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12.1	 �Basic Questions: Distribution 
Vs. Examination of Differences

In the field of vehicle ergonomics, two main 
questions can be distinguished, which can be 
solved with the help of statistical methods:

55 Determination of the expression of certain 
characteristics in the relevant population

55 Examination of the difference between dif-
ferent conditions

Both questions have in common that on the 
one hand a certain methodical procedure is 
necessary for the answer (sampling procedure, 
design of experiments). On the other hand the 
appropriate statistical procedures have to be 
chosen (confidence intervals, significance tests, 
see .  Fig. 12.1). This will be explained first.

The first question is always important 
when certain customer characteristics have to 
be taken into account when designing control 
elements or displays. Controls in the vehicle 
shall be so placed that they can be reached by 
the driver’s hand without the driver having to 
change his sitting position. Here the essential 
characteristic is the arm length. A display 
should be placed at a height that can be easily 
seen by any driver. In this case, the eye height 
above the seat is a relevant property.

The methodological approach in this case 
focuses on the selection of a representative 
sample. Usually you want to make a state-
ment for a certain driver population, e.g. for 
the German driver. Since it is not possible to 
examine all persons in this population, a sam-
ple must be taken. Which concrete persons 
have to be examined in order for the results to 

be representative for the German driver popu-
lation?

On the one hand, the statistical methods 
for this question are concerned with how best 
to describe the distribution of the property. 
The mean value can be searched for in order 
to find the best case for most people. However, 
minimum or maximum values may also be 
meaningful to demonstrate that the solution 
chosen is also appropriate for people with the 
corresponding extreme characteristics. On the 
other hand, it is a question of the accuracy of 
the estimation of these parameters. This 
depends essentially on the size of the sample: 
The more persons examined, the more accu-
rately the conditions in the population can be 
estimated.

The second question about differences is 
relevant when comparing variants or design 
alternatives and when examining to what 
extent certain conditions (e.g. a warning sys-
tem) lead to changes compared to control 
conditions (e.g. a drive without a warning sys-
tem) (e.g. a faster braking reaction of the 
driver). In each case, it is used to compare 
groups of people with each other, which can 
also be the same people at two different times 
(repeated measurement). In terms of the 
methodological approach, the focus here is on 
experimental design. How are the different 
groups “treated” so that a possibly found dif-
ference can actually be attributed to the inter-
esting variation of influencing variables?

Another very important aspect here is the 
sample size. The smaller the difference, the 
more volunteers are needed to actually detect 
it in the test. Depending on the experimental 

.      . Fig. 12.1  Basic questions with the associated methodological and statistical aspects. For further explanation, 
see text
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design and the quality of the data, different 
methods are used to prove the effect. The 
selection of the appropriate and sensitive pro-
cedure is the essential point of the statistics 
for these differential questions.

12.2	 �Expression of Characteristics: 
Confidence Intervals

12.2.1	 �Methodology: Sampling

The aim of sampling for this question is to 
obtain a sample that is as representative as 
possible, i.e. a sample that reflects the condi-
tions in the population as well as possible. On 
the one hand, this concerns the procedure for 
drawing the sample and, on the other hand, 
the necessary number of persons.

The best method of sampling is random 
selection. With this method, each person in 
the population has the same chance of being 
included in the investigation. Thus, all influ-
encing variables on the characteristic to be 
measured are distributed in the sample in the 
same way as in the population. This is all the 
more the case the more people are drawn. For 
example, many characteristics depend on the 
sex of the person. If  1000 persons are ran-
domly drawn from the German population, 
the gender ratio in such a sample will most 
probably correspond to that in the population 
as a whole. If, on the other hand, only a small 
sample of two persons is drawn, the probabil-
ity is about 50% that only men or only women 
will be examined and the sought-after charac-
teristic, e.g. the mean body size, incorrectly 
estimated.

However, the random selection of a suffi-
ciently large sample from the population is 
rarely possible for practical reasons in the 
field of vehicle ergonomics. The examinations 
must be carried out e. g. with a certain vehicle 
at a certain place. It is possible that the results 
should be treated confidentially, so that only 
employees of the company can be considered 
as participants. And the cost of the examina-
tion is so high that only about 30 people can 
be examined. Against this background, the 
question arises as to how to arrive at the best 
samples under these circumstances.

It is important, especially for small sam-
ples, that as many characteristics as possible 
that may influence the relevant characteristic 
are taken into account in the sample selection. 
This is called a stratified sample. Central char-
acteristics are certainly age and sex. One 
would include approximately the same num-
ber of men as women and persons of different 
age groups in the study in order to specifically 
consider the influence of these characteristics. 
Other relevant features in the field of vehicle 
ergonomics are body height and weight, as 
well as driving performance for many ques-
tions. In order to map the range well with 
respect to these characteristics, one would like 
to try to map the possible expressions of the 
characteristics and their combinations with at 
least 3-10 persons. However, this leads to very 
large samples for only a few characteristics. If  
one takes both sexes into account, three age 
groups, three classes of body size and three 
groups with different driving experience are 
formed, one would have 2 × 3 × 3 × 3 = 54 
combinations. If  you want to examine 10 per-
sons per combination, you would need 540 
persons. From a practical point of view, this 
access with the help of stratified samples, 
which take into account the combination of 
characteristic values, is usually only possible 
with the inclusion of 2–3 characteristics.

In addition, the inclusion of different 
characteristics makes the sample more hetero-
geneous. The relevant properties thus scatter 
more, which makes reliable estimation more 
difficult. From this point on, it may make 
sense to first work with a homogeneous sample 
in order to obtain a good estimate for at least 
this type of test person even with a relatively 
small number of test persons, and then to 
extend this to other, again homogeneous sam-
ples in further steps.

In summary, the significance of the survey 
with regard to the population as a whole 
depends to a large extent on the sampling. If  
relatively homogeneous, locally limited sam-
ples are examined, the extent to which these 
results can be transferred to other groups of 
the population must be considered when 
interpreting the results. If  statistical methods 
are applied to these results, they may be able 
to estimate relatively accurately the “true” val-
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ues in the population. However, this estimate 
only applies to the part of the population cor-
responding to the sample. Therefore, in order 
to assess the relevant results, it is important 
not only to have information on the sample 
size and the resulting estimated distributions, 
but also on the type of sampling and the main 
characteristics of the sample. This is the only 
way to assess the extent to which the results 
are not only accurate but also representative.

12.2.2	 �Statistics: Determination 
of Characteristic Value

After the data collection, it is advisable to first 
present the collected data descriptively. This 
can be done for example as frequency distri-
bution or histogram (see .  Fig. 12.2a). Here, 
meaningful categories of the characteristic are 
created and the number of values per category 
is displayed. One recognizes thereby very well 
the kind of the distribution (e. g. symmetrical 
or oblique, single or multiple peaks) and 
receives a first impression of the measured 
orders of magnitude. Also “outliers” can be 
recognized quite well (see, for example, the 
two large reaction times in .  Fig. 12.2, left).

