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Chapter 7 
Functions 

Jurgen Leiterer 
(translated by R. B. Burckel) 

§ 1. Two Models concerning Differential Calculus 
of Several Variables 

The models shown in Photos 121 and 122 illustrate two 
"counterexamples" in the differential calculus of functions 
of several real variables. In the remarks that follow, we rely 
primarily on the 1884 book ofGENOCCHI andPEANO [GP), 
and on the literature cited there. 

1.1 Surfaces with a 2 z/ax ay =F a2 z/ay ax (Photo 121) 

The model shows the graph of a real-valued function 
f (x , y) of two real variables which is remarkable for the 
following features: all four second-order partial derivatives 
exist everywhere and each is continuous at every point 
(x , y) * (0, 0), but the mixed partial derivatives a2[ /ax ay 
and a2/ / ay ox are not continuous at (0, 0), and their values 
there are not equal. (If they were continuous at (0, 0), too, 
then these values would have to coincide - by a theorem 
of H. A. SCHWARZ [HAS].) 

For (x , y) :;C (0, 0) this function is given by 

x2 - y2 
2 x y 

and at the origin one sets f (0, 0) = 0. The first-order partial 
derivatives are 

at x 2 - y 2 x2 y2 
ax (x , y) = y x 2 + y2 + 4y (x2 + y2)2 

and 

of x2 - y 2 x2 y 2 
-o (x , y) = x - 2- -2 + 4x ( 2 2)2 Y x +y x+y 

for (x , y) * (0, 0), and both are 0 at the point (0, 0). In 
particular, 

of 
- (0 y ) = -y 
ax ’ 

and 
at 
ay (x, 0) = X, 

for all (x , y) and consequently 

a2f 02
/ 

ay ax (0, 0) = -1, but ax ay (0, 0) = + 1. 

In the model, the (x , y )-plane (indicated by a line in 
the margin) is horizontal at an elevation about half-way 
up the model. The function values/(x,y) are marked off 
in the vertical direction. Notice too that the function f 
has the form 

,2 
f(r, <P) = 4 sin4<{J 

in polar coordinates, and from this the qualitative ap-
pearance of the surface is immediately clear. {Th. SCHMITT 
brought this to my attention.) 
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The real "effect" that is at issue here (the inequality of 
the mixed partial derivatives) naturally cannot be perceived 
on the model with the naked eye, because this effect can be 
eliminated by means of arbitrarily slight deformations of 
the surface. Namely, if one selects a twice continuously 
differentiable function x (x, y) with values between 0 and 
1, which for a very small  > 0 vanishes whenever x2 

+ y
2 < e 

and has value 1 whenever x 2 + y 2 > 2 , then the graph of 
the function x (x, y) f (x , y) is indistinguishable with the 
naked eye from the surface represented by the model. 

Moreover, it is not difficult to show that the surface in 
the model is a C1 -submanifold of 3-dimensional space 
which is not a C2 -submanifold in the point (0, 0). In all 
other points it is of course actually of class C

00

� In this 
sense, it thus has a singularity at the point (0, 0). 

It should be noted that this example can already be 
found in the 1884 book of GENOCCHI and PEANO [GP] 
(p. 161 of the 1899 Gennan translation), and that ever 
since then it has been a staple in books on the differential 
calculus of several variables. 

1.2 The Peano Surface (Photo 122) 

In the second half of the last century, a number of 
erroneous views prevailed concerning sufficient conditions 
for the occurrence of a local maximum (or minimum) in a 
function of several real variables. 

Thus, for example, PEANO 1884 wrote in the remarks 
to paragraphs 133- 136 in [GP] (p. 332 in the 1899 German 
translation): "The proofs which most books give for the 
criteria for ascertaining maxima and minima of functions 
of several variables, rest on this assertion: In the Taylor 
expansion of a function the ratio of the remainder after 
any given term to that term itself converges to zero as the 
increment in the variables converges to zero. This assertion 
is generally false in cases where the given term is not ex-
pressible in some definite fonn in terms of the increments, 
and in those cases where it is so expressible the assertion 
still needs a proof. 

