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Chapter 4 
Convex Bodies of Constant Width 

Johannes Bohm 
(translated by Wolfgang Kuhnel) 

§ l. Introduction, Historical Remarks 

Convex bodies of constant width b in Euclidean 3-space 
(which are different from the round ball) may be regarded 
as generalizations of such a round ball of diameter b . They 
have quite surprising properties which make it interesting 
to study them more closely. In general it will make no dif
ference if we consider the convex body (of constant width) 
or its boundary (of constant width). 

Many results have been known for a long time . Already 
L. EULER [ 14] studied in 1 778 the two-dimensional 
analogues. The constant width of such a plane convex 
curve seems to suggest that it must be a circle. Because of 
certain similarities with the circle EULER called these 
curves in Latin "orbiformes" (Joe. cit.) which means 
"circular-like curves''. Of course the circle itself is one 
of them. However, in general these orbiformes are not 
round circles. About 100 years later in 1875 F . REULEAUX 
[29] mentioned these curves in his book about kinematics. 
He was interested in their kinematic aspects and he gave a 
certain number of examples. Later some special cases 
received his name (Reuleaux triangle or Reuleaux polygon). 
In the beginning of this century there was a growing inter
est in convex bodies of constant width in dimension two 
and three . This was caused on one hand by the study of 
convex bodies in general and on the other hand by con
sidering examples of special curves. Here we have to 
mention in the first place the ingenious mathematician 

H. MINKOWSKI (25] who paid attention to the convex 
bodies of constant width among the convex bodies in gener
al. About the same time A. HURWITZ [ 15] and little later 
E. MEISSNER [21] have treated two·dimensional objects 
of that kind. 

For better visualization of three-dimensional convex 
bodies of constant width the Martin-Schilling-Verlag, 
Leipzig (31] published in 1911 a collection of mathematical 
models containing a certain number of plane curves of con
stant width and three plaster models of 3-dimensional 
bodies of constant width b (b = 12cm). The theoretical 
foundations are due to E. MEISSNER [23] with the col
laboration of F. SCHI LUNG (see also [31 ]). Certain phe
nomena and peculiarities are intended to be visualized by 
these models. Photos of these three models are shown in 
the present volume. MEISSNER [22] found at that time a 
more elegant and characteristic property of convex bodies 
of constant width which uses certain set-theoretic-metric 
ideas and makes use of the completeness of a convex 
point-set (see also 8 . JESSEN ( 17]). Using MEISSNER's 
definition of completeness it is immediately clear that 
there is a generalization of the notion of a convex set of 
constant width in two different ways: first it is not hard 
to see that a complete body in Euclidean n-space is an 
n-dimensional convex body of constant width and vice 
versa, secondly one can pass over from the Euclidean 
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metric to a Minkowski metric together with a suitable 
gauge body and consider analogously convex bodies of 
constant width. 

Some years later G. TIERCY [32, 33] worked on two
and three-dimensional convex bodies of constant width 
and called them "spheriformes" - by analogy with Euler's 

orbiformes. In the books by L. BIEBERBACH [5] and 
H. RADEMACHER/0. T6PLITZ [27] there are detailed and 
elementary descriptions of plane convex curves of constant 
width, and the classical standard book by T. BONNESEN 
and W. FENCHEL [8] contains an encyclopedical collection 

of what was known at that time, together with an extensive 
list of references. A corresponding presentation of recent 
date 1982 is due to G. 0. CHAKERIAN and H. GROEMER 
[ 14 ]. In particular this makes clear that the subject didn't 
lose its actuality and that there are still many unsolved 
problems. Other mathematicians who have made further 
contributions to this theory are W. BLASCHKE [6, 7], H. 
LEBESGUE [ 19] , K. REIDEMEISTER [28], and more re
cently H. G. EGGLESTON [ 1], I. M. JAGLOM and W. G. 
BOLTJANSKI [16], compare also the books by R. V. BEN 
SON [2] and S. R. LAY [ 18]. 

Although in the following we will consider convex 
bodies or their boundary in n-dimensional Euclidean 
space we preferably think of the cases n = 2 and n = 3. 
There are even certain phenomena which behave quite 
different or which are not yet understood in higher dimen
sions. The convex bodies are assumed to be compact and 
to have interior points. We start with the two-dimensional 
case and then treat the three-dimensional case to which 
this chapter is mainly devoted. 

