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• An overview over more than 100 years of superconductivity
• The development of the theory of superconductors from Albert Einstein to

Bardeen, Cooper, and Schrieffer
• The origin of the Josephson electronics
• The impact of moving magnetic flux quanta
• The applications of superconductors in microelectronics and in power electro-

nics

v



For Christoph



Acknowledgment

The author would like to thank Benedikt Ferdinand and Matthias Rudolph for
computer support and Silvia Haindl for literature references to Chaps. 10 and 11.

ix



Contents

1 The Discovery: Kamerlingh Onnes in Leiden . . . . . . . . . . . . . . . . . . . . 1

2 Walther Meissner and the Physikalisch-Technische
Reichsanstalt in Berlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 London Theory, Magnetic Penetration Depth,
Intermediate State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Type II Superconductors, Abrikosov Vortex
Lattice, Mixed State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Ginzburg–Landau Theory, Magnetic Flux Quantization,
London Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 BCS Theory, Energy Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Movement of the Flux Quanta, Flux Flow Resistance . . . . . . . . . . . . . 31
8.1 Thermally Activated Motion of Magnetic Flux Quanta . . . . . . . . 34

9 Cuprate Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1 Symmetry of the Wave Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2 Vortex Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3 Grain Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.4 Intrinsic Josephson Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 MgB2, Iron Pnictides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11 Superconductivity in Interfaces and Monolayers . . . . . . . . . . . . . . . . . 53

xi



xii Contents

12 Technical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.1 Microelectronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
12.2 Power Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



1The Discovery: Kamerlingh Onnes
in Leiden

In the last years of the nineteenth century, Heike Kamerlingh Onnes set up a labo-
ratory for low-temperature experiments in Leiden, which soon became the world
leader in this field. Kamerlingh Onnes was interested in the thermodynamic pro-
perties of gases and liquids at low temperatures. He was inspired by the research
work of Johannes Diderik van der Waals at the University of Amsterdam. He had
published his Law of Corresponding States in 1880.

At that time, competition between several laboratories in Europe had broken
out in the generation of low temperatures and the associated liquefaction of gases.
An important impetus for the large-scale liquefaction of gases was the announce-
ment in 1895 of the application of the Joule–Thomson effect by Carl von Linde
in Germany and William Hampson in England. The Joule–Thomson effect causes
a slight reduction in the temperature of gases during isenthalpic expansion. In the
same year, von Linde was able to produce liquid air for the first time by com-
bining the Joule–Thomson effect with the countercurrent heat exchanger already
proposed by Werner Siemens in 1857. In this Linde process, the highly compres-
sed air in the heat exchanger is additionally cooled by the returning gas until its
condensation temperature is reached. This process also forms the basic principle
for the liquefaction of neon, hydrogen and, most recently, helium in an effort to
achieve even lower temperatures.

On July 9/10, 1908, the team of Kamerlingh Onnes succeeded for the first
time in liquefying helium as the last remaining noble gas, thus achieving the
then record value of 4 K (−269 °C) at low temperatures. In 1911, Kamerlingh
Onnes then made an astonishing discovery during cooling: below a certain tem-
perature, the electrical resistance of certain metals disappears completely and can
no longer be detected experimentally. This was the first time the phenomenon of
“superconductivity,” as it was subsequently called, had been observed. On April
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2 1 The Discovery: Kamerlingh Onnes in Leiden

28, 1911, Kamerlingh Onnes reported on this for the first time to the Academy in
Amsterdam.

After Kamerlingh Onnes had opened up a much lower temperature range than
had been possible until then, he became interested, among other things, in the
question of how the electrical resistance of metals behaves at these low tempera-
tures. At that time, there were three predictions about how the resistance changes
at low temperatures as the temperature decreases: (1) the resistance decreases and
reaches zero, (2) it remains constant, and (3) it increases again. Mercury appea-
red to be particularly suitable for accurate measurements because its low melting
point makes it relatively easy to produce with a high degree of purity. The mea-
surements should be disturbed by impurities as little as possible. Therefore, a thin
glass capillary filled with mercury was used for the measurements. On April 8,
1911, Heike Kamerlingh Onnes and his team observed how the electrical resi-
stance of the sample decreased with decreasing temperature. However, when the
temperature finally reached 4 K, the curve showed a sharp bend, and the resistance
dropped to an unmeasurably small value (Fig. 1.1).

After superconductivity was discovered in mercury, it was also found in other
metals, alloys and metallic compounds. Among the first superconducting metals
found, besides mercury, are: aluminum, lead, indium, zinc and tin.

When Kamerlingh Onnes soon began to investigate the question of whether
superconductivity could be used technically for the energy industry even at high
electric currents, he had to discover that the magnetic field generated by the
currents was very harmful to superconductivity. In addition to the critical tem-
perature TC, which must not be exceeded, there is also a critical magnetic field
HC, above which superconductivity disappears. The temperature dependence of
the critical magnetic field HC(T) is shown in Fig. 1.2: From the value zero at T =
TC, the critical magnetic field increases with decreasing temperature and reaches
its maximum value at T = 0.

The so-called intrinsic magnetic field of an electric current has the same effect
as a magnetic field generated by an external magnetic coil. In the literature, this
connection is called Silsbee’s rule. Thus, in addition to the critical quantities TC

and HC, there is also a critical electric current density IC, which must not be
exceeded if superconductivity is to be maintained.
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Fig. 1.1 Discovery of superconductivity. Electrical resistance in ohms of a mercury sample
plotted against temperature in Kelvin. (H. Kamerlingh Onnes)

Fig. 1.2 Temperature
dependence of the critical
magnetic field HC.
(schematic)



2Walther Meissner
and the Physikalisch-Technische
Reichsanstalt in Berlin

The Physikalisch-Technische Reichsanstalt in Berlin was also interested in mate-
rial properties at low temperatures at the time. In 1913 Walther Meissner was
commissioned by Emil Warburg, the president of the Reichsanstalt, to build a
hydrogen liquefaction plant. Before studying physics, Meissner had already gra-
duated as a mechanical engineer, so he was well prepared for this task. At the
beginning of 1913, he was able to commission an improved liquefier based on
a design by Walther Nernst. At that time, Meissner was mainly concerned with
electrical resistance measurements at low temperatures.

The outbreak of the First World War in 1914 led to a significant interruption
of basic physics research in many countries, including the Berlin Reichsanstalt.
Subsequently, in the years 1918–1922, Meissner was particularly concerned with
the enlargement of the hydrogen liquefaction plant and, from 1920 onward, incre-
asingly with the possibility of setting up a plant for the liquefaction of helium.
His plans and drafts could be realized in the years 1922–1924. On March 7,
1925, helium was liquefied for the first time in the Reichsanstalt. In the process,
about 200 cm3 of liquid helium was obtained. The Reichsanstalt was the third
place in the world where experiments with liquid helium could be carried out,
after Leiden as the first and from 1923 Toronto in Canada as the second place.
As members of the Reichsanstalt’s board of trustees, Carl von Linde and Wil-
helm Conrad Röntgen had at the time strongly advocated the establishment of a
cryogenic laboratory.

It is said that Walther Meissner carried out his measurements with only 0.3 L
of liquid helium for 10 years. Before he appeared, five superconducting elements
were known: Lead, mercury, tin, thallium and indium. In 1928, Meissner disco-
vered another superconducting element: tantalum with a critical temperature of
4.4 K. During the following 2 years, he discovered superconductivity in thorium,
titanium and niobium as well as in a number of compounds and alloys.
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6 2 Walther Meissner and the Physikalisch-Technische…

Fig.2.1 Meissner-Ochsenfeld effect. a In the normal state above its critical temperature, the
spherical superconductor is permeated by the external magnetic field. b Below the critical
temperature, the superconductor expells the magnetic field completely from its interior as
long as the critical magnetic field is not exceeded. The field expulsion is caused by electric
currents that flow around the surface of the superconductor without loss and shield the interior
of the superconductor from the magnetic field

During his term of office from 1922 to 1924 as president of the Reichsanstalt,
Walther Nernst, who was known for his farsightedness, had realized that the expe-
rimental physicists of the Reichsanstalt could well use the support of a theorist.
Nernst was able to enlist the help of Max von Laue, who took up his post as
theoretical physicist at the Reichsanstalt on March 24, 1925 (one day a week in
addition to his teaching activities at the University of Berlin). At that time, von
Laue was interested in superconductivity and especially in its magnetic proper-
ties. He maintained close contact with Walther Meissner and in 1933 persuaded
him to take precise measurements of an applied magnetic field near the surface
of a superconductor at the transition from normal conduction to superconducti-
vity. Von Laue was also able to help finance an additional employee for these
experiments from a support program for unemployed young scientists at the time.

This is how Walther Meissner and his colleague Robert Ochsenfeld made a
highly momentous discovery in 1933: In the superconducting state, a magnetic
field inside the superconductor disappears by being forced out of it. Since then,
this phenomenon has been known as the Meissner-Ochsenfeld effect (often abbre-
viated to Meissner effect) (Fig. 2.1). Thus, a superconductor (below the critical
magnetic field HC(T)) behaves like a perfect diamagnet.

The existence of the Meissner-Ochsenfeld effect allows an important conclu-
sion: The superconducting state is a thermodynamic equilibrium state. Thus, the
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Fig. 2.2 Independence of
the superconducting state
from the path. Due to the
Meissner-Ochsenfeld effect,
the final state B = 0 is
reached at point c on the
two paths a→d→c and
a→b→c

state is independent of the path that led to it. If the magnetic field and/or the
temperature changes, in the end only the following must apply: T < TC and
H < HC(T).

Cornelis Jacobus Gorter and Hendrik Brugt Gerhard Casimir were the first to
recognize this fundamental importance of the Meissner-Ochsenfeld effect in 1934.
Their conclusion is explained in Fig. 2.2. The point c marks the superconducting
state below the critical temperature TC and the critical magnetic field HC(T). Infi-
nite electrical conductivity without existence of the Meissner-Ochsenfeld effect
on the path a→b→c would result in the state with B = 0, while the path
a→d→c would result in the state with B �=0 of point d. Only the existence
of the Meissner-Ochsenfeld effect ensures that the state with B = 0 (perfect dia-
magnetism) is always reached (independent of the path covered). However, it is
assumed that the superconductor shows perfect reversibility and that no pinning
forces hold the magnetic flux inside the superconductor. Max von Laue later cal-
led the discovery of the Meissner-Ochsenfeld effect a turning point in the history
of superconductivity.