A more compressed way of displaying the 
data is the boxplot (see .  Fig.  12.2b). The 
grey box contains the mean 50% of the mea-
sured values. The black horizontal line repre-
sents the median (see below). With the vertical 

strokes the 1.5-fold of the range of the box is 
applied upwards and downwards, but only up 
to the last available value. All values outside 
this range are drawn as individual points and 
are therefore easy to identify as outliers. This 
type of display is also very suitable for com-
paring several conditions with the help of box 
plots arranged next to each other.

The next step is to try to describe the rele-
vant properties of these distributions using 
characteristic values. As .  Table 12.1 shows, 
this describes the typical values on the one 
hand, and the width or dispersion of the dis-
tribution on the other. As the column on the 
right shows, the interpretation of the individ-
ual measurements is slightly different. In addi-
tion to this different information content, 
these measures are also best suited for differ-
ent types of data.

Four scale levels are distinguished accord-
ing to the information content of the numbers 
used (see also 7  Sect. 11.3.1.3). For calcula-
tions, the gender is often classified into the val-
ues “1: male” and “2: female”. For these two 
numbers, it is only useful to interpret the equal-
ity of the measured values. The fact that the 2 is 
twice as large as the 1 is correct for the numbers, 
but not for the categories for which the numbers 
stand. Such a classification is called a nominal 
scale. A useful parameter is the mode (or modal 
value). A mode of 2 means in the example that 
women are more frequently included in the 
sample than men. The range can also be useful 

0.1

N
um

be
r o

f i
nd

iv
id

ua
ls

0.2 0.3 0.4
Reaction time classes [seconds]

0.5 0.6 0.7 0.8 0.9 1

12

10

8

6

4

2

0

Re
ac

tio
n 

tim
e 

[s
ec

on
ds

]

1.00

.80

.60

.40

.20

Reaction time

a b

.      . Fig. 12.2  Distribution of  reaction times for a lane change task. Shown in a as histogram the number of  persons 
in the classes of  reaction times displayed on the x-axis. In b, the same data is displayed as a box plot

	 M. Vollrath

https://doi.org/10.1007/978-3-658-33941-8_11#Sec45


657 12

here to describe the number of categories used. 
Finally, it is possible to indicate the percentage 
of occurrence of the different categories (“The 
sample contains 45 % men”).

The second scale level is the ordinal scale. 
Here the order of the numbers can be inter-
preted. If  a font size is judged as “1: small” 
and “2: large” by test persons for example, the 
statement that judgement 2 is larger than 
judgement 1 is significant – a font size judged 
as “large” is larger than one judged as “small”. 
Again, not significant is the statement that 
this large font size is twice as large as the small 
one, since 2 is twice as large as 1. For data at 
this level, the median is a meaningful descrip-
tion of the typical value and interquartile dis-
tance for variance.

The interval scale is the third scale level. 
The distances between the measured values 
can also be compared here. If  you judge the 
volume of a warning tone with “1: very quiet”, 

“2: quiet”, “3: medium”, “4: loud” and “5: 
very loud”, you can first interpret the differ-
ence as well as the order of the numbers. In 
addition, it makes sense to say that the differ-
ence between 3 (medium) and 1 (very quiet) is 
greater than the difference between 2 (quiet) 
and 1 (very quiet). Whether on the other hand 
2 (quiet) is twice as loud as 1 (very quiet) is 
doubtful. Here, too, this relation of the num-
bers must not be interpreted. Meaningful 
characteristic values for the interval level are 
the mean value and the standard deviation.

As the name suggests, you can use the ratio 
scale and interpret the numbers as ratios. This 
is often the case with physical data. A mea-
surement of reaction times is an example of 
data at the ratio level. A reaction time of 
500 ms is twice as long as one of 250 ms. Also 
for this scale level, mean and standard devia-
tion are a good description of the typical 
value and dispersion.

.      . Table 12.1  Overview of  essential characteristic values of  distributions

Characteristic value Computation Interpretation

Mean

M
x

n

n

1
•

x: measured values
n: number that measured values

Typical value of the sample.
Sum of deviations from this value is 
minimal

Median The value above which 50% of the 
measured values lie (interpolation for 
categorical values)

Typical value of the sample.50% of the 
values are below / above

Mode Most frequently measured value Typical value of the sample. The value 
that occurs most frequently

Standard deviation

S

x M

n

n

=
−( )

−

∑
1

2

1

X: measured values
M: mean
N: number of values

Deviation of the values Mean deviation 
from the mean value

Interquartile distance Range between the value below 
which 75% of the values lie and that 
below which 25% of the values are

Deviation of the values.
Width of the range in which the middle 
50% of the values lie

Range Maximum – minimum Distribution of the values.
Width of the range in which the values lie
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Overall, at a certain scale level only certain 
interpretations of the numbers and thus only 
certain characteristic values are meaningful. 
At the higher scale level, the characteristic 
values of the lower levels can also be used and 
interpreted and sometimes provide interesting 
additional information.

In addition to describing the data of the 
sample by specific characteristic values, it is 
often a matter of estimating the conditions in 
the population with the help of the sample. 
Especially for the mean value, but also for the 
percentage share of certain categories, the 
question arises as to how precisely the calcula-
tion of the sample characteristics reflects the 
conditions in the population. This is answered 
with the help of confidence intervals. A confi-
dence interval indicates the range in which 95% 
(sometimes also 99%) of the population char-
acteristics that may have generated the sample 
characteristic lie. Or: With a probability of 95% 
(or 99%), the true value in the population lies in 
this range. From a methodological point of 
view, this of course only applies if the sample is 
a representative selection of the population. 
Confidence intervals only indicate how accu-
rate the estimate based on the sample is, but not 
how well the sample reflects the population.

The formula of the confidence interval for 
a mean is as follows:

∆crit MM z= ± ⋅∝/2 σ � (12.1)

The following is included

σM

n
x M

n n
 =

−( )
⋅ −( )

∑1

2

1
�

(12.2)

M in the formulas stands for the mean value. 
σM
  is the standard error of the mean value. 
The z value stands for the corresponding 
value of a standard normal distribution that 
includes the mean 95% (99%) of this distribu-
tion. Formally, this corresponds to the z-value 
with α  =  5%/2 or α  =  1%/2 . The following 
numerical values can be found in the corre-
sponding tables:

95 1 962% : ./zα =

99 2 582% : ./zα =

For the data from .  Fig. 12.2, the mean value 
is M = 0.53 seconds with n = 30 persons and a 
standard error of the mean value of 0.03. This 
results in Δcrit = 0.53 ± (1.96 ⋅ 0.03) = 0.53 ± 0
.06. The 95% confidence interval therefore 
ranges from 0.47 to 0.59 seconds. Thus, a sat-
isfactorily accurate estimation of the mean 
population reaction time is already achieved 
with 30 test persons.

Eq. 12.2 also makes it immediately clear 
which role the sample size n plays. The larger 
the sample, the smaller the standard error, 
which in turn directly determines the width of 
the confidence interval. This can be used to 
calculate the required sample size for a given 
accuracy if  the mean value and standard devi-
ation are known e.g. from a pilot study. The 
formula is as follows:

N
sd

Accuracy
necessary

requested

=
⋅1 962 2

2

.