§ 2. Intuitive Introduction 

The following may serve as an intuitive introduction 
into the problem - starting with the original concern 
(compare [27]). A circle is defined to be a closed plane 
curve whose points have the same distance from a well
defined centre M. This property is of practical use for a 
wheel whose spokes are of equal length: the nave of the 
wheel will remain in constant distance form the horizontal 
plane, independently of rotations of the wheel. This makes 
it possible to move a carriage horizontally. For such a 
wheel it is necessary that the boundary is a circle and that 
the nave sits at the centre because this property charac-

terizes the circle. Otherwise the wheel would "wobble", 
i.e. the horizontal motion would be accompanied with a 
vertical one. Another possibility to move something like 
a box is to use cylinders and to roll the box orthogonally 
to the axes of the cylinders. If the cross cut of these cy
linders is a circle then this motion will be purely horizontal
ly, i.e. with constant distance of the box from the plane. 
This however is not necessary. In fact the requirement 
is only that the distances between two parallel straight 
lines touching the cylinders on top and bottom is always 
the same (compare the cross cut shown in Figure 4.1). 
For this property a centre is unimportant. Of course the 
circle has this property, but this does not characterize it. 

Fig. 4 .1 

Besides the circle there is a great variety of plane curves 
leading to such a purely horizontal motion by cylinders. 
All curves with this property (including the circle) are 
called curves of constant width. It is obvious how the 
width of a closed plane curve in a given direction u can 
be determined: take the length of the orthogonal projec
tion of the curve on a straight line in direction u lying in 
the same plane. The two extremal projection lines have 
the property that they contain at least one point of the 
curve and that the curve lies on one side of the line. Such 
a straight line is called supporting line. A closed plane 
curve which is the boundary of a two-dimensional body 
has exactly two supporting lines for each direction. Note 
that in general the notion "supporting line" is different 
from "tangent line" because the curve is not necessarily 
differentiable (compare Figure 4.2). 

It follows that the width of a plane (convex) body 
in a given direction may be defined to be the distance 
between the two parallel supporting lines which are per
pendicular to the given direction. The body will lie be
tween these two supporting lines (see Figure 4.2). Similarly 
for a three-dimensional convex body of constant width b 
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Fig. 4.2 

we have two parallel supporting planes of distance b. Fixing 
these two supporting planes the possible motions of the 
body still have five degrees of freedom, preserving the 
contact with the two supporting planes. Looking at Photo 
I 02 one sees a gauging instrument which may be inter
preted just as a part of these supporting planes touching the 
convex body from both sides {compare also Fig. 4 .5). 

§ 3. Definitions and Basic Facts 

To give an analytic definition for the width of a convex 
body in n-dimensional space En in terms of supporting 
hyperplanes and associated support functions we start with 
the Cartesian coordinate system of !En and with the stand
ard Euclidean metric. 

The support function h (K, u) of the convex body K in 
the direction U E Sn - 1 is defined to be the oriented distance 
between the origin and the supporting hyperplane H which 
is orthogonal to u. The normal of H has to be chosen such 
that it points into the half space not containing K. This 
may be written as 

h(K, u) = sup(u · x: x EK). 

The Hesse normal form of H is u · x = h (K, u ). Then the 
width of K in the direction u is the distance between the 
two supporting hyperplanes orthogonal to u, i.e. w(K, u) = 
h(K, u) + h(K, -u). This leads to the following definition: 

Let K be a n-dimensional convex body. K is said to have 
constant width b if and only if w(K, u) = b for all 
directions u E Sn - 1 . 

For two different points p , q of the boundary of K the 
straight line segment between them is called chord of K . 

Then it follows that an equivalent condition for the 
constancy of the width is the following: For all directions 
u E sn -I each of the two supporting planes of K with 
normal vectors u and - u contains exactly one point of 
K , and the chord spanned by these points p1 , Pz is per
pendicular to the two supporting planes. 

p 1 and p 2 are called opposite points of the convex 
body of constant width. Consequently for every boundary 
point p of a convex body of constant width the following 
holds: Every normal of the boundary at p is also a normal 
at a suitable opposite point. Such a normal is called double 
normal. 

This leads to the following statement for a convex 
body K: 

K is of constant width if and only if every normal is a 
double normal. 

Now we are going to discuss the various possibilities 
for the set of supporting planes through a fixed boundary 
point of a convex body. This turns out to be quite useful 
for the study of convex bodies of constant width. 

A boundary point p of K is called regular if K has 
exactly one supporting plane through p , otherwise it is 
called singular. 

The boundary (and also K itself) is called smooth if 
all boundary points are regular. Only a singular boundary 
point can have more than one opposite point (of course, 
there is only one in a given direction). A singular boundary 
point of K is said to have order r - l if the normals belong
ing to supporting planes through p form a r-dimensional 
cone. As an example a boundary point is called vertex if 
it has order n - I. For n = 3 a singular boundary point of 
order 1 is called edge point. The direction of the edge is 
given by the common straight line of the pencil of sup
porting planes. For a convex body of constant width the 
set of points opposite to such an edge point will be a 
circular arc. 

