
2 Theoretical Basics

In this chapter, we introduce the basic concepts of multiobjective
optimization. We introduce basic definitions and derive a concept of
optimality for multiobjective optimization problems. Based on this, we
formulate the central optimization problem that we study throughout
this book and introduce a relaxed optimization problem that we use
in order to solve the central optimization problem. Throughout this
book N denotes the set of natural numbers, Z the set of integers, R
the set of real numbers and R` the set of nonnegative real numbers.

2.1 Basics of multiobjective optimization

In this section, we set the basis for comparing vectors in Rp. Therefore,
we use the pointed convex cone K “ Rp`, which induces a partial order
relation ď on Rp defined by

z1 ď z2 :ô z2 ´ z1 P Rp`

for elements z1, z2 P Rp, also called the componentwise ordering in Rp.
Obviously, it holds

z1 ď z2 ô z1i ď z2i for all i P t1, ..., pu.
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Note that the partial order ď on Rp is not a total order relation for
p ě 2. Additionally, we use the following notations:

• z1 ň z2 :ô z2 ´ z1 P Rp`zt0pu and

• z1 ă z2 :ô z2 ´ z1 P intpRp`q,

where intpRp`q is the interior of the set Rp`.
The following definition allows us to consider projections of subsets
Z Ď Rp.

Definition 2.1. Let the set Z Ď Rp be nonempty and j P t1, ..., pu.
We define the j-projection of Z as

Zj :“ tzj P R | Dz̃ P Z : z̃j “ zju.

Remark 2.2. We recall that for nonempty and compact set Z Ď Rp

all projections Z1, ..., Zp of Z are nonempty and compact.

The following definition generalizes the concepts of minimality and
maximality from scalar optimization to multiobjective optimization
and introduces the ideal- and the anti-ideal point of a set Z Ď Rp.

Definition 2.3. Let Z Ď Rp be a given set. An element z˚ P Z is
called

• a minimal element of Z, if Z X ptz˚u ´ Rp`q “ tz˚u and

• a maximal element of Z, if Z X ptz˚u ` Rp`q “ tz˚u.

Additionally,

• the set of minimal elements of Z is given by

minpZq :“ tz˚ P Z | Z X ptz˚u ´ Rp`q “ tz˚uu
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and

• the set of maximal elements of Z is given by

maxpZq :“ tz˚ P Z | Z X ptz˚u ` Rp`q “ tz˚uu.

Furthermore, if Z is nonempty and compact, we define

• the ideal point minpZq of Z as the element z˚ P Rp with
z˚j “ minpZjq “ mintzj P R | z P Zu for all j P t1, ..., pu and

• the anti-ideal point maxpZq of Z as the element z˚ P Rp with
z˚j “ maxpZjq “ maxtzj P R | z P Zu for all j P t1, ..., pu.

Thereby, minpZjq and maxpZjq for j P t1, ..., pu refer to the scalar
minimum and maximum of the set Zj .

Remark 2.4. The above definitions of minpZq and maxpZq are well
defined, because the respective minima and maxima exist due to the
compactness and non emptiness of the set Z and hence, of the projec-
tions.
Furthermore, it is easy to see that tz P Z | z ď z˚u “ tz˚u holds for
all z˚ P minpZq. Analogously, tz P Z | z˚ ď zu “ tz˚u holds for all
z˚ P maxpZq.
Additionally,

minp´Zq “ tz P Rp | p´Zq X ptzu ´ Rp`q “ tzuu

“ t´z P Rp | p´Zq X pt´zu ´ Rp`q “ t´zuu

“ t´z P Rp | Z X ptzu ` Rp`q “ tzuu

“ ´tz P Rp | Z X ptzu ` Rp`q “ tzuu

“ ´maxpZq.
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This equation can be used to reformulate maximizing problems as
minimizing problems and vice versa.

The following example illustrates the above definitions.

Example 2.5. We consider the set Z “ tz P R2 | ||z||2 ď 1u.
The minimum of Z is given by minpZq “ tz P R2 | ||z||2 “ 1, z1 ď

0, z2 ď 0u and the maximum of Z is given by maxpZq “ tz P R2 |

||z||2 “ 1, z1 ě 0, z2 ě 0u. Furthermore, it holds minpZq “ p´1,´1qJ

and maxpZq “ p1, 1qJ. The sets and points are illustrated in Figure
2.1.
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Figure 2.1: the sets and points from Example 2.5
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2.2 The central multiobjective mixed-integer
optimization problem

In this section, we introduce basic notations and definitions that allow
us to formulate the central optimization problem of this book. At first,
we recall the definition of intervals and generalize this concept for the
multidimensional case.
At first, we introduce intervals and boxes [15].

