maturity enables extracting greater value
from data for making better data-driven decisions, realizing
business objectives more efficiently, and having a more agile
response to changing market conditions.” [5], p.3.

The data science maturity model identifies ten dimensions
that are decisive for the success of data science projects. Each
dimension consists of five maturity levels - from basic level
1 to the most mature level 5. Each company can individually
specify at which level they are or intend to be in each
dimension.

Given that the surveyed companies do not have dedi-
cated data science teams, their profiles where assessed in
five dimensions: strategy, data management, methodology,
tools and deployment. The dimension strategy captures the
strategic orientation of a company with regard to data use
and exploitation and assesses, whether data is regarded as a
by-product or as capital. The dimension data management
captures the type of data storage that is used – central or
distributed systems locally in the company or outsourced to
external providers. The methodology dimension captures how
companies use methods to analyze the past and forecast the
future. Within the dimension tools, the usage and scalability
of software packages is monitored. The fifth dimension,
deployment, describes how results are reported, from static
files to dashboards to continuous deployment of dynamic
models.

III. MULTI-CASE STUDY: DATA SCIENCE IN
SMES IN SALZBURG

Even if not every company needs to develop a data-
centric business model [6], the current focus is on driving
digitization, at least in certain company areas. Recording and
using data alone is not sufficient. The focus needs to shift
towards exploiting the data value by creating new insights
and deriving action items. In this context, we talk about data
science [7], i.e. the analysis and modeling of data.

In our multi-case study, the experiences and findings of
twelve SMEs in Salzburg concerning their implementation
of data science projects were surveyed. In the absence of
in-house IT and software development teams, let alone ded-
icated teams for data science, digitization projects in these
companies are fundamentally collaborative efforts. Only if

(a) Pioneers’ company profiles

(b) Strategists’ company profiles

(c) Pragmatists’ company profiles

Fig. 1: Different company profiles with regard to the five
dimensions of the Data Science Maturity Model. The three
groups were assigned through clustering. The different color
intensity is used to discriminate the individual company
profiles.
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Extensive data maintenance

(b) Strategists’ challenges

Data transparency and security
Low data volumes (”small data”)
Lacking interfaces to current software
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Lacking overview of methodologies and available software tools

(c) Pragmatists’ challenges

TABLE I: Main challenges in data science projects mentioned
by the three different company groups.

motivated employees get involved beyond their actual duties
and are open to new ideas such projects can be realized at
all.

When asked about the motives for implementing data
analytics projects, intrinsic motives predominated in the inter-
views. The desire for further development and technological
progress, the expansion of the product portfolio or services
offered, as well as resource optimization (time, costs) were
named as reasons. In addition, legal and certification re-
quirements or explicit customer wishes are also drivers of
digitization.

Systematic analysis of individual company profiles with
regard to the five data science maturity dimensions reveals
patterns, as shown in Figure 1: A group of companies, which
we refer to as the Pioneers, achieve the highest level of pro-
ficiency in some dimensions and act in a data-centric manner
with regard to strategy, management and implementation (see
Figure 1a). Another group of companies shows a peak at
the strategy dimension (see Figure 1b), indicating that these
companies are aware of the value of their data and the benefits
they can derive from it. We refer to this group as Strategists.
The profiles of the last group of companies does not show
this peak (see Figure 1c). The strategic use of data plays a
less important role for them than the actual implementation.
This third group is referred to as Pragmatists.

The clear differences between the company profiles that al-
lows a grouping into three distinct clusters rises the question,
which underlying factor is common to the companies within
each group? Which factors determine the different approaches
towards data science projects? Reasons such as company size
or culture, or a common industry sector can be ruled out, as
those differ within each group anyway.

An explanation for the different maturity profiles is re-

vealed by the answers the companies provided to the ques-
tion about the main challenges when implementing data
science projects (see Table I). While those challenges are
very application-oriented among the Pioneers (see Table Ia),
decisive differences can be identified between the Strategists
and Pragmatists:

The Strategists are most likely to see the availability
of know-how and trained employees as a challenge (see
Table Ib). With the implementation of data-driven projects,
the demands with regard to employees would increase, which
would require different training or further education. In
addition, companies from the Strategists group mention the
difficulty of recruiting new employees with the appropriate
training, as salaries comparable to the IT industry would often
exceed their own salary structure. The Strategists also draw
attention to the need to weigh up the costs and benefits before
implementing data-driven projects, which also underscores
the clear peak in the strategy dimension. The cost-benefit
consideration remains an issue even after successful imple-
mentation, when it comes to the effort required for continuous
data management and maintenance.