For completeness let us shortly discuss the follow
ing general methods in convex geometry which origi
nate from H. MINKOWSKI. For the foundations compare 



184 Convex Bodies of Constant Width

K. LEICHTWEISS (20], MINKOWSKI (24, 26) or BONNE
SEN/FENCHEL (8). 

Using the notions of "Quermassintegral" or "mixed 
volume" one can formulate the theorem of A. DINGHAS . 
For n = 2 this is known as the theorem of E. BARBIER ( 1) 
saying that all plane convex curves of constant width b 
have constant perimeter nb. For n = 3 one gets in particular 
the equation of W. BLASCHKE (6) which implies that the 
surface area can be different for convex bodies with the 
same constant width. Therefore there is no analogue of 
BARBIER's theorem in dimensions greater than 2. However 
in the 3-dimensional case it can be shown that the two
dimensional orthogonal projections of a convex body of 
constant width have constant perimeter. The converse has 
been shown already by MINKOWSKI (25) whose theorem 
may be formulated as follows: The class of 3-dimensional 
convex bodies of constant width b equals the class of 3-
dimensional convex bodies of constant perimeter n ·b. The 
plaster models allow an intuitive verification using a fabric 
cylinder which is made of flexible but incompressible 
material. Pulling such a cylinder over a convex body of 
constant width it will always touch the surface of the body 
independently of the direction. In this case the generating 
lines of the cylinder will be supporting lines of the body. 

§ 4. The Two-Dimensional Case 

Let us consider plane curves of constant width bounding 
a 2-dimensional convex body of constant width. Particular
ly simple examples which are different from the circle are 
the convex arc polygons which necessarily have an odd 
number of vertices and whose arcs are parts of circles with 
the same radius b. The vertices of the polygon are the 
centres of the opposite circular arcs. Each pair of opposite 
points contains at least one vertex and the supporting line 
corresponding to the other points is the tangent of the 
opposite circular arc. Consequently the width in any 
direction is just b. Such 2-dimensional arc polygons of 
constant width are called Reuleaux polygons. The particular 
case of the Reuleaux triangle (see Figure 4.3) is remarkable 
because of different reasons: it is necessarily regular with 

three arcs of b, it has the minimal possible number 

of vertices and it has certain other extremal properties. 
By elementary geometric considerations (see (28)) it follows 

Fig. 4.3 

that every interior angle of such a Reuleaux polygon cannot 
be smaller than 120°. Therefore the Reuleaux triangle 
with three angles of 120° has the smallest (or "sharpest") 
possible ones. Furthermore, among all curves of constant 

width b the Reuleaux triangle bounds the surface with the 
rr - ../3 

smallest area - 2- b 2 (This is a theorem of BLASCHKE-
LEBESG UE ). 

By the property that all normals of the boundary are 
double normals it follows easily that a convex body K of 
constant width generates a family of convex bodies with 
constant width by taking the parallel surfaces of the bound
ary with the extra condition that these must be convex. 
These parallel surfaces bound convex bodies of constant 
width (invariance under Minkowski sum). In the 2-di
mensional case this family of parallel curves of constant 
width has a common evolute as focal curve. By the filar
relationship between evolute and evolvent a curve of 
constant width can be constructed from a given evolute 
with certain properties (e. g. odd number of cusps, at 
least three) by rolling off a tangential straight line segment. 
After twofold traversing around the evolute the orbit of 
any point of this segment (which is sufficiently far away 
from the point of tangency) will be a curve of constant 
width. 

This implies that we have a second principle for the 
construction of curves of constant width. Particularly 
suitable examples are the evolute of hypocycloids with 
an odd number of cusps. The simplest one is the Steiner 
hypocycloid with 3 cusps (compare Figure 4.4 , curve C3) 

which is the orbit of a point of a circle of radius r rolling 
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inside of a circle of radius 3r. The member of the cor
responding family of convex curves of constant width with 

the smallest possible width 1
3
6 r meets these three cusps 

(see Figure 4.4, curve C) and is called fundamental orbiform 
of order 3. 