�

(12.3)

In the above example, the standard deviation 
was sd = 0.17. If  the mean value of the popu-
lation is to be estimated with an accuracy of 
±0.1 second, then according to the formula 
the result is a Nnecessary = 11.

You can also calculate confidence intervals 
for percentage values. The basic formula is 
comparable:

∆crit P z% / %( ) = ± ⋅α σ2


�
(12.4)

Where P is the empirically calculated percent-
age. The standard error results as:

σ%
 =

−( )⋅P P

n

100

�
(12.5)

In the above example, the reaction time of 11 
of the 30 = 37% of the subjects was in the cat-
egory between 0.5 and 0.6  seconds. What is 
the confidence interval of this percentage? 
The standard error is:
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σ% . . = = =
⋅37 63
30

77 7 8 8

This calculates

∆crit % % . . %( ) = ± ⋅( ) = ±37 1 96 8 8 37 17

The 95% confidence interval thus ranges from 
20% to 54%. Here, too, it is possible to specify 
by conversion which sample would be neces-
sary to achieve a certain accuracy.

N
P P

Accuracy
necessary

requested

=
−( )( )⋅ ⋅1 96 1002

2

.

So if  you want to estmate the percentage with 
an accuracy of ±5% the formula above calcu-
lates Nrequested = 358.

12.3	 �Differences Between 
Conditions: Significance Tests

12.3.1	 �Methodology: Experimental 
Designs

The second type of question compares at least 
two conditions. The general question is to 
what extent certain influencing factors sys-
tematically change the measured values. The 
scientific concern here is the search for causal 
laws, i.e. for cause-effect relationships. To 
make this clear, a distinction is made between 
independent variables (IV, causes) and depen-
dent variables (DV, measured values, see also 
7  Sect. 11.1.3). The relationship is repre-
sented schematically as follows:

IV DV or DV f IV→ = ( )

The IV systematically causes certain changes 
in the DV, the measured values. The measured 
values are therefore a function of the indepen-
dent variables. In ergonomics, it can be dem-
onstrated for example that a certain display 
variant in the head-up display with a warning 
tone leads to faster reaction times than the 
conventional display with a warning tone in 

the combined display. Here IV is the type of 
display in two steps (HUD vs. convetional dis-
play), DV is the reaction time. It is assumed 
that the mean value of the reaction times of a 
group of drivers with the HUD is smaller 
than in a group with a conventional display.

Even more complex questions can be rep-
resented in this scheme. It can be assumed 
that, in addition to the location of the display, 
the presence of a warning tone is also essen-
tial for the effect of the warning. To check 
this, the second IV would be to introduce the 
warning tone in the steps “without” and 
“with”. In order to investigate the effect of 
both IVs alone and in combination, both IVs 
would now have to be combined, resulting in 
four experimental groups. Independent vari-
ables are also referred to as “factors” in order 
to distinguish experimental designs according 
to the number of IVs studied. This leads to 
the description as “single factorial”, “two 
factorial”, etc. experimental design (see 
.  Table 12.2).

The number of levels of the factors must 
be distinguished from the number of factors. 
An influencing factor is often examined in two 
levels (e.g. without vs. with). But also the com-
parison of several levels (warning in the con-
ventional display, in the HUD, in the centre 
console) is not unusual. For each design, 
therefore, the number of levels shall be given 
in addition to the number of factors. This is 
often done in the form “a × b × c × ... facto-
rial experimental design”, where a, b and c are 
the levels of the respective IV.  The above 
example with the two factors “location of the 
display” and “warning sound” could be 
described as 2  ×  2 factorial experimental 
design.

The experimental designs also differ on the 
DV side. Here it is very important how many 
DVs are examined. If  reaction time is the only 
measured DV, it is a univariate plan. Mostly, 
however, several DVs are recorded, e.g. also 
subjective evaluations. If  only one global 
judgement (“How good was the display?”) is 
recorded as the only additional DV, it is a 
bivariate plan. In general, multiple DVs are 
called multivariate plans.

The scale level of  the measurements is 
also important for further evaluations (see 
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7  Sect. 12.2.2). As described above, the ques-
tion arises as to which of  the information 
contained in the figures can also be inter-
preted. This leads to the different types of 
characteristic values described above, but 
also has further evaluations in the statistical 
comparisons (see 7  Sect. 12.3.2).

The last criterion is the distinction between 
between-subjects and within-subjects designs. 
In the case of between-subjects designs, each 
subject receives only exactly one level or com-
bination of the independent variables. In the 
case of within-subject designs (also called 
repeated measurements), each subject pro-
vides measured values in all conditions. With 
multi-factor plans, it is also possible to exam-
ine individual IVs with repeated measure-
ments, while others can be examined with 
independent groups. The decision to do so 
shall be taken on the basis of substantive con-
siderations. If  can be assumed that experienc-

ing one condition influences the reactions in 
another condition, independent plans should 
be chosen. So if  the different warnings are to 
be investigated with the help of an unexpect-
edly occurring critical situation in the driving 
simulator, a dependent plan makes little sense, 
since the subject already knows this critical 
situation after the first condition and this 
would no longer be unexpected for him in the 
second condition. Whenever learning effects 
are assumed, repeated measurements should 
be avoided. The same applies if  the tests are 
very tiring for the test person, so that a 
decrease in motivation and performance is to 
be feared. This could also distort the results, 
making independent plans more useful.

Then why repeat measurements at all? The 
advantage of within-subject designs is that 
each subject can be compared with him/her-
self. Especially when people react quite differ-
ently, such a change can always be expressed 
in terms of the individual typical value. Small 
effects can thus be discovered with just a few 
test persons, since the differences between per-
sons that are not of interest are eliminated in 
this way. Plans with repeated measurements 
are therefore advantageous both in terms of 
the number of test persons required and their 
sensitivity to discover effects.

However, in these plans possible time 
effects have to be controlled. Since both learn-
ing and fatigue can in principle never be com-
pletely ruled out, it is important to ensure that 
this works evenly in the various conditions. 
This control of time effects is achieved by 
varying the order of conditions for each sub-
ject. There are essentially two possibilities: 
The complete permutation of all possible 
sequences and the technique of the Latin 
square. .  Figure  12.3 provides an overview 
of this.

Under two conditions, i.e. only one IV, two 
groups of subjects are formed, randomly 
assigned to the two groups to ensure that the 
groups are comparable. The first group 
receives treatment A at first, then B. In the sec-
ond group, the order is reversed.

Under three conditions, a multiple of 6 
test persons is required. Each of these 6 sub-
jects receives a different sequence of condi-
tions. The smallest meaningful number for 

.      . Table 12.2  Overview of  essential aspects of 
experimental designs. For further explanation, 
see text

Criterion Significance Description 
of the

Number 
of IV

How many 
influencing factors 
are investigated?

Single 
factorial
Two-factor
…
Multifactorial

Number 
of levels 
of IV

Which aspects of 
the influencing 
factors are 
investigated?