The Pragmatists, on the other hand, cite legal consider-
ations such as data transparency and security as a funda-
mental challenge. When implementing data science projects,
they find the provision of interfaces and subsequently the
connection of data science tools to existing software to be
challenging. In this context, the lack of comparability and
confusion of available tools is also addressed (see Table Ic).

The differences between the Pragmatists and the Strategists
result from the type of data the respective companies work
with. Companies with a clear strategy for how to use the data
own that required data. They are aware of the available vol-
ume and quality and can make an initial assessment of what
information can be generated. Companies in the Pragmatists
group are largely dependent on the use of external data they
do not own themselves. The availability or possibility of use
as well as the data quality are comparatively uncertain or
unknown. Table II lists examples of different types of data
according to their source and the volume to be expected.

IV. RESULTS

Data Science and Machine Learning methods that are
applicable in a project depend on the type of data and the
available volume. In addition to fundamental data protection
issues, the primary challenge especially in the case of external
data is the merging of heterogeneous sources. Missing inter-
faces and a common data format need to be implemented.
In some cases, data must be made accessible step by step
from external sources or alternatively generated by suitable
methods within the company itself. This problem is referred to
as cold start problem: Many methods for data science require
large amounts of data to be successful in automated analysis
and modeling. If this data is not (yet) available in sufficient
quantity, simpler methods can be applied in the short term or
data can be simulated as a workaround.
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TABLE II: Matrix with different types of data according to
their source and volume to be expected.

A different challenge is posed by a high number of internal
data sources: Machine and process data in particular are often
available in very high resolution (e.g. every millisecond) and
thus in large quantities. This raises the question of suitable
data reduction methods either by pre-filtering or aggregation.
Applicable methods mainly depend on the amount of data to
be processed or on the type of interfaces required.

For each project and each task, it is therefore necessary
to assess the ”data inventory” and its requirements in order
to be able to develop customized solutions. A pure blueprint
implementation is only possible in the rarest of cases. This
is why domain expertise with extensive knowledge of the
(business) processes that generate the data is needed, as
well as data science experts with the skills to select suitable
methods and adapt them to the specific needs [8].

From these insights, we derive recommendations for each
of the players of the triple helix:

A. SMEs

Companies can assess their current data science maturity
level based on the model presented in Section II. The resulting
profile allows to align the future strategy and goals. In
addition to the maturity profile, a ”data inventory” creates
awareness of internally available data and possible external
dependencies, which sets the technological and methodologi-
cal frame for future projects. As more and more jobs require
working with data, it is recommended to promote data literacy
among all employees in the company.

B. Universities

Data science projects are optimal starting points for
industry-university collaborations: SMEs with limited trained
staff in programming and/or data science can benefit from the
external technological know-how of academic reasearchers
and can contribute the required domain expertise to scientific
research projects. In addition, collaborations with universities
provide access to an extended pool of personnel.

From a university’s point of view, a data science project
allows for interdisciplinary collaboration, as applied data

scientists can team up with business informatic scientists and
machine learning researchers.

C. Government

With their digitization program, the government of the
federal state of Salzburg has filled a funding gap by especially
targeting regional SMEs that take their first steps towards
more digitization. While many companies have already bene-
fited, the results from our structured interviews show another
potential: An additional benefit can arise from extending the
programs to also grant funds to companies owning data, but
not actively developing data science projects. The provision
of data (e.g. by suppliers, manufacturers, producers) can
help other companies to get access to ”missing links” in
their projects through ”data partnerships” [8]. Allowing such
companies to jointly apply for funding would help in making
more data (publicly) available and framing data as a business
case. This could also serve to bring about a cultural change
towards open data in the realm of data science.