1> 
I 

Fig. 4.4 

Finally let us mention an analytic parametrization of a 
plane convex curve in terms of its support function which 
is supposed to be differentiable. The origin of the Cartesian 
coordinate system is assumed to lie in the interior of the 
curve. Now it is possible to describe the curve uniquely by 
its support function h (u). By convexity the direction u 
can be expressed uniquely by the oriented angle \0 with the 
positive x-axis, and therefore we may write h(u) = h(tp) 
where h is a continuous and 2rr-periodic function. The 
curve is enveloped by the supporting lines with the equa
tion 

u · x =x · costp + y · sintp = h(tp), 

leading to the parametrization 

x = h(tp)· costp-h
1
(tp) · sintp 

y = h ( \0) · sin \0 + h' ( \0) · cos \0 

u = (c.ostp) E s2 
Sin \0 ' 

o .;;;; \0<2rr. 

h (<P) is the (positive) distance of the corresponding sup
porting line from the origin and h' (\0) is the oriented 
distance between the foot of the perpendicular from the 
origin to the supporting line and the common point of the 
supporting line and the curve. Because of the convexity 
the radius of curvature p (\0) = h (\0) + h

11 
(<P) must be non-

negative. · 

For the evolute we get the representation 

=x - p COS\O 

1/ = y - p sin tp. 
o.;;;;tp < 2rr. 

The above curve C with constant width b and with the 
Steiner hypocycloid C3 as evolute has the support function 

h(tp)=} (i+kcos3tp) which implies p=}(l-cos3tp). 

This curve C has 6 points of extremal curvature at \0 = s 

(s = 0 , 1, ... , 5) and no vertices. At the critical points with 
s = 0, 2, 4 we have p = 0 and the curve looks locally like 
x = t4, y = t3 and t = 0. 

§ 5. The Three-Dimensional Case, Description of 
the Models 

Let us first mention the special case of a convex 3-di
mensional body of constant width which is rotationally 
symmetric. This means that we have to consider convex 
surfaces of revolution with constant width. The correspond
ing meridian curves are exactly the plane convex curves of 
constant width which are axially symmetric. A point p is 
a vertex if and only if it lies on the axis of revolution and 
is a vertex of the meridian curve. The set of its opposite 
points will be a part of a sphere. Every such plane curve of 
constant width b with axial symmetry gives rise to a convex 
surface of revolution with the same constant width b. All 
possible kinds of singular points may occur in this case, 
however there is at most one vertex. If there are edge points 
then these are always complete circles (= orbits of points 
under the revolution). 

Examples for such surfaces are the two plaster models 
shown in Photos 98 and 99. Photo 98 shows a surface 
of revolution which is generated by the curve C dis
cussed above which has the Steiner hypocycloid C3 as 
evolute (see Figure 4.4). The support function of "half' 
of this curve (the meridian curve) is given by the formula 

(1 +kcos3e) , o .;;;; e .;;;; rr. 

For the surface of revolution around the axis 8 = 0 in 
the direction 

( 
cos \0 sine ) 

u = sin \0 sine 
cose 
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we get the same expression 

of its support function . Consequently we get the following 
parametrization in Cartesian coordinates: 

x = h(IP, 0). COSIP sine - h'(IP, 0). COSIP cose 
y = h(IP, O) ·sin IP sinO - h'(IP, 0) ·sin IP cosO 
z =h(1P,ll) · cosO-h'(1P,ll)·sinO. 

( 
I ah) o 21T; o e 1T; h := ae . 

The geometric interpretation of IP and 0 refers to the 
direction u which is the normal direction of the sup
porting plane at the point (x, y , z). For every IP but only for 

e = 0, 2
3rr and 1T this agrees with the spherical coordinates 

of this point. 
This surface has no vertex and no edge point. By the 

substitution s = tan I, t = one can see that it is an 

algebraic surface. For 0 = 0 and 0 = one principal curva

ture and therefore the Gaussian curvature tends to infinity. 
In the photo these points are the top of the body (0 = 0) 

and a certain striking circle ( 0 = which lies quite below. 

Approximately the contour of the model in the photo 
coincides with the curve C itself. 

Fig. 4.5 

Photo 99 shows the surface which is generated by the 
rotation of the Reuleaux triangle around an axis through 
one of its three vertices (in Fig. 4.5 from [31] it is rep
resented with a gauging instrument). This surface has one 
vertex (the top in the photo) and edge points along a distin
guished circle which lies quite below. The edge circle de
composes the surface into a piece of a sphere (below) and a 

spindle-shaped piece ofa torus(above). These arethe sets of 
opposite points for the vertex and for the edge circle, 
respectively. The extremality property of the angles of 
the Reuleaux triangle carries over to this vertex and this 
edge circle of the surface. The measure of this solid angle 

or edge angle turns out to be or t of the entire sphere or 

circle, respectively. Also the contour of this photo coincides 
roughly with the Reuleaux triangle itself. 