Based on the Meissner-Ochsenfeld effect, the energy difference between the
normal (nonsuperconducting) and the superconducting state can also be calculated
precisely, as Gorter and Casimir were also the first to recognize. We will briefly
explain their train of thought. In the presence of a magnetic field H, the density
Gs of free Gibbs energy in the superconducting state is

Gs(T,H) = Gs(T, 0) −
∫ H

0
M(H) dH. (2.1)

Here M(H) is the magnetization. In the case of perfect diamagnetism due to the
Meissner-Ochsenfeld effect
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M(H) = − 1

4π
H. (2.2)

∫ H
0 M(H) dH in Eq. (2.1) contains the work done in expelling the magnetic field.
Together with Eq. (2.2), this results in

Gs(T,H) = Gs(T, 0) + 1

8π
H2. (2.3)

In equilibrium, however, the following applies to the case H = HC(T) :
Gn(T,HC) = Gs(T,HC) and Gn(T,HC) = Gn(T, 0). The difference between
the energy density in the normal (Gn) and superconducting state is therefore in
the case H = HC

Gn(T, 0) − Gs(T, 0) = 1

8π
H2
C(T). (2.4)

For a typical value of the critical magnetic flux density BC = 10−2 T, the diffe-
rence in energy density is 398 erg/cm3 = 2.49 · 1014 eV/cm3. It is this very small
value of the energy difference in the range of only a few meV per electron that
has long delayed the theoretical explanation of superconductivity.

The expulsion of the magnetic field in the Meissner-Ochsenfeld effect is caused
by electrical shielding currents flowing along the surface of the superconductor.
They generate a magnetic field that is exactly opposite to the original magnetic
field and compensates it exactly. In order for this state to persist for any length
of time, these “shielding currents” must flow without electrical resistance. Super-
conductivity is therefore necessary (In normal, nonsuperconducting metals, only
the so-called electromagnetic skin effect remains).

We recognize the special significance of the Meissner-Ochsenfeld effect
from the fact that the loss-free flowing shielding currents require the pheno-
menon of superconductivity as a necessary consequence. However, the reverse
conclusion that the existence of the Meissner-Ochsenfeld effect follows from
the disappearance of the electrical resistance is not admissible. Therefore, the
Meissner-Ochsenfeld effect is the decisive “fingerprint” for superconductivity.



3LondonTheory,Magnetic Penetration
Depth, Intermediate State

A first phenomenological theory of superconductivity and the Meissner-
Ochsenfeld effect was developed by the brothers Fritz and Heinz London in 1935.
In particular, their theory provides a value for the so-called magnetic penetration
depth, within which the electric shielding currents flow along the surface of the
superconductor and the magnetic field still exists in the superconductor. In the
following, we refer to the magnetic penetration depth with the symbol λm.

The brothers Fritz and Heinz London had had to leave Germany as Jews after
the National Socialists took over the government and were initially accepted in
England. At the Clarendon Laboratory in Oxford, they then contributed (together
with other emigrants from Germany) to Oxford’s international leadership in the
field of physics at low temperatures.

For a short description of the London theory, we start with the equation of the
forces acting on an electron in the electric field E

m
∂vs
∂t

= (−e) E (3.1)

In Eq. (3.1), a dissipative contribution was neglected. The superconducting current
density

js = (−e) ns vs (3.2)

yields the relationship

E = [
m/

(
e2 ns

)]∂js
∂t

= μoλ
2
m

∂js
∂t

. (3.3)
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10 3 London Theory,Magnetic Penetration Depth, Intermediate State

In Eq. (3.3), we introduced the magnetic penetration depth λm, which is defined
by

λ2m = m/
(
μo ns e

2) (3.4)

Here m is the mass, ns the density and vs the velocity of the superconducting
electrons. μo is the vacuum permeability.

Since the superconducting shielding current exactly compensates an external
magnetic field, the Maxwell equation

curl H = j (3.5)

is a good approximation of the maximum density js of the shielding current

js = HC/λm. (3.6)

On the other hand, the Maxwell equation (B = magnetic flux density) yields

curl E = −∂B
∂t

(3.7)

together with Eq. (3.3)

μoλ
2
mcurl

(
∂js
∂t

)
+ ∂B

∂t
= 0. (3.8)

By suppressing the time derivative in Eq. (3.8), Fritz and Heinz London postulated
a new equation

μoλ
2
m curl js + B = 0. (3.9)

The Maxwell Eq. (3.5) and the relation curl curl x = grad div x − � x finally
results in

�H = 1

λ2
m
H (3.10)

with the solution

H(x) = H(0) exp (−x/λm). (3.11)
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In Fig. 3.1, we show the course of the magnetic field H0 and the density ns of
the superconducting electrons in the vicinity of the interface between a normal
conductor (N) and a superconductor (S). Here we have assumed the geometry
of a superconductor whose x-coordinate runs from the surface at x = 0 left to
the inside of the superconductor and which fills the (left) half space x>0. The
magnetic field H is assumed perpendicular to the x-direction.

Today, Eqs. (3.3) and (3.9) are known as the first and second London equati-
ons. They characterize superconductors in contrast to other materials. Physically,
Eq. (3.11) means that an external magnetic field inside a superconductor decays
exponentially, with the decay occurring within a surface layer of the thickness
λm. The limiting case T→TC results in ns →0 and therefore λm →∞.

Typical values of the magnetic penetration depth are in the range λm = 40 −
60 nm. As an important material-specific spatial length, the magnetic penetration
depth plays a role in many properties of superconductors.

After the London theory established the fundamental importance of the magne-
tic penetration depth in superconductors, the Englishman Alfred Brian Pippard
pointed out for the first time in 1950 that the superconducting property cannot
change abruptly in space and has a certain spatial rigidity. This is expressed by the
so-called coherence length ξ . Changes in the superconducting properties are only
possible at spatial distances greater than the coherence length. This fact is explai-
ned by the Ginzburg–Landau theory, which also dates from 1950. The theory is
named after the two Russians Vitaly Lazarevich Ginzburg and Lew Dawidowitsch
Landau. In Chapter 5, we come back to this.

The two characteristic lengths λm and ξ play a role, for example, at the
interfaces between normal and superconducting regions in the same material.
Here, the finite value of the coherence length causes a superconducting region to
lose its superconducting property and the associated condensation energy density
(Eq. (2.4)) already at the distance ξ in front of this interface, thus making a posi-
tive contribution α1 = (H2

C/8π)ξ to the interface energy. However, since no gain
and therefore no loss of condensation energy occurs within the magnetic penetra-
tion depth λm, the value (H2

C/8π)λm must still be deducted from this. Finally, for
the wall energy of an interface between a normal and a superconducting region,
one finds

α = (H2
C/8π)(ξ − λm). (3.12)

In Fig. 3.1, we show the spatial impact of the two lengths ξ and λm. In connection
with this result Eq. (3.12), it was assumed that the interfacial energy must always
be positive and ξ > λm must therefore apply.
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Fig. 3.1 Dependence of the
density of superconducting
electrons, ns, and the
magnetic field H on the
distance from the interface
between a normal (N) and a
superconducting (S) region.
The x-coordinate runs in the
superconductor from the
surface at x = 0 left to the
interior of the
superconductor

When discussing the Meissner-Ochsenfeld effect, we had previously not consi-
dered the so-called demagnetization effect. This effect is based on the fact that the
magnetic field expulsion increases the magnetic field in the immediate vicinity of
the superconductor. This behavior is quantified by the so-called demagnetization
coefficient D of the geometry of the superconductor. If we call the magnetic field
at the edge of the superconductor HR, the following applies

HR = H/(1 − D) (3.13)

The coefficient D depends on the geometry and varies in the range 0–1. From
Eq. (3.13), we can see that in the range

HC (1 − D) < H < HC (3.14)

the case HR >HC is present and superconductivity must be interrupted. In Table
3.1, we have compiled the demagnetization coefficient D for some geometries.

From Table 3.1, we can see that in the case of a thin plate or cylinder oriented
parallel to H, the magnetic field in the outer space is hardly changed by the field
expulsion. On the other hand, we expect a large field increase in the case of a
plate oriented perpendicular to H, so that the magnetic field at the outer edge
quickly becomes larger than the critical magnetic field HC(T).

In the range marked by Eq. (3.14), superconductivity can no longer be maintai-
ned everywhere, and magnetic flux must penetrate the superconductor. In 1937,
Landau proposed the existence of a new “intermediate state” for this case, in
which normal domains with the local magnetic field HC and superconducting
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Table 3.1
Demagnetization coefficient
D for different geometries

Geometry D

Thin plate oriented parallel to H ≈0

Thin cylinder oriented parallel to H ≈0

Sphere 1/3

Cylinder oriented perpendicular to H with circular 1/2

Cross section

Thin plate oriented perpendicular to H ≈1.0

domains with the local magnetic field zero exist. According to Eq. (3.12), we
expect for these domains a wall energy proportional to the length difference
ξ − λm, where ξ > λm.

In Fig. 3.2, we show the intermediate state of a superconducting lead layer
of 9.3 μm thickness at 4.2 K for different values of the magnetic field oriented
perpendicular to the layer. The images were obtained magneto-optically using a
polarization microscope. The normal domains are bright and the superconducting
domains are dark. The critical magnetic field of lead at 4.2 K is 550 G (TC =
7.2 K).
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Fig. 3.2 Intermediate state of a superconducting lead layer of 9.3 μm thickness at 4.2 K in
rising (d–f) and falling (j–l) perpendicular magnetic field for the following magnetic field
values: d 218 G; e 348 G; f 409 G; j 260 G; k 101 G; l 79 G. Normal domains are bright,
superconducting domains are dark



4Type II Superconductors,Abrikosov
Vortex Lattice,Mixed State

As early as the 1930s, experiments, particularly those by Leo Vasilyevich Shub-
nikov in Kharkov in Soviet Ukraine, showed that the ideas of that time in the
field of superconductivity needed to be expanded. Shubnikov had built a low-
temperature laboratory there early on, in which experiments could also be carried
out with liquid helium. (However, Shubnikov’s many foreign contacts became his
undoing during the Stalin terror of the time. Stalin had him arrested and shot on
November 10, 1937, after 3 months in custody).