2 levels
3 levels
…

Number 
of DV

How many 
parameter are 
measured?

Univariate
Bivariate
…
Multivariate

Scale level 
of DV

What is the 
meaning of the 
measured 
numbers?

Nominal 
scale
Ordinal scale
Interval scale
Ratio scale

Measure-
ment 
repetition

Does each test 
person receive 
only one or more 
levels of IV?

Independent
Mixed
Dependent
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this case are 12 test persons with whom one 
can already prove effects by the dependent 
plan.

Combining several IVs with each other 
quickly creates more conditions. For a 2 × 2 
plan with complete repeated measurement, 
four conditions are present. If  a third factor 
with also 2 levels is introduced, the number 
increases to 8. A 3 × 3 plan contains 9 condi-
tions and so on. Here it is usually no longer 
possible to present all conceivable sequences 
in a complete permutation. An alternative 
here is the technique of the Latin square, in 
which each subject receives all conditions and 
the sequences are chosen in such a way that 
each condition is equally frequent at all times 
across the various subjects. Not all sequence 
effects can be controlled, but the simple time 
effects. This technique also requires multiples 
of the number of conditions. With four condi-
tions (as shown in .  Fig. 12.3), at least 4 sub-
jects are required. The base square for this 

case is shown in the middle of the figure. In 
order to introduce a certain randomness here, 
a random sequence of the four points in time 
is generated, in the example 2 / 4 / 1 / 3. The col-
umns in the second square are then sorted in 
this order. The original column 2 becomes the 
new column 1 and so on. The same is done 
with the lines where the order 4 / 1 / 3 / 2 was 
drawn here. So the new line 1 is the old line 4 
and so on. This procedure is repeated for all 
groups of four subjects to be examined. 
Again, 12 subjects are the lower limit of what 
appears to make sense in this dependent plan. 
For 5 or more conditions, additional squares 
can be created accordingly.

The advantages of between-subjects 
designs and designs with repeated measure-
ments are shown in .  Table 12.3. Independent 
plans are insensitive to learning and fatigue 
effects. Due to the greater differences between 
subjects, effects cannot be discovered as easily 
as in within-subjects designs. On the other 

2 Conditions
Cross-over

Random numbers Series 4 / 1/ 3 / 2

Random numbers Columns 2 / 4 / 1 / 3

G1
G2

P1
P2
P3
P4

P1
P2
P3
P4

P5
P6

P1
P2
P3
P4

P1
P2
P3
P4

T4
D
A
B
C

T4
C
D
A
B

T4
B
C
A
D

T3
C
D
A
B

T3
A
B
C
D

T3
D
A
C
B

C
B
C
A
B
C

T3

A
T1

T1
A
A
B
B

T1
A
B
C
D

T1
A
B
C
D

T1
A
B
D
C

C
C

B

T2
B
C
D
A

T2
D
C
B
C

T2
C
D
B
A

B
C
A
C
A
C

T2

B
T2

A

3 Conditions
Complete
permutation

4 Conditions
Latin Square

.      . Fig. 12.3  Overview of  techniques of  control of  time. The respective test conditions (A..D) for subjects (P) or 
groups (G) are shown. The different times are designated as T1..T4
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hand, these effects are more robust, can be 
better replicated and are more significant. 
With repeated measurements, considerably 
fewer test persons are required and even small 
effects can be discovered. However, time 
effects may influence the effects of UV and 
the effects may be limited to the specific sam-
ple and thus poorly transferable to other indi-
viduals. Depending on the issue at hand and 
the practical framework conditions, the plan 
to be chosen must be weighed up accordingly.

In order to make the procedure and the 
experimental design easy to understand for 
the readers of the corresponding reports, a 
schematic representation is recommended. 
.  Figure 12.4 shows an example of a three-
factor plan. As the first IV1, the driver age is 
examined in two levels, distinguishing young 
and old drivers. Further there is as IV2 the 
warning tone with the conditions “without” 
and “with”. Finally, as the third IV3, the loca-
tion of the warning is investigated in three lev-

els, with each subject experiencing all three 
locations (repeated measurement). In addi-
tion to the IV, the number of test persons can 
be seen in the cells. The numbering makes it 
clear at which point a repeated measurement 
was introduced and where independent groups 
are examined. Since the IV3 is examined with 
repeated measurements, a complete permuta-
tion with 12 test persons was used here.

The presentation of the experimental 
design is also so important because the ques-
tions of the experiment can be derived directly 
from it. As shown above, the aim is to examine 
the extent to which the IVs lead to a system-
atic change in the DVs. If  one compares a IV 
with two levels (without and with warning 
tone), the question arises whether the charac-
teristic values of the corresponding two 
groups differ (see .  Table. 12.4). At three lev-
els of IV, one can examine whether IV leads to 
differences between the three groups at all. 
Further one is interested in which of the 
groups differ from each other.

It gets more complex with two or more 
IV. With two IVs, one is interested on the one 
hand in the effect of each individual factor, 
and on the other hand in the interaction of 
the factors. Does the warning sound have a 
different effect when combined with the HUD 
than with the conventional display? Such an 
effect is called interaction. The same applies 
to three-factor plans, where the interaction 
between all three factors is added to the indi-
vidual effects and two-fold interactions. This 
increasing complexity leads to the fact that 
already the results of four factor plans are dif-

.      . Table 12.3  Advantages of  independent plans 
and plans with repeat measurements

Between subjects design Within-subjects 
design (repeated 
measurements)

Robust to learning and 
fatigue effects

Only few test persons 
are needed

When an effect is 
discovered, it is more 
replicable and more 
significant

Even small effects 
can be detected

IV1 “Driver’s age”

IV2 “warning sound”

IV3 “Location
of warning”

Young drivers

VP 1..12HUD

Conventional
display

Centre console

VP 1..12

VP 1..12

VP 13..24

VP 13..24

VP 13..24

VP 25..36 VP 37..48

VP 37..48

VP 37..48

VP 25..36

VP 25..36

Old drivers

.      . Fig. 12.4  Example of  a three-factor experimental design with repeated measurements on the “Warning loca-
tion” factor (VP stands for subject)
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ficult to interpret in practice and from there 
one can only recommend to concentrate on 
the most relevant three IV per investigation 
and in case of doubt to carry out several 
investigations. These problems of interpreta-
tion are described in more detail in 7  Sect. 
12.3.2. Before doing so, however, it is impor-
tant to present the statistical validation of the 
results under the keyword “significance tests”.

12.3.2	 �Statistics: Significance Tests

Why is an examination with several subjects 
necessary for the investigation of differences 
between different conditions? The reason lies 
in the diversity of persons described above. 
Not everyone reacts with the same speed, so 
that a group of people always get a distribu-
tion of the measured values, although they are 
examined under the same conditions. 
However, it also follows from this that differ-
ences will always occur when comparing two 
groups, even if  the groups are treated equally. 
If  the groups are treated differently, the ques-
tion arises as to whether the differences found 
can be explained by the random error or 

whether they arise systematically as an effect 
of the influencing factors investigated. This 
question examines the statistics with the help 
of significance tests. Essentially, these ques-
tions answer the following question:

55 Question of statistics: Are the differences 
found between the various conditions so 
great that it can be assumed that the influ-
encing factors investigated have an effect?