The criterion offered on p. 219 of SERRET’s Calcul, 
namely ’ le maximum ou le minimum a lieu si, pour les 
valeurs de h , k , . .. qui annulent d2f et d 3f , d4f a constam-
ment le signe - ou le signe +’is invalid." 

More precisely formulated , this criterion of SERRET’s 
runs as follows: Let f be a real-valued function which is 
defined and differentiable of every order at each point 

x = (x 1, ... , Xn) in real Euclidean space !Rn. Let dkf denote 
the k-homogeneous part of the Taylor development off 
about the point 0 E !Rn, that is, 

1 ah + ... +in[ . . 
dkf(x):=, "\ . 

1 
� 

1 
� � (O)x{l ... xln. 

. L. ll · ·· ·In· ax11 ... ax1n n 
JI + .. . +1n =k I n 

It is hypothesized that 

d 1f(O) = 0 

and that 

d 2f (x) .,;;; 0 (resp., d 2f (x) 0) 

(1) 

(2) 

holds for all x E !Rn. It is known that these are necessary 
conditions for the function f to experience a local maxi-
mum (resp., minimum) at the point 0, and one gets suf-
ficient conditions by demanding that strict inequality 
prevail in (2) for every x -=/= 0. 

SERRET’s (false) criterion states that a local maximum 
(resp., minimum) is likewise present if in addition to (1) 
and (2) the strict inequality 

d4f (x) < 0 (resp., d 4f (x) > O) (3) 

prevails for all x-=/= 0 with d 2 f (x) = d 3 f (x) = 0 . 

Independently ofPEANO, forexample, LUDWIG SCHEEF-
FER grappled with these kinds of errors in 1885. In the 
resulting paper [Sch], which was only published after his 
death by A. MEYER , he wrote inter alia (p. 544): "It is 
customary to further conclude that if on each of the infini-
tely many lines through the origin the corresponding 
function of one variable has a maximum (resp., minimum) 
at 0 , then the same must occur at the point (0, O) for the 
function f (x, y) of the two independent variables x and 
y .... However, the preceding deduction contains an error." 

PEANO gives (loc. cit.) an example to illustrate the in-
correctness of SERRET’s claim. As one can infer, e.g., from 
the foreword to the 1899 German translation of GENOCCHI 
and PEANO [GP], this example attracted considerable atten-
tion and became known as the "Peano example" or the 
"Peano surface." SCHEEFFER likewise used this example 
in [Sch] to prove the incorrectness of the inference he 
had criticized. 

PEANO’s example concerns the function 

f(x , y) = (2x2 - y)(y - x 2 ), (4) 
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in which x and y are independent real variables. Through-
out the (x , y )-region between the parabolas y = 2x2 and 
y = x 2 this function assumes positive values, while at every 
point outside this region it assumes negative values 

1<0 x 

Fig. 7.1 

It is therefore clear that this function does not ex-
perience a local maximum at the point (0, 0). 

Nevertheless, SERRET’s criterion indicates the presence 
of such a local maximum. In fact , from the slightly re-
written equation 

f (x, y) = - y 2 + 3yx2 
- 2x4 

one reads off that d 1f(O,O)=O and d 2f(x,y)=-y 2 

(conditions (1) and (2) above) hold. If now (x,y) * (0, O) is a 
point with d 2f(x , y)= - y 2 =0 and d 3f(x , y)=3yx2 =0, 
then it follows that y = 0, and consequently x * O; that is , 
d 4f (x , y) = - 2x4 < 0 (condition (3)). 

The function (4) also fulfills the above mentioned 
hypotheses of the inference scheme which SCHEEFFER 
criticized. This is so, because every straight line through 
the origin, as it leaves the origin , is initially in the region 
exterior to the two parabolas. 

The model in Photo 122 shows the graph of the func-
tion (4) in which, however, the actual x, y, z coordinates 
have been stretched out somewhat to better display the 
essential features. [The surface shown is really that de-
scribed by the equation 200z = (x2 

- lOy) • (2y - x 2
).] 

