
8Movement of the Flux Quanta, Flux Flow
Resistance

The question of how exactly the electrical resistance in superconductivity dis-
appears to zero came into focus in the early 1960s, when newly discovered
superconductor materials first appeared to make their technical applications at
high electrical currents possible. Especially, the new superconducting niobium
alloys Nb3Sn and NbZr were very promising. Careful measurements, especially
at the Bell laboratories in the USA, revealed indications of high values of cri-
tical electric current density and critical magnetic field. A novel “critical state”
was also found, above which a finite, albeit relatively small, electrical resistance
occurs. The American Philip W. Anderson recognized at that time that a new pro-
cess must be involved, namely a movement of magnetic flux quanta caused by
the flow of electric current. This process then became famous as “flux creep” and
“flux flow.”

Every movement of magnetic flux quanta in a superconductor due to a force
acting on them generates an electric field in the superconductor and thus an
electric voltage. This “flux flow voltage” grows proportionally to the speed and
number of moving flux lines. In the case of an electric current of density j, the
Lorentz force fL = j ×ϕo acts on the flux quanta. The Lorentz force is oriented
perpendicular to the direction of the electric current and the magnetic field of the
flux lines. The movement of the flux lines thus caused generates the electric field
E:

E = −vϕ × B (8.1)

The magnetic flux density B is given by the areal density n of the magnetic flux
quanta ϕo: B = n ϕo. The quantity vϕ denotes the velocity of the flux lines.
The electric field (Eq. (8.1)) is always oriented perpendicular to the direction of
motion and to the magnetic field of the magnetic flux lines. Since the electric field
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and the electric current have the same direction, energy is dissipated by the flux
line motion in the superconductor and electric losses occur. This process of flux
motion follows the (here simplified) equation of forces

j × ϕ0 − η vϕ = 0 (8.2)

Here η vϕ denotes the dissipative contribution and η a damping constant. In
Eq. (8.2), the forces refer to a unit length of the flux line. From Eqs. (8.1) and
(8.2), one finds the specific flux flow resistance

ρf = ϕ0 B
/
η (8.3)

This mechanism always limits the current flow without electrical resistance and
losses in superconductors. Therefore, many efforts have been made to prevent this
process of flux line movement as far as possible by installing so-called pinning
centers. (In Eq. (8.2) we have, for the sake of simplicity, neglected the pinning
forces and a force component that causes the Hall effect when the flux lines
move.)

As an example we show in Fig. 8.1 the flux-flow voltage as a function of
the electric current in a niobium foil for different values of the magnetic field
oriented perpendicular to the foil. (thickness of the foil = 18 μm, width of the
foil = 4 mm, T = 4.22 K). The electrical resistance ratio R(295 K)/R(4.2 K) was
620, where R(4.2 K) was measured in a perpendicular magnetic field of 4,000
G. The voltage starts at a finite critical current and initially shows an upwardly
curved behavior. It then grows linearly with increasing current, as can be expected
from Eqs. (8.1) and (8.2). The finite critical current results from the pinning forces
due to spatial inhomogeneities in the superconductor, which, as pinning centers,
prevent the movement of the magnetic flux lines. The slope of the linear curve
sections represents the flux flow resistance and increases with increasing external
magnetic field.

Figure 8.2 shows a schematic representation of the resistivity ρf as a function
of the external magnetic field H. Initially, ρf grows linearly with H and then
leads into a much steeper curve branch, which reaches the normal value ρn of the
resistivity at the upper critical magnetic field HC2.
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Fig. 8.1 Flux-flow voltage as a function of the electric current in a niobium foil of 18 μm
thickness and 4 mm width for various vertically oriented magnetic fields. T = 4.22 K; TC =
9.2 K
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8.1 Thermally ActivatedMotion of Magnetic Flux Quanta

As already mentioned, the equation of forces (Eq. (8.2)) is an idealized approxi-
mation that neglects the effect of pinning forces on the magnetic flux lines. In the
following, we want to discuss a special problem from the very complex field of
the effect of pinning forces on the magnetic flux line lattice in more detail: the
thermally activated movement of the magnetic flux lines.

The basic ideas from the 1960s go back to the abovementioned Philip W.
Anderson and Young Kim. We consider a single magnetic flux quantum that is
fixed in a potential well by the pinning force. (The potential well represents a
local minimum in the spatial course of the Gibbs free energy density.) The depth
of the potential well is denoted by Uo. Thermal activation allows the flux quantum
to jump out of the potential well, the hopping rate Rj being given by

Rj = νo exp

(
− Uo

kBT

)
(8.4)

Here νo denotes a characteristic attempt-frequency, and we assume Uo »kBT.
In the absence of an external force acting on the flux quantum, the thermally
activated hopping process of the flux quantum is the same in all directions, and
the resulting flux motion vanishes. However, if an external force acts on the flux

Fig. 8.2 Schematic representation of the specific flux flow resistance ρf in a type II super-
conductor as a function of the magnetic field for different temperatures (T1 >T2 >T3). ρn
denotes the normal resistance
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Fig.8.3 Thermally activated motion of magnetic flux quanta. LeftWithout an external force,
the flux jumps do not show a preferred direction. Right In the presence of an external force,
the flux jumps show a preferred direction

quantum, this spatial symmetry is broken. In the direction of this force, the wall
height of the potential well is reduced by �U, and in the opposite direction, it is
increased by �U. In Fig. 8.3, we show a schematic representation. The hopping
process now has a preferred direction.

After a short calculation, two important limiting cases are found, where the
critical electric current density jc is decisive, where the energy gain by the Lorentz
force exactly compensates the depth of the potential well: �U = Uo. In the limit
of thermally activated flux flow (TAFF limit), j « jc, the following applies:

E = 2ρc · exp
(

− Uo

kBT

)
· Uo

kBT
· j (8.5)

and in the limit j ≈ jc:

E ≈ ρc · exp
[
− Uo

kBT

(
1 − j

jc

)]
· jc (8.6)

In the TAFF limit, we get Ohm’s law (Eq. (8.5)). However, the resistance E/j is
strongly reduced due to the factor exp(−Uo/kBT). The limit j ≈ jc of Eq. (8.6) is
called flux creep with the current-dependent effective energy Ueff = Uo (1 − j/jc)
of the barrier. This current-dependent exponent in Eq. (8.6) often causes a strong
increase of E with increasing j over many orders of magnitude.

The case j� jc is called flux flow, for which pinning effects are negligible, just
like for a perfectly homogeneous sample. (In the latter case, only the edges of the
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Fig. 8.4 Electric field E as
a function of the electric
current density J for the
different ranges of the
physical behavior of the
magnetic flux quanta

sample play a role as spatial inhomogeneity). Figure 8.4 shows a summary of the
different ranges we have discussed.
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