To answer this question, it is formulated 
somewhat differently:

55 How probable are the differences found 
under the assumption that this is only due 
to the (random) differences between per-
sons, but not the factors examined?

The advantage of this formulation is that the 
assumption it describes can be converted into 
a statistical model. If  you assume that only 
random differences are the cause, you can cre-
ate a distribution of possible differences 
(“What results would you find if  you repeated 
the investigation 100 times?”). If, for example 
10 test persons were examined in two groups 
and their reaction time measured, these 20 
measured values can be randomly assigned to 
two groups of 10 measured values each and 
the difference between the mean values of the 
two groups calculated. If  this is repeated fre-
quently, a distribution of possible differences 
is obtained on the assumption that only ran-
dom differences (in this case distributing the 
20 values randomly into two groups) had an 
effect. Such a distribution is shown in 
.  Fig. 12.5. It can be seen that under random 
conditions the same results are relatively fre-
quent in both groups (reaction time differ-
ence  =  0), while large deviations in positive 
and negative direction are less frequent.

With the help of this random distribution, 
the above question can now be answered by 
indicating how likely it is that the difference 
actually found in the experiment will occur 
under random conditions. One takes the prob-
ability of this and more extreme differences, 
which corresponds to the area under the 
curve. This is shown in the .  Fig. 12.5 filled 
out accordingly. In order to decide whether 
this result indicates that the influencing vari-

.      . Table 12.4  Experimental designs and related 
questions. For further explanation, see text

Experimental 
design

Questions

1 IV, 2 levels Do the two groups differ?

1 IV, 3 and 
more levels

Does the IV work?
Which groups are different?

2 IV Does the IV 1 work?
Does the IV 2 work?
Does IV 1 have a different effect 
depending on the characteristics 
of IV 2 and vice versa? (interac-
tion)

3 IV Are IV 1, IV 2 and IV 3 working?
Is there an interaction between IV 
1 and IV 2, IV 1 and IV 3 or IV 2 
and IV 3?
Is there an interaction between the 
three IVs?
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able actually acted, a decision rule is intro-
duced:

55 If  the difference found is extremely unlikely 
under random conditions, then it is 
assumed that the influencing factor (IV) 
has worked, i.e. the difference is systematic 
and not random.

To decide whether something is improbable, a 
so-called significance level α is defined:

55 “Unlikely” or “significant” usually corre-
sponds to a significance level of α = 5%.

You can also find the convention to use a 
α  =  1%. This is often referred to as “highly 
significant” results. The various significance 
tests (see below) now indicate the probability 
of the found result under random conditions, 
usually as a relative frequency of e. g. 
p = 0.023. Since this p is smaller than the sig-
nificance level α (which is usually given in per-
cent), it is decided that the result cannot be 
explained well by random differences, i.e. the 
influencing factor has worked or “the result is 
significant”. In summary, a significant result 
means that this is very difficult to explain by 
random differences. A proof of the effect in 
the very strict sense is of course not possible, 
because always a certain amount of uncer-
tainty remains  – even under random condi-
tions this result could have occurred, albeit 
very rarely.

Statistically, the assumption that only ran-
dom differences had an effect is considered to 

be a null hypothesis (“H0”). The alternative 
hypothesis (“H1”) assumes that there is an 
effect. A distinction is made between a specific 
and an unspecific alternative hypothesis. The 
specific alternative hypothesis indicates the 
direction of the effect, e.g. that the reaction 
times become shorter with a new warning sys-
tem. With the unspecific alternative hypothe-
sis, on the other hand, one suspects a 
difference, which can, however, be in both 
directions. Here for instance is formulated: 
“The reaction times in the experimental group 
are different than those of the control group”. 
The significance test can also be understood 
as a decision about these hypotheses. If  the 
result is significant, the null hypothesis can be 
rejected. This indicates the presence of an 
effect. If  no significant result is found, the null 
hypothesis must be maintained. So you 
couldn’t see any effect. It is important to note 
that this does not automatically mean that 
there is no effect. This is related to two types 
of errors shown in .  Fig. 12.6 and explained 
below.

The first type of error is the alpha error. If  
one finds a significant result in an experiment, 
although the null hypothesis actually applies, 
i.e. in reality (i.e. in the population) this differ-
ence is not present, one makes an erroneous 
decision: On the basis of the result of the sig-
nificance test one concludes that there is an 
effect, which is not true. This is shown graphi-
cally in .  Fig. 12.7. If  the null hypothesis is 
correct, the possible results of studies are dis-
tributed according to the red curve. If  one 
finds in a study a reaction time difference of 
e. g. +150 ms that is significant according to 
the statistical test, one decides to reject the 
null hypothesis, although in reality it is true in 
the population. One therefore concludes that 
an effect exists even though none exists.

To protect yourself  from this alpha error, 
you can choose a lower significance level, 
e.g. 1% instead of 5%. This reduces the prob-
ability of wrongly choosing an effect. Another 
possibility is to replicate the effect under con-
ditions as similar as possible. If  a significant 
result is also found in the repetition, the prob-
ability of a wrong decision is significantly 
lower overall. If, for example, two studies are 
carried out and a significant result is found at 
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.      . Fig. 12.5  Example of  a random distribution of  reac-
tion time differences. The area in which the actually 
found reaction time difference and more extreme differ-
ences lie is shown in full
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α  =  5%, the probability is that both studies 
will become significant, even though in reality 
there is no difference is p = 0.05*0.05 = 0.0025, 
i.e. only 0.25%. In this way one can minimize 
the probability of an erroneous interpretation 
in the sense of claiming that there is a differ-
ence, although this is not the case in the popu-
lation. If, for example, you want to introduce 
a new warning system in the vehicle, which is, 
however, associated with considerable costs, 
you can be sure in this way that there is actu-
ally a benefit for the driver.

However, this minimization of the alpha 
error should be seen in the light of the fact 
that it is associated with an increase in a sec-
ond type of error, the so-called beta error. 
This is illustrated in .  Fig. 12.7 with the help 
of the green curve. This shows the distribution 
of test results in the event that an effect is 

actually present in the population, which can 
be described in the example as an extension of 
the reaction times around 200 ms. Since only a 
part of the population is examined in each 
study, it is possible that a random sample is 
examined in which this effect does not show 
up, so that the reaction time difference e.g. is 
only +50 ms. According to the decision crite-
rion shown in the figure, the null hypothesis 
cannot then be rejected, since this result is not 
quite probable even if  there is no effect. This 
erroneous decision is referred to as a beta 
error. Here it is concluded on the basis of the 
test result that there is no effect, although in 
reality there would actually be a difference in 
the population. The more you try to minimize 
the alpha error, the bigger the beta error will 
be, the less you will discover an effect even 
though it is present.

