
3LondonTheory,Magnetic Penetration
Depth, Intermediate State

A first phenomenological theory of superconductivity and the Meissner-
Ochsenfeld effect was developed by the brothers Fritz and Heinz London in 1935.
In particular, their theory provides a value for the so-called magnetic penetration
depth, within which the electric shielding currents flow along the surface of the
superconductor and the magnetic field still exists in the superconductor. In the
following, we refer to the magnetic penetration depth with the symbol λm.

The brothers Fritz and Heinz London had had to leave Germany as Jews after
the National Socialists took over the government and were initially accepted in
England. At the Clarendon Laboratory in Oxford, they then contributed (together
with other emigrants from Germany) to Oxford’s international leadership in the
field of physics at low temperatures.

For a short description of the London theory, we start with the equation of the
forces acting on an electron in the electric field E

m
∂vs
∂t

= (−e) E (3.1)

In Eq. (3.1), a dissipative contribution was neglected. The superconducting current
density

js = (−e) ns vs (3.2)

yields the relationship

E = [
m/

(
e2 ns

)]∂js
∂t

= μoλ
2
m

∂js
∂t

. (3.3)
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In Eq. (3.3), we introduced the magnetic penetration depth λm, which is defined
by

λ2m = m/
(
μo ns e

2) (3.4)

Here m is the mass, ns the density and vs the velocity of the superconducting
electrons. μo is the vacuum permeability.

Since the superconducting shielding current exactly compensates an external
magnetic field, the Maxwell equation

curl H = j (3.5)

is a good approximation of the maximum density js of the shielding current

js = HC/λm. (3.6)

On the other hand, the Maxwell equation (B = magnetic flux density) yields

curl E = −∂B
∂t

(3.7)

together with Eq. (3.3)

μoλ
2
mcurl

(
∂js
∂t

)
+ ∂B

∂t
= 0. (3.8)

By suppressing the time derivative in Eq. (3.8), Fritz and Heinz London postulated
a new equation

μoλ
2
m curl js + B = 0. (3.9)

The Maxwell Eq. (3.5) and the relation curl curl x = grad div x − � x finally
results in

�H = 1

λ2
m
H (3.10)

with the solution

H(x) = H(0) exp (−x/λm). (3.11)
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In Fig. 3.1, we show the course of the magnetic field H0 and the density ns of
the superconducting electrons in the vicinity of the interface between a normal
conductor (N) and a superconductor (S). Here we have assumed the geometry
of a superconductor whose x-coordinate runs from the surface at x = 0 left to
the inside of the superconductor and which fills the (left) half space x>0. The
magnetic field H is assumed perpendicular to the x-direction.

Today, Eqs. (3.3) and (3.9) are known as the first and second London equati-
ons. They characterize superconductors in contrast to other materials. Physically,
Eq. (3.11) means that an external magnetic field inside a superconductor decays
exponentially, with the decay occurring within a surface layer of the thickness
λm. The limiting case T→TC results in ns →0 and therefore λm →∞.

Typical values of the magnetic penetration depth are in the range λm = 40 −
60 nm. As an important material-specific spatial length, the magnetic penetration
depth plays a role in many properties of superconductors.

After the London theory established the fundamental importance of the magne-
tic penetration depth in superconductors, the Englishman Alfred Brian Pippard
pointed out for the first time in 1950 that the superconducting property cannot
change abruptly in space and has a certain spatial rigidity. This is expressed by the
so-called coherence length ξ . Changes in the superconducting properties are only
possible at spatial distances greater than the coherence length. This fact is explai-
ned by the Ginzburg–Landau theory, which also dates from 1950. The theory is
named after the two Russians Vitaly Lazarevich Ginzburg and Lew Dawidowitsch
Landau. In Chapter 5, we come back to this.

The two characteristic lengths λm and ξ play a role, for example, at the
interfaces between normal and superconducting regions in the same material.
Here, the finite value of the coherence length causes a superconducting region to
lose its superconducting property and the associated condensation energy density
(Eq. (2.4)) already at the distance ξ in front of this interface, thus making a posi-
tive contribution α1 = (H2

C/8π)ξ to the interface energy. However, since no gain
and therefore no loss of condensation energy occurs within the magnetic penetra-
tion depth λm, the value (H2

C/8π)λm must still be deducted from this. Finally, for
the wall energy of an interface between a normal and a superconducting region,
one finds

α = (H2
C/8π)(ξ − λm). (3.12)

In Fig. 3.1, we show the spatial impact of the two lengths ξ and λm. In connection
with this result Eq. (3.12), it was assumed that the interfacial energy must always
be positive and ξ > λm must therefore apply.
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Fig. 3.1 Dependence of the
density of superconducting
electrons, ns, and the
magnetic field H on the
distance from the interface
between a normal (N) and a
superconducting (S) region.
The x-coordinate runs in the
superconductor from the
surface at x = 0 left to the
interior of the
superconductor

When discussing the Meissner-Ochsenfeld effect, we had previously not consi-
dered the so-called demagnetization effect. This effect is based on the fact that the
magnetic field expulsion increases the magnetic field in the immediate vicinity of
the superconductor. This behavior is quantified by the so-called demagnetization
coefficient D of the geometry of the superconductor. If we call the magnetic field
at the edge of the superconductor HR, the following applies

HR = H/(1 − D) (3.13)

The coefficient D depends on the geometry and varies in the range 0–1. From
Eq. (3.13), we can see that in the range

HC (1 − D) < H < HC (3.14)

the case HR >HC is present and superconductivity must be interrupted. In Table
3.1, we have compiled the demagnetization coefficient D for some geometries.

From Table 3.1, we can see that in the case of a thin plate or cylinder oriented
parallel to H, the magnetic field in the outer space is hardly changed by the field
expulsion. On the other hand, we expect a large field increase in the case of a
plate oriented perpendicular to H, so that the magnetic field at the outer edge
quickly becomes larger than the critical magnetic field HC(T).

In the range marked by Eq. (3.14), superconductivity can no longer be maintai-
ned everywhere, and magnetic flux must penetrate the superconductor. In 1937,
Landau proposed the existence of a new “intermediate state” for this case, in
which normal domains with the local magnetic field HC and superconducting
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Table 3.1
Demagnetization coefficient
D for different geometries

Geometry D

Thin plate oriented parallel to H ≈0

Thin cylinder oriented parallel to H ≈0

Sphere 1/3

Cylinder oriented perpendicular to H with circular 1/2

Cross section

Thin plate oriented perpendicular to H ≈1.0

domains with the local magnetic field zero exist. According to Eq. (3.12), we
expect for these domains a wall energy proportional to the length difference
ξ − λm, where ξ > λm.

In Fig. 3.2, we show the intermediate state of a superconducting lead layer
of 9.3 μm thickness at 4.2 K for different values of the magnetic field oriented
perpendicular to the layer. The images were obtained magneto-optically using a
polarization microscope. The normal domains are bright and the superconducting
domains are dark. The critical magnetic field of lead at 4.2 K is 550 G (TC =
7.2 K).
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Fig. 3.2 Intermediate state of a superconducting lead layer of 9.3 μm thickness at 4.2 K in
rising (d–f) and falling (j–l) perpendicular magnetic field for the following magnetic field
values: d 218 G; e 348 G; f 409 G; j 260 G; k 101 G; l 79 G. Normal domains are bright,
superconducting domains are dark
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