Electrical and magnetic measurements, especially on superconducting alloys,
had shown behavior that was not understood at that time. Especially the question
of the relative size of the coherence length ξ and the magnetic penetration depth
λm came into focus. The young theoretical physicist Alexei A. Abrikosov at the
University of Moscow made the decisive breakthrough at that time. He was a
friend of Nikolay Zavaritskii, who wanted to verify the predictions of the Ginz-
burg–Landau theory at the Kapitza Institute for Physical Problems by means of
experiments on superconducting thin films. Until then, the only case in which the
length difference ξ–λm, and thus also the wall energy during domain formation
in superconductors, was positive, had been considered.

Abrikosov and Zavaritskii now seriously discussed for the first time the possi-
bility that the length difference can also become negative if the coherence length
ξ is smaller than the magnetic penetration depth λm. Based on the Ginzburg–
Landau theory, Abrikosov calculated the critical magnetic field for this case as
well. He was able to prove that this was the only way to achieve good agreement
with Zavaritskii’s experimental data for particularly carefully prepared thin films.
Abrikosov and Zavaritskii were now convinced that they had discovered a new
type of superconductor, which they called the “second group.” Today, this group
is called type II superconductors (with ξ < λm), while the superconductors with
positive wall energy are called type I superconductors (with ξ > λm).
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Fig.4.1 a Magnetic flux density B and b magnetization− 4πM as a function of the applied
magnetic field H in the case of a type I superconductor

His further theoretical analysis of type II superconductors using the Ginz-
burg–Landau theory led Abrikosov to discover a novel state in the presence of
a magnetic field: The superconductor may be permeated by a regular lattice of
individual magnetic flux quanta. Abrikosov had found the flux line lattice and
the so-called mixed state. How revolutionary Abrikosov’s discovery was at that
time can be seen from the fact that his doctoral supervisor, Lew Dawidowitsch
Landau, did not agree with the novel result. Only after the American Richard
Phillips Feynman, only a few years later, also discussed quantized vortex lines in
rotating superfluid helium, did Landau give his consent. In this way, the publica-
tion of Abrikosov’s work, which was completed in 1953, was delayed by several
years.

The magnetic flux quanta that permeate the superconductor like filaments are
generated by superconducting ring currents, which generate a spatially confined,
local magnetic field like a magnet coil. We will come back to the magnetic flux
lines in Chap. 5.

In Fig. 4.1, we show once again the magnetic flux density B inside a type I
superconductor and its magnetization M as a function of the applied magnetic
field H for the case of a geometry with a vanishing demagnetization coefficient
D. We see the perfect diamagnetism with B = 0 below the critical magnetic field
HC and the linear increase of− 4πM with increasing H.

The superconducting mixed state with the magnetic flux line lattice exists in
the region of the magnetic field above the “lower critical magnetic field” HC1

<HC and below the “upper critical magnetic field” HC2, i.e., in the region HC1

<H<HC2. Below HC1, the Meissner-Ochsenfeld effect still applies. In Fig. 4.2,
this behavior is shown schematically (again under the assumption D≈0).
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Fig. 4.2 aMagnetic flux density B and b magnetization− 4πM as a function of the applied
magnetic field H in the case of a type II superconductor

The first experimental proof of the magnetic flux line lattice was performed by
elastic neutron diffraction in 1964 on the basis of the interaction of the magnetic
moment of the neutrons with the magnetic field gradients of the mixed state.
A particularly impressive experimental confirmation was achieved in 1967 by
Uwe Essmann and Hermann Träuble using the so-called Bitter technique. They
sprinkled a fine ferromagnetic powder onto the surface of the superconductor.
There the powder is attracted by the points where the magnetic flux lines reach the
surface. The small heaps of powder that are formed thus decorate the individual
flux lines (Fig. 4.3).
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Fig. 4.3 Superconducting mixed state with the lattice of quantized magnetic flux lines pro-
posed by Abrikosov for the first time. a Schematic diagram. A total of nine magnetic flux
lines are shown, each magnetic flux line being surrounded by superconducting ring currents.
b Experimental proof of the Abrikosov lattice of magnetic flux lines for a 0.5-mm thick
plate of superconducting niobium by decoration with the Bitter technique. The many dark
dots mark the places where the individual magnetic flux lines penetrate the surface of the
superconducting plate. (U. Essmann)



5Ginzburg–LandauTheory,Magnetic
Flux Quantization, LondonModel

The phenomenological Ginzburg–Landau theory on which Abrikosov based his
theory describes the electrons in the superconducting state by a macroscopic wave
function

ψ(r, t) = |ψ(r, t)| eiϕ(r,t) (5.1)

with an amplitude |ψ(r, t)| and a phase ϕ(r, t). The complex wave function ψ(r, t)
can be interpreted in the sense of Landau as order parameter of a phase transition.
The absolute value |ψ(r, t)| is linked to the local density ns(r) of the superconduc-
ting electrons, |ψ(r, t)|2 = ns. The phase of the order parameter ϕ(r, t) provides
the description of the superconducting currents.

In the theory, the density G of the free energy of the electrons is expanded
according to powers of the order parameter. An important assumption here is that
ψ(r, t) has only small values. Thus, strictly speaking, the theory is only applicable
just below TC. Taking into account spatial variations of the order parameter and
an existing magnetic field with the flux density B = curl A (A = vector potential),
the expansion of the free energy density is

G = Gn + α(T)|ψ|2 + β(T )

2
|ψ|4 + 1

2m∗

∣
∣
∣
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)

ψ

∣
∣
∣
∣

2

+ B2/8π (5.2)

m* is the mass and e* the charge of the particles (c = speed of light). Equa-
tion (5.2) is the starting point of the Ginzburg–Landau theory. From the expression
(Eq. (5.2)) for the free energy density, the minimum value must be found with
spatial variation of the order parameter ψ(r) and the magnetic field or the vector
potential A(r). With the help of a common variation method, one finds the two
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differential equations according to Ginzburg–Landau

α ψ + β |ψ|2 ψ + 1

2m∗

(
�

i
∇ − e∗

c
A

)2

ψ = 0 (5.3a)

js = e∗
�

2m∗i
(ψ∗∇ ψ − ψ∇ ψ∗) − e∗2

m∗c
ψ∗ψ A (5.3b)

Equation (5.3a) has the form of a Schrödinger equation with the eigenvalue− α of
energy. The contribution β |ψ|2 ψ acts like a repulsive potential. Equation (5.3b)
is the quantum mechanical description of a particle current. Both equations apply
to particles of mass m* and charge e*.

Abrikosov’s discovery of the magnetic flux line lattice was a great success
for the Ginzburg–Landau theory. The description of the superconducting state of
the electrons by a macroscopic quantum mechanical wave function had proved to
be particularly fruitful. Important results are the explanation of the characteristic
lengths ξ(T) and λm(T), the critical electric current density jc and magnetic flux
quantization.

The smallest possible unit of magnetic flux in a superconductor is the magnetic
flux quantum h/2e = 2.068 ·10−15 V s. The quantity h is Planck’s constant and
e the charge of an electron. This quantization condition follows from the fact
that the macroscopic wave function describing the superconducting state has to
reproduce itself exactly if one moves with the spatial coordinate point of the wave
function once around the enclosed magnetic flux region and returns to the starting
point. Experimentally, magnetic flux quantization was first demonstrated in 1961
by Robert Doll and Martin Näbauer and independently by Bascom Deaver and
William Fairbank. With the help of a small superconducting tube of only about
10 μm diameter (a superconducting lead cylinder vapor-deposited on a quartz
filament) placed in a low magnetic field parallel to the axis of the tube, Doll and
Näbauer were able to show that the magnetic flux present in the small hollow
cylinder was either zero or an integer multiple of the flux quantum mentioned
above (Fig. 5.1).

A more detailed explanation of the step structure shown in Fig. 5.1b can be
found in Fig. 5.2. Part a shows the superconducting shielding current Is as a
function of the magnetic flux density Be, which is parallel to the axis of the small
superconducting cylinder. The magnetic flux passing through the cross-sectional
area of the cylinder is πR2Be (R = cylinder radius) and is given in units of
the magnetic flux quantum ϕo = h/2e (the vector ϕo is oriented parallel to the
direction of the flux density B).
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Fig. 5.1 Experimental proof of magnetic flux quantization in a superconductor. a The tube
consisting of a superconductor of only about 10 μm diameter is cooled in a magnetic field B
oriented parallel to its axis. Below the critical temperature TC, the magnetic field is switched
off and the frozen magnetic flux in the tube is measured. bAs a function of the magnetic field
B, the frozen magnetic flux shows a quantized step structure, since only integer multiples of
the magnetic flux quantum (h/2e) are allowed in the tube. The figure shows the observation
of 0, 1 and 2 magnetic flux quanta. Without quantization, the measuring points should lie on
the dotted straight line. (R. Doll and M. Näbauer)

The shielding current Is shown in Fig. 5.2 initially prevents magnetic flux
from entering the cylinder opening due to the Meissner-Ochsenfeld effect. At
the value Be = ϕo/(2πR2) of the magnetic flux density the shielding current
compensates exactly half a flux quantum ϕo/2 in the cylinder (point (1)). If Be is
further increased, the shielding current Is changes its sign and thus causes exactly
one flux quantum ϕo to exist in the cylinder. One half of the flux quantum is
generated by Is (point (2)). If Be is now increased further, |Is| decreases again
until Be = ϕo/(πR2) reaches the state with Is = 0 (point (3)). This process is
repeated with further increase of Be. In the cylinder, the steps with the number n
of magnetic flux quanta thus come about (Figs. 5.1b and 5.2b). In Fig. 5.2c, the
superposition of the applied magnetic field (solid arrows) and the magnetic field
generated by Is (dashed arrows) is shown schematically for the three points (1)
to (3) from Fig. 5.2a. Due to the entry of the magnetic flux quanta ϕo into the
cylinder, the shielding current Is and the kinetic energy associated with it remains
limited instead of increasing indefinitely.

A physical description of the magnetic flux line in a type II superconductor,
which Abrikosov discussed for the first time, is provided by the London model.
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Fig.5.2 Experimental demonstration of magnetic flux quantization at the entry of magnetic
flux into a small superconducting cylinder. Part a shows the superconducting shielding current
Is as a function of themagnetic fluxdensityBe oriented parallel to the cylinder axis. Part bgives
the number n of magnetic flux quanta in the cylinder as a function of Be. Part c explains the
superposition of the applied magnetic field (solid arrows) and the magnetic field generated
by Is (dashed arrows) at the three points (1) to (3). Further details can be found in the text

The model assumes a normal vortex core with the radius ξ embedded in the
superconducting phase. The radius ξ of the normal vortex core is assumed to be
small compared to the magnetic penetration depth λm, ξ�λm. The ratio λm/ξ
is defined as the Ginzburg–Landau parameter κ, which is highly important for
superconductivity

κ = λm/ξ (5.4)

The London model is a good approximation in the range HC1 <H�HC2,
where the interaction between the flux lines is not yet too strong.