The (x , y)-plane is horizontal in the model and the point 
(0, 0) of it is the saddle-point of the surface being rep-
resented. The function values z = f(x,y) are calibrated 
in the vertical direction. In Fig. 7 .1, one can see very 
clearly the two parabolas which separate the points (x , y) 
with f(x , y)>O from those with f(x , y)<O. The down-
ward opening parabola z = f(O , y) is labelled on the model 
above the y-axis. 

§ 2. Models for Function Theory 

Here the models shown in Photos 123 to 132 will be 
discussed. In this discussion, we will avail ourselves of the 
descriptions [MM 1] (Photo 13 2) and [MM2] (Photos 123-
126 and 128-131), which were provided for these models 
by their builders. 

The models in Photos 123- 126 and 128- 131 are part 
of a series and exhibit a number of common features which 
will be discussed first , before we describe the individual 
models. 

They all depict the graphs of the real or imaginary parts 
of (single- or multi-valued) analytic functions of a complex 
variable. In this way, for every analytic function one gets 
two surfaces in 3-dimensional space. These give, on the one 
hand, a complete picture of the function (in the case of a 
multi-valued function , the relationship between the sheets 
of the real and imaginary parts must also be indicated) 
which, on the other hand, is immediately accessible to our 
intuition (unlike the actual graph of the function, which is 
a surface in 4-dimensional space). 

In all these models, the plane of the independent com-
plex variable z = x + iy is horizontal and passes through 
the center of the model, while the real and imaginary parts 
of the function values are laid off on the vertical axis. The 
models are inscribed on one side with an "R" or an "I" 
according to whether they illustrate the real or the imagi-
nary part of the function. This letter is always on the side 
facing the observer, and the (positive) imaginary axis of the 
z-plane points away from this side. In the case of the func-
tion w = (1 - z2 

)
114 (Photo 125), the real and imaginary 

parts happen to coincide, and consequently on the side of 
its model both letters "R" and "I" appear. In the case of 
WeierstraB’ &’J

1

-function (Photo 131), the real and imaginary 
parts are just 90° rotations of one another, and so on its 
model the letters "R" and"/" appear on adjacent sides. 

Each of the models shown in Photos 123- 126 and 
128-131 is marked with level lines representing suc-
cessively lcm higher levels on it (l /2cm in Photo 125, 
however) and some of the gradient lines, that is , trajec-
tories orthogonal to the level lines, are also marked. This 
is done in such a way that on the surface of the real part 
(imaginary part) of[, the gradient lines shown are just 
those whose orthogonal projections in the z-plane coincide 
with the orthogonal projections in the z-plane of the level 
lines on the surface of the imaginary part (real part) of 
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f. It is a property of analytic functions that the projec-
tions into the z-plane of the level lines of their real parts 
(imaginary parts) coincide with the z-plane projections 
of the gradient lines of their imaginary parts (real parts). 

2.1 The Riemann Surface w2 = z2 
- 1 (Photos 123 and 124) 

These models illustrate the real part (Photo 123) and 
the imaginary part (Photo 124) of the two-valued function 

w = yZ2-=t, 

that is, the surfaces in 3-dimensional space described by 
the equations 

u4 
- (x2 - y2 

- l)u2 
- x 2 y 2 = 0 (real part) 

and 

v4 + (x2 
- y 2 

- 1) v2 
- x2 y 2 = 0 (imaginary part), 

where 

w = u +iv and z = x + iy. 

On the model of the real part, one notices the imaginary 
axis x = 0 as well as the interval {y = 0, - 1 < x < + 1} where 
both values of -JZ2=1 are purely imaginary, that is, where 
the real part vanishes. Correspondingly, on the model of the 
imaginary part one notices the rays (half-lines) {y = 0, 
x < - 1} and {y = 0, x > + 1} where both values of yZ2=} 
are real. Further, one sees on both models the branch-
points z = - 1 and z = + 1. 