Therefore, if  you want to be sure not to 
overlook any effect, it makes sense to select 
the significance level alpha relatively large. 
This is particularly the case if  one wants to 
prove that two variants are equivalent. If  a 
new warning concept for example has been 
developed, which is associated with signifi-
cantly lower costs than an older, relatively 
expensive solution, the equivalence of the 
variants is to be demonstrated in the experi-
ment. In this case, the interest is to confirm 
the null hypothesis. Here it is important not to 
overlook it if  there is a difference between the 
variants. Usually, the significance level is then 
set at 25%. In addition, there are also special 
types of significance tests, the so-called equiv-
alence tests, which can be used to prove equal-
ity. A detailed description can be found at 
Wellek (Wellek 2010).

.      . Fig. 12.6  Correct and incorrect decisions in the significance test. For further explanation, see text
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.      . Fig. 12.7  Alpha and beta errors for the example of 
reaction times. The red curve shows the distribution of 
the possible results (difference between the mean values 
of  the two investigated groups, “reaction time differ-
ence”) under the assumption of  the null hypothesis, the 
green curve the distribution of  possible results in the 
“reality”, i.e. the population in which an effect is present
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Statistical testing for difference thus 
assumes that distributions of possible differ-
ences are present under random conditions. 
One could now create the corresponding ran-
dom distributions for each experimental 
design with the parameters measured there in 
order to achieve this statistical estimation. As 
this would be relatively time-consuming, 
either the measured values are transformed 
into ranks or categories and corresponding 
tables are drawn up for the various experimen-
tal designs. In each case, it must be taken into 
account how many independent variables 
were examined in which steps and how many 
test persons were involved. Or one transforms 
the measured values in such a way that they 
correspond to certain statistical distributions, 
which are then used to read the probabilities 
in a comparable way as in the example in 
.  Fig. 12.5. In the latter case, one speaks of 
distribution-based methods, while the first are 
called distribution-free or non-parametric 
methods. “Distribution-free” means that no 
theoretical distribution is referred to. This 
designation is therefore not completely cor-
rect, since an empirically provided distribu-
tion (e. g. of ranks) is used. From this point of 
view, the term non-parametric procedure is 
preferable, since “parameters” refers to the 
essential parameters of the theoretical distri-
bution (e.g. mean value and standard devia-
tion for a normal distribution). Such 
parameters are not required for non-
parametric procedures.

Data quality shall be taken into account 
when deciding on the procedure to be used. 
Distribution-based methods are only really 
meaningful from the interval level, since dif-
ferences are calculated in the calculation of 
the characteristic values that are only signifi-
cant at this scale level. Furthermore, a certain 
sample size is required (e.g. more than 30), 
since the values are distributed sufficiently 
similar to these theoretical distributions only 
for larger samples. Finally, the question always 
arises as to whether the measured values are 
actually distributed sufficiently similarly to 
the theoretical distribution. It can be partly 
checked whether the empirical values corre-
spond to certain prerequisites. However, these 
tests are often relatively sensitive and indicate 

deviations from assumptions which, however, 
practically do not lead to any substantial 
change in the statistical evaluation. The non-
parametric methods are also applicable at the 
lower scale levels, but not quite as sensitive to 
detect significant effects. Non-parametric 
evaluations are, however, difficult, especially 
in the case of multifactorial plans, since the 
assessment of the interaction of several fac-
tors is often made by adding effect estimates, 
which in turn does not appear to be useful at 
the ordinal level. Therefore, parametric meth-
ods are also frequently used in practice, 
although the prerequisites are doubtful.

In the presentation of the results of the 
statistical tests, the corresponding test quanti-
ties into which the empirical characteristic 
values have been converted are given on the 
one hand in order to be able to reproduce the 
calculation. The value of the test variable 
itself  also includes an indication of the gen-
eral conditions, which essentially corresponds 
to the number of test persons examined or the 
measured values used. This is hidden (in a 
slightly transformed form) in the so-called 
degrees of freedom (df). On the other hand, 
the result of the statistical test is reported as a 
p-value (as shown above).

Special programs such as SPSS, R (as 
open source variant) or toolboxes in Matlab 
are used for the calculation. A detailed 
description of  the individual tests would go 
beyond the scope of  this chapter. A detailed 
description can be found in corresponding 
textbooks of  statistics, e.g. at Bortz und 
Schuster (2010) or Sedlmeier und Renkewitz 
(2008). An overview of  the most important 
procedures can be found in .  Table  12.5. 
The parameters listed in the right-hand col-
umn can be found in the corresponding edi-
tions of  the statistics programmes. When 
selecting the individual tests, it is important 
to consider whether a test plan with repeated 
measurements is available or whether inde-
pendent groups have been compared. In the 
first case, the measured values must also be 
arranged in such a way that measured values 
for the various conditions (columns of  the 
data matrix) are available for each test person 
(row of  the data matrix). In the case of  inde-
pendent groups, group membership is coded 
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using a separate variable. The scale level of 
the measurements must also be observed. For 
smaller samples (per group n  ≤ 10), non-
parametric testing should be used if  possible, 
since violations of  the requirements of  distri-
bution-based testing are very important for 
small samples. In order to assess the test vari-
ables, it is necessary to specify the degrees of 
freedom, since the significance (expression of 
the p-values) depends on them. For the 
degrees of  freedom, either the number of 
subjects is relevant (marked “n” in the table) 
and/or the number of  levels of  the indepen-
dent variable (marked “k” and “l” in the 

table). The degrees of  freedom can also be 
found in the corresponding editions of  the 
statistical programs.

The interpretation of statistically signifi-
cant effects is simple when comparing two 
groups  – these two groups differ. If  several 
levels of a IV are investigated, the test param-
eter indicates whether at least two of the 
investigated groups differ. You can then either 
decide graphically where the differences lie, or 
make corresponding comparisons in pairs to 
decide this statistically. These pairwise com-
parisons are usually performed automatically 
by the statistics programs.

.      . Table 12.5  Overview of  important statistical methods and the presentation of  test results

Experimental 
design

Test Scale level Repeat 
measurement?

Result formulation

1 IV, 2 levels Independent sample 
t-test

Interval level Without t(18) = 2.3, p = 0.017

Dependent sample 
t-test

Interval level With t(9) = 3.5, p = 0.003

U-test Ordinal level
Distribution-free

Without U(9) = 14, p = 0.009

Wilcoxon test Interval level
Distribution-free

With T(10) = 10, p = 0.042

Sign test Ordinal level
Distribution-free

With x(10) = 1, p = 0.011

Chi-square test Nominal level Without X2 = 5.05, p = 0.025

McNemar test  
(2 Categories)

Nominal level With X2 = 4.5, p = 0.033

1 IV,
3 and more 
levels

Single factorial 
analysis of variance

Interval level Without F(2,27) = 4.7, p = 0.03

H test Ordinal level Without H(1) = 7.06, p = 0.007

Friedman Rank 
Variance Analysis

Ordinal level With X2r (2) = 6.1, p = 0.047

Chi-square test Nominal level Without X2(3) = 12.5, p = 0.005

Q test by Cochran  
(2 Categories)

Nominal level With Q(3) = 8.3, p = 0.003

2 IV Analysis of variance 
(ANOVA)

Interval level Without HW IV 1: F(1,30) = 4.7, 
p = 0.038
HW IV 2: F(2,30) = 5.2. 
p = 0.011
WW F(2,30) = 4.4, 
p = 0.021
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Another interesting aspect is the interpre-
tation of the results of the two- and multi-
factor variance analyses. For the main effects, 
i.e. the effects of the individual factors exam-
ined, it is indicated in each case whether the 
corresponding factor leads to significant dif-
ferences irrespective of the characteristics of 
the other factors. Furthermore, the interac-
tions between two factors each and, depend-
ing on the experimental design, between three 
and more factors are examined. If  there are 
interactions, the main effects can sometimes 
no longer be interpreted depending on the 
direction of the effects. This will be shown at 
following chapter.