In the case of an isolated single flux line, i.e., in the case of a magnetic field
only slightly above HC1, the flux lines are far apart and their interaction can be
neglected. The schematic Fig. 5.3 shows the structure of an isolated flux line.
The local magnetic field h in the vicinity of the flux line reaches its maximum
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Fig.5.3 Structure of a single flow line. Localmagnetic field h, density of the superconducting
electrons ns, and the circulating superconducting current density js as a function of the distance
r from the axis of the flux line

in the center and decreases exponentially with increasing distance from the cen-
ter, approximately outside the radius λm. The density ns of the superconducting
electrons is suppressed to zero at the center of the flux line and reaches its full
value outside the radius ξ. The density js of the circular current, which generates
the magnetic field h(r) of the flux line, reaches its maximum at about the radius
λm and vanishes in the normal vortex core. For the mean magnetic flux density
B, we have the important relationship.

B = n ϕ0, (5.5)

where n is the vortex density (number of vortices per area).
From the London model, the electric super-current density js as well as the

local magnetic flux density h(r) in the vicinity of a magnetic flux line, the energy
per unit length of a flux line, the lower critical field HC1, the interaction between
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the magnetic flux lines and the magnetization in the vicinity of HC1 can be cal-
culated. However, the simplicity of this useful phenomenological theory is gained
only by the unrealistic behavior of the expressions with their divergence on the
axis of the flux line. This divergence can be avoided by cutting off the area of the
vortex core at r<ξ during integration.



6BCSTheory, Energy Gap

A theoretical explanation of superconductivity was sought early on. Albert Ein-
stein, for example, had suggested that superconductivity is caused by molecular
chains (similar to Ampère’s molecular currents). In a manuscript of March 1922
entitled “Theoretical Remarks on the Superconductivity of Metals” (Theoreti-
sche Bemerkungen zur Supraleitung der Metalle; published in September 1922),
Einstein had discussed the superconducting state as follows:

It therefore seems inevitable that the superconducting currents are carried by clo-
sed molecular chains (conduction chains), whose electrons constantly undergo cyclic
permutations. Kamerlingh Onnes therefore compares the closed currents in supercon-
ductors with Ampère’s molecular currents. … It may be regarded as improbable that
different kinds of atoms can form conducting chains with each other. So perhaps the
transition from one superconducting metal to another is never superconducting.

However, Kamerlingh Onnes was already interested in the contact between two
different superconductors. At the end of the mentioned manuscript, Albert Ein-
stein writes in a short P.S.: “The last hinted assumptions … are partly disproved by
an important experiment, which Kamerlingh Onnes carried out in the last months.
He showed that at the contact point of two different superconductors (lead and tin),
no measurable ohmic resistance appears.”

The question of the behavior of a contact between two superconductors was
taken up again in 1932, when Walther Meissner showed in experiments together
with Ragnar Holm that the mechanical contact between two superconductors is
also superconducting, which is incompatible with molecular chains. We will come
back to the contact between two superconductors in Chapter 7 when discussing
the Josephson effect.
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Phenomenological theories such as the London theory and the Ginzburg–
Landau theory meant important stations in theoretical understanding. However,
a microscopic explanation of the mechanism was still missing. The list of those
who had tried this is long. Besides Albert Einstein, we mention the names of Felix
Bloch, Niels Bohr, Léon Brillouin, Jakov I. Frenkel, Werner Heisenberg, Ralph
Kronig, Lew Dawidowitsch Landau and Wolfgang Pauli.

In 1957, John Bardeen, Leon Cooper and Robert Schrieffer achieved a deci-
sive progress. Their “BCS theory” was quickly accepted. The reason why it took
so long to find a convincing theoretical explanation of superconductivity is that
the energy difference of the electrons between their normal and superconducting
states is extremely small and much smaller than the Fermi energy. However, the
calculation of the various individual contributions to the energy of the electrons
in the crystal is much less accurate than the energy gain achieved during the
transition to the superconducting state.

The BCS theory is based on the idea that at low temperatures, there is an
attractive force between two electrons, so that two electrons combine to form pairs
in a certain way. The binding energy thus obtained leads to a reduction in energy.
Leon Cooper had already theoretically deduced such pair formation and energy
lowering in 1956. Therefore, the pairs of electrons are called “Cooper pairs.” The
attraction during the formation of the Cooper pairs is caused by distortions of the
crystal lattice in the vicinity of the individual electrons. Phonons therefore play a
role here.

Herbert Fröhlich and independently John Bardeen had developed an important
basic idea for this in 1950. They had realized that an electron distorts the cry-
stal lattice in its environment. Due to the electron–phonon interaction, an electron
moving through the crystal lattice is surrounded by a cloud of virtual phonons,
which are continuously emitted and reabsorbed. The formation of Cooper pairs is
due to the exchange of virtual phonons between the two electrons. This process
is shown schematically in Fig. 6.1. An electron with the wave vector k emits a
virtual phonon q, which is absorbed by an electron k′. The virtual phonon scatters
k to k − q and k′ to k′ + q. Since the process is virtual, energy conservation
does not have to be maintained. The exchange of phonons between the electrons
leads to an attraction when one of the electrons is surrounded by a positive shiel-
ding charge through the lattice, which overcompensates the negative elementary
charge. The other electron is then attracted by the net positive charge.

Experimental observations of the so-called isotope effect had already indicated
the important role of the crystal lattice in superconductivity in the early 1950s.
The term isotope effect is used when the result depends on the mass of the atomic
nuclei at constant electric charge of the nuclei, i.e., on the number of neutrons in
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Fig. 6.1 Exchange of a
virtual phonon q between
the electrons with the wave
vectors k or k′

the atomic nucleus. In various specially produced isotopically pure superconduc-
ting metals (lead, mercury, and tin), it was found that the critical temperature TC

is inversely proportional to the square root of the mass M of the lattice atoms:

Tc ∼ 1/Mα (6.1)

The exponent was α = 0.5. The crystal lattice therefore had to play a role in
superconductivity.

The Cooper pairs always consist of two electrons with oppositely directed
intrinsic angular momentum, so that the total spin of the individual Cooper pair
disappears. In this case, the Pauli principle is invalid and all Cooper pairs can
occupy the same quantum state. This quantum state is described by a macroscopic
quantum mechanical wave function. However, the formation of Cooper pairs and
the macroscopic quantum state is restricted to a certain small energy range in the
vicinity of the Fermi surface (and thus to a small part of the conduction band).

At the heart of the BCS theory is the idea of an energy gap in the energy
spectrum of electrons at the Fermi energy. Above the critical temperature TC, the
energy gap disappears, and below TC, it grows in a certain way as the temperature
decreases, reaching its maximum at 0 K. First indications of a gap in the energy
spectrum of the electrons had already been obtained by optical absorption expe-
riments on superconducting thin films. In 1960, Ivar Giaever provided impressive
proof of the energy gap through his famous tunnel experiment (Fig. 6.2). At that
time, he had been particularly fascinated by the quantum mechanical tunneling
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Fig.6.2 Experimental proof of the energy gap in a superconductor by the tunnel experiment
of Giaever. aA superconducting electrodeA and a normal electrode B are separated from each
other by a thin, electrically insulating barrier C, so that the flow of electric current through
the barrier is only possible by the quantum mechanical tunnel effect. b Electric current I as a
function of voltage V, when both electrode metals are in the normal state. c Electrical current
I as a function of the voltage V, if one metal electrode is superconducting. Only when the
potential difference between the two electrodes has reached the value of the energy gap can
the electric current flow begin

process for quite some time. After hearing about the new BCS theory and its
prediction of a gap in the energy spectrum of electrons, he succeeded in demons-
trating the energy gap directly by means of the electric current flow between a
superconducting and a normal electrode: If the two electrodes are separated from
each other by a thin electrically insulating barrier, the electric current flow can
only come about through the quantum mechanical tunnel effect. In such a “tun-
nel contact,” the wave function of the particles extends to the other side of the
barrier. However, the tunnel current cannot yet flow if no permitted energy states
are available on the other side in the superconductor. The electric current only
begins to flow when the potential difference between the two sides of the contact
has reached the value of the energy gap. If both electrodes are superconducting,
it is similar. In this way, Giaever succeeded in determining the energy gap with
a simple measurement of electrical voltage and electrical current. Such tunnel
experiments on superconductors have subsequently become very important.

The formation of Cooper pairs in superconductivity is also expressed in the
size of the magnetic flux quantum discussed above. Since the Cooper pairs consist
of two elementary charges, it follows that the magnetic flux quantum ϕo = h/2e is
only half as large as in the case where only a single elementary charge is involved.



7Josephson Effect

The contact between two superconductors, which we mentioned at the begin-
ning of Chapter 6 in connection with Kamerlingh Onnes and Walther Meissner,
was to take on a prominent role about three decades later. After Ivar Giaever
had published the results of his famous tunnel experiment to prove the energy
gap in superconductors, the student Brian David Josephson in Cambridge, Eng-
land, became interested in the underlying tunneling process. He had heard about
the new BCS theory in lectures and was particularly impressed by the concept of
superconductivity as a macroscopic quantum phenomenon. He theoretically inves-
tigated the flow of electric current through the barrier of a tunnel contact between
two superconductors, as Giaever had also used it. He derived two equations for
the electric current and for the electric voltage, which have since been known as
Josephson equations:

Is = IC sin χ (7.1)

∂χ

∂t
= 2e

�
V (7.2)

In Eq. (7.1), the supercurrent flowing without electrical resistance is described
by Cooper pairs. Equation (7.2) states that an electric voltage V at the tunnel
contact is always accompanied by an alternating supercurrent oscillating at high
frequency between the two superconductors. The frequency of this Josephson
oscillation increases in proportion to the electrical voltage. Equations (7.1) and
(7.2) are based on the concept that superconductivity is a macroscopic quantum
phenomenon described by the wave function (order parameter) Eq. (5.1) with
an amplitude |ψ(r, t)| and a phase ϕ(r, t). In Eq. (7.1), χ denotes the phase
difference χ = ϕ2 − ϕ1 between both sides of the contact. The supercurrent Is
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Fig. 7.1 Josephson oscillation of the supercurrent between the superconducting electrodes
of a tunnel contact in the presence of an electrical voltage at the contact. a In the Josephson
contact, the two superconducting electrodes A and B are only weakly coupled to each other,
for example, by a thin, electrically insulating barrier C, which still allows electrical current to
flow through the quantum mechanical tunneling process. b The frequency ν of the Josephson
oscillation of the supercurrent between the two electrodes increases proportionally to the
electrical voltage V at the contact. At the voltage of 1 V, the frequency is approximately
483,000 GHz. c Electric current I as a function of the voltage V for a Josephson contact. The
solid curve shows the tunnel current for superconductivity and the dashed straight line shows
the tunnel current for normal conduction. At voltage zero, the Josephson pair current can be
seen up to its maximum value I0. When the contact is irradiated with microwaves, the curve
shows “Shapiro steps” caused by the interaction of the Josephson oscillation in the contact
with the microwaves

flowing through the contact is given by the sine function of this phase difference
χ = ϕ2 − ϕ1. IC denotes the critical current of this contact geometry.