As z 00 , the function ..;zq comes asymptotically 
into coincidence with the two-valued function w = ± z , and 
this fact is already apparent in the finite portion of the 
graph shown in the model : The real parts (imaginary parts) 
of both values of ..JZ2-=-T become asymptotic with ± x 
(± y). 

It should also be noted that, according to the descrip-
tion in [MM2] , the relationship of the different branches 
on the respective models was originally indicated by color-
ing them correspondingly. But these colors did not endure 
the intervening 100 years, and today they are no longer 
visible. 

2.2 The Riemann Surface w4 = 1 - z2 (Photo 125) 

This model is supposed to illustrate the 4-valued func-
tion 

w = V’1 -z2 . (6) 

Fig. 7.2 

If z = x + iy is an arbitrary complex number and w = u +iv 
a solution of (1 ), then 

-w = - u - iv, iw = -v + iu , and - iw = v...,.. iu 

are the other three solutions. From this it follows that the 
real part and the imaginary part of the function (6) deter-
mine the same surface. According to [MM2], the equation 
of this surface (written in u) looks like 

25 6 u 16 - 128 u 12 
( - x 2 + y 2 + 1) 

- 16u8 [7 (x4 + y 4 
- 2x2 + 2y2 + 1) + 20x2 y 2

] 

- 8u 4 [2(x4 + y 4
- 2x2 + 2y2 + 1)+ 3x2 y 2 ][- x 2 + y 2 + 1) 

+ x4 y4 = 0. 

Since the real and the imaginary part of the function 
(6) determine the same surface, only one model was made , 
the one shown in Photo 125. On the model one sees all 
four layers of the surface lying above one another with the 
branch points z = ± 1. If one considers the part of the 
model which lies above (resp., below) the imaginary axis , 
one sees that for purely imaginary z = iy , the equation (6) 
has two real and two purely imaginary solutions: 

w = ± v1f+? and w = ± i 

According to [MM2], it was originally indicated with 
different colors (no longer visible) which values went 
together as the real and imaginary parts of the same solu-
tion of(6). 

2.3 The Graph of w = l/z (Photo 126) 

This model shows the graph of the real part of the 
function w = 1 /z, that is, the surface 

x u= - ­
x2+ y2 

(7) 

where w = u +iv and z = x + iy. For purely imaginary z, 
u = 0, while for real z , the value of u tends to – oo if x – O. 
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The imaginary part v = -y/(x 2 + y 2
) of w = l /z, being just 

a - 90° rotation of the real part, was not represented by a 
model of its own. 

The following general remark is perhaps appropriate at 
this point: If one considers the graph of the real or imagi-
nary part of an analytic function in a neighborhood of a 
pole, then one can immediately ascertain the order of the 
pole as being the number of " peaks" and " pits" grouped 
around the pole. In the case of the function u = l /z, (Photo 
126) there is one "peak" and one " pit" because the pole 
at 0 is of the first order. In Photos 129 and 130, resp., 131, 
to be discussed later, one sees second order, resp. , third 
order, poles. By contrast the order of a pole cannot be so 
easily recognized in the "landscape" of an analytic function 
(this is the term for the graph of its absolute value), because 
in this graph there is only one "peak". 

The business with " peaks" and " pits" can be explained 
as follows: From (7) one reads off the fact that for each 
real c =/= 0 the curve 

I 
Re z- = c 

is described by the equation 

(
x _J_)2 + y2 = (J_)2 

2c 2c ’ 

and so is a circle of radius l /21cl centered at the point 
1/2 c on the real axis. The horizontal cross-sections of 

Fig. 7.3 Landscape of the ,P-function 

the model in photograph 126 are therefore the correspond-
ing circular discs. (The limiting case c = 0 can be incorpo-
rated into this pattern by thinking of the imaginary axis as 
a circle of infinite radius centered at the point 00 .) The 
behavior of an arbitrary analytic function near a first-
order pole is " asymptotically" just like this. 