V. CONCLUSION

As part of a survey of selected companies in the province
of Salzburg, the importance of the topics of digitization and
data science was surveyed, especially for SMEs in non-ICT
industries. All companies recognize data science as an added
value for their business models and have gained initial expe-
rience in implementing data science projects. The evaluation
of the interviews shows a differentiated picture regarding the
companies’ approach to these projects that is partly caused
by the availability and volume of the required data. As the
appropriate methods and tools for generating data insights
and predictions depend largely on the type of data, smaller
explorative studies can help in evaluating approaches and
assessing their effectiveness systematically without risk. By
applying for advanced funding programs, university partners
can also be involved in research projects that step-by-step lead
to higher data science maturity levels.
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Abstract—The increasing deployment of low-cost IoT sen-
sor platforms in industry boosts the demand for anomaly
detection solutions that fulfill two key requirements: minimal
configuration effort and easy transferability across equipment.
Recent advances in deep learning, especially long-short-term
memory (LSTM) and autoencoders, offer promising methods
for detecting anomalies in sensor data recordings. We compared
autoencoders with various architectures such as deep neural
networks (DNN), LSTMs and convolutional neural networks
(CNN) using a simple benchmark dataset, which we generated by
operating a peristaltic pump under various operating conditions
and inducing anomalies manually. Our preliminary results
indicate that a single model can detect anomalies under various
operating conditions on a four-dimensional data set without any
specific feature engineering for each operating condition. We
consider this work as being the first step towards a generic
anomaly detection method, which is applicable for a wide range
of industrial equipment.
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I. INTRODUCTION

Prognostics and health management approaches have been
studied extensively across industrial applications, such as
aircraft engines [1], wind turbines [2], and other expensive
and mission critical machines. The application of IIoT sen-
sors [3]–[5] enables continuous monitoring on previously
unequipped industrial assets. The SITRANS multi sensor [5]
enables affordable to monitor equipment and industry expects
huge cost savings from the implementation of data-driven
predictive maintenance techniques such as anomaly detection.
However, the implementation of a traditional anomaly de-
tection technique for some specific equipment often requires
significant manual feature engineering [6], [7] and model op-
timization effort. Alternative approaches requiring less effort
and transferability to similar equipment are therefore becom-
ing increasingly relevant in industrial contexts. A number of
anomaly detection methods for predictive maintenance have
been proposed. Kato et al. [8] proposed a rule-based approach
for fault detection in spacecrafts. Principal component analy-
sis (PCA) based anomaly detection in networks was discussed
by [9]. [10] showed that autoencoders can outperform PCA

based approaches for telemetry data of spacecrafts. Unsuper-
vised anomaly detection with deep autoencoders was shown
by [11], [12].

Our aim is to develop an unsupervised anomaly detec-
tion method for a universally deployable IIoT sensor tag,
which records multivariate data. It should learn anomalies
automatically over time and thereby reduce manual feature
engineering effort. Our specific contributions so far are: (i)
define initial requirements and derive design rationals for
minimal-configuration anomaly detection for IIoT Sensors
(ii) provide a hand-crafted benchmark data set of evaluating
anomaly detection approaches, and (iii) train various deep
neural networks with autoencoder architectures and evaluated
them against benchmark models.

II. INDUSTRIAL REQUIREMENTS AND DESIGN RATIONAL

A low-cost multi sensor should be applicable to any indus-
trial asset. With the help of this multi- sensor, the conditions
should be monitored without any meta information available.
For this purpose, the healthy state with all typical operational
conditions is recorded with and used as a reference for
anomaly detection. The amount of healthy training data is not
strictly limited and several days can be expected. The system
should be minimal configurable. The only input parameter is
the healthy reference data. The system should be operable by
a non-machine learning expert. The user should be a domain
expert and select a time period with typical operational
conditions as reference. Everything else is left to the model
and the system. The decision for an unsupervised machine
learning paradigm results from the requirements.