The Josephson Eqs. (7.1) and (7.2) can be derived in different ways. A deriva-
tion by Richard Feynman starts with the time-dependent Schrödinger equation for
the two wave functions ψ1 and ψ2 for the initially still separate superconductors
1 and 2 and adds a coupling between the two.

Josephson made his predictions in 1962 but his theory was initially met
with skepticism and incomprehension. It was experimentally confirmed as early
as 1963 (Fig. 7.1). The second Josephson equation again manifests the double
elementary charge of the Cooper pairs responsible for superconductivity.



8Movement of the Flux Quanta, Flux Flow
Resistance

The question of how exactly the electrical resistance in superconductivity dis-
appears to zero came into focus in the early 1960s, when newly discovered
superconductor materials first appeared to make their technical applications at
high electrical currents possible. Especially, the new superconducting niobium
alloys Nb3Sn and NbZr were very promising. Careful measurements, especially
at the Bell laboratories in the USA, revealed indications of high values of cri-
tical electric current density and critical magnetic field. A novel “critical state”
was also found, above which a finite, albeit relatively small, electrical resistance
occurs. The American Philip W. Anderson recognized at that time that a new pro-
cess must be involved, namely a movement of magnetic flux quanta caused by
the flow of electric current. This process then became famous as “flux creep” and
“flux flow.”

Every movement of magnetic flux quanta in a superconductor due to a force
acting on them generates an electric field in the superconductor and thus an
electric voltage. This “flux flow voltage” grows proportionally to the speed and
number of moving flux lines. In the case of an electric current of density j, the
Lorentz force fL = j ×ϕo acts on the flux quanta. The Lorentz force is oriented
perpendicular to the direction of the electric current and the magnetic field of the
flux lines. The movement of the flux lines thus caused generates the electric field
E:

E = −vϕ × B (8.1)

The magnetic flux density B is given by the areal density n of the magnetic flux
quanta ϕo: B = n ϕo. The quantity vϕ denotes the velocity of the flux lines.
The electric field (Eq. (8.1)) is always oriented perpendicular to the direction of
motion and to the magnetic field of the magnetic flux lines. Since the electric field
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and the electric current have the same direction, energy is dissipated by the flux
line motion in the superconductor and electric losses occur. This process of flux
motion follows the (here simplified) equation of forces

j × ϕ0 − η vϕ = 0 (8.2)

Here η vϕ denotes the dissipative contribution and η a damping constant. In
Eq. (8.2), the forces refer to a unit length of the flux line. From Eqs. (8.1) and
(8.2), one finds the specific flux flow resistance

ρf = ϕ0 B
/
η (8.3)

This mechanism always limits the current flow without electrical resistance and
losses in superconductors. Therefore, many efforts have been made to prevent this
process of flux line movement as far as possible by installing so-called pinning
centers. (In Eq. (8.2) we have, for the sake of simplicity, neglected the pinning
forces and a force component that causes the Hall effect when the flux lines
move.)

As an example we show in Fig. 8.1 the flux-flow voltage as a function of
the electric current in a niobium foil for different values of the magnetic field
oriented perpendicular to the foil. (thickness of the foil = 18 μm, width of the
foil = 4 mm, T = 4.22 K). The electrical resistance ratio R(295 K)/R(4.2 K) was
620, where R(4.2 K) was measured in a perpendicular magnetic field of 4,000
G. The voltage starts at a finite critical current and initially shows an upwardly
curved behavior. It then grows linearly with increasing current, as can be expected
from Eqs. (8.1) and (8.2). The finite critical current results from the pinning forces
due to spatial inhomogeneities in the superconductor, which, as pinning centers,
prevent the movement of the magnetic flux lines. The slope of the linear curve
sections represents the flux flow resistance and increases with increasing external
magnetic field.

Figure 8.2 shows a schematic representation of the resistivity ρf as a function
of the external magnetic field H. Initially, ρf grows linearly with H and then
leads into a much steeper curve branch, which reaches the normal value ρn of the
resistivity at the upper critical magnetic field HC2.
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Fig. 8.1 Flux-flow voltage as a function of the electric current in a niobium foil of 18 μm
thickness and 4 mm width for various vertically oriented magnetic fields. T = 4.22 K; TC =
9.2 K
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8.1 Thermally ActivatedMotion of Magnetic Flux Quanta

As already mentioned, the equation of forces (Eq. (8.2)) is an idealized approxi-
mation that neglects the effect of pinning forces on the magnetic flux lines. In the
following, we want to discuss a special problem from the very complex field of
the effect of pinning forces on the magnetic flux line lattice in more detail: the
thermally activated movement of the magnetic flux lines.

The basic ideas from the 1960s go back to the abovementioned Philip W.
Anderson and Young Kim. We consider a single magnetic flux quantum that is
fixed in a potential well by the pinning force. (The potential well represents a
local minimum in the spatial course of the Gibbs free energy density.) The depth
of the potential well is denoted by Uo. Thermal activation allows the flux quantum
to jump out of the potential well, the hopping rate Rj being given by

Rj = νo exp

(
− Uo

kBT

)
(8.4)

Here νo denotes a characteristic attempt-frequency, and we assume Uo »kBT.
In the absence of an external force acting on the flux quantum, the thermally
activated hopping process of the flux quantum is the same in all directions, and
the resulting flux motion vanishes. However, if an external force acts on the flux

Fig. 8.2 Schematic representation of the specific flux flow resistance ρf in a type II super-
conductor as a function of the magnetic field for different temperatures (T1 >T2 >T3). ρn
denotes the normal resistance
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x

Uo Uo + ΔU
Uo - ΔU

Fig.8.3 Thermally activated motion of magnetic flux quanta. LeftWithout an external force,
the flux jumps do not show a preferred direction. Right In the presence of an external force,
the flux jumps show a preferred direction

quantum, this spatial symmetry is broken. In the direction of this force, the wall
height of the potential well is reduced by �U, and in the opposite direction, it is
increased by �U. In Fig. 8.3, we show a schematic representation. The hopping
process now has a preferred direction.

After a short calculation, two important limiting cases are found, where the
critical electric current density jc is decisive, where the energy gain by the Lorentz
force exactly compensates the depth of the potential well: �U = Uo. In the limit
of thermally activated flux flow (TAFF limit), j « jc, the following applies:

E = 2ρc · exp
(

− Uo

kBT

)
· Uo

kBT
· j (8.5)

and in the limit j ≈ jc:

E ≈ ρc · exp
[
− Uo

kBT

(
1 − j

jc

)]
· jc (8.6)

In the TAFF limit, we get Ohm’s law (Eq. (8.5)). However, the resistance E/j is
strongly reduced due to the factor exp(−Uo/kBT). The limit j ≈ jc of Eq. (8.6) is
called flux creep with the current-dependent effective energy Ueff = Uo (1 − j/jc)
of the barrier. This current-dependent exponent in Eq. (8.6) often causes a strong
increase of E with increasing j over many orders of magnitude.

The case j� jc is called flux flow, for which pinning effects are negligible, just
like for a perfectly homogeneous sample. (In the latter case, only the edges of the
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Fig. 8.4 Electric field E as
a function of the electric
current density J for the
different ranges of the
physical behavior of the
magnetic flux quanta

sample play a role as spatial inhomogeneity). Figure 8.4 shows a summary of the
different ranges we have discussed.
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The discovery of so-called high-temperature superconductors by Johannes Georg
Bednorz and Karl Alexander Müller in 1986 marked the beginning of a new era
in the field of superconductivity. The two had found a sudden decrease in electri-
cal resistance by at least three orders of magnitude in compounds of barium (Ba),
lanthanum (La), copper (Cu) and oxygen (O) with falling temperature. The drop
had started at about 35 K, and it was suspected that this was a new type of super-
conductivity. However, since superconductivity started at temperatures up to 12 K
higher than the record critical temperature of 23.2 K for the compound Nb3Ge,
which had been in existence for 12 years at the time, caution and skepticism were
called for.

In the case of Bednorz and Müller, however, the period of skepticism did not
last long, as their results were already confirmed at the end of 1986. In 1987, Paul
Ching-Wu Chu and colleagues reported a sensational progress: In a modification
of the original oxides, in which the larger lanthanum atom was replaced by the
smaller yttrium atom, they observed the enormous increase in the critical tempe-
rature up to 92 K. The critical temperature of 92 K of this recently discovered
new material YBa2Cu3O7 (abbreviated YBCO) is even significantly higher than
the boiling temperature of 77 K for liquid nitrogen. Now the relatively expensive
liquid helium as coolant could be replaced by the much cheaper liquid nitrogen.

An overview of the time course of the discovery of the different superconduc-
tors with their critical temperature TC is shown in Fig. 9.1.