In approaching an nth _order pole (n 2), the curves 
real part = const. and imaginary part = const. are curves of 
higher order, and the horizontal cross-sections of the 
corresponding models have qualitatively, near such a pole, 
the form of an n-petalled cloverleaf. For n:;:; 2 , this is 
Bernoulli’s lemniscate (Photos 129 and 130). For n arbi-
trary, these curves are called "spirales sinusoides" in [GT], 
p. 259. In Photo 131 the case n = 3 is quite nicely visible. 

2.4 The Graph of w = ez (Photo 127) 

This model shows the graph of the real part of w = ez , 
that is, the graph of the function 

u :;:; ex cosy, 

where z = x + iy and w = u +iv. This is a cosine curve 
running along the y -axis; its amplitude ex converges to 
+00 (resp., 0) as x-+ +00 (resp., - 00) . A translation of 
rr/2 units along the imaginary axis transforms the real part 
into the imaginary part 

v :;:; ex siny 

of ez. 

2.S The Graph of 6 w:;:; e1/6 z (Photo 128) 

This model shows the real part of the function 

w:;:; ! el/6z 
6 , 

that is, the graph of 

I ' I u = - ex cosy 
6 

where w:;:; u +iv, z:;:; x + iy, 

I X 
x = 

6(x2 + y2) 
and 

The imaginary part 

1 x' . , 
v = -e smy 

6 

y ' 
-y 
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is essentially not very different, and so is not represented 
by a model of its own. 

A function which is analytic in a neighborhood of a 
point z0 from which z0 itself has been deleted, is said to 
have an essential singularity at this point if z0 is neither a 
pole nor a point over which f can be analytically continued 
( cf. , e. g., [HC]). While it is possible to get quite a good 
overview of the behavior of an analytic function in the 
vicinity of a pole ( cf. § 2.3), the behavior near an essential 
singularity is "very wild". Namely, every complex number, 
with the exception of at most one, is realized as a function 
value at least once in every neighborhood, however small, 
of z0 (theorem of PICARD). The function e1fz (and so also 
(1 /6)e 1f6 z) has such an essential singularity at the point 
z0 = 0, and indeed it is an especially simple manifestation 
of this phenomenon - e.g., the assertion in PICARD’s 
theorem, which for the most general function is not simple 
to prove, can be confirmed rather quickly for e1/z. 

In order to describe the behavior of Re ( e lfz) as z -+ 0, 
we first consider Re ( ez) as I zl-+ 00 � For real y let us denote 
by L (y) the straight line parallel to the real axis which has 
imaginary party, and by L+(y) (resp., L(y)) the half of 
it which lies to the right (resp., left) of the imaginary axis. 
Then from the equation 

Re (ez) = ex cosy 

one reads off the following information : If cosy> 0, then 
Re (ez) approaches + 00 when z EL+ (y) and lz l-+ 00 , and 
it approaches 0 from above when zEL_(y) and lzl-+ 00 � 

Ifcosy< O, then Re(ez) converges to - 00 whenz E L+(y) 
and lzl -+ 00 , and converges to 0 from below when z E L _(y) 
and lzl -+ 00 � 

Now, as the equation 

l_ l _ _ l l=-1 
x + iy 2 iy 2 lyl 

shows, the transformation z-+ l /z carries the lines L (y) 
into certain circles C(y), if we again regard the real axis, 
which is carried into itself, as a circle. (More precisely, 
a full circle is only realized in the latter case when the 

point 00 is adjoined to the line.) The centers of these 

circles all lie on the imaginary axis, and the half-lines 
L _(y), L +(y) are transformed into the semi-circles C_(y), 
C+(y) consisting of the part of C(y) lying to the left or 
right, respectively , of the imaginary axis. It is further 

t 

a) 

Fig. 7.4 Altitudechart and landscape of e l/z 

clear that l /z lies in C± (y), and converges to 0 if z EL– (y) 
and lzl-+ 00 � 

From the earlier description of the behavior of Re ( ez) 
on the lines L (y ), we are now in a position of infer the 
following: If cosy> O (resp., < O), then Re(e 1fz) con-
verges to +00 (resp., - 00), when z E C+(y) and z-+ 0 , and 
it converges to 0 from above (resp., from below) when 
z E C(y) and z-+ 0. 
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In particular, therefore, Re (e1fz) converges to+ 00 when 

z converges to 0 along a semi-circle C+(y) with -2
11 <y <I. 