Definition 2.6.

(i) For b, b P R with b ď b we define the nonempty, compact interval
B by

B “ rb, bs :“ tb P R | b ď b ď bu.

(ii) We denote the set of all of these intervals by IR :“ trb, bs Ď R |
b, b P R, b ď bu.

Now, we introduce the definition of boxes that are a generalization
of intervals for the multidimensional case.

Definition 2.7.

(i) For b, b P Rr with b ď b we define the nonempty, compact,
r-dimensional Box B by

B “ rb, bs :“ tb P Rr | b ď b ď bu “
r

ą

i“1

rbi, bis.

(ii) We denote the set of all of these r-dimensional boxes in Rr by
IRr.
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(iii) Let B, B̃ P IRr be boxes with B̃ Ď B. Then we call B̃ a subbox
of B.

We introduce notations for certain parameters of boxes.

Definition 2.8. For B “ rb, bs P IRr we define

(i) the infimum of B as infpBq :“ b,

(ii) the supremum of B as suppBq :“ b,

(iii) the midpoint of B as midpBq :“ b`b
2 and

(iv) the width of B as widpBq :“ max
iPt1,...,ru

pbi ´ biq.

Furthermore, we call elements b P B with bi P tbi, biu for all i P t1, ..., ru
vertices of B.

Obviously, boxes are convex sets.
Moreover, we will use the following notations. Let B Ď Rr be a set
and f : B Ñ R a function that is twice continuously differentiable on
an open superset B of B. We define fpB̃q :“ tfpbq | b P B̃u for B̃ Ď B.
Furthermore, for an element b P B we denote the gradient of f in b
as ∇fpbq and the Hessian of f in b as Hf pbq. In addition, λminf

pbq

denotes the smallest eigenvalue of Hf pbq. Since f is twice continuously
differentiable λminf

pbq is well defined, because Hf pbq is symmetric for
all b P B and hence, every eigenvalue of Hf pbq is real.
The following assumptions will be used to define the central optimiza-
tion problem of this book and to prove associated theoretical results.

Assumption 2.9. Let X “ rx, xs P IRm, Y “ ry, ys P IRn be boxes for
m,n P N and B :“ X ˆ Y P IRr with r :“ m ` n. Additionally, we
assume y, y P Zn.
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Furthermore, let the functions f : B Ñ Rp and g : B Ñ Rq for p, q P N,
p ě 2 be convex and twice continuously differentiable on an open
superset B of B.

Remark 2.10. For our purposes, the assumption y, y P Zn can be
made without loss of generality, since we could simply round these vec-
tors up or down respectively and would obtain equivalent optimization
problems.
We will also make an additional assumption on regularity of certain
optimization problems in Assumption 3.9 later on.

Using the notation of Assumption 2.9, we introduce notations for
subsets of B that will be used later on.

Definition 2.11. Let Assumption 2.9 be fulfilled and let B̃ “ X̃ˆỸ Ď

B with X̃ P IRm and Ỹ P IRn be a given subbox of B. We define

B̃g :“ tpx, yq P X̃ ˆ Ỹ | gpx, yq ď 0qu and

B̃Z :“ tpx, yq P X̃ ˆ Ỹ | y P Znu, as well as

B̃g,Z :“ B̃g X B̃Z.

Now, we are able to formulate the central optimization problem
that we are going to study in this book. Under Assumption 2.9 we
are going to study the multiobjective mixed-integer convex problem

min fpx, yq

s.t. gpx, yq ď 0q

px, yq P X ˆ Y “ B

y P Zn.

(MOMICP)
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Using the notations from above, we can also write (MOMICP) as

min fpbq

s.t. b P Bg,Z.

Remark 2.12. Although (MOMICP) is a generalization of multi-
objective convex optimization problems, this approach cannot be used
in order to solve the interesting class of optimization problems defined
by

min yJf̃pxq

s.t. yJg̃pxq ď 0q

x P X

y P t0, 1un

pPyq

with X P IRm, f̃ : X Ñ Rnˆp and g̃ : X Ñ Rnˆq, where f̃i,j and g̃i,k
are convex and twice continuously differentiable on an open superset
X of X for all i P t1, ..., nu, j P t1, ..., pu, k P t1, ..., qu.
This is due to the fact that we demand convexity of f and g in As-
sumption 2.9. With Y :“ r0, 1sn, B :“ X ˆ Y , f : B Ñ Rp defined
by fpx, yq :“ yJf̃pxq and g : B Ñ Rq defined by gpx, yq :“ yJg̃pxq we
can rewrite pPyq in the form of (MOMICP). However, the functions f
and g are not necessarily convex in this case, even not if f̃ and g̃ are
linear. We illustrate this in Example 2.13.