The new class of “cuprate superconductors” (Fig. 9.2) consists of oxides with
perovskite structure. They are composed of copper oxide (CuO2) planes in which
the copper and oxygen atoms form a two-dimensional lattice. The crystallographic
unit cells of each compound contain a different number of copper oxide planes. A
distinction is made between five main families of cuprate superconductors, whose
“progenitors” and critical temperatures TC are listed in Table 9.1.
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Fig. 9.1 Critical temperature TC plotted over the year of discovery of various superconduc-
tors. The steep curve branch on the right shows some high temperature superconductors. (R.
Kleiner)

The copper oxide planes of the cuprates determine the electrical and especi-
ally the superconducting properties. Doping with electrical charge carriers plays
an important role in this process. In the undoped state, the cuprates are initially
electrical insulators. The elementary magnets of the copper atoms in the CuO2

planes are alternately oriented in opposite directions (antiferromagnetism). Super-
conductivity only occurs when the electron concentration in the CuO2 planes is
reduced by doping with holes. For example, this hole doping is caused by the
extraction of oxygen. However, superconductivity only occurs in a relatively nar-
row concentration range of the doping, so that the oxygen concentration must
be carefully controlled during material preparation. Table 9.1 shows the critical
temperature values for the case of optimum hole doping. The highest critical tem-
perature value observed so far at normal pressure, TC = 133 K, was found in
the compound HgBa2Ca2Cu3O8+x. At high pressure, this compound even shows
a critical temperature of 164 K.
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Fig. 9.2 Crystal structure of different cuprate superconductors. At the 6 corners of the light
octahedrons or at the 5 corners of the light pyramids, there are oxygen atoms. The centers of
the octahedrons or the base of the pyramids are occupied by copper atoms (IBM)

Table 9.1 Critical
temperatures of various
high-temperature
superconductors

Compound TC (K)

La2−xSrxCuO4 38

YBa2Cu3O7−x 92

Bi2Sr2CaCu2O8+x 110

Tl2Ba2Ca2Cu3O10+x 125

HgBa2Ca2Cu3O8+x 133
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In contrast to doping with holes, doping with electrons, i.e., with negative
charges, is necessary for superconductivity in some compounds. However, the
concentration range of the doping required for superconductivity is lower in this
case and the critical temperature is significantly lower than for compounds doped
with holes.

As expected, the layered crystal structure of the cuprate superconductors with
its structure of the CuO2 planes (Fig. 9.2) causes a strong dependence of the
electrical and thermal transport properties on the crystal direction. The electrical
resistivity in the normal state perpendicular to the CuO2 planes is up to several
orders of magnitude higher than parallel to these planes. In the normal state of the
cuprates, the temperature dependence of the electrical resistance, the Hall effect,
as well as the Seebeck and Peltier effect, shows a behavior that clearly differs
from that of metals.

Soon after the discovery of high-temperature superconductors, it was recogni-
zed that the coherence length ξ, which characterizes the spatial rigidity of the
superconducting properties, is much smaller in these materials than in classical
superconductors. Its size is in the range of the dimensions of the crystallographic
unit cell. This leads to a particularly high sensitivity to atomic defects and grain
boundaries. Since the coherence length also determines the extent of the core of
the magnetic flux lines (see Fig. 5.3), atomic defects and grain boundaries already
act as pinning sites for magnetic flux quanta. From the density of the condensa-
tion energy of Eq. (2.4), we can see that per unit length of the magnetic flux line,
the condensation energy

(
H2
C/8π

)
πξ2 has to be provided for the normal nucleus.

This energy can be saved in whole or in part if the core of the flux line pas-
ses through a region of the superconductor in which superconductivity is already
suppressed by the material inhomogeneity of a pinning center.

The granular structure and spatial inhomogeneity of cuprate superconductors
was initially a difficulty that had to be overcome if technical applications of these
materials were to be realized. In Fig. 9.3, we show an early example using one
of the first prepared thin films of the cuprate superconductor Y1Ba2Cu3O7 with
further explanations in the legend.

In the case of cuprate superconductors, the question of whether the formation
of Cooper pairs is the central mechanism for superconductivity, as in classical
superconductors, could be clarified early on. The positive answer was found from
the size of the magnetic flux quantum and the relation between electric voltage
and frequency in the Josephson effect, where the double elementary charge of the
Cooper pairs always occurred. However, the microscopic pairing mechanism of
the cuprates has not yet been clarified.
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Fig. 9.3 Granular structure of one of the first prepared thin films of the cuprate supercon-
ductor Y1Ba2Cu3O7. The layer running horizontally in the figure has a width of 30 μm. The
arrowheads on the right mark the upper and lower edges of the layer. Bright spots indicate the
locations where electrical resistance occurs in the layer when exposed to electrical current.
The dark areas are superconducting. In the series of figures (a) to (e), the electrical current
was successively increased from 0.7 mA at (a) to 8.7 mA at (e). The figures show the strong
spatial inhomogeneity of the layer with large fluctuations in the local critical electrical cur-
rent density. The figures were taken using the method of low temperature scanning electron
microscopy. The temperature was 53 K

The upper critical magnetic field HC2 in cuprate superconductors is up to more
than 100–200 times greater than the highest values in classical superconductors.
This can be understood using the Ginzburg–Landau theory and the extremely
small values of the coherence length.
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9.1 Symmetry of theWave Function

With the reference to the Ginzburg–Landau theory in Chap. 5 and to the BCS
theory in Chap. 6, we had presented the macroscopic wave function (Eq. (5.1))
to describe the state of the superconducting electrons. In the case of the cuprate
superconductors, we have to discuss especially the symmetry of this wave func-
tion. In classical superconductors, the wave function is generally isotropic (s-wave
symmetry). In the case of the cuprates, however, the layer structure with the CuO2

planes must already be taken into account. To illustrate the symmetry of the
wave function, a representation in the momentum space is useful. In the two-
dimensional k-space, which is spanned by kx and ky, the amplitude of the wave
function is plotted as a function of direction.

In the case of hole-doped high-temperature superconductors, the wave func-
tion shows a strong directional dependence, which is determined by the atomic
d-orbitals of the copper atoms in the CuO2 planes. In Fig. 9.4, we show the polar
plot of the amplitude of the wave function in two-dimensional k-space with the
four lobes of the d-orbitals. As a function of the polar angle, we can see the nodes
and antinodes as well as the alternating sign. The crystallographic arrangement of
the nodes and antinodes is shown for the case of dx2−y2 symmetry. The isotropic
case with s-wave symmetry is also shown for comparison. To identify the directi-
ons of the nodes and antinodes, we show in Fig. 9.5 the case of the square CuO2

lattice in the CuO2 planes.

Fig. 9.4 Representation of the wave function with s-wave symmetry (left) and with dx2−y2

symmetry (right) in k-space (kx–ky plane). The latter symmetry dominates in the CuO2 planes
of the cuprate superconductors
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Fig. 9.5 Scheme of the
square CuO2 lattice. The
unit cell is marked with the
solid line. The lattice
constant a is indicated

Fig.9.6 Bicrystal technique for controlled preparation of a single grain boundary in a cuprate
superconductor layer. An artificially produced bicrystal is used as substrate, in which two
differently oriented monocrystalline parts are separated from each other by an atomically
sharp grain boundary. The grain boundary in the substrate is then transferred exactly to
the superconductor layer prepared above it. On both sides of the grain boundary, there are
monocrystalline superconductor layers with different crystal orientation
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The change of sign of the wave function when moving around the coordinate
origin in the plane kx–ky and the four zero-crossings of the amplitude at the
nodes have significant effects on the superconducting properties of materials with
d-wave symmetry. The energy gap disappears at the nodes and increases again on
both sides.

9.2 VortexMatter

The layered structure of the cuprate superconductors with the superimposed CuO2

planes has strong effects on the vortex lattice in the superconducting mixed state.
Here we limit ourselves to the case where the magnetic field is oriented per-
pendicular to the CuO2 planes. The magnetic flux lines now consist of single
small disks, since the superconducting property is limited to the CuO2 planes.
These disks are also called pancakes. Due to this decomposition of the individual
flux lines, the vortex lattice has numerous new properties. In the literature, this
novelty is summarized under the term vortex matter. For example, individual disks
can now leave their stacked arrangement, which can be regarded as melting and
evaporation of the vortex matter.

The new properties of vortex matter are particularly evident in the electri-
cal resistance behavior and electrical losses. As we discussed in Chapter 8, the
movement of the magnetic flux lines under the influence of the Lorentz force is
the main cause of the electrical losses. This becomes all the more serious when
individual parts of the magnetic flux lines can already start moving as small disks.
The installation of effective pinning centers is therefore of particular importance.
Due to the small coherence length of the cuprates, pinning centers on an ato-
mic length scale, such as missing oxygen atoms in the CuO2 planes and grain
boundaries, are already effective here.

9.3 Grain Boundaries

The granular structure of the oxide cuprate superconductors with their nume-
rous grain boundaries was a great challenge from the very beginning, since
superconductivity is generally interrupted within the grain boundaries. The task
was therefore to reduce the number of grain boundaries as far as possible.
Furthermore, the physical properties of the grain boundaries had to be clarified.
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With the help of the already highly developed thin-film technology, it was soon
possible to produce monocrystalline thin films of the high-temperature supercon-
ductors on suitable substrates. Critical electrical current densities of more than
1 million A/cm2 could already be achieved at the boiling temperature of liquid
nitrogen of 77 K.

The so-called “bicrystal technique” has proven to be very useful for the inves-
tigation of grain boundaries. It is based on the following fact. During the epitaxial
growth of the high-temperature superconductor layer, the crystal orientation of the
monocrystalline substrate is transferred exactly to the superconductor layer above
it. If a specially prepared bicrystal is used as a substrate, in which an atomi-
cally sharp grain boundary separates two differently oriented crystal regions from
each other, then the grain boundary of the substrate is transferred exactly to the
superconductor layer prepared above it. In Fig. 9.6, we show the schematic repre-
sentation of a bicrystal. This bicrystal technique has proved to be very successful
in many experiments. In particular, it is very successful in realizing the Joseph-
son effect in high-temperature superconductors. Today, the bicrystal technique is
widely used in the fabrication of Superconducting Quantum Interference Devices
(SQUIDs) (see Sect. 12.1) based on high-temperature superconductors.

At the end of this section, we will discuss the special case where the bicrystal
technique is used to fabricate an arrangement in which two lobes of the supercon-
ductor d-wave function meet with different signs. This arrangement is called “π
contact”. If such a π contact is built into a closed superconducting ring, there is
so-called frustration, where the unambiguity of the wave function is destroyed. (A
change of sign of the wave function remains after a complete revolution.) In this
case, the frustration is cancelled by the spontaneous generation of a half-integer
magnetic flux quantum.