On the model in Photo 128, this is manifested in the large 
spire with the teardrop-shaped horizontal cross-section near 
the middle of the model. The two long "icicles" lying 
symmetric to the real axis near this spire are caused by 
the fact that Re(e 1fz) approaches - 00 as z converges to 0 

on any semi-circle C+ (y) with I< lyl < 3211 
� The fact that 

Re ( e l/z) again approaches + 00 if z approaches 0 along any 

semi-circle C+ (y) with 32
11 < lyl < 52

11 
is also perceptible on 

the model , namely in the two steep spires with lune-shaped 
horizontal cross-sections which are situated symmetrically 
about the real axis. Finally, on the concave side of these 
steep spires two more icicles can be perceived; these cor-
respond to the fact that Re(e 1fz) converges to - 00 if z 

converges to 0 on any semi-circle C+ (y) with 
5
2
11 < ly l < 72

11
� 

It should be mentioned once again that the "landscape" 
of e 1/z (Fig. 7.4), that is, the graph of le 1/zl , does not 
manifest all the complexities of the singularity at 0 which 
were described above. One can easily get an idea of how it 
looks by recalling the relation 

le 1/z I= eRe(l/z) 

and consulting the model of Re (1 /z) (Photo 126). 

2.6 The WeierstraS and the WeierstraS 
Function (Photos 129-131) 

A function f which is meromorphic in the whole com-
plex plane is called elliptic (or doubly-periodic) if there 
are two complex numbers w 1 , w 2 not lying on a common 
line through 0 such that f (z + w 1) = f (z) and f (z + w 2) = 
f(z) , for all complex numbers z . The numbers w 1 , w 2 

are then called periods off and every parallelogram of the 
form 

{ Z O + t I WI + t 2 W2 : Q ,;;;; t J , t 2 < 1 }, 

in which z0 is a fixed but arbitrary complex number is 
called a period parallelogram (corresponding to the periods 
w1 and w2). 

It is known (as a consequence of LIOUVILLE’s theorem) 
that a non-constant elliptic function cannot be analytic 

in the whole plane and that it is also not possible that each 
period parallelogram contain exactly one pole if that pole 
is of order 1. In contrast to this latter property, however, 
there are elliptic functions which have exactly one pole 
and that of order 2 in each period parallelogram, and there 
are elliptic functions which have in each period paral-
lelogram exactly two poles, each of order 1. 

An important example of the first kind of elliptic 
function just mentioned is the WeierstraB 
which is uniquely determined by any eligible pair of com-
plex numbers w 1 , w 2 • It has w 1, w 2 as periods and in every 
period parallelogram determined by them it has exactly 
one pole, that being of second order; the point 0 is always 
one of these poles. 

This function 5' (z) can be expressed in terms of the 
periods w 1 and w 2 in the following way 

(8) 

where Q(w 1 , w 2 ) designates the period group generated 
by w 1 and w 2 , i.e., the group of all numbers of the form 
n 1 w 1 + n 2 w 2 for arbitrary integers n 1 and n2 • 

The models shown in photographs 129 and 130 rep-
resent the real part (Photo 129) and the imaginary part 
(Photo 130) of the WeierstraB gJ-function with the periods 

w 1 = 2,622 and w 2 = 2,622 • i (9) 

Altogether four period parallelograms (in this case 
squares of side-length 2.622) are shown; they illustrate the 
periodicity and among them contain four second-order 
poles. 