A central property of the statistical tests 
can finally be described at the distribution in 
.  Fig. 12.5. The less the difference values scat-
ter, the narrower this distribution is and the 
more likely it will be to decide that a particular 
difference is very unlikely under random condi-
tions. The consequence of this is that smaller 
effects can already be discovered with larger 
samples. The larger the sample, the more reli-
ably and accurately the true value of the group 
is estimated (see above). This means that the 
difference between the values of the two groups 
is also less prone to error, and thus spreads less 
in the distribution. In parametric tests, this is 
also taken into account by the fact that when 
calculating a corresponding test variable, a 
measure of the difference between the groups 
(e.g. the difference between the group averages) 
is usually placed in relation to the measure-
ment errors (e.g. the pooled variance within the 
groups). This becomes particularly clear with 
the test variable of the variance analysis, where 
the F-value (test variable) is a fraction of pri-
mary variance and error variance. Primary 
variance describes the difference in the mea-
sured values resulting from the different inde-
pendent variables, error variance the random 
differences between the test persons.

In addition to enlarging the sample in 
order to capture the differences with a lower 
measurement error, this provides a second 
possibility for experiment planning in order to 
better recognize significant effects. For this 
purpose, either homogeneous groups of test 

persons are used in order to minimize the 
error variance, or each test person is com-
pared to him/herself  under different condi-
tions (dependent test plans or test plans with 
repeated measurements). From a statistical 
point of view, this also explains why experi-
mental designs with repeated measurements 
can very well detect even small effects, even if  
only a relatively small number of test persons 
are examined.

The consideration of the appropriate sam-
ple size is also related to the statistical valida-
tion of effects. The term “power” is used to 
describe how well a statistical test is suitable 
for statistically proving an existing effect. The 
power of a test is be calculated as power = 1 
− ß where β is the beta error described above. 
The greater the probability of incorrectly 
rejecting an effect, the smaller the power, i.e. 
the ability of a test to detect an actually exist-
ing effect. As an investigator, one is corre-
spondingly interested in using a test that is as 
powerful as possible. For example, parametric 
tests are usually more powerful than 
distribution-free methods. However, the main 
determinant of power is the sample size. The 
more people examined, the more likely it is 
that smaller effects can be statistically proven. 
If  you know how the measured values with 
which you decide on the effect are distributed 
and how large the examined effect is in reality, 
then you can estimate how many test persons 
are needed before the examination to be able 
to statistically prove this effect. As a rule, 
however, the effect size is not known before 
the start of a study (otherwise the study would 
not be needed either). One can then fall back 
on conventions and, with the help of corre-
sponding programs, calculate estimated val-
ues for suitable sample sizes for small, medium 
and large effects, e.g. for the test correspond-
ing to the experimental design. A program 
very frequently used in this context is the 
freely available G*Power (Faul et  al. 2009). 
An estimation of a meaningful sample size 
before the start of the investigation is very 
useful to ensure that a relevant difference can 
be demonstrated at all with the selected num-
ber of subjects.
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12.3.3	 �Statistics: Presentation 
of Results

The significance test can only indicate whether 
the independent variable has had an effect. 
This is the necessary prerequisite for differ-
ences to be interpreted at all. If  the test is not 
significant, the differences found may be ran-
dom and should therefore not be described as 
effects. From this point on, the first step in 
interpreting the effects is to indicate where 
effects occurred at all. For this purpose, the 
results of the statistical tests are listed accord-
ing to .  Table  12.5. In the case of a large 
number of dependent variables or complex 
experimental designs, a tabular display can be 
useful here. .  Table  12.6 shows an example 
of a two-factor variance analysis. In the com-
parison of navigation system and the selection 
of a telephone number (IV 2: system) the dif-
ference between verbal and manual operation 
(IV 1: modality) was examined. The standard 
deviation of lane position (SDLP) and a reac-
tion time to road signs requiring steering were 
measured. You can find the F- and p-values of 
the analysis of variance. Since the degrees of 
freedom for each test were the same, they are 
given in brackets after the F-value. The sig-
nificant results at α = 5% are shown in bold. It 
can be seen that in SDLP both main effects 
and the interaction are significant, in reaction 
time the main effect of the modality and the 
interaction.

Starting from such a result, the significant 
effects are then displayed and described graph-
ically or in a table. The best type of 
representation, especially for two-factor experi-

mental designs, is the line graph, since this 
makes the different interpretation possibilities 
most clearly visible. Two types of representa-
tion are possible for two-factor experimental 
designs, as shown in .  Fig.  12.8. On the left 
side the blue line represents the navigation sys-
tem, the red line the telephone. You can see that 
both systems have the lines running down, i.e. 
the SDLP is smaller for linguistic operation. 
With speech the lane keeping performance is 
better. This description corresponds to the 
main effect of the IV 1 “modality”. It can also 
be seen that there is no main effect for the IV 2 
“system”, as the navigation system leads to a 
larger SDLP when operated manually, while 
there are no differences when operated verbally. 
Thus, the main effect of this IV cannot be 
interpreted, although it is significant. This dif-
ferent effect of the system depending on the 
modality corresponds to the significant inter-
action: The effect of one IV can only be inter-
preted as depending on the other IV.  Each 
interaction can be interpreted in two directions: 
As an effect of IV 1 depending on the levels of 
IV 2 and vice versa. For example: The improve-
ment of the SDLP through verbal operation is 
significantly stronger for the navigation system 
than for the telephone (Interpretation 1). When 
used manually, the SDLP is significantly worse 
with the navigation system than on the phone. 
This difference cannot be found in verbal oper-
ation (Interpretation 2). Both interpretations 
can be clearly seen in the left side of .  Fig. 12.8. 
Looking at the right side of the illustration, the 
second interpretation is more important here. 
The red line is parallel to the x-axis, while the 
blue line falls. Depending on which effects are 

.      . Table 12.6  Example of  a tabular display of  the results of  a two-factor analysis of  variance

UV 1 Modality:  
verbal vs. manual

UV 2 System: navigation 
vs. telephone number

Interaction modality x system

F (1,29) p F (1,29) p F (1,29) p

SDLP 9.1 0.005 4.6 0.040 5.2 0.029

Reaction time 56.9 0.000 0.9 0.345 11.3 0.002

For the F-value, the degrees of  freedom are given in brackets. SDLP is the Standard Deviation of  Lane 
Position
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significant and significant for the reader, the 
right or left illustration may be more 
meaningful.