Example 2.13. Consider X “ r´1, 1s, n “ 2, q “ 1 and g̃ : X Ñ R2

with g̃pxq :“ px,´xqJ in pPyq. Note that g̃ is linear and hence convex.
Then we define g : X ˆ r0, 1s2 Ñ R by gpx, yq :“ yJg̃pxq.
For px, yq “ p´1, p0, 0qJq P X ˆ r0, 1s2, px1, y1q “ p1, p0, 1qJq P X ˆ
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r0, 1s2 and λ “ 1
2 P r0, 1s we obtain

gpλpx, yq ` p1´ λqpx1, y1qq “ gpp´
1

2
, p0, 0qJq ` p

1

2
, p0,

1

2
qJqq

“ gp0, p0,
1

2
qJq

“ p0,
1

2
q ¨ g̃p0q

“ p0,
1

2
q ¨ p0, 0qJ “ 0,

but

λgpx, yq ` p1´ λqgpx1, y1q “ λp0, 0q ¨ g̃p´1q ` p1´ λqp0, 1q ¨ g̃p1q

“
1

2
p0, 0q ¨ p´1, 1qJ `

1

2
p0, 1q ¨ p1,´1qJ

“ 0´
1

2
“ ´

1

2
ă 0.

Therefore, g is not convex.

Note that we could also find an example where the objective func-
tions f of pPyq are nonconvex in an analog way.
At least, there are possibilities that allow us to neglect the assumption
of convexity of f for (MOMICP). We will outline one approach for
this in Section 6.
Now, in order to derive a concept of optimality for the central multiob-
jective optimization problem (MOMICP), we introduce the concept
efficiency for multiobjective optimization problems

min fpbq

s.t. b P B,
(MOP)

where B Ď Rr is a given set with r P N and f : B Ñ Rp is a given



14 2 Theoretical Basics

function with p P N. In the following definitions we introduce the
concepts of efficiency and nondominated points [11], [8].

Definition 2.14.

(i) A point b˚ P B is called efficient for (MOP), if there is no b P B
with

fpbq ň fpb˚q.

(ii) Let b, b˚ P B with
fpbq ň fpb˚q.

Then we say b dominates b˚.

(iii) The set of efficient points for (MOP) is called the efficient set
of (MOP).

(iv) A set L Ď PpRrq is called a cover of the efficient set E of
(MOP), if E Ď

Ť

L :“
Ť

B̃PL B̃ holds.

Remark 2.15. Referring to Definition 2.3, we observe that a feasible
point b˚ P B is efficient for (MOP) if, and only if, fpb˚q is a minimal
element of fpBq or in other words fpb˚q P minpfpBqq.

The above definitions consider points in the pre-image space of f .
Additionally, we introduce definitions for points in the image space of
f .

Definition 2.16.

(i) A point z˚ “ fpb˚q is called nondominated for (MOP), if b˚ P B
is efficient for (MOP).

(ii) The set of all nondominated points of (MOP) is called the
nondominated set of (MOP).
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(iii) For elements z1, z2 P Rp with z1 ň z2 we say z1 dominates z2.

(iv) A set Z Ď Rp is called stable, if there are no z1, z2 P Z with
z1 ň z2.

Remark 2.17. Referring to Definition 2.3, we observe that a point
z˚ P Rp is nondominated if, and only if, z˚ P minpfpBqq. Hence, the
nondominated set of (MOP) is equal to minpfpBqq.

2.3 A relaxation of (MOMICP)

In this section, deriving from the optimization problem (MOMICP),
we introduce a relaxed optimization problem pROPpB̃qq for a given
subbox B̃ of B. We use pROPpB̃qq to determine lower bounds for f on
B̃g,Z. These lower bounds will be sets L Ď Rp of a ’simple’ structure
that fulfill fpB̃g,Zq Ď L` Rp`.
Under Assumption 2.9, the relaxed optimization problem we are
interested in is given by

min fpbq

s.t. b P B̃g.
pROPpB̃qq

Obviously, the set of feasible points for (MOMICP) Bg,Z is a subset of
the set of feasible points for pROPpBqq, which is Bg. Because of this,
every feasible point for (MOMICP) is feasible for pROPpBqq and we
call the optimization problem pROPpBqq a relaxation of (MOMICP).
Since there are no integer constraints tied to the relaxation pROPpBqq,
it is a multi-objective (continuous) convex optimization problem. This
type of optimization problems has already been studied extensively.
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