The apparently bizarre choice of period (9) can be ex-
plained as follows: The WeierstraB g,.function is indeed 
uniquely determined by the specification of its periods, 
but it is nevertheless possible that different pairs of periods 
give rise to the same g,.function. However, from any two 
periods two other numbers 

K2 = 60 L 4 and g3 = 140 L 6 
w E n(w 1, w2)\0W w E S1(w 1,w2)\0w 

can be calculated, and these, it turns out, are determined 
by the itself and are therefore designated as 
invariants of the gi.function . The necessary and sufficient 
condition that two complex numbers g2 and g3 be the 
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invariants (for appropriate periods w1, w2) of some 
function is that 

- * 0. (10) 

For the calculations needed in constructing the model, 
it is obviously easier to proceed from the invariants than 
from the periods. For the models shown, g2 = 4 and g3 = 0 
were selected, and the periods (9) were computed from 
these. The actual calculations needed to build the model 
relied on [HASW] and are described in [MM2]. 

It is known that (10) is a necessary and sufficient con-
dition for the cubic equation 4x3 

- g 2 x - g3 = 0 to have 
three distinct solutions. Furthermore, these solutions are 
the values of the appropriate ,P-function at the points 
w1 /2, (w1 + w2)/2 and w2/2. Moreover, it is the case that 
up to periodicity, it is precisely at these points that the 
first derivative of the ,P-function vanishes; that is , the real 
and imaginary parts of the ,P-function have their saddle 
points just exactly at these points. These saddle points are 
clearly visible in photographs 129 and 130, and at them 
our function has the values - 1, 0 and 1 (the solution of 
4x3 - 4x = O). 

The first derivative of the Weierstral1 is called 
the Weierstral1 and, on account of (8), has the 
series representation 

Fig. 7.5 

The model in Photo 131 shows the &i' -function for the 
which appears in Photos 129 and 130. Since 

the real and imaginary parts differ only by a 90° rotation, 
only one model, carrying the letters "R" and "/"on the 

appropriate sides, is presented. One sees immediately the 
four poles, each of order 3, of the which arise 
from the second-order poles of the ,P-function via dif-
ferentiation. We also recognize that w1 /2 , (w1.+ w2)/2 
and w2 /2 are the zeros of th•e g,’-function. 

The book of HURWITZ and COURANT [HC] .is recom-
mended to the reader who is interested in more detail 
about the theory of elliptic functions which we have 
broached in this section. 

2.7 The Jacobi Amplitude (Photo 132) 

This model shows a surface comprised of points (k, u, 
r.p) in real 3-dimensional space whose coordinates are 
related to each other via the elliptic integral of the first 
kind 

u = 

<P 

I dt 

.Ji - k2 sin2 t 
0 

Fig. 7.6 

The (k, u)-plane is horizontal, with the k-axis coinciding 
with the upper edge of the foremost side in the photograph. 
The r.p-values are laid out in the vertical direction. 

If we fix k , we can consider r.p to then be a function 
of u ; it is customary to designate this function with 
r.p =am (u , k) and to call it the Jacobi amplitude function. 
The surface shown can now be described as follows (cf. 
[MM 1 ], where this is done in greater detail): For all k, 
am(u , k) = am(u , -k) and am(O, k) = 0, accounting for 
the fact that the surface is symmetric with respect to the 
(u , r.p)-plane and contains the k-axis. Moreover, for every 
k the function am (u , k) goes through u = 0 at an angle 
of 45°. Fork= 0 the function am(u, k) actually coincides 
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with the line through 0 which bisects the first quadrant 
of the (u, 1P)-plane. For 0 < k < 1 am (u, k) is an increasing 
function of u for positive u, which somewhat like a sine 
curve wraps itself around an ascending straight line, the 
slope of which diminishes from 45° to 0° as k increases 
from 0 to 1. Fork= 1 the curve am (u, k) initially increases 
and then asymptotically approaches the line '{) = rr/2. For 
k > 1, am (u, k) oscillates around the u-axis like a sine 
curve. 

Regarding the concept of the elliptic integral, the book 
of HURWITZ and COURANT [HC) is again recommended 
to the interested reader. 
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