.  Figure  12.9 shows the results of the 
reaction time. Here the main effect of the 
modality and the interaction were significant. 
It can be seen that the reaction time is shorter 
with verbal operation than with manual oper-
ation. The interaction shows that the interac-
tion with the navigation system benefits more 
from the verbal operation than the operation 
of the telephone. Or: With manual operation, 
the response time suffers more from the navi-
gation system. The telephone is a bit worse 
when using the verbal operation.

This somewhat detailed example illustrates 
the different roles of the statistical test results 
and the description of the results. Not every sta-
tistically significant result can be interpreted, as 
the SDLP example shows. For the interpretation 

a graphical description of the data is necessary. 
However, only those effects that were actually 
significant may be interpreted in the graphics. 
From this point of view it is very important to 
choose the right type of presentation.

In principle, different types of effect pat-
terns can occur in two-factor experimental 
designs, which are often misinterpreted. 
.  Figure  12.10 provides an overview of the 
most important types of effects. The example 
is a fictitious experiment to read fiction (enter-
tainment) vs. a textbook either on the screen 
or on paper. The speed of reading was evalu-
ated as a performance quality. The following 
four cases are important:

55 Main effects only: At the top left you can 
see that the performance on paper is better 
for both types of text. Further one recog-
nizes that the performance for the entertain-
ment reading is better. Thus, here one finds 
the two main effects, but no interaction.

55 Disordinal interaction: At the top right it 
becomes clear that no main effect can be 
interpreted, even if  it were significant. The 
effect of the type of reading depends on 
the medium. With the digital medium, 
entertainment is better, on paper, textbook 
reading. The effect of the medium thus 
depends on the type of reading. Digital is 
better for entertainment reading, paper 
better for text books. Therefore, only the 
interaction is to be interpreted here.

55 Ordinal interaction: At the bottom left 
you can see that both main effects and the 
interaction may be interpreted. On paper, 
reading is better than with the digital ver-
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sion. Rading fiction (entertainment) is 
faster than reading a textbook (main 
effects). Furthermore, the advantage of 
entertainment reading on paper is stron-
ger than with a digital medium. Or: the 
effect of  paper is stronger in entertain-
ment reading than in a text book (interac-
tion).

55 Semi-disordinate interaction: In the case 
shown at the bottom right, the main effect 
of the medium may be interpreted. On 
paper, performance is better than digital. 
The type of reading does not have a uni-
form effect and cannot therefore be inter-
preted as the main effect. The interaction 
is in turn interpretable if  it is significant. 
The effect of the medium is stronger for 
entertainment reading than for text books. 
On a digital medium the textbook reads 
better, while on paper the entertainment 
reading is better to read.

These examples make it clear that the scien-
tific content is not in the significance test, but 
in the graphical or tabular presentation of the 
measured values. The significance test is nec-
essary for deciding what may be interpreted. 
With the corresponding presentation, it 
becomes clear to the reader what the effects 
mean. A list of the results of the significance 
tests is worthless without descriptive statistics 
and graphs.

Another useful way of displaying the data 
is via bar graphs. Often mean values and stan-
dard deviations are shown here (see 
.  Fig.  12.11). Adjacent bars are very well 
suited for direct comparisons. The standard 
deviations are helpful in relativizing the size 
of the differences. As shown above, statistical 
testing compares the effect with a measure of 
random error to investigate significance. In a 
way, this is analogous to the representation of 
the mean values and the standard deviation.
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Overall, it should be noted that graphics 
contain the relevant information in a clear 
and easy to understand manner. Axes must 
always be meaningful and labelled with units. 
It is not advisable to use colored backgrounds, 
3-D representations, etc., as the data points 
will be pushed into the background compared 
to the graphic design elements and will then 
often be difficult to recognize. Also against 
this background line graphics are a very effec-
tive way of displaying.

12.4	 �External and Internal Validity

The description of the two central statistical 
approaches revealed a common ground. In 
both cases, an essential question is the repre-
sentativeness of the results. This is also 
referred to as “external validity”, i.e. transfer-
ability. This depends above all on the drawing 
of an appropriate sample. Whenever not only 
statements about quantities to be measured 
directly are to be made, but these are to be 
interpreted, a second aspect of validity arises 
here: Are the characteristics valid, do they 
really measure what they are to measure? 
What question do you have to ask a driver to 
predict that he will buy a particular vehicle? 
This aspect of external validity is described in 
more detail in 7  Sect. 11.1.1. In addition, 
there is a third aspect of external validity, 
which results from the examination situation. 
Are the data obtained e.g. in a driving simula-
tor, representative for driving in one’s own 
vehicle in normal traffic? On the one hand, 
this is about the closeness to reality of the 

study, on the other hand it is about the atti-
tude of the participants. The better they suc-
ceed in conveying an understanding of the 
meaning and purpose of the investigation, the 
more they will be able to behave “normally”. 
Instruction, the clarification of the aims of 
the experiment, plays a central role here.

Under certain circumstances, however, it 
may also be necessary not to properly inform 
the test participants beforehand. If  for exam-
ple the effect of a collision warning system 
should be investigated, it is important that the 
drivers are surprised by a critical event similar 
to the one in real traffic. Therefore, it may be 
necessary to distract the attention of the driv-
ers via a cover story in order to achieve a sur-
prise effect in the driving simulator as well. 
For ethical reasons, the participants are to be 
informed in detail after the attempt. They 
must also be able to exclude their data from 
the experiment. In principle, any deception is 
ethically questionable and its use thoroughly 
weighed up.

In summary, three aspects of external 
validity can be distinguished:

55 Representative sample
55 Valid measurement methods
55 Realistic situations with “normal” 

behaviour

In the second type of  statistical question, the 
search for the effect of  influencing factors, 
“internal validity” is added. It is a question 
of  whether an effect found is actually 
undoubtedly attributable to the influence of 
the independent variable. This is only possi-
ble from the logic of  the experiment, if  the 
investigated groups differ only in the inde-
pendent variables, otherwise they are treated 
completely identically. As described above, 
this is always a problem with repeated mea-
surement designs when there may be fatigue 
or practice effects. If  for example the trip 
with the visual warning system would always 
be the second trip, a practice effect could 
also explain the better reaction time. In order 
to ensure that the effect is actually due to the 
IV, the sequence of  treatments will therefore 
always be permuted (see .  Fig.  12.3). The 
internal validity thus depends on how well 
the influence of  interference variables can be 
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eliminated or kept constant in the various 
conditions. This is the reason to standardize 
the test procedure including the instructions 
as much as possible in order to ensure a com-
parable treatment of  all participants. Ulti-
mately, however, internal validity cannot be 
guaranteed by a flowchart. As an investiga-
tor, one should always ask oneself  whether a 
certain result could not also be explained by 
other factors than the influence of  the inde-
pendent variables. This critical way of  think-
ing is an essential prerequisite for good 
research.
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