III. DATA SET CREATION

We have selected the peristaltic pump as it can be operated
using various operating conditions and anomalies in the pipe’s
water flow resistance can be applied easily. Further, the
rotor of a peristaltic pump is representative for many rotary
equipment in the industry, such as fans, compressors and
turbines. Additionally, degradation is commonly observed and
the can be controlled as pipes can be replaced easily. Abrasion
of the pipes will be used to predict failure of the pipe system
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in subsequent work. Peristaltic pumps are used for sterile
or aggressive liquids, as the pump doesn’t contact the fluid.
The flow of liquids is induced by a repeating sequential
compression of a flexible tube that pushed the liquid in one
direction.

Fig. 1. The audio signal for various operating conditions: a) 100 Hz, b) 150
Hz, c) 200 Hz, d) 250 Hz, e) 50 Hz with an additional 12 hours of normal
state.

We created our data set with a prototype of the SIEMENS
SITRANS multi sensor specifically developed for industrial
applications and harsh environments [5]. The sensor offers a
multiple number of measurement parameters. In this work,
we used the sensor tag that records three-axis vibration, each
with a frequency of 6664 Hz , an audio signal with 16k Hz,
and temperature. Due to restrictions in bandwidth, vibration
and audio are measured sequentially for 1024 data points
every 60 s. We mounted the sensor tag on at rotational axis
of the pump’s rotor and documented the sensor’s angle and
its horizontal axis. To simulate various operating conditions,
we operated the pump under various conditions by changing
the pump’s frequency. Further, we induced anomalies by
restricting the water flow in the tube leading to the pipe.
We scheduled the data acquisition to generate a data set
that is balanced for operating conditions and anomalies.
Additionally, we documented the replacement of the tube to
allow analysis of the tube’s degradation and we also perform
measurements with a rotated sensor to evaluate the models
robustness against rotation. A model, which performs well
if the sensor was rotated and reattached, is a candidate for
architectures that are easily transferable across equipment and
require minimal configuration effort. The data set contains
3041 samples with each 1024 data points for audio and the
three vibration axis and will be made publicly available.

IV. EXPERIMENTAL SETUP

We trained unsupervised machine learning models to detect
the anomalies in our dataset by using autoencoders based on a
fully connected deep neural network (DNN), long short-term
memory (LSTM) networks and convolutional neural networks
(CNN). Autoencoder networks are trained to reproduce a
input signal by minimization the error between input and
output signal, which is called the reconstruction error. This is
done by setting the input values as the target values. If there
is a layer with a feature space lower than the input space, the
autoencoder is forced to learn a compressed representation
and therefore needs to generalize and approximate the input.
In other words, a bottleneck in the network requires the
encoder to extract the most substantial information.

For anomaly detection, autoencoders are trained to re-
construct only healthy machine data. It is assumed that
the autoencoder learns to reconstruct the input for healthy
machine data, as it was trained to do so, but will fail to
reconstruct anomaly data. The reconstruction error — the
error between input and output signal — can be used as
an anomaly score. A reconstruction error above a threshold
indicates an anomaly. The threshold is calculated on a subset
of the healthy data that was excluded from training, by
calculation mean + standard deviation of the reconstruction
error on the subset. We evaluated the effectiveness of the
anomaly detection using standard accuracy (Ac.), precision
(P), recall (R) and the F1-score.

We compared the performance of our models on a variety
of features. We used the audio and the vibration (vib. 3D)
signal separately as well as a combinations of both. Further,
we use raw signal and the fast Fourier transform (FFT) of
the signals. In order to achieve invariance towards rotation
of the sensor, we also use the euclidean norm of the three-
dimensional vibration signal, which is denoted as vib. 1D.
Feature names are generated from the options mentioned in
this paragraph and are shown in Table I. For example, ”vib.
1D & audio” denotes the raw audio signal in combination
with the euclidean norm of the raw vibration signal. Feature
vectors are then min-max normalized based on values of the
train set.