In a famous experiment, Chang C. Tsuei and colleagues used this technique
to prove the d-wave symmetry of the Cooper pair wave function for the high-
temperature superconductors doped with holes. In Fig. 9.7, we show their result.
They used a tri-crystal as substrate, in which three monocrystalline regions are
arranged in such a way that at one of the three grain boundaries created, a sign
change of the wave function occurs between the two sides, thus resulting in a
π contact. The frustration is removed by spontaneously forming an exactly half
numbered magnetic flux quantum at the common meeting point of the three grain
boundaries. The half-integer magnetic flux quantum could be detected with a
SQUID scanning microscope.
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Fig. 9.7 Tri-crystal experiment by Tsuei to prove the d-wave symmetry of the quantum
mechanical Cooper pair wave function in the cuprate superconductor Y1Ba2Cu3O7. The sub-
strate is an artificially produced tri-crystal in which three differently oriented monocrystalline
crystal parts are separated by atomically sharp grain boundaries. This crystal structure with
its grain boundaries is transferred exactly to the superconductor layer prepared above. The
grain boundaries are marked by the straight white lines. In the three crystal parts separated
by the grain boundaries, the differently oriented d-wave symmetry of the Cooper pair wave
function is indicated by the white four-leaf figures. A total of four superconducting rings have
been fabricated from the YBaCuO layer at various locations, while the remaining part of the
layer has been removed. The orientations of the three crystal parts are chosen in such a way
that if d-wave symmetry of the wave function is present, an exactly half-integer magnetic flux
quantum is spontaneously generated in the ring around the commonmeeting point of the three
crystal parts, while nothing happens in the remaining three rings. The figure was obtained
using a SQUID scanning microscope and shows the half-integer magnetic flux quantum in
the middle ring around the common meeting point of the three crystal parts. The other rings
remain only weakly indicated (C. C. Tsuei)

9.4 Intrinsic Josephson Contact

The layer structure of the cuprate superconductors with the superconducting CuO2

layers, which are separated from each other by weakly conducting intermediate
layers, suggests that there should be an “intrinsic Josephson effect” here. Reinhold
Kleiner and Paul Müller were the first to prove the intrinsic Josephson effect in
1982. Here, several hundred to several thousand Josephson contacts are stacked
on top of each other. Initially, Kleiner and Müller used small Bi2Sr2CaCu2O8

(BSCCO) single crystals that were clamped between two contact pins. This allo-
wed an electric current to be passed through the crystal perpendicular to the CuO2

planes. As soon as an electrical voltage appeared at the contacts above a critical
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current level, a high-frequency Josephson alternating current was observed, accor-
ding to the second Josephson Eq. (7.2), by means of the emitted microwaves. The
emitted power of the electromagnetic radiation could be detected because it incre-
ases proportionally to the square of the large number of synchronously oscillating
Josephson contacts stacked on top of each other in the crystal.

In the meantime, this technique has been further developed. Today, BSCCO
towers, so-called “mesas,” are used, which are manufactured on a substrate and
carry an electrical contact. The principle is shown in Fig. 9.8. The technique is of
particular interest as a source of radiation for microwaves in the frequency range
0.5–2 THz, as this frequency range has only been developed to a limited extent
so far. Currently, microwave powers of several tens of μW are achieved in the
terahertz range for individual mesas. Attempts are being made to increase this
power even further by synchronizing networks of several mesas.

Fig.9.8 Intrinsic Josephson contact as microwave source. (Left) Diagram of a stack of three
Josephson contacts of a superconductingBi2Sr2CaCu2O8 (BSCCO) crystal. The (dark drawn)
copper oxide planes run through the base of the CuO pyramids. (Right) Emitted microwave
spectrum of a BSCCO crystal (R. Kleiner)
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The search for new superconductors continued even after the discovery of the
cuprate superconductors. We will briefly describe the most important develop-
ments. In 2001, Jun Akimitsu and colleagues from Tokyo reported the discovery
of superconductivity in the compound magnesium diboride (MgB2) with the cri-
tical temperature TC = 39 K. This was very surprising, since the two elements
magnesium and boron are not superconducting themselves and the compound
had been well known for a long time. The hexagonal crystal structure of MgB2

shows a layered structure of alternating planes of magnesium and boron atoms.
Again, the formation of Cooper pairs due to the electron–phonon interaction is
the basis of superconductivity. MgB2, however, is a case of so-called two-band
superconductivity, in which charge carriers from two energy bands contribute dif-
ferently to superconductivity. The wave function of the Cooper pairs shows no
clear directional dependence.

The discovery of the iron- and arsenic-containing pnictides in 2008 by Hideo
Hosono and colleagues in Japan was another important step. It began with
the compound LaOFeAs consisting of lanthanum (La), oxygen (O), iron (Fe)
and arsenic (As), which was still doped with fluorine (F). In the compound
LaO1−xFxFeAs, the critical temperature TC = 26 K was observed for x = 0.07.
Also other elements of the light rare earths (Rare Earths, Re) such as praseody-
mium (Pr), neodymium (Nd) or samarium (Sm) instead of lanthanum resulted in
superconducting compounds within the family ReO1−xFxFeAs. Critical tempera-
ture values up to the record value TC = 56 K in Sr0.5Sm0.5FeAsF were observed.
In their electronic transport properties, the pnictides do not show pronounced
anisotropy. The important structural elements are plane layers of iron atoms sur-
rounded by tetrahedrally arranged As- or Se-anions, which play the role of CuO
planes in the cuprates (Fig. 10.1). The layers are stacked on top of each other
and separated from each other by blocking layers of alkali atoms, elements of the
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Fig. 10.1 Layers of FeAs (or similarly of FeSe) sandwiched between layers of lanthanum
oxide and possibly doped with fluorine

alkaline earths or rare earths and oxygen atoms. For doping, oxygen is partially
replaced by fluorine.

Similar to the case of the cuprates 22 years earlier, research on iron pnictides
developed explosively worldwide. Similar to the cuprates, the iron pnictides are
magnetically ordered in the undoped state. Unlike the cuprates, however, they are
electrically conducting. They are an antiferromagnetic semimetal. It seems that
in this case, superconductivity and magnetism are related. In Fig. 10.2, we show
an overview of the different iron pnictides discovered until 2015. The different
families are identified by the names 11, 111, 122, 1111, etc. More than 50 iron
pnictides have been found by 2010. The pairing mechanism is still unclear. Howe-
ver, there is much evidence to suggest magnetic spin fluctuations as the basis for
the formation of Cooper pairs.
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Fig.10.2 Critical temperature TC of different iron pnictide superconductors plotted against
time of discovery. (Silvia Haindl)



11Superconductivity in Interfaces
andMonolayers

In 2015, an announcement made headlines that superconductivity with a critical
temperature above 100 K was observed in FeSe monolayers. The discovery came
from China (which, after the end of the Cultural Revolution in 1971, experienced
a huge boom, which also extended to the natural sciences). Indications of super-
conductivity in FeSe monolayers had already been given by another Chinese group
in 2012. The monolayers were prepared on specially processed SrTiO3 substrates
by molecular beam epitaxy (MBE). The thin layers were particularly sensitive
and had to be stored in a vacuum or protected from destruction by a cover layer.

Due to the great progress in the field of thin film technology, research into
superconductivity in interfaces and monolayers has developed rapidly in recent
years. MBE, pulsed laser deposition and sputtering are the most important techni-
ques for the preparation of new materials. Scanning tunneling microscopy (STM)
and angle-resolved photoemission spectroscopy (ARPES) are indispensable ana-
lytical methods for the investigation of electronic properties.

Before electrical resistance measurements on the FeSe/SrTiO3 monolayers had
found the onset of superconductivity at 109 K, there were already indications of a
superconducting state through tunnel experiments. These showed that the energy
gap in the FeSe monolayers is about ten times larger than in FeSe crystals and that
the critical temperature should therefore be correspondingly higher. In crystalline
form, FeSe is a superconductor with a critical temperature of 8 K. Apparently, the
electron–phonon (electron–boson) coupling between the electrons in the interfaces
is significantly increased. Furthermore, mechanical tensions can play a role in
the epitaxial films. The FeSe monolayers show a pronounced two-dimensional
geometry and are therefore easier to treat theoretically due to the absence of
a kz component of the wave vector (which plays a role in the other Fe-based
superconductors). In the two dimensions, the energy gap is isotropic and does
not show any zeros (nodes). At a temperature of 3 K, a critical electrical current
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density of 1.3 · 107 A/cm2 was measured (in high vacuum) if the monolayer did
not have a protective covering layer. With a protective coating, this critical current
density was reduced to about 106 A/cm2. Even with a thickness of the FeSe layer
of two unit cells and above, superconductivity disappears.

The chemical and structural similarity of many oxides allows the combina-
tion of materials with different electronic properties. The system LaAlO3/SrTiO3

with its interface between two band insulators provided first indications of super-
conductivity in interfaces. Electric conductivity was discovered in 2004 and
superconductivity at the interface in 2007. The Cooper pairs apparently exist
in the conductive interface, but the reason for the pairing is to be found in the
nonconducting neighboring material. This is reminiscent of similar ideas publis-
hed long before by V. L. Ginzburg (1964), D. Allender, J. Bray and J. Bardeen
(1973) and W. Little and H. Gutfreund (1971). In the crystalline state, LaAlO3

and SrTiO3 are electrical insulators with a remarkable energy gap between the
valence and conduction bands of 5.6 and 3.2 eV, respectively. The electrically
conducting interface is formed when an epitaxial film of LaAlO3 with a thickness
of more than three unit cells is deposited on a SrTiO3 single crystal. The cry-
stal structure of LaAlO3 (SrTiO3) consists of successive layers of LaO and AlO2

(SrO and TiO2). While the SrO and TiO2 layers are charge-neutral, the LaO and
AlO2 layers each carry a positive or negative charge. In this way, an electri-
cal potential difference is created between the interface and the LaO surface. To
compensate this potential difference, various mechanisms of charge transfer to the
SrTiO3 surface have been proposed, whereby an electrically conducting electron
fluid is generated there. The local confinement of the electrons in a potential well
(quantum confinement) must also be taken into account.

To study superconductivity at the LaAlO3/SrTiO3 interface, it is useful to
modify the charge carrier doping of the two-dimensional electron liquid by means
of a gate electrode on the back side of the SrTiO3 substrate and the field effect.
Depending on the doping of the interface, the transition to superconductivity
shows a dome-like pattern with a maximum value of TC of about 300 mK. With
the help of the field effect, superconductivity can be reversibly switched on and
off at low temperatures.