The last example of a convex body of constant width is 
not rotationally symmetric. It turns out to be impossible 
to build such a convex body by pieces of spheres, like in 
the case of the Reuleaux polygon. However, already in 
1911 in the model catalogue of the M.SCHILLING -Verlag 
[31] and later in 1912 E. MEISSNER [23] gave a slightly 
modified example. By analogy with the Reuleaux triangle 
MEISSNER starts with a regular tetrahedron with edge 
length b. Following his idea we now describe how to get 
a tetrahedron of constant width (called Meissner body) 
with these four vertices and opposite pieces of spheres. 
First we construct four round balls with radius b around 
the vertices. The intersection of these four balls is a body D 
with four vertices and four opposite pieces of spheres and 
with six curved edges which are intersections of two spheres 

(small circles of radius v'3). The corresponding central 

angle Q with cos Q = t is the same as the angle between two 

faces of the Euclidean regular tetrahedron. The edge angle 

turns out to be t7T. There are three pairs of opposite curved 

edges. It is easily seen that we can have at most one edge 
for each pair if the convex body has constant width. Now 
let us choose three such edges belonging to three dif
ferent pairs. There are essentially two different possibili
ties for such a choice: 

a) the three opposite edges have a common vertex, 
b) the three opposite edges form a triangle. 

Now we are going to modify those opposite edges by 
rounding them off and replacing a neighborhood of them 
by pieces of a spindle torus. We get these pieces by rota
tion of a piece of a circle of radius b centered at a vertex 
of the tetrahedron where the rotation is around the axis 
joining the two vertices of the edge to be rounded off. 
These pieces of tori come to lie inside D and the angle 

f 
. . 1 

o rotat10n 1s arccos 3. 
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In this way a convex body of constant width b has 
been constructed. This has four vertices, three circle edges, 
four spherical pieces and three toroidal pieces. At the 
boundary between spherical and toroidal pieces the surface 
is continuously differentiable. According to the two dif
ferent possibilities above there are two noncongruent 
types of such bodies of constant width. However, they 
have the same volume and the same area. For type a) 
we have a plaster model shown in the Photos 100- 102. 
The long standing conjecture that this body has the smallest 
volume among all 3-dimensional convex bodies of constant 
width b (compare the theorem by BLASCHKE-LEBESGUE) 
turns out to be false according to a smaller upper bound for 
the volume due to G. D. CHAKERIAN [9). 

Every plane containing two vertices of this body and 
one point p of the Euclidean tetrahedron different from 
these two vertices yields a slice of this body which is a 
planar arc polygon of the same constant width and which 
in addition coincides with the contour in the direction 
perpendicular to the plane. If p is a vertex of the Euclidean 
tetrahedron then the slice is a Reuleaux triangle. We get 
also a Reuleaux triangle if the two vertices are the end
points of an edge which has been rounded off. If they 
belong to an edge of the other kind and if p is an interior 
point of the tetrahedron then the slice is a polygon with 
two vertices containing two circular pieces of radius b 
and two circular pieces (opposite to each other) whose 
sum of radii is b. This last case can be seen approximately 
in the contour.s of Photos l 01 and 102. 

Photo 100 shows in particular the vertex incident with 
the three edges rounded off. The notches on the surface 
give the position of the boundaries between the spherical 
and toroidal pieces. All of these points are regular ones 
and the pieces fit together continuously differentiably. 

Photo 101 and 102 show the three edges which have 
not been rounded off and which bound the lower trigonal 
piece of a sphere. This piece is not a geodesic spherical 
triangle because the edges are pieces of circles with a 
radius different from b. This spherical piece is just the 
set of all points opposite to the fourth vertex. In the 
edge point there are several supporting planes. As an 
example consider a point of the edge which is the lowest 
part of the contour of Photo 101. Then it is possible 
to see the set of opposite points which is a piece of a 
circle lying in the corresponding toroidal piece. If the 
edge point moves along this edge from vertex to vertex 

then this circular arc moves from one marked boundary 
to the other. This can be seen quite clearly in Photo 101. 
To the left lower vertex there corresponds the opposite 
trigonal spherical piece as set of opposite points. Its marked 
boundary pieces are great circles with respect to the cor
responding spherical piece of radius b but the lower edge 
is not. Consequently this spherical piece is not a geodesic 
triangle. 

Photo 102 shows the model between the two planar 
metal pieces of the gauging instrument which verifies and 
demonstrates the constant width. The right hand metal 
touches it at an edge point. The corresponding opposite 
point touching the left hand metal lies on the opposite 
toroidal piece of the rounded edge. 
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