The DNN model consists of six fully connected layers of
varying dimension. With x being the length of the input signal
and n being the characteristic number of neurons, the layers
are of dimensions x, n, n

3 ,
n
4 ,

n
3 , n, x. All units use the

tanh activation function and n is selected form the range 64
to 200, depending on the selected feature. For multivariant
features and DNN we stack the feature vectors to achieve
one-dimensional features, whereas CNN and LSTM operate
directly on the two-dimensional features. Due to the high
feature size (1024) compared to the number of samples, we
use a rolling window of dimension 64 to create more and
smaller feature vectors, that make a smaller model possible.
The models threats each sub-vector independently and a
decision for a original sample is created by majority vote
on the sub-vectors from the rolling window.
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The LSTM models consists of stacked LSTMs networks,
with increasing dimension that create a two dimensional out-
put by returning an output for every time step. The bottleneck
layer reduces the dimension by returning only the last output
and is followed by a repetition of the last output for every time
step. Then the number of neurons is decreased opposed to the
encoder. With n being the number of units, the dimensions
of the layers are n, n

2 ,
n
4 ,

n
16 ,

n
16 ,

n
4 .

n
2 , n (rounded) with

a lower cap of 16 and n = 150.
The CNN’s encoder consists of an alternating sequence of

convolutional and max pooling layers, each of dimension two,
with the number of filters for the layers in the encoder being
16, 32, 64, 128. A fully connected layer as a bottleneck and
a reversed encoder as a decoder.

We have implemented an end to end pipeline to evaluate
the key requirement: “minimal configuration effort”. Further,
we compare our model to simple statistical benchmarks based
on the reconstruction error using principal component analysis
(BM PCA) (see. [9]) and an approach similar to boxplots,
where values outside of the mean ± 1.5 · iqr , with iqr being
the interquartile range, are threaded as outliers (BM IQR).

Fig. 2. Example of autoencoder input (measured signal) and output (recon-
structed signal) from healthy data. The reconstruction error is derived input
and output difference and used for anomaly detection.

V. PRELIMINARY RESULTS

We present the results of our initial experiments for all
combinations of model and features in Table II and our
benchmarks in Table I. In terms of F1-score, which is a trade
off between precision and recall, our models beat the PCA
benchmark in 15 out of 24 experiments. We achieve our best
result with an LSTM network and the Euclidean norm of
the 3-D vibration signal (vib. 1D) resulting in a F1-score
of 0.64, a precision of 0.68 and a recall of 0.6. The PCA
benchmark performed best with the 3-D vibration signal in
both raw and Fourier-transformed form. Thus, our best model
outperformed the benchmark by 10 %. However, the simple
benchmark based on the interquartile range outperforms our
autoencoders and the PCA benchmark by 1 % with a F1-Score
of 0.63.

VI. DISCUSSION

Our aim was to define initial requirements for minimal-
configuration anomaly detection for IIoT sensors. Based on
the requirements, we focused on unsupervised machine learn-
ing and did not perform any equipment specific feature engi-
neering. We created a hand-crafted benchmark data and made
it publicity available. We experimented with three with three
different neural network architectures for anomaly detection

Fig. 3. The anomaly score is visualized for a sequence of measurements. A
score above the threshold indicates an anomaly (orange). The shape of the
points means whether we used it for training or evaluation of the autoencoder.

TABLE I
RESULTS OF BENCHMARKS FOR EACH FEATURE

Benchmark IQR
Features Acc. F1 P R
Vibrations 1D 0.48 0.63 0.47 0.94
Audio 0.56 0.31 0.55 0.21
Vibrations 3D 0.52 0.63 0.49 0.89
Vibrations 1D & Audio 0.47 0.62 0.46 0.94
FFT Vibrations 1D 0.48 0.63 0.47 0.94
FFT Audio 0.56 0.31 0.55 0.21
FFT Vibrations 3D 0.52 0.63 0.49 0.89
FFT Vibrations 1D & Audio 0.47 0.62 0.46 0.94

Benchmark PCA
Features Acc. F1 P R
Vibrations 1D 0.51 0.48 0.47 0.48
Audio 0.48 0.54 0.45 0.66
Vibrations 3D 0.50 0.45 0.46 0.44
Vibrations 1D & Audio 0.48 0.54 0.45 0.66
FFT Vibrations 1D 0.51 0.48 0.47 0.48
FFT Audio 0.48 0.54 0.45 0.66
FFT Vibrations 3D 0.50 0.45 0.46 0.44
FFT Vibrations 1D & Audio 0.48 0.54 0.45 0.66