A similar result can be seen in the semiconducting state: After doping, SrTiO3

is also superconducting. The critical temperature also shows a dome-like curve as
a function of doping with a maximum value of about 300 mK.

Similar to LaAlO3/SrTiO3, superconductivity was also found at the interface
of LaTiO3 and SrTiO3.

Materials behave differently in two dimensions than in three. This leads to
new physical effects, which are being studied with increasing intensity. The field
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of superconductivity in interfaces and monolayers is only just beginning and
promises to remain interesting.



12Technical Applications

12.1 Microelectronics

The applications of superconductivity in microelectronics are essentially based
on two facts: magnetic flux quantization and the Josephson effect. In both cases,
a macroscopic quantum effect and the description of the state of the Cooper
pairs with a quantum mechanical wave function play the central role. A cha-
racteristic example is the SQUID (abbreviated from Superconducting Quantum
Interference Device). The principle is shown in Fig. 12.1, where two parallel
Josephson contacts are built into a closed superconducting loop. Due to magnetic
flux quantization, the magnetic flux of an external magnetic field through the loop
can only assume values of integer multiples of the magnetic flux quantum. This
condition is realized by spontaneously generating a circulating supercurrent in the
loop in such a way that its magnetic flux together with the external magnetic flux
yields exactly one integer multiple of a flux quantum. (We have already shown a
similar case in Fig. 5.2.)

This leads to an exactly periodic modulation of the shielding current in the
loop depending on the external magnetic field. The circulating electrical shielding
current now flows in addition to the external current, so that the electrical vol-
tage drop along the loop arrangement is also periodically modulated. The voltage
measurement still allows the resolution of a small fraction of a modulation period,
resulting in a high sensitivity for magnetic field measurement. Today, SQUIDs are
manufactured using thin film technology and integrated circuit technology.

Their high sensitivity as sensors for magnetic fields makes SQUIDs interesting
for many applications. In medical diagnostics, new fields of application have deve-
loped that involve the magnetic fields generated by the electrical currents during
cardiac activity and in the brain. This has led to the development of the new fields
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Fig. 12.1 a Equivalent circuit diagram of the SQUID. The crosses (X) in the current loop
indicate the Josephson contacts,which each contain a shunt resistor (R) and a shunt capacitance
(C). b Voltage modulation at constant impressed current as a function of the magnetic flux ϕ

in the current loop in units of the flux quantum ϕo

of magnetocardiography and magnetoencephalography. In brain research today,
devices with up to 275 SQUID channels are used. The channels with the indivi-
dual sensors are arranged three-dimensionally around the head of the test person
or patient. In Fig. 12.2, we show an example. In SQUID scanning microscopes,
especially miniaturized SQUIDs are used. Their high magnetic field sensitivity
combined with a spatial resolution of only a few μm allows the imaging of
individual magnetic flux quanta in superconductors. An application of a SQUID
scanning microscope is shown in Fig. 9.7 of Sect. 9.3. Further applications for
SQUIDs can be found in nondestructive materials testing.

At present, small spin systems in nanoparticles are attracting particular atten-
tion. The latest development of these SQUID instruments is the production of
ultra-small devices on sharp tips on the nano-scale (nano-SQUID-on-tip). By
depositing superconducting lead or niobium on the tip of hollow quartz tubes,
SQUID loops with an effective diameter of only 160 nm or even less than 100 nm
can be achieved. An estimation shows that the signal of a single electron spin
located 10 nm below a SQUID-on-tip loop can still be resolved with a spatial
accuracy of about 20 nm.

Today, the Josephson effect has numerous applications in so-called Joseph-
son electronics. The second Josephson Eq. (7.2) states that an electrical voltage
drop at a Josephson contact is always associated with a high-frequency oscilla-
tion of the supercurrent between both electrodes of the contact. Here, a voltage



12.1 Microelectronics 59

Fig.12.2 Magnetoencephalography. Left: Test subject with the helmet put over his headwith
the SQUID magnetic field sensors in a magnetically shielded room. Right: Interior view of a
helmet with 151 SQUID sensors. (Photos: MEG International Services Ltd.)

of 10−3 V corresponds to an oscillation frequency of 483.6 GHz. If, on the other
hand, a current-carrying Josephson contact is irradiated with a high-frequency
electromagnetic wave, for example with a microwave, pronounced electrical vol-
tage plateaus occur at the contact. The second Josephson equation determines the
value of the voltage plateau by the frequency of the irradiated electromagnetic
wave. Since frequencies can be measured very accurately, this quantum relati-
onship between frequency and electrical voltage has been used since January 1,
1990 for the legal definition of the unit of electrical voltage by the state calibra-
tion offices. On the basis of this Josephson voltage standard, a voltage of 1 V
corresponds to the frequency 483,597.9 GHz. In this way, the Josephson effect
is part of the famous quantum triangle of current, voltage and resistance for the
definition of electrical units of measurement.

In the case of high-temperature superconductors, the relatively high values
of the critical temperature compared with those of classical superconductors in
particular have given a great boost to the search for their technical applications.
The possibility of using superconductivity already when cooled down to 77 K with
liquid nitrogen is particularly attractive. In Sect. 9.3, we mentioned the fabrication
of Josephson contacts and SQUIDs on bicrystal substrates in thin films of high
temperature superconductors. This method is widely used today. High-frequency
filters made of high-temperature superconducting layers are interesting because
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they have a greater frequency sharpness of the high-frequency channels so that
significantly more channels can be accommodated within the available frequency
band. For example, more than 10,000 base stations for mobile telephone traffic
are already operated with this technology worldwide. Cooling down to about 70 K
is done by so-called cryocoolers, which have been developed in recent years for
reliable cooling and which can run maintenance-free for long periods of time.

12.2 Power Engineering

The applications of superconductivity in power engineering, for example, for
magnet coils or cables, only became possible when new superconductor materi-
als with higher values of the critical electric current density and the upper critical
magnetic field HC2 were discovered in the 1960s. The focus was then on the com-
pounds NbTi with TC = 9.6 K and Nb3Sn with TC = 18 K. At that time, thin
layers of the compound Nb3Ge reached the record value of the critical temperature
of classical superconductors with TC = 23.2 K. For industrial production, special
drawing and extrusion processes as well as optimized annealing treatments and
cold-working were quickly developed. The so-called “multifilamentary wires,”
which consist of many thin filaments of the superconductor material within a
copper matrix, became famous. This technique guarantees certain stability in case
of overload and at the same time provides sufficient pinning centers for anchoring
the magnetic flux quanta in the superconductor material.

Superconducting magnetic coils are an important product today, especially for
research. In Fig. 12.3, we show two examples. Large beam guiding magnets for
particle accelerators and the associated particle detector systems are indispensable
today. The “Large Hadron Collider” (LHC) at the European Nuclear Research
Center (CERN) in Geneva has been in operation for several years as the world’s
largest particle accelerator based on superconductivity.

Another large-scale application of superconductivity is found in magnetically
levitated trains. Recently, especially the Japanese JR-Maglev project has made
good progress. In 2015, tests showed that a speed of over 600 km/h was achieved.
Superconducting coils are mounted in the train, which generate magnetic fields
above 5 T. Electrically well-conducting current loops are built into the track bed,
in which strong eddy currents are generated when the train passes by. According
to Lenz’s rule, the magnetic field of the eddy currents causes a repulsive force
on the field of the coils and thus the levitating force. Since this repulsion is only
sufficiently strong above a certain minimum speed, the train must first run on
wheels, which are retracted when this speed is reached.



12.2 Power Engineering 61

Fig. 12.3 Superconducting magnet coils. (Left) Commercially available coil for research
purposes. The coil is wound from niobium-titanium (NbTi) wire and can generate a magne-
tic field up to 9 T (about 1 million times the Earth’s magnetic field). (Oxford.) (Right)
Superconducting model coil with its test setup for a toroidal magnetic field when entering
the cryogenic container of an experimental facility at the Karlsruhe Research Center (For-
schungszentrum Karlsruhe). The experimental facility is used to develop the technology for
magnetic plasma confinement during nuclear fusion. The external dimensions of the oval
model coil are 2.55 m×3.60 m×0.58 m. During operation, an electric current of 80,000
amperes flows through the coil. The entire test assembly weighs 107 tons and shall be cooled
to 4.5 K. The cryogenic container has a usable inside diameter of 4.3 m and a usable height
of 6.6 m (Forschungszentrum Karlsruhe)

An important market for superconductivity technology has developed over the
last 30 years due to the superconductive magnets used in magnetic resonance
imaging. This was helped by the fact that at the beginning of the 1980s, the
health authorities allowed magnetic resonance imaging for medical diagnostics.
The annual turnover of the industry in this field today amounts to 2–3 billion
EUR.

Superconducting energy transmission cables with classical superconductors
have also been investigated since the 1970s in various pilot projects. Cooling with
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liquid helium was envisaged. Superconducting energy transmission cables are of
particular interest where the usual overhead lines are not possible in conurbations.

Superconducting magnetic energy storage devices based on magnetic coils
operated with direct current are an interesting technology for storing electri-
cal energy. They can be useful for bridging short interruptions in the electrical
energy supply. Finally, superconducting coils are indispensable in nuclear fusion
to generate the high magnetic fields required for plasma confinement. The largest
superconducting magnet systems are currently being developed for this long-term
energy supply option.

In the field of high-current applications, intensive work is being done on
the development of magnetic coils made of high-temperature superconductors.
Furthermore, superconducting systems for electrical current limitation in power
engineering are in a promising stage of development. These systems are inten-
ded to enable rapid interruption of the electrical current if overload threatens to
cause damage to the electrical lines. A particularly interesting new development
is currently (2015) in generators made of high-temperature superconductors for
electrical power generation by wind energy. Their planned use would halve the
weight of the generator located at the top of the mast compared to the previous
equipment or double the power for the same weight.



WhatYou Learned FromThis essential

• How young and unknown scientists often make key discoveries
• That the close cooperation between experimentalists and theorists can be

necessary for important advances
• That the Physikalisch-Technische Reichsanstalt (PTR) in Berlin founded in

1887 by Werner Siemens and Hermann von Helmholtz became an extremely
successful and important research institution

• How the engineering development of the technology for the preparation of
epitaxial thin films lead to important advances in science and technology

• How the preparation of new materials and hetero-structures lead to unexpected
advances in the field of superconductivity
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