in the tube system of a peristaltic pump. Our preliminary
results show an important step towards minimal-configuration
anomaly detection for IIoT sensors. With all three networks
we were able to outperform a benchmark based on the recon-
struction error of a principal component analysis. However, it
remains unclear weather the the respective sensor combination
can be applied to a broad number of assets. Further, the
impact of sensor position and the transferability towards
identical assets remain unclear. Therefore, in the future, we
will perform experiments on a data set that was recorded using
different sensor positions to investigate the transferability of
our models.
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Abstract—Digitalization is confronting companies and espe-
cially small and medium enterprises (SME) with an ongoing
change in their environment. The use of digital technologies
has a direct impact on business processes, products and ser-
vices and customer behaviour. The increasing connectivity of
(critical) cyber-physical objects enables the development of new
applications but also leads to new safety and security related
requirements in design, testing, production, maintenance and
op-eration of these systems as Internet of Things (IoT) devices
are always in focus of attacks.

Production companies are currently facing enormous chal-
lenges in the area of IT security. They cannot only invest in
security once, they have to consider security continuously in
production en-vironments, in development of new products and
during all life cycle processes. They have to define internal re-
sources and structures as well as (external) experts to constantly
work on their security strategies.

Manufacturers are forced to protect themselves from external
attacks towards their production operations. At the same time
they have to open their environment and closely work together
with suppliers and customers. Further on their products require
remote maintenance, updates and upgrades until end of life (life
cycle management). Sub-suppliers of production systems and/or
of components need secure access to their products in order
to maintain their services and uphold quality standards. Data
transfers are necessary as data source and the place of pro-
duction and assembling differ.

Secure Cloud Connect (Sec3) provides highest security levels
for production companies, their ma-chines and their IoT devices.
Sensitive configurations and communication take place in cloud
and hub systems that are owned by the companies themselves.
Encrypted connection allow secure and logged remote mainte-
nance. A quick initial installation and low time requirements
during op-eration makes the solution easy applicable. Data of
the machines is additionally collected, aggreg-ated and made
accessible for detecting anomalies or prevention of defects. To
protect sensitive data, anonymity and compliance of General
Data Protection Regulation (GDPR) are ensured.

I. MOTIVATION

We aim to address some of the major challenges and
business cases for future industry. Here, our particular in-
terests relate to Cybersecurity and safety conditions of the
Internet of Things (IoT) for Cyber Physical Systems (CPS).
Our focus lies on flexible tools that reach a high degree of
reuse between different environments (e.g. hardware can be
changed easily) while taking into account physical and energy

constraints, heterogeneity of data sources and throughputs,
computing power and targeted user groups. The decision for
open source as basis for security was obvious as the sharing
and exchange of knowledge and methods to reach customized
security solutions is the most promising way into a secure
future.

The increasing globalization of production and external
conditions (e.g. Covid-19 restrictions, climate protection mea-
sures) complicate on-site service. The worldwide shut-downs
in 2020 taught us to decentrally communicate in new dimen-
sion but also that new structures and strategies for globally
distributed (production) networks are needed.

Further on, the quality of hacker attacks has increased dra-
matically in the recent years. Attacks on the IT infrastructure
of companies are carried out by professionals with a high
level of technical knowledge. Not only the Darknet has to be
mentioned here as potential source of attacks, these attacks
can also be carried out by competitors (e.g. to prepare an
unfriendly takeover) or even by foreign state institutions.

In many companies, IT systems are the backbone of busi-
ness models and responsible for their performance. Problems
with IT systems can cause enormous damage to a company,
ranging from loss of production through loss of revenue to the
existential threats. Though the expenses on IT security are still
rather low until companies suffer from attacks themselves.
Once they are confronted with the impact of hacking attacks,
they invest significantly more in their IT security.

II. TRUST LEVELS IN PRODUCTION ENVIRONMENTS

Systems that isolate individual networks within the enter-
prise (security by isolation) use virtual networks and allow
secure remote maintenance, while at the same time providing
security for the machine manufacturer and the machine user
through audit logs. It is important to ensure that all networks
and devices are regularly maintained and receive security
updates. Further on, all accesses have to be logged to get
an overview about anomalies.

To reach a high level security standard, the company struc-
ture has to be divided into individual zones. Depending on the
number of individual zones and the intensity of separation,
different trust levels can be defined (see Fig. 1).
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Fig. 1. Levels of trust

The basic level describes a simple separation between
the general company network and the production network.
This is the first step to enhance security, as different end
devices (e.g. mobile phones, tablet PCs, notebooks), which
are a fundamental weak point in a network, are separated
from the production machines. Companies have to ensure that
occurring incidences (e.g. single devices which are hacked or
historically grown networks which have some misconfigura-
tions) do not affect production, production areas and machine
configurations.

The second level describes the separation between the
general company network and individual networks for each
machine of a production environment. User, service techni-
cian or even hacker are working only in one network and on
one machine. Changes of configurations and other settings do
not affect other machines or networks. The communication is
read only.

Production on several production sites and locations require
cloud solutions for communication. The third level of secu-
rity describes the separation between the general company
network and individual networks for each machine with
additional security measures (e.g. logging of all activities,
analysis of anomalies).

The highest possible security level is the shared level.
In this level, different machines can communicate with each
other, while each machine is separated in its own network. A
secure cloud is available that handles the communication and
all security relevant elements.

A test-bed to demonstrate how third level security can
be integrated into production environments was developed

during the project “IoT4CPS – Trustworthy IoT for CPS”
funded by the FFG program ICT of the Future. Based on
the results of the research, a reference installation could
be installed at LISEC, an Austrian manufacturer of glass
processing machines.

III. SYSTEM ARCHITECTURE

Splitting networks within an industrial environment be-
comes more and more important with a growing number of
IoT devices. For security reasons, it is necessary to create
distinct network areas that restrict the capability of IoT
devices to communicate otherwise attack vectors will be
opened. On the other hand, a smart production architecture
must allow for easy handling of attaching, provisioning and
remote maintenance of new equipment or machines, as well
as data analytics for process optimization.

The concept of Security by Isolation (SBI) requires only
a few hardware components, which do not necessarily have
to be on-site except for a firewall system. SBI architecture
provides the appropriate tools for protecting the complete
communication of the individual components. It uses modern
authentication and authorization methods (Active Directory,
two-component authentication) as well as encryption and
VPN technologies.

Sec3 factory consists of a database (core) at the mechanical
engineer, several VPN hubs and the gateways (sec3 box)
for the machine user. So called emergency boxes provide
redundancies and take over the most important functionalities
of the sec3 boxes in case of failures.



The core is the central database management system.
Among other things, it manages hubs and boxes and provides
informations about the connected machines, technicians, audit
logs, firewall templates and rules for the boxes. Individual
certificates and configurations of the boxes and the technicians
who are supposed to have access to single machines are
managed here. In addition, the connection of ERP, CRM or
other internal company system is possible at any time.

The task of the hubs is to coordinate the operation of
connections between the service technician or the machine
manufacturer or the manufacturer of machine components
and the machine. They are the nodes in the system and
the global interfaces for the components defined in the core
and establish secure and stable connections through state-
of-the-art encryption technology. Sec3 requires at least two
independent hubs in different locations. In case of a fail, the
sec3 box is still reachable through another hub.

A connection can only be authorized via the sec3 box
which takes over several functions. It is primarily used as
a gateway to the connected machines, but can also act as a
firewall with additional functions and tasks. The sec3 boxes
are provided with IoT layers to enable IoT data collection
and analysis. Another feature is a secure and fast initial
installation as well as remote provisioning and maintaining.
Even if the locally existing LAN or WLAN is out of service,
connection is ensured by using mobile connections. The
complete configuration of the sec3 boxes will be done in
the core, the sec3 boxes receive the provisioning when they
are switched on at the customers locations automatically. No
additional configuration is necessary.

The technician is the last component in the SBI concept
and the one who works in this system and carries out remote
maintenance on the machines. Therefore, a certification and
the allocation of permissions in the core are necessary. This
ensures that a third party technician only gains access to the
allowed components and not to the entire machine network.
The connection of a technician to the customer network must
be explicitly authorized through the customer by activating the
VPN connection to the sec3 box or via a user interface. For
security reasons, the access of the technician is also displayed
via an USB traffic light.
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